
Journal of the Korean Statistical Society 42 (2013) 329–342

Contents lists available at SciVerse ScienceDirect

Journal of the Korean Statistical Society

journal homepage: www.elsevier.com/locate/jkss

Quantile based reliability aspects of partial moments
N. Unnikrishnan Nair, P.G. Sankaran ∗, S.M. Sunoj
Department of Statistics, Cochin University of Science and Technology, Cochin-682 022, India

a r t i c l e i n f o

Article history:
Received 28 May 2012
Accepted 13 November 2012
Available online 1 December 2012

AMS 2000 subject classifications:
primary 62E05
secondary 62P30

Keywords:
Partial moments
Quantile function
Ageing properties
Characterizations

a b s t r a c t

Partial moments are extensively used in literature for modeling and analysis of lifetime
data. In this paper, we study properties of partial moments using quantile functions.
The quantile based measure determines the underlying distribution uniquely. We then
characterize certain lifetime quantile function models. The proposed measure provides
alternate definitions for ageing criteria. Finally, we explore the utility of the measure to
compare the characteristics of two lifetime distributions.
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1. Introduction

Let X be a random variable with distribution function F(x) and finite moment of order r . Then the rth upper partial
moment about x is defined as

αr(x) = E(X − x)r
+

=


∞

x
(t − x)rdF(t) (1.1)

where (X − x)+ = max[(X − x), 0]. The quantity (X − x)+ is interpreted as the residual age in the context of lifelength
studies (Lin, 2003) and the first two moments and variance of (X − x)+ are used in actuarial studies for the analysis of risks
(Denuit, 2002). In the assessment of income, x can be taken as the tax exemption level so that (X − x)+ becomes the taxable
income.

Gupta and Gupta (1983) have discussed general properties of partial moments. They proved that (1.1) determines
the underlying distribution uniquely for any positive real r . Also when r is a positive integer there exists a recurrence
relation between two consecutive partial moments. Abraham, Nair, and Sankaran (2007), Chong (1977) and Lin (2003)
have characterized the exponential, beta and Pareto II distributions by relationships among various moments. The survival
function F̄(x) of X can be written in terms of αr(x) as (Navarro, Franco, & Ruiz, 1998; Sunoj, 2004)

F̄(x) =
(−1)r

r!
drαr(x)
dxr

.

Gupta (2007) and Sunoj (2004) obtained partial moments and their properties in respect of length biased and equilibrium
distributions.
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All these theoretical results and applications thereof use the definition (1.1) based on distribution function. A probability
distribution can be specified either in terms of the distribution function or by the quantile function.

Q (u) = inf
x

{x : F(x) ≥ u}, 0 ≤ u ≤ 1

and recently there has been substantial interest in modeling statistical data using quantile functions. Many of the quantile
functions used in statistical theory and applications like various forms of lambda distributions (Freimer,Mudholkar, Kollia, &
Lin, 1998; Gilchrist, 2000; Ramberg & Schmeiser, 1974; van Staden & Loots, 2009), the power-Pareto distribution (Gilchrist,
2000; Hankin & Lee, 2006), Govindarajulu distribution (Nair, Sankaran, & Vineshkumar, 2012) etc. do not have tractable
distribution functions.

For example in the case of the Govindarajulu distribution specified by

Q (u) = σ [(β + 1)uβ
− βuβ+1

], 0 ≤ u ≤ 1, σ , β > 0

cannot be inverted from Q (u) = x to u = F(x) analytically. In practice, for purposes of analysis the procedure is to solve for
u from the equation

x = σ((β + 1)uβ
− βuβ+1)

using numerical techniques, corresponding to chosen values of x. Such a collection of values of F(x) is insufficient to
determine the characteristics of the distribution exactly. The only alternative to resolve the problem is to find quantile-
based equivalents of the definitions of the characteristics and then use them for theoretical analysis. An illustration of this
approach that led to new methodology, analysis and models in the context of reliability analysis can be seen in Nair and
Sankaran (2009), Nair, Sankaran, and Vineshkumar (2011) and Nair and Vineshkumar (2010). These works also indicate
that even when the quantile functions are invertible, the approach provides alternative methodologies that have desirable
properties and are easier for applications.

