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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Control of the unwanted microorganisms is essential in all aspects of life, 

and microbial diseases must be treated in humans, animals, and plants. Emergence 

of antibiotic resistant bacteria and the need for novel, antimicrobial compounds led 

to the exploration of new habitats to screen the production of bioactive substances 

(Gram et al. 2010). Nature provides a treasure-trove of chemicals that can be used 

in chemical manufacturing processes, or developed into drugs for the treatment of 

human disease. New environmental niches provide a new source of microbes and 

potential for novel compound production (Sfanos et al. 2005).  

Advances in natural product chemistry are expected to rely ever more on 

interdisciplinary research, and this is particularly important for marine microbial 

products. The marine environment contains over 80% of world’s plant and animal 

species (Jha et al. 2004). Marine natural products from the microbes have lagged 

behind those from macroorganisms. Therefore, marine microorganisms deserve 

more and more organized attention by the natural products chemists (Pietra 1997). 

Marine microorganisms are valuable resources due to the production of a wide 

range of natural products with potential biotechnological and pharmaceutical 

application (Gram et al. 2010). Antibiotic production by marine bacteria has been 

documented for a long time. However, there is a paucity of information dealing 

with the isolation and purification of the active inhibitory substances (Barja et al. 

1989). 
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1.2      Seaweed resistance to microbial attack  

Seaweeds are potential sources of high biotechnological interest due to the 

production of a great diversity of compounds exhibiting a broad spectrum of 

biological activities. Several species of seaweed have the capacity to produce a 

diverse array of secondary metabolites, which exhibit important and vital 

ecological roles as defense and/or signal compounds, and are also of 

biotechnological interest (Pereira 2011). More than 2500 secondary metabolites 

have been isolated from the seaweeds (Chakraborty et al. 2010, 2008, 2009). A 

typical milliliter of seawater contains 103 fungal cells, 106 bacteria, and 107 viruses, 

including pathogens that cause widespread mortalities and microbes that initiate 

fouling of host surfaces. Thus, marine plants and animals are continually exposed 

to greater concentrations of potentially harmful microbes. Yet, many sessile 

organisms, such as, seaweeds and sponges suffer remarkably low levels of 

microbial infection, despite lacking cell-based immune systems. Antimicrobial 

defenses of marine organisms are largely uncharacterized, although from a small 

number of studies it appeared that chemical defenses might improve host resistance 

(Kubaneck et al. 2003). In order to survive in a highly competitive environment, 

seaweeds have to develop defense strategies that result in a tremendous diversity of 

compounds derived from different metabolic pathways (Cardozo et al. 2007). 

1.3 The symbiotic role of marine microbes on living surfaces 

Every surface immersed in the sea, including those of organisms, provide 

an organic material rich habitat to the microorganisms to thrive. Bacteria 

associated with live or inert surfaces are more likely to display antibacterial 

activity (Gram et al. 2010, Armstrong et al. 2001).  In order to survive in a highly 

competitive environment, freshwater or marine algae have to develop defense 

strategies that result in a tremendous diversity of compounds from different 

metabolic pathways (Cardozo et al. 2007; Gram et al. 2010). Various novel 

compounds with antibiotic activity from seaweeds are found to have structural 
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similarities to microbial compounds (Kubaneck et al. 2003). It is interesting to note 

that the bacteria associated with live or inert surfaces are more likely to display 

antibacterial activity (Amstrong et al. 2001).  

The surfaces of marine eukaryotes provide a unique habitat for colonizing 

microorganisms where competition between members of these communities and 

chemically mediated interactions with their host are thought to influence both 

microbial diversity and function. For example, it is believed that marine eukaryotes 

may use their surface-associated bacteria to produce bioactive compounds in 

defense against competition and to protect the host against further colonization. 

With the increasing need for novel drug discovery, marine epibiotic bacteria may 

thus represent a largely underexplored source of new antimicrobial compounds. A 

greater percentage of epiphytic isolates possessing antimicrobial activities also 

highlights the biotechnological potential for targeted isolation of marine eukaryote-

associated bacteria. Products from such microorganisms may prove to be a 

valuable source of future novel drugs (Penesyan et al. 2009). 

Chemically driven interactions are important in the establishment of cross 

relationships between marine surface-associated microorganisms and their 

eukaryotic host (Imhoff et al. 2011). Marine microbial symbionts are possibly the 

true producers or take part in the biosynthesis of some bioactive marine natural 

products isolated from the eukaryotic hosts as reported in an array of similar 

studies (Kubanek et al. 2003; Zhang et al. 2009; Li 2009). Plurality of culture 

dependent and independent studies on sponges and their associated microbiota 

validated this hypothesis. The alkaloid harman, previously reported from some 

marine invertebrates, was identified as the antibiotic substance of the tunicate-

associated bacterium Enterococcus faecium. It exhibited antibacterial activity 

(MIC, 0.017 mM) against the ichthyopathogenic strain Vibrio anguillarum (Aassila 

et al. 2003). 
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1.4 Bacterial communities coexisting with the seaweeds as a 
source of novel natural compounds 

Seaweeds are prolific natural product synthesizers. The colonization of 

sessile eukaryotic host surfaces by bacteria is common in the marine environment, 

and seaweeds have been known to support the bacterial populations (Rao et al. 

2005). Seaweed associated bacterial population comprises a major share of their 

biomass. The majority of marine organisms including seaweeds remain relatively 

free from macrofouling, although some may be covered in a thin film of epibiotic 

bacteria. The role of these bacteria in maintaining the health of the host has 

received little attention. It is likely that many marine plants use chemical defenses 

against the microbial pathogens, epiphytes, and saprophytes, but this hypothesis 

has rarely been tested. Seaweed epibionts may play a protective role, releasing 

compounds into the surrounding seawater that help prevent extensive fouling of the 

surface. Secondary metabolites from these bacteria associated with seaweeds were 

reported to use targeted antimicrobial chemical defense strategies to deter 

microbial infection. These compounds may also have industrial and medical 

applications.  

Weinberger and Friedlander (2000) found that rhodophytan seaweed 

Gracilaria conferta exhibited an antagonistic response to the deleterious bacterial 

populations. Gil-Turnes et al. (1989) discovered that shrimp embryos are covered 

by a bacterium, Alteromonas sp that produces the broad-spectrum antifungal 

compound isatin, and that this compound was found to protect the embryos from a 

pathogenic fungus Lagenidium callinectes. Pseudomonas and Bacillus are common 

beneficial bacterial candidates in marine environments, and are known to produce 

a wide range of secondary metabolites inhibiting a wide range of pathogenic 

bacteria (Raaijmakers et al. 1997). Amphiphilic phenols from marine 

Pseudomonas sp isolated from seaweed have been demonstrated to inhibit several 

marine bacteria and fungi (Kozubek et al. 1991). Torrento and Torres (1996) 

reported in vitro inhibition of V. harveyi by a Pseudomonas species isolated from 

the aquatic environment. Probiotic activity of Bacillus sp has been shown to 

improve survival of penaeid adults in ponds and larvae in hatchery (Moriaty et al. 
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1997). The relative ease of culturing these microbes, compared to other bacteria 

that produce active compounds, suggests that the seaweed-associated bacteria may 

be useful in bioprocess applications, such as the production of antimicrobial or 

antifouling compounds (Armstrong et al. 2001). 

 The proportion of active bacteria associated with invertibrates (20%) and 

seaweeds (11%) was reported to be higher than those isolated from seawater (7%) 

and sediments (5%) (Li 2009). Chemically driven interactions are important in the 

establishment of cross relationships between the marine surface-associated 

microorganisms and their eukaryotic host (Imhoff et al. 2011). Marine microbial 

symbionts are possibly the true producers or take part in the biosynthesis of some 

bioactive marine natural products isolated from the eukaryotic hosts as reported in 

an array of similar studies (Li 2009; Kubaneck et al. 2003). Pluralities of culture 

dependent and independent studies on sponges and their associated microbiota 

validated this hypothesis. Investigations of the pharmaceutical metabolites revealed 

the biosynthesis mechanisms of related natural products and solve the current 

problem of supply limitation in marine drug development (Li 2009). 

Despite the fact that the seaweeds like their terrestrial counterparts, are 

potential sources of novel secondary metabolites. However the number of seaweed 

species studied and identified corresponds to a meager 2% of the 150,000 known 

species reported worldwide (Gómez et al. 2010). A preliminary study was 

conducted by Lemose et al. (1985), where he reported the seaweed-associated 

bacteria as sources of bioactive metabolites. Further diversity of the antibiotic 

producing bacteria was studied by Wiese et al. (2009), and in terms of chemical 

ecology; the protective role of epibiotic bacteria was proposed (Armstrong et al. 

2001). Even though such interesting reports are there in relation to the seaweed-

associated bacteria, no detailed study concerning the characterization of seaweed-

associated bacteria exploring antibiotic effects is available (Wiese et al. 2009). 
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Figure 1.1 

A seaweed collection area in Gulf of Mannar (Mandapam)  
(Inset: seaweed and their associated bacteria (Bacillus subtilis) 

 

Positive seaweed–bacterial interactions include phytohormone production, 

morphogenesis of seaweed triggered by bacterial products, specific antibiotic 

activities affecting epibionts and elicitation of oxidative burst mechanisms. Some 

bacteria are able to prevent biofouling or pathogen invasion, or extend the defense 

mechanisms of the seaweed itself. Deleterious seaweed–bacterial interactions 

induce or generate algal diseases. To inhibit settlement, growth and biofilm 

formation by bacteria, seaweeds influence bacterial metabolism and quorum 

sensing, and produce antibiotic compounds. There is a strong need to investigate 

the bacterial communities living on different seaweeds. Based on this background, 

it is imperative to investigate the bacterial communities living on seaweeds using 

new technologies, and also to investigate the production, localization and secretion 
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of the biologically active metabolites involved in those possible ecological 

interactions (Goecke et al. 2010).  

 Considering that so far virtually all macroorganisms collected and 

extracted for chemical studies include the associated microorganisms, questions 

about the true biosynthetic origin of molecules isolated from seaweeds need to be 

addressed. In several cases, it has already been proven that metabolites initially 

assigned to the basibionts are in fact of microbial origin. Chlorophyll d, for 

example, is not a constituent of red algae as was described for more than 60 years. 

In fact, it does not even occur in eukaryotes at all, but is produced by the 

cyanobacterium Acaryochl oris spp (Goecke et al. 2010). 

In support of this, Kubaneck et al. (2003) isolated and characterized a 22-

membered cyclic lactone, lobophorolide, of presumed polyketide origin. 

Lobophorolide is structurally unprecedented, yet parts of the molecule are related 

to tolytoxin, scytophycins, and the swinholides. These macrolides were previously 

isolated from the terrestrial cyanobacteria and marine sponges. The structural 

similarity of Lobophorolide to bacterial metabolites suggests that the polyketide 

analogue could be the product of a microbial symbiont of L. variegata, although no 

such symbiont has yet been identified. 

Based on these we hypothesized that the chemical defense could be a 

widespread strategy used by the marine macroorganisms to deter microbial 

infection. Antimicrobial activity is widespread among seaweed associated bacteria 

(Wiese et al. 2009, Burgess et al. 1999; Kanagasabhapathy et al. 2008; Penesyan et 

al. 2009). Bacteria producing antibiotic substances reflect an important part of 

bacterial communities on surfaces of marine organisms as compared to the free-

living bacterial communities. However, we still have a long way to go in 

understanding how bacteria really protect their hosts, and the structural information 

of the antimicrobial compounds they may produce under multifactorial natural 

conditions in situ (Goecke et al. 2010). 

In this study, we have adopted a culture dependent method to assess the 

diversity of cultivable antagonistic heterotrophic bacterial communities associated 
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with seven species of intertidal seaweeds at the Gulf of Mannar in the South-East 

Coast of India bordering the Bay of Bengal to explore them as a source for 

potentially useful antimicrobial substances. Only a minor fraction of the marine 

microbiota is culturable, and assessing the complete potential of bioactivity of the 

entire marine microbial population would require inclusion of both culturable and 

non-culturable organisms. In principle, (meta)genomic data can be used to 

determine the presence of genes encoding possible antibiotic activity, however, it 

requires that the mechanisms (and the genetic background) of antagonistic activity 

are known. Also, if genes encoding antagonistic activity are only present in 

specific niches, they may not be detected in metagenomic data. For instance, 

luminous genes in Vibrio fisheri were not found in data from the GOS expedition. 

Despite the limitations of cultivation-based studies, cultivation remains essential as 

it provides opportunities to study and understand microbial ecology and 

physiology and design antibiotic screening assays (Gram et al. 2010). 

1.5 Functional genes associated with the seaweed-associated bacteria 
and their relation to the bioactivity 

As the activity-based analysis for the bioactive compounds possesses the 

limitation that the culture conditions may not be suitable for the growth of the 

isolates for the production of the bioactive metabolites, and so there is a trend 

towards a functional gene based molecular screening strategy (Zhou et al. 2009).  

Polyketide synthetases (PKS) and non-ribosomal peptide synthetases (NRPS) are 

multifunctional enzymes catalyzing the biosynthesis of structurally diverse 

bioactive natural products (Hutchinson 2003), which has been commonly 

employed for designing molecular tools to assess metabolically active bacterial 

groups (Kennedy et al. 2009; Zhang et al. 2009). It is thought that the modular 

nature of type I PKS and NRPS has facilitated the diversity of the 

polyketide/nonribosomal peptide natural product families through genetic 

recombination events, which generate pluralities of novel biologically active 

molecules (Ayuso-Sacido and Genilloud 2005). PKSs catalyze the biosynthesis of 

polyketide chain from simple molecular building blocks, such as, carboxylic acid 

CoA esters (e.g., acetate and propionate units) through a series of decarboxylative 

condensation reactions (Jez et al. 2002). On the basis of the architecture and mode 
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of action of the enzymatic assembly lines, PKSs are classified into type I, type II 

and type III. The type I PKSs refers to linearly arranged and covalently fused 

catalytic domains within large multifunctional enzymes, whereas the term type II 

indicates a dissociable complex of discrete and usually monofunctional enzymes. 

Furthermore, a third group of multifunctional enzymes of the chalcone synthase 

type is denoted as type III PKSs (Hertweck et al. 2009). Polyketides and 

nonribosomal peptides have been immensely concerned over the past few decades, 

and numbers of various novel polyketide and non-ribosomal peptide compounds 

have been found from marine-derived microbes, most of which showed different 

biological activities and ecological functions (Zhou et al. 2011). There is evidence 

that the presence of biosynthesis genes encoding PKSs and NRPSs in marine 

sponge-derived actinomycetes are useful indicators for the selection of strains to 

isolate new natural products (Xi et al. 2012). 

Polyketides, nonribosomal peptides, and PKS/NRPS hybrid compounds are 

important classes of natural products, and include many important drugs. There are 

several reports regarding the filtration and screening of polyketide synthetase (pks) 

and nonribosomal peptide synthetase (nrps) genes from bacteria and fungi isolated 

from sponges and soil showing bioactivity (Zhou et al. 2011). Despite being very 

important marker gene systems, little is known about the presence of nrps and pks-

I in the diverse seaweed-associated microbiota. Phycochemical studies showed the 

ability of seaweeds to produce and store polyketide as polycyclic ether macrolides 

and open chain polyketides. Although macrolides produced by the terrestrial 

microorganisms have been used for long in human therapeutics, microlides from 

marine algae is a recent citation (Cardozo et al. 2007). Compounds of polyketide 

origin, with bioactivity have been isolated from seaweeds, and have reported to 

have structural similarity to the known compounds of terrestrial cyanobacteria. It is 

apparent that seaweeds use targeted antimicrobial chemical defense strategies and 

that secondary metabolites important in the ecological interactions between marine 

macroorganisms and microorganisms could be a promising source of novel 

bioactive compounds, but this hypothesis has rarely been tested (Kubanek et al. 

2003). In support, it was found that the deduced amino acid sequence of type III 

PKS (SbPKS) from a brown seaweed, Sargassum binderi, shared a greater 
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sequence similarity with bacterial PKSs (38% identity) than plant PKSs (Baharum 

et al. 2011). This further strengthens the hypothesis of ecological interactions 

between the seaweed host and their associated bacterial flora. 

Bacillus subtilis has been extensively studied to isolate several antibiotics 

belonging to surfactins, subtilosin, lantibiotics, subtilin, mersacidin, ericins, etc. 

(Ongena et al. 2005). The gene clusters of these products and biosynthetic routes 

have been studied earlier. Other than the peptides, the polyketides form the 

dominant group of secondary metabolites with pluralities of bioactivities. 

However, only a few have been isolated and characterized from the genus Bacillus. 

With the help of extensive spectroscopic studies, the polyketides, such as, 

bacillaene, difficidin, and oxydifficidin, encoded by gene clusters pks1 and pks3, 

were isolated and characterized from B. subtilis. This group of compounds realized 

tremendous commercial potential in human health and development of 

pharamaceutical leads with an international market share of about $10 billion per 

annum. The macrolactin family of bacterial secondary metabolites, such as, 

macrolactins A–F and their open chain variants macrolactinic and isomacrolactinic 

acid belong to the polyketide family of compounds was originally isolated from a 

deep-sea bacterium. The macrolactin antibiotics are the biosynthetic products of 

pks gene cluster. Other macrolactin include macrolactins G–N, 7-O-

malonyl/succinyl derivatives of macrolactin A (Romero-Tabarez et al. 2006). 

Macrolactin A showed selective antibacterial activities, whereas 7-O-malonyl 

macrolactin demonstrated to be active against Gram-positive pathogenic bacterial 

strains. Over the years, a total of eighteen macrolactins have been characterized 

from a total of about thirty Bacillus strains, in particular Bacillus 

amyloliquefaciens. 

There are several reports regarding the filtration and screening of pks and 

nrps genes from bacteria and fungi isolated from sponges and soil showing 

bioactivity (Melkat et al. 2011; zhou et al. 2011). Despite being very important 

marker gene systems, little is known about the presence of nrps and pks-I in the 

diverse seaweed-associated microbiota. It is therefore imperative to assay the 

potential of the seaweed-associated microbiota to produce secondary metabolites 
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and analyze them by polymerase chain reaction employing degenerate primers of 

polyketide synthetase (pks-I) and nonribosomal peptide synthetase (nrps) genes 

exploiting their conserved nature. 

1.6 Objectives of the proposed work 

Seaweeds and their associated microorganisms were reported to use the 

targeted antimicrobial chemical defense strategies, and that secondary metabolites 

produced by them could be a promising source of novel bioactive compounds. 

Marine plants and animals are continually exposed to high concentrations of 

potentially harmful microbes. These pathogenic microbs can devastate populations 

of marine plants and animals. Yet many sessile organisms like seaweeds suffer 

remarkably low levels of microbial infection, despite lacking cell-based immune 

systems (Chakraborty et al. 2008; 2009; 2010). We hypothesize that chemical 

defense could be a widespread strategy used by marine macroorganisms to deter 

microbial infection, and this might be a product of associated microorganism. 

Although examples are rare, symbionts may be an important source of 

antimicrobial chemical defenses for plants and animals (Kubaneck et al. 2003).  

In this study, we have adopted a culture dependent method to assess the 

diversity of cultivable antagonistic heterotrophic bacterial communities associated 

with seven species of intertidal seaweeds at the Gulf of Mannar in the South-East 

Coast of India bordering the Bay of Bengal. The potential of the seaweed-

associated microbiota to produce secondary metabolites was analyzed by 

polymerase chain reaction employing degenerate primers of polyketide synthetase 

(pks-I) and nonribosomal peptide synthetase (nrps) genes exploiting their 

conserved nature. We extended the analysis to understand the biosynthetic product 

of the functional gene cluster of seaweed-associated bacteria, and reported the 

isolation and structural characterization of antibacterial secondary metabolites 

from the bacterial flora.  
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Based on this background the objectives of the thesis are as follows: 

 

(1) To screen seaweeds associated bacterial flora with greater antibacterial 

potential.  

(2) To identify the microbial diversity of bioactive seaweed-associated 

microbial populations using classical microbiological methods supported 

by molecular techniques.   

(3) To develop an optimized protocol at laboratory for extraction and isolation 

of antibacterial substances from seaweeds and bacterial populations 

associated with seaweeds. 

(4) To Analyze the extracts from seaweed-associated bacteria for their 

antagonistic potential by in vitro antibacterial assay. Bioactivity-guided 

chromatographic purification of the lead molecules having potential 

antibacterial activities from crude extracts. 

(5) To elucidate structures of purified molecules by different spectroscopic 

techniques to explore the diversity of antibacterial substances in the 

seaweed-associated bacterial flora. 

(6) To study the ecological interactions of seaweeds and their associated 

bacteria based on the structural similarities between the antimicrobial 

metabolites derived from the seaweed-associated bacterial flora and 

seaweed host.  

1.7 Thesis outline 

 Based on the above objectives the present thesis have been crystallized into 

a total of six chapters. The background and importance of the study with objectives 

were discussed and explained in the Introduction under the Chapter 1. Chapter 2 

dealt with the detailed review of the works carried out regarding the significance of 

seaweed-associated bacteria, detailed review of the works carried out on the 

seaweed and its associated bacteria and their bioactivities. Subsequently, the 

isolation and identification of seaweed-associated bacteria with antibacterial 
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activity described in Chapter 3. Chapter 4 described the characterization of the 

antagonistic potential of the seaweed-associated bacteria. Chapter 5 summarized 

the bioprospecting of promising isolates for their bioactive secondary metabolites. 

An attempt to explain the ecological interactions of seaweeds with its associated 

bacteria has been carried out under Chapter 6. Chapter 7 summarized the entire 

work carried out in the present study.  
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CHAPTER 2 

REVIEW OF LITERATURE 

 

2.1 Background  
 

The sea offers an enormous resource for novel compounds, and it has been 

classified as the largest reservoir of natural molecules for drug discovery (Nunez et 

al. 2006). Although the marine environment covers about 70% of the planet’s 

surface and holds high biodiversity, very few species have been explored or used 

for biotechnological purposes (Pereira et al. 2011). Environments such as the deep 

sea floor, once thought barren, are now known to be equally or more biologically 

diverse than tropical rainforests. It has been known for at least 40 years that 

microorganisms could be recovered from the sea. An impressive number of 

modern drugs have been isolated from microorganisms, mainly based on their use 

in traditional medicine. In the past century, however, an increasing role has been 

played by microorganisms in the production of antibiotics and other drugs (Fenical 

1993). The importance of terrestrial bacteria and fungi as sources of valuable 

bioactive metabolites is very well established for more than half a century. As a 

result, over 120 of the most important medicines (penicillins, cyclosporin A, 

adriamycine, etc.) in use today are obtained from terrestrial microorganisms 

(Alanis 2005). For more than two decades, there has been an ongoing quest to 

discover new drugs from the sea. Most efforts have been directed towards chemical 

studies of marine invertebrates. Although these studies have indeed proven that 

marine invertebrates are an important source of new biomedical leads, a fact well 

demonstrated by the number of compounds currently in clinical trials, it has proven 

notoriously difficult to obtain adequate, reliable supplies of these compounds from 

nature. Because of these problems, a new avenue of study focusing on marine 
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microorganisms has been gaining considerable attention (Faulkner 2001). At first 

sight thus, the expectable enormous biodiversity of marine microorganisms might 

have been the reason for the interest in their study. Although marine 

microorganisms are not well defined taxonomically, preliminary studies indicate 

that the wealth of microbial diversity in the world's oceans, make this a promising 

frontier for the discovery of new medicines (Blunt et al. 2009). Marine bacteria are 

most generally defined by their requirements of seawater, or more specifically 

sodium for growth. In the case of marine fungi, which in general do not display 

specific ion requirements, obligate marine species are generally considered to be 

those that grow and sporulate exclusively in a marine habitat. Although such 

definitions can prove useful, they tend to select for a subset of the microorganisms 

that can be isolated from any one environment. This problem is compounded in the 

case of near - shore or estuarine samples where a large percentage of the resident 

microbes are adapted to varying degrees of marine exposure. For the purpose of 

microbial drug discovery, it seems only logical to study all microbes that can be 

isolated from the marine environment. Based on the species studied, most of the 

new compounds reported from marine microorganisms were obtained from species 

that can, in principle, be isolated from both land and sea. Although these 

facultative marine species are clearly a good source of novel metabolites, their 

ecological roles and degrees of adaptation to the marine environment is largely 

unknown. Screening of marine bacteria isolated from the surface of marine algae 

and invertebrates has shown that a high percentage produce antimicrobial 

metabolites. Marine microbial floras have an unrivalled capacity to synthesize 

bioactive secondary metabolites with a wide spectrum of bioactivities. Historically, 

microorganisms have provided the source for the majority of the drugs in use 

today. As new chemical entities are likely to be discovered from novel microbes, 

marine microorganisms are a likely target for improved technological platforms in 

the search and discovery of novel bioactive compounds. The first antibiotic from 

marine bacterium was identified and characterized in 1966 (Burkholder et al. 

1966). In addition, bacteria in biofilms formed on the surface of marine organisms 

have been documented to contain a high proportion of antibiotic producing bacteria 

than some other marine environment (Lemos et al. 1985; Anand et al. 2006). 



 

 
16 

Chapter 2 Review of Literature 

 

 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 

 

 

Marine epiphytic bacteria, associated with nutrient rich algal surfaces and 

invertebrates, have also been shown to produce antibacterial secondary 

metabolites, which inhibit the settlement of potential competitors (Bernan et al. 

1997). A number of surface associated marine bacteria have also been found to 

produce antibiotics. A Bacillus sp. isolated from a marine worm in Papua New 

Guinea produced a novel cyclic decapeptide antibiotic, loloatin B, which inhibit 

growth of MRSA (methicillin resistant Staphylococcus aureus) and VRE 

(Vancomycin resistant Enterococcus) (Gerard et al. 1999). The marine bacterium 

Alteromonas rava was found to produce a new antibiotic thiomarinol (Shiozawa et 

al. 1993). Antibiotics from marine microorganisms have been reported, including 

loloatins from Bacillus. Agrochelin and sesbanimides from Agrobacterium (Acebal 

et al. 1999), pelagiomicins from Pelagiobacter variabilis (Imamura 1997), pyrones 

from Pseudomonas (Singh et al. 2003). Screening of seaweed and invertebrate-

associated bacteria has shown their bioactivities (Chakraborty et al. 2010), and that 

over 25% of these isolates can produce compounds capable of killing methicillin 

resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococcus 

(VRE) (Mearns-Spragg et al. 1997). This is a much higher proportion than found 

with free-living or soil-associated bacteria. 

There is a general call for new antibiotics, chemotherapeutic agents, and 

agrochemicals that are highly effective, possess low toxicity, and have a minor 

environmental impact. The natural products are valuable lead molecules whose 

activity can be enhanced by manipulation through combinatorial and synthetic 

chemistry. Natural products have been the traditional pathfinder compounds, 

offering an untold diversity of chemical structures unparalleled by even the largest 

combinatorial databases (Strobel and Daisy 2003). Marine organisms have become 

source of great interest to natural product chemistry, since they provide a large 

proportion of bioactive metabolites with different biological activities (Radjasa et 

al. 2007). The marine environment may contain over 80% of world’s plant and 

animal species. In recent years, many bioactive compounds have been extracted 

from various marine animals and plants like tunicates, sponges, soft corals, sea 

hares, nudibranchs, bryozoans, sea slugs, seaweeds and marine organisms. The 

search for new metabolites from marine flora and fauna has resulted in the 



 

 
17 

Chapter 2 Review of Literature 

 

 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 

 

 

isolation of more than 10,000 metabolites, many of which are endowed with 

interesting pharmacodynamic properties (Jha et al. 2004).  

2.2 Marine microorganisms as a source of bioactive metabolites 

Marine environment supports the unexplored diversity of life and 

represents a vast untapped resource with potential benefits in many different areas 

such as medicine, aquaculture and fisheries, industry, research tools and 

environmental applications. By an estimate only 7% of the oceans and 1% of the 

oceans’ floor has been sampled till date and over 93% of the ocean still remains 

unexplored. The magnitude of the Indian ocean with its distribution of over 74 X 

106 square kilometers, an average depth of 4000 meters and an 8129 kilometers 

perimeter with India’s coastline supports abundant resources for exploration.  The 

potential economic and public health benefits of pharmaceuticals, pesticides, 

hormones, enzymes and polymers derived from marine organisms are high, yet 

unexploited.  Bioprospecting, in order to identify and collect a variety of organisms 

or genes of potential use with desirable characteristics, is the need of the hour. 

Microbial flora made a phenomenal contribution to the health and well-being of 

people throughout the world. In addition to producing many primary metabolites, 

such as fatty acids, amino acids, and vitamins and enzymes, they are capable of 

making secondary metabolites, which constitute half of the pharmaceuticals on the 

market today and provide agriculture and aquaculture with many essential 

products. Marine microbial flora have an unrivalled capacity to synthesize 

bioactive secondary metabolites with a wide spectrum of bioactivities. As new 

chemical entities are likely to be discovered from novel microbes, marine 

microorganisms are a likely target for improved technological platforms in the 

search and discovery of novel bioactive compounds. Microorganisms are a prolific 

source of structurally diverse bioactive metabolites and have yielded some of the 

most important products of the pharmaceutical and aquaculture industry.  

It has been argued that because of the high dilution effect of seawater, 

marine-derived bioactive compounds may have evolved great potency. This theory 

was supported in 2004 with the report of a first-in-class antimicrobial compound, 
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was described from a marine isolate Verrucosispora. Renewed interest in marine 

microorganisms and their ability to produce antimicrobials has resulted in 

numerous reports of novel antimicrobial compounds. The period of antimicrobial 

drug discovery from the early 1940s to the 1960s is referred to as the Golden Age. 

During this time, the industrialization of penicillin production created the expertise 

and facilities to make significant quantities of antimicrobial compounds by 

fermentation. The clinical use of antibiotics heralded a health care miracle; deaths 

due to bacterial infections were significantly reduced, resulting in increases in life 

expectancy. The majority of compounds that were discovered during this period 

were isolated from soil bacteria, most notably the filamentous Actinobacteria. 

Microorganisms are a prolific source of structurally diverse bioactive metabolites 

and have yielded some of the most important products of the pharmaceutical 

industry. Microbial secondary metabolites are now being used for applications 

other than antibacterial, antifungal and antiviral infections. It was during the 1928s 

when Alexander Fleming (Fleming 1929) began the microbial drug era when he 

discovered in a Petri dish seeded with Staphylococcus aureus, that a compound 

(penicillin) produced by a fungus/mold killed the bacteria. Later, penicillin was 

isolated as a yellow powder and used as a potent antibacterial compound during the 

Second World War. Following this extraordinary discovery by Flemming, the 

antibiotics chloramphenicol and streptomycin, were isolated from microbes. 

Naturally occurring antibiotics are produced by fermentation, an old technique that 

can be traced back almost 8000 years. Owing to technical improvements in 

screening programs, and separation and isolation techniques, the number of natural 

compounds discovered exceeds 1 million (Ecker et al. 2005). Among them, 50–

60% are produced by plants (alkaloids, flavonoids, terpenoids, steroids, 

carbohydrates, etc.) and 5% have a microbial origin. Of all the reported natural 

products, approximately 20–25% show biological activity, and of these 

approximately 10% have been obtained from microbes. Furthermore, from the 22 

500 biologically active compounds that have been obtained so far from microbes, 

45% are produced by bacteria or bacteria-like microbes, 38% by fungi and 17% by 

others (Berdy 2005). However, the development of resistance in microbes to 



 

 
19 

Chapter 2 Review of Literature 

 

 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 

 

 

various life-threatening diseases and in aquaculture has become a major problem 

and requires much research effort to combat it. 

 
Figure 2.1 

Share of different classes of marine organisms to produce bioactive molecules 

 

Marine natural products from microbes have lagged behind those from 

macroorganisms (Pietra 1997). The marine environment should be considered as a 

potential source of antibiotics and the sea may represent a reservoir of microbial 

antagonists. The bactericidal activity of seawater is due to the presence of 

antibiotic producing antagonistic cultures were proposed (Rosenfeld 1947). Marine 

organisms may have novel biochemical activities, which are quite different from 

terrestrial ones (Okami 1986).Marine bacteria can be subdivided into 

Actinobacteria, Cyanobacteria and all other Eubacteria may be detailed enough to 

allow some understanding of the patterns (Pietra 1997) of natural products 

chemistry. 

The first antibiotic from a marine bacterium was identified and 

characterized in 1966. The bacterium was isolated upon several occasions from 

Thalassia located near La Parguera, Puerto Rico (Burkholder et al. 1966). Evidence 

is presented for the isolation and identification of bacteria able to synthesize an 

unusual antibiotic containing five bromine atoms per molecule. Bacterium, a 

pseudomonad, has been given the name Pseudomonas bromoutilis because of its 
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distinctive capability. The antibiotic has been extracted, purified, and obtained in 

crystal form, and its structure has been determined (Burkholder et al. 1966; Lovell 

1966).  

N
H

Br
Br

Br
BrHO

Br

 

Figure 2.2 
The brominated antibiotic 2,4-dibromo-6- 

(3,4,5-tribromo-1H-pyrrol-2-yl) phenol 
 

Three distinct classes of pharmaceutical compounds, antibiotics, antiviral 

compounds and antitumour drugs, have been associated with marine bacteria. 

Antibiotic compounds from marine bacteria published may be summarized as 

brominated antibiotics, quinolinols, low molecular weight inhibitors, 

aminoglycoside antibiotics and other complex antibiotics such as aplasmomycin B 

(Austin 1989). 

