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a b s t r a c t

Quantile functions are efficient and equivalent alternatives to distribution functions
in modeling and analysis of statistical data (see Gilchrist, 2000; Nair and Sankaran,
2009). Motivated by this, in the present paper, we introduce a quantile based Shannon
entropy function. We also introduce residual entropy function in the quantile setup and
study its properties. Unlike the residual entropy function due to Ebrahimi (1996), the
residual quantile entropy function determines the quantile density function uniquely
through a simple relationship. The measure is used to define two nonparametric classes
of distributions.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, there has been a great interest in the measurement of uncertainty of probability distributions. Let X
be a nonnegative absolutely continuous random variable (rv) representing the lifetime of a component with cumulative
distribution function (CDF) F(t) = P(X ≤ t) and survival function (SF) F̄(t) = P(X > t) = 1 − F(t). The measure of
uncertainty defined by Shannon (1948) was

ξ(X) = ξ(f ) = −


∞

0
(log f (x)) f (x)dx = −E(log f (X)), (1)

where f (t) is the probability density function (PDF) of X . Eq. (1) gives the expected uncertainty contained in f (t) about the
predictability of an outcome of X , which is known as Shannon entropy measure. Length of time during a study period has
been considered as a prime variable of interest in many fields such as reliability, survival analysis, economics, business, etc.
In such cases, the information measures are functions of time, thus they are dynamic. Based on this idea, Ebrahimi (1996)
defined the residual Shannon entropy of X at time t as

ξ(X; t) = ξ(f ; t) = −


∞

t


f (x)
F̄(t)


log


f (x)
F̄(t)


dx,

= log F̄(t) −
1

F̄(t)


∞

t
(log f (x)) f (x)dx. (2)

Note that ξ(X; t) = ξ(Xt), where Xt = (X − t | X > t) is the residual time associated to X . By writing h(t) = f (t)/F̄(t), the
failure rate function of X , (2) can equivalently be written as

ξ(X; t) = 1 −
1

F̄(t)


∞

t
(log h(x)) f (x)dx. (3)
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A similar function can be obtained in terms of the inactivity time (t − X | X ≤ t) given in Di Crescenzo and Longobardi
(2002). Interesting extensions andmultivariate forms are also available in the literature. For additional information on these
measures, we refer to Belzunce et al. (2004), Ebrahimi (1996), Ebrahimi and Kirmani (1996), Ebrahimi and Pellerey (1995),
Nanda and Paul (2006) and Sunoj et al. (2009).

All these theoretical results and applications thereof are based on the distribution function. A probability distribution
can be specified either in terms of the distribution function or by the quantile functions (QFs). Recently, it has been showed
by many authors that QFs

Q (u) = F−1(u) = inf{t | F(t) ≥ u}, 0 ≤ u ≤ 1, (4)
are efficient and equivalent alternatives to the distribution function inmodeling and analysis of statistical data (see Gilchrist,
2000; Nair and Sankaran, 2009). Inmany cases, QFs aremore convenient as they are less influenced by extreme observations
and thus provide a straightforward analysis with a limited amount of information. For a detailed and recent study on QF, its
properties and its usefulness in the identification of models we refer to Lai and Xie (2006), Nair and Sankaran (2009), Nair
et al. (2011), Sankaran and Nair (2009), Sankaran et al. (2010) and the references therein.

Although variety of research is available for variousmeasures of uncertainty, a study of the sameusingQF does not appear
to have been taken up. Also, many QFs used in applied works such as various forms of lambda distributions (Ramberg and
Schmeiser, 1974; Freimer et al., 1998; Gilchrist, 2000; van Staden and Loots, 2009), the power-Pareto distribution (Gilchrist,
2000; Hankin and Lee, 2006), Govindarajulu distribution (Nair et al., 2011) etc. do not have tractable distribution functions.
This makes the statistical study of the properties of ξ(X) for these distributions by means of (1) difficult. Thus a formulation
of the definition and properties of entropy function in terms of QFs is called for. Such a discussion has several advantages.
Analytical properties of the entropy function obtained in this approach can be used as an alternative tool in modeling
statistical data. Sometimes the quantile based approach is better in terms of tractability. Newmodels and characterizations
that are unresolvable in the distribution function approach can be resolved with the aid of quantile approach. Further, an
explicit relationship between quantile entropy function and quantile density function in residual time can be derived.

