STUDIES ON TRIANGLE NUMBER IN A GRAPH AND RELATED TOPICS

Thesis sulmitted to the Cochin University of Science and Jechnology for the award of the degree of DOCTOR OF PHILOSOPHY under the faculty of Science

By

B. RADHAKRISHNAN NAIR
dIVISION OF MATHEMATICS
SCHOOL OF MATHEMATICAL SCIENCES
cochin university of science and technology
KOCHI-682 022

October 1994

CERTIFICATE

This is to certify that the thesis entitled STUDIES ON TRIANGLE NUMBER IN A GRAPH AND RELATED TOPICS submitted to the Cochin University of Science and Technology by Sri B Radhakrishnan Nair for the award of the degree of Doctor of Philosophy in the Faculty of Science is a bonafide record of studies done by him under my supervision. This report has not been submitted previously for considering the award of any degree, fellowship or similar titles elsewhere.

DR. A VIJAYAKUMAR,
LECTURER,
DIVISION OF MATHEMATICS,

COCHIN 682022 OCTOBER 3, 1994

SCHOOL OF MATHEMATICAL SCIENCES, COCHIN UNIVERSITY OF SCIENCE \& TECHNOLOGY.

CONTENTS

CHAPTER SECTION TITLE PAGE
1 Introduction 1
1.1 Definitions and Preliminaries 2
1.2 Background of the work 6
1.3 Gist of the thesis 17
2 S-graphs and S-antipodal graphs 21
2.1 S-graphs 21
2.2 S-antipodal graphs 25
2.3 S-antipodal graphs of S-graphs 31
2.4 S-antipodal graphs of trees 35
3 Triangle number and triangle regularity 40
3.1 Triangle number 40
3.2 Triangle number and 45
3.3 Triangle number and the G-join of a family of graphs 51
3.4 Strongly vertex triangle regular and 58 strongly edge triangle regular graphs
A conjecture of Kotzig 64
4.1 Kotzig's conjecture 64
4.2 Earlier attempt 65
4.3 The set $\hat{F}(G)$ 67
4.4 Present attempt 70
5 Isomorphic factorization 76
of complete graphs
5.1 Isomorphic factorization 76
5.2 Isomorphic factorization of complete graphs 77
5.3 Concluding remarks and suggestions for further study 88
Index of symbols and abbreviations 90
lieferences 93

INTRODUCTION

Abstract

Graph theory is a subject of study since 1736 when Euler solved the famous Königsberg bridge problem. It has a wide variety of applications in different branches of science, engineering and social science as described in [1], [3], [5], [6], [9], etc. 'The concept of triangle, the smallest non-trivial complete graph and the smallest cycle, has been used in the graphical formulation of well-known theorems such as Ramsey theorem, Friendship theorem and Kirkman's schoolgirl problem. 'Ihe concept of complementation is also an equally interesting and beautiful concept in Graph theory. These are the two main characters interlinking most of the results in this thesis.

1.1 DEFINITIONS AND PRELIMINARIES

In this section we give some preliminary ideas and definitions, some of which are new. We follow [4] and [8] for notations and terminology not given here.

We consider finite undirected graphs without loops and multiple edges. By a graph $G=G(p, q)=G(V, E)$, we generally mean a graph of order $p=p(G)$ and size $q=q(G)$ with vertex set $V=V(G)$ and edge set $E=E(G) .\langle S\rangle=\langle S\rangle_{G}$ denote the subgraph of G induced by $S \subseteq V(G)$. By writing $u v$, we mean an edge joining the vertices are u and v.

Definition 1.1 The distance $d(u, v)=d_{G}(u, v)$ between two vertices u and v in a graph G is the length of the shortest $u-v$ path, the eccentricity $\operatorname{ecc}(u)=\operatorname{ecc}_{G}(u)$ of a vertex u is the distance to a vertex farthest from it. The diameter diam(G) and the radius $\operatorname{rad}(G)$ are respectively the maximum and minimum of the eccentricities of vertices in G. Vertices u and v in a graph G with $\operatorname{ecc}(u)=\operatorname{diam}(G)$ and $\operatorname{ecc}(v)=\operatorname{rad}(G)$ are respectively called diametral vertex and central vertex. Two vertices u and v with $d(u, v)=\operatorname{diam}(G)$ are called antipodal vertices. Set of all central vertices in a graph G is called the centre of G. A graph G is said to be self-centered if each of its vertices is a central vertex, that is, if diameter and radius are equal.

Definition 1.2 A vertex u in a graph G is said to be a neighbour of another vertex v if they are adjacent. The set $N(u)$ of neighbours of u is called the neighbourhood of u, the set $N[u)=\{u\} \cup N(u)$ is the closed neighbourhood and the set $E(u)$
is the set of all edges incident at u is the edge neighbourhood. A subset D of $V(G)$ is said to be a dominating set if every vertex of G is either in D or is adjacent to some vertex in D. The minimum of the cardinalities of the dominating sets in G is called the domination number of G and is denoted by $\gamma(G)$.

Definition 1.3 Two graphs are said to be homeomorphic if both can be obtained from the same graph by a sequence of subdivisions of edges. An isomorphism between two graphs is a bijection between the vertex sets which preserves adjacency. An automorphism of a graph G is an isomorphism of G onto itself.

Definition 1.4 The complement \bar{G} of a graph G has $V(G)$ as ils vertex set, and two vertices are adjacent in \bar{G} if and only if they are not adjacent in G. A graph is self-complementary if it is isomorphic to its complement. If G is self-complementary, an isomorphism between G and \bar{G} is called a complementing permutation and the set of all complementing permutations of G is denoted by $\mathbb{B}(G)$. A vertex in a self-complementary graph is said to be a fixed-vertex if there is a complementing permutation of G that maps the vertex onto itself. The set of all fixed vertices of G is denoted by $F(G)$. The set of all edges, in self-complementary graph G, such that there exists a complementing permutation σ mapping one of its end-vertices onto the other is denoted by $Z(G)$.

Definition 1.5 Two vertices (edges) in a graph are said to be similar if there is an automorphism that maps one of the vertices (edges) onto the other. A graph G is vertex-symmetric (edge-symmetric) if every pair of vertices (edges) are similar.

Definition 1.6 A graph G of order p is strongly regular with parameters (p, r, λ, μ) if it is regular of degree r, any two adjacent vertices have precisely λ common neighbors and any two non-adjacent vertices have precisely μ common neighbors.

Definition 1.7 The join $G+H$ of two graphs G and H has vertex set $V(G) U V(H)$ and edge set

$$
E(G+H)=E(G) \cup E(H) \cup\{u v / u \in V(G), v \in V(H)\} \text {. The cartesian }
$$ product $G \times H$ has vertex set $V(G) \times V(H)$ and two vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ are adjacent whenever $\left[u_{1}=v_{1}\right.$ and $\left.u_{2} v_{2} \in E(H)\right]$ or $\left[u_{2}=v_{2}\right.$ and $\left.u_{1} v_{1} \in E(G)\right]$. The composition or lexicographic product $G(H)$ also has vertex set $V(G) \times V(H)$ and Lwo vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ are adjacent whenever $u_{1} v_{1} \in E(G)$ or $\left[u_{1}=v_{1}\right.$ and $\left.u_{2} v_{2} \in E(H)\right]$.

Definition 1.8 Let G be a graph and $\mathscr{F}=\left\{H_{u} / u \in V(G)\right\}$ be a family of graphs. The G-join $G(\mathscr{F})$ of \mathscr{F} is the graph with vertex set $\left\{(u, v) / u \in V(G), v \in V\left(H_{u}\right)\right\}$ and two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent if either $u_{1} u_{2} \in E(G)$ or $u_{1}=u_{2}$ and $v_{1} v_{2} \in E\left(H_{u_{1}}\right)$. The S-join (star join)is a special case of G-join when G is a star $K_{1, p}$ and \mathcal{F} is a family of p graphs each of which corresponds to a pendent vertex of the star.

Definition 1.9 The neighbourhood graph $N(G)$ of a graph G is the intersection graph of the collection of neighbourhoods in G. That is, the graph with vertex set same as that of G and two vertices are adjacent whenever they have a common neighbour in G. A graph is a neighbourhood graph if it is the neighbourhood graph of some graph H. The antipodal graph $A(G)$ of a graph G
also has vertex set $V(G)$ and two vertices are adjacent if they are antipodal. A graph G is an antipodal graph if it is the antipodal graph of some graph H and is self-antipodal if it is the antipodal graph of itself.

Definition 1.10 The S-antipodal graph $A^{*}(G)$ of a graph G has its vertex set the diametral vertices of G and two vertices are adjacent whenever they are antipodal.

Definition 1.11 The number $t(u)=t_{G}(u)$ of triangles in a graph G containing a vertex u is called the triangle number of the vertex u. Triangle number $t(e)$ of an edge is the number of triangles containing e. The number $t(G)$ of triangles in a graph G is the triangle number of the graph. A vertex (an edge) is said to be triangle positive if its triangle number is non-zero. A graph is triangle positive if each of its edges is triangle positive. The set of all vertices with triangle number $k(k-1)$ in a self-complementary graph G of order $4 k+1$ is denoted by $\hat{F}(G)$.

Definition 1.12 A connected graph without cut-vertices is 2-connected. A graph G is dense if it is triangle positive, 2-connected and of diameter two. A graph which is not 2 -connected is separable.

Definition 1.13 A graph G is vertex triangle regular (VTR) (edge triangular regular (ETR)) if all of its vertices (edges) have the same triangle number. In this case the common triangle number $\mathrm{t}(\mathrm{u})(\mathrm{t}(e)$) is called the vertex (edge) triangle number of the $V T R$ (ETR) graph G. A graph is strongly vertex triangle regular (SVTR) (strongly edge triangle regular (SETR)) if it is regular and VTR (ETR).

Definition 1.14 For a given positive integer p, let a_{1}, $\dot{a}_{2}, \ldots \ldots \ldots, a_{k}$ be a sequence of integers where $0<a_{1}<a_{2}<\ldots$ $\cdots<a_{k}<\frac{p+1}{2}$. Then the circulant graph $C\left(p ; a_{1}, a_{2}, \cdots \ldots, a_{k}\right)$ is the graph on p vertices $u_{0}, u_{1}, \cdots \ldots \ldots, u_{p-1}$ with vertex u_{1} adjacent to each vertex $u_{i \pm a}(\operatorname{modp})$. The values a_{i} are called jump sizes.

Definition 1.15 An isomorphic factorization of a graph G is a partition of G into edge-disjoint isomorphic spanning subgraphs. A graph G is divisible by m if it can be factored into m isomorphic graphs and is denoted by m / G. The set of graphs which occur as factors in isomorphic factorizations of a graph G into exactly m factors is denoted by G / m. If H is a member of G / m, we write H / G. An isomorphism that maps between the factors in an isomorphic factorization is called factorizing permutation.

1.2 BACKGROUND OF THE WORK

Neighbourhood graphs were introduced and characterized by Acharya and Varthak [11]. The neighbourhood graph of a graph G is the graph having the same vertex set as G with an edge joining two vertices if and only if they have a common neighbour in G. A graph H is said to be a neighbourhood graph if there is a graph G such that H is isomorphic to the neighbourhood graph $N(G)$ of G. These graphs have also been studied under the name of 2-step graphs by Exoo and Harary [29] and Greenberg et al. [32]. Brigham and Dutton [15] analyzed these further
and studied the class of graphs G for which $N(G) \cong K_{p}, N(G) \cong G$ and $N(G) \cong \bar{G}$. The following theorem is of interest to us.

Theorem 1.1 ([15]) The following are equivalent for a graph G of order $p \geq 3$.
(a) $\quad N(G) \cong K_{p}$
(b) $\operatorname{diam}(G) \leq 2$ and every edge of G is in a triangle
and (c) $\boldsymbol{\gamma}(\bar{G}) \geq 3$.
In [40], Koh and Sauer have defined a dense graph as a 2-connected graph with diameter less than or equal to two in which every edge is in a triangle. From theorem 1.1 and the definition of dense graphs, it follows that $N(G) \cong K_{p}$ for every dense graph G : But this condition is not sufficient for G to be dense, since there exist non-dense graphs G with $N(G) \cong K_{p}$. We have explored this class of graphs in [44]. Here we have renamed such graphs as S-graphs to avoid any possible confusion with an already existing concept of F-graphs [19].

Aravamudhan and Rajendran [12] have introduced the concept of antipodal graphs and characterized them. Antipodal graph of a graph G is the graph $A(G)$ having the same vertex set as G with an edge joining two vertices if and only if the distance between them in G is the diameter of G. A graph is antipodal if it is the antipodal graph of some graph. They obtained the conditions for $A(G)=G, A(G)=\bar{G}$, etc. and proved that $A(G) \subseteq \bar{G}$ for any graph $G \not K_{p}$. These are also referred in the survey [16]. Acharya and Acharya [10] have studied selfantipodal graphs.

A graph G is said to be self-complementary if it is isomorphic to its complement. While proving some results on mean distances in self-complementary graphs of diameter three, Hendry [381 considered the graph G^{*}, whose vertices are those of G with eccentricity three and an edge joins two vertices of G^{*} if and only if the distance between them in G is three. He proved that G^{*} is bipartite.

All these developments have motivated us to generalize the definition of G^{*} to any graph G of diameter d and call it the s-antipodal graph $A^{*}(G)$ of G.

A graph G of order p is said to be strongly regular with parameters (p, r, λ, μ) if it is regular of degree r, any two adjacent vertices have precisely λ common neighbors and any two non-adjacent vertices have precisely μ common neighbors.

A strongly regular graph
'Jhis class of graphs is closely related to partial geometries and symmetric designs, and was studied extensively by many authors like Bose [14], Cameron [18], and Hubalt [39].

Lemma 1.2 ([18]) If G is strongly regular with parameters ($\mathrm{p}, \mathrm{r}, \lambda, \mu$) then \bar{G} is also strongly regular with parameters ($\mathrm{p}, \mathrm{p}-\mathrm{r}-1, \mathrm{p}-2 \mathrm{r}+\mu-2, \mathrm{p}-2 \mathrm{r}+\lambda$).

A graph is said to be vertex-symmetric if every pair of its vertices are similar. This class of graphs had been studied under the name of 'vertex-transitive graphs' also. Edgesymmetric graphs are also defined in similar terms. Circulant graphs are a special type of vertex-symmetric graphs. A circulant graph is given fig. 1.2.

The circulant graph C(B; 1, 4)
figure 1.2

Self-complementary graphs were introduced and its basic properties were studied independently and simultaneously by Ringel [56] and Sachs [62]. An immediate consequence of the definition is that, self-complementary graphs are of order $p=4 k$ or $p=4 k+1$ for some natural number k. Also, selfcomplementary graphs exists for all such integral orders. The order of a regular self-complementary graph is $4 k+1$ and it exists for every such integral orders. Problems concerning the degree sequences, hamiltonicity, factorization, length of cycles and chains of self-complementary graphs were studied by Camion [20], Clapham [22, 23, 25], Rao [48, 50, 51, 52, 53], etc.

Clapham [24] introduced the concept of graphs selfcomplementary in $K_{n}-e$. They exist for orders $p=4 k+2$ and $4 k+3$, that is for which self-complementary graphs do not exist. These were independently studied by Das [27] in the name of almost self-complementary graphs. Enumeration of self-complementary graphs has been carried out by Read [55] and an asymptotic formula for the number of self-complementary graphs was given by Palmer [47] using Polya's enumeration theorem.

Self-centered self-complementary graphs [17], regular self-complementary graphs [37, 54], vertex-symmetric selfcomplementary graphs [54, 64] and strongly regular selfcomplementary graphs [26, 54, 57, 59] are also interesting. It is to be noted that the strongly regular self-complementary (SRSC) graphs coincide with a class of graphs investigated by us, namely strongly edge triangle regular self-complementary (SETRSC) graphs.

The diameter of a self-complementary graph is two or three and that of a regular self-complementary graph is two. A regular self-complementary graph will be self-centered also. If G is self-complementary, isomorphisms between G and \ddot{G} are nothing but permutations of $V(G)$ and are called complementing permutations of G. $G(G)$ denotes the set of all such permutations. Ringel [56] and Sachs [62] proved that the length of a cycle of a complementing permutation is a multiple of four except exactly one of unit length when p is odd. A selfcomplementary graph may have more than one complementing permutation and non-isomorphic self-complementary graphs may have same complementing permutation (see fig. 1.3)

(1234)(5)
(2453)(1)

(1234)(5)
(2453)(1)

Self-complementary graphe and complementing permutatione flgure 1.3

If there are more than one complementing permutation for a self-complementary graph, then the cycle structure of them need not be the same. In this connection, Kotzig asked (problem 2, [41])" Is it true that, for every regular self-complementary
graph G, there is at least one complementing permutation σ such that, except for the cycle of length one, every cycle of σ is of length exactly four ? ". Hartsfield [37] answered it negatively by giving a regular self-complementary graph (fig. 1.4) each of whose complementing permutation include a cycle of length eight.

A vertex u in a self-complementary graph is said to be fixed-vertex if $\sigma(u)=u$ for some complementing permutation σ. Ringel and Sachs proved that for each $\sigma \in \mathcal{G}(G)$, there exists a unique fixed vertex if G is of order $p=4 k+1$ and none if G is of order 4 k . Three sets $F(G), \hat{F}(G)$ and $Z(G)$ defined in connection with a regular self-complementary graph of order $\mathrm{p}=4 \mathrm{k}+1$ are:

```
F(G)={u\inV(G) / \exists\sigma GG(G) such that \sigma(u)=u},
\tilde{F}(G)={u\inV(G) / t(u)=k(k-1)}
```

and $Z(G)=\{u v \in E(G) / \exists \sigma \in G(G)$ such that $\sigma(u)=v\}$

A self-complementary graph whose complementing
permutatione alway include a cycle of lengtheight

Kotzig [41] observed that $F(G) \subseteq \hat{F}(G)$ for every regular self-complementary graph and conjectured that:
(1) A self-complementary graph is strongly regular if and only if $F(G)=V(G)$ and $Z(G)=E(G)$.
(2) $F(G)=\widehat{F}(G)$ for every regular self-complementary graph.

Ruiz [59] has disproved the first conjecture by giving a regular self-complementary graph $G(f i g .1 .5)$ with $F(G)=V(G)$ and $Z(G)=E(G)$ but is not strongly regular. Rao [54] also has independently disproved the same. Along with the first, he has disproved the second by constructing counterexamples. We observed some mistakes in these. Rao has characterized the set $\boldsymbol{F}(G)$ also.


```
A self-complementary graph with F(G)=V(G) and Z(G)=E(G)
    but not atrongly regular
    O=(12 3 4) (5 6 7 B ) ( 9 10 11 12 ) ( 13 )
```

 figure 1.5
 Hence, to study more on this conjecture, we have first considered the idea of triangle number, the number of triangles in a graph containing a vertex or an edge.

Ihe first result, in our belief, on the triangle number is the following.

Theorem 1.3 (Goodman [31]) For any graph G of order p,
$t(G)+t(\bar{G}) \geq \begin{cases}\frac{k(k-1)(k-2)}{3} & \text { when } p=2 k \\ \frac{2 k(k-1)(4 k+1)}{3} & \text { when } p=4 k+1 \\ \frac{2 k(k+1)(4 k+1)}{3} & \text { when } p=4 k+3\end{cases}$

Cor some natural number k, where $t(G)$ and $t(\bar{G})$ denote the number triangles in G and \bar{G} respectively

Some other significant results in this direction are:

Theorem 1.4 (Lorden [42]) For any graph G on p vertices $t(G)+t(\bar{G})=\binom{p}{3}-\frac{1}{2} \sum_{u \in V(G)} d(u)(p-d(u)-1)$, where $d(u)$ is the degree of u.

