The P_{3} Intersection Graph

Manju.K.Menon *
and
A.Vijayakumar ${ }^{\dagger}$
Department of Mathematics
Cochin University of Science and Technology
Cochin-682022

India.
July 15, 2006

Abstract

We define a new graph operator called the P_{3} intersection graph, $P_{3}(G)$ - the intersection graph of all induced 3-paths in G. A characterization of graphs G for which $P_{3}(G)$ is bipartite is given. Forbidden subgraph characterization for $P_{3}(G)$ having properties of being chordal, H-free, complete are also obtained. For integers a and b with $a>1$ and $b \geq a-1$, it is shown that there exists a graph G such that $\chi(G)=a, \chi\left(P_{3}(G)\right)=b$, where χ is the chromatic number of G. For the domination number $\gamma(G)$, we construct graphs G such that $\gamma(G)=a$ and $\gamma\left(P_{3}(G)\right)=b$ for any two positive numbers $a>1$ and b. Similar construction for the independence number and radius, diameter relations are also discussed.

[^0]
1 Introduction

The study of 'graph operators' and their various properties such as fixedness, convergence and others have been receiving wide attention since Ore's work [3] on the line graph operator.

The H - intersection graph $\operatorname{Int}_{H}(G)$ is the intersection graph of all subgraphs of G that are isomorphic to H, see [4]. If H is K_{2} then $I n t_{H}(G)$ is the line graph. Trotter [6] characterized the graphs for which $\operatorname{Int}_{K_{2}}(H)$ is perfect. The K_{3} intersection graph is the 3-edge graph provided every edge lies in some triangle where the 3-edge graph is the intersection graph of cliques with at most three vertices or a triangle [5].

For a detailed discussion on other graph operators, the reader may refer to [4].

In [1] Akiyama and Chvátal have characterized the graphs for which $\operatorname{Int} P_{3}(G)$ is perfect. Motivated by this paper, we have defined a new operator, the P_{3} intersection graph - $P_{3}(G)$ as the intersection graph of all induced paths on three vertices in G. We characterize the graphs G such that $P_{3}(G)$ is bipartite. We obtain forbidden subgraph characterization for $P_{3}(G)$ being H-free, chordal and complete. Some properties of chromatic number, domination number, independence number, diameter and radius of $P_{3}(G)$ are also discussed.

All the graphs considered here are undirected and simple. $P_{3}(G)$ is the null graph for any graph G which is the union of complete graphs. Hence in this paper we do not consider such graphs. For all other basic concepts and notations not mentioned in this paper we refer [7].

$2 \quad P_{3}$ intersection graph

Definition 2.1: Let G be a graph. The P_{3} intersection graph of $G, P_{3}(G)$ has the induced paths on three vertices in G as its vertices and two distinct vertices in $P_{3}(G)$ are adjacent if the corresponding induced 3-paths in G intersect.

If $a_{1}-a_{2}-a_{3}$ is an induced 3-path in G then the corresponding vertex in $P_{3}(G)$ is denoted by $a_{1} a_{2} a_{3}$. If G is a connected graph of order at most five then $P_{3}(G)$ is complete.

Example 2.1:

Remark 2.1: In general, the H-intersection graph of a connected graph is not necessarily connected. But, we have

Theorem 2.1: $P_{3}(G)$ is connected if and only if G has exactly one component containing an induced P_{3}.

Proof: Suppose that G contains more than one component containing an induced P_{3}. Let $a_{1}-a_{2}-a_{3}$ and $b_{1}-b_{2}-b_{3}$ be any two induced 3 -paths in G which lie in distinct components of G. Then by the definition of $P_{3}(G)$ the corresponding vertices $a_{1} a_{2} a_{3}$ and $b_{1} b_{2} b_{3}$ in $P_{3}(G)$ cannot be connected by a path and hence $P_{3}(G)$ is not connected.

