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Abstract

We define a new graph operator called the P3 intersection graph,
P3(G)- the intersection graph of all induced 3-paths in G. A charac-
terization of graphs G for which P-3 (G) is bipartite is given . Forbid-
den subgraph characterization for P3 ( G) having properties of being
chordal , H-free , complete are also obtained . For integers a and b
with a > 1 and b > a - 1, it is shown that there exists a graph G
such that X(G) = a, X(P3( G)) = b, where X is the chromatic number
of G. For the domination number -y(G), we construct graphs G such
that -y( G) = a and -y (P3(G)) = b for any two positive numbers a > 1
and b . Similar construction for the independence number and radius,
diameter relations are also discussed.
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1 Introduction

The study of 'graph operators' and their various properties such as fixed-
ness, convergence and others have been receiving wide attention since Ore's
work [3] on the line graph operator.

The H - intersection graph IntH(G) is the intersection graph of all sub-

graphs of G that are isomorphic to H, see [4]. If H is K2 then IntH(G)

is the line graph. Trotter [6] characterized the graphs for which IntK2 (H)

is perfect. The K3 intersection graph is the 3-edge graph provided every
edge lies in some triangle where the 3-edge graph is the intersection graph
of cliques with at most three vertices or a triangle [5].

For a detailed discussion on other graph operators, the reader may refer

to [4].

In [1] Akiyama and Chvatal have characterized the graphs for which

IntP3(G) is perfect. Motivated by this paper, we have defined a new op-
erator, the P3 intersection graph - P3(G) as the intersection graph of all
induced paths on three vertices in G. We characterize the graphs G such
that P3 (G) is bipartite. We obtain forbidden subgraph characterization for
P3 (G) being H-free, chordal and complete. Some properties of chromatic
number, domination number, independence number, diameter and radius
of P3(G) are also discussed.

All the graphs considered here are undirected and simple. P3(G) is the
null graph for any graph G which is the union of complete graphs. Hence
in this paper we do not consider such graphs. For all other basic concepts
and notations not mentioned in this paper we refer [7].

2 P3 intersection graph

Definition 2.1: Let G be a graph. The P3 intersection graph of G, P3(G)

has the induced paths on three vertices in G as its vertices and two distinct
vertices in P3(G) are adjacent if the corresponding induced 3-paths in G

intersect.

If a1 - a2 - a3 is an induced 3-path in G then the corresponding vertex
in P3(G) is denoted by a1a2a3. If G is a connected graph of order at most

five then P3 (G) is complete.
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Example 2.1:
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Remark 2 .1: In general, the H-intersection graph of a connected graph
is not necessarily connected. But, we have

Theorem 2 .1: P3(G) is connected if and only if G has exactly one com-
ponent containing an induced P3 .

Proof: Suppose that G contains more than one component containing
an induced P3. Let a1 - a2 - a3 and b1 - b2 - b3 be any two induced 3-paths
in G which lie in distinct components of G. Then by the definition of P3 (G)
the corresponding vertices ala2a3 and blb2b3 in P3( G) cannot be connected
by a path and hence P3 (G) is not connected.

Let G has exactly one component containing an induced P3. Suppose
that x = ala2a3 and y = b1b2b3 are any two non-adjacent vertices in
P3(G). If ai, i = 1 , 2,3 and bj, j = 1 , 2,3 are adjacent then ala2a3 , aibjbj+i
or aib,bj_1i blb2b3 is a path connecting x and y . If ai and bj are not adja-
cent then let the shortest path connecting ai, i = 1, 2, 3 and bj , j = 1, 2, 3
be ai, c1i c2, ..., c, bj. If n = 1, then a1a2a3i aiclbj, blb2b3 is a path con-
necting x and y. If n > 2 , then a1a2a3i aiclc2, ..., c,,_lc ,,bj, blb2b3 is a
path connecting x and y in P3(G). Hence any two vertices in P3(G) are
connected by a path and hence P3(G) is connected.

As to the question whether every graph is the P3 intersection graph of
some graph, we have

Theorem 2 .2: The following graphs G cannot be the P3 intersection graph
of any graph.
(1) G is a connected graph having at least 3 vertices and a pendant vertex.

(2) There exists a vertex v in G with degree(v) = 2 such that v is adjacent

to any two non-adjacent vertices in G.