Theorem 1.5 (Clapham [21]) If G is a self-complementary graph of order p, then
$t(G) \geq \begin{cases}\frac{2 k(k-1)(2 k-1)}{3} & \text { when } p=4 k \\ \frac{k(k-1)(4 k+1)}{3} & \text { when } p=4 k+1\end{cases}$

Theorem 1.6 (Rao [49]) If G is a self-complementary graph of order p, then

$$
t(G) s\left\{\begin{array}{ll}
\frac{k(k-1)(8 k-1)}{3} & \text { when } \\
p=4 k \\
\binom{2 k}{2}+\frac{k(k-1)(8 k-1)}{3} & \text { when }
\end{array} \quad p=4 k+1\right.
$$

Two other interesting results concerning the range of number of triangles in self-complementary graphs given in [49] are:

Theorem 1.7 Let t be an integer. There is a selfcomplementary graph G of order $4 k$ with $t(G)=t$ if and only if t is even and $\frac{2}{3} k(k-1)(2 k-1) \leq t \leq \frac{1}{3} k(k-1)(8 k-1)$.

Theorem 1.8 Let t be an integer. There is a gelfcomplementary graph G of order $4 k+1$ with $t(G)=t$ if and only if $\frac{1}{3} k(k-1)(4 k+1) \leq t \leq\binom{ 2 k}{2}+\frac{1}{3} k(k-1)(8 k-1)$ unless $k=2$ and $t \in\{9,12,13\}$ or $k=3$ and $t \in\{33,41,49,54,57\}$,

Even though the work is not in our lines, it seems worth mention the concept of triangle graphs introduced by Egawa and Ramos [28]. They defined the triangle graph $R(G)$ of a graph G as the graph whose vertices are the triangles in G and two vertices are adjacent if the corresponding triangles have a common edge in G.

The concept of G-join was introduced by Sabidussi [61] and was also studied by Ruiz [58]. The following theorem of Ruiz is interesting.

Theorem 1.9 Let G be a self-complementary graph with complementing permutation σ and let $\mathcal{F}=\left\{H_{u} / u \in V(G)\right\}$ be a family of graphs such that $H_{\sigma(u)}=\bar{H}_{u}$ for all $u \in V(G)$. Then the G-join $G(F)$ is also self-complementary.

Remark 1.10 It is to be noted that the G-join is not only a generalization of composition, introduced by Harary [34], but also of the join [4, 8] and sequential join [8] of graphs.

If G is a self-complementary graph of order p, then G and \bar{G} form a factorization of K_{p} into two isomorphic factors. Harary, Robinson and Wormald [35] investigated the existences of isomorphic factorization of K_{p}, into $m \geq 2$ factors. To them, a graph G is divisible by m if it can be factored into m isomorphic factors. They have proved the following theorems.

Theorem 1.11 If m divides $\frac{p(p-1)}{2}$ and $(m, p)=1$ or $(m, p-1)=1$, then K_{p} is divisible by m, where (m, p) denotes the g.c.d. of the integers m and p.

Theorem 1.12 (Divisibility theorem) The complete graph K_{p} is divisible by m if and only if m divides $\frac{p(p-1)}{2}$.

Study of isomorphic factorization in which the factors have certain prescribed properties have also been attempted by many authors. These include, isomorphic factorization into factors with given diameter, isomorphic factorization of K_{p} where each factor is regular of degree two etc. The details of such work are in [35] and [36].

We have thus given a survey of results relevant to the work reported in this thesis. The definitions and results given in this thesis are either generalizations, byproducts or have
been motivated by earlier results, especially on dense graphs, antipodal graphs, self-complementary graphs, circulants, strongly regular graphs and vertex-symmetric graphs.

1.3 GIST OF THE THESIS

Abstract

The thesis consists of five chapters including this introductory chapter.

In the second chapter, we first discuss S-graphs followed by S-antipodal graphs and S-antipodal graphs of S-graphs and trees. Some of the results in this chapter are: 1) Let G be a connected graph of order $p \geq 5$ then the following are equivalent.

(a) G is an S-graph
(ь) G has exactly one cut vertex and is adjacent to all other vertices and no block of G is isomorphic to K_{2}.
(c) G is an S-join of a family of graphs.
2) If G is an S-graph, then the S-antipodal graph $A^{*}(G)$ is self-centered with diameter two and hence $A^{\star}\left(A^{\star}(G)\right)=A^{\star}(G)$.
3) Let G be an S-graph of order p with k blocks. Then the following are equivalent.
(B) $A^{\star}(G)$ is dense
(b) $\quad N(G) \propto K_{p-1}$
(c) either $k \geq 3$ or there is a block B in G such that each vertex in $B \backslash v$ has degree at most $|V(B)|-2$, where v is the cut vertex of G.
4) Every graph without isolated vertices is the S-antipodal graph of a hamiltonian graph and every eulerian graph of even order is the S-antipodal graph of an eulerian graph.
5) Characterizations of s-antipodal graphs of S-graphs and trees.

In the third chapter, we derive expressions for the triangle number of a vertex in a graph, for vertices and edges under some graph operations and introduce the concepts of strongly vertex triangle regular graph and strongly edge triangle regular graph. We also deduce some results of Clapham [21], Kotzig [41], Lorden [42], Rao [54], Rosenberg [57] and the well-known relationship between the parameters of a strongly regular graph. Some of the results proved in this chapter are :
(6) $\mathrm{t}(\mathrm{u})+\overline{\mathrm{t}}(\mathrm{u})=\binom{\mathrm{p}-\mathrm{d}(\mathrm{u})-1}{2}-\mathrm{q}+\sum_{v \in N(u)} \mathrm{d}(\mathrm{u})$
for any vertex u in a (p, q) graph.
(7) The triangle number of (u, v) in the composition $G(H)$ of the graphs $G\left(p_{1}, q_{1}\right)$ and $H\left(p_{2}, q_{2}\right)$ is given by

$$
t(u, v)=q_{2} d(u)+p_{2} d(u) d(v)+p_{2}^{2} t(u)
$$

(8) For any edge e joining $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ in $G(H)$
$t(e)=\left\{\begin{array}{l}t\left(e_{1}\right)+d\left(v_{1}\right)+d\left(v_{2}\right) \quad \text { when } \quad u_{1} u_{2} \in E(G), e_{1}=u_{1} u_{2} \\ t\left(e_{2}\right)+p_{2} d\left(u_{1}\right) \text { when } u_{2}=u_{2}, \quad v_{1} v_{2} \in E(H), e_{2}=v_{1} v_{2}\end{array}\right.$
(9) G is strongly regular if and only if both G and \bar{G} are strongly edge triangle regular.
(10) A self-complementary graph is strongly edge triangle regular if and only if it is strongly regular.

Abstract

In the fourth chapter, we restrict our analysis to self-complementary graphs to initiate the discussion of a conjecture of Kotzig, namely $F(G)=\hat{F}(G)$ for a regular selfcomplementary graph of order p, which is trivially true for $\mathbf{p}=5$. Rao has given counterexample to this in [54]. But, we have observed in [45] that the argument works only for $p=9$ and hence the conjecture was made open for $p=4 k+1, k \geq 3$. Attempts in pursuance of this conjecture are mentioned in this chapter. Some of the observations included in the chapter are:

(11) $\hat{F}(G)=\{u \in V(G) / t(u)=\bar{t}(u)\}$ and hence $\hat{F}(G)=\hat{F}(\bar{G})$ for every regular self-complementary graph G.
(12) Composition of vertex symmetric self-complementary graphs with strongly vertex triangle regular self-complementary graphs which are not vertex-symmetric results in latter type of graphs.
(13) Strongly vertex triangle regular self-complementary graphs which are not vertex-symmetric are counterexamples to the conjecture of Kotzig.
(14) Graphs of the type stated in (12), of order p exists for $p=17$ and $p=33$ also and hence for $p=9^{\alpha_{17}} \beta_{33^{\gamma}} \gamma_{1}^{\delta}$ where α, β, γ and δ are integers with at least one of the first three is non-zero and p_{1} is such that vertex-symmetric selfcomplementary graphs of order p_{1} exist.
' me main aim in the last chapter is to extend a construction of self-complementary graphs given by Gibbs [30] to obtain a construction of the factors in an isomorphic
factorization of complete graphs into more than two factors and Lhereby obtain a simpler proof of a theorem by Harary et al. [35]. The chapter ends with a concluding remark and suggestions for further study.

As remarked earlier, 'triangles ' and complementation ' which are the main characters of the thesis and old heroes of many branches of graph theory have been brought again to a common stage. We sincerely believe that reasonable success has been achieved in this attempt.
$\mathbb{C} \mathbb{H} \mathbb{A} \mathbb{P} \mathbb{T} \mathbb{E} \mathbb{R}$
I I

2

$$
\begin{gathered}
\text { S-GRAPHS } \\
\text { AND } \\
\text { S-ANTIPODALGRAPHS }
\end{gathered}
$$

Abstract

In this chapter we study a class of non-dense graphs called s-graphs, the concept of s-antipodal graphs and the S-antipodal graphs of S-graphs and trees. Some results of this chapter are in [44]

2.1 S-GRAPHS

Let G be a graph. A vertex u of G is triangle positive if its triangle number is non-zero. Triangle positive edge is similarly defined. If G is without isolated vertices and every edge is triangle positive, then every vertex will also be triangle positive.

A graph in which every edge is triangle positive is called a triangle positive graph.

Consider a graph G and its neighborhood graph $N(G)$. Brigham and Dutton [15] have proved theorem 1.1, part of which in our terminology can be stated as "The neighborhood graph $N(G)$ of a graph G of order $p \geq 3$ is K_{p} if and only if $\operatorname{diam}(G) \leq 2$ and

G is triangle positive". In [40], Koh and Sauer have defined dense graphs which, using our terms, reads as "a graph G of order $p \geq 3$ is dense if G is 2 -connected, triangle positive and $\operatorname{diam}(G) \leq 2^{\prime \prime}$. J.t follows that the neighborhood graph of any dense graph of order p is K_{p}. But, there are non-dense graphs G of order p such that $N(G) \cong K_{p}$. Obviously, these are the connected separable triangle positive graphs whose diameter is at most two. In fact, the diameter of such graphs will always be two, since $p(G) \geq 3$.
Λ graph G is an S-graph if it is separable, triangle positive and $\operatorname{diam}(G)=2$.

An S-graph
figure 2.1

Lemma 2.1 An S-graph G has exactly one cut-vertex and it is adjacent to all other vertices.

Proof: Let G be an S-graph. Existence of a cut-vertex follows from the definition. If G has more than one cut-vertex, we could find a block B of G containing two or more cut-vertices of G. Let u and v be two distinct cut-vertices in the block B and let A and C be two distinct blocks of G such that $u \in V(A)$ and $V \in V(C)$. Consider any $x \in V(A \backslash u)$ and $Y \in V(C \backslash V)$. Then each path joining x and y contains u and v. So $d(x, y) \geq 3$ which is impossible. Hence G has exactly one cut-vertex.

Now, let v be the cut-vertex of G and u be a vertex not adjacent to v. Then $d(u, v) \geq 2$. Let B be the block of G containing u and let $w \in V(G \backslash B)$. Then every path joining u and w contains the vertex v and hence $d(u, w) \geq 3$. But $\operatorname{diam}(G)=2$. ■

Remark 2.2: By definition, an S-graph doesn't have a block isomorphic to K_{2} and hence these graphs have at least five. vertices.
kecall that, the S-join (star join) $G=S(9)$ of a family f of $p-1$ non-trivial graphs obtained by replacing each pendent vertex u_{i} of the star $K_{1, p}$ by $G_{i} \in g$ where $g=\left\{G_{1}\right.$, $\left.G_{2}, G_{3}, \ldots . . ., G_{p}\right\}$ is a family of p non-trivial connected graphs and joining each vertex of G_{j} to the central vertex u_{0} of the star.

Theorem 2.3 Let G be a connected graph of order $p \geq 5$. I'hen the following are equivalent.
(a) G is an S-graph.
(b) G has exactly one cut-vertex which is adjacent to all other vertices. and (c) G is the S-join of a family of two or more graphs.

Proof: Consider a connected graph G of order $p \geq 5$.
$(a) \Rightarrow(b)$ By lemma 2.1.
$(b) \Rightarrow(c)$ Let v be the cut-vertex and consider the family 9 of the components of $G \backslash v$. Since G has no member isomorphic to K_{2}, no member of \mathscr{F} is trivial and obviously G is the S-join of \mathcal{F}.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$ Let G be the S-join of a family \mathcal{F} of two or more non-trivial connected graphs and v be the central vertex of the star. By definition of S-join, $\operatorname{ecc}(v)=1, v$ is a common neighbor to any pair of vertices u and u^{\prime} other than v and there exist at least one pair of non-adjacent vertices in G. Hence $\operatorname{diam}(G)=2$. Obviously, v is a cut vertex in G. Hence G is separable. Since none of the members in \mathscr{F} is trivial, for every edge e containing v there exists a vertex u which forms a triangle with e. For each edge not containing v, v is a common neighbor to its end vertices. So $t(e)$ is non-zero for every edge e in G. Hence G is an S-graph.

Lemma 2.4 If G is an S-graph, then the domination number of \bar{G} is three.

Proof: Let G be an s-graph and v be its cut-vertex. Then $\gamma(\bar{G}) \geq 3$ by theorem 1.1. Since the cut vertex of G is adjacent to all other vertices, it will be an isolated vertex in \bar{G}. So it is in any dominating set of \bar{G}. Now, consider two distinct blocks A and B of G and let $u \in V(A \backslash V)$ and $w \in V(B \backslash V)$. Then, in \bar{G}, each vertex in $V(G \backslash A)$ will be adjacent to u and each vertex in $V(G \backslash B)$ will be adjacent to w. So $\{u, v, w\}$ form a dominating set of \bar{G}. Thus $\gamma(\bar{G})=3$.

It is clear that S-graphs are extremal for the inequality in theorem 1.1. Then the following question arises: - Are S-graphs the only graphs satisfying both $N(G) \propto K_{p}$ and $\gamma(\bar{G})=3$?, The answer is negative, as there are other graphs H with $\gamma(\bar{H})=3$. One such graph is the wheel $H=W_{6}=K_{1}+C_{5}$ given in fig. 2.2. For it $\bar{H}=K_{1} \cup C_{5}$ and $\gamma(\bar{H})=3$.

H

\bar{H}
the whel on if vertices and its complement
flgure 2.2

Remark 2.5: Itisto be noted that the friendship graphs (Us. . .) are the simplest S-graphs.

2.2 S-ANTIPODAL GRAPHS

S-antipodal graph of a graph G is the graph $A^{*}(G)$ whose vertices are those of G with maximum eccentricity and two vertices are adjacent if their distance in G is maximum. A graph G is S-antipodal if it is the S-antipodal graph of some graph H.

Remark 2.6 $A^{\star}(G)$ may be disconnected.

Lemma 2.7 Let G be any graph, $A(G)$ be its antipodal graph and $A^{*}(G)$ its S-antipodal graph. Then
(a) $E\left(A^{\star}(G)\right)=E(A(G))$.
(b) $\quad V\left(A^{\star}(G)\right)=V(G)$ if and only if G is self-centered.
(c) $A^{*}(G)=A(G)$ if and only if G is self-centered.

Proof: (a) $u v \in E\left(A^{*}(G)\right) \Rightarrow d_{G}(u, v)=\operatorname{diam}(G)$

$$
\Rightarrow \quad u v \in E(A(G))
$$

Conversely,

$$
\begin{aligned}
u v \in E(A(G)) & \Rightarrow d_{G}(u, v)=\operatorname{diam}(G) \\
& \Rightarrow\left\{\begin{array}{l}
\operatorname{ecc}_{G}(u)=\operatorname{ecc}_{G}(v)=\operatorname{diam}(G) \\
\text { and } \left.d_{G}(u v)=\operatorname{diam} G\right)
\end{array}\right. \\
& \Rightarrow u, v \in V\left(A^{*}(G)\right) \text { and } u v \in E\left(A^{\star}(G)\right.
\end{aligned}
$$

(b) $V\left(A^{\star}(G)\right)=V(G) \Rightarrow \operatorname{ecc}_{G}(u)=\operatorname{diam}(G)$ for every $u \in V(G)$
$\Rightarrow G$ is self-centered.

Conversely,
G is self-centered $\Rightarrow \operatorname{ecc}_{G}(u)=\operatorname{diam}(G)$ for every $u \in V(G)$
$\Rightarrow \quad u \in V\left(A^{*}(G)\right)$ for every $u \in V(G)$
$\Rightarrow V\left(A^{*}(G)\right)=V(G)$
(c) Follows from (a), (b) and the fact that $V\left(A^{*}(G)\right)=V(G)$.

Lemma 2.8 If G is K_{p} or \bar{K}_{p}, then $A^{\star}(G) \cong K_{p}$.
Proof: In both cases, G is self-centered and hence $V\left(A^{*}(G)\right)=V(G)$. When $G \propto K_{p}, \operatorname{diam}(G)=1$ and each pair of
vertices are at a distance of one. So $A^{\star}(G) \cong K_{p}$. When $G \cong \bar{K}_{p}$, $\operatorname{diam}(G)=\infty$ and hence $d(u, v)=\infty$ for every pair of vertices. So $A^{\star}(G) \propto K_{p}$.

Lemma 2.9 Let G be a connected graph of diameter d. Then $E\left(A^{*}(G)\right)=E\left(\overline{G^{\mathrm{d}-1}}\right)$ if and only if $\mathrm{d} \geq 2$.

Proof: Let G be a connected graph of diameter d. When $d=1, A^{*}(G)=G$ by lemma 2.8. Thus the condition is necessary.

Conversely, let $\operatorname{diam}(G) \geq 2$ and $u v \in E\left(A^{*}(G)\right)$. Then $\operatorname{ecc}_{G}(u)=\operatorname{ecc}_{G}(v)=d_{G}(u, v)=d$. Hence u and v are not adjacent in G^{d-1} by its definition. So $u v \in E\left(\overline{G^{d-1}}\right)$. On the other hand if $u v \in E\left(\overline{G^{d-1}}\right)$, then $d_{G}(u, v) \geq$ d. But $d_{G}(u, v)=$ d. Hence $\operatorname{ecc}_{G}(u)=\operatorname{ecc}_{G}(v)=$ d. Thus $u, v \in V\left(A^{*}(G)\right)$ and $u v \in E\left(A^{*}(G)\right)$.

Theorem 2.10 $E\left(A^{*}(G)\right) \subseteq E(\bar{G})$ if and only if $\operatorname{diam}(G) \geq 2$ and equality holds if and only if either diam(G) $=2$ or G is disconnected and every component of it is complete.

Proof: $\quad E\left(\overline{G^{d-1}}\right) \subseteq E(\bar{G})$ since $E(G) \subseteq E\left(G^{d-1}\right)$. Hence by Jemma 2.9, $E\left(A^{*}(G)\right) \subseteq E(\bar{G})$ if $\operatorname{diam}(G) \geq 2$.

Conversely, if $\operatorname{diam}(G)=1$, then $E\left(A^{*}(G)\right)=E(\dot{G})$. Hence $\operatorname{diam}(G) \geq 2$ is necessary.

For the equality, the necessity of $\operatorname{diam}(G) \geq 2$ follows from lemma 2.8.

Now, let G be a connected graph of diameter $d \geq 3$. I'hen there exist at least one pair $\{u, v\}$ of vertices in G with $d_{G}(u, v)=2$. These vertices will not be adjacent in $A^{*}(G)$
even if they are in $V\left(A^{\star}(G)\right)$. But they will be adjacent in \bar{G}. 'Hhus $E\left(A^{*}(G)\right)$ does not contain $E(\bar{G})$ when G is connected and $\operatorname{diam}(G) \geq 3$.
let G be disconnected and $\{u, v$ be a pair of non-adjacent vertices in one of the components. Then $d_{G}(u, v)<\infty$ while $\operatorname{diam}(G)=\infty$. So $u v \notin E\left(A^{*}(G)\right)$. But uv $\in E(\bar{G})$. Hence $E\left(A^{\star}(G)\right)$ does not contains $E(\bar{G})$ if there is a component of G which is not complete. Hence the conditions for equality.