Let G has exactly one component containing an induced P_{3}. Suppose that $x=a_{1} a_{2} a_{3}$ and $y=b_{1} b_{2} b_{3}$ are any two non-adjacent vertices in $P_{3}(G)$. If $a_{i}, i=1,2,3$ and $b_{j}, j=1,2,3$ are adjacent then $a_{1} a_{2} a_{3}, a_{i} b_{j} b_{j+1}$ or $a_{i} b_{j} b_{j-1}, b_{1} b_{2} b_{3}$ is a path connecting x and y. If a_{i} and b_{j} are not adjacent then let the shortest path connecting $a_{i}, i=1,2,3$ and $b_{j}, j=1,2,3$ be $a_{i}, c_{1}, c_{2}, \ldots, c_{n}, b_{j}$. If $n=1$, then $a_{1} a_{2} a_{3}, a_{i} c_{1} b_{j}, b_{1} b_{2} b_{3}$ is a path connecting x and y. If $n \geq 2$, then $a_{1} a_{2} a_{3}, a_{i} c_{1} c_{2}, \ldots, c_{n-1} c_{n} b_{j}, b_{1} b_{2} b_{3}$ is a path connecting x and y in $P_{3}(G)$. Hence any two vertices in $P_{3}(G)$ are connected by a path and hence $P_{3}(G)$ is connected.

As to the question whether every graph is the P_{3} intersection graph of some graph, we have

Theorem 2.2: The following graphs G cannot be the P_{3} intersection graph of any graph.
(1) G is a connected graph having at least 3 vertices and a pendant vertex.
(2) There exists a vertex v in G with $\operatorname{degree}(v)=2$ such that v is adjacent to any two non-adjacent vertices in G.
(3) G is a connected triangle free graph having at least three vertices.

Proof:

Let G be a connected graph having at least 3 vertices. Suppose further that G has a pendant vertex, say x. Let z be the unique vertex adjacent to x. If possible let there exists a graph H such that $P_{3}(H)=G$. Since there exists at least three vertices, there exists a vertex adjacent to z and let it be y. Since x and y are two non-adjacent vertices in $G=P_{3}(H)$, we can assume that $x=a_{1} a_{2} a_{3}$ and $y=b_{1} b_{2} b_{3}$ where a_{i} 's and b_{j} 's are distinct vertices in H. Then since z is adjacent to both x and y, z corresponds to a 3-path in H which must contain at least one a_{i} and b_{j}. So z must be of the form $a_{i} b_{j} c$ or $a_{i} c b_{j}$ or $c a_{i} b_{j}$.

Let $z=a_{i} b_{j} c$. If $i=1$, then $a_{2}-a_{1}-b_{j}$ is a 3 -path. But if this is an induced path, then x cannot remain as a pendant vertex. So $a_{2}-b_{j}$ is an edge in H. Then $a_{3}-a_{2}-b_{j}$ is a 3 -path. But if this is an induced path then x cannot remain as a pendant vertex. So $a_{3}-b_{j}$ is an edge in H. Then $a_{1}-b_{j}-a_{3}$ is an induced 3 -path. If the corresponding vertex $a_{1} b_{j} a_{3}$ is different from z, then it is adjacent to x is a contradiction to the fact that x is a pendant vertex. If $a_{1} b_{j} a_{3}=z$, then we can show that there exists an induced 3 -path with a_{1} and two b_{l} 's, $l=1,2,3$ as its vertices. The corresponding vertex which is different from z is adjacent to x which will also lead to a contradiction. So G cannot be the P_{3}-graph of any graph. The case is similar when $i=2,3$ also. The proof is similar when $z=a_{i} c b_{j}$ and $z=c a_{i} b_{j}$.

Suppose now that G has a vertex v with $\operatorname{degree}(v)=2$ and let $G=P_{3}(H)$. Let v be adjacent to v_{1} and v_{2} where v_{1} and v_{2} are nonadjacent vertices. Let $v_{1}=a_{1} a_{2} a_{3}$ and $v_{2}=b_{1} b_{2} b_{3}$ where a_{i} 's and b_{j} 's are distinct vertices in H. Then v must be of the form $a_{i} b_{j} c$ or $a_{i} c b_{j}$ or $c a_{i} b_{j}$. So as in the proof given above, we can show that there exists a vertex adjacent to v which is different from both v_{1} and v_{2} which is a contradiction to the fact that degree $(v)=2$.