Thus a formulation of the definition and properties of partial moments in terms of quantile functions is essential to study
them in the context of the quantile function model. Such a discussion has several advantages. Analytical properties of the
partial moments obtained in this approach can be used as an alternative tool in modeling statistical data. Sometimes the
quantile based approach is better in terms of tractability. New models and characterizations that are unresolvable in the
distribution functions approach can be resolved with the aid of the quantile approach. For example, the sum of two quantile
functions is again a quantile function. Hence starting with a partial mean of a quantile function, one can add another partial
mean to generate a new partial mean and the corresponding new quantile function. This imparts considerable flexibility in
modeling problems. See Sections 2 and 3 for a further elucidation of this and other aspects of the advantages of the quantile
approach. In view of these, the objective of the present work is to initiate a discussion of quantile based partial moments in
the context of reliability analysis.

The text is organized as follows. In Section 2, we present the definition of partial moments in terms of the quantile
function. Various properties of the partial moments and their relationships with other basic reliability concepts are
discussed. The proposed definition is used, in Section 3, to characterize certain lifetime quantile function models. The
potential of quantile-based definition to characterize various notions of ageing is studied in Section 4. In Section 5 we
demonstrate the utility of some of the results by applying them to a real data. Finally, Section 6 provides the utility of
the new definition to compare characteristics of two life distributions.

2. Basic results

Let X be a a non-negative random variable with absolutely continuous distribution function F(x) and probability density
function f (x). When F(x) is strictly increasing, the quantile function Q (u) is obtained from the solution of F(x) = u, as
x = Q (u). The mean of the distribution, when Q (0) = 0 is given by

µ =

 1

0
Q (p)dp (2.1)

=

 1

0
(1 − p)q(p)dp (2.2)

where q(u) =
dQ (u)
du is the quantile density function.

Since F(x) is strictly increasing, f (x) > 0 so that the quantile density function q(u) exists by virtue of the relation

q(u)f (Q (u)) = 1. (2.3)

The quantile version of the partial moment is obtained by setting F(x) = u in (1.1), which gives

Pr(u) = αr(Q (u)) =

 1

u
(Q (p) − Q (u))rdp. (2.4)
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Since the first two partial moments are generally in use, we confine the discussions to the cases r = 1 and r = 2 in (2.4).
When r = 1,

P1(u) =

 1

u
(Q (p) − Q (u)) dp.

Integrating by parts we have the equivalent formula in terms of quantile density function given as

P1(u) =

 1

u
(1 − p)q(p)dp (2.5)

and also

P1(u) =

 1

u
Q (p) dp − (1 − u)Q (u). (2.6)

Likewise, the second partial moment is

P2(u) = α2(Q (u)) =

 1

u
(Q (p) − Q (u))2 dp

and

P ′

2(u) =
2P1(u)P ′

1(u)
(1 − u)

. (2.7)

As mentioned earlier P1(u) is an essential tool in analyzing certain types of quantile functions rather than a mere
alternative to α1(x). However, the former has some advantages over the latter as revealed in the discussions below.

It may be noticed that both α1(x) (α2(x)) and P1(u) (P2(u)) represent the same quantities with different interpretations.
In fact P1(u) is the average of the X values that exceed the 100(1−u)% points of the distribution of X and P2(u) is interpreted
similarly. However, by virtue of the properties of quantile functions, P1(u) enjoys some special features in comparison with
α1(x). LetQ1(u) andQ2(u) be two quantile functionswith partialmeans R1(u) and S1(u). ThenQ1(u)+Q2(u) is also a quantile
function with quantile density function q1(u)+ q2(u). Accordingly Eq. (2.5) gives the partial mean of Q (u) = Q1(u)+Q2(u)

P1(u) = R1(u) + S1(u).

Since the sum of two distribution functions need not be a distribution function, a corresponding additive property is not
shared by α1(x). Further if Y = g(X) is a non decreasing function of X then g(Q (u)) is the quantile function of Y . Hence the
partial mean of Y is obtained as PY (u) = g(PX (u)). In particular under the linear transformation Y = aX + b, a > 0 we have
PY (u) = aPX (u).