Since $A^{\star}(G)$ and $A(G)$ are same if G is self-centered, we can deduce the following properties of $A^{*}(G)$ from that of $A(G)$ given by Aravamudhan and Rajendran [12].

Property $2.11 A^{\star}(G)$ is complete k-partite if G is disconnected with k components.

Property $2.12 A^{\star}(G)=G$ if and only if $G \cong K_{p}$.
Property $2.13 A^{*}(G)=\bar{G}$ if and only if G is self-centered of diameter 2 or G is disconnected and each component of G is complete.

Theorem $2.14 A^{*}(G) \cong G$ if either $G \cong K_{p}$, an odd cycle or a self-complementary graph of diameter two.

Proof: We have seen that $A^{*}(G)=G$ if $G \cong K_{p}$.
Now, let G be an odd cycle of length $2 n+1$. Then $\operatorname{diam}(G)=n$. For every vertex u, there are exactly two vertices at a distance of n from it. Hence the degree of u in $A^{*}(G)$ will be 2 and $A^{\star}(G)$ will be connected also. Hence $A^{*}(G)$ will also be a cycle of length $2 n+1$.

When G is a self-complementary graph of diameter 2, the statement follows from property 2.13 , since every such graph is self-centered.

Corollary 2.15 If G is a regular self-complementary graph, then $A^{\star}(G)=\bar{G} \cong G$.

Theorem 2.16 $A^{\star}(G)=A^{\star}(\bar{G})$ if and only if G is either complete or totally disconnected.

Proof: Let $A^{\star}(G)=A^{\star}(\bar{G})$. Then exactly one of G and \bar{G} is complete. Because otherwise, by theorem 2.10 , we have

$$
\begin{aligned}
& \operatorname{diam}(G) \geq 2 \Rightarrow E\left(A^{\star}(G)\right) \subseteq E(\bar{G}) \\
& \operatorname{diam}(\bar{G}) \geq 2 \Rightarrow E\left(A^{\star}(\bar{G})\right) \subseteq E(G) .
\end{aligned}
$$

But, $E\left(A^{\star}(G)\right)=E\left(A^{\star}(\bar{G})\right)$ by hypothesis and this set simultaneously belongs to both $E(G)$ and $E(\bar{G})$, which is a contradiction . Thus, either G or \bar{G} is K_{p}.

Converse is obvious by lemma 2.8.
Corollary $2.17 A^{\star}(G) \cong A^{\star}(\bar{G})$ if G is either K_{p} or $\bar{K}_{p} \quad$ o

Theorem 2.18 Every graph without isolated vertices is the s-antipodal graph of a hamiltonian graph of diameter two.

Proof: Let G be a graph of order p without isolated vertices. Consider the graph $H=\vec{G}+K_{p}$. Then
(1) diameter of H is two and $A^{\star}(H)=G$
and (2) H is Hamiltonian.
lroof of (1): Since G is without isolated vertices, for every vertex u in G, there is a vertex v in G adjacent to it. So u and v are not adjacent in \bar{G} and hence in H. Thus, for every $u \in V(G)$
there exists a $v \in V(G)$ such that $d_{H}(u, v) \geq 2$. Hence $\operatorname{ecc}_{H}(u) \geq 2$ for every $u \in V(G)$. But each vertex u^{\prime} in K_{p} is a common neighbour to every pair of vertices in H. So $d_{n}(u, v) \leq 2$ for every pair $u, v \in V(G)$. Every $u^{\prime} \in V\left(K_{p}\right)$ is adjacent to all other vertices in H. So $\operatorname{ecc}_{\|}\left(u^{\prime}\right)=1$ for every $u^{\prime} \in V\left(K_{p}\right)$. Hence $\operatorname{diam}(H)=2$ and $V\left(A^{*}(H)\right)=V(G)$ and hence $E\left(A^{*}(H)\right)=E(\bar{H}) \quad$ by theorem 2.10 and $E(\bar{H})=E(G)$ by definitions of complement and H. So $A^{*}(H)=G$.

Proof of (2) Label the vertices of G by $1,2, \ldots \ldots \ldots$.... \quad and those of K_{p} by $1^{\prime}, 2^{\prime}, \ldots \ldots p^{\prime}$; then $11^{\prime} 22^{\prime} \ldots \ldots p^{\prime} 1$ is a spanning cycle of H.

Theorem 2.19 A graph is S-antipodal if and only if it has no isolated vertices.

Proof: Let G be an S-antipodal graph and $u \in V(G)$. Then there exists a graph H such that $A^{\star}(H)=G$ and $u \in V(H)$ with $\operatorname{ecc}(u)=\operatorname{diam}(H)$. So, there should be a vertex vin H with $d(u, v)=\operatorname{diam}(H)$ and hence. Thus u is not an isolated vertex in G.

Converse follows from theorem 2.18.

Theorem 2.20 Every eulerian graph of even order is the s-antipodal graph of an eulerian graph.

Proof: Let G be an eulerian graph of even order p. Being Eulerian, the degree $d_{G}(u)$ is even for every vertex u. But $d_{G}(u)+d_{G}(u)=p-1$, odd. So $d_{G}(u)$ is odd. Consider the graph $H=\bar{G}+K_{1}$. Clearly, degree of every vertex in H is even and hence H is eulerian. Now, consider a vertex u in G. Since G is
eulerian and hence connected, there will be a vertex v in G. Such that u and v are adjacent in G and hence $d_{H}(u, v) \geq 2$. For every $w \in V(G)$ the vertex of K_{1}, say θ, is a common neighbour to u and w in H. So $d_{H}(u, w) \leq 2$ and $d(\theta, w)=1$ for every $w \in V(G)$. Hence Hence $\operatorname{ecc}_{H}(u)=2$ for every $u \in V(G)$ and $\operatorname{ecc}_{H}(\theta)=1$. Thus $V\left(A^{\star}(H)\right)=V(G)$ and $E\left(A^{\star}(H)\right)=E(\bar{H})=E(G)$ by theorem 2.10.

Remark 2.21 The S-antipodal graph of an eulerian graph need not be eulerian. The following example illustrates this.

G

$A^{\star}(\dot{G})$

Eulerian graph along with ita non-eulerian S-antipodai graph
figure 2.3

2.3 S-ANTIPODAL GRAPH OF S-GRAPHS

Let G be an S-graph and v be its cut-vertex. Then $\operatorname{diam}(G)=2$ and v is adjacent to all other vertices. Hence $\operatorname{ecc}(v)=1$. Because of the separability of G, all other vertices are of eccentricity two. So $V\left(A^{\star}(G)\right)=V(G \backslash V)$ and by
theorem 2.10, $E\left(A^{\star}(G)\right)=E(\bar{G})$. So $A^{\star}(G)=\bar{G} \backslash v$. Here we discuss some properties of $A^{\star}(G)$ and obtain its characterization.

Theorem 2.22 Let G be an S-graph with k blocks and every block of G is complete, then $A^{\star}(G)$ is a complete k-partite graph.
proof: Let G be an S-graph with each of its blocks are complete. Let v be the cut-vertex, $B_{1}, B_{2}, B_{3}, \cdots \cdots, B_{k}$ be the blocks of G and $V_{1}=V\left(B_{1} \backslash V\right) ; i=1,2, \ldots \ldots, k$. Then $V_{1} \cap V_{j}$ $=\emptyset$ for every i and $j, i \neq j$ and $\bigcup_{i=1}^{k} V_{i}=V\left(A^{\star}(G)\right)$. Since each B_{1} is complete. in G, each $\left\langle V_{1}\right\rangle$ is totally disconnected in $\bar{G} \backslash V=A^{\star}(G)$. Obviously, $\bar{G} \backslash v=A^{\star}(G)$, each vertex in V_{1} is adjacent to all other vertices in V_{j} for every i and j, $i \neq j$. So $A^{\star}(G)$ is complete k-partite.

Corollary 2.23 If G is an S-graph, then
(a) $A^{\star}(G)$ has a complete k-partite spanning subgraph,
(b) $A^{*}(G)$ is 2 -connected.

Proof: (a) Since the cut vertex v is adjacent to every other vertex in $G, A^{\star}(G)=\bar{G} \backslash v$ has a complete k-partite subgraph since G is a subgraph of an S-graph whose every block is complete.
(b) Follows from (a).

Theorem 2.24 If G is an S-graph, then $A^{\star}(G)$ is selfcentered with diameter two.

Proof: Let G be an S-graph and v be its cut-vertex. Then we have $A^{*}(G)=\bar{G} \backslash V$, To prove that the eccentricity of any vertex in $A^{\star}(G)$ is two. Let $e^{\star}(u)$ and $d^{\star}(u, w)$ respectively denote the eccentricity and distance in $A^{\star}(G)$. Let u be any
vertex in $A^{\star}(G)$ and B be the block of G in which u belongs. Then $d^{\star}(u, w)=1$ for every $w \in V(G \backslash B)$ since $d_{G}(u, w)=2$ and u and v being in distinct blocks of G. Also $d^{\star}(u, w) \leq 2$ for every $w \in V(B \backslash v)$ since each vertex in $V(G \backslash B)$ is common neighbour to u and w in $A^{\star}(G)$. Hence $e^{\star}(u) \leq 2$. Since G has no block isomorphic to K_{2}, there exist at least one vertex $w \in V(B \backslash V)$ adjacent to u in G. So this w is not adjacent to u in $A^{*}(G)$ and hence $d^{*}(u, w) \geq 2$. Thus $e^{*}(u) \geq 2$.

Theorem 2.25 Let G be an S-graph with cut-vertex v. Every edge of $A^{\star}(G)$ is triangle positive if and only if either G has at least three blocks or there is a block B in G such that every vertex in $B \backslash v$ has degree at most $|V(B)|-2$ in G.

Proof: Let G be an S-graph and v be its cut-vertex. Then we have $A^{\star}(G)=\bar{G} \backslash v$. Let $t^{*}(e)$ denote the triangle number of an edge e in $A^{\star}(G)$.

Let G has at least three blocks. If the end vertices of an edge e in $A^{\star}(G)$ are in distinct blocks of G, then every vertex in other blocks is common neighbour to them. So $t^{*}(e)$ >0. If both ends are in the same block of G, then also vertices in other blocks are common neighbours to them in $A^{\star}(G)$. Thus $t^{*}(e)>0$ in this case also.

If there are only two blocks and each vertex in $B \backslash v$ has degree at most $|V(B)|-2$ in G, then for each $u \in V(B \backslash v)$ there is a vertex w in $V(B \backslash v)$ not adjacent to u in G. Consider an edge e in $A^{\star}(G)$ whose end vertices are in distinct blocks of G. There should be edges in $A^{\star}(G)$ with one end coinciding with that of e, say u, and other end, say w, lying in the block
containing u. Then the other end of e is common neighbour to u and w. Thus there is a triangle in $A^{*}(G)$ containing $e, ~ s i n c e$ each vertex in a block of G is adjacent, in $A^{\star}(G)$, to all other vertices in each of the remaining blocks.

Conversely, suppose G has only two blocks B_{1} and B_{2} and every edge of $A^{*}(G)$ is triangle positive. Let $u_{1} \in V\left(B_{1} \backslash V\right)$ be such that degree of u_{1} in G is $\left|V\left(B_{1}\right)\right|-1 ; i=1,2$. Then the edge $u_{1} u_{2}$ of $A^{*}(G)$ fails to be in a triangle since none of the vertices in $V\left(B_{i} \backslash V\right)$ is adjacent to u_{i} in $A^{\star}(G), i=1,2$. Hecause, for a triangle containing the edge $u_{1} u_{2}$, either u_{1} has a neighbour in B_{1} or u_{2} has a neighbour in B_{2}.

Theorem 2.26 Let G be an S-graph of order p with k blocks. Then the following are equivalent
(a) $A^{*}(G)$ is dense.
(b) $\quad N\left(A^{*}(G)\right) \cong K_{p-1}$.
and (c) Either $k \geq 3$ or there is a block B in G such that each vertex in $B \backslash v$ has degree at most $|V(B)|-2$, where v is the cut-vertex of G.

Proof: Let G be an S-graph of order p with k blocks and v be its cut-vertex. We have $A^{\star}(G)=\bar{G} \backslash v$ and $\operatorname{diam}\left(A^{*}(G)\right)=2$ by theorem 2.24 .
$(a) \rightarrow(b)$ Follows from the definition of dense graph and theorem 1.1.
$(1) \Rightarrow(c)$ Follows from theorems 1.1 and 2.25 .
$(c) \Rightarrow(a)$ Follows from corollary 2.23, theorems 2.24 and

2.4 S-ANTIPODAL GRAPHS OF TREES

Here we discuss the properties of S-antipodal graphs of trees and characterize them. As usual, we call a tree unicentral or bicentral according as its centre is K_{1} or K_{2}. In the latter case, the edge joining the central vertices is called the central edge.

Lemma 2.27 Let T be a unicentral tree homeomorphic to a star having the centre same as that of the star. Then the S-antipodal graph $A^{\star}(T)$ of T is a complete graph.

Proof: Let T be a tree satisfying the hypothesis. Then T has at least two longest tails, (by a 'tail' we mean a path whose one end vertex is the centre and the other is a pendent vertex of T, because otherwise, T will be bicentral or have a different centre. Now, the vertices of $A^{\star}(T)$ are precisely the pendent vertices of T corresponding to its longest tails and each pair of such vertices are at a distance of diam(T) in T. I'hus every pair of vertices are adjacent in $A^{\star}(T)$.

Lemma 2.28 The S-antipodal graph of a unicentral tree is either complete or complete multipartite.

Proof: Let T be a tree. If T satisfies the hypothesis of lemma 2.27, then $A^{\star}(T)$ is complete. Otherwise, define an equivalence relation on $V\left(A^{*}(T)\right)$ as: two vertices are equivalent if the path in T joining them does not contain the central vertex of T. Let $S_{1}, S_{2}, \cdots \cdots \cdots, S_{k}$ be the equivalence classes. 'Ihen $\mathrm{d}_{T}(u, v)<\operatorname{diam}(T)$ for $u, v \in S_{i}$ and $d_{T}(u, v)=\operatorname{diam}(T)$ for
$u \in S_{i}$ and $v \in S_{j}, i \neq j$. So the graph $A^{*}(T)$ is complete k-partite with partite sets $S_{1}, S_{2}, \ldots \ldots \ldots, S_{k}$.

Lemma 2.29 S-antipodal graph of a bicentral tree is complete bipartite.

Proof: Let T be a bicentral tree. Define an equivalence relation on $V\left(A^{*}(T)\right.$ as: two vertices are equivalent if the path in T joining them does not contain the central edge of T. Then there are exactly two equivalence classes. For, if possible, consider any three distinct equivalence classes S_{1}, S_{2} and S_{3}. leet u_{i} be the vertex in S_{i} nearest to an end-vertex of the central edge. clearly u_{i}, s are distinct for $i=1,2$ and 3, being the members of distinct equivalence classes. Then each of the $u_{i}-u_{j}$ paths, $i, j=1,2,3 ; i \neq j$, in T contains the central edge. So, we can traverse through these paths so that any two of these paths have a common vertex before the central edge is reached. Without loss of generality let us assume that the $u_{1}-u_{3}$ path and the $u_{2}-u_{3}$ path (if these are not the paths, we can achieve this by re-labelling the vertices u_{i}, have such a common vertex. Then the $u_{1}-u_{2}$ path does not contain the central edge. Thus the number of equivalence classes is at most two. The number of equivalence classes is one only if T has no longest path containing the central edge, but it is not so. Thus, there are exactly two equivalence classes.

In $A^{\star}(G)$, two vertices are adjacent if and only if they are in different equivalence classes, since every longest path of a tree contains the centre. Thus $A^{\star}(G)$ is a complete bipartite graph.

Theorem 2.30 A graph G is the S-antipodal graph of a tree T if and only if G is complete or complete multipartite.

Proof: Necessary part follows from lemmas 2.27, 2.28 and 2.29.

Conversely, Let G be a complete graph of order p. Then $G=A^{\star}(T)$ for a star T of order $p+1$. Now, let G be a complete k-partite graph and $S_{1}, S_{2}, \cdots \cdots, S_{k}$ be its partite sets. Construct a tree T with $V(T)=\left\{u_{0}, u_{1}, \cdots \cdots u_{k}\right\} U\left(\bigcup_{1=1}^{k} S_{1}\right)$ and join each vertex $u_{1}, i=1,2, \ldots \ldots, k$ to u_{0} and to every vertex in S_{j}. The center of T is the vertex u_{0} and diametral vertices are those in $\bigcup_{1=1}^{k} S_{1}$. The diameter of T is four and $d(u, v)=4$ if and only if they belong to different sets S_{1}. Hence $A^{\star}(T)=G$.

T_{1}

$$
A^{\star}\left(T_{1}\right)
$$

ita S-antipodal graph
figure 2.4

A unicentral tree homeomorphio to the etar $T_{2}=K_{1,6}$ whose centrecoincides with that of the etar
figure 2.5

A unicentral tree homeomorphic to the ater $\boldsymbol{T}_{2}=K_{1,6}$ whosecentre doeg not coincider with that of the star

A bioentral tree homeomorphic to $K_{1,6}$
figure 2.7

TRIANGLENUMBER AND
 TRIANGLE REGULARITY

Abstract

'Jhis chapter focuses on the triangle number. An expression for $t(u)+\bar{E}(u)$ is derived and several known results including the well-known relationship between the parameters of a strongly regular graph and some other results are deduced. It is an important observation that the expression for $t(G)+t(\bar{G})$ given by Lorden [42] follows from ours. Expressions for the triangle number of vertices and edges in the join, cartesian product and composition of graphs are also derived. Properties of strongly vertex triangle regular and strongly edge triangle regular graphs are also discussed. Some of the results are in [45] and [46].

3.1 TRIANGLE NUMBER.

The triangle number $t(u)$ of a vertex u in a graph G is the number of triangles in G containing u. Triangle number $t(e)$ of an edge e is defined similarly. The number of triangles in G is the triangle number of G, denoted by $t(G)$. The triangle number of u in \bar{G} will be denoted by $\overline{\mathcal{E}}(u)$. Clearly, for a vertex
u, $t(u)$ is the size of the subgraph of G induced by the neighbourhood $N_{G}(u)$ of $u, \bar{E}(u)$ is the size of the subgraph of \bar{G} induced by $V(G) \backslash N_{G}[u]$, that is the number of non edges of G in the subgraph $\left\langle V(G) \backslash N_{G}[u]\right\rangle$ of G and $t(e)$ is the number of common neighbors of the end vertices of e. The following lemma is an immediate consequence of these definitions.
lemma 3.1 Let G be a graph, then

$$
\begin{equation*}
\text { (a) } t(u)=\frac{1}{2} \sum_{c \in E(u)} t(e) \text {, for any } u \in V(G) \tag{3.1}
\end{equation*}
$$

and (b) $t(G)=\frac{1}{3} \sum_{u \in V(G)} t(u)$.
Proof: (a) For each triangle containing the vertex u, two of its edges are incident at u. So each triangle contributes two to the sum $\sum_{e \in E(u)} t(e)$. Hence $\sum_{e \in E(u)} t(e)=2 t(u)$.
(b) Each triangle in G is counted once at each of its vertices. So $\sum_{u \in V(G)} t(u)=3 t(G)$.