Finally, let G be a connected triangle free graph. If possible assume that $G=P_{3}(H)$. Since G has at least three vertices it contains a vertex z which is adjacent to two non-adjacent vertices x and y. Let $x=a_{1} a_{2} a_{3}$ and $y=b_{1} b_{2} b_{3}$, where a_{i} 's and b_{j} 's are distinct vertices in H. Then z must be of the form $a_{i} b_{j} c$ or $a_{i} c b_{j}$ or $c a_{i} b_{j}$. Using the similar arguments as in the above proofs, we can show that there exists a vertex which is adjacent to both x and z which is a contradiction to the fact that G is triangle free.

Lemma 2.1: If G is a connected graph having at least five vertices, then $P_{3}(G)$ has at least three vertices.

Proof: Let G be a connected graph having at least five vertices. Let x and y be two non-adjacent vertices of G. Let the shortest path connecting x and y be $x, v_{1}, v_{2}, \ldots v_{n}, y$. If $n \geq 3$ then $P_{3}(G)$ clearly contains at least three vertices. If $n=2$ then since G is a connected graph having at least five vertices, the fifth vertex must be adjacent to at least one of x, v_{1}, v_{2}, y. Then there exists at least three induced 3 -paths in G and hence $P_{3}(G)$ contains at least three vertices. If $n=1$, there exists at least two more vertices in G and they must be connected to x, v_{1}, y. In any case there exists at least three induced 3-paths in G and hence $P_{3}(G)$ contains at least 3 vertices.

Notation: The graph obtained by deleting any edge of K_{n} is denoted by $K_{n}-\{e\}$.

The graph

Theorem 2.3: Let G be a connected graph. Then $P_{3}(G)$ is bipartite if and only if G is $P_{3}, P_{4}, K_{4}-\{e\}$ or paw.

Proof: Let $P_{3}(G)$ be bipartite. Then $P_{3}(G)$ cannot contain triangles. So by Theorem 2.2 (3), the only bipartite graphs are K_{1} and K_{2}. Again by Lemma 2.1, G can have at most four vertices. Since we are considering only the connected graphs, the theorem follows.

3 Forbidden subgraph characterizations

A graph H is a forbidden subgraph for a property P of a graph G, if G does not contain an induced subgraph isomorphic to H. A forbidden subgraph H for the property P is a vertex minimal forbidden subgraph if no induced subgraph of H is a forbidden subgraph for the property P. A graph G is H-free if G does not contain H as an induced subgraph. Many classes of H-free graphs are discussed in [2]. A property P of a graph G is vertex hereditary if every induced subgraph of G also has the property P.

Theorem 3.1: If G is a P_{3} intersection graph then $K_{1,4}$ is a forbidden subgraph for G.

Proof: Suppose that $G=P_{3}(H)$ contains $K_{1,4}$ as an induced subgraph. Let v be the central vertex and $v_{1}, v_{2}, v_{3}, v_{4}$ be the neighbors of v in $K_{1,4}$ in G. Then v corresponds to an induced 3 -path in H which intersects with all the four distinct 3 -paths corresponding to v_{1}, v_{2}, v_{3} and v_{4} which is not possible. Hence $K_{1,4}$ is a forbidden subgraph for the P_{3} intersection graph.

Theorem 3.2: Let $\varphi=\left\{G: P_{3}(G)\right.$ is H-free $\}$ where H is any graph. Then the property $P, G \in \varphi$ is vertex hereditary.

Proof: Let $G \in \varphi$. Suppose that $G-\{v\} \notin \varphi$. So $P_{3}(G-\{v\})$ contains H as an induced subgraph. Then this H will be induced in $P_{3}(G)$ also, which is a contradiction to the fact that $G \in \varphi$.

Corollary 3.1: The collection φ has only a finitc class of vertex minimal forbidden subgraphs.

Proof: The property $G \in \varphi$ is vertex hereditary. So φ must have vertex minimal forbidden subgraphs. Let F be the collection of all such vertex minimal forbidden subgraphs. Let $G_{1} \in F$. Then $P_{3}\left(G_{1}\right)$ contains H as an induced subgraph. So, corresponding to a vertex in H there exists an induced 3-path in G_{1}. So, number of vertices in G_{1} covered by these 3-paths cannot exceed $3 n$ where n is the number of vertices in H. If G_{1} contains more than $3 n$ vertices, then there exists a vertex v in G_{1} such that any induced 3-path containing v does not determine a vertex of H in $P_{3}\left(G_{1}\right)$. Then $G_{1}-\{v\}$ is also forbidden for φ which is a contradiction to the vertex minimality of G_{1}. Hence the number of vertices of G_{1} is bounded by $3 n$ and hence φ has only a finite class of vertex minimal forbidden subgraphs.