The paper is organized as follows. In Section 2, we discuss some useful reliability measures in terms of quantile function.
We introduce Shannon entropy function and residual entropy function in quantile setup and study their properties. Section 3
presents characterization results for certain lifetime quantile models based on the residual quantile entropy function.

2. Quantile based Shannon entropy

When F is continuous, we have from (4), FQ (u) = u, where FQ (u) represents the composite function F(Q (u)). Defining
the density quantile function by fQ (u) = f (Q (u)) (see Parzen, 1979) and quantile density function by q(u) = Q ′(u), where
the prime denotes the differentiation, we have

q(u)fQ (u) = 1. (5)
The hazard rate quantile function is defined by,

H(u) = hQ (u) = h (Q (u)) = (1 − u)−1fQ (u) = [(1 − u)q(u)]−1. (6)
Following Nair and Sankaran (2009), H(u) explains the conditional probability of failure in the next small interval of time
given survival until 100(1 − u)% point of distribution. Like h(t) that determines the CDF or SF uniquely, H(u) also uniquely
determines the QF by

Q (u) =

 u

0

dt
(1 − t)H(t)

.

From (5), the Shannon entropy defined in (1) can be written in terms of QF as

ξ(X) = ξ =

 1

0
(log q(p)) dp. (7)

Clearly, by knowing either Q (u) or q(u), the expression for ξ(X) is quite simple to compute. An equivalent definition for the
residual entropy (2) in terms of QF is given by

ξQ (u) = ξ(X;Q (u)) = log(1 − u) + (1 − u)−1
 1

u
(log q(p)) dp. (8)

From (3), we can also write (8) as

ξQ (u) = 1 − (1 − u)−1
 1

u
logH(p)dp. (9)

ξQ (u) measures the expected uncertainty contained in the conditional density about the predictability of an outcome of X
until 100(1 − u)% point of distribution. Further, differentiating Eq. (8) with respect to u, we get

ξ ′Q (u) = −
1

(1 − u)
+

1
(1 − u)2

 1

u
log q(p)dp −

1
(1 − u)

log q(u),
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Table 1
Quantile function and quantile residual entropy function for lifetime distributions.

Distribution Quantile function ξQ (u)

Exponential λ−1(− log(1 − u)) 1 − log λ

Pareto II α[(1 − u)−
1
c − 1] ln


α
c


+

 c+1
c


−

1
c log(1 − u)

Rescaled beta R[1 − (1 − u)
1
c ] log

 R
c


+

 c−1
c


+

1
c log(1 − u)

Half Logistic σ log
 1+u
1−u


2 + log (2σ) −

2 log 2
(1−u) +

(1+u)
(1−u) log(1 + u)

Power function αu
1
β log


α
β


+


β−1
β


+ log(1 − u) +


β−1
β


u log u
(1−u)

Pareto I σ(1 − u)−
1
α log


σ
α


+


α+1
α


−

1
α
log(1 − u)

Generalized Pareto b
a


(1 − u)−

a
(a+1) − 1


log

 b
a+1


+

 2a+1
a+1


−

 a
a+1


log(1 − u)

Log logistic α−1
 u
1−u

 1
β 2 − log(αβ) +


β−1
β


u log u
(1−u) −

1
β
log(1 − u)

Exponential geometric 1
λ
log

 1−pu
1−u


2 + log

 1−p
λ


+ p−1(1 − u)−1 [(1 − p) log(1 − p) − (1 − pu) log(1 − pu)]

Linear hazard rate (a + b)−1 log


a+bu
a(1+u)


2+ log

 b−a
a+b


+ log(1−u)− (a+b)

b(1−u) log(a+b)+ (a+bu)
b(1−u) log(a+bu)− 2 log 2

(1−u) +
(1+u)
(1−u) log(1+u)

Davies Cuλ1 (1 − u)−λ2 log C + λ2 − λ1 + 1 − (1 − u)−1(λ2 − λ1)
−1λ2 log λ2 − λ2 log(1 − u) − (1 − u)−1

(λ1 − 1)u log u − (1 − u)−1(λ2 − λ1)
−1 (λ1(1 − u) + λ2u) log (λ1(1 − u) + λ2u)

equivalently,

(1 − u)ξ ′Q (u) = −1 + ξQ (u) − log(1 − u) − log q(u).