 
Figure 2.3 

Antibiotics from marine bacteria 
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Novel antibiotic named korormicin was isolated from the marine 

bacterium, Pseudoalteromonas sp. F-420. This strain was isolated from the surface 

of a macroalga Halimeda sp. collected from Palau (the Republic of Belau). The 

planar structure of Korormicin was determined by the result of 2D NMR studies 

and mass spectral data. Korormicin had specific inhibitory activity against marine 

Gram-negative bacteria, but was inactive against terrestrial microorganisms. 

(Yoshikawa et al. 1997) 
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Figure 2.4 

Planer structure of Korormicin 

 

A marine bacterium Pseudomonas aeruginosa was isolated from Eal fish of 

Baluchistan coast of Pakistan. This strain produced a bactericidal antibiotic against 

environmental and clinical isolates. Bactericidal antibiotic from the ethyl acetate 

extract of the cells of P. aeruginosa were purified and chemically characterized as 

1-methyl-1,4 dihydroquinoline (Uzair et al. 2006). 

N
 

Figure 2.5 

Structure of 1, 4-dihydro-1-methylquinoline 
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2.3 Microbial natural products  

Microbial natural products that have reached the market without any 

chemical modifications are a testimony to the remarkable ability of 

microorganisms to produce drug-like small molecules. Although still in clinical 

trials, a feature example of this is salinosporamide A (NPI-0052), a novel 

anticancer agent found in the exploration of new marine environments (Fenical et 

al. 2009). In 2008, over 1000 marine natural products were reported (Blunt et al. 

2009). However, out of the 19 microbial-derived drugs reported in 2008, no natural 

products from marine microbes were present, signifying the novelty of their 

systematic exploration. Currently, more than 30 compounds of marine microbial 

origin are in clinical or preclinical studies for the treatment of different types of 

cancer (Simmons et al. 2005) clearly demonstrating that marine microorganisms 

have become an essential resource in the discovery of new antibiotic leads. The 

evolution of marine microbial natural product collections and development of 

high-throughput screening methods have attracted researchers to the use of natural 

product libraries in drug discovery. These libraries include subsections of crude 

extracts, pre-fractionated extracts (automated HPLC-MS fractionation) and 

purified natural products. A research group in Ireland has developed a two-

dimensional chromatographic strategy that include a protocol to generate purified 

marine natural product libraries that are accurately characterized by mass during 

production to expedite dereplication of known compounds and identification of 

novel chemotypes. Although the biosynthetic and regulative crosstalk of secondary 

metabolite biosynthesis is complex within and between microorganisms, all levels 

can be influenced by imitating natural environmental changes.  

The schematic diagram illustrating the development of  microbial  natural 

products library (MNPL) is shown below.  
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Figure 2.6 

Schematic representation of bioprospecting antibacterial molecules from microbial 

flora 

An optimization of ‘one strain, many active compounds’ can be used 

together with ‘fingerprint’ methods (HPLC and NMR) including tandem analytical 

techniques, such as, MS/MS, GC-EI/MS, HPLC-SPE-NMR, LC-MS-MS and LC-

NMR for the optimization/selection of culture media for high-throughput 

fermentation of novel strains. Targeted HTS methods are important for the speed 
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and accuracy of identification of novel antimicrobials. From these evaluation 

models, many crude extracts or purified compounds were obtained as positive hits. 

In addition to evaluate the microorganisms, it is worthy to note that these screening 

assays also provide mode of action hypothesis from the crude extracts. 

2.4 Natural product derived drug molecules 

Drugs of natural origin have been classified as (i) original natural products, 

(ii) products derived or chemically synthesized from natural products or (iii) 

synthetic products based on natural product structures. Evidence of the importance 

of natural products in the discovery of leads for the development of drugs for the 

treatment of human diseases and aquaculture are provided by the fact that close to 

half of the best-selling pharmaceuticals and antibiotics in 1990-2000 were either 

natural products or their derivatives (Cragg et al. 1997). In this regard, of the 25 

top-selling drugs reported in 1997, 42% were natural products or their derivatives 

and of these, 67% were antibiotics. Today, the structures of around 140 000 

secondary metabolites have been elucidated. Applications of chemically 

synthesized natural metabolites include the use of a natural product derived from 

plant salicyclic acid derivatives present in wintergreen and meadowsweet to relieve 

pain and suffering. Synthetic salicylates were produced initially by Bayer in 1874, 

and later in 1897, by Arthur Eichengrun. The plant-based systems continue to play 

an essential role in health care, and it has been estimated by the World Health 

Organization (WHO) that approximately 80% of the world’s inhabitants rely 

mainly on traditional medicines for their primary health care (Farnsworth et al. 

1985). The alkaloid quinine, the active constituent of Cinchona succirubra, has 

been known for centuries by South American Indians to control malaria. During 

the twentieth century, massive programs to synthesize quinoline derivatives, based 

on the quinine prototype, were carried out. The first of the new quinolones to be 

used clinically as an antibacterial agent was nalidixic acid (Topliss et al. 2002). 

The compound 7-chloro-1, 4-dihydro-1-ethyl-4-oxoquinolone-3-carboxylic acid 

was obtained as a side product during purification of chloroquine and found to 

have antibacterial activity against Gram-negative bacteria and was shown to be an 

inhibitor of DNA gyrase. Its discovery led to a whole series of synthetic quinolone 
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and fluoroquinolone antibiotics (pefloxacin, norfloxacin, ciprofloxacin, 

levofloxacin, ofloxacin, lomefloxacin, sparfloxacin, etc.), which have been very 

successful in medicine and have achieved major commercial success. Secondary 

metabolites have exerted a major impact on the control of infectious diseases and 

other medical conditions, and the development of pharmaceutical industry. Their 

use has contributed to an increase in the average life expectancy in the world. In 

2000, the market for major antiinfectives from bacteria and other natural sources 

was US$55 billion and in 2007 it was US$66 billion. 

 

Table 2.1 
Various classes of antibiotics/drugs from microbial flora(upto 2000) 

(Barber 2001) 

Sl. No. Antibiotics/drugs Market share (US billion $) 

1 Antiviral compounds 10.2 
2 Penicillins 8.2 
3 Cephalopsporins 9.9 
4 Beta lactam antibiotics 1.5 
5 Quinolines 6.4 
6 Other antibacterials 6.0 
7 Tetracyclines 1.5 

 

Two antivirals (acyclovir and cytarabine) that are chemically synthesized 

today were originally isolated from the marine organisms. Acyclovir was found to 

be active against the herpes virus and cytarabine was reported to be active against 

non-Hodgkin’s lymphoma. These compounds are nucleoside analog drugs, 

originally isolated from sponges (Rayl 1999). Other antiviral applications of 

natural compounds are related to human immunodeficiency virus (HIV) treatment. 

Furthermore, reports have been published on natural product inhibitors of HIV 

integrase obtained from among the marine ascidian alkaloids; that is, the 

lamellarins (produced by the mollusk Lamellaria sp.), and from terrestrial plants 

(Baccharis genistelloides and Achyrocline satureioides). The most consistent anti-

HIV activity was observed with extracts prepared from several Baccharis sp 

(Robinson et al. 1996).  
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2.5 Bioactivities of molecules from microbial flora  

The pharmaceutical and aquaculture industry has extended to explore new 

molecules as potential antibacterial, antifungal, antiviral, in their programs to 

combat several deleterious diseases (Sum 2006). Marine microorganisms are 

fascinating resources due to their production of novel natural products with several 

bioactivities. Increases in both the number of new chemical entities found and the 

substantiation of indigenous marine actinobacteria present a fundamental difficulty 

in the future discovery of novel bioactive molecules, namely, dereplication of those 

compounds already discovered. The immunosuppressants have revolutionized 

medicine by facilitating organ transplantation. Other applications include antitumor 

drugs, enzyme inhibitors, gastrointestinal motor stimulator agents, 

hypocholesterolemic drugs, pesticides and other pharmacological activities. 

Further applications are possible in various areas of pharmacology, aquaculture, 

and bioremediation. The details of the activities of these potential molecules from 

microbes towards different bioactivities are illustrated under the following 

subheads. 

2.5.1 Immunosuppresant molecules from marine microbial flora 

A number of antimicrobial compounds capable of suppressing the immune 

response have been discovered from marine microbial flora. Cyclosporin A, a 

family of neutral, cyclic undecapeptides containing some unusual amino acids, 

produced by marine fungus Tolypocladium nivenum by aerobic fermentation 

(Borel 2002). Cyclosporins were reported to inhibit lymphokine production and 

interleukin release, and therefore lead to a reduced function of effector T cells. 

Other important transplant agents include sirolimus (rapamycin macrolide) and 

tacrolimus (FK506), which were produced by the marine bacterial flora S. 

hygroscopicus, and had potent immunosuppressive and antiproliferative properties 

(Aggarwala et al. 2006). Rapamycin analogs, everolimus, and tensirolimus have 

been developed with improved pharmaceutical properties. Everolimus were 

isolated from bacteria is currently used as an immunosuppressant to prevent the 

rejection of organ transplants (Eisen et al. 2003). AP23573 is a novel non-prodrug 
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rapamycin analog that has demonstrated antiproliferative activity against several 

human tumor cell lines in vitro and against experimental tumors in vivo (Dancey 

2006). This agent is currently under evaluation in phase I–II trials, including 

patients with different tumors.  

2.5.2 Antitumor drugs from microbial sources 

Microbial metabolites are among the most important of the cancer 

chemotherapeutic agents. They started to appear around 1940 with the discovery of 

actinomycin isolated from Streptomyces antibioticus, and since then many 

compounds with anticancer properties have been isolated from natural sources 

(Waksman and Woodruff 1941). More than 60% of the current compounds with 

antineoplasic activity were originally isolated as natural products or are their 

derivatives. Streptozotocin, a glucosamine-nitroso-urea compound is a marine 

microbial metabolite with antitumor properties, produced by marine Streptomyces 

achromogenes. Pentostatin (deoxycoformycin) is an anticancer chemotherapeutic 

drug produced by S. antibioticus. It is classified as a purine analog, which mimic 

the nucleoside adenosine and thus tightly binds and inhibit adenosine deaminase 

(Showalter et al. 1992). Among other approved products deserving special 

attention are actinomycin D, anthracyclines, bleomycin, mitosanes, anthracenones, 

enediynes, taxol and epothilones to treat a wide range of cancers. Valrubicin is a 

semisynthetic analog of doxorubicin approved as a chemotherapeutic drug in 1999, 

and used to treat bladder cancer.  

2.5.3 Microbial products in agriculture 

Insecticides are used in agriculture, medicine, industry and households. 

Microbially produced insecticides are especially valuable because their toxicity to 

non-target animals and humans is extremely low. Spinosyns (A83543 group) are a 

group of natural products produced by marine Saccharopolyspora spinosa. They 

are active on a wide variety of insect pests, especially lepidopterans and dipterans 

(Kirst et al. 2002). The spinosyns are a family of macrolides with 21 carbon atoms, 

containing four connected rings of carbon atoms at their core to which two 
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deoxysugars (forosamine and 2,3,4, tri-o-methylrhamnose, which are required for 

bioactivity) are attached. A mixture of spinosyn A (85%) and D (15%) (spinosad) 

is being produced through fermentation, and was introduced to the market in 1997 

for the control of chewing insects on a variety of crops. Recently, a new naturally 

occurring series of insect-active compounds was discovered from a marine 

microbial isolate, Saccharopolyspora pogona NRRL30141 (Hahn et al. 2006). 

2.5.4 Aquaculture grade chemicals from marine microbes 

  Disease caused by the bacterial pathogens has been widely recognized as a 

major cause of economic loss in many commercially cultured fish and shellfish 

species in India, with mortality of larval stages in hatcheries and the growing 

stages in different mariculture systems. Pathogenic vibrios are involved in 

significant mortalities in the larviculture and growout phases of famed finfish and 

shellfishes. In an attempt to control the proliferation of pathogenic vibrios, the 

prophylactic and therapeutic use of antibiotics have been practiced in commercial 

hatcheries, creating more serious problem of antibiotic resistance among the 

microflora in the environment. With safety concerns about synthetic antibiotics, 

considerable interest has arisen in finding alternative natural sources (Gomez-Gil 

et al. 2000). Screening and development of aquaculture-grade chemicals from 

bacterial flora could be a highly promising approach to produce these bioactive 

moleules. Members of the genus Pseudomonas and Bacillus either free living or 

associated with marine flora are common beneficial bacterial candidates, and were 

known to produce a wide range of secondary metabolites (Raaijmakers et al. 1997) 

inhibiting a wide range of pathogenic bacteria (Rengpipat et al. 1998). The 

metabolites 6-oxo-de-o-methyllasiodiplodin, (E)-9-etheno-lasiodiplodin, lasiodip- 

lodin, de-o-methyllasiodiplodin, and 5-hydroxy-de-o-methyllasiodiplodin, were 

isolated from the mycelium extracts of a microbe obtained from South China Sea 

(Yang et al. 2006). Studies conducted at CIBA, Chennai isolated two bacteria, 

Pseudomonas sp. PM 11 as potential candidate probionts from a pool of bacteria 

isolated from gut of farm reared sub-adult shrimp (Alavandi et al. 2004). Marine 

bacterial strain, Pseudomonas I-2, producing inhibitory compounds against shrimp 

pathogenic vibrios including Vibrio harveyi, V. fluvialis, V. parahaemolyticus, V. 
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damsela and V. vulnificus was reported by Chaitanya et al. (2002). Bioactive 

compounds were isolated from a marine bacterium Bacillus circulans (Chakraborty 

et al., 2010). Labda-14-ene-3a,8a-diol and labda-14-ene-8a-hydroxy-3-one were 

found to be inhibitory to the growth of Vibrio parahaemolyticus with minimum 

inhibitory concentrations of 30-40 µg/mL (Chakraborty et al. 2010), and their 

structures have been elucidated by 1H NMR and 13C NMR spectra, including 2D 

NMR. Several bacterial flora were isolated from marine ecosystem (Bacillus 

subtilis, Bacillus amyloliquifaciens, Pseudomonas putida, and Pseudomonas 

aeroginosa) with potential activities of greater than 20 mm inhibition zone against 

pathogenic Vibrios (Chakraborty et al. 2010). The antibacterial component in the 

chloroform fraction of P. aerogenosa was found to be N-substituted methyl 

octahydro-1-phenazinecarboxylate. The other important antibacterial molecules 

were found to be propyl 2-oxoacetate and phenethyl 2-oxoacetate.  

2.6 New molecules from marine bacteria as a solution towards 
multiresistant antibiotic and drug molecules 

In recent times, several scientific groups are making concerted efforts to 

find novel antimicrobial agents as a solution towards multiresistant antibiotic and 

drug molecules. Novel glycylcyclines (modified tetracyclines) developed to treat 

tetracycline-resistant bacteria. These show potent activity against a broad spectrum 

of Gram-positive and Gram-negative bacteria, including strains that carry the two 

major tetracycline-resistance determinants, involving efflux and ribosomal 

protection. Two of the glycylcyline derivatives, DMG-MINO and DMG-DMDOT, 

have been tested against a large number of clinical pathogens isolated from various 

sources. The spectrum of activity of these compounds includes organisms with 

resistance to antibiotics other than tetracyclines; for example, methicillin- resistant 

staphylococci, penicillin-resistant S. pneumoniae and vancomycin-resistant 

enterococci (Sum 2006). Tigecycline was approved by the FDA in 2005 as an 

injectable antibiotic (Bacque et al. 2005). A new glycopeptide antibiotic, 

teicoplanin, was developed against infections with resistant Gram-positive 

bacteria, especially bacteria resistant to the glycopeptide vancomycin. In another 

instance, the approach involved the redesign of a mixture of two compounds, 
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called streptogramin, into a new mixture, called pristinamycin, to allow 

administration of the drug parenterally and in higher doses than the earlier oral 

preparation (Bacque et al. 2005). The two components of streptogramin, 

quinupristin and dalfopristin, were chemically modified to allow intravenous 

administration. The new combination, pristinamycin, was approved by the FDA for 

use against infections caused by vancomycin-resistant Enterococcus faecium. 

Among the novel class of antimicrobial agents used in treating resistance to Gram-

positive infections, we can also mention the cyclic lipopeptide antibiotic 

daptomycin produced by Streptomyces roseosporus. This compound was approved 

in 2003 by the FDA for skin infections resulting from complications following 

surgery, diabetic foot ulcers and burns (Laplante et al. 2004). Telithromycin, a 

macrolide antibiotic, is the first orally active compound of a new family of 

antibacterials named the ketolides. It shows potent activity against pathogens 

implicated in community acquired respiratory tract infections, irrespective of their 

β-lactam, macrolide or fluoroquinolone susceptibility (Leclercq 2001). 

2.7      Symbiotic role of marine microbes and bioactive compound  

            production 

In recent years, the investigation of marine natural products has moved to 

the microscopic level, due to numerous findings of similar structures between 

marine microorganisms and macroorganisms, such as, marine sponges and 

ascidians, indicating that microorganisms would seem to be a better biological 

source to tackle the supply problem of marine invertebrates (Peng et al. 2009), and 

might be the actual source of such compounds (Kubaneck 2003). The embryos of 

the shrimp Palaemon macrodactylus were found to be resistant to infection by the 

fungus Lagenidium callinectes, a recognized pathogen of many crustaceans. A 

bacterial strain Alteromonas sp isolated from the surface of the embryos was 

reported to produce 2, 3-indolinedione (isatin), a compound that inhibits the 

pathogenic fungus.  
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Figure 2.7 

The antifungal compounds (A) isatin and (B) 2, 3-indolinedione produced by 
symbiotic Alteromonas sp. 

If exposed to the fungus, bacteria-free embryos were found to quickly die, 

whereas similar embryos reinoculated with the bacteria or treated only with 2, 3-

indolinedione lived well. The commensal Alteromonas sp bacteria was 

demonstrated to protect shrimp embryos from the fungal infection by producing 

and liberating the antifungal metabolite 2, 3-indolinedione (Giltunes 1989). 

Every surface immersed in the sea rapidly becomes covered with a biofilm. 

On inanimate surfaces, this is often followed by colonisation by larger organisms, 

and general macrofouling. On the other hand, the majority of marine organisms 

remain relatively free from macrofouling, although some may be covered in a thin 

film of epibiotic bacteria. The role of these bacteria in maintaining the health of the 

host has received little attention (Amstrong et al. 2001). 

The alkaloid harman, previously reported from some marine invertebrates, 

was identified as the antibiotic substance of the tunicate-associated bacterium 

Enterococcus faecium. Harman was initially isolated from a number of terrestrial 

plants, marine organisms as a minor component from the marine dinoflagellate 

Noctiluca miliaris and from the bryozoans. This study suggested that symbiotic 

microorganisms may be responsible for its occurrence previously reported in 

marine invertebrates, pointing to an ecologic role of harman for these marine 

invertebrates. Studies on microorganisms associated with invertebrates will 

provide a better understanding of marine microbial ecology, which is essential to 
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maximize the efficiency of research in the discovery of novel secondary 

metabolites (Aassila et al. 2003). 

 

 
 
 

Figure 2.8 

The antibiotic harman isolated from the tunicate-associated  
bacterium Enterococcus faecium 

 
2.8      Why seaweed associated bacteria? 

Marine seaweeds have been challenged throughout their evolution by 

microorganisms, and have developed in a world of microbes. Therefore, it is not 

surprising that a complex array of interactions has evolved between seaweeds and 

bacteria, which basically depend on chemical interactions of various kinds (Goecke 

et al. 2010). The increasing number of duplications and the demand for new 

leading structures in pharmacology has enforced the search for metabolites in 

novel and promising habitats (Laatsch 2006). The intertidal zone is an important 

coastal habitat in terms of biological productivity and economic value. Biofilms 

form protective micro-environments in the changing environments of intertidal 

regions, where surface dwelling microbes to develop adaptive response and 

antagonistic strategies to prevent potential competitors occupying their habitat 

(Mitra et al. 2014). Competition amongst microbes for space and nutrients in the 

marine environment is a powerful selective force which has led to the evolution of 
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a variety of effective strategies for colonizing and growing on surfaces (Burgess et 

al. 1999). Seaweeds and associated bacteria were reported to use targeted 

antimicrobial chemical defense strategies to deter microbial infection (Kubaneck et 

al. 2003, Kozubek 2001). Weinberger and Friedlander (2000) found that 

rhodophytan seaweed Gracilaria conferta exhibits an antagonistic response to the 

deleterious bacterial populations. Antibacterial labdane diterpenoids of Ulva 

fasciata Delile from the southwestern coast of Indian Peninsula were reported 

(Chakraborty et al. 2009). 

 

 
Figure 2.9 

(A) The seaweeds and the bacterial flora associated with them;  
(B) Different parts of seaweed 

2.8.1 Seaweed associated bioactive bacterial isolates 

Seaweeds and microbial populations associated with seaweeds constitute 

the major biologically active flora of marine food pyramid due to their enormous 

biodiversity. As a pioneer study survey of antibiotic-producing bacteria from the 

microbial flora attached to seaweeds and the study of their antibiotic capacities 

were carried out. From five species of green and brown seaweeds, a total of 224 

bacterial strains were isolated and tested for antibiotic production. A total of 38 

strains displayed antibiotic activity, and it was a higher proportion than some other 

marine environments (Lemose et al. 1985). Further the proportion of active 
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bacteria associated with marine invertibrates (20%) and seaweeds (11%) was 

found to be higher than that isolated from seawater (7%) and sediment (5%) in a 

study to explore marine organisms with medical potential using marine bacteria 

isolated from seawater, sediment, marine invertebrates and seaweeds collected 

from different coastal areas of China sea. (Zeng et al. 2005). One hundred and 

sixteen epibiotic bacteria were isolated from the surface of nine species of brown 

algae at Awaji Island, Japan. Among the bacteria isolated 20% exhibited 

antibacterial activity (Kanagasabhapathy et al. 2006). From the surfaces of marine 

algae Delisea pulchra and Ulva australis also 12% of the isolated strains showed 

to have antimicrobial activity (Penesyan et al. 2009). Heterotrophic aerobic 

bacteria species associated with coralline red alga Jania rubens (Northern coast of 

Tunisia, southern Mediterranean Sea) were isolated. 36% of the isolates were 

antibiotic-like producers with in vitro inhibition against Gram positive and Gram 

negative bacteria and the yeast Candida albicans (Ali et al. 2012). A Pseudomonas 

sp. was cultured which was associated with the Japanese seaweed Diginea sp. 

Crude extracts prepared from this bacterial culture were found to inhibit the growth 

of other marine bacterial strains. From this bacterial culture, two new peptides 

cyclo-[phenylalanyl-prolyl-leucylprolyl] and cyclo-[isoleucyl-prolyl-leucyl-alanyl] 

have been isolated together with two known peptides. None of the individual 

peptides isolated in this study showed antibiotic activity (Rungprom et al. 2008). 

Evaluation the antibacterial and anticancer activities of extracts from the seaweeds 

Egregia menziesii, Codium fragile, Sargassum muticum, Endarachne binghamiae, 

Centroceras clavulatum and Laurencia pacifica collected from Todos Santos Bay, 

México. Organic extracts were obtained from bacteria-free algae and from surface-

associated bacteria. The strains Cc51 isolated from Centroceras clavulatum, Sm36 

isolated from Sargassum muticum, and Eb46 isolated from Endarachne 

binghamiae showed anticancer activity. Likewise, the extracts from the seaweed 

and its associated bacteria inhibited the growth of the Gram negative bacterium 

Proteus mirabilis (Gomez et al. 2010).  
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Figure 2.10 

Different seaweed species (A) Sargassum sp; (B) Gracillaria sp,(C) Padina sp., 
(D) A seaweed collection site 

2.8.2   Protective role of seaweed associated bacteria against fouling 

Antifouling chemical defenses have long been acknowledged as a 

protection mechanism for marine organism (Pereira et al. 2011). The protective 

role of bacteria associated with seaweed surfaces was also proposed in the study. 

These strains were isolated from macroalgae using a variety of substrates including 

low-nutrient agars and were found to inhibit the pathogenic strains (Boyd et al. 

1998). Associated bacteria isolated from Ulva lactuca samples collected from the 

intertidal zones of Laucala Bay, Suva, Fiji were tested for their antibacterial and 

anti-diatom properties that may regulate surface colonization on the algae. Sixty 

percent of the epiphytic isolates expressed antibacterial properties against other 

resident bacteria and 80% had anti-diatom activity against the pennate diatom, 

Cylindrotheca fusiformis (Kumar et al. 2011). 
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2.8.3   Seaweed associated bacteria against fish pathogens 

The activity of seaweed-associated antibiotic-producing marine bacteria 

was assayed against bacterial fish pathogens belonging to the genera Vibrio, 

Aeromonas, Pasteurella, Edwardsiella, Yersinia and Pseudomonas and proposed 

the possible use of these marine strains for controlling epizootics in aquaculture. 

Inhibition tests on solid medium showed that, in general, the majority of fish 

bacteria were strongly sensitive to the marine bacteria and the production of 

antibiotics give these marine strains ;in antagonistic capacity against most of the 

fish pathogenic bacteria. (Dopazo et al. 1989). This might explain why the 

seaweeds are rarely been infected. Further the production of inhibitory substances 

could play a significant role in competition phenomena in some concrete 

microhabitats, such as those that can be formed on algal surfaces, where these 

producer strains are relatively common was proposed (Lemose et al. 1985).  

2.9    Seaweed associated bacterial as a source of antimicrobial  

         compounds 

Due to a competitive role for space and nutrient, the marine bacteria 

associated with marine macroorganisms, invertebrates and seaweeds could produce 

more antibiotic substances. These marine bacteria were expected to be potential 

resources of natural antibiotic products (Zeng 2005).  

Seaweed associated bacteria are able to produce antimicrobial compounds 

and this response represents a chemically induced defense response when the 

antibiotic producer strain is faced with a potential competing organism in the 

marine environment. Over 400 strains of surface-associated bacteria from various 

species of seaweed and invertebrate from Scottish coastal waters were isolated and 

35% of them shown to produce antimicrobial compounds. This is a much higher 

proportion than free living marine isolates or soil bacteria (Burgess et al. 1999).  

Haliangicin, is a the novel antifungal polyunsaturated antibiotic with a β 

methoxyacrylate moiety produced by a marine myxobacterial strain AJ-13395 was 

isolated from a seaweed sample collected at a sandy beach in the Miura Peninsula, 
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Kanagawa, Japan. The strain was tentatively named as Haliangium luteum ( Fudou 

et al. 2001) 
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Figure 2.11 

Chemical structure of haliangicin 

 

Recent research progresses reported that many bioactive natural products 

from seaweeds have striking similarities to metabolites of microorganisms 

(Kubaneck 2003; Goecke et al. 2010). Using bioassay guided fractionation, a 22-

membered cyclic lactone, lobophorolide, of presumed polyketide origin, with 

activity against pathogenic and saprophytic marine fungi was isolated and 

characterized. Lobophorolide is structurally unprecedented, yet parts of the 

molecule are related to tolytoxin, the scytophycins, and the swinholides, 

macrolides previously isolated from terrestrial cyanobacteria and from marine 

sponges and gastropods. Because of the low yield of the compound, its structural 

similarity to microbial metabolites, and the fact that polyketides of this type are 

unprecedented from seaweeds, a microbial origin warrants further exploration. 

This suggests seaweeds use targeted antimicrobial chemical defense strategies and 

that secondary metabolites important in the ecological interactions between marine 

macroorganisms and microorganisms could be a promising source of novel 

bioactive compounds.  

 

 



 

 
38 

Chapter 2 Review of Literature 

 

 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 

 

 

 

Figure 2.12 

Chemical structure of lobophorolide and related macrolides 

 

Many seaweed associated bacteriua have been reported as a source of 

antibacterial compounds. A few interesting studies have been presented on 

associates of seaweeds, but a detailed knowledge of the interaction of seaweeds 

with their associated microbes and among microbes on algal surfaces and tissues is 
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still lacking (Goecke et al. 2010). Although examples are rare (Giltunes 1989; 

Kubaneck 2003; Aassila et al. 2003), the symbionts may be an important source of 

antimicrobial chemical defenses for plants and animals. Thus it is important to 

highlight the possible role of seaweed associated bacteria in the production of 

bioactive compounds of the seaweeds. 

 

2.10   Diversity of seaweed associated antibiotic producers 

From the surfaces of seaweeds Delisea pulchra and Ulva australis, the 

majority of the isolates with antimicrobial activity were found belonged to be α 

and γ-proteobacteria. Other antimicrobial isolates obtained in this study belonged 

to the phyla Actinobacteria, Firmicutes and Bacteroidetes (Penesyan et al. 2009). 

The seaweeds from  the coastal area of  the Autonomous University of Baja 

California (UABC) Ensenada, BC, México was found to harbor bioactive isolates 

that could be classified within three main phyla Actinobacteria , Proteobacteria 

and Firmicutes (Gomez et al. 2010). From Ulva lactuca surface associated bacteria 

with antibacterial and antidiatom activity showed that the strains were belonged to 

readily culturable genera, including Pseudoalteromonas, Vibrio, Shewanella and 

Bacillus (Kumar et al. 2011). The surface-associated community of the Jania 

rubens with antibacterial activity were α and γ-proteobacteria, Bacteroidetes and 

Firmicutes. Results demonstrated that Proteobacteria (about 73%) constitute the 

majority of bacterial cells, bacteroidetes representing 21% and only one strain was 

found assigned to the Firmicutes and was identified as closely related to Bacillus 

(Benali et al. 2012). Marine bacteria in particular, antibiotic production has been 

reported in Actinomyces, Aeromonas, Alcaligenes, ‘Alginovibrio’, Alteromonas, 

Bacillus, Chromobacterium, Flavobacterium, Micrococcus, Serratia, Streptomyces 

and Vibrio (Austin 1989). In a study of antibacterial activities of marine epibiotic 

bacteria isolated from brown algae of Japan, all the strains with antibacterial 

activity isolated were found to be from Bacillus (Bacillaceae family) 

(Kanagasabavathy et al. 2006). Burgess et al. (2003) isolated bacteria with 

antifouling activity belonged to the genus Bacillus, such as B. pumilus, B. 

licheniformis, and B. subtilis. 



 

 
40 

Chapter 2 Review of Literature 

 

 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 

 

 

 

Figure 2.13 
Collection site of seaweeds at Gulf of Mannar region  

of South East coast of India 
 

2.11   Antibiotic Compounds from Bacillus: Why are they so  

          amazing? 

The recent advances in genome sequencing highlighted the genus Bacillus 

as an unexpected source of antibiotic-like compounds. Bacillus sp is known to 

produce bacteriocin, polyketides and non-ribosomal peptides. Bacillus sp were also 

found able to synthetize others unusual antibiotic peptides, such as, rhizocticins 

(Fickers 2012). Gramicidin and tyrocidine hydrochloride have been prepared in 

crystalline form from cultures of an aerobic sporulating Bacillus brevis (Hotchkiss 

and Renti 1941). The production of bacillibactin-related siderophores seems a 

common characteristic for this family, since the dhb cluster is present in nine 

published genomes (Donadio et al. 2007). To date, it is estimated that only a small 

fraction of the antimicrobial molecules potentially produced by Gram-positive 

bacteria has been identified. Research to discover these compounds are sure to be 

ongoing for many more years (Fickers 2012). All the complete genome sequences 

of members of this genus contain TMS genes, with the exception of B. halodurans 

C-125 (Donadio et al. 2007). Several strains belonging to the genus Bacillus and 

particularly to the B. subtilis and B. amyloliquefaciens species were reported to be 

effective for the biocontrol of multiple plant diseases (Arias et al. 2009). A new 

24-membered ring lactone named macrolactin S, along with the known compound 
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macrolactin B, has been isolated from the mycelium of liquid fermentation cultures 

of Bacillus sp. AT28. The structure of macrolactin S was determined on the basis 

of MS and NMR data. Macrolactin S showed a dose dependent inhibition of 

Staphylococcus aureus FabG. Also macrolactin S was reported to inhibit the 

growth of S. aureus, Bacillus subtilis, and Escherichia coli (Sohn et al. 2008) 

The Bacillus subtilis is considered as the model system for Gram-positive 

organisms, was demonstrated to produce more than two dozen antibiotics with an 

amazing variety of structures. The produced anti-microbial bioactive compounds 

included peptides in predominance that are either ribosomally synthesized and 

post-translationally modified (lantibiotics and lantibiotic-like peptides) or non-

ribosomally generated, as well as a couple of non-peptidic compoundssuch as 

polyketides, an aminosugar, and a phospholipid (Stein 2005). Difficidin and 

oxydifficidin were reported to be two novel macrocyclic polyene lactone 

phosphate esters that were discovered in the fermentation broths of each of two 

strains of Bacillus subtilis ATCC 39320 and B. subtilis ATCC 39374. Difficidin 

and oxydifficidin showed a broad spectrum of activity against aerobic and 

anaerobic bacteria (Zimmerman et al. 1986). 

 
Figure 2.14 

Difficidin and oxydifficidin (macrocyclic polyene lactone phosphate esters) from 
Bacillus subtilis ATCC 39320 and B. subtilis ATCC 39374, respectively. 

 

 Bacillaene, a novel polyene antibiotic, was discovered and isolated from 

the fermentation broths of Bacillus subtilis. The novel antibiotic has a nominal 

molecular weight of 580 and an empirical formula of C35H48O7. Bacillaene is 

active against a broad spectrum of bacteria in agar-plate diffusion assays. In vitro 

studies indicate that the antibiotic inhibited prokaryotic protein synthesis but not 
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eukaryotic protein synthesis. Cell survival studies performed with strains of 

Escherichia coli indicated that the antibiotic is a bacteriostatic agent (Pattel et al. 