The variance of (X − x)+ is

V+(u) =

 1

u
(Q (p) − Q (u))2 dp − P2

1 (u)

=

 1

u
Q 2(p)dp − (Q (u) − P1(u))2 + uQ 2(u). (2.8)

From (2.5) and (2.7) the derivatives of P1(u) and V+(u) are given by

P ′

1(u) = −(1 − u)q(u) (2.9)

and

V ′

+
(u) =

2uP1(u)P ′

1(u)
1 − u

. (2.10)

Thus P1(u) determines V+(u) as

V+(u) = −

 1

u
(2pP1(p)P ′

1(p))/(1 − p)dp =
u

1 − u
P2
1 (u) +

 1

u

P2
1 (p)dp

(1 − p)2
. (2.11)

From (2.10), we have

2P1(u)P ′

1(u) =
(1 − u)V ′

+
(u)

u
,

which gives on integration,

P2
1 (u) = −

 1

u

(1 − p)V ′
+
(p)

p
dp. (2.12)
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Table 1
Quantile partial means of distributions.

Distribution Quantile function P1(u)

Exponential −λ−1 log(1 − u) λ−1(1 − u)

Generalized lambda λ1 + λ−1
2 (uλ3 − (1 − u)λ4 ) 1

λ2


λ4

1+λ4
(1 − u)1+λ4 +

1−uλ3+1

1+λ3
− (1 − u)uλ3


Generalized Pareto b

a


(1 − u)−

a
a+1 − 1


b(1 − u)

1
a+1

van Staden-Loots λ1 + λ2


1−λ3
λ4

(uλ4 − 1) −
λ3
λ4

((1 − u)λ4 − 1)


λ2


1−λ3
λ4


1−u1+λ4
1+λ4

− (1 − u)uλ4


+
λ3

1+λ4
(1 − u)1+λ4


Govindarajulu σ [(β + 1)uβ

− βuβ+1
]

σ
β+2


2 − (β + 1)(β + 2)uβ

+ 2β(β + 2)uβ+1
− β(β + 1)uβ+2


Half logistic σ log 1+u

1−u 2σ log 2
1+u

Exponential geometric 1
λ
log

 1−pu
1−u

 1−p
λp log


1−pu
1−p


Linear hazard quantile (a + b)−1 log


a+bu
a(1+u)


1
b log

 a+b
a+bu


Power αu

1
β α


1 − u

1
β − (β + 1)−1


1 − u1+ 1

β



This shows that V+(u) determines P1(u) also. Expressions of P1(u) for various distributions that appear in the sequel are
presented in Table 1. Detailed proofs of (2.7), (2.8), (2.10) and (2.11) are given in Appendix. Now we discuss properties of
P1(u) and P2(u) in the context of reliability analysis. As background material, the quantile based definitions of the hazard
rate function h(x) =

f (x)
F̄(x)

, mean residual life function m(x) =
1

F̄(x)


∞

x F̄(t)dt and the variance residual life function

σ 2(x) =
2

F̄(x)


∞

x


∞

s F̄(t)dtds − m2(x) are required. By setting F(x) = u, the above functions are respectively equivalent to
the hazard quantile function

H(u) = h(Q (u)) =
1

(1 − u)q(u)
(2.13)

the mean residual quantile function

M(u) = m(Q (u)) =
1

(1 − u)

 1

u
(1 − p)q(p)dp (2.14)

and the variance residual quantile function

V (u) = σ 2(Q (u)) =
1

1 − u

 1

u
Q 2(p)dp − (M(u) + Q (u))2

=
1

1 − u

 1

u
M2(p)dp. (2.15)

For derivations of the formulas (2.13) to (2.15) and various identities connecting themwe refer to Nair and Sankaran (2009).
It follows from (2.5), (2.9) and (2.15) that

H(u) = −
1

P ′

1(u)
, (2.16)

M(u) =
P1(u)
1 − u

(2.17)

and V (u) =
1

1 − u

 1

u

P2
1 (p)

(1 − p)2
dp. (2.18)

An immediate consequence of the above identities is the potential of P1(u) to provide alternative definitions of ageing criteria
and stochastic orders. These aspects will be discussed in the subsequent sections.

The partial moments can be related to two other types of moments employed in the analysis of quantile function. These
are the L-moments defined by

Lr =

 1

0

r−1
k=0

(−1)r−1−k

r − 1
k

 
r − 1 + k

k


ukQ (u)du, r = 1, 2, 3, . . .

and the probability weighted moments

θr,s,t =

 1

0
[Q (u)]rus(1 − u)tdu.
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These two sets of moments are mutually related, the relationship for the first four moments being

θ1,0,0 = L1 = E(X) (2.19)

θ1,1,0 =
1
2
(L2 + L1) (2.20)

θ1,2,0 =
1
6
(L3 + 3L2 + 2L1) (2.21)

θ1,3,0 =
1
20

(L4 + 5L3 + 9L2 + 5L1). (2.22)

One can also write the L’s in terms of θ ’s from the above. Now from

L1 =

 1

0
Q (u)du =

 1

0
(1 − u)q(u)du (by integration by parts)

and since P ′

1(u) = (1 − u)q(u), we obtain

L1 = −

 1

0
P ′

1(u)du = P1(0).