Along the lines of results by Goodman [31] and Lorden [42], we have:

Theorem 3.2 Let G be a (p, q)-graph and $u \in V(G)$. Then
$\mathrm{t}(u)+\overline{\mathrm{t}}(u)=\binom{\mathrm{p}-\mathrm{d}(u)-1}{2}-\mathrm{q}+\sum_{v \in N(u)} \mathrm{d}(v)$

Proof: Let G be a (p, q)-graph and u be a vertex in it with degree $\mathrm{d}=\mathrm{d}(u)$ and neighbourhood $N=N(u)$. Also, let $\bar{N}=V(G) \backslash N[u]$. Then $|N|=\mathrm{d},|\bar{N}|=\mathrm{p}-\mathrm{d}-1, \mathrm{t}(u)$ is the number of edges in $\langle N\rangle$ and $\overline{\mathcal{t}}(u)$ is the number of non-edges in $\langle\bar{N}\rangle$.

$$
\text { Now let } \mathrm{D}=\sum_{v \subset N} \mathrm{~d}(v) \text { and } \overline{\mathrm{D}}=\sum_{v \in N} \mathrm{~d}(v) \text {. Then, }
$$

$1)+\bar{D}+d=\sum_{v \in N} d(v)+\sum_{v \in \bar{N}} d(v)+d(u)=\sum_{v \in V(G)} \mathrm{d}(v)=2 q$

The contribution to D by the d edges in G incident at u is d and by the $t(u)$ edges in $\langle N\rangle$ is $2 t(u)$. So the number of edges in G with one end in N and the other end in \bar{N} is

$$
\begin{equation*}
D-d-2 t(u) \tag{3.5}
\end{equation*}
$$

The number of edges in $\langle\bar{N}\rangle$ is $\binom{p-d-1}{2}-\bar{t}(u)$ and the contribution of these edges to \bar{D} is $2\binom{p-d-1}{2}-2 \bar{t}(u)$. So the number of cdges in G with one end in \bar{N} and other end in N is

$$
\begin{equation*}
\bar{D}-2\binom{p-d-1}{2}+2 \bar{t}(u) \tag{3.6}
\end{equation*}
$$

Obviously, the quantities given by (3.5) and (3.6) are equal and consequently we get

$$
\begin{aligned}
t(u)+\bar{t}(u) & =\frac{1}{2}\left[2\binom{p-d-1}{2}+D-\bar{D}-d\right] \\
& =\left(\frac{p-d-1}{2}\right)+\frac{1}{2}[D-(2 q-D)] \quad \text { by }(3.4) \\
& =\binom{p-d-1}{2}-q+D
\end{aligned}
$$

'Ihus,

$$
\mathrm{t}(u)+\overline{\mathrm{t}}(u)=\binom{\mathrm{p}-\mathrm{d}(u)-1}{2}-\mathrm{q}+\sum_{v \in N(u)} \mathrm{d}(v)
$$

Corollary 3.3 If G is an r-regular graph of order p, then $t(u)+\bar{t}(u)=\binom{p-1}{2}-\frac{3}{2} r(p-r-1)$ for every $u \in V(G)$.

Proof: Let G be an r-regular graph of order p. Then $d(u)=r$ for every $u \in V(G)$. So $q=\frac{1}{2} p r$ and $\sum_{v \in N(u)} d(v)=r^{2}$ and the result follows.

Corollary 3.4 For every vertex u in a regular selfcomplementary graph of order $4 k+1$,

$$
\begin{equation*}
t(u)+\bar{t}(u)=2 k(k-1) \tag{3.8}
\end{equation*}
$$

Proof: If G is a regular self-complementary graph of order $p=4 k+1$, then its regularity is $2 k$ and size is $k(4 k+1)$. Substituting these in (3.3) we get (3.8).

We can also deduce the following known results.

Corollary 3.5 (Lorden [42]) If G is a (p, q)-graph, then
$t(G)+t(\bar{G})=\binom{p}{3}-(p-1) q+\frac{1}{2} \sum_{u \in V(G)}[d(u)]^{2}$
Proof: $\quad t(G)+t(\bar{G})=\frac{1}{3} \sum_{u \in V(G)}[t(u)+\bar{t}(u)]$ by (3.2)
$=\frac{1}{3} \sum_{u \in V(G)}\left[\frac{(\mathrm{p}-\mathrm{d}(u)-1)(\mathrm{p}-\mathrm{d}(u)-2)}{2}-\mathrm{q}+\sum_{v \in N(u)} \mathrm{d}(v)\right]$
$=\frac{1}{3} \sum_{u \in V(G)}\left[\frac{(p-1)(p-2)}{2}-\frac{d(u)}{2}(2 p-3)+\frac{[d(u)]^{2}}{2}-q+\sum_{v \in N(u)} d(v)\right]$
$=\frac{p(p-1)(p-2)}{3 \times 2}-\frac{2 p-3}{3} \frac{1}{2} \sum_{u \in V(G)} d(u)+\frac{1}{3 \times 2} \sum_{u \in V(G)}[d(u)]^{2}$ $-\frac{\mathrm{pq}}{3}+\frac{1}{3} \sum_{u \in V(G)}\left[\sum_{v \in N(u)} \mathrm{d}(v)\right]$
$=\binom{\mathrm{p}}{3}-\frac{1}{3}(2 \mathrm{p}-3) \mathrm{q}-\frac{\mathrm{pq}}{3}+\frac{1}{2 \times 3} \sum_{u \in V(G)}[d(u)]^{2}+\frac{1}{3} \sum_{u \in V(G)}[d(u)]^{2}$

Ihus, $\quad t(G)+t(\bar{G})=\binom{p}{3}-(p-1) q+\frac{1}{2} \sum_{u \in V(G)}[d(u)]^{2}$.

Corollary 3.6 (Clapham [21]) The number of triangles in a regular self-complementary graph of order $4 k+1$ is

$$
\frac{1}{3} k(k-1)(4 k+1)
$$

3.2 TRIANGLE NUMBER AND SOME BINARY GRAPH OPERATIONS.

Here we consider the composition, join and cartesian product of two graphs and derive expressions for the triangle number of vertices and edges in them.

a) COMPOSITION OF GRAPHS.

I'he composition $F=G(H)$ of two graphs G and H has vertex set $V(F)=\{(u, v) / u \in V(G), v \in V(H)\}$ and edge set $E(F)=\left\{(u, v)\left(u^{\prime}, v^{\prime}\right) /\right.$ either $u u^{\prime} \in E(G)$ or $u=u^{\prime}$ and $\left.v v^{\prime} \in E(H)\right\}$. This operation is discussed in [34] and [60].

Remark $3.10 G(H)$ can be obtained by replacing each vertex u_{1} of G by a copy of H and each edge $u_{i} u_{j}$ of G by all the possible edges between the copies of H corresponding to the vertices u_{j} and u_{j} of G.

Theorem 3.11 Let $G\left(p_{1}, q_{1}\right)$ and $H\left(p_{2}, q_{2}\right)$ be two graphs. Then the triangle number of a vertex (u, v) in $G(H)$ is

$$
t(u, v)=t(v)+q_{2} d(u)+p_{2} d(u) d(v)+p_{2}^{2} t(u) \quad \ldots(3.12)
$$

Proof: Consider two graphs $G\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)$, and $H\left(\mathrm{p}_{2}, \mathrm{q}_{2}\right)$. Let (u, v) be a vertex in $G(H)$. The triangles at (u, v) in $G(H)$ are formed precisely in the following ways.

1) A triangle at v in H is also a triangle at (u,v) in $G(H)$. The number of such triangles at (u, v) is $t(v)$.
2) An edge in a copy of H corresponding to a neighbour of u in G forms a triangle at (u, v) in $G(H)$. The number of such triangles is $q_{2} d(u)$.
3). Each edge of H at v forms a triangle in $G(H)$ with each of the vertices in the copy of H that corresponds to a neighbour of u in G. This contributes $p_{2} d(u) d(v)$ to $t(u, v)$.
and 4) Each triangle in G at u contributes p_{2}^{2} triangles in $G(H)$ at (u, v). The number of triangles so formed is $p_{2}^{2} t(u)$.

$$
\text { So, } t(u, v)=t(v)+q_{2} d(u)+p_{2} d(u) d(v)+p_{2}^{2} t(u)
$$

Corollary 3.12 If there are t_{1} triangles in $G\left(p_{1}, q_{1}\right)$ and t_{2} triangles in $H\left(p_{2}, q_{2}\right)$. Then the number of triangles in $F=G(H)$ is given by $t(F)=p_{1} t_{2}+\mathrm{p}_{2}^{3} \mathrm{t}_{1}+2 \mathrm{p}_{2} \mathrm{q}_{1} \mathrm{q}_{2}$.

$$
\text { Proof: } \begin{aligned}
& \mathrm{t}(F)=\frac{1}{3} \sum_{u \in V(G)} \sum_{v \in V(H)} t(u, v) \\
= & \frac{1}{3} \sum_{u \in V(G)} \sum_{v \in V(H)}\left[1(v)+q_{2} d(u)+p_{2} d(u) d(v)+p_{2}^{2} t(u)\right] \\
= & \frac{1}{3} \sum_{u \in V(G)}\left[3 t(H)+q_{2} d(u) p_{2}+p_{2} d(u) 2 q_{2}+p_{2}^{3} t(u)\right] \\
= & \frac{1}{3}\left[p_{1} t(H)+p_{2} q_{2} 2 q_{1}+2 p_{2} q_{2} 2 q_{1}+p_{2}^{3} 3 t(G)\right]
\end{aligned}
$$

Thus

$$
t(F)=p_{1} t_{2}+p_{2}^{3} t_{1}+2 p_{2} q_{1} q_{2}
$$

Theorem 3.13 Let G and H be graphs of order p_{1} and p_{2} respectively. Then the triangle number of an edge e in $G(H)$ joining the vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ is given by

$$
t(e)= \begin{cases}p_{2} t\left(e_{1}\right)+d\left(v_{1}\right)+d\left(v_{2}\right) & \text { when } u_{1} \neq u_{2}, e_{1}=u_{1} u_{2} \in E(G) \\ \ell\left(e_{2}\right)+p_{2} d\left(u_{1}\right) & \text { when } u_{1}=u_{2}, e_{2}=v_{1} v_{2} \in E(H)\end{cases}
$$

Proof: Let G and H be graphs of order p_{1} and p_{2} respectively and e be an edge in $G(H)$ joining $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$.

Case (i) $u_{1} \neq u_{2}$
'fhen u_{1} and u_{2} are adjacent in G and let $e_{1}=u_{1} u_{2}$. 'Ihe triangles in $G(H)$ containing the edge e are precisely of the following types:

1) Since each vertex u in G is replaced by a copy of H in $G(H)$, each triangle $u_{1} u_{2} u$ in G containing $u_{1} u_{2}=e_{1}$ give rise. to $p_{2} t\left(e_{1}\right)$ triangles in $G(H)$.
2) Each edge $v_{1} v$ incident at v_{1} in the copy of H corresponding to $u_{1} \in V(G)$ form a triangle with (u_{2}, v_{2}) in $G(H)$ containing e. Number of such triangles is $d\left(v_{1}\right)$.
and 3$)$ similarly, the $d\left(v_{2}\right)$ edges at v_{2} in the copy of H corresponding to $u_{\text {? }}$ form $d\left(v_{2}\right)$ triangles in $G(H)$ containing e.

Ihus, the total number of triangles in $G(H)$ containing the edge e is $p_{2} t\left(e_{1}\right)+d\left(v_{1}\right)+d\left(v_{2}\right)$.

Case (ii) $\quad u_{1}=u_{2}$
Ihen v_{1} and v_{2} are adjacent vertices in the same copy of H. The triangles in $G(H)$ containing e are precisely of the following types:

1) The $t\left(e_{1}\right)$ triangles in the copy of H, where $e_{1}=v_{1} v_{2}$
and 2) Each vertex in the copy of H corresponding to u_{1} is adjacent to all vertices in the copies of H corresponding to the neighbors of u_{1} in G. The number of such triangles formed in $G(H)$ is $p_{2} d\left(u_{1}\right)=p_{2} d\left(u_{2}\right)$.

Jhus $t(e)=t\left(e_{1}\right)+p_{2} d\left(u_{1}\right)$ in this case.

b) JOIN ©F GRAPHS

The join $G+H$ of two graphs G and H is the graph with vertex set $V(G+H)=V(G) \cup V(H)$ and edge set

$$
\because(G+H)=E(G) \cup E(H) \cup\{u v / u \in V(G), v \in V(H)\} .
$$

Theorem 3.14 The triangle numbers of a vertex u and an edge e in the join $G+H$ of the graphs G and H are given by

$$
t(u)= \begin{cases}t_{G}(u)+d_{G}(u) p(H)+q(H) & \text { when } u \in V(G) \\ t_{H}(u)+d_{H}(u) p(G)+q(G) & \text { when } u \in V(H)\end{cases}
$$

and $t(e)= \begin{cases}\mathrm{t}_{G}(e)+\mathrm{p}(H) & \text { when } e \in E(G) \\ \mathrm{t}_{H}(e)+\mathrm{p}(G) & \text { when } e \in E(H) \\ \mathrm{d}_{G}(u)+\mathrm{d}_{H}(v) & \text { when } e=u v \text { with } u \in V(G), v \in V(H) .\end{cases}$

Proof: Let G and H be any two graphs and J be their join. Consider any vertex u in J. Then either $u \in V(G)$ or $u \in V(H)$.
let $u \in V(G)$. Then each triangle in G containing u is also a triangle in J containing u. In J, each vertex of G is adjacent to all vertices of H, and hence each edge of G forms ${ }^{\prime}(H)$ triangles in J with the vertices of H. So there are $p(H) d_{G}(u)$ such triangles in J containing u due to the $d_{G}(u)$ edges of G incident at u. In J, each edge of H forms a triangle with u. Such $q(H)$ triangles are there in J.

```
I'hus t, (u) = t. (u) + d
Similarly we can derive the expression for t, (u) when
``` \(u \in V(H)\).

Now, let \(e\) be an edge in \(J\). Then either \(e \in E(G) \bigcup E(H)\) or \(e\) is an edge joining a vertex of \(G\) and a vertex of \(H\).

Let \(e \in E(G)\). The \(t_{G}(e)\) triangles in \(G\) are triangles in \(J\), containing \(e\), also. Each vertex of \(H\) is a common neighbour to the end vertices of e in \(J\). Such \(p(H)\) triangles are there in \(J\) containing \(e\). These are the only triangles in \(J\) containing the edge \(e\). Thus \(t_{J}(e)=t_{G}(e)+p(H)\).

Similarly \(t_{J}(e)=t_{H}(e)+p(G)\) when \(e \in E(H)\)
Let one of the end vertices, say \(u\), of \(e\) be in \(G\) and the other, say \(v\), be in \(H\). In \(J\), each edge incident at \(u\) in \(G\) forms a triangle with each of the vertices of \(H\) and each edge incident at \(v\) in \(H\) forms a triangle with each of the vertices of G. So, in \(J\), every edge of \(G\) at \(u\) forms a triangle with \(v\) and every edge of \(H\) at \(v\) forms a triangle with \(u\). Obviously both of these triangles contain the edge \(e\). These are the only triangles containing e. Thus
\(t_{J}(e)=d_{G}(u)+d_{H}(v)\) when \(e=u v, u \in V(G)\) and \(v \in V(H)\).

Corollary 3.15 The triangle number of the join of two graphs \(G\) and \(H\) is given by
\[
\mathrm{t}(G+H)=\mathrm{t}(G)+\mathrm{t}(H)+\mathrm{p}(G) \mathrm{q}(H)+\mathrm{p}(H) \mathrm{q}(G)
\]

Proof: Let \(G\) and \(H\) be any two graphs. Then
\[
\begin{aligned}
\mathrm{t}(G+H) & =\frac{1}{3}\left[\sum_{u \in V(G)} \mathrm{t}_{\mathrm{G}}(\mathrm{u})+\mathrm{d}_{\mathrm{G}}(u) \mathrm{p}(H)+\mathrm{q}(H)+\sum_{V \in V(H)} \mathrm{t}_{\mathrm{H}}(v)+\mathrm{d}_{H}(v) \mathrm{p}(G)+\mathrm{q}(G)\right] \\
& =\frac{1}{3}[3 \mathrm{t}(G)+\mathrm{p}(H) 2 \mathrm{q}(G)+\mathrm{p}(G) \mathrm{q}(H)+3 \mathrm{t}(H)+\mathrm{p}(G) 2 \mathrm{q}(H)+\mathrm{p}(H) \mathrm{q}(G)] \\
& =\mathrm{t}(G)+\mathrm{t}(H)+\mathrm{p}(G) \mathrm{q}(H)+\mathrm{p}(H) \mathrm{q}(G)
\end{aligned}
\]
c) CARTESIAN PRODUCT OF GRAPHS.

The cartesian product \(G \times H\) of two graphs \(G\) and \(H\) has vertex set \(V(G \times H)=V(G) \times V(H)\) and edge set \(E(G \times H)=\) \(\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) / u_{1}=u_{2}\right.\) and \(v_{1} v_{2} \in E(H)\) or \(v_{1}=v_{2}\) and \(\left.u_{1} u_{2} \in E(G)\right\}\)

Remark 3.16 The cartesian product of \(G\) and \(H\) can be viewed as the graph obtained by replacing each vertex of \(G\) by a copy of \(H\) and joining the corresponding vertices in two copies of \(H\) at \(u \in V(G)\) and \(v \in V(G)\) if and only if \(u v \in E(G)\).

Theorem 3.17 The triangle number of a vertex \((u, v)\) and an cdge \(e\) in the cartesian product of two graphs \(G\) and \(H\) are given by \(\quad t(u, v)=t_{G}(u)+t_{H}(v)\)
and \(\quad t(e)= \begin{cases}t_{H}(e) & \text { when } \quad e=\left(u, v_{1}\right)\left(u, v_{2}\right) \\ t_{G}(e) \quad \text { when } \quad e=\left(u_{1}, v\right)\left(u_{2}, v\right)\end{cases}\)

Proof: Let \(G\) and \(H\) be two graphs and their cartesian product be \(F\). While constructing the cartesian product, the additional edges introduced between two copies of \(H\) corresponding to two adjacent vertices of \(G\) form only a matching. Hence no new triangles are formed in \(F\), except for the multiplicity due Lo the replacement of a vertex in \(G\) by the \(p(H)\) vertices of \(H\). Hence the expressions.

Corollary 3.18 For any two graphs \(G\) and \(H_{\text {, }}\) the triangle number of \(G \times H\) is \(p(G) t(H)+\mathrm{p}(H) t(G)\).

Proof: Follows from \(t(G \times H)=\frac{1}{3} \sum_{u \in V(G)} \sum_{V \in V(H)}\left[t_{G}(u)+t_{H}(v)\right]\).

\subsection*{3.3 TRIANGLE NUMBER AND THE G-JOIN OF A FAMILY OF GRAPHS.}

Sabidussi [61] has introduced the concept of the G-join of a family of graphs and Ruiz [58] has studied this in connection with self-complementary graphs. This is also discussed by Golumbic [7].

Let \(G\) be a graph and \(\mathscr{F}=\left\{H_{u} / u \in V(G)\right\}\) be a family of graphs, then the \(G\)-join of the family \(\mathcal{F}\) is the graph \(J=G(\mathscr{F})\) with the vertex \(\operatorname{set}\left\{(u, v) / u \in V(G), v \in V\left(H_{u}\right)\right\}\) and edge set \(\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) /\right.\) either \(u_{1}=u_{2}\) and \(v_{1} v_{2} \in E\left(H_{u}\right)\) or \(\left.u_{1} u_{2} \in E(G)\right\}\).

We have observed the following properties of G-join.

