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Abstracts

RMS measuring device is a nonlinear device consisting of linear and
nonlinear devices. The performance of rms measurement is influenced by a number
of factors; i) signal characteristics, 2) the measurement technique used and
3) the device characteristics. RMS measurement is not simple, particularly when
the signals are complex and unknown. The problem of rms measurement on high
crest-factor signals is fully discussed and a solution to this problem is presented
in this thesis.

The problem of rms measurement is systematically analized and found
to have mainly three types of errors: (1) amplitude or waveform error 2) Frequency
error and (3) averaging error. Various rms measurement techniques are studied
and

into

free
and

compared. On the basis of this study the rms -measurement is reclassified
three categories: (1) Wave-form-error-free measurement (2) High-frequncy-error
measurement and (3) Low-frequency error-free measurement. In modern digital
sampled-data systems the signals are complex and waveform-error-free rms

measurement is highly appreciated.

Among the three basic blocks of rms measuring device the squarer
is the most important one. A squaring technique is selected, that permits shaping
of the squarer error characteristic in such a way as to achieve waveform-errob
free rms measurement. The squarer is designed, fabricated and tested.

A hybrid rms measurement using an analog rms computing device and
digital display combines the speed of analog techniques and the resolution and
ease of measurement of digital techniques. An A/D converter is modified to perform
the square-rooting operation. A 10-V rms voltmeter using the developed rms detector
is fabricated and tested.

The chapters two, three and four analyse the problems involved in rms
measurement and present a comparative study of rms computing techniques and
devices. The fifth chapter gives the details of the developed rms detector that
permits wave-form-error free rms measurement. The sixth chapter, enumerates the
the highlights of the thesis and suggests a list of future projects.
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CHAPTER - ON E

Introduction

1.1) ROLE OF HMS MEASUREMENT

RMS measurement gives the r_oot_-nleany-square .value (rms) of the
measurand. Basically it is a measure of statistical error to express stability of
standards and product tolerances. Secondly, rms value is the measure of heating
power of a signal. Thirdly, rms value is the conventional measure of signal
amplitude. These basic measurements can be extended to measure various signal
and device characteristics.

A conventional a. c. instrument however is either average or
peak responding instrument calibrated to read rms of a sinusoid. The true rms
measurement is a must for signals with unknown complex waveforms. In modern
digital and sampled data systems, in S_CR controlled power circuits and in noise
control and measurement circuits, the wave form are complex. Thus, the true
rms measurement is indispensdble today.

1.2) DEFINlTlON OF RMS

Next to a mathematician an electrical engineer is interested in the
term ‘rms’. The rms is a mathematical function of variable ‘x’ defined as
(Ref. 1).

a+T 0.5
__ 1 ___

rms = ‘__~—.|-rfxz dbl
a

In electrical engineering. the rms value is a measure of signal
amplitude. A signal's rms value is equal to the dc signal that would
dissipate the same amount of power as the signal dissipates.
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1.3) BASlC METHODS OF HMS MEASUREMENT

Basically there are three methods of rms measurement (1) To use a
proper scale factor on conventional a. c. instruments. (2) To use a
true rms instrument that consists of a heater and a converter like a thermopile.
(3) To simulate the rms computation with the help of analog or digital
computing circuits.

The first method is useful for sinusoidal and slightly distorted signals.
lt can be used for complex signal if its crest factor or form-factor is known.
The amount of error introduced in the measurement without using the correction
factor is found in many references (Ref. 2 to 7). As quoted by Scheingold
Er Counts, the rectifier type a. c. instrument reads 11% high on dc
or symmetrical square waves, 4 percent low on triangular and saw - tooth waves
and 11.3% low on gausian noise.

The second method is widely used. It can claim the highest accuracy
because its action is directly based on the rms definition. However, there are
certain limitations imposed by basic characteristics of the converter. As discussed
by Baird and others (Ref. 8) a thermocouple device has (1) a sluggish response
(2) inaccuracy at low level inputs, (3) susceptibility to burn out and
(4) thermal problems.

The third method is also based on the rms definition and can claim
the highest accuracy. This method is still in the development stage. True-rms
function generators are available commercially, e. g. Teledyne Philbrick's 4370,
Burr Browns 4340. Still, there is a want of true rms computing instrument
which will measure the true rms value easily, quickly and accurately irrespective
of the signal waveform.

Historical developments of rms instrument can be grouped in three parts.
(1) Before 1960 electromechanical and thermal devices were used, (2) between
1960 and 1970, various" square-law devices e. g. diode, transistor-bipolar and
field effect. thermistor etc., were used.(5)Though the diode function generator was
used for rms measurement as early as in 1960, the real era of the computing
rms techniques has started since 1970.
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1.4) THE PROBLEM

The application note on the digital voltmeter by H. P. (Ref. 9) says.
It should be mentioned that there is a third type of a. c. converter
known as quasi- rms converter. A quasi rms technique simulates true rms
response using operational amplifiers to square input, take the average of the
square then take the square root. This type of converter holds a lot of
promise but is not widely used. This synthesized rms response is not
mathematically perfect and for that reason is limited to symmetrical wave shapes.

Thus, the problem of simulation of true rms computation using
operational amplifiers is taken up.

The problems encountered in rms measurement are systematically analyzed
in the second chapter by using a novel concept of an idealized rms detector.
Various rms computing techniques and their areas of applications are presented
in the third chapter. The fourth chapter compared various techniques for squaring,
averaging and square- rooting. Based on the results of the compartive study of
devices and techniques appropriate recommendations are made for rms measurement
on high crest-factor signals. The development of the rms detector for high
crest- factor signals is presented in the fifth chapter.

Thus. a solution to the problem of rms measurement on high crest­
factor signal is presented in this thesis.
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CHAPTER - TWO

Problems in RMS Measurements

2.1) mmooucnou

One comes across a variety of signals. The quality of rms measurement
on these signals is decided by the quality of the measuring device as well
as by the signal characteristics. The performance oi rms instrument is a
function of both, the instrument characteristics and the signal characteristics. For
the sake of generalization, the concept of iidealized rms detector is introduced.
lt is supposed to have the ideal rectangular amplitude and frequency response
characteristics. The performance, the amplitude and frequency errors, on various
signals is determined and compared.

2.2) INPUT TO HMS MEASURING DEVICE

The input to an rms measuring device is physical data or an
electrical signal. The input can be classified into two broad -classes (a)
deterministic data and (b) random data. Deterministic data can be further
classified into two subclasses. Periodic data-sinusoid and complex signals that
are formed by sum of two or more commensurately related sine waves, (2)
Nonperiodic ‘data-transient data and almost periodic formed by summing two or
more sine waves with arbitrary frequencies. e. g.

X(t) = X1. Sin 2t + X2 Sin [~J(5O).t]. (Ref. 1)

The discussions presented in this chapter are restricted to the rms
measurement on periodic and stationary ergodic random signals only. The
stationary ergodic processes are those for which the time averaged properities
are equal and therefore the averages over only a single sample function can be
considered.
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2.3) RMS DETECTOR AS A BLACK BOX

Let rms detector be represented by a black box. The output of this
box is a measurable entity-voltage, pulsewidth or deflection-which is directly
related to the input rms value. Like all other devices. this box has two
basic characteristics, the amplitude and frequency characteristics. The amplitude
response is specified in terms of a dynamic range. It is equivalent to the
d. c. measurement span and is expressed as a ratio. The frequency response
is expressed in terms of the bandwidth.

Since the rms detector. essentially incorporates a nonlinear device, the
amplitude response is limited both at the high and the low-level inputs. At
the higher end. the limitation is imposed either by the overload capacity or
by the device response at high- level inputs. For example the diode and the
transistor type square law circuits loose squaring property at high level inputs.
Secondly at the lower-end the limitation is imposed by noise and also by
the low- level response of the device For example, thermocouple is not
satisfactory, as a square law device at low-level input. Thus, unlike a. c.
conventional instrument, the amplitude response of rms instrument is important
and must be considered at both high and low levels.

ln true rms measurement the input is necessarily d. c. coupled to
the instrument. At higher frequencies, the limitation on the frequency response
is imposed by the cutoff ‘frequencies of linear and nonlinear devices of the
black box. On the lower side, the averaging property is the deciding factor.

2.4) THE DETECTOR PERFORMANCE AND SIGNAL CHARACTERIST!CS

Random data are characterized by power density spectra and probability
distribution function. On the other hand, complex periodic signals are characterized by
discrete power spectra and by a ratio -of peak to rms valve called the crest­
factor (CF). The performance of rms detector on a particular signal is decided
by the three factors. (1) the relationship between the detector band width and
the signals power-density spectrum, (2) the relationship between the detector's
dynamic range and the crest-factor or the probability distribution function of
the signal and (3) the averaging property of the detector on low-frequency
signal components.
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The signal characteristics of commonly occuring signals are usually known
but the instrument characteristics differ from instrument to instrument and are
less frequently available. Hence as a first step in the analysis of the problems in
rms measurement, the idea of an idealized rms detector is introduced.

2.5) THE IDEALIZED RMS DETECTOR

The two basic characteristics of rms detector are (1) frequency response­
The relationship between the proportionality constant (M), between the rms input
and the detector output, and the signal frequency. (2) Amplitude response -The
relationship between the proportionality constant (M) and the d. c. input level.
The two characteristics of the idealized rms detector are assumed to be ideal
rectangles show in the figure (Fig. 2.1)

The detector, responds to only those components of a signal with
frequency less than the cut - oft frequency (fc). The components with frequencies
higher than fc are just thrown off. Secondly, the input amplitudes which fall
beyond the dynamic range (VL to VH) are rejected by the detector. It is
assumed that the attenuator attenuates
always lies within the dynamic range
may or may not. lt must be noted
capable of changing the crest - factor
useful in solving the problem of rms

These two characteristics will
detector on a given input signal. For

the input signal such that the peak value
of the detector but the minimum value
at this stage, that the attenuator is not
of the signal and therefore it is not
measurement on high crest - factor signals.

help to determine the performance of the
example, let the input signal be f(t) as

shown in the figure [Fig. 2.2 (A)]. The signal as seen by the idealizedvmgnls?
detector is shown in the figure [Fig. 2.2 (B)] It gives out at its outputha
signal as seen by it. The difference in rms values of the two signals,
represented in the figures [Fig. 2.2 (A) and (B)], is the amplitude error‘ and
can be determined.

Secondly, let us consider the rms measurement on a distorted sinusoidal
signal with repetition frequency some what lower than the cutoff frequency (fc)
of the detector. Let the distortion components be 5% third and 5% fifth
harmonics. The idealized rms detector sees, only the fundamental component of
signal and throws off the harmonics as these lie beyond the cut off frequency
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(fc). The difference between the rms values of the fundamental (i.e the signal
seen by the detector) and the input distorted sinusoidal signal, is the ‘freque­
ncy error‘ and it can be determined.

This basic concept of an idealized rms detector is used to determine
the generalized performance of rms measurement on complex deterministic and
random signals.

2.6) FREQUENCY ERROR

The‘ frequency error is the error introduced by the limited frequency
response of the rms detector. It is decided by those frequency components of
the signal that lie outside the rectangular response characteristic. The appendix I
glves a flow chart for determining the frequency error in-- the rms measurement
of a variable duty-cycle pulse train. The parameter ‘K’ is the ratio of the
detector's band width to the fundamental signal frequency (i.e. repetition frequency).
The frequency error is plotted as a function of K (Fig. 2.3), it increases as K
decreases. Similar plots can be obtained for various other signals. The formulae
to determine the Fourier Coefficients for commonly occuring signals are wel|
known (Ref. 2). A typical set of signals is tabulated in the table. (T 2.1)
The derivations are given in the Appendix ll. The frequency error plots for a
commonly occuring periodic signal can be obtained. The flow chart of the
Appendix lshould be modified by using the appropriate formulae from the table
(T. 2.1), for the true rms value and the Fourier Coefficients.