Theorem 3.3: Let $\Im=\left\{G: P_{3}(G)\right.$ is chordal $\}$. The property $P, G \in \Im$ is vertex hereditary.

Proof: Let $G \in \Im$. Suppose that $G-\{v\} \notin \Im$. That is, $P_{3}(G-\{v\})$ is not chordal which implies that $P_{3}(G-\{v\})$ contains an induced $C_{n}, n \geq 4$. Then these C_{n} 's are induced cycles in $P_{3}(G)$ which is a contradiction to the fact that $P_{3}(G)$ is chordal.

Corollary 3.2: The collection \Im has an infinite class of vertex minimal forlidden subgraphs.

Proof: The property $G \in \Im$ is vertex hereditary. So \Im must have vertex minimal forbidden subgraphs. If G contains $C_{n}, n \geq 6$ as an induced subgraph, then $P_{3}(G)$ contains $C_{n}, n \geq 4$ and hence cannot be chordal. Also $P_{3}\left(C_{n}-\{v\}\right), n \geq 6$ is chordal. So $C_{n}, n \geq 6$ are vertex minimal forbidden subgraphs for \Im. Thus there exists an infinite class of vertex minimal forbidden subgraphs for \Im.

Theorem 3.4: Let $\Psi=\left\{G: P_{3}(G)\right.$ is complete $\}$. The property $G \in \Psi$ is vertex hereditary.

Proof: Let $G \in \Psi$. Suppose that $G-\{v\} \notin \Psi$ for some v. Then there exist at least two non-adjacent vertices in $P_{3}(G-\{v\})$. These vertices will remain as non-adjacent vertices in $P_{3}(G)$ also, which is a contradiction to the fact that $P_{3}(G)$ is complete.

Corollary 3.3: Any vertex minimal forbidden subgraph for Ψ has exactly six vertices.

Proof: The property $G \in \Psi$ is vertex hereditary. So it has vertex minimal forbidden subgraphs. $P_{3}(G)$ is complete for any graph having at most five vertices. So, a forbidden subgraph must have at least six vertices. Let G_{1} be any vertex minimal forbidden subgraph for Ψ. Since G_{1} is a forbidden subgraph for $P_{3}(G)$ being complete, it must have at least two disjoint 3paths, $a_{1}-a_{2}-a_{3}$ and $b_{1}-b_{2}-b_{3}$. If some a_{i} is adjacent to any of these b_{j} 's then these six vertices are enough to induce a vertex minimal forbidden subgraph. Now, let no a_{i} be adjacent to any of the b_{j} 's. Then, since G_{1} is connected there must exist some path connecting a_{i} 's and b_{j} 's. Let the shortest such path be $a_{i}-c_{1}-c_{2}-\ldots-c_{k}-b_{j}$. Then we can find two disjoint induced 3 -paths, $a_{1}-a_{2}-a_{3}$; and the other containing c_{1}. These six vertices are enough to induce a vertex minimal forbidden subgraph.

Remark 3.1: Ψ has only a finite collection of vertex minimal forbidden subgraphs.

4 Chromatic Number

In this section $\omega(G)$ denotes the clique number of G which is defined as the order of the largest complete subgraph of G. The chromatic number $\chi(G)$ is the minimum colors required for a proper coloring of vertices of G.

Lemma 4.1: For a connected graph $G, \omega\left(P_{3}(G)\right) \geq \omega(G)-1$.
Proof: Let $\omega(G)=k$. Since G is non-complete and connected, there exists a vertex u adjacent to at least one vertex of the k-clique in G. If u is joined to t vertices of this k-clique then there are $t(k-t)$ induced 3-paths in G where u is common to all these induced 3 -paths. So $\omega\left(P_{3}(G)\right) \geq t(k-t)$. Now, if $t(k-t)<k-1$ then $k<(t+1)$ which is a contradiction to the fact that $\omega(G)=k$. So $\omega\left(P_{3}(G)\right) \geq k-1$.

Theorem 4.1: For a connected graph $\mathrm{G}, \chi\left(P_{3}(G)\right) \geq \chi(G)-1$. The equality holds if and only if G is either $K_{n}-\{e\}$ or a complete graph with a pendant vertex attached to it.