(3) G is a connected triangle free graph having at least three vertices.
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Proof:

Let G be a connected graph having at least 3 vertices. Suppose further
that G has a pendant vertex , say x . Let z be the unique vertex adjacent
to x. If possible let there exists a graph H such that P3 (H) = G. Since
there exists at least three vertices, there exists a vertex adjacent to z and
let it be y. Since x and y are two non -adjacent vertices in G = P3(H), we
can assume that x = ala2a3 and y = b1b2b3 where ai's and bb 's are distinct
vertices in H. Then since z is adjacent to both x and y , z corresponds to
a 3-path in H which must contain at least one ai and bj. So z must be of
the form aibjc or aicbj or caibj.

Let z = aibjc . If i = 1 , then a2 - a1 - bj is a 3-path . But if this is
an induced path, then x cannot remain as a pendant vertex. So a2 - b,
is an edge in H. Then a3 - a2 - bj is a 3-path . But if this is an induced
path then x cannot remain as a pendant vertex. So a3 - bj is an edge in
H. Then a1 - bj - a3 is an induced 3 -path. If the corresponding vertex
a1bja3 is different from z, then it is adjacent to x is a contradiction to the
fact that x is a pendant vertex. If albia3 = z, then we can show that there
exists an induced 3 -path with a1 and two bl's, 1 = 1, 2, 3 as its vertices. The
corresponding vertex which is different from z is adjacent to x which will
also lead to a contradiction. So G cannot be the P3 -graph of any graph.
The case is similar when i = 2, 3 also. The proof is similar when z = aicbj
and z = cai bj.

Suppose now that G has a vertex v with degree (v) = 2 and let
G = P3(H). Let v be adjacent to v1 and v2 where v1 and v2 are non-
adjacent vertices . Let v1 = ala2a3 and v2 = b1b2b3 where ai's and bb's are
distinct vertices in H. Then v must be of the form aibjc or aicbj or caibj.
So as in the proof given above, we can show that there exists a vertex ad-
jacent to v which is different from both v1 and v2 which is a contradiction
to the fact that degree(v) = 2.

Finally , let G be a connected triangle free graph. If possible assume
that G = P3(H). Since G has at least three vertices it contains a vertex
z which is adjacent to two non-adjacent vertices x and y. Let x = ala2a3
and y = b1b2b3i where ai's and bb's are distinct vertices in H. Then z must
be of the form aibjc or aicbj or caibj. Using the similar arguments as in
the above proofs , we can show that there exists a vertex which is adjacent
to both x and z which is a contradiction to the fact that G is triangle free.
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Lemma 2 .1: If G is a connected graph having at least five vertices, then

P3 (G) has at least three vertices.

Proof: Let G be a connected graph having at least five vertices. Let
x and y be two non-adjacent vertices of G. Let the shortest path connect-
ing x and y be x, Vl, v2, ...v,l, y. If n, > 3 then P3(G) clearly contains at
least three vertices. If n = 2 then since G is a connected graph having
at least five vertices, the fifth vertex must be adjacent to at least one of
x, v1, v2, y. Then there exists at least three induced 3-paths in G and hence
P3 (G) contains at least three vertices. If n = 1, there exists at least two
more vertices in G and they must be connected to x, v1i y. In any case
there exists at least three induced 3-paths in G and hence P3(G) contains
at least 3 vertices.

Notation : The graph obtained by deleting any edge of Kn is denoted by
K„ - {e}.

The graph " is called the 'paw'.

Theorem 2.3: Let G be a connected graph. Then P3(G) is bipartite
if and only if G is P3i P4, K4 - {e} or paw.

Proof: Let P3(G) be bipartite. Then P3(G) cannot contain triangles.
So by Theorem 2.2 (3), the only bipartite graphs are K1 and K2. Again
by Lemma 2.1, G can have at most four vertices. Since we are considering
only the connected graphs, the theorem follows.

3 Forbidden subgraph characterizations

A graph H is a forbidden subgraph for a property P of a graph G, if G does
not contain an induced subgraph isomorphic to H. A forbidden subgraph
H for the property P is a vertex minimal forbidden subgraph if no induced
subgraph of H is a forbidden subgraph for the property P. A graph G is
H-free if G does not contain H as an induced subgraph. Many classes of
H-free graphs are discussed in [2]. A property P of a graph G is vertex
hereditary if every induced subgraph of G also has the property P.
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Theorem 3.1 : If G is a P3 intersection graph then K1,4 is a forbidden
subgraph for G.