In case of a signal with continuous power-density spectrum, the
frequency error is determined as given below:

A power density spectrum of a signal is represented in the figure
[Fig. 2.4 (A)]. The power density spectrum of the signal as seen by the detector
is shown in the figure [Fig. 2.4 (B)]. The power density of that portion of
the signal thrown out by the detector is shown in the figure [Fig. 2.4 (C)].
The frequency error in the measured mean square value (asf) is given by

Shaded area of Fig. 2.4 (C)35f = e—     —-— (1)
Net area of Fig. 2.4 (A)



_..9._.

The.corresponding error ( art) in rms measurement can be determined by
applying the following rule (Ref. 3):

IF y = f(x),

a[f(X)]Ay = -—-*"—"—l Ax
6x

where Ax is the absolute error x and Ay is the corresponding absolute
error in y.

The absolute error in measured rms value A (rms), corresponding to
that in the mean square value A (rms). is given by.

0 (vms)
A (rms) = ‘i-""" - A (ms)

8 (ms)

3 (ems) 0 . 5inau­

a (ms) \lms
therefore,

0.5 A (ms)A (rms) = "
ems

and

A(ms)5» - 05 ——— I
ms

I. 8.

Brf s= 0 . 5 Est -- (2)
Thus the frequency error in case of signals with known power-density

spectrum can be determined using the relationships (1) and (2). The table
(T 2.2) presents the frequency error in case of rms measurement on various
signals with known power - density spectrum (Ref. 4). The derivations are given
in the Appendix Ill.
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2.7) AMPLITUDE ERROR

The problem of the amplitude error has not received the same amount
of attention as the frequency error has. There are brief references to it,
such as:­

1) Handler and Cate (Ref.5) quote, the squaring and square-rooting operations
make the output a nonlinear function of the input, therefore, the percentage
error is amplitude dependent.

2) Baird and others (Ref. 6) quote, the high crest-factor performance is not
easily obtained, an rms voltmeter with a crest-factor rating must have amplifier
with a sufficient dynamic range to pass signals that have a peak magnitude
many times larger than the full scale rms value.

A systematic study of the amplitude error is presented here. An rms
detector consists of one or more nonlinear devices. The performance of a non­
linear device is limited both at low and high level inputs. Therefore, the ratio
of the maximum to minimum levels of a given signal plays an important role.
Let us consider a pulse train (doublet) which is mathematically represented by

f(I) = V, 0<t<tp
It is periodic signal with zero average value and a duty - cycle D =—- tp /T.
ln case of low duty- cycle signals the ratio V8 [Vb may exceed the detectors
dynamic range and the measured mean square value will be in error by an

amount [v%(1_ D)]

The amplitude error is computed for various commonly occuring periodic
signals and is tabulated in the table (T. 2.3) The error is expressed in terms
of the parameter ‘a’ equal to the reciprocal of the detector‘s dynamic range.
The derivations of the frequency and amplitude errors are given in the
appendices (Ill) and (IV) respectively.
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In case of the random signals, the amplitude error in rms measurement
(Sra) is related to the probability density function p (x) of signal x by the

relationship,

x
min

0.5
Era = —-~——- -Jx2p(x)dx

X28V6 O

where x is the amplitude threshold of the rms detector i. e. VL = x _.min mm
and x2 is the mean square value of the signal.

ave

2.8) COMPARISON OF AMPLITUDE AND FREQUENCY ERRORS

The amplitude error is independent of frequency, where as the frequency
error increases as the signal frequency increases. The amplitude error may be
insignificant in case of high frequency signals, but it must be considered for
measurements on low frequency signals. For example i) The two errors are
almost equal in case of a 0.1 duty cycle doublet with repetition frequency of
one-tenth of the instruments bandwidth 2) the amplitude error is about 10
limes the frequency error in case ot a 0.1 duty cycle doublet with repetition
frequency of one-hundredth of the instruments bandwidth.

2.9) AVERAGING ERROR.

Averaging error is a typical characteristic of rms measurements. It is
decided by the characteristics of the averaging device used and also by those
of the computation techniques used. lt is a practice to use a low pass filter
for averaging. An integrator is preferred in case of low frequency signals. The
averaging characteristics of both the devices are discussed by Bendat Er Piersol
(Ref.7). It is well known that for periodic signals, the time constant of the
filter should be greater than the signal period and output attains a steady stage
avarage value after the time interval of 4 to 5 time constants. In case of
random signals however the output continues to fluctuate and possesses
statistical as well as bias errors The bias error can be avoided by forming
the sample record into a loop and recirculating the record to obtain a
continuous presentation of data.
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The effect of the fluctuating filter output depends upon the measure­
ment technique used. This is therefore discussed later in the fourth chapter.

2.10) CONCLUSION

A systematic study of errors in rms measurement is presented for the
first time. Basically there are three types of errors, amplitude, frequency and
and averaging. The problem of amplitude error has received lesser attention. The
study has however revealed that the amplitude error plays an important role in
rms measurement on high CF signals of medium and low frequency. Such type
of signals appear frequently, e.g. SCR controlled circuits, acoustics, communication
baseband signals, noise measurement and control.
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TABLE T. 2.2

Frequency error for random signals

_ Power density \Signal 1 . ‘* fu nctnon
Frequency error

in mean square
measurement

1_ _ \ _ , s__ Hi  _ _ _
\

,1 with (10 - -) <4 f < (fo 4*) *1» 2 2 ABand - pass M f fc- fo
noise ‘I G  a ‘ Est 2 [  -— B

G (f) -: o otherwise \
\

1‘ x\ \f 4a ‘A
Exponenual 1X 82 -E— 4T.“ 2 "2 ;

\

2 -—-1 2 ii‘ fcT‘. 8cs (f) =    A BS, = 1 - - tan ( _-_-W

Exponential Am; _ 1 __1
cosine \ .1.

\A 1T
Hi

or G(f)=2a! T ~ -e 1   L + __- _­

M 854:! 1--—- tan [21T(fc+fo)/a]
TT\ 1 -1tan [21T(fc--fo)/a] .

V —_ 1 1 bi
\ '-- a2 + 41r‘1(f+fo)2 a2 + 4TT2 (f-—-fo)2 __

iv­

.1-—



Amplitude error in RMS measurement
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TABLE 2.3

on Complex Periodic Signals

Periodic signal ‘ Csa Bra
Triangular

Saw tooth

Doublet pulse
train (Law duty

cycle )

Sinusoid or
rectified

sinusoid

a‘ 0.5 a3
a* 0.5 a3

0.5 D
D

2 —-1 2 1 —-1 2
-f [sin a —av'(1—-a )] j:{sin a —a\'(1—Ti 3 ||

\

\
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CHAPTER - 1|-mes

RMS Measurement Techniques
and Applications

3.1) INTRODUCTION

The latest among the basic rms measuring methods is the rms computing
technique The rms function is simulated with the help of analog or digital
computing devices. Since the instrument is based on the mathematical definition
of rms value, it can claim the highest accuracy. However, only a few truely
computing rms instruments, without using a thermal converter, are commercially
produced.

In this chapter various rms computing techniques are discussed. Their
characteristics are compared in order to recommend a computing technique for
rms measurement on high CF signals. The applications of rms measurement
also are presented in this chapter.

3.2) DIGITAL RMS COMPUTATION

A general scheme of digital rms computation is shown in the figure
(Fig. 3.1) The test signal is sampled, quantized, encoded and fed to the
computing device which uses a certain algorithm to simulate the rms function.
The sampler plays an important role. The fundamental question to ask about
the number of samples is, ‘How often must a given signal be sampled and how
many samples must be processed so that the computed rms value is close to
the true rms value within the specified limit ?‘ The solution to this problem
is discussed in the fourth chapter.

A microprocessor can be used to compute rms value by using an
appropriate algorithm (Ref. 1). At the same time the microprocessor .can also be
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programmed to select the sampling frequency, number of samples etc. The
Hewlett Packard's surveying equipment, HP 3805 A-a distance meter, incorporates
a microprocessor that computes standard deviation and provides automatic atoms­
pheric correction by averaging over the selected number of measurements (Ref. 2)

Alternately, rms value can be computed by using hard-ware techniques.
Kitai (Ref. 3, 4, 5) gives the following algorithms:

(1) Integral square value (IS):2 n—1 2 ri|$ Z .._.... 8 ;1, ,_ ..__ 8 1 (8 r )n2 r~1 n2 m s ri:1 i
Where n is the number of quantization levels, t, is the time during which
the test voltage lies above the positive or below the negative r'th level, m
is the number of samples, t is the sampling period and r. is the quantizeds r
level of the i'th sample

(2) Square - root Algorithm:

It S < N
X == X + 1new old

2S xx =8 +2X +1new new old old
lf S > N
X = X —— 1new old

S, = S - 2 X + 1new old old
Thus, the rms computation by digital methods is a very interesting topic

on the other hand as stated by Rizenman (Ref.6): Until the prices of
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microprocessor-based devices are reduced considerably, these can be used primarily in
applications where they can perform several other functions and where the cost
is justified.

3.3) ANALOG SIMULATION OF RMS FUNCTION

1) Direct method: simplest possible simulation, one can think of is
the direct rms computation as shown by the block diagram in FIG 3.2. It
requires three nonlinear blocks; squarer, averager and square-rooter. This technique
is comparatively less frequently used (Ref.7)

2) Comparison technique: ln principle, the rms instrument works equally
accurately on both d.c and a.c. signals. In comparison technique. the rms of
a test signal is measured in terms of its d.c. equivalant. In the figure
[FIG 3.3 (A)], the d.c. reference (VDC) is adjusted to get the mean square
indication equal to that for the complex a.c. signal. The d.c. reference can be
automatically adjusted by using the feedback as shown in the figure [Fig 3.3. (B)].
Like any other comparison methods this rms measurement technique is also popular
Ref. 8, 9, 10).

Alternately, a fixed d. c. reference is used and the test signal is attenuated
or amplified -such that its rms value is brought to the level of d. c. reference
level (Ref. 10,11, 12) In Fluke's rms digital voltmeter (Ref. 11) the amplifier

gain is automatically adjusted by controlling the" feedback factor ( B) of the
amplifier. The feedback factor (I8) is then a direct measure of the signal's rms
value. Nelson (Ref. 13) uses the same technique of adjustment of the feedback
factor of a feedback amplifier to raise the signal's rms level to the reference
d. c. value.

One is tempted to conclude that this technique is free of amplitude
error as the signal level is always brought to a reference level. Unfortu­
nately, this conclusion is not correct because of the fact that the waveform and
its crest-factor are not changed by attenuation. '

In Russia (Ref. 13) a.c. reference voltage is used for the comparison.
A special reference generator is used which develops a reference a.c. voltage
with waveform characteristics same as those of the test signal.
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3) Implicit method: The third analog computing technique is termed as
'lmplicite method’. It is called ‘implicit!-2'. because it neither includes a square­
rooter, not does it contain an ac-dc comparator. The block diagram is shown
in the figure (FIG 3.4). A special functional block called aft /b block is used.
The output of this block is related to the input by the following relationship

V1 1 V2‘ lb
in

As seen from the figure (FIG. 3.4) the ‘b’ input of the a‘—’ /b block is the
averager output (V0) With a perfect averaging, the output (V0) equals the rms
value of the input V;,,_

The a2 /b operation can be implimented in a number of ways:
i) Variable transconductance method (Ref.14), 2) Logarithmic amplifiers (Ref.15)
and 3) Diode function generator with sliding break points (Ref. 16).

This computation technique introduces a new class of circuits wherein
the feedback is not conventional. The two essential parts Viz the reference input
and the error detector, of a conventional feedback system are absent. The
feedback is present however, and it controls the parameter (1/b), i.e the transfer
coefficient of the squarer block. The effects of the unconventional parametric
feedback are discussed in the next section.

3.4) UNCONVENTIONAL FEEDBACK IN |MPLlClT RMS COMPUTAT!ON

in the figure (FIG. 3.4) the averager output is fed back to form ‘b’
input of the a2 /b block. This feedback circuit is different from the conven­
tional one as the reference signal and the error detector are absent. Therefore,
the standard methods of feeback circuit analysis are not useful. In the analysis
presented below, it is assumed that the multiplier is the ideal one. Two averaging
techniques are separately considered. It is also assumed that the output voltage
reaches a steady state value (V08) and its d.c component is a measure of the
input rms value.
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-R. C. low pass- filter as an averager

From the figures Fig. 3.4 & 3.5,

Va"—V0v,, = _-_ I --_-- at,C R
2

where va = vi" I vo .