Further

L2 =

 1

0
(2u − 1)Q (u)du =

 1

0
u(1 − u)q(u)du

= −

 1

0
uP ′

1(u)du

=

 1

0
P1(u)du.

Similarly

L3 =

 1

0
(6u2

− 6u + 1)Q (u)du

=

 1

0
(4u − 1)P1(u)du

and

L4 =

 1

0
(20u3

− 30u2
+ 12u − 1)Q (u)du

=

 1

0
(15u2

− 10u + 1)P1(u)du.

That the probability weightedmoments can also be expressed in terms of P1(u) now follows from the relationships in (2.19)
through (2.22). For a general discussion of probability weighted moments and L-moments, we refer to Hosking and Wallis
(1997).

3. Characterizations

In this section we discuss the application of partial moments in characterizing distributions. In the first place it may be
noticed from Eqs. (2.9) that the quantile function can be recovered from the functional form of P1(u) as

Q (u) = −

 u

0

P ′

1(p)dp
1 − p

.

Hence all the quantile functions given in Table 1 are characterized by the corresponding forms of P1(u). Further fromEq. (2.7)
it is evident that P2(u) is uniquely determined from P1(u).

Families of distributions for which variance is a function of the mean is a problem of interest in distribution theory. For
example, see Letac and Mora (1990) and Morris (1982) and their references. A somewhat similar problem is addressed in
the context of reliability analysis by Gupta and Kirmani (2000) when they seek the functional forms of the coefficient of
variation that characterize residual life distribution. In the same way it is possible to characterize a family of distributions
by the quantile partial coefficient of variation C(u) defined by

g(u) = C2(u) =
V+(u)
P2
1 (u)

. (3.1)
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Theorem 3.1. The quantile density function q(u) of X is represented in terms of g(u) as

q(u) =
µ

2
g ′(u)

(1 − u)g(u) − u
exp


1
2

 u

0

(1 − p)g ′(p)dp
p − (1 − p)g(p)


. (3.2)

In this case

P1(u) = µ exp

1
2

 u

0

(1 − p)g ′(p)dp
p − (1 − p)g(p)


. (3.3)

Proof. To prove this, we have

V+(u) = g(u)P2
1 (u)

which gives

V ′

+
(u) = P2

1 (u)g
′(u) + 2P1(u)P ′

1(u)g(u).

Also from (2.10)

V ′

+
(u) =

2u
1 − u

P1(u)P ′

1(u).

Hence
P ′

1(u)
P1(u)

=
(1 − u)g ′(u)

2[u − (1 − u)g(u)]
.

Integrating over (0, u), we have (3.3). The expression for q(u) is obtained directly from (2.9). Notice also that (3.3) says that
the partial mean is uniquely determined from the coefficient of variation C(u). �

To illustrate Theorem 3.1, we characterize the family of distributions when g(u) has bilinear form.

Theorem 3.2. The random variable X follows the generalized Pareto distribution

Q (u) =
b
a


(1 − u)−

a
a+1 − 1


, a > −1, b > 0 (3.4)

if and only if

g(u) =
u + c
1 − u

(3.5)

for some c > 0.

Proof. Assuming (3.5), we have

g ′(u) =
1 + c

(1 − u)2

and
1
2

 u

0

(1 − p)g ′(p)
p − (1 − p)g(p)

dp = log(1 − u)
1+c
2c .

Hence

P1(u) = µ(1 − u)
1+c
2c

q(u) =
µ(1 + c)

2c
(1 − u)

1+c
2c −2

and

Q (u) =

 u

0
q(p)dp =

µ

u


(1 − u)−

a
a+1 − 1


with a =

1−c
1+c . Conversely for the distribution (3.4),

P1(u) = b(1 − u)
1

a+1 and V+(u) = b2

u +

1 + a
1 − a


(1 − u)

2
a+1 −1

verifying (3.5) with c =
1+a
1−a , which completes the proof. �
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Remark 3.1. The generalized Pareto model (3.4) contains the exponential distribution with mean µ as c → 1 (a → 0).
When −1 < a < 0, we have the rescaled beta distribution with

F̄(x) =


1 −

x
R

d
, 0 < x < R, d > 0

where d = −
2c
1+c and when a > 0, the Pareto distribution

F̄(x) =


1 −

x
β

−d

, x > 0, β, d > 0

with d =
2c
1−c results. The uniform distribution is a special case of the rescaled beta when d = 1.