Proof: Suppose that G = P3(H ) contains K1,4 as an induced subgraph.
Let v be the central vertex and v1, v2, v3 , v4 be the neighbors of v in K1,4
in G. Then v corresponds to an induced 3-path in H which intersects with
all the four distinct 3-paths corresponding to v1, v2, v3 and v4 which is not
possible . Hence K1,4 is a forbidden subgraph for the P3 intersection graph.

Theorem 3.2 : Let co = {G : P3(G) is H-free} where H is any graph.
Then the property P, G E co is vertex hereditary.

Proof: Let G E V. Suppose that G - {v} V V. So P3(G - {v}) con-
tains H as an induced subgraph. Then this H will be induced in P3 (G)
also, which is a contradiction to the fact that G E V.

Corollary 3.1: The collection co has only a finite class of vertex minimal
forbidden subgraphs.

Proof: The property G E co is vertex hereditary. So cp must have vertex
minimal forbidden subgraphs. Let F be the collection of all such vertex
minimal forbidden subgraphs . Let Gl E F. Then P3(Gl ) contains H as an
induced subgraph. So, corresponding to a vertex in H there exists an in-
duced 3-path in G1. So, number of vertices in Gl covered by these 3-paths
cannot exceed 3n where n is the number of vertices in H. If Gl contains
more than 3n vertices , then there exists a vertex v in Gl such that any
induced 3-path containing v does not determine a vertex of H in P3(G1).
Then Gl - { v} is also forbidden for co which is a contradiction to the vertex
minimality of G1. Hence the number of vertices of Gl is bounded by 3n
and hence cp has only a finite class of vertex minimal forbidden subgrapls.

Theorem 3 .3: Let mss = {G : P3(G) is chordal}. The property P, G E s
is vertex hereditary.

Proof: Let G Ems . Suppose that G - {v} V s. That is, P3(G - {v}) is
not chordal which implies that P3(G- {v }) contains an induced C,,, n > 4.
Then these C,,'s are induced cycles in P3 (G) which is a contradiction to
the fact that P3(G) is chordal.
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Corollary 3.2: The collections has an infinite class of vertex minimal
forbidden subgraphs.

Proof: The property G E s is vertex hereditary. So s must have ver-
tex minimal forbidden subgraphs. If G contains C,,, n > 6 as an induced
subgraph, then P3(G) contains C,,, n > 4 and hence cannot be chordal.
Also P3(C,, - {v}), n _> 6 is chordal. So C,,, n > 6 are vertex minimal
forbidden subgraphs for s. Thus there exists an infinite class of vertex
minimal forbidden subgraphs fors.

Theorem 3 .4: Let 4h = {G : P3(G) is complete }. The property G E 41 is
vertex hereditary.

Proof: Let G E 41. Suppose that G - {v} ^ 4' for some v. Then there
exist at least two non-adjacent vertices in P3(G - {v}). These vertices will
remain as non-adjacent vertices in P3(G) also, which is a contradiction to
the fact that P3(G) is complete.

Corollary 3.3: Any vertex minimal forbidden subgraph for T has exactly
six vertices.

Proof: The property G E T is vertex hereditary. So it has vertex minimal
forbidden subgraphs. P3(G) is complete for any graph having at most five
vertices. So, a forbidden subgraph must have at least six vertices. Let G1
be any vertex minimal forbidden subgraph for T. Since Gl is a forbidden
subgraph for P3(G) being complete, it must have at least two disjoint 3-
paths, a1 - a2 - a3 and b1 - b2 - b3. If some a;, is adjacent to any of these
b7's then these six vertices are enough to induce a vertex minimal forbid-
den subgraph. Now, let no a;, be adjacent to any of the bb's. Then, since
G1 is connected there must exist some path connecting ati's and bb's. Let
the shortest such path be a;, - cl - c2-...-ck - bj. Then we can find two

disjoint induced 3-paths, a1 - a2 - a3; and the other containing c1. These

six vertices are enough to induce a vertex minimal forbidden subgraph.