Thus,

q(u) = exp

ξQ (u) − (1 − u)ξ ′Q (u) − log(1 − u) − 1


. (10)

The relationship (10) determines the quantile density function from the quantile residual entropy ξQ (u). The relationship
(10) is a unique characteristic of ξQ (u) unlike the residual entropy ξ(X; t) in (3), where no such explicit relationship exists
between ξ(X; t) and f (t). Table 1 provides the QFs and corresponding ξQ (u).

Now on the basis of residual quantile entropy (RQE) ξQ (u), we define the following nonparametric classes of life
distributions.

Definition 1. X is said to have decreasing (increasing) residual quantile entropy (DRQE (IRQE)) if ξQ (u) is decreasing
(increasing) in u ≥ 0.

Now it is easy to show from the relationship (8) that if X is DRQE (IRQE), then ξQ (u) ≤ (≥)1+ log(q(u)(1−u)). From the
relationship (9) it follows that if X is DRQE (IRQE), then ξQ (u) ≤ (≥)1− logH(u). Note that for the exponential distribution,
q(u) =

1
λ(1−u) and H(u) = λ so that ξQ (u) = 1+ log(q(u)(1−u)) and ξQ (u) = 1− logH(u) = 1− log λ. Thus exponential

distribution is the boundary of IRQE and DRQE classes.

Theorem 1. (a) If X is IRQE and if φ is nonnegative, increasing and convex, then φ(X) is also IRQE. (b) If X is DRQE and if φ is
nonnegative, increasing and concave, then φ(X) is also DRQE.

Proof. If g(y) is the pdf of Y = φ(X), then g(y) =
f (φ−1(y))
φ′(φ−1(y))

=
fQ (u)

φ′Q (u) =
1

qX (u)φ′Q (u) . We have

ξYQ (u) = log(1 − u) +
1

(1 − u)

 1

u
log qY (p)dp,

= log(1 − u) +
1

(1 − u)

 1

u
log


qX (p)φ′Q (p)


dp,

= log(1 − u) +
1

(1 − u)

 1

u
log qX (p)dp +

1
(1 − u)

 1

u
logφ′Q (p)dp

= ξXQ (u) + E[logφ′(X) | X > φ−1(u)], (11)

where ξXQ (u) and ξYQ (u) are the RQEs of X and Y , respectively. Now if X is IRQE and if φ is nonnegative, increasing and
convex, then φ(X) is also IRQE. Proof of (b) is similar. �

Example 1. Let X have the exponential distribution with failure rate λ and let Y = X1/α, α > 0. Then Y has the Weibull
distributionwith Q (u) = λ−1/α(− log(1−u))1/α . The nonnegative increasing function φ(x) = x1/α, x > 0, α > 0, is convex
(concave) if 0 < α < 1(α > 1). Hence due to Theorem 1, the Weibull distribution is IRQE (DRQE) if 0 < α < 1(α > 1).

The concept of weighted distributions is usually considered in connectionwithmodeling statistical data, where the usual
practice of employing standard distributions is not found appropriate in some cases. In recent years, this concept has been
applied inmany areas of statistics, such as analysis of family size, human heredity, wildlife population study, renewal theory,
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biomedical, statistical ecology, reliabilitymodeling, etc. Associatedwith an rv X having PDF f (t), we can define theweighted
rv Xw with density function fw(t) =

w(t)f (t)
Ew(X)

, where w(t) is a weight function with 0 < Ew(X) < ∞. When w(t) = t, Xw

is called length (size) biased rv. For recent works on weighted distributions, we refer the reader to Bartoszewicz (2009),
Navarro et al. (2006) and Navarro et al. (2011). Using fw(t), the corresponding density quantile function is given by

fwQ (u) = wQ (u)fQ (u)/µ,

whereµ =
 1
0 wQ (p)fQ (p)dQ (p) =

 1
0 wQ (p)dp, or equivalently in the quantile density form 1

qw(u) =
wQ (u)
µq(u) . Therefore, the

RQE of Xw denoted by ξwQ (u) is of the form

ξwQ (u) = ξXQ (u) + logµ −
1

(1 − u)

 1

u
logwQ (p)dp.

