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Abstract

In this paper some propertics of fuzzy bridges and fuzzy cutnodes are studied. A
characterization of fuzzy trees s obtuned using these concepis. © 1999 Elsevier
Science Inc. All rights reserved.

1. introduction

The theory of fuzzy sets tinds its ongin n the pioneering paper of Zadeh
[11]. Since then. this philosophy of “gray mathemutics™ [6] had tremendous
impact on logic. information theory. ete. and finds its klpplu.mnnx m “many
branches of enginecring and technology (3] ‘

A fuzzy subset [9] of a4 nonempty set S &5 & mapping 4 S SO A t'uzl\‘
relation on S is a fuzzy subset of S« S wand v are fuzzy rLL”lUnS then
v w) Sup{mu LAV WY 1 2 =SV and gAun :bupl,u(u.u,)/\,t
() A - \,u(m i lh ..... i i < SHowheres A stands oy minimum

. The lhmr\ of fuzzy graphs wus mdupnndunh developed by Rosenfeld 91
dnd Yeh and Bang [10] in 1975, A fuzzy graph s a pair G: (0. u where ris a
fuzzy subsetof § and s a tu 2zy relation on Ssuch that yewrieti Aajr)
for all w.rin S A fuzzy graph H - (7043 is called a fuzzy ,»ubbmph of G (o)
it (y s aiwy and v T < gl evior allu, rob withers Hisacspanning subgraph
icin o= ot for all A mlh jrof kength b 7a Sequence of distmet nodes
.ty such that gl o > () { = l.,._.....u and the weight of thc.
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weakest arc is deﬁncd as its stren, Zthe Iy =y, and n > 3 then pis Ld"Cd a
cycle. Also. Sup{if(u.t): k =1.2.3...} gives the strength of connectedness
between any two nodes u and z, denoted by ;t’(u ). A fuzzy g‘raph G (o, u) is’
connected if u*(u,v) > 0 for all .. ,
- Recently, automorphisms of fuzzy graphs [3]. fuzzy mler»al ardphs [4}. fuzzy:
line graphs 7], cycles dﬂd cocycles of tuzzv graphs [8], etc have also been
studied. ‘ ‘
‘ In. this pdper some properties of tuzzy hndges ‘and fuzz) culnodes are
studied and a characterization of fuzzy trees is obtaired using them.
Throughout, we assume that §'is finite. p is reflexive and symmetric [9]. Inall
the examples & can be chosen in any manner satisfying the definition of a fuzzy
graph. Also. we denote the underlying crisp graph by G*: (¢'. '), where
o = {ueS:au)>0band ¢ = {{n.r) € S x 5 plu. vy > 0}

2, Fuzzy bridges and fuzzy cutnodes

Definition 1 [9] . An arc (u.r) is a fuzzy bridge of G: (a. n) if deletion of {(w.r)
reduces the strength of connectedness between some pair of nodes.

Equivalently. (u, 1) is a fuzzy bridge if and only if there exist x. v such that
(u.r) 15 an arc of every strongest x-1 path.

Definition 2[9). A node is a fuzzy cutnode of G : {o. 1) if removal of it reduces
the strength of connectedness between some other pair of nodes. ‘

Equtvalently, w is a fuzzy cutnode 1if and only if there exist u. v distinct from
w such that w 1s on every strongest w-¢ path.

Theorem 1 [9). The following statements are equivalent.
L. (uov) is a fuzzy bridge.
2 {u.t) is not a weakest arc of any cvele.

Remark 1. Let G : (0. ) be a fuzzy graph such thut G* @ {67y} is a cycle and
let ¢ = min{p(u.v): g{u. vy > 0} Then all arcs (1. v) such that plu.r) > are
fuzzy bridges ot G.

Theorem 2. Let G (0. 1) be fuzcy graph such thar G*: (o Gy as aevele. Then a
-hade is a fuzzy cutnode of G if and only if it is a-common node of to fuzzy
hrla's;fv

Proof Lel w be a fuzzy cutnode of G. Thea the'; exm w and t. other than ' w,
such that w is'on every strongest u-c pith. Now (;°:{a". 17} being a cycle, there
exits only one strongcsl et path c,omammg wand by Remark 1. all its arcs are
fuzzy bndges Thus wis al common node of two' fuzzy bridges. (omersely let
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w be a common node of two fuzzy bnd;,es {u. u) and ( w. 1) Then both (u.w)
and (w.r) are not the weakest arcs of G (Theorem 1). Also the path from u to v
not contzining the arcs (u.w) and (w. )has strength less than z(u. w) Ap(w.e).
Thus the strongest w-r path is the path wow. cand p*(u.v) = 1((!1 W) A;t(w v).