Substituting for Va and rearranging.1 2 2
vo =-E--_l(v;,,-—vO)/Rvo dt.

Differentiating on both sides and rearranging,- 2 2
RC V O ' V 0 "7:  _" V O2 C OLet vo = x; v., - ve = 0.5x

Substituting and rearranging,- 2
x + (21 RC) x =- (2/ RC) vi“

The solution of this differential equation is

-2t/RC -2t/RC 2t/RC 2x = Ae + e I(2]RC) ~ e - vi“ dt.

The steady state solution X5 is given by the second term. Thus the
steady state output voltage V0, is given by,

2 - (2t / RC) 2t I RC 2V08 = .X, = e I (2 / RC) e vin dt.
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One cannot do any approximation at this stage because Xs does not
appear as a voltage drop‘ across any element in the actual circuit. The measured

rms value is (V0,) and is given by1n¢— -1'-Q-bi ‘__ -(21/nc) 21/nc 2 0.5  __"Os ~ Aw ‘_ (e - {(2/ac) - e . vi" at) __; (3)

It is interesting to note that the measured rms value V0. is

not equal to the square root of the mean square value (X, ) but it is the

average of the square-root of Xs. Though X5 is the true mean square value

V05 may or may not give the true rms value.

ii
The value of V05 can be calculated for various commonly occuring

signals like d.c. ramp and sinusoidal signal. The calculations using the equation
(3) are given in the appendix V. For a d.c. signal the true rms value is
measured. For a sinusoidal signal the d.c. error is (1 /16 [1-1-(W2 R2 C2 )]).

-1

and it is small if RC >> -. The results are interesting for a ramp signal
(9

(aft
The measured value approaches the truetvalue it (RC/T) << t (t). Since f(t) < 1.
the time constant RC must be smaller than the periodic time T. This requir­
ment is contradictory to that for the perfect averaging of sinusoidal signals.

Thus a simple R.C. low pass filter is not an appropriate choice in
the implicit rms computation technique.

Integrator as an averager

With integrator as an averager in the figure (FIG. 3.4) the output voltage
vo is given by

V0 = [1/T1 f [1/RC1 [\/Five] <11.
In
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C be e ual to one. Differentating on both sidesLet the integration constant (1.[R ) q
of the equation and rearranging it.

U

lVo ' V0 =‘ (V3, T)
In2 O05-x.Substituting x = vo and vo - vo = ­

X = 2 (vj-’lT)
ll’!

The Solution of this differential equation is

t
x = _/‘ (2/T) vifdt + k,

in

Where k is the arbitrary constant.

Now, the output voltage is given by

0.5
vo == X 2 2=[/tzitivi. di+I<11...

The measured rms value is the output voltage at t = T ie. V0, say,

Vflt

Since the value of k is decided
stant results, it is essential to set k equa

-1t 2 1;=[f(2/‘)Vindt+k]
by the initial conditions; for consi­
I to zero by fully discharging the

t an measurment or computation.integrating capacitor prior 0 y

Secondly,

V0, v2 ( rms value )

with k = O the measured value is given by
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Thus, one must be careful while using the integrator as an averager
in the implicit RMS computation technique.

3.5) COMPARISON OF THE THREE RMS COMPUTING TECHNIQUES

ln principle, all the three. methods compute the exact rms value, and
their performance is then decided by the characteristics of the individual blocks
used. All the three methods need a squarer and an averager. The influence of
squarer and averager characteristics on the rms measurement is different in the
three cases. In the paragraphs to follow, an attempt is made to analyse the
three methods to study i) the effect of squarer error and 2) the effect oi the
averager ripple.

3. 5-1) THE ROLE OF THE SOUARER ERROR

A squarer is assumed to possess an absolute squaring error (v'~‘ ).
It is interesting to study how the rms measurement error, (e) expressed as
the percentage of full scale. is related to v2 . It is a practice in error analysis
to assume that only a particular error or error source is present; therefore the
squarer output only is in error whereas all other blocks are assumed to- be
ideal. For simplicity l:l correspondence is assumed.

a) Direct Computation method

The ideal output is given by,

em _ ......  _o.s= l l._.!" __

The rms output in presence of the squarer error (v2 ) is given by,

._. --0.5
__,___- In 3V6 ____

The error in the mean square value

3 s= vr 1 ( vr >
rms
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The corresponding relative error in rms value is approximately given by

“\ ‘-'\or = 0.5 5 s (Please see. p. Q )

The corresponding percentage error Q in rms output is given by

"\
e s [0.5 °s Vrms] / Vls'

substituting for as, i
6 -—-- 0.5 ( v'1 /Vms - V“)

where \/is is the fullscale output and Vms is the rms input. ln the worst--- 2
case v2 equals the specified maximum error of the squarer, equal to (Gs - Via .)

Thus the accuracy of rms measurement can be related to that of the
squarer, Gs, by the relationship:

G-To 0.5 Es Vrs / Vms.

Thus 6 is inversely proportional to Vms and therefore the lower side of the
dynamic range of rms measurement is limited by the squarer error. If permissible
value of 6 is same as Gs, the rms output at low level is limited to 50%
fullscale. Thus the dynamic range is only 2:1.

2) COMPARISON METHOD
2

In this case the transfer error (v, ) of the squarer should be
considered. The relationship can be derived similarly and is given by,

6 ‘—"‘  est Vfs ) I Vrms ;

where Est is the specified maximum percentage transfer error of the squarer.

In the modified comparison method an adjustable-gain amplifier is used
to raise the input rms value to a fixed reference level. The measured rms
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value is then proportional to the reciprocal of the adjusted amplifier gain (A).
and therefore for small errors,

35::-0.5-A(A==)/A2=_-E‘-'1
A

The value of ar in terms of the transfer error v, can be determined from
the basic equation.

[A2 V2 ] 1 V2 + v2in ave dc t
‘“\

The relative error in rms measurement or is then given by,

A t dc
"\

Since V 1 is constant, Cr is directly proportional to V 1dc t
3) IMPLICIT METHOD

The basic relationship governing the rms measurement in this case is,

2
[ Vin lave

V0
:.'VO

in the presence of the squarer error V2 the equation can be written as

2 2 2
[Vin + V ]ave : V0

Thus the relative error in rms measurement

'\ _-—- 2
°r=o.5 35 Z 0.5 ( v1 / v,,,,, ).
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The percentage error in rms measurement (6)can then be related to the maximum
possible percentage error of the squarer (€s):

Q: 0.5 €s Vrs I Vgms

In conclusion. the percentage error (6) in rms measurement is inversly
proportional to the input rms value in all the cases except.the modified com­
parison method using the adjustable gain amplifier. The squarer percentage error
and the corresponding error in rms measurement are plotted against the d.c.
input (FIG. 3.6). lf the squarer with one percent constant error is used to
measure the rms value, the dynamic range, for one percent accuracy, is limited
to 2: 1. Thus, there is a need of a squarer with adjustable error characteristic.

3.5.2) THE ROLE OF AVEHAGER RIPPLE

ln practice, the averager output consists of a d.c and a low frequency
ripple caused by stray or by input signals. The ripple introduces fluctuations in
the indication by the final output device. These fluctuations can be removed by
providing heavy damping. In case of circuits, with the averager in the feedback
loop, the problem is more complicated. Additional a. c. feedback is used by
Folsom (Ref. 8) and also by Cox Er Kusters (Ref.9) to compensate for the
ripple. Thus, only two techniques-direct method and manually operated comparison
method-are free of the effects of the averaging ripple and therefore are suitable
for low frequency signals.

3.6) APPLICATIONS OF RMS MEASUREMENT

RMS measurement is basically a measure of signal power, signal ampli­
tude and statistical error. These basic measures can be extended to measure­
ments of other related properties like distortion, noise figure, noise bandwidth etc.

It is a practice to use either conventional a. c. measurement-peak or
average responding detector, calibrated for a sine wave signal-or a thermal a. c.
to d. c. converter. The true rms measurement is replacing the conventional a. c.
measurement; because (i) the complexity of signals in modern systems does
not permit the waveform error inherent in other a. c. measurements; and (2) the
difficulties encountered in rms computation and the cost and complexity of rms
detector are reducing with the advent of modern technology.



__31___

Typical rms measurement applications are tabulated in the table
(T3.1). For each of these applications, the measured signals are classified as
in column 4 of the table. On the basis of the study it is revealed that for
each class of signals there is an optimum rms measurement. RMS measurement
can be classified into three categories for this purpose:

e1) High-lrequ ncy-error-free) measurement -- The rms detectors with a sensor
like thermocouple or thermistor with a heater can be grouped in this class.

2) Lovv_:yfrequency-error-fme ymeasurements-Non-feedbackrms computing techniques
like direct computation method or manually operated comparison method fall
under this group.

3) Amplitude - error -“free measurement or vvaveform -_yerro_ry- free measurement ­
Non-feedback rms detectors incorporating a specially disigned squarer belong to
this category.

The ‘remarks‘ column of the table (T3.1) reveals the importance
of the waveform - error - free rms measurement. It ie recommended for
majority of signals. Signals of any complexity-sinusodial, distorted sinusoidal,
triangular, ramp, pulse trains, etc. or random signals, (gaussian and nongaussian
as well) - can be accurately measured by waveform - error - free - rms meaisuremenr

3.7) CONCLUSION

The averager and the squarer are the main blocks of any rms com­
putation technique. Their characteristics influence the rms measurement performance.

The study of the effects of squarer output error revealed that:
(1) the constant squarer output error results in hyperbolic rms measurement
error characteristics (2) the dynamic range of rms measurement is limited by
the additive error in all the computing techniques except one, the comparison
method with amplifier gain adjustment facility (3) Thus, there is a need of
a squarer with controllable error characteristics.

The averager ripple introduces problems in feedback techniques. The
analysis of the popular method, implicit RMS computation, has revealed the
unsuitability of a simple R. C. filter as an averager in a closed loop.
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From the application point of view, the rms measurements can be
classfied into three categories; high frequency - error - free, low - frequency - error ­
free, and waveform - error - free. The study of various applications has revealed
the importance of the waveform - error - free design.

In conclusion, a waveiorm-error-free rms measurement based on direct
rms computation method and using an appropriate squarer design is recommended
for the rms measurement on high crest-factor signais.
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CHAPTER - FOU R

Squaring Square - Rooting and
Averaging Techniques

4.1) mtaooucnou

The rms instrument consists of nonlinear circuits but possesses the
linear relationship between dc or rms input and the output. The design and
the selection of the nonlinear blocks is not a simple task because the relationship
between the rms measurement characterisitcs and those of the individual blocks
is fairly complicated. Among the various characteristics of the rms measurement
the frequency characteristic is decided by the averager at the lower end and
at the upper end it is decided by one of the blocks, the input amplifier or
the squarer, with poorer frequency response. The dynamic range of the rms­
measurement is decided by the amplitude error plot of the squarer.

In this chapter, various squaring, square-rooting and averaging techniques
have been discussed with a limited aim of determining their relative merits for
incorporating these in an rms instrument.

4.2) SQUARING TECHNIQUES

The squarer is the heart of an rms instrument. It is a nonlinear
device and influences almost all the characteristics of the instrument. it also
should be noted that the squarer with a controllable amplitude~error plot is
preferable for rms measurement of high crest factor signals.

4.2.1) SQUARE-LAW DEVICES

Inumerable quantity of square-law devices exist. The table (T. 4.1)
lists various square -T law devices used in rms measurements. These are frequently
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called as ‘true’ square function generators, because in prinicple the devices follow
a square law. In practice however, the square law characteristic is true only
in certain specified conditions. It is considerably affected by one or more
factors like temperature, voltage variation, biasing conditions etc. ln majority of
the cases the true square-law characteristic is limited to a small span of
input signal levels only. These devices can be grouped into several groups as
shown in the table (T. 4.1).