1995).  

 B. subtilis strain 168 has long been a model system for prokaryote 

differentiation and was the first sequenced Gram positive. The sequenced B. 

subtilis strain was reported to an inactive allele of the PPTase gene sfp (Donadio et 

al. 2007). This strain is therefore unable to convert TMS enzymes into the active 

holoforms and unable to produce polyketides. In addition to the bacillibactin 4 

cluster, this strain contains three TMS clusters, some of which direct the synthesis 

of compounds known in other B. subtilis strains: the pps operon encodes five 

NRPSs, and is responsible for the synthesis of the lipodecapeptide, plipastatin, the 

srf cluster consists of three NRPS genes and directs formation of the 

lipoheptapeptide surfactin; the pks clusterconsists of nine pks genes, and probably 

directs the synthesis of bacillaene or difficidin, produced by the related strain 

(Donadio et al. 2007).  

The genome of plant-associated Bacillus amyloliquefaciens FZB42 harbors 

an array of giant gene clusters involved in synthesis of lipopeptides and 

polyketides with antifungal, antibacterial and nematocidal activity. The gene 

clusters were shown to direct synthesis of the cyclic lipopeptides surfactin, 

bacillomycin, fengycin, an unknown peptide, and the iron-siderophore 

bacillibactin. In addition, one gene cluster encoding enzymes involved in synthesis 

and export of the antibacterial dipeptide bacilysin is also functional in FZB42. 

Three gene clusters were shown to direct synthesis of the antibacterial acting 

polyketides macrolactin, bacillaene, and difficidin. In total, FZB 42 dedicates 8.5% 

of its total genetic capacity, to synthesis of secondary metabolites. On the contrary, 

genes involved in ribosome-dependent synthesis of lantibiotics and other peptides 

are scarce (Chen et al. 2009).  

B. amyloliquefaciens strain GA1 (formerly B. subtilis GA1, Table 2.2) was 

demonstrated to display high in vitro inhibitory activity towards growth of multiple 

fungal and oomycete plant pathogens (Arguelles-Arias et al. 2009). 
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Table 2.2 

Metabolite production of B. amyloliquefaciens GA1 detected by HPLC-ESI 
mass spectrometry (Arguelles-Arias et al.  2009) 

 

 

2.12  Functional genes related to the antimicrobial activity of the 
seaweed associated   bacteria 

Microorganisms usually carry all the relevant genes in a contiguous DNA 

segment known as a gene cluster. With the help of chemistry-driven studies, the 

genes participated in the synthesis of known natural products were characterized. 

The data obtained have confirmed that the biosynthesis of a large number of 

natural products requires the participation of sophisticated molecular machines 
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known as polyketide synthases (PKS) and nonribosomal peptide synthetases 

(NRPS) (Donadio et al, 2007). Moreover, the structural characteristics of marine 

natural products have revealed that they mainly belong to two important chemical 

families, namely, polyketides and cyclopeptides, and are synthesized by 

multifunctional enzymes called polyketide synthases (PKSs) and nonribosomal 

peptide synthases (NRPSs) (Peng et al. 2009). PKSs and NRPSs are key players in 

the synthesis of natural products, since they carry out the oligomerization of small 

building blocks into often complex structures. Both systems are molecular 

assembly lines that direct product formation on a protein template by maintaining 

reaction intermediates covalently bound as thioesters on the same 

phosphopantetheine prosthetic group. Usually, a 4 phosphopantetheinyltransferase 

(PPTase) specificfor modular enzymes modifies an active site serine residue in the 

thiolation (T) and acyl carrier protein (ACP) domains of NRPSs and PKSs, 

respectively, to generate the corresponding holoenzymes. Each monomer is 

handled by a separate set of enzymatic domains known as a module, and usually 

there are as many modules as monomers incorporated in the final product. For 

these reasons, PKSs and NRPSs are thiotemplate modular systems (TMS) or TMS 

genes (Donadio et al. 2007). 

NRPSs use amino or hydroxy acids as building blocks, catalyzing the 

formation of amide or ester bonds, respectively. Each nrps module consists of 

three core domains: an adenylation (A) domain, which select the cognate amino 

acid, activates it as an amino acyl adenylate and transfers it to the T domain (also 

known as peptidyl carrier protein, or PCP) where a thioester bond is formed, a 

condensation (C) domain, responsible for peptide bond formation between the 

amino acid present on the T domain of the same module and the peptidyl 

intermediate bound to the T domain of the preceding module, and the T domain 

itself. Usually, all elongation modules present these core domains. A dedicated 

loading module (carrying just A and T domains) and a termination module, 

containing a thioesterase (TE) domain, usually complete the nrps assembly line. 

Additional reactions may be carried out by specialized domains within a module, 

such as amino acid epimerization (E), methylation (M) and reduction (R) activities. 

Additional variations include the presence of a heterocyclization domain (Cy) in 
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place of a C domain, or the occurrence of C domains capable of epimerization 

(Donadio et al. 2007). 

Polyketides constitute one of the major classes of natural products. Many of 

these compounds or derivatives thereof have become important therapeutics for 

clinical use; in contrast, various polyketides are infamous food-spoiling toxins or 

virulence factors, comprising of polyethers, polyenes, polyphenols, macrolides, 

and enediynes. They are mainly derived from one of the simplest building blocks 

available in nature: acetic acid (Hertweck 2009). Bacterial type I polyketide 

synthases (PKSs) produce a wide range of biomedically important secondary 

metabolites. These enzymes possess a modular structure that can be genetically re-

engineered to yield novel drug candidates not found in nature (Piel et al. 2003). 

On the basis of the architecture and mode of action of the enzymatic 

assembly lines, PKSs are classified into various types (Table 2.3). As in FAS 

nomenclature, type I refers to linearly arranged and covalently fused catalytic 

domains within large multifunctional enzymes, whereas the term type II indicates a 

dissociable complex of discrete and usually monofunctional enzymes. 

Furthermore, a third group of multifunctional enzymes of the chalcone synthase 

type is denoted as type III PKSs. Apart from the structures of the enzymes or 

enzyme complexes, the PKSs are also categorized as iterative or noniterative, that 

is, whether or not each KS domain catalyzes more than one round of elongation 

acid (Hertweck 2009). 

 

Table 2.3 

Survey of the types of PKSs. 
 

PKS type Building blocks Organisms 

Modular type I 
(non-iterative); subtypes: 
cis-AT, trans-AT 

ACP, 
various extender units; 

(in situ methylation possible) 
Bacteria, Protist 
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Iterative type I 
subtypes: 
NR-, PR-, 
HR-PKS 

ACP, 
only malonyl-CoA extenders 
(in situ methylation possible) 

Mainly fungi, some 
bacteria 

 

(Iterative) type II 
ACP, 

only malonyl-CoA extenders 
Exclusively bacteria 

(Iterative) type III 
Acyl-CoA, 

only malonyl-CoA extenders 
Mainly plants, some 
bacteria and fungi 

PKS-NRPS hybrid 
ACP, 

malonyl-CoA, amino acids 
Bacteria (modular) 

fungi (iterative) 
 

  

The type I polyketide synthases are a diverse group of multifunctional 

enzymes. They contain the activites required to complete a cycle of β-keto acyl 

chain elongations. Within the type I classification, there are two subgroups 

dividing the synthases by enzymatic activity and the type of host organism i.e. 

modular polyketides and  iterative synthases. The most common types of enzyme 

domains used in the type I synthases are ketoacyl synthase (KS), acyl transferase 

(AT), ketoreductase (KR), dehydratase (DH), enoyl reductase (ER), and 

thioesterases (TE). Minimal modules contain the KS, AT, and the acyl carrier 

protein (ACP). This group is responsible for lengthening of the polyketide through 

the addition of acyl groups. The chains are then reduced using KR, DH, and ER. 

The polyketide is released from the PKS by a thioesterase, by hydrolysis or 

macrolactonization (Castoe 2007).  

2.13   Conclusions 

The ability of marine microorganisms to produce novel antimicrobial 

compounds has been well demonstrated, and apparently they have a future role in 

the fight against antibiotic-resistant pathogens. Ongoing research efforts to isolate 

and screen new marine microorganism species should be accompanied by efforts to 

understand their ecology. Extensive culture-dependent and culture -independent 

surveys of marine microorganisms are a prioritized research area to determine the 
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extent to which marine diversity differs. The isolation of seawater-obligate and 

symbiotic microorganisms has proved that marine adaptation has occurred in this 

lineage, but so far this property has only been identified at the genus and species 

level, an indication that marine adaptation is a comparatively recent evolutionary 

event. If such adaptation is rare within the microorganisms, it is reasonable to 

expect that seawater-obligate strains will represent species that have no terrestrial 

counterparts, and thus they are unlikely to have been previously screened for 

antimicrobial compounds. This raises the intriguing possibility that there are 

antimicrobial compounds unique to marine species. Genomic analysis of the 

marine microbial flora indicates the differences in secondary metabolite 

biosynthetic genes may be a driver of speciation, supporting the hypothesis that the 

marine microbial species will produce new compounds. Finally, if antimicrobial 

compounds are to make it from the ocean to the clinic, big pharma must re-engage 

in drug discovery from microbes. Currently, small pharmaceutical and 

biotechnology companies have been, or are currently engaged in antimicrobial lead 

molecule discovery from marine microorganisms. 
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CHAPTER 3 

ISOLATION OF ANTAGONISTIC BACTERIAL FLORA 
ASSOCIATED WITH SEAWEEDS  

 

3.1 Background  

 

Bacteria with inhibitory characteristics exist symbiotically on the seaweed 

surface, providing it with a microbial-mediated defense community. Macroalgae 

(seaweeds) and their associated bacteria have been studied over a hundred years. It has 

been shown that these chemically mediated interactions are based on the exchange of 

nutrients, minerals, and secondary metabolites, the diversity and specificity of 

macroalgal–bacterial relationships have not been thoroughly investigated (Hollants et 

al. 2012). Seaweeds are potential sources of high biotechnological interest due to the 

production of a great diversity of compounds exhibiting a broad spectrum of biological 

activities. More than 2500 secondary metabolites have been isolated from seaweeds 

(Chakraborty et al. 2008). But still it’s a puzzle whether the bacteria or the seaweed is 

the actual producer (Kubaneck et al. 2003)? Although examples are rare (Kubaneck et 

al. 2003), it is believed that marine eukaryotes may use their surface-associated bacteria 

as a source of antimicrobial chemical defenses in competition and in protection of the 

host (Penesyan et al. 2009). Investigations of seaweed–bacterial associations lag behind 

these of other marine eukaryotes (Goecke et al. 2010; Hollants et al. 2012). Seaweed–

bacterial associations are appealing from evolutionary, ecological, and applied 

perspectives and there is a strong need to integrate the aspects of different biological 

disciplines, such as, microbiology, phycology, ecology, and chemistry in future 

macroalgal–bacterial studies (Hollants et al. 2012). Hence the objective of the present 

study was to assess the diversity of cultivable antagonistic heterotrophic bacterial 

communities associated with seven species of intertidal seaweeds present at the Gulf of 
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Mannar region in the south-east coast of India and  to explore them as a source for 

potentially useful antimicrobial substances. The present chapter describes the isolation 

of the antagonistic isolates, their preservation and identification as a primary step to 

precede the further work. 

3.2  Materials and Methods 

3.2.1 Seaweed sample collection  

Intertidal seaweeds belonging to Phaeophyceae and Rhodophyceae were 

collected by scuba diving from the intertidal zone of Mandapam situated at 9° 17' 0" 

North, 79° 7' 0" East, Gulf of Mannar region in South-East coast of India. The brown 

seaweeds collected were Anthophycus longifolius, Sargassam myriocystum, Padina 

gymnospora,, Turbinaria ornata and Dictyota dichotoma, whereas red seaweeds were 

Hypnea valentiae and Laurencia papillosa ( Figure 3.1). Seaweed samples were placed 

in a sterile polythene bag filled with seawater. Samples were kept in the dark at 4°C 

until subsequent   processing in the laboratory.  

 
 

Figure 3.1 

Indicative pictures showing (A) sample collecion site (B) Padina gymnospora (C) 
Sargassum myriocystum (D) Sargassum wightii 
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3.2.2  Isolation of seaweed-associated bacteria 

Specimens of seaweed samples were thoroughly washed with the sterile 

seawater for three times to remove loosely attached bacteria from the surface. Seaweed 

samples were processed and the associated bacterial strains were isolated by a modified 

protocols as reported in earlier studies (Wiese et al. 2009; Wilson et al. 2010; 

Kanagasabhapathy et al. 2006; Lemose et al.1985; Ali et al. 2012, Penesyan et al. 

2009). Briefly for isolation of seaweed-associated bacteria the specimen samples (10 g) 

were suspended in sterile seawater (10 mL) and homogenized using a pestle and mortar 

in a laminar airflow hood aseptically. The suspension was serially diluted in sterile 

seawater (9 mL), and different dilutions were plated on isolation media organized. 

Isolation media used involved Nutrient agar supplemented with sodium chloride (NA, 

NaCl, and 1% w/v), Zobell marine agar (ZMA), Seawater agar (SWA) and Nutrient 

agar (half strength). Incubation was performed in the dark at 30°C for 7 days. Pure 

cultures were obtained by several subsequent isolation and purification steps on 

Nutrient agar medium supplemented with sodium chloride (NA, NaCl, 1% w/v) 

3.2.3 Purification of seaweed-associated bacterial isolates 

3.2.3.1 The streak-plate method for isolation of pure cultures 

In microbiology, a prerequisite to the characterization of a microbial species is 

that it be available for study as a pure culture. The term pure culture denotes that all the 

cells in the culture had a common origin and are simply descendants of the same cell. 

In the current study, streak plate method  has been used to isolate an axenic culture. 

Samples can then be taken from the resulting colonies and a microbiological 

culture can be grown on a new plate so that the organism can be identified, studied, or 

tested (Pelczar and Chan 1977). 

Quadrant Streak Method The solidified agar plates were marked into four 

quadrants. Inoculation loop was sterilized on a flame and cooled, then remove one 

colony from the mixed culture by the loop and streak the first quadrant. The loop was 

http://en.wikipedia.org/wiki/Microbiology
http://en.wikipedia.org/wiki/Microbiological_culture
http://en.wikipedia.org/wiki/Microbiological_culture
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flame sterilized and cooled to repeat the procedure. The culture was dragged from the 

second quadrant back into the first quadrant three times and streaked the second 

quadrant. The loop was sterilized  again as stated earlier, and cooled before being streak 

the third quadrant. The loop was again sterilized and dragged from the fourth quadrant 

into the third quadrant one time and then streaked the fourth quadrant with one wavy 

line. The agar plate was labeled and incubated. (dedicated website: 

http://www.drcarman.info/bio251lb/09lab251.pdf ; Pelczar and Chan 1977). 

3.2.4  Pathogenic test organisms used for the study  

Pathogenic organisms other than the isolates procured from culture collections 

were maintained, and their pathogenicities  were assessed (Figure 3.2) at the 

Mariculture Facility of Central Marine Fisheries Research Institute. All the strains were 

maintained in Brain heart infusion broth supplemented seawater/NaCl as per the 

requirement.  

 

Figure 3.2 

Indicative pictures showing (A) Antibiotic susceptibility testing for A.hydrophilla 
used for the study (B) Pathogen challenging via injection of the pathogenic 

bacteria in shrimp. 
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3.2.4.1 Vibrio parahaemolyticus  

Vibrio parahaemolyticus is a Gram-negative, halophilic, non-spore forming, 

curved rod-shaped bacterium. Infections usually present in one of three major clinical 

syndromes: 60-80% of infections cause gastroenteritis, 34% wound infections, and 5% 

septicaemia. Fatal cases of septicemia may occur in immunocompromised patients or 

those with a pre-existing medical condition (such as liver disease, cancer, heart disease, 

recent gastric surgery, antacid use, or diabetes) (Public Health Agency of Canada 

dedicated website: www.publichealth.gc.ca). 

3.2.4.1.1 Vibrio parahaemolyticus (ATCC® 17802™) 

 Vibrio parahaemolyticus is a halophilic bacterium that occurs naturally in 

estuarine environments worldwide. This organism is the leading cause of seafood-

associated bacterial gastroenteritis in the United States, and it is one of most important 

food-borne pathogens in Asia, causing approximately half of the food poisoning 

outbreaks in Taiwan, Japan, and South-East Asian countries. The reference strain 

ATCC® 17802™, was reported to be isolated from a patient with food poisoning in 

Japan (Fujino et al. 1965). 

3.2.4.1.2 Vibrio parahaemolyticus MTCC451 

 A type strain of Vibrio parahaemolyticus (MTCC 451) was procured from the 

Microbial Type Culture Collections of the Institute of Microbial Technology 

(IMTECH), Chandigarh. The shrimp pathogenesis of Vibrio parahaemolyticus MTCC 

451 is characterized, and their LD50 values have been evaluated (Ramalingam et al. 

2006). Penaeid shrimp production is a worldwide economic activity, primarily 

important for inter-tropical developing countries. The bacterial strains responsible for 

vibriosis in the successive stages are usually considered to be different, and their 

virulence specificity has been reported both at the species level and at the stage levels.  

 

http://www.publichealth.gc.ca)./
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3.2.4.2 Vibrio vulnificus MTCC1145 

Vibrio vulnificus strain used in the current study is a fish pathogen (Kiran et al, 

2010) procured from Microbial Type Culture Collection, Chandigarh (India). Vibrio 

vulnificus is infrequent cause of disease in New Zealand, but has a high associated case 

fatality rate. It is a marine organism (grows in 6% NaCl) that can grow both in the 

presence and absence of air. It causes wound infections, gastroenteritis and primary 

septicaemia. It is the leading cause of foodborne illnesses that result in death in Florida 

(www.foodsafety.govt.nz/.../Vibrio_Vulnificus-Science_Research.pdf) 

 

3.2.4.3 Vibrio harveyi 

 Vibrio harveyi strain used in the current study is an aquaculture pathogen that 

has been obtained from National Institute of Fish Health, Cochin University of Science 

and Technology. Vibrio harveyi is a Gram-negative, bioluminescent, marine bacterium in 

the genus Vibrio. V. harveyi is rod-shaped, motile (via polar flagella), facultatively 

anaerobic, halophilic, and competent for both fermentative and respiratory metabolism. 

It does not grow below 4°C or above 35°C. V. harveyi can be found free-swimming in 

tropical marine waters, commensally in the gut microflora of marine animals,  and as 

both a primary and opportunistic pathogen of marine animals, including 

Gorgonian corals, oysters, prawns, lobsters,the commonsnook,barramundi, turbot, milk

fish, and seahorses. It is responsible for luminous vibriosis, a disease that affects 

commercially farmed penaeid prawns (dedicated website 

http://en.wikipedia.org/wiki/Vibrio_harveyi). 

3.2.4.4  Aeromonas hydrophilla 

Aeromonas hydrophilla strain used in the current study is an aquaculture 

pathogen that has been obtained from National Institute of Fish Health, Cochin 

University of Science and Technology. Aeromonas hydrophila is a species of bacterium 

that is present in all freshwater environments and in brackish water. Some strains of A. 

hydrophila are capable of causing illness in fish and amphibians as well as in humans 

http://en.wikipedia.org/wiki/Gram-negative
http://en.wikipedia.org/wiki/Bioluminescence
http://en.wikipedia.org/wiki/Bacterium
http://en.wikipedia.org/wiki/Genus
http://en.wikipedia.org/wiki/Vibrio
http://en.wikipedia.org/wiki/Marine_(ocean)
http://en.wikipedia.org/wiki/Opportunistic_pathogen
http://en.wikipedia.org/wiki/Coral
http://en.wikipedia.org/wiki/Oyster
http://en.wikipedia.org/wiki/Prawn
http://en.wikipedia.org/wiki/Lobster
http://en.wikipedia.org/wiki/Common_snook
http://en.wikipedia.org/wiki/Barramundi
http://en.wikipedia.org/wiki/Turbot
http://en.wikipedia.org/wiki/Milkfish
http://en.wikipedia.org/wiki/Milkfish
http://en.wikipedia.org/wiki/Seahorse
http://www.fda.gov/Food/FoodborneIllnessContaminants/CausesOfIllnessBadBugBook/ucm074156.htm?Aeromonas=hydrophila
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who may acquire infections through open wounds or by ingestion of a sufficient 

number of the organisms in food or water. A. hydrophila may cause gastroenteritis in 

healthy individuals or septicemia in individuals with impaired immune systems or 

various malignancies (dedicated website: http://www.fda.gov/food/foodborneillness 

contaminants/causesofillnessbadbugbook/ucm070523.htm).   

3.2.4.5 Vibrio alginolyticus 

Vibrio alginolyticus strain used in the current study is an aquaculture pathogen 

that was obtained from Central Marine Fisheries Research Institute, Karwar. Vibrio 

alginolyticus is a Gram-negative marine bacterium. It is medically important since it 

causes otitis and wound infection.  It is also present in the bodies of animals such 

as pufferfish, where it is responsible for the production of the potent neurotoxin, 

tetrodotoxin (dedicated website: http://en.wikipedia.org/wiki /  Vibrio_alginolyticus). 

3.2.4.6 Vibrio angullarum 

Vibrio angullarum strain used in the current study is an aquaculture pathogen 

that was obtained from Central Institute of Brackish Aquaculture, Chennai. Vibrio 

anguillarum, also known as Listonella anguillarum, is the causative agent of vibriosis, 

a deadly haemorrhagic septicaemic disease affecting various marine and fresh/brackish 

water fish, bivalves and crustaceans. In both aquaculture and larviculture, this disease is 

responsible for severe economic losses worldwide (Frans et al. 2011). 

3.2.5 Screening of isolated strains for their antibacterial activity against the    

pathogens 

For preliminary characterization of antagonistic bacteria an inhibition test on 

solid media was carried out by a spot over lawn assay (Figure 3.3). Briefly pathogenic 

bacteria were grown in their respective Nutrient broth (NB) and incubated for 18 h (108 

CFU/ml). The OD is adjusted according to McFarland turbidity standard. About 0.1mL 

from the above described inoculated broth was spread over the Muller Hinton agar 

(MHA) plates to form a lawn of test pathogenic bacteria. To perform bioassay, the 

seaweed-associated isolates were simultaneously cultured on NA plates at 20°C until it 

http://en.wikipedia.org/wiki/Gram-negative
http://en.wikipedia.org/wiki/Bacterium
http://en.wikipedia.org/wiki/Otitis
http://en.wikipedia.org/wiki/Tetraodontidae
http://en.wikipedia.org/wiki/Tetrodotoxin
http://en.wikipedia.org/wiki%20/
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acquires a visible growth. Purified isolates (as explained under section 3.2.2 and 3.2.3) 

were then picked and spotted ( 6mm diameter) onto the agar cast with pathogens under 

sterile conditions. The plates were incubated at 30°C for 24–72 h. The clearing zones in 

the turbid growth of pathogen were scored as antibacterial activity. Measure of 

antagonistic activity was recorded as the diameter of inhibition zones determined as a 

distance of ≥1 mm between the circular area (=lawn of the isolate) and the end of the 

clear zone bounded by the lawn of the test strain (Gram et al. 2010; Lemose et al. 

1985). The live cells were stained with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide (MTT) to visualize the growth inhibition around the 

spotted isolates. 

 

 

 

Figure 3.3 

Indicative pictures showing preliminary screening (spot over lawn assay )of 
seaweed associated bacterial isolates (A)Bacterial isolates of brown seaweed  
Dictyota dichotoma are spotted  against V.vulnificus (B) Bacterial isolates of brown 
seaweed Anthophycus longifolium against V.parahaemolyticus MTCC451.Live cells 
are stained in blue with MTT solution and the bactericidal zones are visualized as 
yellowish clear zone around the spotted seaweed associated bacterial isolates. 
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3.2.6 Preservation of isolated strains with antibacterial activity against the tested 

pathogens 

 Laboratory test procedures requiring the used microorganisms must be 

preserved in a manner that will allow for their genetic stability and long term survival. 

The chief methods of preservation utilized during the study were serial sub culture on 

agar slants, oil sealing and freeze-drying (Goldman and Green 2009; Pelczar et al. 

1957). 

3.2.6.1 Serial sub culture on agar slants 

This is a simple method in which cultures are periodically passed in agar media 

in sealed tubes. It is not a satisfactory method for long term preservation due problems 

with contamination, culture death and unintended selection of mutants. In the current 

study this method was employed for routine laboratory works (Goldman and Green, 

2009; Pelczar et al. 1957).  

3.2.6.2 Oil sealing 

 Cultures can be preserved for periods greatly exceeding the viability of ordinary 

agar cultures by sealing them with sterile paraffin oil (Figure 3.4.A). The process 

prevents the moisture loss from the medium and suppresses the growth by excluding 

oxygen. Screw capped tubes were autoclaved with agar media, and allowed to solidify. 

The cultures were inoculated and incubated until the growth was visible. The oil is 

poured aseptically over the culture until the entire agar is covered. The oiled cultures 

were kept at 20°C (Goldman and Green, 2009; Pelczar et al. 1957). 

3.2.6.3 Storage at low temperature 

Cultures in agar plates/slants were preserved at 4 to 8°C. Agar slants/broths of 

the viable cultures were overlaid with 10% glycerol and stored at -80 °C (Goldman and 

Green, 2009; Pelczar et al. 1957). 
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Figure 3.4 

Preservation techniques used(A) Cultures preserved with oil sealing (B) Cultures 
preserved with Lypphillization (C) Seaweed Extract used for preservation media 
enrichment (D) Cultures preserved with oil sealing in Seaweed extract agar. 

3.2.6.4 Preservation by lyophilization  

Microorganism to be preserved was streaked on nutrient agar plate and 

incubated  overnight to form a lawn of growth. Sterile crimp-cap vials were autoclaved 

ahead of time, with the caps placed loosely on top. Lyophilization buffer (4mL) was 

added to the plate and the cells were suspended using a sterile glass rod. The culture 

suspension (approximately 1.5 mL) was transferred to the sterilized vials before being 

sealed with the rubber cap. The culture suspension inside the vials was frozen by 

placing the vials in a -20 °C freezer. The freeze drier was prepared by turning it on and 

allowing time for the appropriate temperature and vaccum conditions to stabilize 

according to the manufacturer's instructions. The vial caps were placed loosely on top 

of the vials in an aseptic condition to escape during the freeze drying process before 
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being placed  into the freeze drier chamber. Vacuum was applied for a time period to 

completely lyophilize (dry out). The samples from the freeze drier chamber were 

removed according to the manufacturer's instructions, was stored before being sealed. 

The lyophilized culture collection was stored at room temperature (Figure 3.4B) and 

the tubes were assessed for viability in a random  manner (Desmons et al. 1998; 

Milanovic et al. 2001). The lyophilization buffer used was a mixture of 10% skimmed 

milk in 5% glycerol and 0.1% CaCO3, which was prepared aseptically.  

3.2.6.5 Preservation using Seaweed Extract Agar 

Seaweed Extract agar was prepared by agitating seaweed in autoclaved water 

for 12 hours before being centrifuged to obtain the aqueous extract (Figure 3.4.C). The 

extract was lyophilized and the lyophilized powder was used to supplement the media 

to afford a final concentration of 10g/L (Boyd et al. 1999). Each culture isolate was sub 

cultured on their respective seaweed extract media, and overlaid with paraffin oil as 

described under the section 3.2.6.2 (Figure 3.4.D). 

3.2.7 Identification of isolated strains with antibacterial activity 

3.2.7.1 Biochemical identification 

Colony morphology was analyzed on agar plates and Gram staining was 

performed. Strains were identified by carrying out biochemical and physiological tests 

as described in the Bergey’s Manual of Determinative Bacteriology. Conventional tests, 

such as  motility, gas from glucose, starch hydrolysis, indole, nitrate reduction, Vogues-

prosker, Citrate, gelatin hydrolysis, esculin hydrolysis, growth at various temperature 

and NaCl Concentration etc. were used 

3.2.7.2      Molecular identification based on 16S rRNA genes 

3.2.7.2.1   DNA isolation 

The selected pure bacterial colonies were inoculated in Luria Bertani broth (LB) 

supplemented with NaCl and grown for 6-8 h in a shaking incubator. Culture pellet was 

collected by centrifugation (at 8000 rpm, 4°C, 10 min, Thermo Centrifuge, USA) and 
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DNA extraction was carried out using phenol-chloroform extraction method. The 

culture (1mL) was centrifuged at 10,000 rpm for 5 min. The pellet was resuspended in 

180µL of glucose Tris-EDTA buffer. Lysozyme was added to a final concentration of 

5mg/mL and the solution was vortexed (Spinnot, India) and incubated in ice for 10min. 

In to the tube, 20 µL of 10%SDS was added and incubated at room temperature (30°C). 

An equal volume of neutral phenol was added to the tube before being mixed by 

inversion. The contents of the tube were kept at room temperature for 10min before 

being centrifuged (10,000rpm for 10min at 4°C). The aqueous layer was collected and 

extracted with chloroform:isoamyl alcohol (24:1). To the mixture 1/10th volume of 

3Msodium acetate was added, before being precipitated with ethanol. The DNA pellet 

was suspended in Tris-EDTA buffer (pH 8.0) and stored at -20°C. 

3.2.7. 2.2   PCR 

Genomic DNA was quantified and diluted to 50-75 ng for PCR amplification 

using 16s rRNA primers. The primer sequences used were forward primer 

“AGAGTTTGATCCTGGCTCAG” and reverse primer “ACGGCTACCTTGTTACGACTT”   

(Weisburg et al. 1991). PCR was performed in a total volume of 25 µL containing 1x 

reaction buffer with MgCl2 (Sigma), 0.25 mM of each dNTP (Fermentas), 0.5mM of 

each primers (Sigma), 1 ng DNA and 0.3 U Taq DNA polymerase (Sigma). The 

following cycling conditions were used: initial denaturation at 94°C for 5 min, followed 

by 30 cycles of 95°C for 1 min, 58°C for 1 min and 72°C for 2 min, with a final 

extension 72°C for 5 min. The molecular sizes of the amplified fragments were 

estimated by comparing with a 1 Kb ladder on a 1.5% (w/v) agarose gel using 1X TAE 

buffer at 80V. Fragments with the expected size were gel-purified using GelEluteTM gel 

extraction kit (Sigma) following the manufacturer’s protocol and sequenced. 

3.2.7.2.3    BLAST 

Sequence data were deposited in GenBank and compared with existing 

sequences using blastn (http://blast.ncbi.nlm.nih.gov/Blast.cgi? ) search program.  
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3.2.7.2.4   Phylogenetic tree construction 

Sequences were aligned against reference sequences with CLUSTALW 

software of Bioedit program, and the aligned dataset was used as input for phylogenetic 

analysis program. The evolutionary history was inferred by using the Maximum 

Likelihood method based on the Kimura 2-parameter model (Kimura 1980), and the 

bootstrap analysis with 1000 replications. Evolutionary analyses were conducted in 

MEGA5 (Tamura et al. 2011).  

3.2.7.2.5   Nucleotide Accession numbers 

 Partial 16S rRNA gene sequences were deposited under the Accession numbers, 

KC559432-KC559434; KC510279-KC510286; JX203227-JX203230 

3.2.7.3       Chemotaxonomy based on analysis of fattyacid profiles 

3.2.7. 3.1   Analysis of cellular fatty acids 

The bacterial cells were cultured on the Trypticase soy broth agar plates, and 

were removed from the plate by scraping the surface of the culture medium with a 

sterile 4 mm inoculating loop. The loop containing the live bacterial wet cells has been 

inserted with the cells into a clean, dry screw cap culture tube. The bacterial cells were 

saponified, methylated, and extracted to afford bacterial fatty acid methyl esters 

(BAMEs) as described previously (Zhu et al. 2005). Fatty acid methyl esters were 

analyzed using the standard procedure of the Microbial Identification System and 

compared to the fatty-acid database (Ali et al. 2009). Briefly, a saponification reagent 

was prepared by combining the NaOH pellets (45 grams) to the solution of deionized 

distilled water and methanol (HPLC grade) (150 ml each). The bacterial pellets (50 mg) 

were saponified with the saponification reagent (1 mL), which was taken into each of 

the culture tubes in the batch, and was tightly sealed. The tubes were vortexed and the 

sample tubes were placed into a circulating water bath at 100ºC for 30 min before being 

cooled under the tap water. Methylation converts the fatty acids (as sodium salts) to 

fatty acid methyl esters, which increase the volatility of the fatty acids for the GC 

analysis. The tubes were uncapped in the batch, and then added with the methylation 



 

 
61 

Chapter 3 - Isolation of antagonistic bacterial flora associated with seaweeds  

 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 

 

 

reagent (6N HCl, 325 ml and methanol, 275 mL) (2 mL) before being heated at 80ºC 

for 10 min, followed by cooling to room temperature. Fatty acid methyl esters 

(FAMEs) thus prepared were removed from the acidic aqueous phase and transferred to 

an organic phase with a liquid-liquid extraction procedure. The tubes were uncapped 

and were added with 1.25 mL of the extraction solvent (n-hexane 200 mL and methyl 

tert-butyl ether 200 mL). The tubes were tightly sealed and the batches of the tubes 

were gently mixed for 10 min. The aqueous (lower) phase was discarded. The extract 

was washed and neutralized with a dilute base solution, which was added to the sample 

tubes to remove free fatty acids and residual reagents from the organic extract. In brief 

sodium hydroxide (10.8 g) was added with the deionized distilled water (900 mL) to 

prepare the base wash reagent solution. This reagent (3 mL) was added to each tube, 

tightly capped, and gently rotated end-over-end for 5 min. About two-third of the 

organic (upper) phase from the tube was taken by using a sterile Pasteur pipette, and 

was transferred to the GC sample vial for analysis (Zhu et al. 2005). 