Remark 3.2. The relationship

P1(u) = µ(1 − u)
1+c
2c

characterizes the generalized Pareto family. In particular the linear function

P1(u) = a + bu

holds for all u and b < 0 if and only if X is exponential. When b > 0, there is no distribution since in that case 1

u
(1 − p)q(p)dp = a + bu

leads to

q(u) = −
b

1 − u
< 0.

The corresponding Q (u) is decreasing and does not qualify as a quantile function.

Theorem 3.3. The distribution of X is exponential if and only if V+(u) is a function of the form

V+(u) = a + bu2, b < 0. (3.6)

Proof. The exponential distribution has

V+(u) =
1 − u2

λ2

so that (3.6) satisfies with a =
1
λ2

and b = −
1
λ2

< 0. Conversely (3.6) implies that

2uP1(u)P ′

1(u) = 2bu(1 − u)

giving

P2
1 (u) = −2b(1 − u)2

so that

P1(u) = c(1 − u); c = (−2b)1/2 > 0.

Thus q(u) = c(1 − u)−1, the quantile function of the exponential law with mean c . �

Apart from identifying the exact distribution that corresponds to a desired functional form of P1(u), these characteriza-
tions have another important application in modeling. If R1(u) and S1(u) are partial means of Q1(u) and Q2(u) satisfying

P1(u) = R1(u) + S1(u)

then the quantile function corresponding to P1(u) is Q (u) = Q1(u) + Q2(u). This is the converse of the result stated in
Section 2, and is useful in constructing new distributions. The simplest form of partial mean (no nondegenerate distribution
has a constant partial mean) is the linear form

R1(u) = a + bu, b < 0

of the exponential distribution. Suppose that Y is random variable with uniform distribution F(x) =
x
c , 0 ≤ c ≤ c , so that

the quantile function is Q (u) = cu. Then Y has partial mean

S1(u) =
c(1 − u)2

2
.
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Accordingly

P1(u) =
c(1 − u)2

2
+ a + bu

has quantile function

Q (u) = cu + b log(1 − u), c > 0, b > 0,

with support as (0, ∞) and partial mean as a quadratic function. Note that in this case an analytic form for F(x) is not
available. This process can be applied to any two quantile functions in Table 1, thus generating partial means with a wide
variety of shapes. There is always scope for finding reasonable approximation to a desired functional form of P1(u) and the
corresponding distribution. Such a methodology is not shared by the distribution function approach.

4. Ageing properties

Asmentioned earlier, P1(u) can be employed to provide alternative definitions of various ageing criteria used in reliability
theory. One of the advantages is that all the ageing concepts can be expressed in terms of P1(u) instead of having to use
different functions H(u),M(u) and V (u) as in the conventional definitions. The following results are proposed, based on the
definitions of ageing concepts in terms of quantile functions discussed in Nair, Sankaran, and Vineshkumar (2008) and Nair
and Vineshkumar (2011). We say that X has increasing (decreasing) failure rate, IFR (DFR) if H(u) is increasing (decreasing)
in u.

Proposition 4.1. X is IFR (DFR) if and only if P1(u) is convex (concave). Further, the hazard quantile function is bathtub (upside
down bathtub) shaped with a single change point u0 if P1(u) is concave (convex) in (0, u0) and convex (concave) in (u0, 1).

Proof follows from (2.16).

Proposition 4.2. X is IFRA ⇔ P ′

1(u) ≤
Q (u)

log(1−u) .

Proof. X is IFRA ⇔ −
(1−u)
Q (u) is increasing

⇔Q (u) + log(1 − u)((1 − u)q(u)) ≥ 0
⇔Q (u) − P ′

1(u) log(1 − u) ≥ 0

⇔P ′

1(u) ≤
Q (u)

log(1 − u)
.

The lifetime X has decreasing mean residual life (DMRL) ifM(u) is decreasing in u. �

Proposition 4.3. X is DMRL ⇔
P1(u)
1−u is decreasing.

The proof follows from (2.1).