The rms instrument using one of these devices is, no doubt, a simple
device giving true rms value under the restricted conditions. On the other
hand, in none of these devices the amplitude error plot is easily controllable.
Though some of these devices, particularly from the thermal group, are widely
used in rms measuring devices, these are comparatively less suitable for rms
measurement on high crest-factor signals.



No. Group
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TABLE T 4.1

Square-Law Devices in RMS Measurement

Device References Remarks

1 Thermal Thermistor 1 Wideband, CF 7 to 1, Linearity 0.02%,
temperature should be maintained
constant to better than 0.002'C.

22 Thermal Thermocouple AC- DC transfer standard.

3Differential

thermocouple

3 Thermal Two thermocouples are closely
associated in a heat -sink to assure
that ambient temperature affects them
equaHy.

4 Thermal Diode tube 4

5 Thermal Transistor 5, 6

A temperature limited diode is held
at a constant total emission by means
of a servoamplifier.

76 Thermal Doubly tapered foil resistor coated
with liquid crystal material. A narrow
colour band forms and moves on
the taper. The location of the band
is proportional to the rms current
through the foil.

7 Electronic Tunnel diode 8

8 Electronic FET 9



_43___

No. Group Device References Remarks

9 Electronic Cadmium

Sulphide dietle­
ctric diode

10

10 Electronic Nonlinear

amplifiers

11

11 Electromagnetic Hall Generator 12

12 Electromagnetic Magneto resistive
transducer

12

13 Electrome­
chanical

Electrostatic 13 Emperical Calibration is necessary.

14 Electrome­
chanical

Electrodynamic 13 Secondary transfer standard at low
audio frequency.

15 Electrome­
chanical

Moving Iron 13 Lowcost, low precision instrument
Bandwdith 25 to 125 Hz.
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4.2.2) ANALOG SQUARE-FUNCTION GENERATORS.

A diode function genrator is widely used in curve tracing. The curve
is shaped segment by segment being approximated by a step, linear or apoly­
nomial function. ln case of the square-function generation the linear approximation
is obviously the best. Though it is a practice in linear approximation to design
for a constant value of the maximum absolute segment error; there is a lot of
freedom for the designer to shape the error characteristics. It can be shaped by
appropriately selecting (1) number of segment. (2) break points and (3) slopes
of the approximating stralght lines. Secondly the nonlinear devices are used in
switiching mode only, to control the break points; hence the variations in their
characteristics have no influence on major part of the generated function. On the
other hand, the unstable switiching characteristic poses a problem in building
up the function generator. Larger the number of segments. more difficult is the
building up process.

The reduction of the number of segments is one of the ‘problems
before the designers. In the method used by S. Marjanovic (Ref. 14) the error
of a two-segmented square function approximator is drastically reduced by adding
the correcting function. generated by using a one-percent accurate multiplier.
Alternately, the number of segments can be reduced drastically by using the
principle of ‘sliding break points‘ (Ref.15) The break points are controlled by the
filtered output signal. This technique improves the squarer performance at low
input levels. Both these techniques require further analysis to justify their applica­
tion in rms measurement.

It is well known that in case of a linearly segmented square function
generation the

mation. Hence
(r) as given

where 0 < r

X -­

approximation error plots are identical for all segments of approxi­
"\

the error or can be expressed in terms of a normalized input
below.

"\
01 :_[(|'__ 1) (L2 /10).

<1 0.5 and r is defined asxn-1 Ll xn-1 <= X < (xnit "l" ““)I’ = ‘ ~—L 2
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xr,--x L='—"'_"" (xn-1+"')<x<Xr\L 2
[xn —- the break point of the (n -15- 1) ‘th segment xn_1 — the break
point of the n'th segment. and L — the segment length (xn - xn-1)]

This function can be easily generated by using a multiplier (Ref.14).

Generally the error is small in comparison with the actual output
and the accuracy of correcting function is not important. Let us consider a
two -segmented square function generator with the segment breakpoints at x = O,
and x :_ 5. The segment error at mid - points (x = 2. 5 and x -= 7. 5) is 0.625.
It is equal to the square function output (X9 /10) at x = 2.5. Thus the
accuracy of the error function generation directly decides the accuracy of the
function generation in the lower segment.

The relative errors of a two - segmented square function generator alone are
100% and 11% at the mid points of the lower and the upper segments respe­
ctively. With the help of the one percent accurate error - function generator these
squarer errors are reduced to one percent and 0.1‘),/J respectively. Thus, the errors
are reduced drastically. It should be noted, however that the ratio of the two
\

maximum segment-errors is almost unchanged.

Secondly, a multiplier itself can be used as a square function generator
(Sect. 4.2.3). One percent error in the multiplier results in 0.5 percent error
in the rms measurement.

Thus, this technique for reduction of the number of segments is not
useful in achieving the desired rms measurement error characteristics.

The sliding break - point technique is found both in English and Russian
literature (Ref. 16, 17). lf the break points of the segments (x1_ x2_ x3 ) are
made proportional to the input rms value (x,m$), the output will approximate
the flmCIi0n (Xm I xms ). Thus, the functlon generator with sliding break­
points controlled by the rms output acts as ‘a2 /b‘ functional block of ‘implicit
RMS‘ computation‘ method. The merits and demerits of this computation techni­
ques have already been discussed (Sect. 3.4)
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. Secondly, let us consider the measurement of a low du’¢Y'CV0le-doublet
type pulse train signal. Since the break points and therefore the approximation
range are decided by rms value, the pulse~height may lie beyond the approxi­
mation range. Thus, in this technique the Iow- level performance is improved at
the cost of the high level performance and therefore this technique is not
selected for waveform-error-free rms measurement.

The author has developed (Ref. 18) a square function generator where
in the percentage error in rms measurement is a design criterion. The segments
are so designed that the maximum percentage error in rms measurement is
constant for all the segments. The details of this design are given in the
fifth chapter. This square function generator solves the problem of the amplitude
error in rms measurement by avoiding the hyperbolic nature of the amplitude
error characteristic.

4.2.3) ANALOG' MULTIPLIERS

Two types of analog multiplier chips are used widely for squaring
and square-rooting operations in rms measurement. The multiplier output is
given‘ by (yz/x). By selecting y = z = input signal, and x = 10,_or
a suitable constant, squaring with a proper scale factor is achieved.

With log-antilog type multipliers,_ all the input voltages must be
positive and may not even fall to zero. A variable transconductance type
multiplier, on the other hand, is a four quadrant muitiplier. It needs four
initial adjustments. Its scale factor is sensitive to supply voltage changes, as
the emitter current is controlled by an adjustable resistance (Ref, 19)

Multipliers have a rigid amplitude-error characteristic and therefore the
additive constant error limits the dynamic range of rms measurement. Let us
consider for example, the specifications of a typical multiplier chip 4371 by
Teledyne Philbricks. (Ref. 20) Multiplication mode - Eo :_ Y Z / 10, the output error
(for Y  Z:;10mV to + 10V) is + 5mV + 0.33;’, of the output.

.Let us determine the low-levei performance of the rms measurement
using the multiplier as a squarer. The output error of 5mV is equivalent to
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0.5% error at 0.5v input. Thus, the dynamic range of 0.5 percent rms mea­
surement is limited to 0.5v to 10V.

As per the test results given by Lenk (Ref. 21) the rms voltmeter
using Motorola's multiplier MC 1594 has a dynamic range of 2 V to 10 V (Peak)
Secondly in case of the rms function generator 4370 of Teledyne Philbricks
(Ref 22), the error varies from 10mV to about 100 mV for CF variation from
1.4 to 3.5.

In conclusion. the multiplier chips-may be useful as a squarer or a
square-rooter in rms measurement. But, because the error characteristic is not
controllable. it is not the correct choice for waveform-error-free rms me8$Ul6I1‘Ien1­

4.3) sou/ans - ROOTING TECHNIQUES

Low precision rms instruments incorporate the square-rooting operation
in the layout of the instrument scale itself, with the result that the instrument
has a nonlinear scale. The modern high precision instrument based on the
direct -rms computation method needs a square - rooting device. The design or
selection of the square-rooting circuit is less dlffiCUit because (1) the input is
always d. c. irrespective of the waveform of the test signal and (2) the rms
measurement error is directely related to the output square- rooter error.

In principle, a square-rooting function can be easily implemented by
using a multiplier as shown in the figure (Fig 4.1 A) the adjustment is done
automatically and Vo is the required square-root value. Lenk (Ref 23) gives
the performance of such a square-rooter. circuit. The relative error varies from
-- 7.6% at 1V input to + 1.1% at v;,, = 81V.

From the manufacturers data, one can conclude that the performance
of a multiplier chip in the square-rooter mode is comparatively worse than
that in the square mode. For example, Burr Brown's 4301 has squarer accuracy
of i 3mv for 0.1 V d.c. < E1 < 10V d.c. and square-root accuracy of
0.07% over 0.5 V d.c. < E, < 10V. The square-rooter error increases to 1‘
55 mv over the range 0.02V < E1 < 0.5V (Ref. 24)
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A square-rooting A/D converter does two functions at a time and
hence is preferable to other method. The integrators integrate the known d.c.
signal twice, providing the integrated ramp as a reference voltage for comparison.
The output pulse width is proportional to the square-root of the comparator
input vi“. This type of the square-rooting A/D converter is worked out by
the author (Ch. 5).

Alternately. there is quite an interesting way of eliminating one inte­
grator as shown in the figure (Fig 4.2). This circuit was worked out in Russia
(Ref 25) and showed a better performance. The integrator integrates a d.c. voltage
which is proportional to the output pulse-width (tp )

4.4) AVERAGING TECHNIQUES

Averagers are widely used to obtain (1) the time interval average
characteristics of periodic and non-periodic signals, (2) the period-average
characteristics of periodic signals, (3) the statistical average of a number of
observations (N) of discrete events. In addition, an averager plays an important
role in signal recovery ( Ref 26 )

In rms measurement. the averager has to obtain either the time- inter­
val average or the peri0d- average value. The application in rms measurement of
both techniques, digital and analog are presented in the following sub sections.

I

E
4.4.1) DIGITAL AVERAGING TECHNIQUE FOR RMS MEASURMENT

A signal is squared and then sampled and encoded. The ‘n’ samples
are then processed by the digital averager to determine the mean-square value.
There are two questions to answer; (1) what should be the sampling rate?
and (2) how many samples one should process? ln rms measurement, is it
necessary to select the sampling rate higher than twice the bandwidth of the
signal to be sampled? ls it necessary to select ‘n’ so high that the statistical
averaging error is within the premissible limits.

It is obvious that only one sample gives the correct result if and only
if, that sample coincides with the instantaneous mean-square value. Therefore,
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it may be possible to make the averaging accuracy independent of the number
of samples if the samples are properly positioned. The influence of the time
delay of the sampling signal on the averaging error is investigated for various
signals. The outcome of the investigation is presented below.

Let the periodic test signal be f(t) and the sampled signal f* (t) which
can be represented as a function of a fraction of the signal period (t).

(r+l<@)f-=(t) = r(--——T)
N

where r := variable, varying in steps from 0 to (N -— 1)

ko = constant fraction, relative time delay.

T = Period of the test signal.

N = Ratio of test period to the sampling period.

k T
Thus, T,/N = sampling period and -3-— = time delay.

N

The mean-square value (MS) is given by.

M5 = [1/N12 [f*(1)]"

1

i.e. MS : -— E f2 [( r-5-kc) T/N] -_.~ (4)
N

The averaging error in the mean square value is given by

8 "‘ MS HMS = ‘ -¥|E-' '— 1 ‘ X 100 -"" (5)

where TMS _is the true mean square value.
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The averaging error in the mean-square value (gm) is a function of
two variables; (1) N - the number of samples per period and (2) kc, - the
relative time delay. lt can be computed and plotted for various commonly
occuring signals using the equations (4) and (5).