3.2.7.3.2   Gas liquid chromatography 

Fatty acid profiles were evaluated on a Perkin-Elmer (USA) AutoSystem XL 

gas chromatograph (HP 5890 Series II) equipped with an Elite-5 (crossbond 5% 

diphenyl 95% dimethyl polsiloxane) capillary column (30m X 0.53mm i.d., Supelco, 

Bellfonte, PA) with split/splitless injector, using a flame ionization detector as 

described previously (Wilkinson et al. 2005). Fatty acid methyl ester mixtures were 

analyzed with the Microbial Identification System software (MIS) and a fatty acid 

identification program (MIDI; Sherlock 4.5 Microbial Identification System) (MIDI 

Inc., Newark, Delaware, USA) (Stead et al. 1992).  

3.2.7.3.3  Reproducibility of FAME analysis 

The reproducibility of FAME profiles for all the samples was determined by 

analyzing each isolate three times under standard conditions. For each peak in the 

chromatogram the coefficient of variation (standard deviation/ mean) x 100 was 

calculated (Mukwaya and Welch 1989). Peak area values for each fatty acid were 

calculated as percentages of the total peak area to eliminate the effect of inoculum size 
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variation. A standard procedure for the adequate structural identification of bacterial 

fatty acids by mass spectrometry has been followed. 

 

3.3 Results and discussion 
3.3.1 Algal samples 

Algal samples collected were identified as Sargassum myriocystum, Dictyota 

dichotoma, Anthophycus longifolium, Padina gymnospora, Chondrococcus hornemanii, 

Acanthophora spicifera, Hypnea valentiae, Halymenia floresia, Hydroclathrus 

clatratus, Jania rubens, Laurencia papillosa, Turbinaria ornatae, Gelidium sp . 

3.3.2 Isolation and antimicrobial screening 

Seaweeds are proposed to have chemical defense strategies against targeted 

microorganisms (Kubanek et al. 2003), and the significant proportion of antagonistic 

isolates from seaweeds further confirmed this hypothesis (Lemose et al. 1985; Burgess 

et al. 1999; Wiese et al. 2009). Among the total number of  234 isolates screened 

during isolation, 53, i.e. about 22% were found to be active against at least one test 

pathogen used in the preliminary screening (Figure 3.5; Table 3.1). Details of the active 

isolates from each algae were depicted in Table 3.1. About 9 percent of the isolates 

showed consistent results on further screening, and these results were found to be 

similar to those observed by other researchers (Burgess et al. 1999; Lemose et al. 

1985). From these isolates only 23 were succeeded in overcoming further laboratory 

sub culturing strategies, and could withstand the activity. The antimicrobial patterns of 

these isolates against the pathogens used in the study have been summarized in the 

Table 3.2 . Reports have shown that the proportion of bacteria with inhibitory activity 

associated with seaweeds and invertebrates was higher than that of seawater and 

sediments (Zeng et al. 2005). Bacteria associated with live or inert surfaces were more 

likely to display antibacterial activity (Gram et al. 2010). There are several reports that 

compounds of the associated bacterium which assist the host in certain ways, or the 

bioactive compounds isolated from the host have some structural similarities to the  
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compounds of the microbial origin (Kubanek et al. 2003; Zhang et al. 2009). The 

bacterial isolates with antibiotic activities in the present study were pigmented, which 

further corroborate the observation of the earlier study that antibiotic producing 

bacteria were pigmented (Lemose et al. 1985). 

 

 

Figure 3.5 

Indicative pictures of the algal samples screened for antagonistic activity and their 
isolates. (A)Seaweed sample Bacterial isolates of brown seaweed Anthophycus 
longifolium (5) and inset shows antibacterial activity assay of its isolates against 
V.parahaemolyticus MTCC451( 55 and 510  are with  inhibitory zones) (B) Seaweed 
sample Halimeda sp. and its isolates  Isolate 33  inhibiting V.parahaemolyticus 
ATCC17802 
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Table 3.1 

Active isolates used for preliminary screening 

Seaweed host C.F.U* Number of Active 
isolates obtained in 

preliminary screening 

Sargassum myriocystum 39x104 6 

Dictyota dichotoma 32x104 6 

Anthophycus longifolium 46x104 5 

Padina gymnospora 44x104 3 

Chondrococcus 
hornemanii 

42x104 6 

Acanthophora spicifera 40x104 4 

Hypnea valentiae 71x104 4 

Halymenia floresia 32x105 2 

Hydroclathrus clatratus 31x104 5 

Jania rubens 76x104 3 

Laurencia papillosa 47x105 6 

Turbinaria ornatae 18x105 3 

  

 * Colony forming units 
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3.3.3 Preservation of candidate strains 

It is known that several epiphytic bacteria lose their ability to produce 

antimicrobial compounds after many subcultures on artificial growth media (Ali et al, 

2012). In the present study we also faced the problem on repeated sub culturing on agar 

slants (3.2.6.1) and low temperature freezing (3.2.6.3). However the cultures preserved 

on seaweed extract agar could retain the activity for a longer time (more than 3 years) 

and we could preserve it for a longer period by overlaying with mineral oil at 20° C in 

an incubator giving the identical inhibitory pattern against the growth of pathogens. 

This might be because of the fact that marine surface associated microorganisms might 

require conditions that resemble their native environment in order to produce the 

maximum amount of bioactives, as mentioned by Penesyan et al. (2010). Ali et al. 

(2012) reported that the decrease of activity for bacterial culture J9, isolated from Jania 

rubens when grown after several transfers on marine agar. They further reports this 

species might require different growth conditions for optimal production of desired 

metabolites. Further Boyd et al. (1999) tried different culture media for better bacterial 

growth that reflect the types and quantities of nutrients present in the environments 

sampled. They have reported maximum strains on maine agar with 22% having 

antibiotic activity that showed the utility of specific growth media for culturing of 

heterotrophic bacteria. The seaweed extract based media was reported to give a lesser 

number of viable strains with 24% with antibiotic activity, which apparently suggested 

it as a better media to study bioactive isolates. 

3.3.4 Identification 

3.3.4.1 Biochemical Identification 

Gram staining (Figure 3.6) and KOH screening showed that among the isolated strains, 

12 falls under Gram positive and 11 to Gram negative. The Table 3.3 describes the 

detailed morphological, physiological and biochemical characteristics exhibited by 

isolated strains of the study. Biochemical analysis had clustered the promising bacterial 

isolates in to four species i.e, Bacillus, Shewanella, Vibrio* and Pseudomonas.(*Biochemical 

analysis reports of SWI 20 and SWI 12B not included in Table 3.3) 
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Table 3.3. A  
Morphological tests of the test bacteria 

Tests SWI9 
 

SWI2  SWI 4B  
 

SWI 5 
 

SWI 21 
 

SWI 6 
 
 

Colony 
morphology 

      

Configuratio
n 

Circular Circular Wrinkled Wrinkled Circular Wrinkled 

Margin Entire Entire Rhizoidal Rhizoidal Entire Rhizoidal 
Elevation Convex Convex Flat Flat Convex Flat 
Surface Smooth Smooth Rough Rough Smooth Rough 
Pigment Yellow Yellow Off white Off white Cream Off white 

Opacity 
Transluc

ent 
Transluce

nt Opaque Opaque Opaque Opaque 

Gram’s 
reaction 

- - + + - + 

Cell shape Short 
 

 

Short 
 

Rods Rods IrregularRo
 

Rods 
Size (µm) 1-2µm 1-2µm 3-5µm 3-5µm 1-2µm 2-4µm 
Arrangement Scattered Scattered Chains Chains Scattered Chains 
Spore(s) - - + + - + 
Postion - - Sub 

 
Sub 

 
- Sub 

 Shape - - Ellipsoidal Ellipsoidal - Ellipsoidal 
Sporangia 
bulging 

- - Non 
bulged 

Non 
bulged - Non bulged 

Motility + + + + + + 

Table 3.3. A (Continued…)  
Morphological tests of the test bacteria 

Tests SWI 10 
 

SWI 11 
 

SWI 13 

 
 

SWI 17 

 
 

SWI 

 
 

SWI 18 

 
 

Colony 
morphology 

      

Configuration Circular Circular Circular Circular Circular Circular 
Margin Entire Entire Entire Entire Entire Entire 

Elevation Convex Convex Convex Convex Convex Convex 
Surface Smooth Smooth Smooth Smooth Smooth Smooth 

Pigment Yellow Yellow Yellow Yellow Yellow Yellow 

Opacity 
Translu

cent 
Transluce

nt 
Translucen

t 
Translucen

t Translucent Translucent 

Gram’s 
reaction 

- - - - - - 

Cell shape Rods Rods Rods Rods Rods Rods 

Size (µm) 1-2µm 1-2µm 1-2µm 1-2µm 1-2µm 1-2µm 
Arrangement Scattere

 
Scattered Chains Chains Scattered Chains 

Spore(s) - - - - - - 
Postion       
Shape       

Sporangia 
bulging 

      

Motility + + + + + + 
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Table 3.3. A (Continued…)  
Morphological tests of the test bacteria 

Tests SWI4a  
 

SWI 2 
 
 

SW 1 
 

 
 

SWI 16A  

 
 

SWI 8  SWI 19 

 
 

Colony 
morphology 

      

Configuratio
n 

Wrinkled Wrinkled Wrinkled Wrinkled Wrinkled Wrinkled 

Margin Rhizoidal Rhizoidal Rhizoidal Rhizoidal Rhizoidal Rhizoidal 
Elevation Flat Flat Flat Flat Flat Flat 
Surface Rough Rough Rough Rough Rough Rough 
Pigment Off white Off white Off white Off white Off white Off white 
Opacity Opaque Opaque Opaque Opaque Opaque Opaque 
Gram’s 

 
+ + + + + + 

Cell shape Rods Rods Rods Rods Rods Rods 
Size (µm) 2-3.5µm 2-4µm 3-5µm 2-3µm 2-3µm 2-3µm 
Arrangement Chains Scattered Regular 

Chains 
Chains Chains Chains 

Spore(s) + + + + + + 
Postion Sub 

 
Sub 

 
Sub 

 
Central Central Central 

Shape Ellipsoidal Ellipsoidal Ellipsoidal Ellipsoidal Ellipsoidal Ellipsoidal 
Sporangia 
bulging 

Non 
bulged 

Non 
bulged 

Bulged Non bulged Non bulged Non bulged 

Motility + + + + + + 

Table 3.3. A (Continued…)  
Morphological tests of the test bacteria 

Tests SWI 16B 
 

SWI 3  
 

SWI 6  
 

SWI 7 
 Colony 

morphology 
    

Configuration Wrinkled Wrinkled Wrinkled Wrinkled 
Margin Rhizoidal Rhizoidal Rhizoidal Rhizoidal 
Elevation Flat Flat Flat Flat 
Surface Rough Rough Rough Rough 
Pigment Off white Off white Off white Off white 
Opacity Opaque Opaque Opaque Opaque 
Gram’s reaction + + + + 
Cell shape Rods Rods Rods Rods 

Size (µm) 2-3.5µm 2-4µm 3-5µm 3-5µm 

Arrangement Chains Scattered  Chains Chains 
Spore(s) + + + + 
Postion Sub terminal Sub terminal Sub terminal Sub terminal 
Shape Ellipsoidal Ellipsoidal Ellipsoidal Ellipsoidal 
Sporangia bulging Non bulged Non bulged Non bulged Non bulged 

Motility + + + + 
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Table 3.3. B 

Physiological tests of the test bacteria 

 

Table 3.3. B (Continued…) 
Physiological tests of the test bacteria 

Tests SWI9 SWI I2 SWI 4B SWI 5 SWI21 PW-15 
Growth at 

temperatures 
      

4°C - - - - - - 
10°C - - - - + - 
20°C + + + + + + 
30°C + + + + + + 
37°C + + + + + + 
42°C + + + + + + 
55°C - - + + - - 

Growth at pH       

pH 4.0 - - - - (+) - 
pH 5.0 - - - - + (+) 
pH 6.0 + + + + + + 
pH 7.0 + + + + + + 
pH 8.0 + + + + + + 
pH 9.0 + + + + + + 
pH 10.0 + + + + + + 
pH 11.5 + + + + + + 

Growth on 
NaCl (%) 

      

2.0 + + + + + + 
4.0 + + + + + + 
6.0 + + + + + + 
8.0 + + + + + + 

10.0 - - + + - + 
Growth under 

anaerobic 
condition 

- - - - - - 

Tests SWI 
10 

SWI 
11  

SWI 
13  

SWI 
17 

SWI 14 SWI 
18 

Growth at 
temperatures 

      

4°C - - - - - - 
10°C - - - - - - 
20°C + + + + + + 
30°C + + + + + + 
37°C + + + + + + 
42°C + + + (+) + (+) 
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Table 3.3. B (Continued…) 
Physiological tests of the test bacteria 

 

 

 

 

 

 

 

 

 

 

 

55°C - - - - - - 

Growth at pH       
pH 4.0 (+) - + + - - 

pH 5.0 + + + + + + 

pH 6.0 + + + + + + 
pH 7.0 + + + + + + 
pH 8.0 + + + + + + 
pH 9.0 + + + + + + 
pH 10.0 + + + + + + 
pH 11.5 + + + + + + 

Growth on NaCl 
(%) 

      

2.0 + + + + + + 
4.0 + + + + + + 
6.0 + + + + + + 
8.0 + + + + + + 
10.0 - - - - - - 

Growth under 
anaerobic 
condition 

- - - - - - 

Tests SWI4a  SWI 2 SWI 1 SWI 16A  SWI 8 SWI 19 
Growth 
at 
tempera
tures 

      

4°C - - - - - - 
10°C - - (+) - - - 
20°C + + + + + + 
30°C + + + + + + 
37°C + + + + + + 
42°C + + + + + + 

55°C + + + + + + 
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Table 3.3. B (Continued…) 
Physiological tests of the test bacteria 

 

 

Growth at 
pH 

      

pH 4.0 - - - - - - 

pH 5.0 - - - - - - 

pH 6.0 + + + + + + 
pH 7.0 + + + + + + 
pH 8.0 + + + + + + 
pH 9.0 + + + + + + 
pH 10.0 + + + + + + 
pH 11.5 + + + + + + 

Growth on 
NaCl (%) 

      

2.0 + + + + + + 
4.0 + + + + + + 
6.0 + + + + + + 
8.0 + + + + + + 

10.0 + + + + + + 

Growth 
under 

anaerobic 
condition 

- - + + + + 

Tests SWI 16B SWI 3 SWI 6 SWI 7 

Growth at 
temperatures 

    

4°C - - - - 
10°C - - - - 
20°C + + + + 
30°C + + + + 
37°C + + + + 
42°C + + + + 

55°C + + + + 

Growth at pH     

pH 4.0 - - - - 
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Table 3.3. C  
Biochemical tests of the test bacteria: 

 

pH 5.0 - - - - 

pH 6.0 + + + + 
pH 7.0 + + + + 
pH 8.0 + + + + 
pH 9.0 + + + + 

pH 10.0 + + + + 

pH 11.5 + + + + 

Growth on NaCl 
(%) 

    

2.0 + + + + 
4.0 + + + + 
6.0 + + + + 
8.0 + + + + 

10.0 + + + + 

Growth under 
anaerobic condition 

- - - - 

Tests SWI9 SWI2 SWI 4B SWI 5 SWI21 SWI 6 
Growth on 

MacConkey 
+ 

(NLF) 
+ 

(NLF) - - + 
(LF) - 

Indole test - - - - - - 
Methyl red test - - - - - - 

Voges Proskauer 
test + (+) (+) + - + 

Citrate utilization - - - - + - 
H2S production + + - - - - 

Gas production 
from glucose - - - - - - 

Casein 
hydrolysis + + + + - + 

Esculin 
hydrolysis - - + + (+) + 

Gelatin 
hydrolysis + + + + - + 

Starch hydrolysis - - + + - + 
Urea hydrolysis + + (+) (+) - + 
Nitrate reduction + + + + + + 

Ornithine 
decarboxylase - - (+) (+) - + 

Lysine 
decarboxylase - - - - - - 
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Table 3.3. C (Continued…) 
Biochemical tests of the test bacteria: 

Arginine 
Dihydrolase + + + + ND ND 

Catalase test + + + + + + 

Oxidase test + + - - + + 

Tween 20 
hydrolysis 

 
+ 

 
+ 

 
- 

 
- 

 
- 

 
+ 

Tween 40 
hydrolysis 

 
+ 

 
+ 

 
- 

 
- 

 
- 

 
(+) 

Tween 60 
hydrolysis 

 
+ 

 
+ 

 
- 

 
- 

 
- 

 
- 

Tween 80 
hydrolysis 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

Acid Production 
from 

      

Dextrose - - + + + + 

Lactose - - (+) (+) + (+) 

Maltose - - + + - + 

Sucrose - - + + - + 

Xylose - - (+) (+) + (+) 

Tests SWI 10 
 

SWI 11 
 

SWI 13  
 

SWI 17 SWI 14 SW-18 
 

Growth on 
MacConkey  

+ 
(NLF) 

+ 
(NLF) 

+ 
(NLF) 

+ 
(NLF) 

+ 
(NLF) 

+ 
(NLF) 

Indole test - - - - - - 
Methyl red test - - - - - - 
Voges Proskauer test + + + + + + 

Citrate utilization  - - - - - - 
H2S production + + + + + + 
Gas production from 
glucose 

- - - - - - 

Casein hydrolysis + + + + + + 
Esculin hydrolysis - - - - - - 
Gelatin hydrolusis + + + + + + 
Starch hydrolysis - - - - - - 
Urea hydrolysis + + + + + + 
Nitrate reduction  + + + + + + 
Catalase test + + + + + + 
Oxidase test + + + + + + 
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Table 3.3. C (Continued…) 
Biochemical tests of the test bacteria: 

 

Tween 20 hydrolysis + + + + + + 

Tween 40 hydrolysis + + + + + + 

Tween 60 hydrolysis + + + + + + 

Tween 80 hydrolysis  
- 

 
- 

 
- 

 
- 

 
- 

 
- 

Acid Production 
from 

      

Dextrose - - - - - - 
Lactose - - - - - - 
Maltose - - + - - - 
Sucrose - + - - - - 

Tests SWI4a SWI 2 SWI 1 SWI 16A SWI 8 SWI 19 

Growth on 
MacConkey - - - - - - 

Indole test - - - - - - 
Methyl red test - - + - - - 
Voges Proskauer test + (+) (+) + + + 
Citrate utilization - - + + + + 
H2S production - - - - - - 
Gas production from 
glucose - - - - - - 

Casein hydrolysis + + + - - - 
Esculin hydrolysis + + + + + + 
Gelatin hydrolusis + + + + + + 
Starch hydrolysis + + + + + + 
Urea hydrolysis + + + + + + 
Nitrate reduction + + + + + + 
Ornithine 
decarboxylase + + + + + + 

Lysine decarboxylase - - + (+) (+) (+) 
Catalase test + + + + + + 
Oxidase test + - + - - - 
Tween 20 hydrolysis - - - + + + 
Tween 40 hydrolysis - - (+) + + + 
Tween 60 hydrolysis - - (+) + + + 

Tween 80 hydrolysis  
- 

 
- 

 
- 

 
- 

 
- 

 
- 

Acid Production from       
Dextrose + + + + + + 
Lactose + + + + + + 

Sucrose + + + + + + 



 

 
75 

Chapter 3 - Isolation of antagonistic bacterial flora associated with seaweeds  

 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 

 

 

 

 

Table 3.3. C (Continued…) 
Biochemical tests of the test bacteria: 

 

Tests SWI 16B SWI 3 SWI 6 SWI 7 

Growth on 
MacConkey  

- - - - 

Indole test - - - - 
Methyl red test - - - - 

Voges 
Proskauer test 

+ (+) (+) + 

Citrate 
utilization  

- - - - 

H2S 
production 

- - - - 

Gas production 
from glucose 

- - - - 

Casein 
hydrolysis 

+ + + + 

Esculin 
hydrolysis 

+ + + + 

Gelatin 
hydrolysis 

+ + + + 

Starch 
hydrolysis 

+ + + + 

Urea 
hydrolysis 

+ + (+) (+) 

Nitrate 
reduction  

+ + + + 

Ornithine 
decarboxylase 

+ + (+) (+) 

Lysine 
decarboxylase 

- - - - 

Catalase test + + + + 
Oxidase test + - - - 
Tween 20 
hydrolysis 

- - - - 

Tween 40 
hydrolysis 

- - - - 
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Figure 3.6 

Indicative pictures showing the Gram staining of the isolates  
(a) Gram negative strains (S. algae) (b) Gram positive strains (B. subtilis) 

 
 

3.3.5 16S rRNA based phylogeny   

The 16S rRNA of the isolated strains was compared with the closest relatives 

in the GeneBank and a phylogenetic tree was constructed by comparing the sequences 

of the 23 isolates with their closest relatives (Figure 3.7). The isolates were identified 

as Bacillus subtilis, Bacillus amyloliquefaciens, Vibrio alginolyticus, Shewanellae 

algae and Pseudomonas putida. Biochemical identification results were further 

confirmed by 16S rRNA gene phylogeny. The 16S rRNA gene sequence based 

homology searches shown that most of the isolates of the present study were closely 

related to each other (>99 percent similarity). However, each isolates were included in 

the study as individual isolates as they were found to be different in their inhibition 

and growth patterns. In the present survey of antagonistic bacteria associated with 

seaweeds, the representatives from two bacterial phyla, Firmicutes and Proteobacteria 

Tween 60 
hydrolysis 

- - - - 

Tween 80 
hydrolysis 

 
- 

 
- 

- - 

Acid 
Production 
from 

    

Dextrose + + + + 
Lactose + + (+) (+) 
Sucrose + + + + 
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were found. These results found harmony with earlier research findings (Ali et al. 

2012; Kennedy et al. 2009; Wiese et al. 2009). Ali et al. (2012) have shown  that 

Proteobacteria constitute the predominat of bacterial cells on the surface of J. rubens 

(about 73%), whilst Bacteroidetes made the second and firmicutes followed. Bacteria 

isolated from L. saccharina were found to be affiliated to bacterial domain, the Gram-

positive Actinobacteria and Firmicutes, the Gram-negative Proteobacteria and 

Bacteroidetes. The representatives of the Proteobacteria were most abundant, the 

majority of which were affiliated with the γ-subgroup (Wiese et al. 2009). The γ-

proteobacterial phylum has proven to be the most dominant cultivable group in a 

recent study of sponge-associated bacteria from Haliclona simulans collected from 

Irish waters (Kennedy et al. 2009). The predominant bacterial group found in the H. 

simulans total 16S rRNA gene library was the γ-Proteobacteria, which constituted 77 

percent of clones obtained during the study (Kennedy et al. 2008). The γ-

proteobacterial Shewanellae algae, however, would be less likely to be enriched by the 

selection process and are probably dominant group of cultivable bacteria from the 

seaweeds. The entire set of isolates of Firmicutes belonged to the genus Bacillus. The 

greater number of Bacillus isolates found in this study might be due to the selectivity 

of the media used in the present study, as also supported by published literature 

(Zhang et al. 2009). Within the Firmicutes, especially strains of the genus Bacillus are 

common producers of antimicrobial compounds. Approximately 800 bacterial 

metabolites with antibiotic activity have been isolated from Bacillus spp (Wiese et al. 

2009). The Bacillus clade in the present study had the representatives of the species B. 

cereus, B. subtilis and B. amyloliquefaciens. The DNA similarity searches of the 

partial 16s rRNA gene sequences of the isolated strains in the study with the Gene 

Bank databases had shown B. amyloliquefaciens and B. subtilis are clustered as one, 

and difficult to distinguish. B. amyloliquefaciens and B. subtilis were reported to 

harbor several rRNA gene clusters in which 16S rDNA sequence variation exists (Hu 

et al. 2010). However we could not differentiate them with the sequence results of the 

present study, possibly due to the fact that the regions amplified with the primers used 

in the present study did not belong to those clusters with sequence variation.  
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Figure 3.7  
Phylogenetic tree derived from nearly complete 16S rRNA gene sequences, showing 
relationships between the antagonistic bacterial isolates associated with seaweeds and 
their phylogenetic neighbors. The evolutionary history was inferred by using the 
Maximum Likelihood method based on the Kimura 2-parameter model. Evolutionary 
analyses were conducted in MEGA5. 
 

3.3.6 Identification by Fatty acid profiles 

The cellular fatty acid profiles of the strains were further confirmed the results 

obtained from the biochemical and molecular taxonomic studies that the strains were 

belonged to the Firmicutes and Gamma Proteobacteria. The results of the FAME 

analysis (Table 3.4  and 3.5) confirmed the results, and further demonstrated  that 

there were differences between Bacillus sp. A detailed analysis report were depicted in 

table 3.4 and 3.5. The vibrio and Pseudomonas isolates were not included in fatty acid 

analysis as they were not taken in to consideration for the further studies. 
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Table 3.4 

Comparison of  fatty acids present in Bacillus sp (greater than or equal to 3 % of 
the total percentage FAME area). 

 

 

 

 

 

 

 

Some minor fatty acid components are not shown in this table. Individual fatty acids 
comprising less than 1% of the FA content were ignored. . ND: Not detected in the 
GC trace. The typical bacterial fatty acids such as 3-hydroxydecanoic acid (C10:0 
3OH), undecanoate (C11:0), dodecanoate (C12:0), 3-hydroxyundecanoate (C11:0 
3OH), 2-hydroxydodecanoic acid (C12:0 2OH), 3-hydroxydodecanoic acid (C12:0 
3OH), tridecanoate (C13:0), 3-hydroxydodecanoate (C12:0 3OH), 3-hydroxy-11-
methyldodecanoic acid (C13:0 iso 3OH), 3-hydroxytridecanoic acid (C13:0 3OH), 
cis-pentadec-7-enoic acid (C15:1 ω8c), cis-pentadec-9-enoic acid (C15:1 ω6c), 
pentadecanoate (C15:0), cis-Hexadec-7-enoate (C16:1 ω9c), 3-hydroxy-13-
methyltetradecanoic acid (C15:0 iso 3OH), methylenehexadecanoate (C17:0 cyclo), 
heptadec-9-enoate (C17:1 ω8c), cis-heptadec-11- enoate (C17:1 ω6c), cis-
heptadecanoate (C17:0), cis-octadec-9-enoate (C18:1 ω9c), and cis-octadec-11-enoate 
(C18:1 ω7c) were not detected in GC trace, and were therefore, not reported in the 
table. 
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Table 3.5 

Comparison of fatty acids present in Shewanella algae isolated from the seaweeds 
(greater than or equal to 1 % of the total percentage FAME area).  

 

 

a Some minor fatty acid components are not shown in this table. Individual fatty acids comprising less 

than 1% of the FA content were ignored. 
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MTCC Accession Numbers: MTCC 10608-MTCC10609; MTCC10455-

MTCC10456; MTCC10458; MTCC10402-MTCC10407. Details are available with 

Table 3.2 

3.4  Conclusions  

Seaweeds possess much potential as valuable source for screening bioactive 

bacterial isolates with bioactive potential, which facilitates novel natural product 

discovery from marine environment. These seaweed-associated epibionts might be 

beneficial to the seaweeds by limiting or preventing the development of competing, 

pathogenic and fouling bacteria. Seaweeds are potential sources of bioactive compound 

producing bacterial isolates when compared to other marine sources such as seawater, 

sediments etc. A greater percentage of a isolates with antibacterial activity against 

pathogenic microorganisms as demonstrated (22%) in this study found good agreement 

with the literature. These candidate isolates were found to have a broad spectrum 

activity against different pathogens. The taxonomic classifications showed that a 

greater proportion of the marine isolates belonged to the Firmicutes genera belonging 

to Bacillus sp. The remaining isolates in our study were belonging to γ-Proteobacteria. 

The cultures preserved on a medium supplemented with seaweed extract were found to 

retain the bioactivity for a prolonged time period. This might due to the fact that marine 

surface associated microorganisms required conditions that resemble their native 

environment on seaweed host in order to produce greater quantities of antibacterial lead 

molecules. 
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CHAPTER 4 

CHARACTERIZATION OF ANTAGONISTIC 
POTENTIAL OF SEAWEED ASSOCIATED 

BACTERIAL ISOLATES  
 
 
4.1 Background  

Seaweeds use targeted antimicrobial chemical defense strategies and that 

secondary metabolites important in the ecological interactions between marine 

macroorganisms and microorganisms could be a promising source of novel 

bioactive compounds (Lemose et al. 1985). There are scanty information regarding 

the interaction of seaweeds with their associated microbial flora (Goeke et al. 

2010). Despite the seaweed associated microbial flora have been reported as a 

source of natural compounds very little is known about the chemical nature of such 

compounds and their role on antimicrobial activity. Polyketide synthetases (PKS) 

and non-ribosomal peptide synthetases (NRPS) are multifunctional enzymes 

catalyzing the biosynthesis of structurally diverse bioactive natural products 

(Hutchinson 2003), and therefore, been commonly employed for designing 

molecular tools to assess metabolically active bacterial groups (Ayuso-Sacido and 

Genilloud 2005; Zhang et al. 2009; Kennedy et al. 2009). Despite being very 

important marker gene systems, little is known about the presence of nrps and pks-

I in the diverse seaweed-associated microbiota.  

4.2  Materials and Methods 

4.2.1 Release of antibiotic substances to the culture medium 

Nutrient broth was prepared and inoculated with 5% inoculum of producer 

strains and kept on an orbital shaker for 7 days. The fermentation broth was 

collected by centrifugation (10,000 rpm for 15 min). The process was repeated for 

every 24 hours and the cells were washed three times with TS buffer (Tris 50 mM, 
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 NaC1 0.1 M, pH 8) on a vortex mixer. The in vitro antibacterial activity of the 

medium, cell-free wash supernatants and pellets was measured against Vibrio 

parahaemolyticus ATCC 17802 by the disc-diffusion method (for supernatant) and 

spot over lawn assay (for pellet) (Boyd et al. 1998, Lemose et al. 1985) on Muller 

Hinton Agar. 

4.2.2 Antagonism assays among the isolated marine bacteria and their auto  

           inhibition 

To determine the possible role of antibacterial substances produced by the 

epiphytic bacteria in the amensalist competition, assays were conducted with the 

producer strains to test the mutual antagonism, and also against other epiphytic 

bacteria. The antagonism between the isolated bacterial strains was studied on a 

solid media. Marine bacteria were grown in broth for a period of 8 hours, and a 

swab of organism has been employed as test cultures. Marine bacterial cells were 

scraped off from a pre-inoculated plate, and kept over the plates with test 

organisms. The plates were incubated overnight to analyze inhibitory zone. The 

antagonistic effect was indicated by an inhibition zone in the confluence area 

(Lemose et al. 1985). 

4.2.3  Plasmid profiling 

The plasmid of the strain was extracted by alkaline method, and identified 

by agarose gel electrophoresis. Briefly, the cells were grown overnight in Luria 

Bertane broth containing sodium chloride (LBS, NaCl, 2% w/v), and incubated at 

37oC in a shaker incubator (120 rpm) for 16-18 h. The culture (1.5 mL) was used 

for plasmid preparation following the method of alkaline lysis (Sambrook et al. 

1989). The nucleic acid was re-dissolved in Tris-EDTA buffer (50µL,10 mM Tris-

HCl, 1mM Na2EDTA, pH 8.0) containing DNAase free RNAase (20mg/mL), 

vortexed briefly and stored at -20°C. Electrophoresis was performed using 0.8% 

agarose gel system in Tris borate buffer. Gels were stained with ethidium bromide 

(0.5µg/mL). The resolved bands were visualized on a UV transilluminator at a 

wavelength of 360 nm, and photographed using an UV gel documentation system 

(Biorad, USA) (Devi et al. 2009). 
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 4.2.4 Plasmid curing 

Plasmid curing was carried out to determine whether the antibacterial 

substance was plasmid-encoded. For curing experiment, a chemical agent sodium 

dodecyl sulphate (SDS) was used. Each bacterial isolate was inoculated into the 

LBS broth and incubated at 37°C under shaking in an incubator at 150rpm. 

Thereafter, 50µL (10%) of the cultured strain was added in to 5mL of fresh LB 

medium containing 0.005% SDS with three consecutive transfers every 24h. Every 

day a portion of each culture was withdrawn and checked for the presence of 

plasmid in the agarose gel (0.8% w/v) electrophoresis. The antimicrobial activity 

of the colonies identified after plasmid curing by the method used to identify 

antagonistic bacteria, i.e., spot over lawn assay against test pathogens (Devi et al. 

2009; Hu et al. 2010). 

4.2.5 Identification and analysis of PKS and NRPS gene fragments 

The highly conserved sequences of β-ketoacyl synthase (KS) domains are 

shared among all PKSs, and therefore, the KS domains are useful in the screening 

for PKS genes in bacteria. Similarly, the most conserved adenylation (A) domain 

can be used for PCR primer design to survey NRPSs gene diversity. Different sets 

of degenerate primers targeting genes encoding pks-I and nrps were used to screen 

the biosynthetic potential of the bacterial isolates to elicit bioactive polyketide 

compounds characterized by the repetitive occurrence of ketide (-CH2-CO-) 

moieties and non-ribosomal peptides. The primers have been listed under Table 1. 