Lemma 3.19 Let \(G\) be a graph and \(\mathscr{F}=\left\{H_{u} / u \in V(G)\right\}\) be a family of graphs. For \(u_{1} \neq u_{2},\left(u_{1}, v_{1}\right)\) and \(\left(u_{2}, v_{2}\right)\) belong to the same component of the \(G\)-join \(J=G(\mathcal{F})\) if and only if \(u_{1}\) and \(u_{2}\) belong to the same component of \(G\).

Proof: Let \(u_{1}\) and \(u_{2}\) belong to the same component of \(G\). 'l'hen, we have a \(u_{1}-u_{2}\) path, say \(u_{1} u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime} \ldots \ldots \ldots u_{m}^{\prime} u_{2}\) in \(G\). For any \(\quad v_{1} \in V\left(H_{u_{1}}\right), v_{2} \in V\left(H_{u_{2}}\right)\) and \(v_{j}^{\prime} \in V\left(H_{u_{j}^{\prime}}\right)\), consider the sequence \(\left(u_{1}, v_{1}\right),\left(u_{1}^{\prime}, v_{1}^{\prime}\right),\left(u_{2}^{\prime}, v_{2}^{\prime}\right), \cdots \quad \cdots,\left(u_{m}^{\prime}, v_{m}^{\prime}\right),\left(u_{2}, v_{2}\right)\). Each of the consecutive vertices in the sequences are adjacent in \(G(\mathscr{F})\) since the vertices corresponding to the first co-ordinates of the consecutive ordered pairs are adjacent in \(G\). I'hus there is a \(\left(u_{1}, v_{1}\right)-\left(u_{2}, v_{2}\right)\) path in \(J\) and hence \(\left(u_{1}, v_{1}\right)\) and \(\left(u_{2}, v_{2}\right)\) belong to the same component of \(G(\mathscr{F})\)

Conversely, let \(\left(u_{1}, v_{1}\right)\) and \(\left(u_{2}, v_{2}\right)\) belong to the same component of \(G(\mathscr{F})\). Then there is a path \(\left(u_{1}, v_{1}\right)\left(u_{1}^{\prime}, v_{1}^{\prime}\right)\left(u_{2}^{\prime}, v_{2}^{\prime}\right)\)
\(\ldots \ldots\left(u_{n}^{\prime}, v_{n}^{\prime}\right)\left(u_{2}, v_{2}\right)\) in \(G(\mathscr{F})\). If two of the symbols \(u_{1}, u_{1}^{\prime}, u_{2}^{\prime}\), \(\ldots . u_{n}^{\prime}, u_{2} ; \operatorname{say} \bar{u}_{i}\) and \(\bar{u}_{j}\), are identical, the sequence obtained by deleting all the vertices between (\(\bar{u}_{1}, \bar{v}_{1}\)) and \(\left(\bar{u}_{j}, \bar{v}_{j}\right)\) including exactly one of them also form a \(\left(u_{1}, v_{1}\right)-\left(u_{2}, v_{2}\right)\) path. Because, if \(\bar{u}_{i}=\bar{u}_{j}=u\), then neighbourhoods of \(\left(u, \bar{v}_{1}\right)\) and \(\left(u, \bar{v}_{j}\right)\) from outside \(H_{u}\) are identical. Repeat this process till we get a sequence \(\left(u_{1}, v_{1}\right),\left(u_{1}^{\prime}, v_{1}^{\prime}\right)\), \(\left(u^{\prime}{ }_{2}, v_{2}^{\prime}\right), \cdots \cdots,\left(u_{k}^{\prime}, v_{k}^{\prime}\right),\left(u_{2}, v_{2}\right)\) in \(G(\mathscr{F})\) with \(u_{1}, u_{1}^{\prime}, u_{2}^{\prime}, \cdots\) ... , \(u_{k}^{\prime}, u_{2}\) are all distinct. So the adjacencies between the consecutive vertices of the new path in \(G(\mathscr{F})\) is due to the adjacencies of their first coordinates in \(G\). Thus \(u_{1} u_{1}^{\prime} u_{2}^{\prime} \cdots \cdots u_{k}^{\prime} u_{2}\) form a path in \(G\) and hence \(u_{1}\) and \(u_{2}\) belongs to the same component of \(G\).

Theorem 3.20 Let \(G\) be a non-trivial graph of order \(p\) and \(\mathscr{F}\) be a family of \(p\) graphs. Then \(G(\mathscr{F})\) is connected if and only if \(G\) is connected.

Proof: Consider a graph \(G\) and a family \(\mathscr{F}=\left\{H_{u} / u \in V(G)\right\}\) of graphs. If \(G\) is a connected, by lemma 3.19, every pair of vertices of \(G(\mathcal{F})\) belongs to the same component of \(G(\mathscr{F})\). Hence \(G(\mathscr{F})\) connected. Similar arguement for the converse also.

Lemma 3.21 The \(G\)-join \(G(\mathscr{F})\) of a family \(\mathscr{F}\) of graphs is complete if and only if \(G\) and each member of \(\mathcal{F}\) is complete.

Proof: Let \(G\) and each member of \(\mathscr{F}\) be complete. Consider the vertices \(\left(u_{1}, v_{1}\right)\) and \(\left(u_{2}, v_{2}\right)\) in \(G(\mathscr{F})\). If \(u_{1} \neq u_{2}\), then \(u_{1}\) and \(u_{2}\) are adjacent in \(G\) and hence \(\left(u_{1}, v_{1}\right)\) and \(\left(u_{2}, v_{2}\right)\) are adjacent in \(G(\mathscr{F})\). If \(u=u_{1}(=u\) say \()\), then \(v_{1}, v_{2} \in V\left(H_{u}\right)\) are adjacent in \(H_{u}\). Then also \(\left(u_{1}, v_{1}\right)\) and \(\left(u_{2}, v_{2}\right)\) are adjacent in \(G(\mathscr{F})\).

Conversely, if \(u_{1}\) and \(u_{2}\) are not adjacent in \(G\), then none of the vertices in \(H_{u_{1}}\) is adjacent to the vertices in \(H_{u_{2}}\), in \(G(\mathscr{F})\). If \(V_{1}, V_{2} \in V\left(H_{u}\right)\), for some \(u \in V(G)\), are not adjacent in \(H_{u}\). Then \(\left(u_{1}, v_{1}\right)\) and \(\left(u_{2}, v_{2}\right)\) should not be adjacent in \(G(\mathscr{F})\). Thus \(G(F)\) is complete only if \(G\) and each member of \(g\) is complete.

Lemma 3.22 Let \(G\) be a non-trivial graph and \(\left(u_{1}, v_{1}\right)\), \(\left(u_{2}, v_{2}\right)\) be two vertices in the \(G\)-join of a family \(\mathcal{F}\). Then
\(d_{J}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=\left\{\begin{array}{cc}d_{G}\left(u_{1}, u_{2}\right) & \text { if } u_{1} \neq u_{2} \\ 1 & \text { if } u_{1}=u_{2} \text { and } v_{1} v_{2} \in E\left(H_{u_{1}}\right) \\ 2 & \text { if } u_{1}=u_{2} \text { and } v_{1} v_{2} \notin E\left(H_{u}\right) \\ d_{H}\left(v_{1}, v_{2}\right) & \text { if } u_{1}=u_{2} \text { is an isolated } \\ \text { vertex in } G\end{array}\right.\)

Proof: Let \(u_{1} \neq u_{2}\).
If \(\left(u_{1}, v_{1}\right)\) and \(\left(u_{2}, v_{2}\right)\) are in the distinct components of \(G\), the result follows by lemma 3.19 .

Now, let \(\left(u_{1}, v_{1}\right)\) and \(\left(u_{2}, v_{2}\right)\) be in the same component of \(G(g)\) and \(u_{1} u_{1}^{\prime} u_{2}^{\prime} \ldots \ldots \ldots u_{m}^{\prime} u_{2}\) be a shortest \(u_{1}-u_{2}\) path in \(G\). 'Ihen \(\left(u_{1}, v_{1}\right)\left(u_{1}^{\prime}, v_{1}^{\prime}\right)\left(u_{2}^{\prime}, v_{2}^{\prime}\right) \ldots \ldots \ldots \ldots\left(u_{m}^{\prime}, v_{m}^{\prime}\right)\left(u_{2}, v_{2}\right)\), for some
\(\boldsymbol{v}_{1} \in V\left(H_{u_{1}}\right), v_{i}^{\prime} \in V\left(H_{u_{1}^{\prime}}\right)\) and \(v_{2} \in V\left(H_{u_{2}}\right) ; i=1,2, \ldots \ldots \ldots, m, \quad\) will be a shortest path in \(G(g)\) joining \(\left(u_{1}, v_{1}\right)\) and \(\left(u_{2}, v_{2}\right)\). Because, if it is not so, it will contradict the choice of the shortest \(u_{1}-u_{2}\) path in \(G\).
\[
\begin{aligned}
& \text { So, } d_{j}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=d_{G}\left(u_{1}, u_{2}\right) \\
& \text { l,et } u_{1}=u_{2}=u \text { and } v_{1} \text { and } v_{2} \text { are adjacent in } H_{u} .
\end{aligned}
\]

Ihen, \(\left(u_{1}, v_{1}\right)\) and \(\left(u_{2}, v_{2}\right)\) are adjacent in \(J\) and so
\(d_{j}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=1\). If \(v_{1}\) and \(v_{2}\) are not adjacent in \(H_{u}\), \(\left(u_{1}, v_{1}\right)\) and \(\left(u_{2}, v_{2}\right)\) must have a common neighbour in \(J\) if \(u\) is not an isolated vertex in \(G\) and hence \(d_{j}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=2\) in Lhis case. If \(u\) is an isolated vertex, \(H_{u}\) will be a component of \(J\) and hence \(\mathrm{d}_{\mathrm{J}}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=\mathrm{d}_{\mathrm{H}}\left(v_{1}, v_{2}\right)\).

Theorem 3.23 Let \(G\) be a non-trivial graph and \(J=G(F)\) be the \(G\)-join of the family \(\mathcal{F}=\left\{H_{u} / u \in V(G)\right\}\) of graphs. Then,
\[
\operatorname{diam}(J)=\left\{\begin{array}{cl}
1 & \text { if } \operatorname{diam}(G)=1 \text { and } \operatorname{diam}\left(H_{u}\right)=1 \forall u \in V(G) \\
\operatorname{diam}(G) & \text { if } \operatorname{diam}(G) \geq 2 \\
2 & \text { otherwise }
\end{array}\right.
\]

Proof: Case(i) \(\operatorname{diam}(G)=1\) and \(\operatorname{diam}\left(H_{u}\right)=1\) for every \(H_{\mathbf{u}} \in \mathcal{F}\).

Then \(G\) and every \(H_{u}\) is complete, by lemma 3.21 , and hence \(\operatorname{diam}(J)=1\).

Case (ii) \(\operatorname{diam}(G) \geq 2\).

1f \(G\) is disconnected, then \(\operatorname{diam}(J)=\operatorname{diam}(G)\) by theorem 3.20 .
l.et \(G\) be connected and \(\operatorname{diam}(G)=d\). Then there exist two vertices \(u_{1}\) and \(u_{2}\) in \(G\) with \(d_{G}\left(u_{1}, u_{2}\right)=\mathrm{d} 2\). Hence \(d_{j}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=d\), by lemma 3.22 and so \(\operatorname{diam}(J) \geq d\). Also, since \(G\) is non-trivial, \(d_{j}\left(\left(u, v_{1}\right),\left(u, v_{2}\right)\right)=2 \leq d\) for every \(u \in V(G)\) and \(v_{i} \in V\left(H_{\mathbf{u}}\right)\). Hence \(\operatorname{diam}(G)=d\).

Case(iii) \(\operatorname{diam}(G)=1\) and \(\operatorname{diam}\left(H_{u}\right) \geq 2\) for at lest one \(u\). Jhen \(G\) is complete and at least one \(H_{u}\) in the family \(f\) is not complete. By the completeness of \(G\), pairs of vertices of the form \(\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) / u_{1} \neq u_{2}\right\}\) are adjacent in \(J\). Now consider an \(H_{u}\) which is not complete. Let \(v_{1}, v_{2} \in V\left(H_{u}\right)\) be not adjacent in \(H_{u}\). Clearly, each vertex in each of the remaining member of the family \(\mathcal{F}\) is common neighbour to both \(\left(u, v_{1}\right)\) and \(\left(u, v_{2}\right)\) for every \(v_{1}, v_{2} \in V\left(H_{u}\right)\). Hence \(d_{j}\left(\left(u, v_{1}\right),\left(u, v_{2}\right)\right)=2\). for every non-adjacent vertices \(v_{1}\) and \(v_{2}\) in \(H_{u}\). Hence \(\operatorname{diam}(J)=2\) in this case.

Theorem 3.24 Let \(G\) be any graph and \(\mathcal{F}=\left\{H_{u} / u \in V(G)\right\}\), a family of graphs. Then the \(G\)-join \(J=G(\mathscr{F})\) is self-centered if any of the following conditions is satisfied.
(1) \(G\) is self-centered and \(\operatorname{diam}(G) \geq 2\),
(2) \(G\) and each member of \(\mathscr{F}\) is complete,
(3) \(G\) is complete and each member of \(\mathcal{F}\) is self-centered of diameter 2.

Proof: (1) Let \(G\) be self-centered and \(\operatorname{diam}(G)=d \geq 2\).

When \(G\) is disconnected, the theorem follows from theorem 3.20. Let \(G\) be connected. Then, for every \(u_{1} \in V(G)\),
there exists \(u_{2} \in V(G)\) such that \(d_{G}\left(u_{1}, u_{2}\right)=d\). Now consider any vertex \(\left(u_{1}, v_{1}\right)\) in \(J\) and \(v_{2} \in V\left(H_{u_{2}}\right)\). Then \(d_{j}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=d\) by lemma 3.22 since \(u_{1} \neq u_{2}\). So ecc \(\left(u_{1}, v_{1}\right)=d\) for every \(\left(u_{1}, v_{1}\right) \in V(J)\). Thus \(J\) is self-centered.
(2) If \(G\) and each member of \(\mathcal{F}\) is complete, then \(G(\mathscr{F})\) is also complete and hence self-centered.
(3) Let \(G\) be complete and each member of \(\mathcal{F}\) is selfcentered of diameter 2. Then \(d_{j}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=1\) for every \(u_{1}, u_{2} \in V(G), u_{1} \neq u_{2}\). For every \(v_{1} \in V\left(H_{u}\right)\), there exists \(v_{2} \in V\left(H_{u}\right)\) such that \(d_{H}\left(v_{1}, v_{2}\right)=2\). So, \(d_{j}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=2\) for that \(u_{1}\) and \(u_{2}\) by lemma 3.22. Hence \(\operatorname{ecc}_{j}\left(u, v_{1}\right)=2\) for every \(u \in V(G)\) and every \(v_{1} \in V\left(H_{u}\right)\). Thus \(J\) is self-centered in this case also.

Theorem 3.25 The degree of a vertex (\(u, v\)) in the \(G\)-join of a family of graphs \(\mathscr{F}=\left\{H_{u} / u \in V(G)\right\}\) is \(d_{H_{u}}(v)+u_{u_{1} \in N_{G}} \sum_{u)} P_{u_{1}}\) where \(P_{u}\) is the order of \(H_{u}\).

Proof: Let \(G\) be graph, \(\mathcal{F}=\left\{H_{u} / u \in V(G)\right\}\) be a family of graphs, \(u \in V(G), v \in V\left(H_{u}\right)\) and \(J=G(F)\). The neighbours of \((u, v)\) in \(J\) of the form \(\left(u, v^{\prime}\right), v^{\prime} \in V\left(H_{u}\right)\) are \(d_{H_{u}}(v)\) in number. for each neighbour \(u_{i}\) of \(u\) in \(G\), all the \(p_{u_{i}}\) vertices \(\left(u_{i}, v_{i}^{\prime}\right)\), \(v_{1} \in V\left(H_{u_{i}}\right)\) are neighbours of \((u, v)\) in \(J\). These are the only neighbours of \((u, v)\) in \(J\). So its degree is \(d_{H_{u}}(u)+{ }_{u_{i} \in N_{G}} \sum_{i}{ }_{u} p_{u_{i}}\).

Corollary \(3.26 G(\mathscr{F})\) is regular if \(G\) is regular and members of \(\mathscr{g}\) are of same order and regular of same degree.

Proof: Let \(G\) be regular of degree \(r\) and each graph in \(g\) is regular of degree \(r^{\prime}\) and order \(p^{\prime}\). Then, degree of \((u, v)\) in \(J\) is \(r^{\prime}+r p^{\prime}\) for every \(u \in V(G)\) and \(v \in V\left(H_{u}\right)\). This expression is independent of \(u\) and \(v\), Thus \(J\) is regular.

Theorem 3.27 Let \(G\) be any graph and \(\mathscr{F}=\left\{H_{n} / u \in V(G)\right\}\) be a family of graphs each of whose members is of order \(p\). Then Lhe triangle number of a vertex \((u, v)\) in \(G(\mathscr{F})\) is given by
\[
\mathrm{t}(u, v)=\mathrm{p}^{2} \mathrm{t}_{\mathrm{G}}(u)+\mathrm{t}_{H_{u}}(v)+\mathrm{p} \mathrm{~d}_{G}(u) \mathrm{d}_{H_{u}}(v)+\sum_{u_{j} \in N_{G}} \sum_{u)} \mathrm{q}\left(H_{u_{i}}\right)
\]

Proof: Let \(G\) be a graph and \(\mathscr{F}=\left\{H_{u} / u \in V(G)\right\}\) be a family of graphs such that the order of each \(H_{u}\) is \(p\). Consider \(u \in V(G)\) and \(v \in V\left(H_{u}\right)\). Then the triangles in the \(G\)-join \(G(\mathscr{F})\) containing the vertex (\(u, v\)) are formed precisely in the following ways:
(1) A triangle in \(H_{u}\) containing \(v\) is a triangle in \(J\) containing \((u, v)\). There are such \(t_{H_{u}}(v)\) triangles in \(J\).
(2) Each triangle in \(G\) containing \(u\) transforms to \(p^{2}\) triangles in \(J\) containing \((u, v)\), since each edge of \(G\) is replaced by \(p^{2}\) edges in \(J\). Such triangles are \(p^{2} t_{G}(u)\) in number.
(3) Each edge in \(H_{u}\) incident at \(v\) form a triangle in \(J\) with each of the vertices in \(H_{u_{j}}\) corresponding to each neighbour \(u_{i}\) of \(u\) in \(G\). Triangles so obtained are \(d_{G}(u) \times d_{H}(v) \times p\) in number .
and (a) For every neighbour \(u_{i}\) of \(u\) in \(G\), each edge in \(H_{u_{1}}\) form a triangle in \(J\) containing the vertex \((u, v)\). The number of Lriangles so formed is \(\left.u_{i} \in N_{G}(u) \sum_{u_{i}}\right)\).

Thus the total number of triangles in \(J\) containing \((u, v)\) is \(p^{2} t_{G}(u)+t_{H_{u}}(v)+p d_{G}(u) d_{H_{u}}(v)+\sum_{u_{i} \in N_{G}} \sum_{u)} q\left(H_{u_{i}}\right)\)

\subsection*{3.4 STRONGLY VERTEX TRIANGLE REGULAR AND STRONGLY EDGE TRIANGLE REGULAR GRAPHS.}

A graph \(G\) is vertex triangle regular (VTR) if all jts vertices have same triangle number and in this situation, the triangle number of a vertex in \(G\) is called the vertex triangle number of the graph \(G . G\) is strongly vertex triangle regular (SUTR) if it is regular also. If \(G\) is SUTR of order \(p\), regularity \(r\) and has vertex triangle number \(t\), then we say that \(G\) is an \(S V T R\) graph with parameters (\(p, r, t\)).

A VTR graph which is not SVTR

Theorem 3.28 If \(G\) and \(H\) are \(S V T R\) graphs, then their composition is also SVTR.