Typical plots for a ramp signal are presented in a tabular form in
the table (T. 4.2) and shown graphically in the figure (Fig. 4.3). The zero­
cross over points for all the graphs coincide and ocour at the value of ko
equal to 0.52. The ramp function takes the rms value at t/T = 1 / ‘:3 = 0.57
For trapezoidal waveforms the error function 3M3 is tabulated in the table T. 4.3
and plotted in the figure (Fig. 4.3) the zero cross over points are 0.22 and
0.79; the function takes the rms value at two points t/T : 0.24 and 0.75.

In conclusion, one enjoys a freedom of selecting the sampling frequency
if the value of ko , i. e. the relative time delay or the value of t/T at which
the signal takes the rms value, is known. In practice the value of ko can
be determined from the known approximate rms value and the display of the
signal waveform on CRO screen. This criterion is applicable to all periodic
signals which exist and are continuous at t = ko T.

4.4.2) ANALOG AVERAGING TECHNIQUES

There are mainly two types of averagers used in rms measurement;
(1) RC low pass filter and (2) integrator.

The filter gives the period-average value. It is difficult to use filters
for low frequency signals. For perfect averaging higher-order low pass filters
with sharp cutt-off are necessary. The selection of (a) the cut-off frequency
and (2) filter order should be done. by compromising between the low frequency
averaging characteristics, the settling time and the complexity.

An analog integrator is preferred for low frequency signals. It gives. in
principle, the time-average value at a particular instant t = the averaging period.
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4.5) CONCLUSION

The only technique, that provides the facility of shaping the error
characteristic, is the square function generation technique. Therefore, the square
function generator is recommended for rms measurement on high crest-factor
signals.

The square-rooting A/D converter is preferable to analog square-rooters
with multiplier, as it permits hybrid measurement providing the digital output.

The study of digital averaging technique has resulted in the development
ot a new sampling criterion. This criterion provides the flexibility in the
selection of the sampling characteristics like frequency and the number of
samples.
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TABLE T. 4.2 (a)

) f(t
werenis an

MS:

I— 0 Q t <
T

integer.

S_. Bms

71T<=17: 1
4» 10
» 20so
. 40

so

0.3850

0.3588

0.3502

0.3459
0.3434

15.5

7.62

5.05

3.78

3.02

TABLE 4.2 (bW

T

—nT) nT<t<(n+1)T

-­‘. QiK0 N 50 I N 10

MS MS Bms %

0.3234

0.32 54

0.3273

0.3293

0.3313

0.3333

0.3353

0.3373

0.3393

0.3414

0.3434

Bans %

-2.98

-- 2.39

~—- 1.80

-— 1.20

- 0.60

-— 0.01

+ 0.59

+ 1.19

+ 1.80

+ 2.41

+ 3.02

0.2850

0.2941

0.3034

0.3129

0.3226

0.3325

0.3426

0.3529

0.3634

0.3741

0.3850

— 14.50

—— 11.77

— 8.98

—- 6.13

—— 3.22

——- 0.25

2.78

5.87

9.02

12.23

15.5
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TABLE 4.3

Trapezoidal Waveform

3tf(t)=-T— o-<1 <1/3
=1 T/3<t <2T;s

3 (T—t) 2T=—-———-——- —-—-"€1l €TT 3
5

True MS value = TMS = -­
9

K01 N =3 \ N=4 N 10

MS
I

BMs°/0  MS I. 8Ms°/0 2 M3 1 Ems 9/0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.667

0.607

0.56

0.517

0.507

0.500

0.507

0.517

0.56

0.607 1

1

20.0

9.2

1.0

_~ 0.9

~ 8.7

-10.0

~ 8.7

0.531

0.535

0.548

0.5815

0.573

0.5702

0.573

— 6.9 0.569

-1- 1 .0 0.548

+9.2 ? 0.535

I
|
|

!

,_,_ ..-ii.‘ l 5 — -5.; i_.- -Q‘

1

i

1

- 4.8

- 4.0

= 1.4

+ 5.2

+ 3.6

+ 3.0

+ 3.6

-1- 2.8

- 1.4

— 4.0

0.555

0.5526

0.5545

0.5570

0.5577

0.5575

0.5577

0.5570

0.5545

0.5526

-___ _i.__.i--.~ 5 ..4.

I

I.

I

i 41-.-i

— 0.7

— 0.58

~— 0.20

+ 0.4

+ 0.4

+ 0.4

0.4

0.4

_ 0.2

- 0.58
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CHAPTER - FIVE

Development of an RMS Detector

5.1) mrnooucrron

in this chapter the details of the developed rms detector arevpresented.
The detector has been designed for the rms measurement on low and medium
frequency, high crest factor signals. The direct rms computation technique is used.
A squarer, a squarerooter and an averager are designed, fabricated and tested.
The squarer design is carried out specially for high crest-factor signals, how­
ever it is useful in other rms measurements also. A systematic analysis of the
square-rooter is carried out and three adjustments are introduced to compensate
for the square-rooter errors. These adjustments have helped in extending the
the performance of the squarerooter over a wider dynamic range

5.2) SQUARER

Among the various squaring techniques, the function generator is chosen
because it provides flexibility in shaping the error characteristic.

5.2.1) THE ABSOLUTE —- VALUE DETECTOR

The well known absolute-value circuit as shown in (Fig. 5.1) was
used along with the function generator to reduce the complexity. The absolute­
value circuit needed three adjustments. (1) Zero Adjustment-by R‘ (Fig. 5.1)
(2) Two adjustments were introduced to make the circuit perform identically on

both positive and negative signals; low-level performance was adjusted by R,’
and high -level performance was adjusted by Fl-, .

For stable operation of the absolute-value circuit as well as other
blocks, using operational amplifier. it is essential that the amplifier should have
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sufficiently low noise and drift. One method of compensating for the difference
in temperature coefficients of the input bias currents and thereby controlling the
resulting drift was worked out by the Author while in Russia (Ref. 1).

The DC _tests on the fabricated absolute-value circuit showed .that
the circuit could be trimmed to have a dynamic range of 3 decades (4mV to
4V) with a percentage error of i 0.3 °/0. The frequency tests showed that
the circuit had a flat response upto 10 kHz.

5.2.2) THE SQUARE —~ FUNCTION GENERATION

The function generator approximates the curve y = xi‘ . (curve 3,
Fig. 5.2), by a series of straight lines which must lie in the region bounded
by the two curves

y1=x2+2-C-x
y2 = x—’- —— 2 - C - x

(curves 2 and 4 in Fig. 5.2)

'C‘ is the maximum permissible absolute error in rms computation corresponding
to the approximation error.

Different constraints, like the maximum permissible error of approximation
and least mean square error, appear (Ref. 2) in the function generator designs­
In the present case however, the constraint is unique; the minimum number of
segments for a given squarer-error characteristic, or the peak segment error
proportional to the input level.

It is a common practice (Ref. 2) to use graphical methods for
approximating the well-defined functions by a set of straight lines. On the
other hand, the analytical methods provide more design flexibilities, A good
compromise is made between the two. The straight line giving the maximum
segment length is choosen graphically; whereas its constants are determined
analytically. The design is first carried out for a convenient input span of O
to 10 units with a corresponding output span of 0 to 100 units. Suitable
scale factors can then be introduced to use the design for the actual input
and the corresponding output spans.
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5.2.3) THE DESIGN OF THE i'th SEGMENT '

It is obvious that the straight line, with its end points on one
boundary curve and just touching the other boundary curve (as shown in Fig.
5.2, curve 1) is the one with maximum segment length. Assuming the starting
point (a) to be known the straight line ab can be completely determined
(Appendix VI). The abscissa x1i of the tangent point is given by

Xlr = X i-1 + 2 \lC ' X i- 1

The slope a i = 2x; i + 2C

The segment length L = 4 J(Cx1i + C2)

The abscissa (xi ) of the end point of the i'th segment

Xi --'= ><r-1 + L

Thus the i'th segment is completely designed to have (i) maximum segment
length and an error characteristic. Such that the resulting peak rms measurement
error is exactly C units (the derivations of the formulae are given in the
appendix Vl).

This design procedure is followed for all the segments except the
first one. The first segment needs a special consideration. Firstly, the squarer
error must be zero at zero input, Secondly the boundary curves should be

2
modified as per the expected squarer thereshould error Co caused by the
noise and drift.

5.2.4) THE DESIGN OF THE FIRST SEGMENT

The boundary curves are (Curves 2 Er 4 in Fig. 5.3)

2
Y1='*X2_Co

2and ya == x2 + C0;
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2
where Co = constant threshold error, The approximating straight line, ob‘, is
fully defined by (Please see the appendix Vll)

(1) the slope a1 = 2x11,

(2) the abscissa of the tangent point

X1] 7- Co

and the abscissa of the end point

X1 Z (1 "I' V2) Co

5.2.5) THE RELATIONSHIP BETWEEN THE NUMBER OF SEGMENTS (n)
AND THE PERCENTAGE RMS MEASUREMENT ERROR (6r).

In case of a linearly segmented approximator for a square function,
the relationship between (n) and the percentage squarer error ( 55) is well­
known. (Ref. 3). In the case of a nonlinearly segmented design the relationship
is not that simple. The Author has worked out the relationship (Ref. 4) in
the tabular form (table T. 5.1). A flow-chart used in determination of this
table is given in the appendix Vlll. A squarer design with 0.3% rms
measurement error was selected for the 0.5 ‘7, rms measurement.

5.2.6) THE CIRCUIT IMPLEMENTATION

In the actual circuit the input to the squarer (Vx) ranged from 0
to 8 volts, limited by the saturation characteristics of the absolute- value
circuit used. The output of the squarer (vy) was limited to 6 volts by the
maximum input characteristics of the averager block used. The following scale
factors were introduced :

K, e V,/x r= 0.8
K, = VYIV = 0.06
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The resulting modified version of the design was then as given below:
1) Break Point of the i'th segment

Vat-1 = O-8 Xi--1

2) Slope of the i'th segment

av; = 0.075 ai

3) The length of the first segment

VB; = 0.8 x1

4) The slope of the first segment

am = 0.075 a1

The function generator was implemented by using precision feedback limiters
(9 Nos.) and an adder as shown in figures (Fig. 5-4 Er Fig. 5.5) ln this
design, the precision feedback limiters PFL (1) to PFL (i) were in conducting
state when V, satisfied the condition, vBi.1 Q vx Q Veil whereas PFL
(i + 1) to PFL (n) were in the cutoff state. Therefore, the slope S; of
the i'th PFL is given by: Si = (av; -— avi_1). The table (T. 5.2) gives
the complete design values of all the components.

5.2.7) THE PERFORMANCE OF THE SQUARER

The fabricated function generator had 18 adjustments’ The use of
stabilized power supply to control the break points resulted in successful setting
up of the squarer.

The function generator was subjected to various tests. The results of
d.c. tests showed that the actual nature of the squarer error was very much
similar to the designed one (Curves 1 and 2 respectively, in the figure Fig. 5.6)
The square function generator had a dynamic range of O.1vo|t to 8.4 volts
(d.c.) i.e about three decades with an rms measurement error of not more
than 0.4 %. the frequency tests showed that the frequency error was less than
5% upto 10 kHz and 3 dB point was at 50 |<KHz. The pulse- input test,
was carried out at repetition period of 20ms. The duty cycle was changed in
steps and the filtered output of the squarer was found to be directly propor­
tioned to the duty cycle (D) over the range of D equal to 0.25 °/1, to 50 %_



__63_.

This test proved that the filtered output of the squarer was directly proportional
to the mean square value irrespective of the duty cycle.

It must be noted that 0.25 % duty cycle is equivalent to the crest
factor of 20 thus the pulse test results proved that the squarer permitted the
RMS measurement of signals with crest factors as high as 20.

5.3) THE AVERAGER. W‘: . .
Two identical second order Butter Worth‘s, gain low pass filters ( Fig. 5.7 )

were cascaded. The cut off frequency was selected as 4 Hz.

The averager was subjected to a frequency test, by applying 6 V (peak)
sinusoidal signal. The frequency was varied from 1 Hz to 100 Hz. The ripple was
less than a few millivolts for signals of 10 Hz and oi higher frequency. The
response time of the averager was about 2 seconds on 5 V step - signal.