Proof: Let $\chi(G)=k$. Then there exists a vertex v in G with color k such that its neighbors $v_{1}, v_{2}, \ldots, v_{k-1}$ have distinct colors $1,2, \ldots, k-1$ respectively.

If these vertices form a k-clique then $\omega(G) \geq k$. So $\chi\left(P_{3}(G)\right) \geq$ $\omega\left(P_{3}(G)\right) \geq k-1$, by lemma 4.1.

If these vertices do not form a k clique then let ' m ' be the size of maximal clique in the subgraph induced by these vertices. Clearly v is a vertex in this m-clique. Then among the k vertices, there are $k-m$ vertices adjacent to v which are not in the m-clique. Let v_{i} be such a vertex. Then this v_{i} can be adjacent to at most $m-1$ vertices of the m-clique. In any case we can find at least k distinct induced 3 -paths having a common vertex. The corresponding k vertices in $P_{3}(G)$ will form a k-clique and hence $\chi\left(P_{3}(G)\right)$ $\geq k$.

Hence the equality holds only when there is a k-clique in G. Since G is connected and non-complete, there exists a vertex u_{1} which is adjacent to some of the v_{i} 's in the k-clique. If u_{1} is adjacent to t vertices of the k-clique where $2 \leq t \leq k-2$, then there exists at least k distinct induced 3 -paths having a common vertex. Hence, in this case $\chi\left(P_{3}(G)\right)>k-1$. So u_{1} can be adjacent with either 1 or $k-1$ vertices of the k-clique. If there exists one more vertex in G other than these $k+1$ vertices, then also we can find at least k induced 3 -paths having a common vertex and hence
$\chi\left(P_{3}(G)\right) \geq k$. So when $\chi\left(\left(P_{3}(G)\right)\right)=\chi(G)-1$, there exists exactly $k+1$ vertices such that u_{1} is adjacent to 1 or $k-1$ vertices of the k-clique. If u_{1} is adjacent to only one vertex of the k-clique, then the graph is a complete graph with a pendant vertex attached to it and if u_{1} is adjacent to $k-1$ vertices of the k-clique, then the graph is $K_{k+1}-\{e\}$ and hence the result.

Theorem 4.2: Given any two positive numbers a and b where $a>1$ and $b \geq a-1$, there exists a graph G such that $\chi(G)=a$ and $\chi\left(P_{3}(G)\right)=b$.

Proof:

Consider the following cases, all of which have $P_{3}(G)=K_{b}$:

		Construction	Illustration
Case 1	$b=a-1$	Attach a pendant vertex to any one vertex of K_{a}	$a=4 ; b=3$
Case 2	$b=a$	Consider the graph G of case 1. Then attach a single vertex to the pendant vertex of G.	$a=4 ; b=4$

Case 3	$b>a$	Construction Subcase $3 a$	$b \leq 2 a-1$
Consider the graph G of case 1. Any one vertex of K_{b-a+1} is joined to the pendant vertex.	$a=4 ; b=6$		

5 Some other Graph parameters

In this section we consider two other graph parameters, the domination number and the independence number. A subset S of the vertex set $V(G)$ is a dominating set if every vertex belongs to S or has a neighbor in S. The domination number of a graph G, denoted by $\gamma(G)$ is the minimum cardinality of a dominating set of vertices in G. The independence number of a graph G, denoted by $\alpha(G)$ is the maximum cardinality of an independent set of vertices in G.

Theorem 5.1: Given any two positive numbers a and b where $a>1$ there exists a graph G such that $\gamma(G)=a$ and $\gamma\left(P_{3}(G)\right)=b$.