Proof: Let \(G\) and \(H\) be \(S V T R\) graphs with parameters \(\left(p_{1}, r_{1}, t_{1}\right)\) and \(\left(p_{2}, r_{2}, t_{2}\right)\). Then \(p(G)=p_{1}, p(H)=p_{2}\), \(d_{G}(u)=r_{1}, \quad d_{H}(v)=r_{2}, \quad t_{G}(u)=t_{1}\) and \(t_{H}(v)=t_{2}\) for every \(u \in V(G)\) and \(v \in V(H)\). So, \(G(H)\) is regular of degree \(r_{2}+r_{1} p_{2}\).

Now by (3.12),
\(t(u, v)=t_{2}+\frac{1}{2} p_{2} r_{2} r_{1}+p_{2} r_{1} r_{2}+p_{2}^{2} t_{1}\) for every \((u, v) \in V(G(H))\). \(=t_{2}+p_{2}^{2} t_{1}+\frac{3}{2} p_{2} r_{1} r_{2}\), which is independent of the
choice of \(u\) and \(v\). Hence \(G(H)\) is an SUTR graph.
Remark 3.29 Parameters of \(G(H)\) are
\[
\left(p_{1} p_{2}, r_{2}+r_{1} p_{2}, t_{2}+p_{2}^{2} t_{1}+\frac{3}{2} p_{2} r_{1} r_{2}\right)
\]

Theorem 3.30 If \(G\) is an \(S V T R\) graph with parameters (\(\mathrm{p}, \mathrm{r}, \mathrm{t}\)), then \(\bar{G}\) is also \(S V T R\) with parameters \(\left(p, p-r-1,\left(\frac{p-1}{2}\right)-\frac{3}{2} r(p-r-1)-t\right)\).

Proof: Let \(G\) be an \(S V T R\) graph with parameters (\(p, r, t\)). Then \(d(u)=r\), and \(t(u)=t\) for every \(u \in V(G)\). Hence \(d_{G}(u)=p-r-1\) and \(t_{G}(u)=\binom{p-1}{2}-\frac{3}{2} r(p-r-1)-t, b y(3.7)\) for every vertex \(u\) in \(G\). Hence \(\bar{G}\) is an \(S V T R\) graph with these parameters

Lemma 3.31 Parameters of a strongly vertex triangle regular self-complementary graph are \((4 k+1,2 k, k(k-1))\) for some natural number \(k\).

Proof: Let \(G\) be an SUTRSC graph with parameters (\(\mathrm{p}, \mathrm{r}, \mathrm{t}\)). Then, due to regularity, \(\mathrm{p}=4 \mathrm{k}+1\) and \(\mathrm{r}=2 \mathrm{k}\). Clearly \(G\) has at least one fixed vertex and, by (3.10), its triangle number is \(k(k-1)\). Hence \(t=k(k-1)\), due to triangle regularity.

A graph \(G\) is edge triangle regular (ETR) if all edges have the same triangle number. \(G\) is strongly edge triangle regular (SETR) if it is regular also. In this situation, the common triangle number of edges in \(G\) is called the edge triangle number of \(G\). If \(G\) is SETR of order \(p\), degree of regularity \(r\) and edge triangle number \(t\), then we say that \(G\) is \(\operatorname{SETR}\) with parameters (\(\mathrm{p}, \mathrm{r}, \mathrm{t}\)).

Lemma 3.32 Every SETR graph with parameters (\(\mathrm{p}, \mathrm{r}, \mathrm{t}\)) is SUTR with parameters (\(\mathrm{p}, \mathrm{r}, \frac{1}{2} \mathrm{rt}\)).

Proof: Let \(G\) be SETR with parameters (\(\mathrm{p}, \mathrm{r}, \mathrm{t}\)). Then \(d(u)=r\) and \(t(e)=t\) for every \(u \in V(G)\) and \(e \in E(G)\). So, by (3.1), \(t(v)=\frac{1}{2} r t\) for every \(u \in V(G)\), since \(G\) is regular of degree \(r\). Hence \(G\) is \(S V T R\) with parameters (\(p, r, \frac{1}{2} r t\)).

Kemark 3.33 Result analogous to theorem 3.30 does not hold for SETR graphs. Fig. 3.2 illustrates this - the graph \(G\) is SETR with parameters (12, 4, 1). But \(\bar{G}\) is not, because \(t(u v)=3\) and \(t(u w)=4\). The converse of lemma 3.32 is also not true. Fig 3.3 illustrates this.

A SETR graph \(G\) with paramere(12, 4, 1) whose complement is not SETR
fgure 3.2

A SVTR graph with parameters (12, 4, 1) whioh is not SETR
figure 3.3

Theorem 3.34 A graph \(G\) is strongly regular if and only if both \(G\) and \(\bar{G}\) are SETR.

Proof: Let \(G\) be a strongly regular graph with parameters \((\mathrm{p}, \mathrm{r}, \lambda, \mu)\). Then, by lemma \(1.2, \bar{G}\) is also strongly regular with parameters (\(p, p-r-1, p-2 r+\mu-2, p-2 r+\lambda)\). Hence \(d_{G}(u)=r\), \(\ell_{G}(e)=\lambda, d_{G}(u)=p-r-1\) and \(t_{G}(e)=p-2 r+\mu-2\) for every vertex \(u\) and edge \(e\) in the respective graphs. Thus both \(G\) and \(\bar{G}\) are SETR with parameters (\(\mathrm{p}, \mathrm{r}, \lambda\)) and (\(\mathrm{p}, \mathrm{p}-\mathrm{r}-1, \mathrm{p}-2 \mathrm{r}+\mu-2\)) respectively.

Conversely, let \(G\) and \(\bar{G}\) be \(S E T R\) with parameters (\(\mathrm{p}, \mathrm{r}, \mathrm{t}\)) and (\(\mathrm{p}, \mathrm{p}-\mathrm{r}-1, \mathrm{t}^{\prime}\)) respectively. Then \(\mathrm{d}_{\mathrm{G}}(u)=\mathrm{r}\) for every vertex \(u\) and any two adjacent vertices in \(G\) has \(t\) common neighbours and any two adjacent vertices in \(\bar{G}\) has \(t^{\prime}\) common neighbours. So any two non-adjacent vertices in \(G\) has \(2 r+t^{\prime}+2-p\) common neighbours. Hence \(G\) is strongly regular with prarameters (\(\left.p, r, t, 2 r+t^{\prime}+2-p\right)\).

Theorem 3.35 A self-complementary graph is SETR if and only if it is strongly regular with parameters \((4 k+1,2 k, k-1, k)\) for some natural number \(k\).

Proof: Let \(G\) be a self-complementary graph. If \(G\) is \(S E T R\) then \(\bar{G}\) is also \(S E T R\) and hence \(G\) is strongly regular by theorem 3.34. Conversely, if \(G\) is strongly regular, then \(G\) is SETR.

Now, let (\(\mathrm{p}, \mathrm{r}, \lambda, \mu\)) be the parameters of \(G\). Then \(p=4 k+1\) and \(r=2 k\) for every \(u \in V(G)\), for some natural number k, since \(G\) is regular. Further, by lemma 3.32 , \(G\) is SUTR with vertex triangle number \(\frac{1}{2} r \lambda\). But, by lemma 3.31 , the vertex triangle number of a SVTRSC graph is \(k(k-1)\). So \(\lambda=k-1\). Then,
\[
\begin{aligned}
(4 k+1-2 k-1) \mu & =2 k(2 k-k+1-1) \quad \text { by }(3.13) \\
\mu & =k
\end{aligned}
\]

Corollary 3.36 (Rao [54]) If \(G\) is an edge-symmetric self-complementary graph, then \(G\) is strongly regular with parameters (\(4 \mathrm{k}+1,2 \mathrm{k}, \mathrm{k}-1\), k) for some natural number k .

Proof: Let \(G\) be an edge symmetric self-complementary graph. Then \(G\) is regular and edge triangle regular. Hence \(G\) is SETRSC and so \(G\) is strongly regular with parameters
(\(4 k+1,2 k, k-1, k)\), by the theorem.

\title{
A \\ \\ CONJECTURE OF KOTZIG \\ \\ CONJECTURE OF KOTZIG ON SELF-COMPLEMENTARYGRAPHS
}

This chapter deals with one of the main aim of the thesis, to discuss a conjecture of Kotzig on selfcomplementary graphs. Some of the results are reported in [45] and [46].

\subsection*{4.1 KOTZIG'S CONJECTURE}

Recall that, a vertex in a self-complementary graph is a fixed vertex if it is mapped onto itself by a complementing permutation. The set of all fixed vertices in a self-complementary graph is denoted by \(F(G)\) and the set of all vertices with triangle number \(k(k-1)\) in a regular selfcomplementary graph of order \(4 \mathrm{k}+1\) is denoted by \(\hat{F}(G)\). Two vertices \(u\) and \(v\) are said to be similar, written as \(u \sim v\), if there exists an automorphism of \(G\) that maps \(u\) onto \(v\). clearly \(\sim\) is an equivalence relation on \(V(G)\). The equivalence classes under \(\sim\) are called G-orbits. A vertex- symmetric graph has only one G-orbit

Kotzig [41] observed that \(F(G) \subseteq \hat{F}(G)\) and asked about the possible characterization of \(F(G)\) and gave the following:

KOTZIG'S CONJECTURE
\(F(G)=\hat{F}(G)\) for any regular self complementary graph \(G\).

In the subsequent sections, we recall the significant contribution made by Rao [54], characterize \(\hat{F}(G)\) which motivates its definition being extended to any graph \(G\) and construct more counterexamples to the conjecture.

\subsection*{4.2 EARLIER ATTEMPT.}

Rao has characterized \(F(G)\) and constructed counterexamples to the conjecture in [54]. For convenience, we reproduce some of his results and a figure.

Theorem 4.1 (part of the lemma 2.1 in [54]) If \(G\) is a self-complementary graph of order \(4 k+1\), then exactly one of the \(G\)-orbits of \(V(G)\) is of odd cardinality.

4

Theorem 4.2 (part of the theorem 2.2 in [54]) If \(G\) is a regular self-complementary graph of order \(4 k+1\), then \(F(G)\) is the unique G-orbit of odd cardinality.

Theorem 4.3 (theorem 4.1 in [54]) The following are equivalent for a self-complementary graph \(G\) of order 25 .
(1) \(G\) is vertex-symmetric;
(2) \(\quad F(G)=V(G)\);
(3) \(Z(G)=E(G)\).
\(\square\)

Theorem 4.4 (part of the theorem 4.2 of [54]) Let \(G_{1}, G_{2}\) be two graphs and \(G=G_{1}\left(G_{2}\right)\). Then the following hold.
(1) If \(G_{1}, G_{2}\) are regular, then so is \(G\);
(2) If \(G_{1}, G_{2}\) are self-complementary, then so is \(G\);
(3) If \(G_{1}, G_{2}\) are vertex-symmetric, then so is \(G\).

Theorem 4.5 (theorem 2.3 in [54]) For every integer \(k \geq 2\), there is a regular self-complementary graph \(G\) of order \(4 \mathrm{k}+1\), such that \(|F(G)|=1\) but \(|\hat{F}(G)| \geq 2 \mathrm{k}+1\).

Proof: Define a graph \(G=G(4 \mathrm{k}+1)\) with \(V(G)=\{0,1,2\), \(\ldots, 4 \mathrm{k}+1\}\) and \(E(G)={\underset{i}{U}}_{4}^{U_{1}} A_{i}\), where \(A_{i}, 1 \leq \mathrm{i} \leq 4\) is given below:
\[
\left.\begin{array}{r}
A_{1}=\{\{0,2 i+1\},\{2 i+1,2 j+2\}, \text { for every } i, 0 \leq i \leq 2 k-1 ; \\
\{4 j+2,4 j+4\} \text { for every } j, 0 \leq j \leq k-1\}
\end{array}\right\}, \begin{aligned}
& A_{2}=\{\{4 i+1,4 j+2\},\{4 i+3,4 j+4\}, \text { for every } i, j, \\
& 0 \leq i, j \leq k-1, i \neq j\}
\end{aligned}
\]
\[
A_{3}=\{\{4 i+1,4 j+3\} ; \text { for every } i, j, 0 \leq i, j \leq k-1, i \neq j\}
\]
and \(A_{1}=\{\{4 i+2,4 j+2\},\{4 i+4,4 j+4\}\) for every \(i, j\),
\[
0 \leq i, j \leq k-1, i \neq j\}
\]

It can be checked that \(G\) is a self-complementary graph of order \(4 k+1\) under \(\sigma=(0) \prod_{i=0}^{k-1}(4 i+1,4 i+2,4 i+3,4 i+4)\). Further the neighbourhood of 0 induces a regular graph of order \(2 k\) and degree \(k-1\) and \(0 \in F(G)\). It can be also checked that the neighbourhood of 2 induces a complete bipartite graph with bipartition \(\{1,5,9,13, \ldots \ldots \ldots, 4 k-3 ; 6,10,14, \ldots \ldots \ldots, 4 k-2\}\) logether with the isolated vertex 4 , which clearly has \(k(k-1)\)
edges and is not regular. Further, for any i, \(1 \leq i \leq 2 k\), the induced subgraph on the neighbourhood of 2 i is isomorphic to that on the neighbourhood of 2 . Therefore \(\hat{F}(G)\) contains the set \(\{0,2,4, \ldots . .4 k\}\). By Theorem 2.2 (theorem 4.2 here) and the fact that \(0 \in F(G)\), it follows that for no \(i, 1 \leq i \leq 2 k\), the vertex \(2 \mathrm{i} \in F(G)\). The set \(F(G)\) being a \(G\)-orbit (namely the unique \(G\)-orbit of odd length) it is the union of some cycles of the above \(\sigma\). This implies that \(F(G)=\{0\}\).

Note that in case \(\mathrm{k}=2\) for the graph \(G(9), F(G)=\{0\}\)
and \(\hat{F}(G)=V(G)\). However, for \(\mathrm{k} \geq 3\) and \(G=G(4 \mathrm{k}+1), F(G)=\{0\}\) and \(\hat{F}(G)=\{0,2,4, \ldots \ldots 4 \mathrm{k}\}\).

The graph \(G(9)\)
rigure 4.1

\subsection*{4.3 THE SET \(\hat{F}(G)\)}

Recall that \(\hat{F}(G)\) is the set of vertices in a regular self-complementary graph \(G\) of order \(4 k+1\) with triangle number \(k(k-1)\).

Theorem 4.6 A vertex \(u\) in a regular self-complementary graph \(G\) is in \(\hat{F}(G)\) if and only if \(t(u)=\bar{t}(u)\).

Proof: Let \(G\) be a regular self-complementary graph of order \(p=4 k+1, k \in \mathbb{N}\) and let \(u \in \hat{F}(G)\). Then \(t(u)=k(k-1)\) and hence , by (3.8), \(\overline{\mathrm{t}}(u)=\mathrm{k}(\mathrm{k}-1)\).

Conversely, let \(t(u)=\bar{t}(u)\) for some \(u \in V(G)\). Then \(t(u)=\bar{t}(u)=k(k-1)\) by (3.8). So, \(u \in \hat{F}(G)\).

An important and natural consequence of theorem 4.6 is that, \(\hat{F}(G)\), which was defined only for regular selfcomplementary graphs can be extended to any graph.

Definition: Let \(G\) be a simple graph. Then the set \(\hat{F}(G)\) is defined as \(\hat{F}(G)=\{u \in V(G) / t(u)=\overline{\mathrm{E}}(u)\}\).

The graph \(G\) in fig. 4.2 is not self-complementary. The triangle number of each of the vertices labelled \(u\) and \(v\) is 3 in both \(G\) and \(\bar{G}\) and that of other vertices are different in \(G\) and \(\bar{G}\). Hence \(\hat{F}(G)=\{u, v\}\).

G

Theorem 4.7 \(\hat{F}(G)=\hat{F}(\bar{G})\) for any graph \(G\).
Proof: \(\quad u \in F(G) \quad \mathcal{t}(u)=t(u)\)
\(\Leftrightarrow \quad u \in \hat{F}(\bar{G})\)
Theorem 4.8 A vertex \(u\) in a (\(p, q\))-graph \(G\) is in \(\hat{F}(G)\) if and only if the size of \(\langle N(u)\rangle\) in \(G\) is
\[
\frac{1}{2} \cdot\left[\left(\frac{\mathrm{p}-\mathrm{d}(u)-1}{2}\right)-\mathrm{q}+\sum_{v \in N(u)} \mathrm{d}(u)\right]
\]

Proof: Let \(G\) be a graph and \(u \in \hat{F}(G)\). Then \(t(u)=\bar{t}(u)\). lut, we have, \(t(u)+\bar{E}(u)=\binom{\mathrm{p}-\mathrm{d}(u)-1}{2}-q+\sum_{v \in N(u)} \mathrm{d}(u)\). So, \(2 t(u)=\binom{\mathrm{p}-\mathrm{d}(u)-1}{2}-\mathrm{q}+\sum_{v \in N(u)} \mathrm{d}(u)\). Hence the necessary part. Conversely, let \(u \in V(G)\) be such that
\(t(u)=\frac{1}{2}\left[\binom{p-d(u)-1}{2}-q+\sum_{v \in N(u)} d(u)\right]\). Then \(\bar{t}(u)\) is also
\(\frac{1}{2}\left[\left(\frac{p-d(u)-1}{2}\right)-q+\sum_{v \in N(u)} d(u)\right]\) by (3.1). Hence \(t(u)=\bar{t}(u)\).

Corollary 4.9 Let \(G\) be a regular graph of order \(p\) and degree of regularity \(r\), then a vertex \(u\) is in \(\hat{F}(G)\) if and only if \(t(u)=\frac{1}{2}\binom{p-1}{2}-\frac{3}{4} r(p-r-1)\).

I'he proof being a routine one is omitted.

Remark 4.10 It follows from lemma 3.31 that, if \(G\) is a regular self-complementary graph then, \(\hat{F}(G)=V(G)\) if and only if \(G\) is SVTR.

\subsection*{4.4 PRESENT ATTEMPT.}

Here, we mention a fallacy in the proof of theorem 4.5 and identify a class of counterexamples. A construction of such graphs of order \(p\), for an infinite number of values of \(p\), is also carried out.

While analyzing the counterexamples of Rao, we came to know that they are wrong except for \(k=2\). Because, the claim in the proof of theorem 4.5 "the neighbourhood of 2 induces the complete bipartite graph with bipartition \(\{1,5,9, \ldots\)..... , \(4 k-3 ; 6,10, \ldots, 4 k-2\}\) together with the isolated vertex \(4 "\) is wrong for \(k \geq 3\). In fact \(\{6,10, \ldots \ldots \ldots, 4 k-2\}\) induces a complete subgraph due to the edges \(\{4 i+1,4 j+2\}, 0 \leq i, j \leq k-1\), \(i \neq j\). So \(t(2)=k(k-1)+\frac{1}{2}-(k-1)(k-2)\) and
\(t(1)=(k-1)+\frac{1}{2}(k-1)=k(k-1)-\frac{1}{2}(k-1)(k-2)\) for
every \(k \geq 2\) and consequently \(\hat{F}(G)=\{0\}\) for \(k \geq 3\).
'Ihus the conjecture was made open for \(p=4 k+1, k \geq 2\)

Theorem 4.11 (A class of counterexamples) If \(G\) is a self-complementary graph which is strongly vertex triangle regular and not vertex symmetric, then it is a counterexample to the conjecture.
proof: Let \(G\) be a self-complementary graph. Then \(F(G)=V(G)\) if and only if \(G\) is vertex-symmetric (theorem 4.3) and \(\hat{F}(G)=V(G)\) if \(G\) is strongly vertex triangle regular (remark 4.10). So if \(G\) is \(S V T R\) and not vertex-symmetric, then \(\hat{F}(G)=V(G) \neq F(G)\). Hence this class provides counterexamples to the conjecture.