5.4 THE SQUARE - ROOTER

It performs the two functions ; square - rooting and AD conversion. The
circuit is shown in the figure (Fig. 5.8) and the working of the circuit is
presented by its time diagram in the figure ( Fig. 5.9)

5.4.1) THE SQUARE-ROOTER OPERATION

The basic equation is

Vin I V9, at t =-- tp
therefore.

in —2'l'1"I'2 l‘
VR

[Ql-J

f |-I
Whefe (5) Va is the known constant voltage; -r1, 12 are the integration time
constants of the two integrators.

thus to = K ,;\/in
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0.5Where K =  T1 T2 /VR)

The circuit was designed for 10 ms output pulse width for Vin = 3 volts.

In practice, the "output pulse width will deviate from the ideal or
theoritical value because of various imperfections in the actual working of the
three blocks; two integrators and a comparator. Certain adjustments are there­
fore required to get the desired performance.

5.4.2) THE ADJUSTMENTS ON SQUARE-ROOTER

The square-rooter is a nonlinear device consisting of two integrators
and a comparator. The main sources of errors in an integrator are (Ref. 5)
(1) Finite open-loop gain (A0 ), (2) the d.c offset V05 and the bias current,
and (3) the limited band width of the operational amplifier.

The expressions given by Tobey Er others (Ref. 5) are reproduced below:

1) Error caused by the open-loop gain A0 in case of a step input E/s:

—t/AORC Etgee:-A,,E(1—e )---­ac

twith --- -< < 1
A0 RC

Et2
A er) = --—-~-—-—­

2A0 R2 C2

2) Error caused by d. c. offset V05 and the bias current la :1 1Ae.,=--fv.,sdt+——flbdt+V<>$­RC c
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3) Error caused by the finite bandwidth in case of a step input E/s:

1-Q  ToAea = E (-— + e ---)RC RC
Where the open - loop frequency response is approximated by a single pole at 1 /1-o.

Thus. in general one can group the integrator errors in three groups:
(1) Constant errors. (2) errors proportional to the first power of t and
(3) errors proportional to the second power of t.

In the square-root circuit the net error at the output of the second
integrator is due to the second integrators error, and the integrated error of the
first integrator. The error in V2 can be considered to have four complements;
(1) constant error (2) error component proportional to t, (3) proportional to 12
and (4) proportional to t3 .

The zero adjustment as shown in the figure (Fig. 5.10) compensates
for the constant error component, the fullscale adjustment compensates for
the error component of V._. proportional to ti (Fig. 5.10) and the half scale
adjustment (at 50 9/O of rated rms input) as shown_ in the figure Fig. 5.10
for the error component proportional to the first power of time‘ It should be
noted that the perfect compensation is difficult in practice because these error
components are not entirely independent.

5.4.3) THE SQUARE-ROOTER PERFORMANCE

The square-rooter was fabricated and tested. The three adjustments were
introduced and carried out. The desired performance was possible only after the
proper adjustments. The square-rooter possessed an input dynamic range of 15
mv to 6 v, i.e. 400 '1, with an accuracy of 0.3 %. The d.c. input-output
characteristic is shown in the figure ( Fig. 5.11 )

It must be noted that the dynamic range of the square-rooter limits
basically the range of measurement and it has nothing to do with the crest
factor specification of HMS measurements.
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5.5) THE HMS VOLTMETER

A complete digital rms voltmeter was developed by the Author while
in Russia (Ref. 6) by using the described squarer, the averager and a feed
back type square - rooter. The suitable input amplifier and a standard pulse width
measurig circuitry were also incorporated. The voltmeter had a d. c. measurement
span of 0.3 V to 10 Vt (extendable to 15 V i.e (5O:'i1) using 3.1,. digit
display) ; and a.c. measurement span of 0.3 to 18 V for a 2 kHz sinusoidal
signal. The error was not more than i 0.5 % (Ref. 6). The D.C. error chara­
cteristic is plotted in the figure (Fig. 5.12)

5.6) comctusroms

The theoritical and experimental work has resulted in the successful
development of RMS detector circuitry for RMS measurement on high crest factor­
signals of low and medium frequency. The squarer was designed specially for
high crest factor signals. The filtered squarer output was a measure of the
mean square value for signals with crest factor as high as 20. The develop­
ment of a square-rooting A/D converter resulted in the successful application
of the simple direct rms cmputation technique in the digital rms measurement­
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Approximation Segment VS RMS

TABLE T. 5.1
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Measurement Error

.6 0.1 * 0.2 0.3 0.4 , 0 5

H I 1
1 7 ____ _ I.
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16 1 11 A 9 6 A 7 "

1

TABLE T. 5.2

Squarer Design

V61-1
I

R21

kohm Sis ' R41
ii kohm

91 .Ro/ Rxi
R xi

kohm

A

I

\

1

2

3

4

5

6

7

8

9

° i
0.1792 9

0.5325 ;

1.0807

1.s2o9 g

2.7530

3.6773 ‘

5.1340 1

6.7015

400

169

86

49.5

32.6

23.2

17.6

13.4

T!

‘ 0.0137

0.0482

0.0711

0.1071

“ 0.1431

, 0.1791

\ 0.2151

0.2511
0.2871

1.5

g= 5.0

5.0

. 5.8
6.8

8.2

10.0

A 1 5

.51

0.1

0.333

0.386

0.386

0.454

0.548

0.667

1.0

3.4

0.137

0.145

0.184

0.277

0.320

0.328

0.324

0.251

0.085

13.6

10.6

1.2

6.2

6.1

6.2

6.0

23.7

5 .

15.4 I



i‘ ‘_“OG__ ___QW_hm“Gmg hM_Dm__l___w M533‘ __w_ 0 DOR5“m_”_______‘I! II‘. |__i l\ ll% 2  MmH‘ E MN‘ JELW\ L‘ ‘ *l_ ‘ I I!‘ ‘C_F A VIM‘



___Jj1||‘ A‘ _ 4 I I H'___1M‘_ ‘____|’*Hl__w"‘ ii’ \  7 Y ‘i ‘N __ 7;‘_ _ ‘ I _“‘ 1‘ ‘ll _“l‘ “ “ ‘ZHDI  “V VII \| I I‘ ll: ‘I __ _I;_____r(0I G 6_ |Y '_'._i|fi*___ _ Q Iq? (L0 I__‘___ / M“ii! _| _l I  ‘ ‘Ni N1  N H7 I   L_‘¢ \‘||_I_"?‘__M___ H_ "W_Z  Q © i_in . u __ _ '____ :":l___' _ _‘_ H_ T__ _‘Hlblilzw M“   My H|_“‘|_ “ ‘I :lH_|‘,lH‘wl‘_“‘l|_‘ ““‘ :“:‘I L" _ [__ _ V V iii 'W|[%{I‘E\‘\I_‘IKL‘L\\‘_‘“\H\% \ IWMI '1L_|[H “H J“  ‘ filfi ll ML: __H_d|’!W‘H" ‘ Ili ‘¢||U}_lN__|‘|‘1‘_"“‘MU‘ P‘



y ?“"*% 596$ L

._TL­

- .\M M ‘JT lkL .
\ .

I "u- k. . ._ . \._ _   1Ry QB" I " ¥&\—*'
1

f_3_g,A5-3%; H e-5-4 [B] A
2RE<=':»~<>~%iiFgifivwk  ~

4; L‘;

&
i.

|q —— PFLI N

. Y
|‘_

\

A -f.ii:; ‘ _ Q;4%__1_;f 4
I

. _ .

_ inf‘ ii;-‘_‘ ;4  ‘-“iii;

_ \“ - ‘A‘ _:\l
x

§ PFL2 — ~ — —
Y,‘  '§ PFL1 ¢i‘“ - \‘r . 1!a\ “\ =‘1 *% :PFLn “\ "

-a
fla3

1 FlG'S'5 SQ-jUNCT!0N' APPQQXIM L ‘% % % WWW ? _{¢N TM jwfi *M%HA V :5  __._ __.__ . ___ I ‘If-- -~~ ~- —— --— ~ ­H ' _ 11“ ‘-‘;F",_f-__1-ll‘ “ JJ 1? ‘ T I_  _— ij   . :;:“:;:



‘|'!_1i_|\H“h‘_lli'M_'_'{\\ \|__ NHIW‘ \ \ i “ ‘j 1_ll_|_-\\ F N ¥ \ \ I W N} I W‘ ‘\ ‘Ml \ ‘\ \ ‘ ‘I>  1 __ R  \  it é ] \ ]__:___ é|_   I é_\|é M "H ‘ l ' _|_|   ‘N,_ '_M ____ ? _m¢Id %M  Q1_ _ % :___i_W _% _% L Vokqd "W__ ¥ _____ u ._~   . “qi?" _ ' \ _L ~ K '%_ p s __ _’ _ _j A_ \ _ _ ?_  1_ _ _ ___ _ __ ___ __ _ _ _r_ A 7 __ m______J_I H_   _ _i j X L,‘ i2_°___ R: ~O_g_9__ ___ac_ Q_ _ X ,’i d ’ l ~ ’ i 0 j‘ mi“F _ % i iK.   ,_ __ \ ‘A   \   ‘\ ‘A \ _ \   _A    (‘V NH’.  H  _ . _ ’  >__ _N ‘ 1_\_ 1 é N l 1 _‘J‘\ I‘ A F _ _ ‘__('!_ ( H‘!f ’ _ _ L : ‘. _'_ \ V‘ u__ _ _ _ _ ’ _ mi_ _ W_ _ ’% 9_ , V ’ V _? V __ W °__;_% ‘ _ ’ __ ’ _ _’~ "_ _NH f _ p t  (___’ Q __ K 3+ ti_ € ml_ _W g_hw_&h%§Iq mama AgofiwMm4:dWfl%M%w_Mi  tV“ _ i ____ _ > _ _ I __ '.>. _. ‘I > _ ___ i  __ _ __ _ _ _l _ _ _



r“Hur“‘H‘i Wllflt‘ I NJ!‘ k‘IH_l UI‘kPI‘_l‘_‘_ ll ‘[1 I’ I ‘ _r|r‘ II _:, V _'‘__>I1 ‘ ____RMI‘ J J _ ‘|J|1\:1 :|*PH||| ’hM '|‘H‘1U_'_'____‘h“:’l{“ NW  Fir “HI 11" ' Ink F,‘ _QMS“IM“MdMy W  M1 _MM8‘__Qm Mha|lU‘wU|‘l ‘HflW_P| A |“uH|.|lP‘l‘|hlJ1HH|' _ ‘“,_"WH‘: l|__"'__ti_1 _ I \__'__ ¥i;_( ""'!',""__"""‘.__‘__“‘1'_ L,” “M q“‘+wn' UHF “HIM ‘ I _ _|Hy"|"q IITLH‘, J‘ HUI L‘ ‘ _ ‘_ I‘ ]_ ‘l‘ “‘



QA“

,.'

I

1 .'
I

' F

I

I‘:

l:

L5‘?

I
I
I
I I

{I

I

I

I

I
I

4-.__ I. -. ._L _,____~ __ _4—-.—-4._,-—__‘lr  _

\

ii
4!
,I

. V

-;
I

I.

I.

I

M — — — - — i * * —* — —~ ""77? -T7-‘ I M 7‘ — — ~ f ~ W" 7+ --- ~37- ~—R.­

if [1 sta1t'§¢¢nn0nl
.1‘

I.
' L

fllg *7‘?-“­

I F

"1,
"I

II
I

II
\

A

I;

‘__ I

oI~ '“ uv '

qI¢0¢ncnuqi-ti

11*-I--r --'

'_--in-pug

_ I/1 linteavam I A
r-~—---I
|

:'(I'ni --4-~

’.I‘. l

I* I I U " H ITI latofldu 1 H W M“~  ‘

Q53

K.

I

I

' 5

conpqvutn

chub 1! duh

;1'17"’ -~f . Ifi
=|

Q

I

I

0

3

ii?