—

Hem.e WS d fuuv cutnode =

Theorem 3 ll wisac ommon nmle of u! lca\r m 0 /u::v hndge\ llu’n wisa fu:.‘:)
‘('unwde v

Proof Lel lu, w) and (u 1) be two tuuw bndgu Thc.n tere ex:st some.u, r
such that' {uy..v)is on every stronuest v path. It w is-distinct from it and rit
follows that w is a tuzzy cutnode. Nexi. suppose one of 1. is w so that (i;. w) is
on every strongest u-w path or (w.u2) is on-every strongest: w ' path. If
possible let w be not & fuzzy cutnode. Then between every two nodes there
exist. at least one strongest path not containing w. In particular. there exist at
least on¢ strongest path p. joining u, and w>. not containing w. This pdth
together with (1. w) and (w.u2) forms a cycle.

Case 1. IF uywou> 15 not a strongest path. then clearly one of {uy.w). (w i)
or both become the weakest arcs of the cyele which contradicts that (. w) and
{w.u>) are fuzzy bridges.

Cuase 2. I wpow un s also a strongest path joining uw; to w>. then
J () = e w) A pw. i the strength ol po Thus arcs of g are at least as
strong as p{u. wi and uf{w, wn) which xmphes that (111, 1w). (w.ua} or both are the
weakest arcs of the cvele, \\huh again is a contradiction. ‘

[

Remark 2. The condition in the above theorem is not necessary, In Fig. 1.owisa
fuzzy cutnode: () and (e v are the only tuzzy bridges.

Remark 3. In the following. tuzzy eraph (Fig. 20 (w05 and (us.1g) are the
fuzzy bndg«.\ and no node is a fuzzy catnnde, Thl\ is-a significant dlﬁcrtnce
from the crisp griph theory.
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Theorem 4. If (u v)is u Iu::y bridge, Iln'n W Y ).

l’roof Suppose lhdl (u r)is tuux bndge and that " w r) exceeds ;:(u r). Then
there exists a strongest w - path with strength greater than pfw.r) and all arcs
of this strongest path have strength greater than s(u.v). Now, this path
together with the arc (u. v) forms a cycle in which (u. 1) is the weakest arc,
LOﬂll’ddlleg that (u.¢) is a fuzzy bridge. : :

Remark 4. The converse of the above theorermiis not true. Th«, wndmon lor lhe‘
converse 1o be true is discussed in Theorem 9. ’

3. Fuzzy trees

Definition 3 [9]. A connected fuzzy gruph G: (5. p) s o fuzzy tree 1f it has a
fuzzy spanning subgraph F @ {a. @) which s a tree. where tor all ares {v.7) not
mF, pluor) < v,

Equivulently, there is a path in £ between v and r whose strength exceeds
plu. ).

Lemma 1 Y. It (tov) is o fuzzy subgraph of (e then Jjor il
oo v o)< it tule),

Theorem 8. /1 G : (o u) iy u puzzv tree and G Lp ) s not a tree. then there
exists at least one are (u.vy in g for which [l('t ry<o ).

Proof. I G is a fuzey tree. then by definivon there exists o fuzzy spanning
subgraph F: {a.v). which is a tree and p(u, v < v7iw. o) tor all ares e, ) notin
FoAlso v* (u, o) < g ey by Lemma V. Thus plu. o3 < 0 (e e for all (w03 not
in F and by hypothesis there exist at least on arc wer) not in F. which
completes the proof.

w

g
e
53
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‘Deﬁnmon 43 A mmplete fuzzy graph is a 1uu) gmph G: ( 6. 1t) suéh_fhat
sl r) = rf(u)/\r‘fl iy dll wand r. ‘ S

Lemma 2 [3]. i1 Gis u‘t‘omp/eleﬁ/::_r'gra‘ph; then' }t’( " r) = plawr)
Lemma 3 [3] A Complete /11 oy grupll fas Im’/’ilZ::l' cutnodes.