PCR was performed in a total volume of 25 µL containing 1X reaction buffer with 

MgCl2 (Sigma), 0.25 mM of each dNTP (Fermentas), 0.5 mM of each primers 

(Sigma), 1 ng DNA and 0.3 U Taq DNA polymerase (Sigma). The PCR process 

was set as initial denaturation 5 min at 94°C followed by 35 cycles of 1 min at 

95°C, 1 min at 45°C, 1 min at 72°C, and a final extension of 5 min at 72°C. All of 

the amplification products were examined by 1.5% agarose gel electrophoresis, 

and bands of 700 to 800 bp and 1000 to 1,400 bp were classified as products of 

pks-I and nrps genes, respectively. Polymerase chain reaction amplicons were 

separated by agarose gel electrophoresis and the bands of expected size were gel-
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 purified using electrophoresis and bands of 700-800 bp (pks-I) and 1000-1400 bp 

(nrps) were gel-purified using Gel EluteTM Gel Extraction Kit (Sigma) and cloned 

into the pGET-Blunt M13 vector (Fermentas) following the manufacturer’s 

instructions and transformed into chemocompetent E. coli cells. The positive 

recombinants were screened by ampicillin resistant recombinant selection method 

assisted with colony PCR with M13 specific primers. The positive clones were 

used for plasmid isolation using GenJETTM Plasmid isolation kit (fermentas) and 

sequenced using M13 F and m13 R primers.  

4.2.6 Sequence analysis 

Forward and reverse sequences of the PKS gene amplified product were 

assembled using Dna Baser v2.exe and the vector sequences were removed using 

Vescreen (NCBI). The sequence data were subjected to GeneBank searches with 

blastx algorithm. Nucleotide sequences were translated in to peptide sequences 

EMBOSS Transeq (EMBL-EBI) and blastp searches of deduced amino acid 

sequences were also performed. Multiple alignments of amino acid sequences with 

reference sequences of the GeneBank was carried out with CLUSTALW software 

of Bioedit program and then the aligned dataset was used as input for phylogenetic 

analysis program (Zhu et al. 2009). The evolutionary history was inferred by using 

the Maximum Likelihood method based on the Whelan And Goldman model 

(Whelan and Goldman, 2001) and  the bootstrap analysis with 1000 replications in 

MEGA5 (Tamura et al. 2011). Multiple alignment of active sites of type I KS 

domains with reference sequences were also performed to verify the conserved 

sequence motifs. 

4.3 Results and Discussion 

4.3.1 Release of antibiotic substances to the culture medium 

Assays were conducted to determine the degree of excretion of the 

antibiotic substances. This assay showed that the bacteria released compounds into 

the bacterial supernatant that had antimicrobial activity. For the cultures analyzed 

in our study we could found that the active compounds were released in the 
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 medium. But the pellets were still active after several wash. The inhibitory zones 

exhibited by the supernatant were not as prominent as pellet. This justified the 

earlier finding that the antibiotic activity remained associated with cells in algal 

epiphytes. This is in agreement with the report of Lemose et al. (1985). In the 

present study, the amount of antibacterial substances released in the medium was 

found to be low. For the Bacillus sp inhibition zones were evident in 24 hours, 

whereas Shewanellae exhibited zone on the third day of inoculation. However, 

both cases the inhibition zone clearance exhibited by the centrifuged supernatant 

was lesser than that observed on the agar plates, i.e the solid media. This 

demonstrated that the bacteria are likely to release bioactive compounds into the 

surrounding slowly. In general, the antibiotic substances produced by the epiphytic 

bacteria used in the study remained strongly bound to the cells. Particularly 

Shewanellae sp showed very less activity in the spent broth, whereas cells were 

active on solid agar. The specific role of the cell wall in the secretion processes is 

still unknown, although there are evidences indicating the limited release of 

exocellular proteins by Gram-negative bacteria. In this process the protein remain 

bound to the cell in the periplasmic space after excretion. A rapid release of 

antibiotic substances by producer epiphytic bacteria probably would not provide 

them with any competitive advantage because inhibitors would be immediately 

washed away by seawater. However, if antibiotics remained linked to cells, they 

could be excreted slowly and continually to the environment, preventing 

colonization by competitors of the adjacent space on the seaweed surface. The 

cultures showed a greater activity when they are grown as surface culture, and the 

activity were found to be lower in shake flasks. The present study supported the 

earlier finding that bacteria grown on surfaces released bioactive compounds that 

had greater activity against target strains compared with those from the same strain 

grown in shake flask cultures (Amstrong et al. 2001). This increase in production 

might be due to the expression of different genes in a similar manner to those 

known to be involved in extracellular polysaccharide production once bacteria 

have settled on a surface (Amstrong et al. 2001). 
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Figure 4.1 
Indicative pictures showing the release of antibacterial compound (A) Disc diffusion 
assay of the broth and (B) Spot over lawn assay of the culture pellet against 
V.parahaemolyticus MTCC 451 

4.3.2 Antagonism assays among the isolated marine bacteria and their  

           autoinhibition 

The absence of inhibitory activity of producer strains against other 

epiphytic producers indicated that the production of inhibitors could be of great 

importance in microhabitats such as an algal surface, where competition for an 

attachment site is surely a frequent event. In general, a few producer strain 

inhibited the growth of the other producers, while the activity among majority of 

the strains were non inhibitory. Only one strain SWI 1 was inhibited by all the 

producers tested. Interestingly, this particular strain showed a clear autoinhibitory 

activity. On the other hand, a greater number of antagonistic relationships between 

producer strains isolated from the seaweeds was not observed which contradicts 

the Lemose’s (1985) observation. Most of the cells under the study were not 

inhibitory to each other except SWI1.A detailed autoinhibition and mutual 

inhibition pattern is shown in Table 4.1. These results suggested that these 

beneficial populations coexists in the seaweed biofilm, and may be protecting 

seaweeds from deleterious population or other colonizers. 
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Figure 4.2 

Indicative pictures for autoinhibition and mutual inhibition of seaweed 
associated isolates (A) SWI 1MTCC10404 (B) SWI 4b MTCC 10456 

 
Table 4.1 

Autoinhibition and mutual inhibition pattern (expressed in mm) 
 of antagonistic isolates associated with seaweed 

 SWI1 SWI2 SWI3 SWI4A SWI4B SWI5 SWI6 SWI7 SWI8 

SWI1 NI 10.3±1.5 10.3±1.53 12.7±0.58 0 9±1 9.33±1.15 10±1 NI 

SWI2 3.0±2.0 NI NI NI NI NI NI NI NI 
SWI3 3.7±1.5 NI NI NI NI NI NI NI NI 

SWI4A 2.3±0.6 NI NI NI NI NI NI NI NI 
SWI4B NI NI NI NI NI NI NI NI NI 
SWI5 1.7±0.6 NI NI NI NI NI NI NI NI 

SWI6 2.7±0.6 NI NI NI NI NI NI NI NI 
SWI7 2±0 NI NI NI NI NI NI NI 3.33±0.58 
SWI8 0.7±0.6 2.67±0.51 10.7±1.15 9.67±0.58 11.3±1.15 10.3±0.58 10.7±1.15 2.7±0.6 NI 

SWI9 NI NI NI NI NI NI NI NI NI 
SWI10 NI NI NI NI NI NI NI NI NI 
SWI11 NI NI NI NI NI NI NI NI NI 
SWI12 NI NI NI NI NI NI NI NI NI 

SWI12B NI NI NI NI NI NI NI 9.3±1.2 NI 

SWI13 1±1.7 NI 9.33±0.58 11.3±1.15 14± 1 11±1 NI 2±0 NI 
SWI14 0.7±1.2 2.33±0.19 1.33±0.58 1.67±0.58 NI NI NI 9.7±0.6 NI 

SWI16A 0.7±1.2 9.33±0.19 11.7±1.53 11±1 13±1 11.7±0.58 9±1 12±0.6 2.67±0.58 
SWI16B NI NI NI NI NI NI NI NI NI 
SWI17 NI NI NI NI NI NI NI 9.7±0.6 NI 

SWI18 10±1.5 12±1 14.3±0.58 12±1 11.7±1.53 17.7±0.58 15±1 11±1.2 NI 
SWI19 NI NI NI NI NI NI NI NI NI 
SWI20 NI NI 1.67±0.58 2.33±0.58 1.33±0.58 NI NI NI NI 

SWI21 NI NI NI NI NI NI NI NI NI 

A                B 
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4.3.3 Plasmid profiling, curing and antibacterial activity 

The Shewanellae sp demonstrated to possess a plasmid longer than 10kb 

whilst Bacillus sp SWI1 (~>10kb) shown the presence of a single plasmid.The 

bacterial strain SWI8 showed a plasmid above 10kb and two plasmids of ˂10kb. 

No bands appeared after plasmid curing. The cultures retained their antagonistic 

activity even after plasmid curing, suggesting that the antagonistic activity of the 

bacterial isolates used in the present study was not encoded by plasmid, and the 

genes encoding the antagonistic product might be present with in the genome. The 

antibiotic whose biosynthesis was determined by the SCPI plasmid of 

Streptomyces coelicolor ~3(2) had been characterized as methylenomycin A (2-

methylene-cyclopentan—3o-ne-4,5-epoxy-4,5-dimethyl-rcarboxylic acid) (Wright 

1975). Plasmid linkage of bacteriocin activity was reported (Schillinger, 1989). In 

contrast, chromosomally encoded a class II bacteriocin LCI protein of Bacillus 

amyloliquefaciens Bg-C31 was also reported (Hu et al. 2010).  
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Figure 4.3 

Plasmid profiles of the antagonistic isolates before and after curing. (A) Gram 
negative plasmid profile 4th lane (down) V. alginolyticus,M(Molecular marker) (B) 
Plasmid profiles of Bacillus strain Lane 1 (SWI1), 12th Lane (SWI8),M(Molecular 
marker) (C) Plasmid profiles of the strains after curing, M(Molecular 
marker).Molecular marker used is Gene RulerTM1kb DNA Ladder (Thermo 
scientific,250bp-10,000bp). 

 

4.3.4 Identification and analysis of PKS and NRPS gene fragments 

The PKS specific primers were successful in obtaining the PCR amplicons 

that showed any significant homology to the sequences deposited in Gene bank. 

No correct products were detected when the NRPS primers were used for PCR. 

The negative results from the initial NRPS and PKS PCRs were also confirmed 

through subsequent annealing-temperature gradient NRPS and PKS PCRs. The 

primers used in the study are shown in the Table 1. Among the 23 candidate 

antagonistic isolates 8 were found to be PKS positive with an amplicon of PKS 

gene (~0.7kb). All the positives were found to be the genus Bacillus. The PKS 

primers couldn’t amplify the Shewanella isolates. To verify the amplified product, 

the sequenced results obtained through cloning were subjected to blastx analysis in 

GeneBank. Further the DNA sequences were translated and the deduced amino 

acid sequences were also analyzed through blastp program of NCBI. From the 
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 blast analysis report it has found that 4 of the pks-I positive isolates were having 

sequence similarity with Bacillus subtilis (99%)  PKS and remaining 4 sequences 

were similar to the gene sequences reported from Bacillus amyloliquefaciens 

(99%). All of the 8 bacterial isolates with an amplified pks-I gene product 

exhibited antibacterial activities against multiple aquaculture pathogens reporting 

broad spectrum antagonistic potential (Table 2). PCR detection of type I polyketide 

synthase genes in myxobacteria has shown that most of the sequences detected in 

Sorangium cellulosum EW-4 were similar to those in S. cellulosum YA-2. Often, 

but not always, PKS in one strain of Cystobacterineae was similar to that in 

another strain of Cystobacterineae; however, most other sequences were 

nonredundant, indicating that different strains have different PKS genes. (Komaki 

et al. 2008). We chose to limit our analysis to PKSs and NRPSs, since these two 

classes participate in the synthesis of many diverse secondary metabolites. In 

addition, they usually encode easily recognizable large multimodular polypeptides 

that often comprise a large fraction of gene clusters (Donadio et al. 2007). 

Polyketides and nonribosomal peptides have been immensely concerned 

over the past few decades, and numbers of various novel polyketide and non-

ribosomal peptide compounds have been found from marine-derived microbes, 

most of which showed different biological activities and ecological functions 

(Zhou et al. 2011). Polyketides, nonribosomal peptides, and PKS/NRPS hybrid 

compounds are important classes of natural products and include many important 

drugs. Phycochemical studies showed the ability of seaweeds to produce and store 

polyketide as polycyclic ether macrolides and open chain polyketides. Although 

macrolides produced by terrestrial microorganisms have been used for long in 

human therapeutics, microlides from marine algae is a recent citation (Cardozo et 

al. 2007). Compounds of polyketide origin, with bioactivity have been isolated 

from seaweed and have reported to have structural similarity to the known 

compounds of terrestrial cyanobacteria. It is apparent that seaweeds use targeted 

antimicrobial chemical defense strategies and that secondary metabolites important 

in the ecological interactions between marine macroorganisms and microorganisms 

could be a promising source of novel bioactive compounds, but this hypothesis has 

rarely been tested (Kubanek et al. 2003). In support, it was found that the deduced 



 

 
92 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 
 

Chapter  4 - Characterization of antagonistic potential of  
seaweed associated bacterial isolates  

 
  

 amino acid sequence of type III PKS (SbPKS) from a brown seaweed, Sargassum 

binderi, sharing a higher sequence similarity with bacterial PKSs (38% identity) 

than plant PKSs (Baharum et al. 2011). This further strengthened the hypothesis of 

ecological interactions between the seaweed host and their associated bacterial 

flora. 

 In the present report 23 antagonistic isolates with broad spectrum activities 

against aquaculture pathogens were further screened for the secondary metabolite 

genes. Among these only 8 were able to amplify the desired genes. The possible 

absence of the screened amplicons might be because the primers used were not 

suitable for the strains (Schirmer et al. 2005) or the coding genes for the 

antimicrobial products of the screened strains might be different from that of pks or 

nrps genes. Our results validated the statement that there are examples of strains 

possessing the functional genes with no inhibitory activity and vice versa (Zhao et 

al. 2011). Further the existence of cultured isolates with potential to synthesize 

bioactive compound and without a metabolite gene amplified product showed that 

culturing remains a powerful resource for exploring bioactive metabolites of 

bacterial origin (Penesyan et al. 2009). Even though the cultivation based studies 

possess some limitations, it remains essential as it provides opportunities to study 

and understand microbial ecology, physiology, and to design antibiotic screening 

assays (Ali et al. 2012). Further the absence of screened metabolite gene products 

in the tested active strain indicated the possibility of other biosynthetic genes in 

those strains. It is therefore that the biosynthetic gene guided screening of bioactive 

bacterial population needs to consider the conserved gene sequences of other 

biosynthetic pathways (Zhu et al. 2009).  

On the basis of the architecture and mode of action of the enzymatic 

assembly lines, PKSs are classified into type I, type II and type III. Type I PKSs 

refers to linearly arranged and covalently fused catalytic domains within large 

multifunctional enzymes, whereas the term type II indicates a dissociable complex 

of discrete and usually monofunctional enzymes. Furthermore, a third group of 

multifunctional enzymes of the chalcone synthase type is denoted as type III PKSs 

(Hertweck 2009). A phylogeny based on the KS domain sequences from other well 
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 described organisms can be employed to determine the structural similarity of the 

obtained KS domain sequences (Zhu et al. 2009). The phylogeny of the sequence 

KS domains characterized the deuced amino acid sequences as of type I bacterial 

PKSs (Figure 3). The deduced amino acid sequences obtained in the study were 

aligned with the relative sequences of the GeneBank (Figure 3). The phylogenetic 

study showed that amplified gene products of the present study were of bacterial 

type I PKSs. Earlier studies in sponge associated bacteria too found that the 

bacterial strains to harbor type I bacterial PKSs (Zhu et al. 2009; Zhang et al. 

2009). The KS domain sequence based phylogeny further clustered four sequences 

under the present study with B. subtilis, and the remaining four with B. 

amyloliquefaciens. Hence the KS domain sequences enabled us to clearly 

differentiate B. subtilis from the B. amyloliquefaciens strains, which could be done 

through 16S rRNA gene based phylogenetic approach.  B. cereus strain isolated in 

the present study was unable to amplify the metabolite gene product. Multiple 

sequence alignment of the sequenced data with the known sequences from the 

GeneBank further enabled to identify the conserved sequence motif TACSSSLVA. 

KS domain conserved residues from the sponge, Hymeniacidon perleve associated 

bacteria has been reported as VDTACSSSLVA (Zhu et al. 2009). In our study this 

sequence motif amino acids have shown some variations at certain specific sites. In 

B. subtilis the acidic amino acid, aspartate, located at the third position from the 

cysteine active site in the N terminal is replaced by glutamate. Likewise in B. 

amyloliquefaciens the amino acid, valine, was located at the fourth position from 

the cysteine active site in the N terminal is replaced by isoleucin. However, due to 

the structural similarities of acidic amino acids aspartate (2-aminosuccinic acid) 

with glutamate (2-aminopentanedioic acid) and isoleucine (2-amino-3-

methylpentanoic acid) with valine (2-amino-3-methylbutanoic acid), it is apparent 

that the KS domains of the bioactive Bacillus strains in the present study shared a 

common catalytic mode of action. Due to their versatile assemblage mechanism, 

polyketides exhibited remarkable diversity both in terms of structure and biological 

activities. To date, only a small fraction of the antimicrobial molecules potentially 

produced by Gram-positive bacteria has been characterized for their structures. The 



 

 
94 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 
 

Chapter  4 - Characterization of antagonistic potential of  
seaweed associated bacterial isolates  

 
  

 recent advances in genome sequencing highlighted the genus Bacillus as a 

potentially important source to produce antibiotic-like compounds (Fickers 2010). 

 
 

Figure 4.4 
Molecular phylogeny analysis of ketosynthase regions with respect to 
diverse range of ketosynthase domains including. Type I, II and III. The 
evolutionary history was inferred by using the Maximum Likelihood 
method based on the Whelan and Goldman model. A discrete gamma 
distribution was used to model evolutionary rate differences among sites. 
The tree with the highest log likelihood is shown. The sequences in the 
experiment are preceded by circles 
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Figure 4.5 
Amino acid sequence alignments of active sites of Type I KS domains. The 
characteristic conserved motifs of Type I KS domains were predicted from the 
multiple alignments of active sites. The cysteine active site and the conserved 
amino acid sequence motif are marked by asterisk and frame, respectively. The 
sequences in this study are from seaweed associated bacteria and are SWI02, 
SWI19, SWI03, SWI16B, SWI05, SWI07, SWI4B and SWI06. Other reference 
sequences aligned sequences in the GeneBank were derived from pks (B. subtilis, 
ABR19774.1), NidKS2 (Streptomyces aelestis, AF016585), EryA (Saccharopolyspora 
erythraea, CAA44448), PimS0 (Streptomyces natalensis, AJ278573), EpoA 
(Sorangium cellulosum AF217189), McyD (Microcystis aeroginosa, AF183408.1), 
NJ6-3-2 (Pseudoalteromonas sp, DQ666948), and BaeN (B. amyloliquefaciens 
154686134) 

 

4.4 Conclusions 

The results demonstrated that antimicrobial activity cannot be solely 

assessed by metagenomic studies as some strains may escape the amplification of 

the desired genes. In that case antimicrobial potential may only be assessed by 

screening of the inhibition potential with the desired indicator organisms. Further 

metabolite gene based screening of bioactive organisms that exploit the gene 

clusters of biosynthetic pathways other than pkss and nrpss is recommended. It can 

be concluded that the polyketides are the widespread metabolites of seaweed-

associated bacterial population particularly belonging to Bacillus species. The 

present work may have an impact on the exploitation of seaweed associated 

bacterial poyketides for pharmaceutical and biotechnological applications. 
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CHAPTER 5 

BIOPROSPECTING OF ANTIBACTERIAL 
METABOLITES IN SEAWEED ASSOCIATED 

BACTERIAL FLORA 

5.1 Background of the study 

Novel secondary metabolites from marine epibiotic bacteria are attracting 

attention because of the growing demand for new compounds of natural origin, 

having potential applications in pharmaceutical or industrial fields 

(Kanagasabavathy et al. 2006). Marine algae and bacteria are an inexhaustible 

source of chemical compounds that produce a wide variety of biologically active 

secondary metabolites (Gomez et al. 2010). The recovery of strains with 

antimicrobial activity suggests that seaweed represent an ecological niche which 

harbors a specific microbial diversity worthy of further secondary metabolites 

investigation. Despite the seaweed associated microbial flora have been reported as 

a source of natural compounds with inhibitory activity very little is known about 

the chemical nature of such compounds. Seaweed–bacterial associations are 

appealing from evolutionary, ecological, and applied perspectives and there is a 

strong need to integrate aspects of ecology, cell biology, and in order to understand 

the production and the distribution of the bioactive molecules in situ as well as 

their ecological impact on the macroalgal–bacterial interactions (Hollants et al. 

2012; Goecke et al. 2010). Hence the current chapter is directed towards  chemical 

nature and the mode of action of the extracellular antibacterial compounds 

produced by seaweed-associated bacterial isolates with antibacterial activity 

through bioassay guided purification . 
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5.2  General materials and methods 

5.2.1  Microbial strains used in the study 

Pathogenic microbes used for the study have been described under the 

section 3.2.4. of chapter 3 The seaweed associated bacterial isolates were isolated 

(chapter 3 section 3.2.2) and assayed for their ability to inhibit selected pathogenic 

microbes (chapter3 section 3.2.5). The isolates for metabolite purification with 

antibacterial activity used in the study were selected based on their inhibition 

spectrum (Chapter 3, Table 3.2) and the positive hit for metabolite gene (Chapter 

4. 2.5 and 4.3.4). 

The selected strains are 

1) B. subtilis MTCC 10403 associated with Anthophycus longifolium(SWI2) 

2) B. subtilis MTCC 10407 associated with Sargassum myriocystum(SWI 19) 

3) B. amyloliquefacens MTCC 10456 associated with Laurentia 

papillosa(SWI4B) 

4) B. amyloliquefacens MTCC 10456B associated with Padina gymnospora 

(SWI 7)  

#B (Biochemically identical to MTCC 10456) 

5.2.2 Antibiotic resistance and abiotic stress tolerance  

The candidate strains were assayed for their antibiotic resistance patterns 

by using the commercially available antibiotic discs (Himedia, India) following the 

disc diffusion method (Bauer et al. 1966). The selected isolates were screened for 

their ability to survive under differing environmental conditions like temperature, 

pH and salinity on Nutrient agar plates. 

5.2.3 Optimization of growth conditions for optimized compound production 

Production of antibacterial substance(s) by bacterium was evaluated in 

nutrient broth. The effect of temperature and initial pH on growth and antibacterial 



 

 

 
98 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 

 

 

Chapter 5 - Bioprospecting of antibacterial metabolites  
in seaweed associated bacterial flora 

 

 

production were monitored by using a modifying method of Hassegawa et al. 

(2005). The optimum time for maximized production was also noted. 

5.2.3.1 Optimization of time 

The microorganism under the study was inoculated in nutrient broth and 

incubated at 30°C for 5 days. Every 24 hours, 5 mL broth was withdrawn, 

centrifuged (10000 rpm for 5 min). The culture free supernatant was assayed for 

antibacterial activity by disc diffusion over Muller Hinton Agar plates. The plates 

were incubated overnight at 30°C and the inhibitory activity was recorded. 

5.2.3.2 Optimization of temperature  

The microorganism under the study was inoculated in nutrient broth and 

allowed to grow for 4 days at different temperatures (4°C, 10°C, 20°C, 30°C, 

37°C, 50°C, and 60°C). After the fifth day the broth was withdrawn and 

centrifuged (10000 rpm for 5 min). The supernatant was assayed for activity to 

inhibit selected pathogenic microorganisms using disc diffusion method over 

Muller Hinton Agar plates. The plates were incubated overnight at 30°C, and the 

inhibitory activity was recorded. 

5.2.3.3 Optimization of pH 

Nutrient broth was prepared at varying pH (5, 7, 8, 9, 10, 11 and 12). The 

microorganisms under the study was inoculated in nutrient broth and allowed to 

grow for 4 days at different pH. The broth was harvested after the fifth day and 

clarified by centrifugation. The supernatant was assayed for activity to inhibit 

selected pathogenic microorganisms using disc diffusion method over Muller 

Hinton Agar plates. The plates were incubated overnight at 30°C and the inhibitory 

activity was recorded. 

5.2.4 Chemicals and reagents  

All chemicals were of analytical, spectroscopic or chromatographic reagent 

grade, and were obtained from E-Merck (Darmstadt, Germany). All reagents and 

chemical solvents used for products isolation were of analytical grade or higher.  
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5.2.5 Preparation of crude extracts from cultures 

The preparation and recovery of secondary metabolites were carried out by 

a surface culturing method over solid nutrient agar plates. Briefly 4 liters of 

Nutrient agar media was prepared and plated to furnish 200 Nutrient agar plates. 

The plates were allowed to solidify and were inoculated with the microbial culture 

in a zigzag manner by utilizing the entire plate surface. The cultures were 

incubated for 5 days to allow the maximum secretion of secondary metabolites. 

The microbial cultures were then scraped off aseptically and the spent agar was 

collected in a sterile beaker. The adsorbed products were subsequently extracted 

with solvent by homogenization (Arrow Engineering CO; INC, Pennsylvania Ave, 

U.S.A) followed by refluxing. The extract filtered through the filter paper 

(Whatman No.1) assisted with a drying agent (sodium sulphate), and the pooled 

filtrate was concentrated (50°C) in a rotary vaccum evaporator (Heidolf, 

Germany). Evaporation of the solvent under reduced pressure yielded the crude 

extract from the total culture volume of 4 liters. 

5.2.6 Determination of antibacterial activities by agar diffusion method 

Sterile disks (HiMedia, India) containing 10 µl of crude extract or 10 µl of 

purified compound in solvent (the solvent traces were removed by drying in 

nitrogen and the final compound concentration on the disk was 100 µg) were 

placed on fresh plates of Mueller-Hinton agar (Difco) seeded with suspensions (105 

CFU/ml) of overnight cultures of the test microorganisms. The diameters of the 

zones of inhibition of growth around the disks were measured after incubation 

periods of 18 h at 37°C. Antibiotic disc for gram negatives namely Octodiscs® G-I 

minus (OD005) (HiMedia, India) was used to compare the results. The antibiotics 

used were ampicillin (A, 10 µg/disk), ciprofloxacin (Cf, 10 µg/disk), colistin (Cl, 

10 µg/disk), co-trimoxazole (Co, 25 µg/disk), gentamicin (G, 10 µg/disk), 

nitrofurantoin (Nf, 300 µg/disk), streptomycin (S, 10 µg/disk), and tetracycline (T, 

30 µg/disk). 
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5.2.7    Analysis 

5.2.7.1    Chromatographic analyses 

5.2.7.1A   Preparative thin layer chromatography (prep-TLC) 

Prep-TLC was performed on pre-coated TLC plates with silica gel 60 F254 

(layer thickness 0.2 mm; 20 x 20 cm; Merck KGaA, Darmstadt, Germany) using 

different solvent systems as needed. The band separation on TLC was detected under 

UV lamp at 254 and 366 nm. 

5.2.7.1B    Flash column chromatography (FCC) 

Flash column chromatography was performed on Biotage SP, SP1-B1A, and 

Biotage AB, Sweden using pre-packed flash chromatography cartridges (Biotage 

No. 25 + M 0489-1). The flash catridges were packed with Biotage® HP-Sphere™ 

spherical silica; these cartridges have the highest loading capacity, lowest 

backpressure and can withstand greater flow rates. The solvent systems were 

decided based on the TLC data. Samples were dissolved in a small volume of the 

same solvent used and the resulting mixture was packed onto the column using a 

special syringe. The cartridges were dried by purging nitrogen and assembled to 

the instrument. the collection wavelength was set prior to loading by scanning the 

compound in a UV spectrophotometer. Using step gradient elution with non-polar 

solvent (here, n-hexane or DCM) and increasing amounts of polar solvents (e.g. 

EtOAc or MeOH) successive fractions were collected. The samples are collected in 

12mL test tubes and pooled based on the chromatogram pattern. 

5.2.7.1C   Vacuum column chromatography (CC) 

Normally, the columns were dry silica gel GF254 pre-packed, of 18 cm 

height and inner diameter of 12 cm, vertically clamped. The column was filled and 

saturated with the desired non-polar solvent in the mobile phase (eg: n-hexane) 

prior to sample loading. the samples were dissolved in a small volume of the same 

solvent used and the resulting mixture was then packed onto the top of the column 

using special syringe. Using step gradient elution with non-polar solvent (here, n-

hexane or DCM) and increasing amounts of polar solvents (e.g. EtOAc or MeOH) 
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successive fractions were collected. The mobile phase (gradient elution) was 

pumped through the column with the help of peristaltic pump resulting in sample 

separation.  

5.2.7.1D   High Performance Liquid Chromatography (HPLC) 

HPLC was used for the evaluation of the efficiency of separation, and to 

understand the product purity. HPLC was performed on Prominence UFLC 

(Shimadzu, Japan) equipped with a SPD-M20A High Performance Liquid 

Chromatography PDA  

5.2.7.2       Spectroscopic analyses 

5.2.7.2A    Fourier Transform Infra Red spectrometry (FTIR)and UV-visible  

                 spectroscopy  

Fourier Transform Infra Red spectrometer (FTIR) spectra of the 

compounds under KBr pellets were recorded in a Thermo Nicolet, Avatar 370. The 

scanning was conducted in to mid IR range, i.e., between 4000-400cm-1. UV 

spectra were obtained on a Varian Cary 50 UV-VIS spectrophotometer (Varian 

Cary, USA).  

5.2.7.2B  Mass spectrometry (MS) and elemental analysis 

The Gas Chromatography-Mass Spectrometry (GC-MS) analyses were 

performed in electronic impact (EI) ionization mode in a Varian GC (CP-3800) 

interfaced with a Varian 1200L single quadruple Mass Spectrometer. ESI-MS 

spectra were acquired in the positive and negative modes with a turboionspray 

voltage, curtain gas, turbo temperature, and nebulizer gas of -4500 V, 30 psi, 500 

°C, and 50 psi (positive mode) at a flow rate of 1.5 ml/min. Elemental analysis of 

the compounds was carried out using a Euro Vector elemental analyzer (model no. 

EA3011). Liquid chromatography–mass spectrometry experiments were performed 

on an Applied Biosystems QTrap 2000 (Applied Biosystems, Darmstadt, 

Germany) coupled to an Agilent 1100 HPLC system (Agilent, Waldbronn, 

Germany) using a Luna 5 μ C18 column (100 A, 100 × 4.6 mm, Phenomenex, 
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Aschaffenburg, Germany) or a Luna 3 μ C18 column (100 A, 50 × 1.0 mm, 

Phenomenex, Aschaffenburg, Germany) and a gradient of solvents A (0.1% 

HCOOH) and B (CH3CN + 0.1% HCOOH; gradient 0% B to 100% B in 10 min) 

with a flow rate of 1.5 ml/min or 60 μl/min, respectively. ESI-MS spectra were 

acquired in the positive and negative modes with a turboion spray voltage, curtain 

gas, turbo temperature, and nebulizer gas of -4500 V, 30 psi, 500 °C, and 50 psi 

(positive mode, flow rate at 1.5 ml/min. The exact molecular ion weights of the 

pure compounds have been acquired by direct injection in a high resolution mass 

spectrometer, and were compared with the MarinLit database (Royal Society of 

Chemistry, London, Burlington House, London W1J 0BA) dedicated to marine 

natural products. 

5.2.7.2C  Nuclear Magnetic Resonance Spectroscopy (NMR) 

The 1H and 13C-NMR spectra were recorded on a Bruker AVANCE III 500 

MHz (AV 500) DRX 500 NMR spectrometer (Bruker, Karlsruhe, Germany) in CDCl3 

as aprotic solvent at ambient temperature with TMS as the internal standard (δ 0 ppm) 

equipped with 5 mm probes. The number of attached protons for the 13C-NMR signals 

was determined from DEPT experiments. Standard pulse sequences were used for 

Distortionless Enhancement by Polarization Transfer (DEPT), 1H–1H Correlation 

spectroscopy (1H–1H COSY for determining basic connectivity via J couplings 

through-bond), Nuclear Overhauser Effect Spectroscopy (NOESY for see through-

space and conformation and for determining proximity of adjacent spin systems), 

Heteronuclear Single Quantum Correlation (HSQC for determining the narrower 

resonances for 1H - 13C correlations), and Heteronuclear Multiple Bond Correlation 

(HMBC to correlate X-nucleus shifts that are typically 2-4 bonds away from a proton) 

experiments. 

5.3    Isolation and purification of secondary metabolites 

Description of isolation and purification of the secondary metabolites from 

seaweed associated bacterial isolates were divided into three different sections 

under chapter 5 based on the culture strains used as starting material.. 
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CHAPTER 5A 

BIOPROSPECTING OF Bacillus subtilis MTCC 10403 
ASSOCIATED WITH Anthophycus longifolium (SWI 2) 

FOR ANTIBACTERIAL METABOLITES 

5A.1 Materials and Methods  

5A.1.1 Microbial strain used under the study 

The microbial strain used for bioprospecting of antimicrobial compounds in 

the present study is MTCC 10403 associated with the brown seaweed Anthophycus 

longifolium. The seaweed associated bacterial isolates were isolated (chapter 3, 

section 3.2.2) and assayed for their ability to inhibit selected pathogenic 

microorganisms (chapter 3, section 3.2.5). The isolates for metabolite purification 

with antibacterial activity used in the study were selected based on their inhibition 

spectrum (chapter 3, Table 3.2; Figure 5A.1), and the positive hit for metabolite 

gene (chapter 4.2.5 and 4.3.4). 