.b¢I—

. rlr éurpd
' - - -——~-b--——— ~" — -~ ‘I-~~ ._3W -_ ;';""‘- .:;-;-_  , .;_i‘_if‘_; "*"__-1-_:;r "  :"1.1,:.._| . ..I_*... _ _. __*fi_ ._‘__~--r.-Y

Tina L--1»

.~'.7T_ n _ —_ qa *_'r'_-*1-V—V~V~f-:“._-_;_:_’:_ ‘,1, _ _ _ _ J m g in ‘ ‘i 7 I' "   7" ~““‘-”" "*#1“—"*‘lA-ii".‘<?:r=:<<.f'—fi““"i _.  ' ' " " '

?

J'­
1

.1‘

H

-"I
1 \

5 F

;*r

I

I.

1.

FF

I

V

I

_,.._1._>I ___?I '1' 1 _-­

Ii

-‘F



i

1 r

I

1.
‘l
{L
J
‘I.,
I

‘k

I
|

'~l

n'_

-‘r
I

\

|4

‘ \

I .

‘ __. i — —~ ' -~;4—,:,,,,:-|-Q--nil -I '.;1_.' 5 7 “'*_ . ___ ,,_ _ - _  *_A-I ;,__¢_,_ __:'1;: “."i;';J — * "" 'f f __..___ __rv.-yr-—'.1\ I» —— . '

V: % V _ "s
Via ' R}4- 1 ‘I

an‘‘ Q- . ,
%f~Q44\!5T%"§ NI _QN(Q9!l.?1é‘R5IQ~!~

mwznmx L

%§§;3,. K ¥‘l%'»§€5_l§.A2!P5LT!!§FT

~~‘—L 4‘ * — ,4 T‘/f‘Te_'_5 _ W‘ _. _+ ;';__:*.;:_._:?___ __ *;__ _ ___ _ _ fi é _ r _._ __.

,%°;€4@i._*\I?*"" *!!'¢1,<=9T"*2=¢<!~T=2 1?11_§§.~%t2a. .:-~ L, “ _ fi gl‘ __ ___ _, ft;. I _ _l * ' * 6 _T" ‘ -_"i‘-§1i;;liH#I*';1 ;__  :_ — a *_ —‘: — "‘ ht;  5 '_ _;1_;; ’ L? ._

% jig 5-so m5_guAR%s-_3AopnnA ApJuBTn1:M_s

W é\ \\
X-1;-_ l I

ir
\

\ ,

(:._;‘_

i

I
4

:_ J

J
11

.H

ix

\\

U

W |

W

I

W

\

i

N

w

I.
\­
1\
u

|

I

' \

4

l\
I

'\
1

H

‘.

§Il.

I

V.

LL-'

\

1.
W

T  —f,,f‘,1

ffl

1 l

W

5



jitZ:__ v w“M|HihHl_} MM“ __"!‘Lk‘l__r__“_h"_‘ [NP ‘i_¢l1i‘¢_ hJL_\\‘14[\ ‘\MWH_HHé  ‘_L_‘|l_HM_ éM\PHwhWéM4_M_______ ___ __ 2 _g “tau EU“ __ _w flT ‘i C; 't 2 8.5 {N ___N 3 3 2 Md 06 3 O __ll 1Q\Jj y J \ \\ \1‘1rr [ “aimL “Bog mmdaam u___%__% mo Ww_%5mmwU¢m¢ruH__EwImO_::___0‘mE AM:___L____E__H_‘__jI__::12i__W__jA_____ \_______L _W fiLw1 L l J.‘ AM 4|_ ““f“‘[‘W‘|H“|t MU“ ‘ H “fl%IW‘rh|W vU_“__Z V*_ “\l_\_'_ _ _H|__||dL|‘ _1_ ‘L   v1_‘_h|#U_H_“ \y| “|v_1‘_  __\“‘__\‘ Kl_“_k \“i_‘q‘_ '_W_\|] _¢_ ( r L____l_ fiT_I__g _H _ __ __L8“ W__ ‘ ‘ _L_J _ Q HHT$80 __J IM VJ63 _M _iH _L82 _» __T*8____m_._.6 _i I‘ H _‘ l‘l‘_|‘ ‘_{\\t.f“:‘ W W ‘ [ ‘ll Ill‘ V IN WU “\:_ ‘\ \‘ \ \I i ; I ‘ 1!“ HM‘ vi“ ‘ K‘\|H\i1“|_¢“;:|_"Ul “1]'_‘_‘ i_;“‘§__‘ Pi“ ‘U! \__ nu“ ‘HIV? “:_|“ ‘ ‘ N‘ _v‘\11h_‘ MN‘ \l _NH I“ “‘_ N‘ “ H



_ "W‘_\“‘|‘_|M"_'_" “““‘__HH'¢‘ ‘|“'_‘  _“  “‘||],“‘_‘_iw||J_“‘|d}‘]_‘ ‘L)Hw|‘W_ [ l ‘V VI _ \' ‘ I I __‘ ‘_ ‘ F ‘r V [‘ V _ _IN _ \ 3} \ i \ \ I J \ I; PI Wl‘ ‘_ ‘_[I‘N‘_‘>l‘L W_ MMMWVW MIL ‘J \id  wfiamw~ ___7 + + %7_ ____>  * _  _ 7é *4 LiewCflaém l &E_qgA 9°‘_  _\__i# + A* _1i'‘I. __ _A0”  org fir 3 CW4  gy Q” %8__'_T% N6 G_; WI_% __|T :Li‘ 3f_fiL



CHAPTER - SIX

Discussions and Conclusions

6.1) THE TOPIC

. At first sight the topic may not be attractive because of its peculiar
nature. At present a conventional a.c. instrument is used in majority of a.c.
measurement. The study of applications of rms measurement has however revealed
the fact that an apprcpriate rms measurement is a must for accurate a.c. measure­
ment on signals of varying complexity.

The topic is interesting on the other hand, because of its following
aspects: a) the rms detector is a nonlinear device consisting of linear and non­
linear devices. b) the topic combines in it the typical problems from other
fields -like‘ statistics, circuit theory, electronic circuits and devices.

6.2) THE worm DONE
I

The work done can be summarized as follows: 1) Theoritical work
consists of four parts: a) Analysis of problems in rms measurement._ b) Compa­
rative study of devices and techniques used in rms measurement c) Design of
the squarer for amplitude - error - free ( waveform - error - free ) rms measurement and
d) Evaluating the rms detector as regards its applications.
2) Practical work consists of (1) fabrication and testing of the squarer, square­
rooter and averager blocks of a direct rms computing method, (2) construction
and testing of 10 V voltmeter using the developed rms detector, the suitable
input device and a digital pulse width measuring device.

6.3) HIGHLIGHTS

1) A systematic analysis of errors in rms measurement is presented for
he first time. The novel concept of ‘idealized rms detector‘ has permitted the
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generalization of ‘characteristics and performance of rms measurement (Sec. 2.5)

2) The importance of the amplitude error (waveform error) is revealed (Sect. 2.10)

3) The relationship between the squarer_ error and the rms measurement error is
investigated (Sect. 315.) '
4) It is revealed that the constanticsqxuarerf error results in ‘hyperbolic rms meas­
urement error characterietic ( Fig. 36, Sect. 3.7)

5) The squarer error is so shaped (Fig. 5.6.)‘ -thatktho resulting rms measure­
ment error is inpependent of’ the signal'7level,. Thus - ‘a ‘flat error ‘_ characteristic
is achieved (Fig. 5.12). Thus the main hur'dle.'.in the-' rms‘ measurement on
high crest - factor signals is removed-.1

6) A wave -form -error - free rms detector. .is de_vel0_pe'd- which can b_e_ used f0r
measurement on signals of any comp_le'x'ity_-_l_"righ CFj'..sig'nals, sinusoidal signals,- - . ‘ .r . '
gaussian and non .-. gaussian random signals - orovided' the sionificant highest freque­
ncy component is.wi1'hin limits.

, .
7) A‘ successful."-development of a square- rooting‘ A/D converter (Sect. 5.4)
permits hybrid rms measurement, consisting of analog computation and digital display.

8) The effects of unconventional feedback in ‘implicit HMS computation‘, are
investigated (-Sect. 3.4) and its limitations are revealed.

9) A new criterion is proposed for digital averager. It ‘provides a lotfiof flexibi­
lity in selecting the sampling signal (Sect. 4.4.1)

10) The original work- presented in this thesis has to its credit three ‘publica­
tions. ' ( Ref. 1,2,3)

6.4) SUGGESTIONS FOR FUTURE DEVELOPMENTSl O
11 O '

A number of future research projects can be based on the investiga­
tions presented in-this thesis. YA list of typical projects is given bel0w.'

fl) Development of an appropriate averager for implicit RMS computation.

2) Microprocessor - based rms detector utlizing the proposed averaging criterion.

3) Development of sampling criteria for averaging of nonperiodic signals.

4) Fabrication of the developed rms detector using LSI techniques.
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5) Hybrid systems to yield better accuracies.

6) Highly precise rms measurement with flat relative error characteristics.

6.5) CONCLUSION

In conclusion, the theoritical and the practical work presented in .this
thesis has solved the problem of rms measurement on high crest-factor signals
by providing a waveform - error - free rms detector design. The detector is. useful
for testing, measurement and control of various properties of signals, systems
and devices in the fields of electronic communication, acoustics, statistics, and
automatic process control.
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APPENDIX ll

Fourier Coefficients of Complex
Periodic Waveforms

a) TRIANGULAR WAVEFORMS

1

f(t) -=1——(4t/T): o<t<T/2
The average value ao_ = 0

Since the function is even bn = o

-1- 22 ,T/an -— ~— f f(t) Cos [2':? nt/T] dt.
T/2_ T n

2 +T/2
an -= -— f Cos [2?1int/T]

T —T/2

8

T2
an Z

T 0
2 T/2f

dt

4t

?

2 0 4t
+ — f — Cos (2 Tr nt__:' T) dtT -T/2 VT

Cos _(2 T.“ n t/T) dt

fo (—-t) Cos [21Tn(—t)/T]d(—t)
T/2

8 T/2— ~.— f i COS (21101/T) dtT2 0

an 1 —'
16

T2

O%_|‘£­
N

t Cos (217 nt/T) dt



an 1:

_84.._

4
---—-- (1 -— Cos 1T n)
'lT2l'12

b) SAWTOOTH WAVEFORM T T
1(1) = 2t/T: — -5 < oi:< + —2—
f(I+T) = f(t)

The function is odd, therefore an = 0

The average value ac  0

bu

bn =

bn =

bn 1

bn =

2 -,1-T/2f f ( '1 )T —T.-"'2— Sin [2Tfnt/T] dt

2 +T/2— f (2t/T) Sin [2fi nt/T] dtT —T/22 +T/2---- [(--t-Cos[21¢en:/T1)1TnT ——T/2
+T/2 '+ f Cos (2n1i't/T) dt]

—T/22 T
---__ [~2- -C0sTFn]ITHT 2
~——2

---- Cos Tr n.
"ITO



PULSE - TRAINf(t) = 1; 0 < t < tpf(t) = 0; <
i(t+T) = f(t)

.._.85._._

1 Tao = -— I f(t)dt =T 0
a0=D

2 tpan = ~— J f(t) Sin [21Tnt TT 0
2 1,,= _ I Sin [ZTE nt/T] dtT o

to

T

= [---- Cos (211 nt

1an:
Fl‘!

1an "'1 [1­
TYI1

2bf] Z i
T

2

T

__.._

1bn Z i
W."