Then the following preservation theorem is immediate.

Theorem 2. (a) If X is IRQE and if w(X) is nonnegative, increasing and concave, then Xw is also IRQE. (b) X is DRQE and if w(X)
is nonnegative, increasing and convex, then Xw is also DRQE.

The proof is similar to Theorem 1.

Definition 2. X is said to have less quantile entropy than Y if ξXQ (u) ≤ ξYQ (u) for all u ≥ 0. We write X
LQE
≤ Y .

It is interesting to note that if X and Y are two exponential rv’s with failure rates λ1 and λ2, respectively, and if λ1 ≤ λ2,

then X
LQE
≤ Y .

Theorem 3. If X
QFR
≤ Y , (i.e., HF (u) ≥ HG(u)), then X

LQE
≤ Y .

Theorem 4. If X
QFR
≤ Y , and if φ is nonnegative, increasing and convex, then φ(X)

LQE
≤ φ(Y ).

Proof. Let qX (u), q∗

X (u), qY (u) and q∗

Y (u) denote the quantile density function of X, φ(X), Y and φ(Y ), respectively. Then by
Eq. (11), for all u ≥ 0,

ξφ(X)Q (u) − ξφ(Y )Q (u) = ξXQ (u) − ξYQ (u) + E[logφ′(X) | X > φ−1(u)] − E[logφ′(Y ) | X > φ−1(u)]. �

Now, when X
QFR
≤ Y using Theorem 3 we have X

LQE
≤ Y , and since φ is nonnegative, increasing and convex, we obtain

φ(X)
LQE
≤ φ(Y ).

Remark 1. For equilibrium distribution with density function fE(t) = F̄(t)/µ, the RQE is given by ξEQ (u) = 1 + logµ.

3. Characterizations

Since ξQ (u) uniquely determines the quantile density function q(u) using (10), the characterizations of ξQ (u) for various
distributions can be easily obtained from Table 1. For instance, generalized Pareto family is characterized by the relationship
ξQ (u) = ξ + c log(1 − u), where c is a constant, for which c = 0 gives an exponential distribution and c < (>) 0 results
Pareto II (rescaled beta) distributions, respectively. Characterizations of ξQ (u) for other distributions can be constructed in
a similar fashion. Among various QFs given in Table 1, an important one is the Davies distribution proposed by Hankin and
Lee (2006). It is a flexible family for right-skewed nonnegative data that provides good approximation to the exponential,
gamma, lognormal and Weibull distributions and when λ1 = λ2 = λ, it becomes the log logistic distribution. Table 1
provides ξQ (u)s for QFs that has closed form expressions, however, in some cases only q(u) that has closed form expression.
Accordingly, we prove a characterization theorem using ξQ (u), for a family of distributions represented by q(u).

Theorem 5. An rv X is distributed with quantile density function

q(u) = Kuα(1 − u)−(A+α) (12)

for all u if and only if it satisfies the relationship

ξQ (u) = ξ + [1 − (A + α)] log(1 − u) −
αu log u
(1 − u)

,

where α and A are real constants.

Remark 2. In family of distributions (12) some of its members have properties of nonmonotone hazard quantile functions
and some have monotone hazard quantile functions. Further, it contains several well-known distributions which include
the exponential (α = 0, A = 1), Pareto (α = 0, A < 1), rescaled beta (α = 0, A > 1), the loglogistic distribution
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(α = λ − 1, A = 2) and the life distribution proposed by Govindarajulu (1977) (α = β − 1, A = −β), with QF
Q (u) = θ + σ((β + 1)uβ

− βuβ+1). In terms of distribution function (12) has the form

f (x) = K [F(x)]−α
[1 − F(x)]A+α,

belongs to the class of distributions defined by the relationship between their density and distribution functions of Jones
(2007) (for more details, see Nair et al., 2011).
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