 
Figure 5A.1 

Antagonistic spectrum of seaweed isolates SWI2: (A) Seaweed sample used for 
isolation of bacteria; (B) Well diffusion of culture SWI2 supernatant against V. 
vulnificus 1145; Spot over lawn assay of culture SWI2 against (C) V. vulnificus 1145; 
(D) V. parahaemolyticus 17802 (E) V. parahaemolyticus 451, and (F) A. hydrophilla 
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5A.1.2 Antibiotic resistance, abiotic stress tolerance  

Antibiotic resistance and abiotic stress tolerance and enzyme production 

profile of the strain MTCC 10403 were analyzed using the methodology explained 

in 5.2.2. 

5A.1.3 Optimization of time 

The microorganism under the study was inoculated in nutrient broth and the 

optimum time for the antibiotic production with maximum inhibitory activity was 

analyzed as explained in 5.2.3. 

5A.1.4 Optimization of temperature  

The optimum temperature for the production of antibacterial compound for 

the strain MTCC 10403 was analyzed using the methodology explained under the 

section 5.2.4.  

5A.1.5 Optimization of pH 

The pH for the production of the active metabolite was standardized as 

described under the section 5.2.5. 

5A.1.6 Preparation of crude extract for purification of secondary metabolites 

The antibiotic-producing bacterium, Bacillus subtilis MTCC 10403 (SWI 2) 

was isolated from Anthophycus longifolius. The preparation and recovery of the 

secondary metabolites were carried out by a surface culturing method over solid 

nutrient agar plates (section 5.2.7). The adsorbed products were subsequently 

extracted with ethyl acetate at 70°C on a water bath under reflux. Evaporation of the 

solvent under reduced pressure yielded the ethyl acetate (EtOAc) extract. 

Subsequently the residual agar was extracted with CH2Cl2 ( DCM) and CHCl3 to 

furnish dichloromethane extract and chloroform extracts, respectively. These solvent 

extracts were evaluated for antibacterial activities (section 5.2.8); against the 

pathogens (listed in chapter 3 section 3.2.4) and the fractions, which showed 

significantly broad spectrum antibacterial activities and higher yields, were further 

purified by chromatographic techniques. 
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5A.1.7 Purification of secondary metabolites 

The EtOAc fraction (2.3 g) of the Bacillus subtilis MTCC 10403 was 

subjected to flash column chromatographic purification (Biotage SP, SP1-B1A, 

Biotage AB, Sweden) (Fig.5.1) over silica gel (180-230 mesh, Biotage No. 25+M 

0489-1), with a stepwise gradient of CH2Cl2/MeOH (0-100% MeOH). A collection 

wavelength of 236 nm was programmed in the flash chromatograph to provide a 

total of forty-three fractions (12 ml, F1–F23). These column fractions were 

evaluated for antibacterial activities (section 5.2.4), against the pathogens (listed in 

chapter 3, section 3.2.4) and the fractions, which showed significantly broad 

spectrum antibacterial activities and higher yield were further subjected to column 

chromatographic or preparative TLC (P-TLC)-guided purification using different 

solvent systems (EtOAc:n-hexane, MeOH:CHCl3 or MeOH:EtOAc as mobile 

phases), whichever required. The schematic diagram showing the purification of B. 

subtilis MTCC 10403 associated with Anthophycus longifolium (SWI2) ethyl acetate 

extract was shown in Figure 5A.2. 

5A.1.8 Analysis of pure fractions 

 The active fractions were subjected to chromatographic and spectroscopic 

analysis as explained earlier (section 5.2.9). 
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Figure 5A.2 

Schematic representaion of bioprospecting of Bacillus subtilis MTCC 10403 
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5A.2  Results and discussion 

5A.2.1 Antibiotic resistance and abiotic stress tolerance  

 

The bacterial strain was susceptible to all the antibiotics tested (Figure 5A.3) 

and was proved to be safe for laboratory work. The strain was able to grow from 

25°C up to 55°C, and could withstand a pH range of 6 to 11.5 (Figure 5A.4). The 

bacterial strain could able to grow at a NaCl concentration from 2 to 10%. The 

ability of the seaweed associated bacterial isolate to grow under a wide range of 

environmental conditions might be a functional adaptation for their protective 

function in varying aquatic environment. 

 
Figure 5A.3 

Antibiotic sensitivity profile of MTCC10403 

 

5A.2.2 Optimization of time, temperature and pH 

Optimum production time is found to be after 72 hours and it declined after 

96 hours. Optimum temperature for greater production of the antibacterial 

compound was found to be 20°C, whilst the optimum pH was 8.  

 

Figure 5A.4 
Graphical representation of antibacterial compound production at different 

incubation time,temperature and pH 
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5A.2.3  Yield  

The yield (g/L of the spent broth) of the EtOAc extracts of B. subtilis MTCC 10403 

(0.570 g/L of the spent broth) was recorded maximum yield as compared with DCM 

(0.375 g/L of the spent broth) extract and CHCl3 (0.207 g/L of the spent broth). 

5A.2.4  Antibacterial activities of the crude extracts by agar diffusion method. 

Antibacterial activity of B. subtilis MTCC 10403 solvent extracts to different 

pathogens Aeromonas hydrophilla, V. vulnificus MTCC 1145 and V. 

parahaemolticus ATCC17802 were shown in the Figure 5A.5. It was apparent that 

the EA fractions were more active than other fractions of the B. subtilis MTCC 

10403. 

 
Figure 5A.5 

Graphical presentation showing antibacterial activities of solvent extracts of  
B. subtilis MTCC10403 against the pathogenic strains 

 

5A.2.5  Secondary metabolites from B. subtilis MTCC 10403 associated with 

Anthophycus longifolium (SWI2) 

The yield, antibacterial activities of each column/P-TLC fractions were given 

in Table 5(1). The Rf values of all the P-TLC fractions were shown in Table 5A.1. 

Among the column fractions obtained from the EtOAc fraction of the MTCC 10403 

extract, the fractions B2E13-B2E17 exhibited significantly greater antibacterial 

activity and similar TLC pattern.  
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Fraction B2E13-B2E17 as eluted by CH2Cl2/MeOH (3:2 to 1:1, v/v) was 

pooled together (81.8 mg) , and further applied to a silica gel column (80-120 mesh) 

to yield four sub-fractions (B2E46 to B2E49). Among these fractions, B2E48 

(58mg) showed significantly higher antibacterial activity followed by B2E49 

(6.2mg; 14mm). The sub-fraction B2E48 was purified by preparatory TLC 

(CH2Cl2/MeOH, 4:1, v/v) to afford B2E55 (compound 1) (99% purity, 10.2 mg; 

16mm) and B2E57 (compound 2) (99% purity, 8 mg; 13 mm).  

The column fraction B2E7 obtained from the EtOAc fraction of the MTCC 

10403 extract, was a mixture with an inhibitory zone diameter of 12mm (123.6 mg).  

The fraction B2E7 was further charged on a silica gel column (80-120 mesh) to 

yield four sub-fractions (B2E24 through B2E27). The sub-fraction B2E25 seems to 

be pure to afford compound 3 (99% purity, 9.6 mg). The sub-fraction B2E26 was 

purified by preparatory TLC (CH2Cl2/MeOH, 4:1, v/v) to afford B2E29 (compound 

4) (99% purity, 8.3 mg). 

Fraction B2E8 (92.3 mg) was purified by preparatory TLC (CH2Cl2/MeOH, 

4:1, v/v) to afford nine sub-fractions (B2E31 to B2E39). Evaporation of solvents 

from the fractions followed by TLC over precoated silica gel GF254 (particle size 15 

mm, E-Merck, Germany) using CH2Cl2/MeOH (99:1, v/v) supported the purity of 

B2E35, compound 5 (7.9 mg). The sub-fractions B2E33 and B2E34 were pooled 

together (24.3mg) and was purified by preparatory TLC (CH2Cl2/MeOH, 4:1, v/v) to 

yield B2E41 as compound 6 (7.2 mg) (99% purity). Evaporation of the solvents 

from the fractions followed by TLC over precoated silica gel GF254 (particle size 15 

mm, E-Merck, Germany) using CH2Cl2/MeOH (99:1, v/v) supported the purity. The 

remaining fractions were not considered for purification due to either of lower yield 

or lesser activity. 
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Table 5A.1 

Yield, activity and Rf values of the fractions at different purification stages 

 Yield  Rt Rf Antibacterial  
activity 

B2 EtOAc fraction (CC M/D)     

B2E-1 (100% D) 129g - 0.9 NA 

B2E -2 (0-5% M/D) 735mg - - NA 

B2E -3 (0-5% M/D) 178mg - - NA 

B2E -4 (0-5% M/D) 31mg - - NA 

B2E -5 (0-5% M/D) 104mg - - 10mm 

B2E -6 (0-5% M/D) 87mg - - 13mm 

B2E -7 (5-10% M/D) 123.6mg - - 12mm 

B2E -8 (5-10% M/D) 92.3mg - - 15mm 

B2E -9 (5-10% M/D) 28mg - - 10mm 

B2E -10 (5-10% M/D) 86mg - - 2mm 

B2E -11 (10-50% M/D) 26mg - - 15mm 

B2E -12 (10-50% M/D) 3mg - - 3mm 

B2E -13 (10-50% M/D) 16.3mg - - 20mm 

B2E -14 (10-50% M/D) 18.5mg - - 24mm 

B2E -15 (10-50% M/D) 12mg - - 25mm 

B2E -16 (10-50% M/D) 21mg - - 18mm 

B2E -17 (10-50% M/D) 14mg - - 21mm 

B2E -18 (10-50% M/D) 15mg - - 11mm 

B2E -19 (10-50% M/D) 13mg - - 3mm 

B2E -20 (10-50% M/D) 88mg - - 1mm 

B2E -21 (50-100% E) 36mg - - 13mm 

B2E -22 (50-100% E) 9mg - - 1mm 

B2E -23 (50-100% E) 3mg - - 2mm 

B2E -7(CC)     

B2E -24(100%D) 42mg  - NA 

B2E -25(5%D) 9.6mg 41.793 0.6 13mm 
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B2E -26(2(10%D) 3.2mg - 0.8 5mm 

B2E -27(100%M) 1.6mg - 0.96 NA 

B2E 26(4:1MDC/M)PTLC     

B2E 28 6.9mg - 0.2 NA 

B2E 29 8.3mg 34.358 0.5 10mm 

B2E 30 7mg - 0.7 NA 

B2E -8 (PTLC 100% DCM)     

B2E 31 2.3mg - 0.15 NA 

B2E 32 1.2mg - 0.18 NA 

B2E 33 5.7mg - 0.22 NA 

B2E 34 1.3mg - 0.34 5mm 

B2E 35 7.9mg 21.595 0.4 14mm 

B2E 36 27.5mg - 0.5 NA 

B2E 37 13.6mg - 0.6 NA 

B2E 38 21.2mg - 0.82 NA 

B2E39 3.5mg - 0.9 NA 

B2E 33- B2E 34(PTLC)     

B2E 40 9.2mg - 0.15 NA 

B2E 41 7.2mg 29.395 0.2 12mm 

B2E 42 10.9mg - 0.3 NA 

B2E 43 4.6mg - 0.45 NA 

B2E 44 2.3mg - 0.6 NA 

B2E 45 6.9mg  0.9 NA 

B2E 13- B2E 17 (CC M/D) 81.8mg    

B2E 46 9.1mg - - NA 

B2E 47 5.6mg - -  

B2E 48 58mg - - 17mm 

B2E 49 7.8mg - - 14mm 

B2E 48 (PTLC) 58mg    
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It is significant to note that the antibacterial activities of the crude extract 

against the test pathogens were greater than those exhibited by the purified bioactive 

compounds (Table 5A.1 and Figure 5A.5). It is apparent that many bioactive 

compounds may act synergistically to impart greater antibacterial activities against 

the test pathogenic bacteria used in this study.  

 
5A.2.6 Structural characterization of secondary metabolites with antibacterial  
           activity 

5A.2.6.1Structural characterization of Compound I (B2E55) 

7-O-methyl-5’-hydroxy-3’-heptenoate-macrolactin: Amorphous solid; UV 

(MeOH) λmax(log ε): 226nm (3.72) and 248 nm (3.21); TLC (Si gel GF254 15 mm; 

CH2Cl2/MeOH 1:99, v/ v) Rf: 0.70; Rt: 6.22 min, IR νmax (KBr) cm-1 : 970 (trans 

C=C oop bending), 1073.71 (unsaturated sec. alcohol C-O str.), 1121.80 (C-O-C 

symmetrical str.), 1282.20 (CH-OH in plane bending), 1376.96 (O=C-CH2, C-H 

bending), 1461.43 (C-H asym-bending), 1640.23 (C=C str.), 1753.96 (α,β-

unsaturated C=O str.), 2854.74 (-O-CH2 sym C-H str.), 2923.22 (alkane C-H str.), 

3014 (asym.alkene C-H str.), 3437.24cm-1 (O-H str.); 1H (CDCl3, 500 MHz, δ ppm) 

and 13C NMR (CDCl3, δ ppm) data, see Table 5A.2; HRMS (ESI) m/z: calcd. for 

C31H45O7 529.6422; found 529.6894 [M+H]+. 

B2E 50 6.2mg - 0.12 NA 

B2E 51 4.3mg - 0.25 NA 

B2E 52 8.2mg - 0.32 NA 

B2E 53 1.8mg - 0.4 5mm 

B2E 54 12.6mg - 0.5 6mm 

B2E 55 10.2mg 6.220 0.7 16mm 

B2E 56 8mg 9.171 0.9 12mm 

B2E 57 2.6mg - 0.96 NA 
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7-O-methyl-5’-hydroxy-3’-heptenoate-macrolactin, a new derivative of the 

macrolactin was isolated as amorphous solid upon chromatography over silica 

columns. The IR absorption band (in MeOH) at 3014cm-1 was due to –CH stretching 

vibrations. The –OH group in the skeleton exhibited free –OH stretching vibrations 

near 3437cm-1. The bending vibration bands near 1753 cm-1 denoted the ester 

carbonyl absorption. The olefinic (C=C), and ether (C-O-C) groups have been 

symbolized by the absorption bands at 1640 and 1073 cm-1. The IR spectrum 

revealed a broad absorption band at νmax 3500 to 3000 cm-1, attributed to hydroxyl 

functionality, and to olefinic system (1200, 1121 cm-1). The ultraviolet absorbance at 

» max (log e) 226 (3.72) and 248 (3.21) nm were assigned to a chromophore with 

extended conjugation. Its mass spectrum exhibited a molecular ion peak at m/z 528 

(HRESIMS m/z 529.689 [M+H]+; D 0.0 amu), which in combination with its 1H and 
13C NMR data (Table 5A.2, Figure 5A.6) indicated the elemental composition of 

C31H44O7 as 7-O-methyl -5’-hydroxy-3’-heptenoate-macrolactin with ten degrees of 

unsaturation (Figure 5A.7). Seven degrees of unsaturation from double bonds of 

macrolactin ring, two degrees of unsaturation from double bonds of the substitution 

as (S, E) -methyl 5-hydroxyhept-3-enoate (C8H14O3), and one degree from the ring 

of macrolacin were demonstrated. The molecular ion peak at m/z 528 appeared to 

undergo elimination of (5-hydroxyhept-3-enoic acid (C7H12O3, m/z 144.1708) to 

yield 7-hydroxy substituted macrolactin at m/z 402.2450 (C24H34O5), which 

underwent dehydration (–H2O) to afford a fragment with m/z 386.2580 (C24H34O4). 

The appearance of the fragment at m/z 126.1507 indicated the presence of 6-ethyl-

3H-pyran-2 (6H) -one moiety (C7H10O2), resulted from the intramolecular 

rearrangement and dehydration of 5-hydroxyhept-3-enoic acid via the intermediate 

6-ethyl-3H-pyran-2, 2 (6H) -dial (Figure 5A.8) 

The 1H NMR in conjugation with 13C-NMR recorded the presence of two 

methyl signals at δ 0.81 and δ 1.30ppm. The former was assigned to be due to the 

terminal methyl group at the side chain 5-hydroxyhept-3-enoate moiety, whereas the 

methyl group at  δ 1.30 shifted downfield due to the acrylate moiety (-OC(=O)-

C=C-) at the β-position with respect to the deshielded methyl group. The methylene 

group protons at δ 2.60 and δ 2.04 ppm were assigned to be at 6 carbon position of 

the macrolactin ring structure, and the downfield shift (about δ 0.5 ppm) was due to 
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the presence of the conjugated butadiene moiety at one side and the side chain 

acetate group (-OC (=O)-C) attached to the macrolactin ring at its 7 carbon position. 

Three methylene groups have been assigned to occupy at the C20-22 positions of the 

macrolactin ring structure as heptenyl formate moiety. The protons of the –CH2- 

group at  δ 1.45, 1.43 ppm were at C22, and were deshielded due to the presence of 

the acrylate moiety (-OC(=O)-C=C-) at the β-position with respect to the deshielded 

methyl group. The methyl group protons at δ 2.07, 1.96 ppm (C-20) too appeared to 

be deshielded due to the conjugated double bond structure (butadiene) spanning 

from C16-C19 position of the macrolactin ring. The methylene protons at C21 

position appeared at δ 1.81 and 1.60 ppm. The –CH2- protons appeared in δ 1.94 and 

1.78 ppm were due to the presence of the propanediol group, and have been assigned 

to be present at the C14 position in the macrolactin ring structure. The protons at δ 

2.68 and 2.33 ppm shifted downfield due to the presence of –C=C- group at its α-

position and a β–OH group. The methylene protons at δ 2.35, 2.26 ppm have been 

assigned to be present at the side chain 5-hydroxyhept-3-enoate moiety, and their 

downfield shift was due to the ester functionality at the α-position of the methylene 

protons and –C=C- at its β–position. The other –CH2- group at δ 1.21 was a part of 

the terminal ethyl group of 5-hydroxyhept-3-enoate. The methine protons at δ 3.42 

and 4.84 ppm were assigned to be present at the C13 and C15 positions in the 

macrolactin ring structure. The downfield shift appeared to be due to the propane-1, 

3-diol moiety at C13 to C15. The methine proton at δ 4.84 appeared to be deshielded 

due to the presence of β–olefinic group extended by further conjugated structure. 

The carboxyl ester group at the C1 position of the macrolactin ring resulted in strong 

deshielding of the –CH- proton at δ 4.99 ppm, and therefore, has been assigned to be 

present at the C23 position of the macrolactin ring structure. The methine proton 

(given triplet of the doublet) at δ 5.05 ppm is characteristic of the junction point of 

the macrolactin ring (C-7) to that of the side chain 5-hydroxyhept-3-enoate moiety. 

The 1H-NMR spectrum showed three exchangeable hydroxyl proton at δ 4.23 (1H, 

bs in CDCl3), δ 3.79 (1H, bs in CDCl3), and δ 3.16 ppm (1H, bs in CDCl3), which 

disappeared upon addition of D2O. The 13C NMR spectrum of the purified 

compound in combination with DEPT experiments indicated the occurrence of 31 

carbon atoms in the molecule, including two ester carbonyl carbon at δ 165.16 and δ 

168.2, fourteen methine carbons between δ 116.1 and 146 assigned to seven double 
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bonds, five oxygenated methine carbons between δ 67.5and 75.4; and ten aliphatic 

carbons between δ 20.10 and 50.8 ppm. The 13C NMR spectrum displayed two 

quaternary carbon (δ 165.16, 169.54 ppm) atoms bearing the carbonyl groups. The 

low field quaternary signals (13C NMR) were in agreement with that to a quaternary 

carbon signal carrying the carbonyl groups at C-1 of the macrolactin ring structure 

and C-1’ of the side chain (5-hydroxyhept-3-enoate) attached to the macrolactin 

framework at the 7-C position of the ring. This was supported by the relatively 

downfield shift of the H2, 23 signals (δ 5.60, t and δ 4.99 ddq, respectively) and 

methylene signals at C-2’ (δ 2.26, 2.35), which referred to a possible oxygenation in 

its vicinity. The side chain is substituted at C-7 with either a α- or β-oriented 

hydroxyl group at the 5’ position. The position of the hydroxyl group at C-5’ was 

further confirmed from the 1H–1H COSY, HSQC, NOESY, and HMBC spectra. In 

the 1H–1H COSY spectrum, the couplings were apparent between H-7/H-6, 8; H-

13/H-12, 14; H-15/H-14, 16, and H-20/H-21/H-22/H-23, which support the presence 

of macrolactin skeleton. The point of cyclization of the ester in macrolactone ring 

was indicated by the low-field shift of H-23 at δ 4.99, which has been coupled with 

the H-24 methyl group at δ 1.30 (d, J = 6.1 Hz), which also gives clear 1H–1H COSY 

correlation. Also, the 1H–1H COSY correlations between H’-5/H-6/H-7 supported 

the presence of the terminal propanol moiety at the 5-hydroxyhept-3-enoate side 

chain. The proton and carbon connectivity deduced from HSQC and HMBC 

experiments confirmed the marolactin framework attached to the side chain 5-

hydroxyhept-3-enoate moiety at the 7th position of the macrolactin. The H–H and C–

H connectivity apparent in the 1H–1H COSY and HMBC spectra, respectively 

indicate that one of the three unsaturations was due to the macrolactin ring 

framework (Table 5A.2). In the HMBC spectrum, it was observed that H-12/C-10, 

14; H15/C-13, 16; H-20/C-19, 22; and H-21/C-1, 23, 24 were correlated with each 

other. In addition, a methine proton (H-7) was coupled to the olefinic tertiary carbon 

(C-9) and methine H-15 with C-16, 17. This indicated that these protons (H-7 and 

H-15) were connected to the olefinic tertiary carbon atoms. The proton at C-21 

appeared to demonstrate long range HMBC correlation with ester carbonyl carbon at 

δ 165.16 (C-1). The proton at C-7 realized HMBC correlation at δ 169.54, which 

belong to the second ester carbon. The HMBC analysis revealed that the carbon at δ 
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75.4 (C-5’), bearing the hydroxyl group, correlated with a primary methyl proton δ 

0.81 (H’-7).  

The HMQC spectrum of the purified compound also revealed connections of 

the protons (H-2’) to the methylene carbon at δ 50.8 ppm. Placement of the 5-

hydroxyhept-3-enoic acid group at the C-7 was confirmed by the downfield shift of 

H-7 (δ 5.05) in the compound as compared to the baseline value (δ 4.34), and also 

by the long-range correlation of H-7 to the carbonyl carbon at δ 169.54 (C-1’) in the 

HMBC spectrum( Jaruchoktaweechai et al. 2000). The HMBC spectrum 

demonstrated long-range correlations of the methine proton (H-5’) to the vinylic 

carbon at δ 139.0 (C-3’) and methyl carbon at δ 14.1 (C-7’). These observed spectral 

data were indicative of the presence of the hydroxyheptenoic acid half-ester moiety, 

which was supported by the IR spectral data exhibiting intensely broad hydroxyl 

absorption from 3500 to 3000 cm-1 and ester carbonyl absorption at 1710 cm-1. The 

geometric isomerisms of the olefinic protons have been established by the 1H 

coupling constants suitable for the geometries (Z and E form). The relative 

stereochemistry of the chiral centers, particularly that of C-13 and 15 carrying the 

hydroxyl group of the macrolactin framework and that of C’-5, was deduced from 

the NOESY spectrum of the compound and the J-values. NOE couplings were 

observed between Hα-13/Hα-7 thus indicating that these groups must be equatorial 

and on the α-side of the molecule. NOE correlations between Hβ-23/Hβ-15/Hβ-20 

and those among H-5’/H-15/H-23, indicated the close proximity of these groups and 

their β-disposition. Therefore, the C-1 carboxyl group is equatorial and α-oriented. 

The methine proton at C’-5 group did not exhibit NOE interactions with H-7 and H-

13, and the methylene proton at C-14 (δ 1.78, m), which is in the α-face of the 

molecule, thereby indicating that H-7 is at the equatorial disposition. An interaction 

through the space of the hydroxyl protons at C-5’ (δ 3.16,1H, bs) and C-15  (δ 3.79, 

1H, bs) with H-7 (δ 5.05, td) and Hα-14 (δ 1.94, m in CDCl3) is only possible for the 

α-orientation of the tertiary hydroxyl group on C-5’ and C-15. The stereochemistry 

at the tertiary alcohol at C-15 position was established by the fact that H-15 has 

mutual NOE correlations with H-23, which had shown to be in the β-face of the 

molecule (axial configuration) under observation, and the secondary alcohol group 

that appeared as a broad singlet (at δ 4.23 ppm) has NOE interactions with H-13 and 
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H-7 in the molecule. This is only possible if the C-15 hydroxyl group lies on the α-

side of the molecule.  

Table 5A.2 
NMR spectroscopic data of 7-O-methyl-5’-hydroxy-3’-heptenoate-

macrolactin in CDCl3.
a 

 

O

O

HO

HO

O

O OH

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1'

2'

3'

4'
5'

6'

7'

 

Carbon 
no. 

13C NMR 
(DEPT) 

H δ1H NMR 
(int., mult., J in Hz)b 

1H-1H 
COSY 

HMBC 
(1H-
13C) 

1 165.16(C) - - - - 
2 116.11 (CH) 2H 5.60(d, J=11.2 ) - - 

3 143 (CH) 3H 6.74(t, J=11.1) H-2, 
H-4 C-4 

4 127 (CH) 4H 7.25(dd,15.2,11.1) - - 
5 142.7 (CH) 5H 6.19( dt , J=15.3,7.1) - - 

6 42.69 (CH2) 6Ha  6Hb 6Ha   at 2.60(m); 6Hb  at 
2.04(m) H-7 - 

7 73.2(CH) 7H 5.05 (td) H-8, 
H-6 

C-1l,C-
8 

8 139 (CH) 8H 5.71( dd, J=15.2,6.1) H-9 - 
9 125.02(CH) 9H 6.40dd,15.1,11.3) - - 
10 130.3.08(CH) 10H 6.17(m) H-11 - 

11 127 (CH) 11H 5.71(dt, J=10.6,8.4) H-12, 
H-10 - 

12 38.08(CH2) 12 Ha  12 Ha  at 2.68(m), 12Hb H-13 C-14 
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12Hb at 2.33(m) 
13 67.5(CH) 13H 3.42(dd) (4.02,OH) H-14 - 

14 45.41(CH2) 
14Ha  

14Hb 
14Ha  at 1.94(m); 14Hb  

at 1.78(m) - - 

15 67.5 (CH) 15H 4.84(dt,J=6.1,6.1) 
(3.79,OH) - 

C-
13,C-

16 
16 135.20 (CH) 16H 5.80 (dd, J=15.4,6.2) H-17 - 
17 127 (CH) 17H 6.29(dd, J=15.1,10.6) - - 
18 130.3 (CH) 18H 6.19(t,10.6) H-19 - 
19 135 (CH) 19H 5.72(ddd,J=14.2,7.0,6.7) - - 

20 31.9 (CH2) 
20Ha 

20Hb 
20Ha at 2.07(m); 20Hbat 

1.96 - - 

21 24.30 (CH2) 
21Ha 

21Hb 
21Ha at1.60(m); 21Hb  

at1.81(dt,11.2,5.2) H-22 
C-1,C-
24,C-

23 

22 35.93(CH2) 22Ha22Hb 22Ha  at1.54(m); 22Hb 
at 1.43(m) - - 

23 71.72(CH) 23H 4.99(ddq,J=4.5,7.1,5.1) H-24 - 
24 20.10(CH3) - 1.30(d, J=6.1) - - 
1l 169.54(C) -  - - 
2l 50.8 (CH2) Ha, Hb Ha at 2.26; Hb at 2.35 H-3 l - 

3 l 139 (CH) - 4.06( dt, J=15.6,7.4) H-4 l, 
H-2 l - 

4 l 147 (CH) - 6.18(dd,J=17.4,7.2) H-3 l - 
5 l 75.4 (CH) - 4.94(m) (3.16,OH) H-4 l - 

6 l 31.94 (CH2) - 1.21(m) H-7 l C-4 l, 
C-7 l 

7 l 14.1 (CH3) - 0.81(t) - C-6 l 
a  NMR spectra were recorded using the Bruker DPX 300 and AVANCE 300 MHz spectrometers. 

b Values in ppm, multiplicity and coupling constants (J¼ Hz) are indicated in parentheses. Assignments 
were made with the aid of the 1H–1H COSY, HMQC, and HMBC experiments. 
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Figure 5A.6 

(A) 1H, (B) 13C NMR spectrum of compound 1 

 

A 

B 



 

 120 

Chapter -5A  Bioprospecting of Bacillus subtilis MTCC 10403  
associated with Anthophycus longifolium (SWI 2) for antibacterial Metabolites 

 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 

 

 

 

 

 

 

Figure 5A.7 
2D NMR correlations as observed in 7-O-methyl -5’-hydroxy-3’-heptenoate-macrolactin. (A) The    
key 1H–1H COSY couplings; (B) The 1H–1H COSY couplings have been represented by the bold face 
bonds; The HMBC couplings are indicated as a double barbed arrow; (C) Key NOESY correlations. 
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Figure 5A.8 

Mass fragmentation pattern of 7-O-methyl-5’-hydroxy-3’-heptenoate-macrolactin. 

The macrolactins possess twenty-four membered lactone ring with three 

isolated diene elements, and have been originally isolated from deep sea bacterium 

and Actinomadura sp (Gustafson et al. 1989; Nagao et al. 2001). A total of sixteen 

macrolactins have been chemically characterized ( Gustafson et al. 1989; Marino et 

al. 2002). Macrolactin A was found to be most active compound in this series with 

potent antiviral properties, and was reported to possess antibacterial and 

anticancerous activities (Jaruchoktaweechai et al. 2000; Gustafson et al. 1989). 7-O-

succinyl macrolactin F and 7-O-succinyl macrolactin A were isolated from the 

ethylacetate extract of the marine Bacillus sp SC026, and were reported as antiviral 

(Jaruchoktaweechai et al. 2000). The antibacterial activities of the macrolactins have 
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been compared by Nagao et al. (2001) who reported that the C15-OH group is 

responsible for the target bioactivity of this group of compounds. However, there 

were no studies regarding the effects of the side chain attached at the C7–OH 

position of the macrolactin ring system. 

  The physicochemical parameters of bioactive molecules such as 

polarizability, steric, and hydrophobic descriptors (lipophilicity, partition 

coefficients) have a major role to influence with biological activities (Chakraborty 

and Paulraj 2008; Clinq-Mars et al. 2008). The ability of any molecule to penetrate 

biological membranes is a primary factor in controlling the interaction of 

compounds with biological systems, and is dependent on lipophilicity factors as 

determined by the partition coefficient between 1-octanol and water (log P). It is of 

note that the terminal functional group as the 5-hydroxyhept-3-enoate moiety at the 

side chain C-7 position of the macrolactin ring system increase lipophilicity. The 

increased lipophilicity (log P 4.43) of 7-O-methyl-5’-hydroxy-3’-heptenoate-

macrolactin as compared to the parent compound (log P 3.28) affords better 

penetration of the former through the lipoidal membrane barrier to arrive at the 

receptor site, thereby resulting in greater antibacterial activity of 7-O-methyl-5’-

hydroxy-3’-heptenoate-macrolactin than the parent compound. The lipophilicity 

factors of the related compounds have been compared to demonstrate the lesser log 

P value of 7-O-methyl-5’-hydroxy-3’-heptenoate-macrolactin than 7-O-succinyl 

macrolactin (log P 3.24) with succinate side chain (-C(=O)CH2CH2COOH) and 7-O-

malonyl macrolactin (log P 3.18) with malonyl side chain (-C(=O)CH2COOH) are 

lesser than 7-O-methyl-5’-hydroxy-3’-heptenoate-macrolactin (log P 4.43) with 5-

hydroxyhept-3-enoate side chain. 7-O-Methyl-5’-hydroxy-3’-heptenoate-macrolactin 

exhibited significant greater activity against test pathogens (at a concentration of 

20µg per disc) than the parent macrolactin apparently due to the presence of more 

polarisable (polarisability 59.91 X 10-24 cm3) C-7,5-hydroxyhept-3-enoate group as 

compared to the less polarisable succinate or malonate groups (52-24 X 10-24 cm3). 

It can be inferred that 5-hydroxyhept-3-enoate moiety with highly electronegative 

acetyl and olefinic groups withdraw the electron cloud by a combination of 

inductive (-I effect) and mesomeric effect (+M-effect) from the substituted 

macrolactin ring of 7-O-methyl-5’-hydroxy-3’-heptenoate-macrolactin, thus acting as 
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the nucleophilic centre of the molecule resulting in a high level of activity (Figure 

5A.9). This lead demonstrated in the present study will be significant in explaining 

the pharmacophore-fit in the macromolecular receptor site and exploring the primary 

site and mode of action of this class of the substituted macrolactone analogues. 

 

 

Figure 5A.9 
(A) Sketch model of 7-O-methyl-5’-hydroxy-3’-heptenoate-macrolactin. Induction of 
bioactivity is directly proportional to the inductive (field/polar effect) and resonance effects of 
the 5-hydroxyhept-3-enoate side chain attached to the macrolactin ring system at C-7. The 5-
hydroxyhept-3-enoate moiety with a highly electronegative acetyl group withdraw the electron 
cloud by a combination of inductive (-I effect) and mesomeric effect (+M-effect) from the 
substituted macrolactin ring, thus acting as the nucleophilic center of the molecule resulting in 
a high level of activity; (B) Antibacterial activity of 7-O-methyl-5’-hydroxy-3’-heptenoate-
macrolactin against V. parahemolyticus ATCC17802. The inhibition zone is indicated by an 
arrow. 