Remark 3 .1: ' has only a finite collection of vertex minimal forbidden
subgraphs.
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4 Chromatic Number

In this section w(G) denotes the clique number of G which is defined as the
order of the largest complete subgraph of G. The chromatic number X(G)
is the minimum colors required for a proper coloring of vertices of G.

Lemma 4.1 : For a connected graph G, w(P3(G)) > w(G) - 1.

Proof: Let w(G) = k. Since G is non-complete and connected, there
exists a vertex u adjacent to at least one vertex of the k-clique in G. If u is
joined to t vertices of this k-clique then there are t(k - t) induced 3-paths in
G where u is common to all these induced 3-paths. So w(P3(G)) > t(k -t).
Now, if t(k - t) < k - 1 then k < (t + 1) which is a contradiction to the
fact that w(G) = k. So w(P3(G)) > k - 1.

Theorem 4.1: For a connected graph G, X(P3(G)) > x(G) - 1. The
equality holds if and only if G is either K,, - {e} or a complete graph with
a pendant vertex attached to it.

Proof: Let X(G) = k. Then there exists a vertex v in G with color k
such that its neighbors v1i v2, ..., vk_1 have distinct colors 1, 2, ..., k - 1 re-
spectively.

If these vertices form a k-clique then w(G) _> k. So x(P3(G)) >
w(P3(G)) > k - 1, by lemma 4.1.

If these vertices do not form a k clique then let 'm' be the size of maxi-
mal clique in the subgraph induced by these vertices. Clearly v is a vertex II
in this m-clique. Then among the k vertices, there are k - m vertices adja-
cent to v which are not in the m-clique. Let v2 be such a vertex. Then this
vz can be adjacent to at most m - 1 vertices of the m-clique. In any case we III
can find at least k distinct induced 3 -paths having a common vertex. The
corresponding k vertices in P3 (G) will form a k-clique and hence x (P3(G))
>k.

Hence the equality holds only when there is a k-clique in G. Since G
is connected and non-complete, there exists a vertex ul which is adjacent
to some of the v1's in the k -clique. If ul is adjacent to t vertices of the
k-clique where 2 < t < k - 2, then there exists at least k distinct induced
3-paths having a common vertex . Hence, in this case x (P3(G)) > k - 1.
So ul can be adjacent with either 1 or k - 1 vertices of the k -clique. If
there exists one more vertex in G other than these k + 1 vertices, then also
we can find at least k induced 3-paths having a common vertex and hence

4
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X(P3(G)) > k. So when X((P3(G))) = X(G) - 1, there exists exactly k + 1
vertices such that ul is adjacent to 1 or k - 1 vertices of the k-clique. If ul
is adjacent to only one vertex of the k -clique, then the graph is a complete
graph with a pendant vertex attached to it and if ul is adjacent to k - 1
vertices of the k -clique, then the graph is Kk +1 - {e} and hence the result.

Theorem 4 . 2: Given any two positive numbers a and b where a > 1 and
b > a - 1, there exists a graph G such that X( G) = a and X(P3(G)) = b.

Proof:

Consider the following cases , all of which have P3 (G) = Kb:

Construction Illustration
Case1 b=a-1 Attach a pendant a=4;b=3

vertex to any one
vertex of K(,

0

Case 2 b = a Consider the graph a = 4; b = 4
G of case 1.
Then attach

a single vertex
to the pendant

vertex of G.

n
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Case 3 b>a Construction Illustration
Subcase 3a b<2a-1 Consider the graph

G of case 1.
Any one vertex

of Kb_a+l is
joined to the

pendant vertex.

a=4;b=6

Subcase 3b b>2a-1 Let k be the
maximum integer

satisfying the
equation

kC2 + (a - 1)k = b.
Join k pendant
vertices to the

same vertex of Ka.
Replace any one
of these pendant

vertices by

Kb-] 'C2+(a-1)k]

a = 4; b = 9

0

44
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5 Some other Graph parameters

In this section we consider two other graph parameters , the domination
number and the independence number. A subset S of the vertex set V(G)
is a dominating set if every vertex belongs to S or has a neighbor in S. The
domination number of a graph G, denoted by -y(G) is the minimum cardi-
nality of a dominating set of vertices in G. The independence number of a
graph G, denoted by a(G) is the maximum cardinality of an independent
set of vertices in G.