Remark S. Tht. s.omersc ol lemma 2 is not true (Flg 3) Also, d complete fuzzy
grdph mdy havc 4 fuzzy bndge (Fl"' 4)

Theorem 6.1/ G: ((r. M) i,\"u Juzzy tree, Ilwn G is not mmﬂctu ~

Proof: If possible let 7 be a complete fuzZy graph. Then *(u.v) = p{u.r) for
all u. ¢ flemma 2]. Now G being a fuzzy tree, plu: v} < v'(u.t) for all {w.v) not
in F. Thus 2 (u.r) < v’ (u.r). contradicting lemma 1. ‘

Theorem 7 [9]. If G is a fuzzv wree. then ares of F are the fuzzy bridges of G.

Theorem 8. If G is u fuzzy tree. then interndal nodes of F are the fuzzy cutnodes of

G.

Proof. Let w be any node in G which is not an end node of F. Then by Theorem:
7.it'is the commeon node of at feast two arcs in F which are fuzzy bridges of G
and by Theorem 3..w is a fuzzy cutnode. Also. if w is an-end node of F. then w is
not 4 fuzzy cutnode: for. if’ so. there exist v r distinet from w such that w is on
every strongest « ¢ path and one such path certainly lies in F. But w being an’
end node of F. this is not possible. I

Corollary: A fuzzy cutnode of a fuzzy tree i the conmon nudc of ui /ul\t o
Juzzy bridges.
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4. Main result

Theorem 9. U1 (« ) i a fuzzy tree if and only if the following are cquivalent,
(1) {u. e} is a fuzzy bridge.
A2 1 v) = pluv).

Proof. Let G: (o.p) be a tuzzy tree and let (w.v) be & fuzzy bridge. Then
) = pla.r) (Theorem 4). Now. let (u.r) be an arc in G such that
i, ) = g ). 16 G is a tree. then clearly {(w, ) Is a fuzzy bridge: otherwise,
it follows from theorem 35 that (w.v) is in F and (u.r) 18 a fuzzy bndge
(Theorem 7).

Conversely. assume that (l) = (2). Conslru«.l 4 maximum spanmng tree
T:{a.v)tor G{2). If tu.c)is in 7. b\ an algorithm in [2]. g@*(u.e) = pln.r)
and hence (i.1) is a fuzzy bridge. Now. these are the only fuzzy bridges of G;
for, if possible let (. ¢') be a fuzzy bridge of & which s not in 7. Consider a
\.)(.IL C consisting of (¢'.") and the unique «-+" path in T. Now arcs of this

" path being fuzzy bridges they are not vxml\u.l arcs of C.and hence
‘(u ') must be the weakest arc of € and hence cinnot be a fuzzy bnd;__e
{Theorem ).

Moreover, for all arcs (i’ ') not in T. we have pted . ') < vt o'y for af
possible let pia’. ¢y = v’ 7). But pd . o') < 7 (o ) istriet |mquahl} anlds,
since (¢, 0") Is not a fuzzy brdge). So. v'{u'. ")y < gl ¢y which gives a
contradiction. since v (u'. 'V is the strength of the umique o' ' path in T and by
an algorithm in 2} 2/ ) = (' ), Thus T oisothe required spanning

-

subgraph: Fowhich is:a tree and hence G is a fuzzy tree. 75

-Remark 6. For a lufzx tree G the spanning: subﬂmph Fis unique (Thu)ruﬂ 7.
Tt follows from the pmol of the above lhconm thal 7 is nothing but the
maumum sp.mnmd tree T of ( :
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Theorem 10. A fuzzy graph is a fuzzy tree if and only if it has a wenigue maximum
spanning tree.

Remark 7. For a fuzzy graph which is not a fuzzy tree there is at least one arc in
T which is not a fuzzy bridge and arcs not in T are not fuzzy bridges of G. This
observation leads to the following theorem

Theovem 11, If G : (0. ) is a fuzzy graph with 6™ = S and |S| = p then G has at
most p — 1 fuzzy hrul_gc S.

Theorem 12. Ler G(o. p) be a fuzzy graph und et T be a muximian spmmmg tree
of G. Then end nodes of T ure not fuzzy cut nodes of G. ‘

Corollory: Erery fuzzy gruph hus at least two nodes which arve not fuzzy cut
nodes.

However. there are fuzzy graphs with diametrical nodes, nodes which have
maximum eccentricity [1} as fuzzy cutnodes, distinct from crisp Umph theor)
See «; and us of Fig. 3
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