The elongation module of type-I PKS harbors the acyl carrier protein (ACP), 

acyltransferase, (AT) and ketosynthase (KS) domains that synergistically catalyze a 

series of decarboxylative Claisen condensation involving malonyl units to result in 

the elongation of the polyketide chain affording the formation of the intermediate 

biosynthetic product as β-ketoacyl-S-ACP. A series of condensation, dehydration, 

reduction, and hydrolysis of the intermediate polykitides result in the biosynthesis of 

7-O-methyl-5’-hydroxy-3’-heptenoate-macrolactin (Figure 5A.10.A). It is, however, 

of note that the ketoreductase (KR), dehydratase (DH) and enoyl reductase (ER) are 
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active in a few steps to reduce the carbonyl group to -OH, olefinic double bond or a 

fully reduced end product.  

 The correlations of metabolite genes such as pks with secondary metabolites 

belonging to polyketides and their putative biosynthesis pathway in related bacteria 

were reported in earlier studies (Moldenhauer et al. 2007, Scotti et al. 1993). The pks 

gene has been assigned to the biosynthesis of bacillane, a polyketide product in  

Bacillus amyloliquefaciens FZB 42 genome. The pks gene cluster was identified 

from B. amyloliquefaciens CH12, a genetically  engineered strain,and the putitive 

biosynthetic pathway of bacillane was demonstrated. A bacillaene multienzyme 

complex of trans-AT PKSs with pks-like chemistry was characterized in an earlier 

study, where introduction of the β-branch and subsequent incorporation of olefinic 

bonds in to the noncanonical bimodules have been comprehended (Moldenhauer et 

al. 2007). The pksX polyketide synthase (PKS) genes were also reported in Bacillus 

subtilis (Scotti et al. 1993). A stepwise aldol addition of acetyl-ACP and Grob 

fragmentation on the enzymatically loaded acyl carrier proteins were demonstrated 

to result pks-derived antibacterial metabolites bacillane and curacin (Calderone et al. 

2006; Gu et al. 2006). Mupirocin H, a novel metabolite resulting from mutation of 

the HMG-CoA synthase analogue, mupH in Pseudomonas fluorescens, has been 

reported (Wu et al. 2007). Previous work demonstrated that unlike fatty acid 

biosynthesis, the biosynthesis of polyketide products don’t follow a rigid sequence 

(Weissman and Leadlay, 2005). Instead, some or none of these steps and reduction 

reactions occurs in different biosynthetic steps to result in various combinations of 

structural diversity of the PKS products. It is of note that some of the domains 

remain inactive at one or more steps of macrolactin biosynthesis thereby leading to 

the formation of conjugation at three positions (C2-5, C8-11, and C16-19 of the 

macrolactin ring system) and three hydroxyl groups of the intermediate polyketide 

product (S-ACP-7,13,15,23-tetrahydroxytetracosa-2,4,8,10,16,18-hexaenethioate). 

The later undergoes intramoleculear cyclization by the nucleophilic attack of the 

terminal hydroxy group on the thioester-activated carbonyl to result the formation of 

–C (=O) O- linkage in the 24-membered macrolactin ring location system with the 

elimination of ACP-SH.  
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The post-biosynthetic modifications of the macrolactin ring at the C7 position of 

macrolactin have been reported in earlier literature (Jaruchoktaweechai et al. 2000). 

In general, type I PKSs use malonyl/methylmalonyl/ethylmalonyl derivatives of 

CoA and hydroxymalonyl/aminomalonyl/methoxymalonyl ACP extender units to 

biosynthesize diverse natural products bearing the polyketide backbone 

(Jaruchoktaweechai et al. 2000). It is of note that in the biosynthetic route leading to 

the formation of the side chain 5-hydroxyhept-3-enoate moiety is also a polyketide 

biosynthetic product. A model for biosynthesis of 5-hydroxyhept-3-enoate can be 

proposed (Figure 5A.10.B), which accounts for the fact that 

propanethioate/malonate as the starting building blocks instead of acetate/malonate 

in the biosynthesis of this polyketide backbone. Accordingly, the biosynthetic route 

starts from propanethioate (KS-S-C (=O) C2H5) attached with the KS domain, and is 

accomplished by two alternate steps of decarboxylative Claisen condensations and 

ketoreduction. Finally, DH catalyzes the elimination of the water molecule in the 

intermediate KR product S-ACP-3, 5-dihydroxyheptanethioate to afford the S-ACP-

5-hydroxyhept-3-enethioate. The nucleophilic attack of the terminal hydroxyl group 

(as butanol moiety) on the thioester-activated carbonyl carbon atom of S-ACP-5-

hydroxyhept-3-enethioate results in the formation of a cyclic polyketide product as 

6-ethyl-3, 6-dihydro-2-(ACP-thio) -2H-pyran-2-oil in the 6-membered pyran ring 

location system. A subsequent elimination of ACP-SH afforded 6-ethyl-3, 6-

dihydro-2H-pyran-2-one. The carbonyl carbon atom of the latter undergoes a 

nucleophilic attack by the 7-OH group in the macrolactin ring system followed by 

ring opening yielding the final PKS product as 7-O-methyl -5'-hydroxy-3'-

heptenoate-macrolactin (Figure 5A.10.C). It is apparent from this study that various 

combinations of the starter and elongation units used for polyketide biosynthesis 

lead to the formation of multiple stereocenters and structurally diverse polyketide 

backbone.  
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Figure 5A.10 

Hypothetical pathways for biosynthesis of the bacterial metabolite 7-O-methyl-5’-hydroxy-3’-
heptenoate-macrolactin, showing the loading, decarboxylation and elongation steps catalyzed 
by the PKS-1. Both enzymes build their products from an acetate starter unit and malonate 
extender units. The intermediates shown bound to the PKSs are hypothetical, but consistent 
with experimental results(B,C). Sequence of events in the biosynthesis of side chain 5-
hydroxyhept-3-enoate moiety attached to the macrolactin ring system at C-7, and the final PKS 
product as 7-O-methyl -5'-hydroxy-3'-heptenoate-macrolactin. 
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5A.2.6.2 Structural Characterization of Compound 2 (B2E56) 

   6-(4-Acetylphenyl)-5-hydroxyhexanoic macrolactin : Amorphous solid; 

UV (MeOH) λmax(log ε): 268nm (3.85); TLC (Si gel GF254 15 mm; CH2Cl2/MeOH 

40:60, v/ v) Rf: 0.90; Rt: 9.171 min(HPLC)( Figure 5A.11), IR νmax (KBr) cm-1 : 976 

(trans C=C bending), 1072.32(unsaturated sec. alcohol C-O str.), 1122.45(C-O-C 

symmetrical str.), 1284.22(CH-OH in plane bending), 1378.54(O=C-CH2,C-H 

bending), 1466.42(C-H asym-bending), 1642.78(C=C str.), 1680.12 (aromatic 

C=C),1754.13(α,β-unsaturated C=O str.), 2848.26(-O-CH2 sym C-H str.), 

2934.44(alkane C-H str.), 3022 (asym.alkene C-H str.), 3446.26cm-1(O-H str.); 
1H(CDCl3, 500 MHz, δ ppm) and 13C NMR (CDCl3, δ ppm) data, see Table 5A.3; 

HRMS (ESI) m/z: calcd. for C38H50O8 634.3506; found 634.3582 [M]+. 

 

Table 5A.3 

NMR spectroscopic data of 6-(4-acetylphenyl) -5-hydroxyhexanoic  

macrolactin in CDCl3.
a 

 

 

 

 

 

Carbon 
no. 

13C NMR 
(DEPT) 

H 
δ1H NMR 

(int., mult., J in Hz)b 

1H-1H 
COSY 

HMBC 
(1H-13C) 

1 165.30(C) - - - - 
2 116.12 (CH) 2-H 5.40(d, J=11.2 ) - - 
3 143.95 (CH) 3-H 6.68(t, J=11.1) 2-H, 4-H C-4 
4 127.53 (CH) 4-H 7.06(dd,15.2,11.1) - - 
5 141.11(CH) 5-H 6.34( dt , J=15.3,7.1) - - 

6 42.43 (CH2) 
6-Ha  6-

Hb 
6Ha   at 2.75(m); 6Hb  at 

2.41(m) 7-H - 

7 73.2(CH) 7-H 5.01 (dt) 8-H, H-6 C-1l,C-8 
8 139.28 (CH) 8-H 5.79( dd, J=15.2,6.1) 9-H - 
9 123.73(CH) 9-H 6.50dd,15.1,11.3) - - 

O

O O

OH

O

O

OH

OH
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10 130.33(CH) 10-H 5.96(m) 11-H - 

11 128.81(CH) 11-H 5.40(dt, J=10.6,8.4) 12-H, 
10-H - 

12 37.27(CH2) 
12-Ha  

12-Hb 
12 Ha  at 2.51(m), 12Hb at 

2.32(m) 13-H C-14 

13 66.55(CH) 13-H 3.42(dd) (4.02,OH) 14-H - 

14 45.62(CH2) 
14-Ha  

14-Hb 
14Ha  at 1.81(m); 14Hb  at 

1.68(m) - - 

15 67.00 (CH) 15-H 4.13(dt,J=6.1,6.1)(3.79,OH) - C-13,C-16 
16 135.19 (CH) 16-H 5.80 (dd, J=15.4,6.2) 17-H - 
17 127 (CH) 17-H 6.36(dd, J=15.1,10.6) - - 
18 130.3 (CH) 18-H 6.23(t,10.6) 19-H - 
19 135.21 (CH) 19-H 5.72(ddd,J=14.2,7.0,6.7) - - 

20 31.92 (CH2) 
20-Ha 

20-Hb 
20Ha at 2.05(m); 20Hbat 

1.93 - - 

21 23.99 (CH2) 
21-Ha 

21-Hb 
21Ha at1.62(m); 21Hb  

at1.82(dt,11.2,5.2) 22-H C-1,C-24,C-23 

22 35.96(CH2) 
22-

Ha22-
Hb 

22Ha  at1.48(m); 22Hb at 
1.42(m) - - 

23 72.18(CH) 23-H 4.04(ddq,J=4.5,7.1,5.1) 24-H - 
24 21.66(CH3) - 1.20(d, J=6.1) - - 
25 169.55     
26 33.13 26-H 2.23(t,2H) 27-H C-25 
27 57.74 27-H 2.93(m,2H)   
28 29.69 28-H 1.82(dd,2H) 29-H C-27,29 
29 59.03 29-H 4.22(m,1H) 30-H  
30 40.53 30-H 3.13/3.07(dt,2H)   
31 144.63     
32 128.77 32-H 7.30(d,1H) 33-H C-33 
33 129.91 33-H 7.20(d,1H)   
34 133.08 34-H    
35 129.32 35-H 7.22(d,1H) 36-H C-34,36 
36 127.77 36-H 7.29(d,1H)   
37 207     
38 30.92 38-H 2.17(s,3H)  C-37 

 

a  NMR spectra were recorded using the Bruker DPX 300 and AVANCE 300 MHz 
spectrometers. 

b Values in ppm, multiplicity and coupling constants (J¼ Hz) are indicated in parentheses. 
Assignments were made with the aid of the 1H–1H COSY, HMQC, and HMBC experiments. 

The methylene group protons at δ 2.75 and δ 2.45 were assigned to be at 6 

carbon position of the macrolactin ring structure, and the more downfield shift 
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(about δ 0.15) was due to the presence of the conjugated butadiene moiety at one 

side and the side chain (4-acetylphenyl)-5-hydroxyhexanoate attached to the 

macrolactin ring at its 7 carbon position (Figure 5A.12 ). Three methylene groups 

have been assigned to occupy at the C20-22 positions of the macrolactin ring 

structure as heptenyl formate moiety. The protons of the –CH2- group at  δ 1.48, 

1.42  are at C-22, and are deshielded due to the presence of the acrylate moiety (-

OC(=O)-C=C-) at the β-position with respect to the deshielded methyl group.  Most 

of the proton signal shown similarity with earlier reported macrolactin. Mainly 

aromatic signals appeared in 1H-NMR around 7.20-7.30 strongly supports the 

presence of disubstituted aromatic ring.  H-7(5.01) shown HMBC with C-

25(169.55) indicates the attachment of side chain at C-7. Strong H-H COSY 

correlation between 26-H(2.23)/27-H(2.93)/28-H(1.82)/29-H(4.22)/30-Ha(3.13)and 

30-Hb(3.07)  indicated the presence of  5-hydroxyhexanoate. Acetyl group attached 

to aromatic ring in para substitution confirmed by HMBC spectra and mass fragment 

shown 249 (C14H17O4)+ indicated the presence of (4-acetylphenyl)-5-

hydroxyhexanoate moiety.  

               The methyl group protons at δ 2.05, 1.93  (C-20) appeared to be deshielded 

due to the conjugated double bond structure (butadiene) spanning from C16-C19 

position of the macrolactin ring. The methylene protons at C-21 position appeared at 

δ 1.81 and 1.60 ppm. The –CH2- protons appeared in δ 1.94 and 1.78 ppm were due 

to the presence of the propanediol group, and have been assigned to be present at the 

C-14 position in the macrolactin ring structure. The protons at δ 2.68 and 2.33 ppm 

shifted downfield due to the presence of –C=C- group at its α-position and a β–OH 

group. The methine protons at δ 3.42 and 4.84 ppm were assigned to be present at 

the C13 and C15 positions in the macrolactin ring structure. The downfield shift 

appeared to be due to the propane-1, 3-diol moiety at C13 to C15. The methine 

proton at δ 4.84 appeared to be deshielded due to the presence of β–olefinic group 

extended by further conjugated structure. The carboxyl ester group at the C1 

position of the macrolactin ring resulted in strong deshielding of the –CH- proton at 

δ 4.99 ppm, and therefore, was assigned to be present at the C23 position of the 

macrolactin ring structure. The methine proton (gives triplet of the doublet) at δ 5.05 

ppm is characteristic of the junction point of the macrolactin ring (C-7) to that of the 
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side chain (4-acetylphenyl)-5-hydroxyhexanoate. The 1H-NMR spectrum showed 

three exchangeable hydroxyl proton at δ 4.23 (1H, bs in CDCl3), δ 3.79 (1H, bs in 

CDCl3), and δ 3.16 ppm (1H, bs in CDCl3), which disappeared upon addition of 

D2O. The 13C NMR spectrum of the purified compound displayed two quaternary 

carbon (δ 165.30, 169.55) atoms bearing the carbonyl groups. The low field 

quaternary signals (13 CNMR) are in agreement with that to a quaternary carbon 

signal carrying the carbonyl groups at C-1 of the macrolactin ring structure and C-25 

of the side chain (4-acetylphenyl)-5-hydroxyhexanoate attached to the macrolactin 

framework at the 7C position of the ring. The position of the hydroxyl group at C-29 

was further confirmed from the 1H–1H COSY, HSQC, NOESY, and HMBC spectra. 

In the 1H–1H COSY spectrum, the couplings were apparent between H-7/H-6, 8; H-

13/H-12, 14; H-15/H-14, 16, and H-20/H-21/H-22/H-23 support the presence of 

macrolactin skeleton. The point of cyclization of the ester in macrolactone ring was 

indicated by the low-field shift of H-23 at δ 4.99, which has been coupled with the 

H-24 methyl group at δ 1.30 (d, J = 6.1 Hz), which also gives clear 1H–1H COSY 

correlation. Also, the 1H–1H COSY correlations between 26-H/27-H/28-H /29-H 

supports the presence of the terminal (4-acetylphenyl)-5-hydroxyhexanoate chain. 

The proton and carbon connectivity deduced from HSQC and HMBC experiments 

confirmed the marolactin framework attached to the side chain (4-acetylphenyl)-5-

hydroxyhexanoate moiety at the 7th position of the macrolactin. The H–H and C–H 

connectivities apparent in the 1H–1H COSY and HMBC spectra, respectively 

indicate that one of the three unsaturations was due to the macrolactin ring 

framework. In the HMBC spectrum, it was observed that H-12/C-10, 14; H15/C-13, 

16; H-20/C-19, 22; and H-21/C-1, 23, 24 were correlated with each other. In 

addition, a methine proton (H-7) was coupled to the olefinic tertiary carbon (C-9) 

and methine H-15 with C-16, 17. This indicated that these protons (H-7 and H-15) 

were connected to the olefinic tertiary carbon atoms. The proton at C-21 appeared to 

demonstrate long range HMBC correlation with ester carbonyl carbon at δ 165.16 

(C-1). The proton at C-7 realized HMBC correlation at δ 169.55, which belong to 

the second ester carbon. The HMQC spectrum of the purified compound also 

revealed connections of the protons (H-26) to the methylene carbon at δ 50.8. 

Placement of the(4-acetylphenyl)-5-hydroxyhexanoate group at the C-7 was 

confirmed by the downfield shift of H-7 (δ 5.05) in the compound as compared to 
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the baseline value (δ 4.34) [Jaruchoktaweechai et al. 2000] and also by the long-

range correlation of H-7 to the carbonyl carbon at δ 169.55 (C-25) in the HMBC 

spectrum. The geometric isomerisms of the olefinic protons have been established 

by the 1H coupling constants suitable for the geometries (Z and E form). The 

relative stereochemistry of the chiral centres, particularly that of C-13 and 15 

carrying the hydroxyl group of the macrolactin framework and that of C-29, was 

deduced from the NOESY spectrum of the compound and the J-values. NOE 

couplings were observed between Hα-13/Hα-7 thus indicating that these groups 

must be equatorial and on the α-side of the molecule. NOE correlations between Hβ-

23/Hβ-15/Hβ-20 and those among H-29/H-15/H-23 indicated the close proximity of 

these groups and their β-disposition. Therefore, the C-1 carboxyl group is equatorial 

and α-oriented. An interaction through the space of the hydroxyl protons at C-29 (δ 

4.22,1H, bs) and C-15  (δ 3.79, 1H, bs) with H-7 (δ 5.05, td) and Hα-14 (δ 1.94, m in 

CDCl3) is only possible for the α-orientation of the tertiary hydroxyl group on C-29 

and C-15. The stereochemistry at the tertiary alcohol at C-15 position was 

established by the fact that H-15 has mutual NOE correlations with H-23, which had 

shown to be in the β-face of the molecule (axial configuration) under observation, 

and the secondary alcohol group that appeared as a broad singlet (at δ 4.23 ppm) has 

NOE interactions with H-13 and H-7 in the molecule. This is only possible if the C-

15 hydroxyl group lies on the α-side of the molecule.  

 
Figure 5A.11 

HPLC Chromatogram of Compound 2 
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Figure 5A.12 

(A) 1H, (B) 13C NMR spectrum of Compound 2 
 

5A.2.6.3 Structural Characterization of Compound 3(B2E25) 

(4E)-methyl 5-(3-(2-(furan-2-yl)ethyl)-octahydro-7-hydroxy-4-((E)-3-

methyl but-1-enyl)-2H-chromen-6-yl)-4-methylpent-4-enoate: yellow oil; 

UV(MeOH) λmax (log ε): 315 (4.12) nm TLC (Si gel GF254 15 mm; 1% 

MeOH/CHCl3, v/v) Rf: 0.60; Rt: 41.793 min (HPLC)(Figure 5A.13); IR (KBr, cm-1)  

νmax 722.2 (C-H ρ ), 1052.32(C-O ν), 1372.22 (CH δ ), 1560.22 (C=C ν), 1732.02(-

COO ν), 2854.74 (C-H νas), 3325(O-H ν); 1H NMR (500 MHz, Chloroform-d) δ 

7.47 (d, 1H), 7.20 (dd, 1H), 7.06 (d, J=8.4Hz 1H), 5.83 – 5.59 (m, 1H), 5.37 – 5.17 

(m, 1H), 4.92 (m, 1H), 4.21 (m, 1H), 4.05 (m, 1H), 3.85 (s, 2H), 3.58 (s, 3H), 3.46 

(s, 2H), 3.34 – 3.09 (m, 2H), 2.90 (s, 3H), 2.53 -2.22 (m, 7H), 1.96 (d, 4H), 1.72-

1.53 (m, 5H), 1.30 (d, 2H), 1.02 – 0.71 (m, 6H). 1H-1H COSY and HMBC data 

(details under the Table 5A.4); HRMS (ESI) m/e : 445.6854 calcd. for 

C27H41O5:445.4528 [M+H]+. Molecular formula C27H40O5 
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Table 5A.4 

NMR spectroscopic data of 6-(4-acetylphenyl)-5-hydroxyhexanoic  
macrolactin in CDCl3.

a 

 

 

 

 

 

 

 

 

 

 

Position 13C ppm 
 

H 
1H NMR 

1H-1H 
COSY 

HMBC 
1H         
13C 

1 174.33     
2 34.13 2-H 2.25(t,2H)  C-3,C-1 
3 24.84 3-H 1.52(t,2H) 2-H  
4 130     
5 129.75 5-H 5.28(d,1H) 6-H  
6 28.17 6-H 1.93(m,1H) 7-H C-11 
7 58.07 7-H 4.06(m,1H) 8-H C-5,C-6 
8 29.36 8-H 2.32(m,2H)  C-9 
9 70.14 9-H 4.22(m,1H) 10-H C-10,C-14 
10 29.69 10-H 1.65(m,1H) 11-H  
11 31.92 11-H 1.72(m,2H)  C-7 
12 30.2 12-H 2.04(m,1H) 21-H C-13,C-21 
13 53.6 13-H 1.94(m,1H) 14-H  
14 60.2  3.49(m,2H)  C-12 
15 38.46 15-H 2.53(m,2H)  C-16 
16 50.61 16-H 3.20(m,2H) 15-H C-17 
17 138.74     
18 126.91 18-H 7.29(s,1H) 19-H C-20 
19 128.98 19-H 7.09(d,1H) 20-H C-17,C-18 
20 129.17 20-H 7.48(d,1H)   

O

O

O
CH3

CH3

O

OH

1

4

7

111217
20

23 25

26
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21 134.14 21-H 5.70 
(dd,1H)   

22 114.05 22-H 4.98(m,1H) 23-H C-23 
23 29.33 23-H 1.98(m,1H) 24-H C-22,C-24 
24 22.69 24-H 1.21(d,3H)  C-23 
25 14.11 25-H 1.26(d,3H) 23-H  
26 51.44 26-H 3.60(s,3H)  C-1 
27 40.67 27-H 2.90(s,3H)  C-4 

a  NMR spectra were recorded using the Bruker DPX 300 and AVANCE 300 MHz spectrometers. 

b Values in ppm, multiplicity and coupling constants (J¼ Hz) are indicated in parentheses. 
Assignments were made with the aid of the 1H–1H COSY, HMQC, and HMBC experiments. 

 

 

 

        

 

 

 

Figure 5A.13 

HPLC Chromatogram of Compound 3 
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Figure 5A.14 
(A) 1H, (B) 13C NMR spectrum of Compound 3 
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Figure 5A.15 
(A) HMBC correlation spectrum of compound 3 (B) Prominent HSQC 

correlation spectrum of compound 3 
 

2-(7-(2-Ethylbutyl)-2,3,4,4a,6,7-hexahydro-2-oxopyrano [3,2-b] pyran-3-

yl) ethyl benzoate. The IR bending vibration bands near of compound compound 3 

at 1732.02 cm-1 attributed to the ester carbonyl absorption and that near 1560.22 cm-

1 was due to the presence of C=C-stretching vibrations. The ultraviolet absorbance at 

» max (log ε) 248 nm (3.12) was assigned to a chromophore with extended 

conjugation. Its mass spectrum exhibited a molecular ion [M-H]- peak at m/e 443, 

which in combination with its 1H and 13C NMR data (Table 5A.4) indicated the 

elemental composition of C27H40O5. The 1H NMR in conjugation with 13C-NMR and 

DEPT spectra recorded the presence of seven methylene, thirteen methine, four 

methyl, and three quaternary carbon atoms. Its mass spectrum exhibited a molecular 

ion peak at m/z 445 (HRESIMS m/e 445.6854 [M+H]+; D 0.0 amu), which in 

combination with its 1H and 13C NMR data (Table 5A.4) indicated the elemental 

composition of C27H40O5 as with eight degrees of unsaturation (Figure 5A.14). four  

degree of unsturation from double bonds and  three degrees of unsturation from the 

ring systems, one from the carbonyl moieties.Couplings were apparent between the 
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protons at δ 1.21 (H-24)/ δ 1.98 (H-23)/ δ 1.26 (H-25) with δ 4.98 (H-22)/ δ 5.70 (H-

21) in the 1H–1H COSY spectrum, which supported the presence of 2-methyl 

pentene moiety.  

The methylene signal at δ 4.06 appeared downfield due to the presence of 

multiple electronegative systems at close proximity. Two methylene groups have 

been assigned to occupy at the C2-3 positions, and the one with δ 2.25 shifted 

downfield due to the presence of a carbonyl group. The HMBC correlation of the 

proton at δ 2.25 and δ 3.60 with the carbon atom at δ 174.33 apparently indicated the 

presence of -C=O(O) group. The HSQC and HMBC experiments revealed that the 

ester group linked to the methane group at δ 3.60 was attached to the oxygen of 

carboxylic group. The aromatic protons showed their characteristic signals at δ 7.40-

7.07. Extensive HMBC (Figure 5A.15.A) and HSQC(Figure 5A.15.B) experiments 

revealed the presence of substituted furan moiety in the compound. 

 1H–1H COSY experiments revealed that the protons at δ5.28 (d) correlate 

with the methine proton at δ 1.93 (assigned to be as H-6) and that at δ 4.06 (H-7), 

the later is assigned to be attached to a strongly electronegative group. HMBC 

correlations were apparent between H-6 (δ 1.93) with that of a olefinic carbon at δ 

129.75. The –CH- proton appeared downfield at δ 4.24 apparently due to the 

presence of the electronegative oxygen group and was assigned to be present at the 

C-9 position of compound 3. The carboxyl group at the C-1 position of the 

compound resulted in strong deshielding of the –CH- proton at δ 2.25, and therefore, 

has been assigned to be present at the C-2 position of the structure.  

The chemical shift of the protons at δ 4.24, 1.65, 2.04, 1.97, and 3.49 along 

with detailed 2D NMR experiments established the presence of O-heterocyclic 

pyran ring system. The –CH- proton (q) at δ 4.24 is characteristic of the junction 

point of the bicyclic system. The 13C NMR spectrum of the purified compound in 

combination with DEPT experiments indicated the occurrence of 27 carbon atoms in 

the molecule including one carbonyl carbon at δ 174.33  and olefinic carbons at δ 

134.14 and 114 (Table 5A.4). The low field quaternary signals (13C NMR) was in 

agreement with that to a quaternary carbon signal carrying the carbonyl groups at C-

1 of  the compound 3, and this was supported by the relatively downfield shift of the 
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H-7 signal (δ 4.06), which referred to a possible oxygenation in its vicinity. The 

position of the hydroxyl group at C-7 was further confirmed from the HSQC, 

NOESY, and HMBC spectra. The H–H and C–H connectivities apparent in the 1H–
1H COSY and HMBC spectra respectively indicate that one of the eight  

unsaturations was due to the three ring and five double bonds.  

The relative stereochemistry of the chiral centre particularly that of C-7 

cyclic framework was deduced from the NOESY experiment and the J-values. NOE 

couplings were observed between Hα-5/Hα-7 thus indicating that these groups must 

be equatorial and on the α-side of the molecule. Therefore, the H-6 axial and β-

oriented. The methine proton at C-13 group did not exhibit NOE interactions with 

H-12 and H-9, which are at the β-face of the molecule, thereby indicating that H-10 

is at the equatorial disposition.  

5A.2.6.4 Structural characterization of Compound 4 (B2E29) 

Methyl3-(2-((E)-2-(2-(furan-2-yl)ethyl)-1-hydroxy-6-methylhept-4-en-3-

yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalen-7-yl) propanoate: yellowish oil 

(8.3mg; 10mm ) ;  UV(MeOH) λmax (log ε): 254 (2.83) nm TLC (Si gel GF254 15 

mm; 1% MeOH/CHCl3, v/v) Rf: 0.50; Rt:34.358 min (HPLC)( Figure 5A.16).; IR 

(KBr, cm-1) νmax 734.22 (C-H ρ ), 1050.36(C-O ν), 1370.26 (CH δ ), 1640.25 (C=C 

ν), 1736(-COO ν), 2854.74 (C-H νas), 3402(O-H ν); 1H NMR (500 MHz, 

Chloroform-d) δ 7.46 (d, 1H), 7.14 (dd, 1H), 7.09(d,1H), 5.83 – 5.27 (m, 2H), 5.02 – 

4.74 (m, 1H), 4.31 – 4.15 (m, 2H),  3.65 – 3.49 (m, 4H), 2.36 – 2.18 (m, 4H), 2.10 – 

1.83(m,6 H), 1.80 – 1.66 (m, 6H), 1.63 – 1.48 (m, 3H), 1.45 – 1.29 (m, 4H), 1.29 – 

0.98 (m, 6H); 1H-1H COSY and HMBC data (details under the Table 5A.5); HRMS 

(ESI) m/e : 441.9864 calcd. for C28H41O4:441.4528 [M-H]-.  Molecular formula: 

C28H42O4  
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Table 5A.5 

NMR spectroscopic data of Methyl3-(2-((E)-2-(2-(furan-2-yl) ethyl)-1-

hydroxy-6-methylhept-4-en-3-yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalen-7-yl) 

propanoate in CDCl3.
a 

 

 

 

 

 

Position 13C ppm 
 

H-TYPE 
1H NMR 

1H-1H 
COSY 

HMBC            
1H         
13C 

1 175.46     

2 34.13 2-H 2.30(t,2H) 3-H C-1,C-3 

3 24.84 3-H 1.57(t,2H) 2-H C-4 
4 134.14     
5 129.75 5-H 5.30(d,1h) 6-H C-6,C-7 
6 28.17 6-H 1.93(m,1H) 7-H C-4 
7 26.75 7-H 1.33(m,1H) 8-H C-5 
8 29.29 8-H 1.62(m,2H)  C-9 
9 30.19 9-H 2.04(m,1H) 8-H C-4 
10 27.22 10-H 1.72(m,1H)   
11 31.92 11-H 2.97(m,1H) 12-H C-12 
12 30.2 12-H 2.11(m,2H) 13-H C-13,C-10 
13 29.89 13-H 1.54(m,2H)   
14 45.53 14-H 2.53(m,2H) 22-H C-22,C-11 
15 53.60 15-H 3.49(m,2H) 14-H C-14 
16 38.94 16-H 1.83(m,2H)   
17 41.12 17-H 3.20(m,2H) 16-H C-16 
18 139.79     
19 123.00 19-H 7.29(s,1H) 20-H C-18 
20 127.15 20-H 7.09(d,1H) 21-H C-19,C-21 
21 129.17 21-H 7.48(d,1H)   

22 131.76 22-H 5.70 
(dd,1H) 23-H  

O

OH

O
CH3

O

1
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13
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23 115.89 23-H 4.98(m,1H) 24-H C-22 
24 29.33 24-H 1.98(m,1H)  C-26,C-25 
25 19.19 25-H 1.21(d,3H) 26-H C-24 
26 14.11 26-H 1.26(d,3H)  C-25 
27 51.49 27-H 3.60(s,3H)  C-1 
28 69.09 28-H 4.30(d,2H) 15-H C-15,C-14 

 

Compound 4 was isolated as yellowish oil upon chromatography over silica 

columns. The IR absorption band (in MeOH) exhibited close resemblance with that 

of compound 3, which apparently indicated that these compounds shared close 

structural similarities. The ultraviolet absorbance at λ max (log e) 254 nm (2.83) was 

assigned to a chromophore with extended conjugation. Its mass spectrum exhibited a 

molecular ion peak at m/e 441 (HRESIMS m/e 441.9864 [M-H]-; D 0.0 amu), which 

in combination with its 1H and 13C NMR data (Table 5A.5, Figure 5A.17 ) indicated 

the elemental composition of compound 4 as C28H42O4 with eight degrees of 

unsaturation. One degree of unsaturation from the carbonyl group, four degrees of 

unsaturation from the double bonds and three degrees of unsaturation from the rings 

were demonstrated. The 1H-NMR in conjugation with 13C-NMR recorded the signals 

at δ 5.80, 4.99, 1.97, 1.21 and 1.31, and the 1H–1H COSY(Figure 5A.17.C) 

couplings were apparent between these protons assigned to be at H-23/H-24/H-25 

and H-26; which support the presence of 2-methyl pentene system in compound 4. 