Proposition 4.4. X is NBU (new better than used) if and only if u+v−uv

v

P ′

1(p)
1 − p

dp ≥

 u

0

P ′

1(p)
1 − p

dp.

Proof. X is NBU ⇔ Q (u + v − uv) ≤ Q (u) + Q (v)0 ≤ u, v < 1.

⇔

 u+v−uv

v

q(p)dp ≤

 u

0
q(p)dp

⇔

 u+v−uv

v

P ′

1(p)
1 − p

dp ≥

 u

0

P ′

1(p)
1 − p

dp. �

Proposition 4.5. X is NBUE (new better than used in expectation) ⇔ P1(u) ≤ M(1 − u).

This follows from the fact that X is NBUE ⇔ M(u) ≤ M(0) and (2.17).

Proposition 4.6. X is HNBUE (harmonically new better than used in expectation) ⇔ S(u) ≤ e−
Q (u)
µ where S(u) =

P1(u)
µ

is the
scaled quantile partial mean.
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Proof.

X is HNBUE ⇔

 1

u
(1 − p)q(p)dp ≤ µ exp


−

Q (u)
µ


⇔ µ −

 u

0
(1 − p)q(p)dp ≤ µ exp


−

Q (u)
µ


⇔ µ −

 u

0
P ′

1(p)dp ≤ µ exp

−

Q (u)
µ


⇔ S(u) ≤ exp


−

Q (u)
µ


. �

Definition 4.1. We say that X is new better than used in hazard rate (NBUHR) if h(0) ≤ h(x) or H(0) ≤ H(u).

Proposition 4.7. X is NBUHR ⇔ P ′

1(0) ≤ P ′

1(u).

Definition 4.2. We say that X is new better than used in hazard rate average (NBUHR) if h(0) ≤
1
α

 x
0 h(t)dt .

Proposition 4.8. X is NBUHRA ⇔ P ′

1(0) ≤
Q (0)

log(1−u) .

Definition 4.3. The random variable X is said to have IFRA∗t0 if F̄(t0) ≥ F̄ b(x) for all x ≥ t0 > 0 and t0
x ≤ b < 1.

Proposition 4.9. X is IHRA ∗t0 ⇔

−

 u

0

P ′

1(p)
1 − p

dp ≥
Q (u0) log(1 − u)

log(1 − u0)
; 0 ≤ u0 < 1 and t0 = Q (u0).

Definition 4.4. X belongs to decreasing mean residual harmonic average (DMRLHA) if
 1
x

 x
0

dt
mt

−1
is decreasing in x.

Proposition 4.10. X is DMRLH A ⇔ − log P1(u) ≤ (1 − u)Q (u).

Proof. X is DMRLHA

⇔
1

Q (u)

 u

0

q(p)dp
M(p)

is increasing in u.

⇔
1

Q (u)

 u

0

(1 − p)q(p)dp 1
p (1 − s)q(s)ds

is increasing

⇔
1

Q (u)

 u

0
−

d
dp

(log
 1

p
(1 − s)q(s)ds)dp is increasing

⇔
1

Q (u)

 u

0
−

d
dp

log P1(p)dp is increasing

⇔
1

Q (u)
P1(u) is increasing.

⇔
d
du

log P1(u)
Q (u)

≤ 0

⇔ − log P1(u) ≤ (1 − u)Q (u). �

Definition 4.5. X is said to be used better than aged (UBA) if and only if F̄(x + t) ≥ F̄(t) exp

−

x
m(∞)


, x ≥ 0, t ≥ 0 and

m(∞) < ∞.

Proposition 4.11.

X is UBA ⇔

 v+(1−v)u

v

P ′

1(p)
1 − p

dp ≤ −P ′

1(1) log(1 − p).
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Proof. m(∞) < ∞ impliesM(1) < ∞. Now

M(1) = lim
u→1

M(u) = lim
u→1

 1
u (1 − p)q(p)dp

1 − u

= lim
u→1

−
(1 − u)q(u)

−1
= lim

u→1

1
1 + (u)

= lim
u→1

−P ′

1(u)

= −P ′

1(1).

Noting that F̄(x+t)
F̄(t)

has quantile function Q (v +u−uv)−Q (v) where u = F(x) and v = F(t) and exp

−

x
m(∞)


has quantile

function −M(1) log(1 − u). Hence,

X is UBA ⇔ Q (u + v − uv) − Q (v) ≥ −M(1) log(1 − u) for all 0 ≤ u, v < 1.