Remark 4.12 It is interesting to see that the counterexample \(G_{9}\), of Rao is also of the type specified in the theorem 4.11.

Theorem 4.13 Let \(G\) be an SUTRSC graph which is not vertexsymmetric and and \(H\) be a VSSC graph. If there are two vertices \(u\) and \(u^{\prime}\) in \(G\) such that \(\langle N(u)\rangle\) is regular and \(\left\langle N\left(u^{\prime}\right)\right\rangle\) is not regular, then \(G(H)\) is SVTRSC but not vertex-symmetric.

Proof: Let \(G\) be a SVTRSC graph which is not vertexsymmetric and \(H\) be a VSSC graph. Then clearly \(H\) is SVTR and hence \(G(H)\) is SVTRSC.

Now, let \(G_{1}=\langle N(u)\rangle_{G}\) and \(G_{2}=\left\langle N\left(u^{\prime}\right)\right\rangle_{G}\) where \(u\) and \(u^{\prime}\) are as in the hypothesis. Then \(G_{1}\) is regular and \(G_{2}\) is not regular. It is obvious that \(\langle N(u, v)\rangle\) in \(G(H)\) is \(G_{1}(H)\) and \(\left\langle N\left(u^{\prime}, v\right)\right\rangle\) is \(G_{?}(H)\). Because of the regularity of \(G\) and \(H, G(H)\) is also regular, but \(G_{2}(H)\) is not regular since \(G_{2}\) is not. So \(\langle N(u, v)\rangle\left\langle N\left(u^{\prime}, v\right)\right\rangle\) in \(G(H)\). Hence \(G(H)\) is not vertex-symmetric.

Remark 4.14 If \(G\) is a counterexample to the conjecture and \(H\) is a vertex-symmetric self-complementary graph. If there are vertices \(u\) and \(u^{\prime}\) in \(G\) such that \(\langle N(u)\rangle\) is regular and \(\left\langle N\left(u^{\prime}\right)\right\rangle\) is not regular, then, by theorem 4.12, \(G(H)\) and \(H(G)\) are also counterexamples.

\section*{CONSTRUCTION OF COUNTEREXAMPLES}
(1) Counterexample of order 17

Take a single vertex 0 , a copy of the circulant graph \(C(8 ; 1,4)\) with vertices labelled \(0,1,2, \ldots7\) and a copy of its complement \(C(8 ; 2,3)\) with vertices labelled \(0^{\prime}, 1^{\prime}, 2^{\prime}\),, \(7^{\prime}\). Join each vertex \(i\) to \(\theta, i^{\prime}, i^{\prime}+1, i^{\prime}+2\) and \(i^{\prime}+3\), addition being taken modulo 8 and \(j^{\prime}+j\) is to mean \((i+j)^{\prime}\). The graph \(G_{17}\) so obtained is self-complementary, a complementing permutations is \((\theta)\left(\begin{array}{lllllllll}0 & 0^{\prime} & 1 & 1^{\prime} & 2 & 2^{\prime} & \ldots & 7 & 7^{\prime}\end{array}\right)\). From the figure of \(G_{17}\), it"s strong vertex triangle regularity is clear.

\[
G_{17}: \text { a counterexample of order } 17
\]

It is not vertex-symmetric because the subgraph induced by the neighbourhood of 0 is the circulant graph \(C(8 ; 1,4)\) which is not isomorphic to the subgraph induced by the neighbourhood of any of the other vertices. Further \(\langle N(i)\rangle\) and \(\left\langle N\left(j^{\prime}\right)\right\rangle\) are also non-isomorphic for every \(i\) and \(j^{\prime}\) (see fig. 4.4)

\(\langle N(0)\rangle \quad\left\langle N\left(0^{\circ}\right)\right\rangle\)
eubgrapha of \(G_{17}\) induced by the neighbourhoods of 0 and \(O^{\prime}\) figure 4.4

Counterexample of order 33

I'ake a single vertex labelled \(\theta\), a copy of the circulant graph \(C(16 ; 1,2,6,7)\) with vertices labelled 0,1 , \(2, \ldots, 15\) and a copy of its complement \(C(16 ; 3,4,5,8)\) with vertices labelled \(0^{\prime}, 1^{\prime}, 2^{\prime}, \ldots15^{\prime}\). Join each vertex \(i\) to \(i^{\prime}, i^{\prime}+1, i^{\prime}+2, \ldots \ldots, i^{\prime}+7\) and each \(i^{\prime}\) to \(\theta\). Additions being taken modulo 16 . The resulting graph \(G_{33}\) is self-complementary

under the complementing permutation \((\theta)\left(\begin{array}{llllllll}0 & 0^{\prime} & 1 & 1^{\prime} & 2 & 2^{\prime} & \cdots & \cdots\end{array}\right.\)
\(1515^{\prime}\)) and strongly vertex triangle regular. But it is not vertex-symmetric, since the subgraph induced by the neighbourhood of \(\theta\) is the circulant graph \(C(16 ; 3,4,5,8)\) which is not isomorphic to the subgraph induced by the neighbourhood of any of the other vertices (see fig. 4.5) and \(\left\langle N\left(j^{\prime}\right)\right\rangle\) are also mon-isomorphic for every \(i\) and \(j^{\prime}\).

\section*{}

The conjecture is trivially true for \(p=5\). We have seen that strongly vertex triangle regular selfcomplementary graphs which are not vertex-symmetric form counterexamples. We have one such graph is \(G(9)\) (fig. 4.1) and of order 17 (fig. 4.3) and 33 by the above construction. Hence by theorem 4.12, counterexamples of order \(p=9^{\alpha}{ }_{17}{ }^{\beta}{ }_{33} \gamma_{p} p_{1}^{\delta}\) where \(F_{1}\) is an integer for which VSSC graph of order \(p_{1}\) exists and \(\alpha, \beta, \gamma\) and \(\delta\) are integers such that at least one of \(\alpha, \beta\) and \(\gamma\) is non-zero. Thus, the conjecture is false for \(p \Rightarrow 9^{\alpha}{ }_{17}{ }^{\beta} 33^{\gamma}{ }_{p}{ }_{1}^{\delta}\) where \(p_{1}, \alpha, \beta, \gamma\) and \(\delta\) are integers as above. We are examining the conjecture for other orders also and expect that our construction can be extended to graphs of order \(p=4 k+1\) where \(k=2^{\prime \prime}, n \in \mathbb{N}\). Then theorem 4.13 can be applied to get still more counterexamples.

\title{
ISOMORPHIC FACTORIZATION 0 F COMPLETEGRAPHS
}

\subsection*{5.1 ISOMORPHIC FACTORIZATION}

A factorization of a graph is a partition of it into edge disjoint spanning subgraphs. A factorization in which any two factors are isomorphic is called an isomorphic factorization. A graph \(G\) is said to be divisible by an integer m if it can be factored into exactly \(m\) isomorphic factors and we write \(m / G\). If \(G\) is divisible by \(m\), then the set of all graphs \(H\) such that \(G\) can be factored into \(m\) isomorphic copies of \(H\) is denoted by \(G / m\).

rigure 5.1

If \(G\) has \(q\) edges, \(G / m\) will be empty unless \(m / q\). This necessary condition is not in general sufficient as in the case of the tree \(T\) in fig 5.1 , which has six edges, yet \(T / 2\) is empty.

\subsection*{5.2 ISOMORPHIC FACTORIZATION OF COMPLETE GRAPHS.}

1 somorphic factorization of complete graphs into m factors is a generalization of self-complementation. If \(K_{p}\) is divisible by two, then the members of \(K_{p} / 2\) are the selfcomplementary graphs of order p. Even though self-complementary graphs are connected, the elements of \(K_{p} / m\) need not be so for \(m \geq 3\). For example see fig. 5.2. If the members of \(K_{p} / m\) are of size \(q\), then \(m q=\frac{p(p-1)}{2}\) and so \(\frac{p(p-1)}{2 m}\) is an integer. The result in the converse direction was independently proved by Guidotti 133] and Harary et al.[35].

Here, we give a simpler proof by generalizing a method of constructing self complementary graphs given by Gibbs [30]. The proof given in [35] essentially involves permutations of the \(p\) vertices and the \(\frac{p(p-1)}{2}\) edges of \(K_{p}\), while we use permutations of the vertices only.

When \(m / K_{p}\), there are isomorphisms, that is permutations of \(V\left(K_{p}\right)\), that maps between the factors. We call such a permutation \(\sigma\) as factorizing permutation. We label the \(m\) factors in an isomorphic factorization of \(K_{p}\) by \(G_{0}, G_{1}, G_{2}, \ldots\) \(\ldots, G_{m-1}\) so that a factorizing permutation \(\sigma\) of \(V\left(K_{p}\right)\) maps \(G_{1}\) onto \(G_{i+1(\operatorname{modm})}, i=1,2, \ldots \ldots \ldots, m-1\).

The nine members of \(K_{6} / 3\)
Factorizing permutation for each factorization is (123)(456)
rigure 5.2

Theorem 5.1 ([35]) If \(m / \frac{p(p-1)}{2}\) and \((p, m)=1\) or \((p-1, m)=1\), then \(K_{p}\) is divisible by \(m\).

Proof(by construction): Let \(m\) and \(p\) be such that \(m / \frac{p(p-1)}{2}\) and either \((p, m)=1\) or \((p-1, m)=1\). We have to find \(m\) isomorphic factors of \(K_{p}\).

\section*{CONSTRUCTION}

Case (i) m is odd.

If there is an m-factorization, the edges in the subgraph of \(K_{p}\) spanned by each cycle of a factorizing permutation \(\sigma\) is to be distributed equally in the factors, every cycle of \(\sigma\) should be of length multiple of m except in the case of. a 1 -cycle when \(p=1(\bmod m)\). But it is sufficient to consider the permutations with cycle length power of \(m\). Because, if there is a cycle of \(\sigma\) not of this form, that is of length \(\alpha m\) where \(\alpha\) is not a multiple of \(m\) then the permutation \(o^{\alpha}\) will be of the required form and will be a factorizing permutation (not necessarily in the same order in which o acts).

Consider a permutation \(\sigma\) of \(p\) symbols with each of its cycles is of length power of \(m\), except one cycle of length one when \(p=1(\bmod m)\). Assume without loss of generality that the symbols in o are numbered consecutively from 1 to \(p\) and that the cycles are of non-decreasing length \(k_{1}, k_{2}, k_{3}, \ldots\) except the 1 -cycle (\(p\)), if exists, at the end. It is to be noted that each \(k_{i}\) is a power of \(m\). Now, the symbols \(2,3, \ldots \ldots \ldots, \frac{k_{j}+1}{2}\) of the first cycle, the first \(k_{1}\) symbols of each of the other cycle
and the symbol \(p\) if (\(p\)) is a 1-cycle constitute the range of the symbol 1. We shall construct the graphs \(G_{0}, G_{1}, G_{2}, \ldots \ldots \ldots, G_{m-1}\) with vertices labelled \(1,2,3, \ldots, p\) and hence identify the symbols in o with the vertices in \(G_{j} ; j=0,1,2, \ldots \ldots \ldots, m-1\). For each unordered pair \{ \(1, \mathrm{j}\}\), where j is in the range of 1 , arbitrarily decide the graph \(G_{j}\) in which 1 and \(j\) are adjacent. Once these choices have been made, the symbols \(\sigma^{k}(1)\) and \(\sigma^{k}(j)\) are adjacent in \(G_{i+k(\operatorname{modm})}, k=1,2, \ldots \ldots, k_{j}\) where \(j\) belongs to a cycle of length \(k_{j}\). A table of the following form is helpful. In the first column of the table, the symbols 1, 2 ,, \(k_{1}\) is to be repeated \(\frac{k_{j}}{k_{1}}\) times where \(k_{j}\) is the maximum cycle length of \(\sigma\).
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
vertex \\
\(u\)
\end{tabular} & \multicolumn{4}{|l|}{} \\
\hline 1 & \(v_{01}, v_{02}, \cdots\) & \(v_{11}, v_{12}, \cdots\) & \(\cdots\) & \\
\hline 2 & \(\sigma\left(v_{m-1} 11\right), \cdots \cdots\) & \(\sigma\left(v_{01}\right), \ldots \ldots\) & \(\cdots\) & \(\sigma\left(v_{m-2} l_{1}\right), \cdots \cdots\) \\
\hline 3 & \(\sigma\left(v_{m-2} 1\right), \ldots \cdots\) & \(\sigma\left(v_{m-1} 1{ }^{\prime}\right), \ldots\) & \(\cdots\) & \(\sigma\left(v_{m-3} 10\right), \ldots \ldots\) \\
\hline ; & & & \(\cdots\) & \\
\hline \(\mathrm{k}_{1}\) & & & \(\cdots\) & \\
\hline 1 & ' & : & : & : \\
\hline , & , & : & ' & ' \\
\hline
\end{tabular}

Adjacency table for the iamorphic factoriztion of completegraphe
table 5.1

This completes the first stage of the algorithm. In the next stage, reduce the permutation \(o\) to \(\sigma_{1}\) on \(\mathrm{p}^{-\mathrm{k}_{1}}\) symbols
by deleting the first cycle and do the process for the symbol \(k_{1}+1\). Continue the process till all the cycles of non-unit length has been considered.

Case (ii) m is even.

In this case it is sufficient to consider permutations \(o\) with cycle length powers of 2 m only. Arrange \(\sigma\) so that the cycles are in the order of non-decreasing length except the one 1-cycle (\(p\)), if exists, at the end. Let \(k_{1}, k_{2}, \cdots\) be the cycle lengths and \(1,2, \quad \cdots, p\) be the symbols in the permutation. The range of 1 consists of the symbols \(2,3, \ldots\). , \(\frac{k_{1}}{2}+1\), the first \(k_{1}\) symbols of the remaining cycles and the symbol \(p\), if (\(p\)) is a 1 -cycle. The rest of the algorithm is same as the first case.

Now we have to prove that the algorithm will produce a well defined isomorphic factorization.

Claim: As a result of performing the construction algorithm, (1) the adjacency relation between vertices is welldefined (2) every pair of vertices is assigned an adjacency relation and (3) the graphs \(G_{0}, G_{1}, \ldots \ldots G_{m-1}\) thus obtained are isomorphic.

Proof of (1) The pair \{ 1 , j\} cannot be sent to itself by \(\sigma^{k}\) when \(k\) is not a multiple of \(m\), because \(\sigma^{k}(j) \neq j\) for \(k \neq M(m)\), except for the trivial case of the 1 -cycle \((p)\) and if \(\sigma^{k}(1)=j\), then \(j\) is the symbol \(1+k\) in the first cycle of \(\sigma\) and \(\sigma^{k}(j)=1+2 k \neq 1\) since \(k \neq M(m)\). Thus the pair \(\{1, j\}\) can never be assigned simultaneous adjacency and non-adjacency.
'fhe same argument applies to \(\left\{\sigma^{i}(1), \sigma^{1}(j)\right\}\) and carries over for all stages of the algorithm.

Proof of (2) Here we have to consider the two cases separately.
Case (i) m is odd
From the definition of range of the symbol 1 , we have assigned adjacency to each pair \(\{1\), \(i\}\) when \(2 \leq i \leq \frac{k_{1}+1}{2}\). For every \(j\) in the first cycle, symbols in its range from the first cycle are \(j+1, j+2, \ldots \ldots \ldots, j+\frac{k_{1}-1}{2}\). Now \(\frac{k_{1}+3}{2}=\sigma^{k^{-1} 1^{1}}(1)\) and so the range of \(\frac{k_{1}+3}{2}\) contains the symbols \(\frac{k_{1}+5}{2}, \cdots \cdots \cdots, \frac{k_{1}+3 k_{1}-1}{2}+\frac{1}{2}=\) \(k_{1}+1=1\) of the first cycle. Hence 1 is in the range of \(\frac{k_{1}+3}{2}, \ldots\), \(k_{1}\). Thus the adjacency between 1 and every other symbol in the first cycle are defined if we fix the adjacency of 1 and those symbols in its range. This argument carries to all other symbols in the first cycle and for the adjacencies of the other symbols with those in the same cycle. Consider the cycle \(\sigma_{j}\) of length \(k_{j}, j \neq 1\). We initially fix the adjacencies of the first \(k_{1}\) symbols. But \(\sigma^{k_{1}}(1)=1\) and if \(k_{j}>k_{1}\), then \(\sigma^{k_{1}}\) will give the adjacencies of next \(k_{1}\) symbols in \(\sigma_{j}\) with 1 . Our construction algorithm insists on continuing the process at least \(\frac{k_{j}}{k_{1}}\) times. 'Thus the adjacency of 1 with each symbol in the cycle o, is defined. This is also applicable to all symbols in the first cycle and to all steps of the algorithm.

Case (ii) m is even.
Here the range of 1 is \(2,3, \ldots \ldots \ldots, \frac{k_{1}}{2}+1\) and that of any \(j\) in the first cycle is \(j+1, j+2, \ldots \ldots \ldots \ldots, j+\frac{k}{2}+1\).... Now, \(\frac{k_{1}}{2}+2=\sigma^{\sigma^{2}+1}(1)\) and hence the range of \(\frac{k_{1}}{2}+2\) is \(\frac{k_{1}}{2}+3, \frac{k_{1}}{2}+4, \ldots\)
\[
\ldots, \frac{k_{1}}{2}+\frac{k_{1}}{2}+1=k_{1}+1=1 \text { and the remaining arguments are similar }
\] to that in the first case.

Proof of (3) Now, we have shown that all the adjacencies are well defined and all possible adjacencies are determined. Clearly \(\sigma, \sigma^{2}, \cdots \cdots \quad \sigma^{m-1}\) are isomorphism from \(G_{0}\) to \(G_{1}, G_{2}, \cdots\) - \(G_{m-1}\) respectively.

\section*{MLUUSTRATIONS}
(i) ISOMORPHIC FACTORIZATION OF \(K_{7}\) INTO THREE FACTORS corresponding to the permutation \(\sigma=(123)(456)(7)\)

Stage 1: The the range of 1 is \(12,4,5,6,7\), Let the vertex labelled 1 be adjacent to 2 and 7 in \(G_{0}\), to 4 in \(G_{1}\) and to 5 and 6 in \(G_{2}\). The corresponding adjacency table is given in table 5.2.

Stage 2 The reduced permutation to be considered is \(\sigma_{1}=(456)(7)\). The range of 4 is 15,7 . Let the vertex labelled 4 be adjacent to 5 and 7 in \(G_{1}\). The adjacency table is given in table 5.3.
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { vertex } \\
& u
\end{aligned}
\] & \[
G_{0}
\] & \[
\text { f } \begin{gathered}
u_{G} \\
G_{1} \\
\hline
\end{gathered}
\] & \(G 2\) \\
\hline 1 & 2, 7 & 4, 5 & 6 \\
\hline 2 & 4 & 3,7 & 5, 6 \\
\hline 3 & 6,4 & 5 & 1,7 \\
\hline \multicolumn{4}{|l|}{Adjacency table at alage for an iomorphic factorization of \(K_{7}\) into three factore} \\
\hline
\end{tabular}

> The factor \(G_{0}\) of \(K_{7}\) resulting from the above construction
> figure 6.3

(ii) ISOMORPHIC FACTORIZATION OF \(K_{20}\) INTO THREE FACTORS corresponding to the permutation
\[
\sigma=\left(\begin{array}{lllllllllllllllllll}
1 & 2 & 3 & 4
\end{array}\right)\left(\begin{array}{lllllll}
5 & 6 & 7 & 8 & 9 & 10 & 11 \\
12 & 13 & 14 & 15 & 16 & 17 & 18 \\
19 & 20
\end{array}\right)
\]

Stage 1: The range of 1 is \(\{2,3,5,6,7,8\). Let the vertex labelled 1 be adjacent to 3 in \(G_{0}\), to 6 and 7 in \(G_{1}\) to 2,5 and 8 in \(G_{2}\) and none in \(G_{3}\). The adjacency table is given in table 5.4.