Theorem 5.1: Given any two positive numbers a and b where a > 1 there
exists a graph G such that y(G) = a and y(P3(G)) = b.

Proof: Consider the following cases.

Case 1: Suppose a < b.

Consider a path v1v2...va,. To each vi, i = 1 , 2, ..., a - 1 join an induced
3-path - wil - wit - w73. To va, join 2 ( b - a + 1) disjoint induced 3 -paths.
This is the required graph G. Clearly -y(G) = a. Consider the a -1 vertices
in P3 (G) which are of the form w71 vivi+1, i = 1, 2, ..., a -1. In P3 (G), these
vertices will dominate all the vertices except the vertices corresponding to
the 2(b - a + 1) disjoint paths joined to va,. These 2(b - a + 1) vertices can
be dominated exactly by b - a + 1 vertices which are of the form uiv(,uj
where ui and uj are vertices in any two of the disjoint induced P3's joined
to Va . The above described collection of a - 1 vertices together with these
b - a + 1 vertices will form a minimum dominating set for P3 (G). Hence
-y(P3(G)) = ( b - a + 1) + (a - 1) = b.

To illustrate this, consider a = 5; b = 6. The corresponding graph is,

7

Case 2: Suppose a = b.

Consider a path V1V2...va,. To each vi, i = 1, 2, ...,a join an induced
3-path, WilWi2Wi3. This is the required graph G. Clearly y(G) = a. In
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P3(G), vertices of the form wilviwi3 , i = 1, 2,..., a is a minimum dominat-
ing set. Hence -y(P3(G )) = a = b.

To illustrate this, consider a = 5; b = 5. The corresponding graph is,

o- _

Case 3: Suppose a > b.

Consider a path v1 v2...vU+1. To each vi, i = 1, 2,..., b -1 join an induced

3-path, wi1wi2wi3. To Vb+1, attach a - b + 1 disjoint K2's. This is the re-

quired graph G. Clearly y(G) = (b - 1) + (a - b + 1) = a. In P3(G) the
(b - 1) vertices which are of the form wi1vivi+1, i = 1, 2,..., b -1 and vl,clc2

where c1, c2 are the vertices in any K2 attached to vb will dominate all the

vertices. Clearly this is the minimum number of vertices in any dominating

set of P3(G). Hence y(P3(G)) = b.

To illustrate this, consider a = 6; b = 4. The corresponding graph is,

0

^\V_'_T

Theorem 5 .2: Given any two positive numbers a and b where a > 1, there
exists a graph G such that a(G) = a and a(P3(G)) = b.

Proof:

Consider the following cases.
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Case 1: Suppose a < b.

Consider a complete graph on 3b vertices labelled as v1i v2, ..., v3b . From

this graph , edges of the form V3k_2 - v3k, k = 1, 2, ..., b and edges whose

both end vertices are of the form v3k+1, k = 0, 1, ..., a - 1 are deleted. This

is the required graph G. Clearly a(G) = a where a maximum independent

set is { vi, v4, ... v3a-2 }. Also a ( P3(G)) = b where a maximum independent

set is {v3k-2V3k-1V3k}, k = 1, 2, ..., b.

To illustrate this, consider a = 2; b = 3 . The corresponding graph is,

Vi

V6

Case 2: Suppose a = b.

v5

Consider G = (Ka)" V P2r. Clearly a(G) = a. a(P3(G)) = a where the
maximum independent set is {viuiva+i }, i = 1,2, ..., a where vi and va+i
are vertices in Per and ui is a vertex in (Ka)

To illustrate this, consider a = 2; b = 2. The corresponding graph is,

u1 u2

v2
v3 v4

Case 3: Suppose a > b.
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Subcase 3a: Let a > 2b

Consider G = Ka,b with the partition {U1, u2, ..., ua} and {vi, v2, ..., vb}.
Clearly a(G) = a. Since a maximum independent set in P3(G) is
{uiviub+i}, i = 1, 2,..., b, a(P3(G)) = b.

Subcase 3b: Let a < 2b

Let t = La/2J. Let G = Ka,b V P2(b_t). Let the partition of Ka,b
be {ul, U2,..., ua} and {vi, v2, ..., vb} and let the vertices in the path be
W1, W2, ..., W2(b_t). Then a(G) = a. Consider the following independent
set of vertices in P3(G): uiviut+i, for all i = 1, 2,..., t and WjVt+jWb-t+j, J
= 1, 2, ..., b - k. This is an independent set having maximum number of
vertices in P3(G). Hence a(P3(G)) = b.