Proof: Consider the following cases.
Case 1: Suppose $a<b$.
Consider a path $v_{1} v_{2} \ldots v_{a}$. To each $v_{i}, i=1,2, \ldots, a-1$ join an induced 3 -path $-w_{i 1}-w_{i 2}-w_{i 3}$. To v_{a} join $2(b-a+1)$ disjoint induced 3 -paths. This is the required graph G. Clearly $\gamma(G)=a$. Consider the $a-1$ vertices in $P_{3}(G)$ which are of the form $w_{i 1} v_{i} v_{i+1}, i=1,2, \ldots, a-1$. In $P_{3}(G)$, these vertices will dominate all the vertices except the vertices corresponding to the $2(b-a+1)$ disjoint paths joined to v_{a}. These $2(b-a+1)$ vertices can be dominated exactly by $b-a+1$ vertices which are of the form $u_{i} v_{a} u_{j}$ where u_{i} and u_{j} are vertices in any two of the disjoint induced P_{3} 's joined to v_{a}. The above described collection of $a-1$ vertices together with these $b-a+1$ vertices will form a minimum dominating set for $P_{3}(G)$. Hence $\gamma\left(P_{3}(G)\right)=(b-a+1)+(a-1)=b$.

To illustrate this, consider $a=5 ; b=6$. The corresponding graph is,

Case 2: Suppose $a=b$.
Consider a path $v_{1} v_{2} \ldots v_{a}$. To each $v_{i}, i=1,2, \ldots, a$ join an induced 3 -path, $w_{i 1} w_{i 2} w_{i 3}$. This is the required graph G. Clearly $\gamma(G)=a$. In
$P_{3}(G)$, vertices of the form $w_{i 1} v_{i} w_{i 3}, i=1,2, \ldots, a$ is a minimum dominating set. Hence $\gamma\left(P_{3}(G)\right)=a=b$.

To illustrate this, consider $a=5 ; b=5$. The corresponding graph is,

Case 3: Suppose $a>b$.
Consider a path $v_{1} v_{2} \ldots v_{b+1}$. To each $v_{i}, i=1,2, \ldots, b-1$ join an induced 3 -path, $w_{i 1} w_{i 2} w_{i 3}$. To v_{b+1}, attach $a-b+1$ disjoint K_{2} 's. This is the required graph G. Clearly $\gamma(G)=(b-1)+(a-b+1)=a$. In $P_{3}(G)$ the ($b-1$) vertices which are of the form $w_{i 1} v_{i} v_{i+1}, i=1,2, \ldots, b-1$ and $v_{b} c_{1} c_{2}$ where c_{1}, c_{2} are the vertices in any K_{2} attached to v_{b} will dominate all the vertices. Clearly this is the minimum number of vertices in any dominating set of $P_{3}(G)$. Hence $\gamma\left(P_{3}(G)\right)=b$.

To illustrate this, consider $a=6 ; b=4$. The corresponding graph is,

Theorem 5.2: Given any two positive numbers a and b where $a>1$, there exists a graph G such that $\alpha(G)=a$ and $\alpha\left(P_{3}(G)\right)=b$.

Proof:

Consider the following cases.

Case 1: Suppose $a<b$.

Consider a complete graph on $3 b$ vertices labelled as $v_{1}, v_{2}, \ldots, v_{3 b}$. From this graph, edges of the form $v_{3 k-2}-v_{3 k}, k=1,2, \ldots, b$ and edges whose both end vertices are of the form $v_{3 k+1}, k=0,1, \ldots, a-1$ are deleted. This is the required graph G. Clearly $\alpha(G)=a$ where a maximum independent set is $\left\{v_{1}, v_{4}, \ldots v_{3 a-2}\right\}$. Also $\alpha\left(P_{3}(G)\right)=b$ where a maximum independent set is $\left\{v_{3 k-2} v_{3 k-1} v_{3 k}\right\}, k=1,2, \ldots, b$.

To illustrate this, consider $a=2 ; b=3$. The corresponding graph is,

Case 2: Suppose $a=b$.
Consider $G=\left(K_{a}\right)^{c} \vee P_{2 a}$. Clearly $\alpha(G)=a . \alpha\left(P_{3}(G)\right)=a$ where the maximum independent set is $\left\{v_{i} u_{i} v_{a+i}\right\}, i=1,2, \ldots, a$ where v_{i} and v_{a+i} are vertices in $P_{2 a}$ and u_{i} is a vertex in $\left(K_{a}\right)^{c}$.

To illustrate this, consider $a=2 ; b=2$. The corresponding graph is,

Case 3: Suppose $a>b$.

Subcase 3a: Let $a \geq 2 b$
Consider $G=K_{a, b}$ with the partition $\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{b}\right\}$. Clearly $\alpha(G)=a$. Since a maximum independent set in $P_{3}(G)$ is $\left\{u_{i} v_{i} u_{b+i}\right\}, i=1,2, \ldots, b, \alpha\left(P_{3}(G)\right)=b$.