Stage 2: The reduced permutation to be considered in this stage is \(\sigma_{1}=\left(\begin{array}{lllllllllllllllll}5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}\right)\). The range of 5 is \(\{6,7,8,9,10,11,12,13\}\). Let the vertex labelled 5 be adjacent to 6 and 13 in \(G_{0}, 7\) and 12 in \(G_{1}, 8\) and 11 in \(G_{2}\) and 9 and 10 in \(G_{3}\). The adjacency table is given table 5.5
\begin{tabular}{|c|c|c|c|c|}
\hline vertex
\[
u
\] & \(G_{0}\) & ghbours of \(G_{1}\) & \[
\begin{gathered}
\text { in the fact } \\
G_{2}
\end{gathered}
\] & \(G_{3}\) \\
\hline 1 & 3 & 6, 7 & 2, 5, 8 & \\
\hline 2 & & 4 & 7, 8 & 3, 6, 9 \\
\hline 3 & 4, 7, 10 & & 1 & 8, 9 \\
\hline 4 & 9, 10 & 1, 8, 11 & & 2 \\
\hline 1 & 3 & 10, 11 & 2, 9, 12 & \\
\hline 2 & & 4 & 11, 12 & 3, 10, 13 \\
\hline 3 & 4, 11, 14 & & 1 & 12, 13 \\
\hline 4 & 13,14 & 1, 12, 15 & & 2 \\
\hline 1 & 3 & 14, 15 & 2, 13, 16 & \\
\hline 2 & & 4 & 15, 16 & 3, 14, 17 \\
\hline 3 & 4, 15, 18 & & 1 & 16, 17 \\
\hline 4 & 17, 18 & 1, 16, 19 & & 2 \\
\hline 1 & 3 & 18, 19 & 2, 17, 20 & \\
\hline 2 & & 4 & 19, 20 & 3, 18, 5 \\
\hline 3 & 4, 19, 6 & & 1 & 20, 5 \\
\hline 4 & 5, 6 & 1, 20, 7 & & 2 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline vertex \(u\) & \multicolumn{4}{|c|}{neighbours of \(u\) in the factor} \\
\hline 5 & 6, 13 & 7, 12 & 8, 11 & 9, 10 \\
\hline 6 & 10, 11 & 7, 14 & 8, 13 & 9, 12 \\
\hline 7 & 10, 13 & 11, 12 & 8, 15 & 9, 14 \\
\hline 8 & 10, 15 & 11, 14 & 12, 13 & 9, 16 \\
\hline 9 & 10, 17 & 11, 16 & 12, 15 & 13, 14 \\
\hline 10 & 14, 15 & 11, 18 & 12, 17 & 13, 16 \\
\hline 11 & 14, 17 & 15, 16 & 12, 19 & 13, 18 \\
\hline 12 & 14, 19 & 15, 18 & 16, 17 & 13, 20 \\
\hline 13 & 14, 5 & 15, 20 & 16, 19 & 17, 18 \\
\hline 14 & 18, 19 & 15, 6 & 16, 5 & 17, 20 \\
\hline 15 & 18, 5 & 19, 20 & 16, 7 & 17, 6 \\
\hline 16 & 18, 7 & 19, 6 & 20, 5 & 17. 8 \\
\hline 17 & 18, 9 & 19, 8 & 20, 7 & 5, 6 \\
\hline 18 & 6, 7 & 19, 10 & 20, 9 & 5, 8 \\
\hline 19 & 6, 9 & 7, 8 & 20, 11 & 5, 10 \\
\hline 20 & 6, 11 & 7, 10 & 8, 9 & 5, 12 \\
\hline
\end{tabular}

\subsection*{5.3 CONCLUDING REMARK AND SUGGESTIONS FOR FURTHER STUDY}

\begin{abstract}
'Ihis thesis is an attempt to shed more light on a conjecture of Anton Kotzig on self-complementary graphs. During this process, we have obtained several results relating the concepts of triangle and self-complementation, spread over the different chapters of this thesis. The survey of earlier results have been done to the extent possible and any serious omission due to oversight may kindly be pointed out.

Results of the thesis are far from complete. We list below some of the problems which we have either not attempted or found the answers to be difficult.
\end{abstract}

\section*{1. ANTIPODAL ITERATION NUMBER (ain.)}

Consider a graph \(G\) and its antipodal graph \(A(G)\). Let \(G_{0}=G\) and \(G_{i+1}\) be the graph obtained by superimposing \(A\left(G_{1}\right)\) on \(G_{1}\), for \(i=0,1,2, \ldots \ldots\).... If \(G\) is not complete, this process ultimately results in a complete graph since \(E(A(G)) \& E(\bar{G})\). The minimum value of \(i\) for which \(G_{i}\) is complete is called the antipodal iteration number (ain.) of \(G\). It is obvious that \(\operatorname{ain}\left(K_{p}\right)=0\) and \(\operatorname{ain}(G)=1\) if \(\operatorname{diam}(G)=2\). lf \(G\) is disconnected, then its ain. is 1 if every component of \(G\) is complete and 2 otherwise. A formula for ain(G) can be attempted.
2. S-ANTIPODAL GRAPH OF GRAPHS WITH A GIVEN PROPERTY

We have characterized \(A^{\star}(G)\) when \(G\) is a tree. Similar analysis can te done for a graph \(G\) with a given property \(r\), where \(P\) could be maximal outer planar, hamiltonian, eulerian, chordal, etc. The question whether eulerian graph of odd order is the s-antipodal graph of some eulerian graph remains to be settled. We have answered (theorem 2.20) a similar question for even order.

\section*{3. TRIANGLE SEQUENCE}

Similar to the results on degree sequences [63], the concept of triangle sequence could be investigated and characterization of an integer sequence being the triangle sequence of a graph may be attempted.
4. TRIANGLE NUMBER IN THE G-JOIN

Expression for the triangle number of a vertex / edge in the \(G\)-join of a family of graphs in the general getting is worth studying. See theorem 3.27 for our observation.
5. COUNTER EXAMPLES TO KOTZIG'S CONJECTURE

Our method of construction of counterexamples of order 17 and 33 could be extended to that of order \(p=4 k+1\), where \(k=2^{\prime \prime}, n \in \mathbb{N}\).

\section*{INDEX OF SYMBOLS AND ABBREVIATIONS}
\begin{tabular}{|c|c|}
\hline \(A(G)\) & antipodal graph of \(G\) \\
\hline \(A^{*}(\mathrm{G})\) & \(s\)-antipodal graph of \(G\) \\
\hline \(D(G)\) & dominating set in \(G\) \\
\hline \(E(u)\) & set of edges incident at \(u\) \\
\hline \(E(G)\) & edge set of \(G\) \\
\hline \(F(G)\) & fixed vertices in a SC graph \\
\hline \[
\hat{F}(G)
\] & set of vertices with same triangle number in \(G\) and its complement \\
\hline G; H, & graphs \\
\hline \(G(V, E)\) & graph with vertex set \(V\) and edge set \(E\) \\
\hline \(G(p, q)\) & graph of order \(p\) and size \(q\) \\
\hline \(\bar{G}\) & complement of \(G\) \\
\hline \(\mathrm{G} / \mathrm{m}\) & set of graphs each of which is a factor in some factorisation of \(G\) in-to \(m\) isomorphic factors \\
\hline \(G(H)\) & composition of the graphs \(G\) and \(H\) \\
\hline \(G+H\) & join of the graphs \(G\) and \(H\) \\
\hline G \(\times H\) & cartesian product of \(G\) and \(H\) \\
\hline \(\boldsymbol{G}(9)\) & the \(G\)-join of a family \(\mathcal{F}\) of graphs \\
\hline \(H / G\) & \(H\) belongs to \(G / m\) for some integer \(m\) \\
\hline \(K_{p}\) & complete graph on \(p\) vertices \\
\hline \(M(m)\) & multiple of m \\
\hline \(N(G)\) & neighbourhood graph of \(G\) \\
\hline \(N(u)\) or \(N_{G}(u)\) & neighbourhood \(u\) in \(G\) \\
\hline \(N[u]\) or \(N_{G}[u]\). & closed neighbourhood of \(u\) in \(G\) \\
\hline \(R(G)\) & triangle graph of a graph \(G\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(V(G)\) & vertex set of \(G\) \\
\hline \(Z(G)\) & set of edges in a \(S C\) graph one of whose end is mapped on to the other by a complementing permutation \\
\hline \(d(u)\) or \(d_{G}(u)\) & degree of a vertex \(u\) \\
\hline \(d(u, v)\) or \(d_{G}(u, v)\) & distance between two vertices \\
\hline diam(G) & diameter of \(G\) \\
\hline \(e\) & an edge in a graph \\
\hline \(\operatorname{ecc}(u)\) or \(\operatorname{eccc}_{G}(u)\) & eccentricity of a vertex \(u\) in \(G\) \\
\hline \(\operatorname{ain}(G)\) & antipodal iteration number of \(G\) \\
\hline \(\mathrm{m} / \mathrm{G}\) & \(G\) can be factored in to \(m\) isomorphic factors (\(G\) is dividible by m) \\
\hline p or \(\mathrm{p}(\mathrm{G})\) & order of \(G\) \\
\hline \(q\) or \(q(G)\) & size of \(G\) \\
\hline \(r\) or \(r(G)\) & degree of a regular graph \(G\) \\
\hline \(t(u)\) or \(t_{G}(u)\) & triangle number of a vertex \(u\) \\
\hline \(\bar{t}(u)\) & triangle number of a vertex \(u\) in \(\bar{G}\) \\
\hline \(t(e)\) & triangle number of an edge e \\
\hline \(t(G)\) & triangle number of \(G\) \\
\hline \(u, \quad v, \cdots\) & vertices in a graph \\
\hline \(u \sim v\) & \(u\) and \(v\) are similar vertices \\
\hline N & the set of natural numbers \\
\hline \(B(G)\) & set of all complementing permutations of \(G\) \\
\hline \(\boldsymbol{F}\) & a family of graphs \\
\hline 0 & complementing permutation of a self-complementary graph \\
\hline \((m, p)=1\) & \(m\) and \(p\) are relatively prime integers \\
\hline \(\langle S\rangle=\langle S\rangle_{\mathrm{G}}\) & subgraph of \(G\) induced by \(S \subseteq V(G)\) \\
\hline
\end{tabular}
\begin{tabular}{ll}
ETR & edge triangle regular \\
USC & regular self-complementary \\
\(S C\) & self-complementary \\
\(S E T R\) & strongly edge triangle regular \\
\(S E T R S C\) & \begin{tabular}{l}
strongly edge triangle regular \\
self-complementary
\end{tabular} \\
\(S R\) & strongly regular \\
\(S R S C\) & strongly regular self-complementary \\
\(S V T R\) & strongly vertex triangle regular \\
\(S V T R S C\) & strongly vertex triangle regular \\
self-complementary \\
\(V S S C\) & vertex-symmetric self-complementary \\
\(V T R\) & vertex triangle regular \\
ain. & antipodal iteration number
\end{tabular}

\section*{REFERENCES}
[1] A T Balaban; ed., Chemical applications of Graph Theory, Academic Press, New York (1976).
[2] C Berge; Graphs and Hypergraphs, North Holland (1973).
[3] J A Bondy and U S R Murthy; Graph Theory with Applications, The McMillan press Ltd. (1976).
[4] F Buckley and F Harary; Distance in Graphs, Addison Wesley fublishing Company (1990).
[5] R G Busacker and T L Saaty; Finite Graphs and Networks McGraw-Hill Book Company (1965).
[6] N Deo; Graph Theory with Applications to Engineering and Computer Science, Prentice-Hall Inc. (1974).
[7] M C Golumbic; Algorithmic Graph Theory and Perfect Graphs, Academic Press (1980).
[8] F Harary; Graph Theory, Addison-Wesley Pub. Company (1969).
19] \(F\) S Roberts; Discrete Mathematical Models: Applications to Social, Biological and Environmental Problems, Prentice Hall Inc.(1976).
[10] B D Acharya and M Acharya; On self antipodal graphs, National Academy , Science Letters, India 8 (1985) 151-153.
[11] B D Acharya and M N Varthak; Open neighbourhood graphs, lesearch Report \# 7 (1973), Dept. of Math., I I T, Bombay.
[12] R Aravamudhan and B Rajendran; On antipodal graphs, Discrete Math. 49 (1984) 193-195.
[13] F T Boesch; Synthesis of reliable networks - A survey, 1 FEE Transactions on Reliability \(R-35\) (1989) 240-246.
[14] R C Bose; Strongly regular graphs, partial geometries and partially balanced designs, Pac. J. Math. 13 (1963) 389-419.
[15] R C Brigham and R D Dutton; On neighbourhood graphs, J. Combin. Inf. and Sys. Sciences 12 (1987) 75-84.
[16] F Buckley; Self-centered graphs, in: M Capobianco, et. al. eds., Graph Theory and its Applications, Annals of the New York Academy of Sciences 576 (1989) 71-78.
[17] F Buckley and M Capobianco; Self-complementary selfcentered graphs, Notes of Graph Theory Day 4 (1981) 10-11.
[181 P J Cameron; Strongly regular graphs, in: \(C\) W Beineke and 14 J Wilson eds., Selected Topics in Graph Theory (Academic Press, 1978) 337-359.
[19] C Camazine and M Lewinter; Center distance sets of F-graphs, Graph Theory Notes of New York XVII (1989) 10-11.
[20] P Camion; Hamiltonian chains in self-complementary graphs, Cahiers Centre Etudes Rec. Oper. 17 (1975) 173-184.
[21] C R J Clapham, Triangles in self-complementary graphs, J. Combin. Theory Ser B 15 (1973) 74-76.
[22] C R J Clapham; Hamiltonian arcs in self-complementary graph, Discrete Math. 8 (1974) 251-255.
[23] C R J Clapham; Potentially self-complementary degree sequences, J. Combin. Theory Ser. B 20 (1976) 75-79.
[24] CR J Clapham; Graphs self-complementary in \(K_{n}-e\), Digcrete Math. 81 (1990) 229-235.
[25] C R J Clapham and D J Kleitman; The degree sequences of self- complementary graphs, J. Combin. Theory Ser. B 20 (1976) 67-74.
[26] J Curran; On self-complementary strongly regular graphs, Res. Rep. COOR 78/23, Univ. of Waterloo (1978).
[27] P K Das; Almost self-complementary graphs I, Ars Combinatoria 31 (1991) 267-276.
[281 Y Egawa and R E Ramos; Triangle graphs, Math. Japanica 36 (1991) 465-467.

129] G Exoo and F Harary; Step graphs, J. Combin. Inf. and Sys. Sciences 5 (1980) 52-53.
[30] R A Gibbs; Self-complementary graphs, J. Combin. Theory Ser. B 16 (1974) 106-123.
[31] A W Goodman; On sets of acquaintances and strangers at any party, Amer. Math. Monthly 66 (1959) 778-783.
[32] H J Greenberg, J R Lundgren and J S Maybee; The inversion of 2-step graphs, J. Combin. Inf. and Sys. Sci. 8 (1983) 33-43.
[33] L Guidotti; Sulla divisibilita dei grafi completi, Riv. Mat. Univ. Parma 1 (1972) 231-237.
[34] F Harary; On the group of the composition of two graphs, Duke Math. J. 26 (1959) 29-34.
[35] \(E\) Harary, \(R\) W Robinson and \(N\) C Wormald; Isomorphic factorization I: complete graphs, 'Jrans. Amer. Math. Soc. 242 (1978) 243-260.
[36] F Harary, R W Robinson and N C Wormald; lsomorphic factorization III: complete multipartite graphs Combinatorial Mathematics, Proceedings of the International Conference on Combinatorial Theory, Springer Lecture Notes \# 686 (1978) 47-54
[37] N Hartsfield; On regular self-complementary graphs, J. Graph Theory 11 (1987) 537-538.
[38] G R T Hendry; On mean distance in certain classes of graphs, Networks 19 (1989) 451-457.
[39] \(X\) L Hubalt; Strongly regular graphs, viscrete Math. 13 (1975) 357-381.
[40] K M Koh and N Sauer; Concentric subgraphs, closed subsets and dense graphs, Lecture Notes in Math. \# 1073, Springer Verlag (1984) 100-118.
[41] A Kotzig; Selected open problems in graph theory, in J A Bondy and U S R Murthy eds., Graph Theory and lielated Topics (Academic Press, New York, 1979) 358-367.
[42] G Lorden; Blue-empty chromatic graphs, Amer. Math. Monthly 69 (1962) 114-119.
[43] P A Morris; On self-complementary graphs and digraphs, Proc. Fifth S.E.Conf. Combin., Graph Theory and Computing.
[44] BR Nair and A Vijayakumar; On a class of non-dense graphs: F-graphs, Graphs Theory Notes of New York 26 (1994) 28-31.
[45] B R Nair and A Vijayakumar; About triangles in a graph and its complement, Discrete Math. 131 (1994) 205-210.
[46] B R Nair and A Vijayakumar; Strongly edge triangle regular graphs and a conjecture of Kotzig, to appear in Disc. Math.
[47] E M Palmer; Asymptotic formulas for the number of self-complementary graphs and digraphs, Mathematica 17 (1970) 85-90.
[48] S B Rao; Explored, Semi-explored and unexplored territories in the structure theory of self-complementary graphs and digraphs in A R Rao ed., Proc. Symp. on Graph Theory, I S I, Calcutta, 1976; I S I Lecture Note Series \# 4 (McMillan, India, 1979) 10-35.
[49] S B Rao; The range of number of triangles in selfcomplementary graphs of given order, in \(A \quad R\) Rao ed., Proc. Symp. on Graph Theory, I S I, Calcutta, 1976; I S I Lecture Note Series \# 4 (McMillan, India, 1979) 103-123.
[50] S B Rao; Characterization of self-complementary graphs with 2-factors, Discrete Math. 17 (1977) 225-233.
[51] S B Rao; Cycles in self-complementary graphs, J. Combin. Theory Ser. B 22 (1977) 1-9.
[52] S B Rao; Solutions of the Hamiltonian problems for selfcomplementary graphs, J. Combin. Theory Ser. B (1979) 13-41.
[53] S B Rao; The number of open chains of length three and the parity of the number of open chains of length \(k\) in self-complementary graphs, Discrete Math. 28 (1979) 291-301.
[54] S B Rao; On regular and strongly regular self-complementary graphs, Discrete Math. 54 (1985) 73-82.
[55] R C Read; On the number of self-complementary graphs and digraphs, J. Lond. Math. Soc. 38 (1963) 99-104.
[56] G Ringel; Selbstkomplementäre Graphen, Arch. Math. (Basel) 14 (1963) 354-358.
[57] I G Rosenberg; Regular and strongly regular selfcomplementary graphs, Annals of Discrete Math. 12 (1982) 223-238.
[58] S Ruiz; On a family of self-complementary graphs, Annals of Discrete Math. 9 (1980) 267-268.
[59] S Ruiz; On strongly regular self-complementary graphs, J. Graph Theory 5 (1981) 213-215.
[60] G Sabidussi; The composition of graphs, Duke Math. J. 26 (1959) 693-696.
[61] G Sabidussi; Graph Derivatives, Math. Zeitschr 76 (1961) 358-401.

162] H Sachs; Uber Selbstkomplementäre Graphen. Publ. Math. Debrecen 9 (1962) 270-288.
[63] G Sierksma and HanHoogeveen; Seven criteria for integer sequence being graphic, J. Graph Theory 15 (1991) 223-231.
[64] B Zelinka; Self-complementary vertex-symmetric undirected graphs, Math. Slovaca 29 (1979) 91-95.
```