S

Cos(2 IT ND)]

os t
in (2TYnt]T)

tnI f(t)C (2T§n
O

- [  1
2TTnD

21rn/T

,__—

1 tp/Tl]n 0
C0s(21Tntp/T)]
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d) RECTIFIED SINUSOIDAL WAVEFORM

Titf(t)=Cos—-- —T/2<t<T/2
T

f(r+T) = f(t)

1 T/2ac = -- IT Cos (fie t-/T) dt
T —»T/2

The function is even therefore bn = 0

2 T/2 iT t 2  nta,,=—~ I Cos--—-Cos--—-—-dtT —T;'2 T T
2 T/2

an = ——- I 0.5 [COS(2n-!-1)'lTI/T-T-COS(2n—1)Ht/T]d’tT —T/2

1 T
an =<—[—--——-Sin (2n+1) i'.'tjT

T 1T(2I1-E-1)T +T/2+---—--sin(2n-1);:/T](2n—1)T:' —T/22 - 1 W 1 W ­a,,=—! ---_Sin[——(2n+1)]-%-—-----Sin [-~(2n—1)]w =-(2n+1) 2 2n—1 2 ­
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APPENDIX Ill

Frequency Error in RMS Measurement
on Random Signals

1) BANDPASS WHITE NOISE B BG,<(f)=a; (fo~—-)<f<(fo+--)2 2
G X ( f) -—- o ; otherwise.

True Mean square value =~= a - B

B

Measured MS value = a (fc — fo + -——)
2

_ a [(8/2)—(fc—fo)]Relative Error In MS -= M   M e—e M —e vi
a B

'i

85:  [0-5 -'—(1‘C —f0)]
B

2) EXPONENTIAL

4aG, (f) = - e   ~
a'~’ + 41'! 1 f'l

oc 43
Error in MS value -—- I ~ _ av  df := A5

fc a2 + 411* fl’
6

211'f a
Let I -— —-——, df = --—- dta ZTF
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2 ocA5:-~ I [1/(1+1"’)]dT
TY fcya

2 -1 <1:
z-"= —- [T311 I]Tf (2‘|.“fc/a)

2 -1 2T|fcAs -11- ~ tan -—-­;T 3
EXPONENTIAL COSINE

1

+1/(3-> +41:-Z (f-fo)'-’]Gx (f) : 2a [:1 __ee ~ee+
ai + 41% 2 (f+fo)'—’

OZ

Error (Absolute) in MS value I I Gx (f) df :-—- As
fc1 —1 -1 0:

A, =- -— [tan [2r?(fo+f)/a] + tan [21';(i~fo)/a]]fc-1
l. 1 -1 -1

=1— -T [tan [2'|=“(fc+fo)/a] + tan [_2TT(fc—fo)/a

Ci

True MS value = I G, (i) df == 1
O

The relative error1 -1 -1 TI" -— ' a5$,1~ -F [tan [2TF (fc+fo)/a] + tan [2 (fc fo)/1]
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APPENDIX IV

Amplitude Error in RMS Measurement
on Complex Periodic Signals

1) TRIANGULAR

4t

f(t)=A(1+-;~)2 —O.5T<t<O
41f(t)--—A(1-—--); 0<t=§;O.5T
T

4A2 o 4t
True MS = --—- I (1 + —)'-’ dtT —T;’4 T

4A= 8 t'1 16 t“ 0
-- —-- [t + — - - + — - ~—]T T 2 T2 3 —T/4

Q.

2 1/3
34A” t1 —— (T/4) 4t 64 t1Error -; ._.__. I (1 + — )2 dt = -— - —T T/4 T 3 T-'*

where t1 is the time, related to \/L of the detector by th
relationship.

f(t1 —T/4) = V|_

VLTi.e. :1 = ­
4A

Substituting in the expression for ‘Error’
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3 3 364 1 V|_T VL
Error = — - — - ——-—-- = -——­3 T3 64 A3 3 A“

VtLeta = ­
A

Error = a3 /3

The relative error 3:83 -—~- "a=*

2) SAW - TOOTH

2/atru) e --- -T,!.2<o<T
T

r(r+t)  tn)
2 T/2True MS vaiue  -— i fl (t) dtT 0

1

3

32 1, 8t,Error ; — I f2 (t) dt = -—T 0 3T"
where t1 is given by

ZA11

{(11 ) = ""j'|_'-  VL

\/L T
E. 8. t1 = --'——

2A

Substituting in the expression for ‘Error’
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3 38 VLT
Error = —-- >< —-—-­3T3 8A-‘*

31 V|_ 1 3
3 A’-* 3

The relative error 553 = a“

3) DOUBLET

r(r)=v_., o<t<t,,r(r)=vb t,,<t<T2 2 1
True MS = [Va 1,, + Vb (T—t,,)] - -1?

Iwith 0  -5 and van = vb (1-0)
T

1)2 0 2 0True MS Z v_, (o+.-_-) -- va -_-­1-0 1-0
2

For Vb < VL; the measured MS = Va D2 2._ varo/(1-0)]-v,-0
C-sa :.~:: 1- *: _ ..> —_~.?_~ _— .—:_—- :— . ~ _e— —:

v2 0/ ( 1 - 0.)
8

gsa 2 D

4) RECTIFIED SINUSOIDAL

f(t) = A Cos (rt/T) -T/2 < t < T/2
f(t+T) = f(t)
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1 +0.5 T 2 2 A9
True MS =-- —- I A Cos (fit/T) dt == -—­T —0.5T h 2

2 —t1 2 2Error = — I A Cos (TT t/T) dt _T —-0.5 T

2 1 ~t1 2=--H I A (1+Cos(21|'t/T)dtT 2 —T/2

A2 T 211-: -:1_ [t+-—--Sin --)'T 2:: T -T/2A2 T
Error = -- [»-t +(T/2) — ---- Sin (21?! /T)].|' 1 2|“ 1
t1 is related to ‘a’ by

zitlCos -- = a
T

T -1i. e. t = -~ Cos a1 W
Substituting for t1 .

A2 T T —1 T —-1
Error  — [ -—- — -— Cos a -—r -—-—- Sin (2 CosT 2 " 2 J
The relative error,

2 H‘ -—1 1 #1
353 = g~_— [ — - Cos a — —- Sin (2 Cos a) ]I 2 22 -1 2Csa  a_'3\"(1'_a) ]
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APPENDIX V

R. C. Low-Pass Filter in
Implicit RMS Measurement

IMPLICIT RMS COMPUTATION ON SINUSOIDA

Let vin -= Siflwt the equation 3.£ [P.15 ]

Ave [(9 -{(2/ac) e V,
2 -2t/RC 21/RC 2- Sin wt

~ (2:/RC)

V05 :-= e [(2/RC) - e

-2:/RC //RC) 8 (1-—COS2wI ——
2

2t RCe I <2 e ­
2

V05 Z

where I

Letu-—-= Cos2wt&dv=-—-­

1

2

~—2t RC-e/ -(1/RC)-I A
2t RCI-—~ I e Cos Zwt dt

2 (Zt/RC)

l= Iudv = uv — fvdu

where I 1

-2Q-r

_-1-—

2:/ac(RC/2) 8 -C0s2wt

2t/1'wficfe Sifl2wTdI

L SIGNAL

2t/RC

e - dtRC 1

+ '1 B
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2t/RCwith u, = Sin2wt 8 dvl = e - dt

RC 2t/RCI = wRC [—-e $in2wt—- wCR|]1 2
where I is given by the equation. A

Substituting this value of I1 in the equation B

2t/RCI (RC/2) e COS2wt

2:/ac+ wRC [(RC/2) - e Sir12wt—- wCR|]

Rearranging and solving for I

RC 2t/RC
I =  »—~—~= :-~——a 8 (COS2w’[ + <0 RC Sifi2wT)

2(1-{-0:2 R3 C2 )

Substituting for I in equation A and simplifying;2 1 1 1V05 = - - 1 as sin <2“): + ¢>2 2 \,'1+wZ R2 C2
-1

where gr’) = tan (1/wCR)
Now , 1 1 _ 1/2V05 = ——  >< 8=n(2wt+¢)]Q (1+w2 R2 C2 )o.5

Expanding and neglecting higher powers of (1/1 + <02 R2 C2 ) ]

1=._[1
¢2

1

- _é, <.:a;,~ as; ]
'I6(1+w2 R2 c2)

V08
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2) IMPLICIT RMS COMPUTATION ON RAMP SIGNAL

Let vin = f(t) in equation 3.? on page 2.5

- -2t/RC 2:/ac 2 0.5 ­c) e 1* <1) at)-\_/:=Ave\|(e -{(2/R
2 —2t/RCvos .—_ (2/RC) e -1

2t/RC 2where I -—= I e f (t) dt

2 2t/RCLet u =1 (t) and dv = e dt

|=[udv=uv-[vdu
ac 2t/RC 2 2t/RC= M e .f (t) e 1 (ac/2) e . 2m)
2

f, ( t ) = 1 ;' T for a ramp with unit peak amplitude

RC 2t/RC 2 RC 2t/RCI =- - e f (t) - -~ I e f (t ) dt2 T
RC 2t/RC 2 RC RC 2t/RC= - e r (1) M -- [- e . f(t)2 "r 2

RC 2t/RC 1— I —- e - — dt]2 T
ac 2t/RC 2 R2 cg 2t/no| = - e r (1) - --- e f(t)2 2T

R1 02 RC 2t/RC+ ....--..i_ O — e2T2 2

- f (t) dt
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Substituting this value of I in (a)

2 —-2t/RCV05 = ( 2/RC ) e - I

2 no R2021- f (1) - - f(t) + —-—T 2T~=
2 RC 22 2

r'T)]
2
f(1)+[f(I)~2 ~— f(t)+R C22 T

Vos :
2

2 1 2 ac 2
V05 = -— [f (I)+(f(r)— ~—) 12 T
...._ 1 2 RC2 0.5)1} 1V05 = [{;[1‘(f)+(f(t)- ? AVE
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APPENDIX VI

Design of ith Segment

GIVEN: In the figure (Fig. 5.2)

TO DETERMINE:

Curve

Curve

Curve

Curve

The curve 1 is a straight line tangent to the curve 2 at the po I
(xli, yli) and it intersects the curve 4 at the two pomts a an

11 y=aix+b;
2 : Y2 = x=-’* + 2 Cx
3 : y = xi
4 : y] = xi -- 2 Cx

"9' (xi-11 yl-1) and (xi I vi )

(1) the constants ai and bi ,

(2) the length of the segment

and (3) xi , the abscissa of the end point.

SOLUTION

(|) at

at

Equating (ai x -{- bi) and (x2 -1- 2Cx) for x == x1,

bi

bi

1 slope of the straight line

: slopes of the curve 2 at x -_-= xv
_‘

I 2X1i + 2 C s.

2
= xli + 2CX1i *- X1; (2X1.a + 2C)

2:3 i  u | o \ ~ n n00
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'2
(ll) Equating (a; x + bi) and (x —- 2Cx) at x =2 2

Xi "- 2CXi = Xi (2X1i +  *- X1;
Rearranging,2 2

Xi - A2Xi (ZC + X1i) + X1i = 0
Solving for xi ,

2
Xi E--"~ 2C + X1i + \='(4C + 4CX1z)

2
Equating (ai x + b;) and (x — 20x) a
and solving for xi-1,

2
Xi-1 = 2C + Xli -' \"(4C + 4CX1i)

Now the segment length is given by

L 1 Xi -' Xi-1
2

L = 4 \'(C + CX1i)

TO DETERMINE xv:

2
Equating (ai x -5- bi) and (x - 2C3
solving for x1;2 2

X1i - 2X1; Xi-1 + (X:-1 - 4Xi-1C) = 0

X1; =— Xi-1 + 2 w)[CXi-1]

Xi,

TX 1 X;];

) at x = xi_, a
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APPENDIX VII

Design of the first segment

In the figure (Fig. 5.3),

Curve 1 y =- a1 x2 2Curve 2 : y,  x + Co
2Curve3: y=x2 2Curve4: y]=x —~C°

The curve 1 is tangent to the curve 3, at x = x11
TO DETERMINE:

and

SOLUTION

U) 31

(1) the slope a1 -T
(2) the abscissa of the tangent point x1 1 Q2 [ .3 I7

(3) the end point X1 D £ 0

=_= slope of the curve 2 at x -- x11

31 ‘* 27411

2 2
(II) a1 x equaIs (x + Co) at x -—- x11,

(Ill) a1

2 2
Ih8l’6fOI'6 2X1] X] 1 #7 X1] + C0

X11 -T‘ Co

2 2
x equals (x — CO) at x = x12 2

therefore 2 X 11 X 1 = X 1 — C Q

X1 = (1 -I- 1,-'2) Co
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