Subcase 3b: Let $a<2 b$
Let $t=\lfloor a / 2\rfloor$. Let $G=K_{a, b} \vee P_{2(b-t)}$. Let the partition of $K_{a, b}$ be $\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{b}\right\}$ and let the vertices in the path be $w_{1}, w_{2}, \ldots, w_{2(b-t)}$. Then $\alpha(G)=a$. Consider the following independent set of vertices in $P_{3}(G): u_{i} v_{i} u_{t+i}$, for all $i=1,2, \ldots, t$ and $w_{j} v_{t+j} w_{b-t+j}, \mathrm{j}$ $=1,2, \ldots, b-k$. This is an independent set having maximum number of vertices in $P_{3}(G)$. Hence $\alpha\left(P_{3}(G)\right)=b$.

6 Radius and Diameter

The distance between two vertices x and y, denoted by $d(x, y)$ is the length of a shortest $x-y$ path in G. The eccentricity of a vertex $u, e(u)$ is the maximum of its distances to other vertices. The radius $\operatorname{rad}(G)$ and the diameter $\operatorname{diam}(G)$ are respectively the minimum and the maximum of the vertex eccentricities. A vertex with minimum eccentricity in a graph G is called a center of G.

Theorem 6.1: For a connected graph $G, \operatorname{rad}\left(P_{3}(G)\right) \leq \operatorname{rad}(G)+1$. The equality holds only when $\operatorname{rad}(G)=1$. Further if $\operatorname{rad}(G) \geq 4$ then $\operatorname{rad}\left(P_{3}(G)\right)<\operatorname{rad}(G)$.

Proof: Let u be a center of G. So $d(u, v) \leq \operatorname{rad}(G)$ for all $v \in V(G)$. Since G is not a complete graph, there exists an induced 3-path having u as a vertex in it. Let the corresponding vertex in $P_{3}(G)$ be $a_{1} a_{2} a_{3}$ where u is some a_{i}. Let $b_{1} b_{2} b_{3}$ be any other vertex in $P_{3}(G)$. If $d\left(u, b_{j}\right)=1$, then $a_{1} a_{2} a_{3}, u b_{j} b_{j+1}$ or $u b_{j} b_{j-1}, b_{1} b_{2} b_{3}$ is a path connecting $a_{1} a_{2} a_{3}$ and $b_{1} b_{2} b_{3}$ and hence $d\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right) \leq 2=d\left(u, b_{j}\right)+1$. Now, if $d\left(u, b_{j}\right)=k>1$, let a shortest path connecting u and b_{j} be $u, c_{1}, c_{2}, \ldots, c_{k-1}, b_{j}$. Then $a_{1} a_{2} a_{3}$ and $b_{1} b_{2} b_{3}$ are connected by a path $a_{1} a_{2} a_{3}, u c_{1} c_{2}, \ldots, c_{k-2} c_{k-1} b_{j}, b_{1} b_{2} b_{3}$. So $d\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right) \leq k=d\left(u, b_{j}\right)$.

So $d\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right) \leq d\left(u, b_{j}\right)+1 \leq \operatorname{rad}(G)+1$, since $d\left(u, b_{j}\right) \leq \operatorname{rad}(G)$. Hence $e\left(a_{1} a_{2} a_{3}\right) \leq \operatorname{rad}(G)+1$. Therefore $\operatorname{rad}\left(P_{3}(G)\right) \leq \operatorname{rad}(G)+1$.

Now, let $\operatorname{rad}\left(P_{3}(G)\right)=\operatorname{rad}(G)+1$. We have proved that if $d\left(u, b_{j}\right)>1$, then $d\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right) \leq d\left(u, b_{j}\right) \leq \operatorname{rad}(G)$. So $e\left(a_{1} a_{2} a_{3}\right) \leq \operatorname{rad}(G)$ and hence $\operatorname{rad}\left(P_{3}(G)\right) \leq \operatorname{rad}(G)$. So the equality does not hold when $\operatorname{rad}(G)>1$.