⇔

 v+u−uv

v

q(p)dp ≥ P ′

1(1) log(1 − u)

⇔

 v+u−uv

v

P ′

1(p)dp
1 − p

≤ −P ′

1(1) log(1 − u). �

Definition 4.6. We say that X is used better than aged in expectation (UBAE) ifm(x) ≥ m(∞).

Proposition 4.12. X is UBA ⇔ P1(u) ≥ −P ′

1(1)(1 − u).

The proof follows from the fact that
X is UBAE ⇔ M(u) ≥ M(1).

Definition 4.7. X is said to have decreasing variance residual life (DVRL) if and only if σ 2(x) is decreasing in x.

Proposition 4.13. X is DVRL ⇔ g(u) ≤
1+u
1−u .

Proof.

X is DVRL ⇔ V (u) =
1

1 − u

 1

u
md(p)dp is decreasing

⇔
1

1 − u

 1

u

P2
1 (p)

(1 − p)2
dp is decreasing

⇔

 1

u

P2
1 (p)

(1 − p)2
dp ≤

P2
1 (u)

1 − u

⇔ V+(u) −
u

1 − u
P2
1 (u) ≤

P2
1 (u)

1 − u

⇔ g(u) ≤
1 + u
1 − u

. �

Definition 4.8. The random variable X has NBU-t0 if and only if F̄(x + t0) ≤ F̄(x)F̄(t0) for all x and some t0.

Proposition 4.14. X is

NBU-t0 ⇔

 u+v0−uv0

v0

P ′

1(p)dp
1 − p

≥

 u

0

P ′

1(p)dp
1 − p

for some 0 < v0 < 1.

Definition 4.9. X is NBU * t0 if and only if

F̄(x + y) ≤ F̄(x)F̄(y)

for all x > 0 and y ≥ t0.

Proposition 4.15. X is NBU ∗ t0 ⇔ u+v−uv

v

P ′

1(p)dp
1 − p

≥

 u

0

P ′

1(p)
1 − p

dp

for all u and v ≥ v0.
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Fig. 1. Plot of P̂1(u).

5. Application to real data

In this section we demonstrate, with the aid of a real data set, the application of the partial moment in the context of
reliability analysis. The Arset data on the failure times of the 50 devices reported in Lai and Xie (2006) is utilized for the
purpose; by first examining the Govindarajulu distribution specified by the quantile function in Table 1 as a model. To
estimate the parameters of the model we use the method of L-moments by equating the first two L-moments

L1 =
2σ

β + 2

and

L2 =
2σβ

(β + 2)(β + 3)

with the sample L-moments

ℓ1 =

n
1

−1 n
i=1

x(i) (5.1)

ℓ2 =
1
2

n
2

−1 n
i=1


i − 1
1


−


n − i
1


x(i) (5.2)

where x(i) is the ith order statistic and solve for σ and β from the resulting equations. This gives the estimates

σ̂ = 93.463 and β̂ = 2.0915.

Dividing the data into 5 groups of 10 observations the goodness of fit test provides a chi-square value of 1.8, which does not
reject the model. The estimate of the first partial moment from Table 1 is written as

P̂1(u) = 45.6864 − 288.9407u2.0915
+ 390.9545u3.0915

− 147.4940u4.0915 (5.3)

A plot of P̂1(u) can be seen in Fig. 1. A simple differentiation of (5.3) and Proposition 4.1, enables us to find that P1(u)
is concave in (0,0.353) and convex in (0.353,1) so that the hazard quantile function is bathtub-shaped. Similarly, from
Proposition 4.3, the mean residual quantile function of the model has a change point if

d
du

P1(u)
1 − u

=
(1 − u)P ′

1(u) + P1(u)
(1 − u)2

= 0. (5.4)

Using (5.3), the condition (5.4) simplifies to

45.684 − 604.3195u1.0915
+ 1524.0416u2.0915

− 1421.4543u3.0915
+ 455.9784u4.0915

= 0.

Solving we find the zero of (5.4) as

u0 = 0.12768

so that the mean residual quantile function is initially increasing and then decreasing in u. A fair picture of the ageing
properties of the devices are revealed from the analysis in terms of the partial mean P1(u).
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6. Discussion

There are situations in lifetime data analysis to compare the characteristic of two lifetime models. For example, if two
manufacturers produce devices that serve the samepurpose, the natural interest is to knowwhich ismore reliable. Stochastic
orders enable us to globally compare two lifetime distributions in terms of their characteristics.