6 Radius and Diameter

The distance between two vertices x and y, denoted by d(x, y) is the length
of a shortest x - y path in G. The eccentricity of a vertex u, e(u) is the
maximum of its distances to other vertices. The radius rad(G) and the
diameter diam(G) are respectively the minimum and the maximum of the
vertex eccentricities. A vertex with minimum eccentricity in a graph G is
called a center of G.

Theorem 6 .1: For a connected graph G, rad(P3(G)) < rad(G) + 1.
The equality holds only when rad(G) = 1. Further if rad(G) > 4 then
rad(P3(G)) < rad(G).

Proof: Let u be a center of G. So d(u,v) < rad(G) for all v c V(G).
Since G is not a complete graph, there exists an induced 3-path having u
as a vertex in it. Let the corresponding vertex in P3(G) be ala2a3 where u
is some ai. Let blb2b3 be any other vertex in P3(G). If d(u, bj) = 1, then
a,a2a3iub, bj+i or ubjbj_l,bib2b3 is a path connecting ala2a3 and blb2b3
and hence d(ala2a3ibib2b3) < 2 = d(u,bj)+1. Now, if d(u,bj) = k > 1, let
a shortest path connecting u and bj be u, c1i c2, ..., ck_1i bj. Then ala2a3
and blb2b3 are connected by a path a1a2a3i uc1c2, ..., ck_2ck_1bj, blb2b3. So
d(al a2a3, bi b2b3) < k = d(u,bj).

So d(ala2a3i blb2b3) < d(u, bj)+1 < rad(G)+1, since d(u, bj) < rad(G).
Hence e(a1a2a3) < rad(G) + 1. Therefore rad(P3(G)) < rad(G) + 1.
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Now, let rad(P3 (G)) = rad(G) + 1. We have proved that if d(u, bj) > 1,
then d(aia2a3, brb2b3 ) < d(u, bj) < rad(G). So e(ala2a3 ) <_ rad(G)
and hence rad(P3(G)) < rad(G). So the equality does not hold when
rad(G) > 1.

Consider the case when rad(G) > 4. Consider ara2a3 where u is some ai
and let brb2b3 be any other vertex in P3(G). Let d(u, bj) = k and a shortest
path connecting ai and b; be ai, c1, c2..., ck_r, b;. Then ara2a3 and brb2b3
are connected by a path ara2a3i uc1c2, c2c3c4i ..., cA._2ck_rbj, brb2b3. So if
k: < 3, then d(aia2a3i brb2b3) < 3 and if k > 4, then d(aia2a3i brb2b3) < k.
So e(aia2a3) < k < rad(G). Hence rad(P;(G)) < rad(G).

Remark 6 .1: The condition rad(G) = 1 is not sufficient for the equal-
ity rad(P3(G)) = rad(G) + 1.

Eg:- G = K1 ,,,, n > 3 , then rad(G) = rad(P3(G)) = 1

Theorem 6 .2: For a connected graph G, diam(P3(G)) < diam(G). Fur-

ther if diam(G) > 4 then diam(P3(G)) < diam(G).

Proof: Since G is not a complete graph diam(G) > 1. By the similar
arguments as in the above proof, we can prove that for any two vertices
ara2a3 and brb2b3 in P3(G), d(ara2a3ib1b2b3) < d(ai,bj) < diam.(G). So
diam(P3(G)) < diam,(G).

Let diam(G) > 4. Let ara2a3 and brb2b3 be any two vertices in P3(G)
such that d(ara2a3i brb2b3) = diam(P3(G)). Using the similar arguments
as in the above proof, we can show that d(ara2a3i brb2b3 ) < d(ai, bj) <
diam.(G). Hence diam(P3(G)) < diam.(G).

Remark 6 .2: The inequalities rad(P3(G)) < rad(G) + 1 and

diam( .(G)) < diam,(G) are strict.

rad(G) = 1

diam(G) = 2

e
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P (G):

3

abd

aec

def aed

dbf aef

t

cbf
cef 10

ced cbd

rad(P (G)) = 2
3

abf

diam(P (G)) = 2

3
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