Consider the case when $\operatorname{rad}(G) \geq 4$. Consider $a_{1} a_{2} a_{3}$ where u is some a_{i} and let $b_{1} b_{2} b_{3}$ be any other vertex in $P_{3}(G)$. Let $d\left(u, b_{j}\right)=k$ and a shortest path connecting a_{i} and b_{j} be $a_{i}, c_{1}, c_{2} \ldots, c_{k-1}, b_{j}$. Then $a_{1} a_{2} a_{3}$ and $b_{1} b_{2} b_{3}$ are connected by a path $a_{1} a_{2} a_{3}, u c_{1} c_{2}, c_{2} c_{3} c_{4}, \ldots, c_{k-2} c_{k-1} b_{j}, b_{1} b_{2} b_{3}$. So if $k \leq 3$, then $d\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right) \leq 3$ and if $k \geq 4$, then $d\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right)<k$. So $e\left(a_{1} a_{2} a_{3}\right)<k \leq \operatorname{rad}(G)$. Hence $\operatorname{rad}\left(P_{3}(G)\right)<\operatorname{rad}(G)$.

Remark 6.1: The condition $\operatorname{rad}(G)=1$ is not sufficient for the equality $\operatorname{rad}\left(P_{3}(G)\right)=\operatorname{rad}(G)+1$.

Eg:- $G=K_{1, n}, n \geq 3$, then $\operatorname{rad}(G)=\operatorname{rad}\left(P_{3}(G)\right)=1$
Theorem 6.2: For a connected graph G, $\operatorname{diam}\left(P_{3}(G)\right) \leq \operatorname{diam}(G)$. Further if $\operatorname{diam}(G) \geq 4$ then $\operatorname{diam}\left(P_{3}(G)\right)<\operatorname{diam}(G)$.

Proof: Since G is not a complete graph $\operatorname{diam}(G)>1$. By the similar arguments as in the above proof, we can prove that for any two vertices $a_{1} a_{2} a_{3}$ and $b_{1} b_{2} b_{3}$ in $P_{3}(G), d\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right) \leq d\left(a_{i}, b_{j}\right) \leq \operatorname{diam}(G)$. So $\operatorname{diam}\left(P_{3}(G)\right) \leq \operatorname{diam}(G)$.

Let $\operatorname{diam}(G) \geq 4$. Let $a_{1} a_{2} a_{3}$ and $b_{1} b_{2} b_{3}$ be any two vertices in $P_{3}(G)$ such that $d\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right)=\operatorname{diam}\left(P_{3}(G)\right)$. Using the similar arguments as in the above proof, we can show that $d\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right)<d\left(a_{i}, b_{j}\right) \leq$ $\operatorname{diam}(G)$. Hence $\operatorname{diam}\left(P_{3}(G)\right)<\operatorname{diam}(G)$.

Remark 6.2: The inequalities $\operatorname{rad}\left(P_{3}(G)\right) \leq \operatorname{rad}(G)+1$ and $\operatorname{diam}\left(Q_{3}(G)\right) \leq \operatorname{diam}(G)$ are strict.

$$
\begin{aligned}
& \operatorname{rad}(G)=1 \\
& \operatorname{diam}(G)=2
\end{aligned}
$$

Acknowledgement: The first author thanks the National Board for Higher Mathematics (Department of Atomic Energy, Government of India) for awarding a research fellowship. The authors thank Prof.S.B.Rao, ISI, Kolkata for his help during the preparation of this paper and the referees for their valuable suggestions for the improvement of the paper.

REFERENCES

[1] Akiyama.J, Chvátal.V ; Packing paths perfectly, Discrete Mathematics, 85(1990) 247-256.
[2] Brandstädt.A, Le.V.B, Spinrad.J.P; Graph Classes, SIAM, (1999).
[3] Ore.O; Theory of Graphs, Amer. Math. Soc. Coll. Publ. 38, Providence (R.I) (1962) p.21.
[4] Prisner.E; Graph Dynamics, Longman (1995) .
[5] Prisner.E; A common generalization of line graphs and clique graphs, J.Graph Theory 18 (1994)301-313.
[6] L.E.Trotter. Jr.; Line perfect graphs, Math.Programming 12 (1977) 255-259.
[7] West.D.B; Introduction to Graph Theory, Prentice Hall of India (2003).

[^0]: *E-mail:manjukmenon@cusat.ac.in
 ${ }^{\dagger}$ E-mail:vijay@cusat.ac.in