Recall that when X and Y are nonnegative random variables with finite expectations. We say that (Shaked &
Shanthikumar, 2007)

(i) X is smaller than Y in increasing convex order, X ≤icx Y , if and only if,
∞

x
F̄X (t)dt ≤

 1

x
F̄Y (t)dt for all t

or equivalently 1

u
QX (p)dp ≤

 1

x
QY (p)dp (6.1)

and
(ii) X is smaller than Y in excess wealth order X ≤ew Y if and only if,

∞

QX (u)
F̄X (t)dt ≤


∞

QY (u)
F̄Y (t)dt

or in terms of quantile functions 1

u
[QX (p) − QX (u)]dp ≤

 1

u
[QY (p) − QY (u)]dp

⇔

 1

u
QX (p)dp − (1 − u)QX (u) ≤

 1

u
QY (p)dp − (1 − u)QY (u). (6.2)

It is worthwhile to observe that in the distribution function approach if α(x) and β(x) are the partial mean of X and Y , the
dominance of Y over X is denoted by X ≤P Y and defined as α(x) ≤ β(x) for all x. Hence

X ≤P Y ⇔ X ≤icx Y .

On the other hand in the quantile formulation (6.2) we define a partial order P1, X ≤P1 Y as 1

u
(1 − p)qX (p)dp ≤

 1

u
(1 − p)qY (p)dp. (6.3)

On integration by parts, (6.3) becomes identical to (6.2). Hence in this case

X ≤P1 Y ⇔ X ≤ew Y .

From Corollary 4.A.32 in Shaked and Shanthikumar (2007), the order ≤P1 implies ≤P if the lower end of the support of X is
smaller than that of Y . The same reference also discussed elaborately the properties of ≤icx and ≤ew and its relationships
with other orders are useful in reliability.

The quantile functions and characteristics based on them are extensively used in financial mathematics and financial
risk management. When X represents the potential loss or risk a firm incurs in a business policy, themaximum possible loss
which does not exceed with a high probability α (called the confidence level) is given by the value at risk function given by

Va Rα = QX (α),

the quantile function. On the other hand the expected loss incurred by the firm when the loss exceeds the value at risk is

C Va Rα = E(X |X > Va Rα)

= Q (α) +
1

1 − α
P1(α)

which is in terms of the partial mean. In addition, P1(u) is related to the well known Lorenz curve, Gini index, Bonferroni
curve used in economics and to the Leimkuhler curve and the bibliometric analysis. These and other field of applications of
partial moments will be reported in a separate work.
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Appendix

Proof of (2.7).

P2(u) =

 1

u
(Q (p) − Q (u))2dp

=

 1

u
Q 2(p)dp − 2Q (u)

 1

u
Q (p)dp + (1 − u)Q 2(u).

Differentiating the above,

P ′

2(u) = −Q 2(u) − [2Q (u)(−Q (u)) + 2q(u)
 1

u
Q (p)dp] + 2(1 − u)Q (u)q(u) − Q 2(u)

= −2q(u)
 1

u
Q (p)dp + 2(1 − u)Q (u)q(u)

= −2q(u)[P1(u) + (1 − u)Q (u)] + 2(1 − u)Q (u)q(u)

= −2q(u)P1(u) =
2P1(u)P ′

1(u)
1 − u

, using (2.9). � (A.1)

Proof of (2.8).

V1(u) =

 1

u
[Q (p) − Q (u)]2dp − P2

1 (u)

=

 1

u
Q 2(p)dp − 2Q (u)

 1

u
Q (p)dp + (1 − u)Q 2(u) − P2

1 (u)

=

 1

u
Q 2(p)dp − 2Q (u)[P1(u) + (1 − u)Q (u)] + (1 − u)Q 2(u) − P2

1 (u)

=

 1

u
Q 2(p)dp + uQ 2(u) − (Q (u) + P1(u))2. �

Proof of (2.10).

V+(u) = P2(u) − P2
1 (u)

V ′

+
(u) = P ′

2(u) − 2P1P ′

1(u)

=
2uP1(u)P ′

1(u)
1 − u

, using (A.1). � (A.2)

Proof of (2.11). From (A.2)

V (u) = −

 1

u

2pP1(p)P ′

1(p)
1 − p

dp

= −

 1

u

p
1 − p

d
dp

(P2
1 (p))dp

(2.11) is obtained by integrating by parts the right side of the above. �
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