The relatively downfield shift of the methylene protons at δ 4.32 and the C-28 

carbon at δ 65.60 referred to a possible hydroxyl group. The aromatic protons were 

assigned to be present at δ 7.42-7.09 and the proton integral of the protons revealed 

the presence of furan ring. The methylene group protons at δ 2.30 and δ 1.57 were 

assigned to be at C-2 and 3 positions respectively, and the downfield shift was 

apparently due to the presence of carbonyl and olefinic moiety in its vicinity. Strong 

HMBCcorrelations were found between H-27 (δ 3.67) and H-2 (δ 2.30) with C-1(δ 

175) (Table 5A.5), which apparently indicated the presence of the carbonyl carbon 

near the methylene group. The presence of two quaternary carbons at δ 130.75 and δ 

138.74 were due to the presence of substituted furan moiety. The 1H–1H COSY 

correlations between H-21 (δ 7.45)/H-20 (δ 7.06)/H-19 (δ7.20) along with the proton 

and carbon connectivities deduced from HSQC (Figure 5A.17.D) and HMBC 
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(Figure 5A.17.E) experiments (Table 5A.5) confirmed the presence of the furan 

framework. No peaks observed in the 1H NMR at 2.90 (s, 3H), 4.04, 4.24 indicates 

absence of oxygen in their vicinity. Also additional olefinic signals were apparent at 

δ 129.75, 131.34, and 115.89. The 1H–1H COSY correlation between H-6/H-7/H-

13/H-12/H-11/H-10 indicate the hexane ring. These results were supported by 

detailed HMBC experiment (Table 5A.5).   

The presence of –CH2OH group at the C-15 position of compound 4 was 

confirmed by 1H–1H COSY and HMBC experiments (Table 5A.5). The methine 

proton at δ 2.97 was characteristic of the junction point of the bicylclic ring with that 

of the side chain ethyl furan moiety as established by 1H–1H COSY correlations and 

detailed HMBC experiments (Table 5A.5). The 13C NMR spectrum of the purified 

compound in combination with DEPT experiments indicated the occurrence of 28 

carbon atoms in compound 4 including one ester carbonyl carbon at δ 174 (Table 

5A.5). The –CH- proton at δ 34.23 exhibited HMBC correlation with the carbonyl 

carbon atom assigned to be as C-1 (δ 174.33). The low field quaternary signal (13C 

NMR) at C-18 was in agreement with that of a quaternary carbon signal carrying 

furan ring C-18 of the structure (δ138.74). The point of cyclization of H-5(5.30)/H-

6(1.92)/H-7(1.33)/H-8(1.62)/H-9(2.04) forms six member ring similarly strong cosy 

relation between H-13(1.54) /H-12(2.11)/H-11(2.97)/H-10(1.72) support the 

presence of  second ring. The proton and carbon connectivity deduced from HSQC 

and HMBC experiments confirmed the bicyclic framework attached to the aromatic 

side chain at the C-12 position of the compound. The –CH2 proton at C-2 (δ 2.30) 

appeared to demonstrate long range HMBC correlation (Figure 5A.17.E)) with ester 

carbonyl carbon at δ 174 (C-1). The relative stereochemistry of the chiral centres 

particularly that of C-6, 11 and 14 of the bicyclic framework was deduced from the 

NOESY spectrum (Figure 5A.17.F) of the compound and the J-values. NOE 

couplings were observed between Hα-5 (δ 5.30)/Hα-7 (δ 1.33) thus indicating that 

these groups must be equatorial and on the α-side of the molecule. The methine 

proton at C-14 group did not exhibit NOE interactions with H-11 and H-15, which is 

at the α-face of the molecule, thereby indicating that H-14 is at the axial disposition.  
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Figure 5A.16 

HPLC chromatogram of Compound 4 
 

 

 

Figure 5A.17 

(A) 1H, (B) 13C NMR spectrum of compound 4 
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Figure 5A.17 

(C) 1H–1H COSY - NMR spectrum of compound 4 (D) Prominent HSQC 
correlation spectrum of compound 4 
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Figure 5A.17 

(E) HMBC and (F) NOESY spectra of compound 4. The key HMBC couplings 
have been indicated as double barbed arrow. The NOESY spectrums have been 
indicated as two sided arrows. 
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5A.2.6.5 Structural characterization of Compound 5(B2E35) 

5a,6,7,8,9,9a-Hexahydro-7-isopentyl-8-methoxynaphtho[2,1-b]furan: Yellowish 

oil UV (MeOH) λmax (log ε): 238 nm (3.12); TLC (Si gel GF254 15 mm; EtOAc/n-

hexane (3:17, v/v) Rf: 0.40; Rt: 21.595 min(Figure 5A.18); IR (KBr, cm-1) νmax 

818.24 (aromatic C-Hδ), 1309.16 (C-Oν), 1372.34  (C-Hρ), 1618.46  (C=Cν),  

2935.35 (alkane C-Hν), 3011.22 cm-1 (aromatic C-Hν);  1H NMR (500 MHz, 

Chloroform-d) δ 7.61 – 7.50 (m, 1H), 7.13 (d, 2H), 5.93 – 5.71 (m, 1H), 5.08 – 4.83 

(m, 1H), 4.30 (d, 1H), 3.67 (s, 3H), 2.43 – 2.20 (m, 1H), 2.15 – 1.93 (m, 3H),1.65- 

1.31 (m, 6H),1.27-1.20(m,3H), 0.90(d,3H), 0.88 (d, 3H).13C NMR (125 MHz, 

CDCl3 δ in ppm), 1H-1H-COSY, and HMBC data, see Table 5A.6; HRMS (ESI) 

m/e: 275.6846(M+H)+ calcd. for C18H27O2  275.4072; found 275.6846(M+H)+. 

  

Table 5A.6 

NMR spectroscopic data of 5a,6,7,8,9,9a-hexahydro-7-isopentyl-8-

methoxynaphtho[2,1-b]furan in CDCl3.
a 

 

 

 

 

Position 13C ppm 

 

H-type 
 

1H NMR 
1H-1H 
COSY 

HMBC 
1H         
13C 

1 148.59     

2 124.45     

3 115.57 3-H 7.06(d,1H) 4-H C-1 

4 144.96 4-H 7.38(d,1H)   

5 117.06 5-H 4.98(d,1H) 6- H C-1,6 

6 133.18 6-H 5.82(m,1H) 7-H  

7 41.17 7-H 2.03(m,1H) 12-H C-6 

8 48.46 8-H 2.29(t, 1H) 7- H C-7 
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9 31.93 9-H 1.55 (m, 2H), 

 

 

 C-10 

10 62.09 10-H 4.26(m, 1H),  C-9,11 

11 34.87 11-H 1.98(m,1H) 12-H C-12 

12 31.44 12-H 1.36(m,2H)   

13 30.20 13-H 1.65 (m, 2H) 11-H C-14,11 

14 29.36 14-H 1.27(m,2H)  C-15 

15 22.69 15-H 1.21(m,1H) 14-H  

16 14.11 16-H 0.91(d,3H) 15-H C-17 

17 13.91 17-H 0.88(d,3H)   

18 53.22 18-H 3.67(s,3H)  C-10 

 

 

Figure 5A.18 

HPLC chromatogram of compound 5 
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Figure 5A.19 

(A) 1H, (B) 13C NMR spectrum of Compound 5 

 

 

 

 

Figure 5A.20 
2D NMR correlations as observed in compound5  (A) The key 1H–1H COSY couplings; (B) 
The 1H–1H COSY couplings have been represented by the bold face bonds; The HMBC 
couplings are indicated as a double barbed arrow 
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Compound 5 was isolated as yellowish oil upon chromatography over silica 

columns.The ultraviolet absorbance at λ max (log e) 238 nm (3.12) was assigned to a 

chromophore with extended conjugation. Its mass spectrum exhibited a molecular 

ion peak at m/e 275 (HRESIMS m/e 275.6846 [M+H]+; D 0.0 amu), which in 

combination with its 1H and 13C NMR data (Table 5A.6; Figure 5A.19 ) indicated 

the elemental composition of compound 5 as C18H26O2 with six degrees of 

unsaturation.  Three degrees of unsaturation from the double bonds and three 

degrees of unsaturation from the rings were demonstrated. The 1H-NMR in 

conjugation with 13C-NMR recorded the signals at δ 1.98, 1.65, 1.27, 1.21, 0.88 and 

0.91 showed 1H–1H COSY couplings were apparent between these protons assigned 

to be at H-11/H-13/H-14/H-15/H-16 and H-17; which support the presence of   2-

methyl pentane system in compound 5. The relatively downfield shift of the 

methylene protons at δ 4.26 and the C-10 carbon at δ 62.09 referred to a possible 

oxygen group. The aromatic protons were assigned to be present at δ 7.48-7.06 and 

the proton integral of the protons revealed the presence of furan ring. Signal at 

148.59 (C-1) downfield shifts was apparently due to the furan ring and olefinic 

moiety in its vicinity. Strong HMBC correlations were found between H-5 (δ4.98) 

and H-6 (δ 5.82) with C-1(δ 148.59) (Table 5A.6), which apparently indicated the 

presence of the olefinic carbons near the furan group. The presence of two 

quaternary carbons at δ 148.59 and δ 124.45 were due to the presence of substituted 

furan moiety. The 1H–1H COSY correlations between H-3 (δ 7.11)/H-4 (δ 7.38) 

along with the proton and carbon connectivities deduced from HSQC and HMBC 

experiments (Table) confirmed the presence of the furan framework. Also additional 

olefinic signals were apparent at δ 133.18 and 117.06. The 1H–1H COSY correlation 

with H-5 (δ 4.98 dd,1H)/H-6 (δ 5.82, m, 1H)/H-7 (δ 2.03, m, 1H) and H-8 (δ 2.29, t, 

1H) which support the presence of the cyclic hexane moiety (Figure 5A.20.A). 

These results were supported by detailed HMBC experiment (Figure 5A.20.B).  The 

presence of –CH2OCH3 group at the C-10 position of compound 5 was confirmed by 
1H NMR and HMBC experiments (Table 5A.6). The methine proton at δ 2.29 was 

characteristic of the junction point of the bicylclic ring with that of the side furan 

moiety as established by 1H–1H COSY correlations and detailed HMBC experiments 

(Table 5A.6). The 13C NMR spectrum of the purified compound in combination with 

DEPT experiments indicated the occurrence of 18 carbon atoms in compound 5. 
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(Table 5A.6). The –CH- proton at δ 53.22 exhibited HMBC correlation with the 

carbon atom assigned to be as C-10 (δ 62.09). The low field quaternary signal (13C 

NMR) at C-1 was in agreement with that of a quaternary carbon signal carrying 

furan ring C-18 of the structure (δ148.59). The aromatic furan attached to the 

bicyclic group was substituted side by side. The point of cyclization of H-8(2.29)/H-

9(1.55)/H-10(62.09)/H-11(1.98)/H-12(1.36) forms six member ring support the 

presence of second cyclohexane ring. The proton and carbon connectivity deduced 

from HSQC and HMBC experiments confirmed the bicyclic framework attached to 

the aromatic furan ring. The HMBC spectrum of the purified compound also 

revealed connections of the protons at C-18 (δ 3.67) to the methylene carbon at δ 

62.09. The relative stereochemistry of the chiral centers particularly that of C-8, 10, 

11 and 7 of the bicyclic framework was deduced from the NOESY spectrum of the 

compound and the J-values. NOE couplings were observed between Hα-8 (δ 

2.29)/Hα-11 (δ 1.98) thus indicating that these groups must be equatorial and on the 

α-side of the molecule. The methine proton at C-10 group did not exhibit NOE 

interactions with H-11 and H-8, which is at the α-face of the molecule, thereby 

indicating that H-10 is at the axial disposition. 

5A.2.6.6 Structural characterization of Compound 6(B2E41)  

Methyl 3-(4a,5,6,8,8a,9-hexahydro-4-((E)-3-methylpent-1-enyl)-4H-furo 

[3,2-g]isochromen-6-yl)propanoate: Yellowish oil UV (MeOH) λmax (log ε): 259 

nm (2.86); TLC (Si gel GF254 15 mm; EtOAc/n-hexane (3:17, v/v) Rf: 0.20; Rt: 

29.395 min(HPLC) ( Figure 5A.21) ; IR (KBr, cm-1) νmax 812.06 (aromatic C-Hδ), 

1310.16 (C-Oν), 1378.22  (C-Hρ), 1612.94  (C=Cν), 1690.28 cm-1 (C-C-Oν), 1738.96 

(C=Oν), 2923.22 (alkane C-Hν), 3010.12 cm-1 (aromatic C-Hν);  1H NMR (500 MHz, 

Chloroform-d) δ 7.40 (d, 1H), 7.14 – 6.89 (m, 1H), 5.83 – 5.67 (m, 2H), 5.02 – 4.74 

(m, 2H), 4.31 – 4.15 (m, 1H), 4.15 – 3.98 (m, 1H), 3.65 – 3.49 (m, 1H), 2.36 – 2.18 

(m, 2H), 2.10 – 1.87 (m, 10H), 1.80 – 1.66 (m, 13H), 1.63 – 1.48 (m, 6H), 1.45 – 

1.29 (m, 5H), 1.29 – 1.16 (m, 5H), 1.00 – 0.85 (m, 3H).   13C NMR (125 MHz, 

CDCl3 δ in ppm), 1H-1H-COSY, and HMBC data, see Table 5A.7 ; HRMS (ESI) 

m/e: 369.3892(M+Na)+ calcd. for C21H30O4 Na  369.4008; found 369.3892 

[M+Na]+. 
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Table 5A.7 

NMR spectroscopic data of methyl 3-(4a,5,6,8,8a,9-hexahydro-4-((E)-3-

methylpent-1-enyl)-4H-furo[3,2-g]isochromen-6-yl)propanoate in CDCl3.
a 

 

 

 

 

 

 

 

Position 13C ppm 
 

H 
1H NMR 

1H-1H 
COSY 

HMBC 
1H         
13C 

1 173.59     

2 33.82 2-H 2.25 (m, 1H) 3-H C-3,1 

3 25.24 3-H 1.55 (m, 1H) 4-H C-4 

4 60.69 4-H 4.06(m, 1H) 8-H C-5 

5 65.46 5-H 4.26(m, 1H) 6- H  

6 29.7 6-H 1.65 (m, 1H) 12-H C-12 

7 22.69 7-H 1.36(m,1H)  C-9 

8 31.93 8-H 1.94 (t, J = 6.7 Hz, 
2H) 

 C-4 

9 29.42 9-H 1.97(m,1H) 15-H C-10 

10 146.26     

11 127.34     

12 29.36 12-H 1.72(d,1H) 6- H  

13 124.03 13-H 7.06(d,1H) 14-H C-14,10 

O O

O

O

1
4710

12

14

17
20

21
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14 133.76 14-H 7.38(d,1H)   

15 139.28 15-H 5.70(dt,1H) 16-H C-16 

16 114.06 16-H 4.98(dd,1H)  C-17 

17 27.09 17-H 1.80 (m, 1H) 18-H  

18 24.98 18-H 1.23(d,1H)  C-17 

19 22.63 19-H 1.21(m,2H) 17-H C-12 

20 14.12 20-H 0.88(d,3H) 19- H C-19,17 

21 58.69 21-H 3.59(s,3H)  C-1 

 

 

 

 

Figure 5A.21 
HPLC chromatogram of Compound 6(B2E41) 
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Figure 5A.22 

(A) 1H, (B) 13C NMR spectrum of compound 6 
 

 

The IR bending vibration bands of compound 6 at 1738.96 cm-1 attributed to 

the ester carbonyl absorption. The IR spectrum revealed broad absorption band at 

νmax 1612.94cm-1, symbolizing the olefinic system. The bending vibration bands 

near 812.06 cm-1 and stretching vibration at 3010.12 cm-1 denoted the aromatic C-H 

vibrations. The ultraviolet absorbance at » max (log ε) 259 nm (2.86) was assigned to 

a chromophore with extended conjugation. Its mass spectrum exhibited a molecular 

ion peak at m/e 369, which in combination with its 1H and 13C NMR data (Table 

5A.7) indicated the elemental composition of C21H30O4Na. The 1H-NMR in 

conjugation with 13C-NMR and DEPT spectra recorded the presence of six 

methylene, nine methine, three methyl, and three quaternary carbon atoms. Its mass 

spectrum exhibited a molecular ion peak at m/z 346 (HRESIMS m/e 369.3892 

[M+Na]+; D 0.0 amu), which in combination with its 1H and 13C NMR data (Table 

5A.7; Figure 5A.22) indicated the elemental composition of compound 6 as 
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C21H30O4Na with seven degrees of unsaturation (Figure 5A.22). Three degree of 

unsturation from double bonds, three degrees of unsturation from the aryl and pyran 

ring systems, one from the carbonyl moieties. Couplings were apparent between the 

protons at δ 5.80 (H-15)/ δ 4.98 (H-16)/ δ 1.97 (H-17)/ δ 1.23 (H-18) and 1.21(H-19/ 

δ 0.88 (H-20) in the 1H–1H COSY spectrum, which supported the presence of 3-

methyl pentene moiety. The methine signal H-4 at δ 4.06 appeared downfield due to 

the presence of   electronegative systems at close proximity. One methylene groups 

have been assigned to occupy at the C-5 position, shifted downfield due to the 

presence of oxygen moiety. The HMBC correlation of the proton at δ 4.26 with the 

carbon atom at δ 60.69 apparently indicated the presence of pyranose moiety. The 

HSQC and HMBC experiments revealed that the ester group linked to the methoxy 

group at δ 3.59. The aromatic protons showed their characteristic signals at δ 7.38-

7.04. Extensive HMBC and HSQC experiments revealed the presence of substituted 

furan moiety in compound 6. The 1H–1H COSY experiments revealed that the 

protons at δ 2.25(t) correlate with the methylene protons at δ 1.53 (assigned to be as 

H-3) and, the later is assigned to be attached to a carbonyl electronegative group.  

The –CH2- proton appeared downfield at δ 4.26 apparently due to the 

presence of the electronegative oxygen group and was assigned to be present at the 

C-5 position of compound 6. The carboxyl group at the C-1 position of compound 6 

resulted in strong deshielding of the –CH- proton at δ 2.25, and therefore, has been 

assigned to be present at the C-2 position of the structure. The chemical shift of the 

protons at δ 1.94, 1.36, 1.65, and 4.26 along with detailed 2D NMR experiments 

established the presence of O-heterocyclic pyran ring system. The –CH- proton at δ 

4.06 is characteristic of the junction point of the cyclic system with carboxylic side 

chain. The 13C NMR spectrum of the purified compound in combination with DEPT 

experiments indicated the occurrence of 21 carbon atoms in the molecule including 

furan  carbons at δ 146-114, and olefinic carbons at δ 139.77 and 124 (Table 5A.7). 

The low field quaternary signals (13C-NMR) were in agreement with that to a 

quaternary carbon signal carrying the furan ring. The H–H and C–H connectivities 

apparent in the 1H–1H COSY and HMBC spectra respectively indicate that one of 

the seven  unsaturations was due to the three ring and four double bonds. The 

relative stereochemistry of the chiral centre particularly that of C-6 cyclic 
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framework was deduced from the NOESY experiment and the J-values. NOE 

couplings were observed between Hα-4/Hα-6 thus indicating that these groups must 

be equatorial and on the α-side of the molecule. Therefore, the C-7  proton  is axial 

and β-oriented.  

5A.3 Conclusions 

 Bacillus subtilis MTCC 10403 (SWI2) associated with Anthophycus 

longifolium demonstrated it as a promising bacterial candidate to isolate the potential 

antibacterial metabolites. A total of six antibacterial metabolites were purified from 

the crude solvent extract of the bacterium, namely, 7-O-methyl-5’-hydroxy-3’-

heptenoate-macrolactin, 6-(4-acetylphenyl)-5-hydroxyhexanoic macrolactin, 2-(7-

(2-ethylbutyl)-2,3,4,4a,6,7-hexahydro-2-oxopyrano [3,2-b] pyran-3-yl) ethyl 

benzoate, methyl3-(2-((E)-2-(2-(furan-2-yl)ethyl)-1-hydroxy-6-methylhept-4-en-3-

yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalen-7-yl)propanoate, 5a,6,7,8,9,9a-hexahydro 

-7-isopentyl-8-methoxynaphtho[2,1-b]furan and methyl 3-(4a,5,6,8,8a,9-hexahydro-

4-((E)-3-methylpent-1-enyl)-4H-furo[3,2-g]isochromen-6-yl)propanoate. 

The potential of polyketide derived antibacterial candidate to develop a new 

generation of drug candidates for use against the multiresistant microbial pathogens. 

The newly evolving antibacterials bearing the polyketide backbone will be 

increasingly important keeping in mind the development of multi-drug resistant 

bacteria and pathogenic microorganisms against the existing antibiotics and related 

molecules. In this study, a new variant of macrolactin, 7-O-methyl -5'-hydroxy-3'-

heptenoate-macrolactin has been described. This novel polyketide product holds 

promise to develop a new generation of drug candidate for use against the 

multiresistant microbial pathogens. Evidence for a biosynthetic route of this 

compound was provided in this study, which may lead to the identification of a new 

target for antimicrobial lead molecule discovery programs. The results demonstrated 

that these polyene antibiotics are widespread metabolites of seaweed-associated 

bacterial populace particularly belonging to Bacillus species. The present work may 

have an impact on the exploitation of macrolactins for food, pharmaceutical and 

biotechnological applications.  
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CHAPTER 5B 

BIOPROSPECTING OF ANTAGONISTIC BACTERIA                        

Bacillus amyloliquefacens MTCC 10456 ASSOCIATED WITH SEAWEED 

Laurenciae papillosa (SWI4B) FOR ANTIBACTERIAL METABOLITES 

 

5B.1  Materials and Methods 

5B.1.1 Microbial strain under the study 

The microbial strain used for bioprospecting of antimicrobial compound in 

the current study is MTCC 10456 associated with Laurenciae papillosa The 

seaweed associated bacterial isolates were isolated (chapter 3 section 3.2.2) and 

assayed for their ability to inhibit selected pathogenic microorganisms (chapter 3 

section 3.2.5). The isolates used in the study for purification of secondary 

metabolites with antibacterial activities were selected based on their inhibition 

spectrum (Figure 5B.1) (chapter 3 Table 3.2) and the positive hit for metabolite 

gene (Chapter 4. 2.5 and 4.3.4). 

5B.1.2 Antibiotic resistance and abiotic stress tolerance  

Antibiotic resistance, abiotic stress tolerance and enzyme production profile 

of the strain MTCC 10456 was analyzed using the methodology explained in 5.2.2. 

5B.1.3 Optimization of time 

The microorganism under the study was inoculated in nutrient broth and the 

optimum time for the antibiotic production with maximum inhibitory activity was 

analyzed as explained in 5.2.3. 
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5B.1.4 Optimization of temperature  

The optimum temperature for the production of antibacterial compound for 

the strain MTCC 10456 was analyzed using the methodology explained under the 

section 5.2.4.  

5B.1.5 Optimization of pH 

PH for the production of the active metabolite was standardized as 

described under the section 5.2.5. 

5B.1.6 Preparation of crude extract for purification of secondary metabolites 

The antibiotic-producing bacterium, B. amyloliquefacens MTCC 10456 

associated with Laurentia papillosa (SWI4B). The preparation and recovery of 

secondary metabolites were carried out by a surface culturing method over solid 

nutrient agar plates (5.2.3). The adsorbed products were subsequently extracted 

with ethyl acetate by homogenization (Arrow Engineering Inc., Pennsylvania Ave, 

USA) followed by refluxing. Evaporation of the solvent under reduced pressure 

(Heidolph Instruments GmbH & Co., Schwabach, Germany) yielded the ethyl 

acetate extract (6.3g) from the total culture volume of 4 L. Subsequently the 

residual agar was extracted with CH2Cl2 to furnish dichlorometane extract.These 

solvent extracts were evaluated for antibacterial activities (5.2.4), against the 

pathogens (listed in chapter 3 section 3.2.4) and the fractions which showed 

significantly broad spectrum antibacterial activities and higher yield were further 

purified by chromatographic techniques. 

5B.1.7 Purification of secondary metabolites 

The pooled ethyl acetate extract (6.3 g) was was subjected to vacuum liquid 

chromatography on silica gel (180-230 mesh), with a stepwise gradient of n-hexane/ 

EtOAc (0-100%). The column was initially eluted with n-hexane and the eluent 

polarity was gradually increased by addition of EtOAc (n-hexane: EtOAc 19:1 to 

1:4, v/v) to furnish fourteen fractions of 50 ml each (B4E1-B4E14). These column 
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fractions were evaluated for antibacterial activities(5.2.4), against the pathogens 

(listed in chapter 3 section 3.2.4) and the fractions which showed significantly 

broad spectrum antibacterial activities and higher yield were further purified by 

column chromatography or preparative TLC (P-TLC) using EtOAc:n-hexane or 

MeOH:CHCl3 or MeOH:EtOAc as mobile phase when required. The schematic 

diagram showing the purification of B. amyloliquefacens MTCC 10456 associated 

with Laurentia papillosa (SWI4B) was shown in Figure 5B.2 

5B.1.8 Analysis of pure fractions 

 Active fractions were subjected to chromatographic and spectroscopic 

analysis as explained earlier (5.2.9). 

 

Figure 5B.1 

 (A) Laurenciae pappillosa at harvest location (9° 17' 0" North, 79° 7' 0" East). (B) 
Spot over lawn assay of B. amyloliquefaciens MTCC 10456 culture against 
pathogenic Vibrio vulnificus MTCC 1145. The clearance zones realized by the 
isolates signify the antibacterial activity. (C) Bioautographic plate showing inhibitory 
activity of the column fraction B4E3 from crude culture extract (shown as hallow). 
The antagonistic activity of B4E3 was indicated as an arrow on the plate (inset). 
Antagonistic activity was recorded as the diameter of inhibition zones determined as 
a distance of ≥1 mm between the circular area (= lawn of the isolate) and the end of 
the clear zone bounded by the lawn.  
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Figure 5B.2 

Schematic representaion of bioprospecting of B. amyloliquefacens MTCC 
10456 
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5B.2  Results and discussion 

5B.2.1 Antibiotic resistance and abiotic stress tolerance  

The strain was susceptible to all the antibiotics tested and was proved to be 

safe for laboratory work. The strain was able to grow above 20°C up to 55°C and 

could with stand a pH range of 6 to 11.5.Strain could grow an NaCl concentration 

from 2% to10%.The ability of the seaweed associated bacterial isolate to grow 

under a wide range of environmental conditions may be a functional adaptation for 

their protective function in varying aquatic environment. 

5B.2.2 Optimization of time, temperature and pH 

Optimum time of production for the culture is found to be within 72 to 96 hours. 

The pH was found to be 8 and the culture grown at 20°C is shown a maximum 

activity (Figure 5B.3).  

        

Figure 5B.3 
Graphical representation of antibacterial activity of cultures 

 incubated at different pH, temperature and time 
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5B.2.3 Yield  

The yield (g/L of the spent broth) of the EtOAc extracts of SWI 4 was 

recorded as 1.575g/L of the spent broth is higher than DCM (0.4365 g/L of the 

spent broth) extract. 

 

5B.2.4 Antibacterial activities of the crude extracts by agar diffusion method.  

Antibacterial activity of B. amyloliquefacens MTCC 10456 extracts to 

different pathogens Aeromonas hydrophilla V. vulnificus MTCC 1145 and V. 

parahaemolticus ATCC17802 are shown in Fig. 5B.4. The figure indicated that 

the EA fractions are more active than other fractions of the B. amyloliquefacens 

MTCC 10456 associated with Laurentia papillosa (SWI4B). The ethyl acetate 

extract (100 mcg on disk) of Bacillus amyloliquefaciens MTCC10456 exhibited 

an inhibitory zone diameter of about 21-26 mm against the experimental 

pathogens (Figure 5B.1 and Figure 5B.2) 

 

Figure 5B.4 
Graphical representation of antibacterial activity of different crude solvent extracts 

to the tested pathogens 
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5B.2.5 Secondary Metabolites from B. amyloliquefacens MTCC 10456  

associated with Laurentia papillosa(SWI4B) 

The fraction B4E3 (773 mg) was found to be a mixture with an antibacterial 

activity of 24 mm, which was flash chromatographed (Biotage AB SP1-B1A, 230–

400 mesh, 12 g; Biotage AB, Uppsala, Sweden) on a silica gel column (Biotage,  

 

230–400 mesh, 12 g; Sweden, Biotage No. 25+M 0489-1) at a collection UV 

wavelength at 242 nm using a step gradient of CH2Cl2/ MeOH (0-100% MeOH) to 

afford 125 fractions (9 ml each). The fractions with similar patterns were pooled 

together to afford seven pooled fractions (B4E15– B4E21) after TLC analysis (n-

hexane: EtOAc, 9:1, v/v). The sub-fraction B4E16 (159 mg) as eluted with CH2Cl2/ 

MeOH (19:1, v/v) was further separated by chromatography on silica gel GF254 

(particle size 15 μm) coated on a preparatory thin layer plate using a stepwise 

gradient system from 0.5% MeOH/CH2Cl2 yielding B4E25, 3- (octahydro-9-

isopropyl-2H- benzo [h] chromen-4-yl) - 2- methylpropyl benzoate (compound 7, 

inhibition zone diameter of 12 mm, 25 mcg per disk). The active fraction B4E23 (72 

mg) eluted at 0.3% MeOH/CH2Cl2 was further chromatographed over preparatory 

TLC on silica gel GF254 (particle size 15 mm, E-Merck, Germany) using 

MeOH/CH2Cl2 (0.5:95.5, v/v) to afford B4E29 methyl 8- (2- (benzoyloxy) ethyl) – 

hexahydro -4- ((E) – pent - 2- enyl) - 2H-chromene-6-carboxylate (compound 8, 

~99% purity, 6.2 mg, inhibition zone diameter of 14 mm, 25 mcg per disk). 

Evaporation of solvents from B4E29 followed by TLC over precoated silica gel 

GF254 (particle size 15 mm, E-Merck, Germany) using EtOAc/ n-hexane (1:4, v/v) 

supported the purity. The remaining fractions were not considered for purification 

either of low yield or less activity. 

The compound 7 and 8 isolated from Bacillus amyloliquefaciens 

MTCC10456 demonstrated significant antibacterial activity (inhibitory zone 

diameter of greater than 18 mm against A. hydrophilla, 25 mcg on disk) against 

these pathogenic bacteria (Fig. 5B(2), Table 5B(1). The antibacterial activities of 7 

and 8 against Vibrio vulnificus (14-16 mm, 25 mcg on disk) and V. parahemolyticus 

ATCC® 17802™ (inhibitory zone diameter of 12-14 mm, 25 mcg on disk) were 
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found to be lesser than A. hydrophilla. It is of note that the compound 8 exhibited 

greater antibacterial activities against the experimental pathogens than 7 

(Table5B.1).  

 

Table 5 B.1  

Yield, activity and Rf values of the fractions at different purification stages 

 Yield (mg) Rt Rf Antibacterial activity 

B4 EtOAc fraction (CC E/H)     

B4E-1(100% H) 49.2 - NP NA 

B4E-2(0-5% E/H) 3.7 - NP NA 

B4E-3(5-7% E/H) 773 - NP 24mm 

B4E-4(7-10% E/H) 2.59 - NP NA 

B4E-5(10-15% E/H) 470 - NP NA 

B4E-6(15-17% E/H) 624 - NP NA 

B4E-7(17-20% E/H) 720 - NP NA 

B4E-8(20-25% E/H) 56.3 - NP NA 

B4E-9(25-30% E/H) 104.5 - NP NA 

B4E-10(25-30% E/H) 398.6 - NP 16mm 

B4E-11(30-40% E/H) 1176.33 - NP NA 

B4E-12(40-50% E/H) 417.46 - NP NA 

B4E-13(50-100% E/H) 9.685 - NP NA 

B4E-14(100% E) 1.655 - NP NA 

B4E-3 ((FCC M/D)     

B4E-15(100%D) 6.5 - NP NA 

B4E-16(0-5% M/D) 159 - NP 18mm 

B4E-17(0-10% M/D) 3.7 - NP NA 

B4E-18(10-20% M/D) 2.1 - NP NA 

B4E-19(25-50% M/D) 1 - NP NA 

B4E-20(50-100%M) 4.6 - NP NA 

B4E-21(50-100% M) 12.6 - NP NA 
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B4E-16 (PTLC 0.5% M/D)     

B4E-22 8.8 - 0.18 NA 

B4E-23 20.6 - 0.25 18mm 

B4E-24 1.9 - 0.48 NA 

B4E-25 12.6 31.963 0.55 14mm 

B4E-26 12.8 - 0.72 NA 

B4E-27 19.6 - 0.90 NA 

B4E-23(PTLC 0.3%M/D)     

B4E-28 3.2  0.30 NA 

B4E-29 9.8 37.684 0.48 12 

B4E-30 4.8  0.98 NA 

NP-Not pure NA-Not active. 

 

5B.2.6 Structural characterization of antibacterial metabolites from Bacillus 

amyloliquefaciens  MTCC 10456 

5B.2.6.1 Structural characterization of compound 7 

3- (Octahydro-9-isopropyl-2H- benzo [h] chromen-4-yl) - 2- 

methylpropyl benzoate. Yellowish oil; UV (MeOH) λmax (log ε): 254 nm (3.11); 

TLC (Si gel GF254 15 mm; CHCl3/MeOH 1:9, v/ v) Rf: 0.6; Rt: 31.963 min (HPLC 

RP C18)( Figure 5B.5); IR νmax (KBr) cm-1 (δOOP= out of plane bending, ν = 

stretching, δ= bending, ρ= rocking vibrations): 726.24 (C-H ρ), 1000.14 ( aromatic 

C-H δ), 1352.24 (C-H ρ), 1526.21(C=C aromatic ν), 1654.40 (C=C ν), 1692.21 (C-

CO-O ν), 1722.86 (C=O ν), 2923.22 (C-H ν), 2955.04 cm-1 (C-H ν), 3067.12 (C-H 

aromatic ν); 1H NMR (500 MHz, CDCl3 δ in ppm), 13C NMR (125 MHz, CDCl3 δ 

in ppm), 1H-1H-COSY, and HMBC data, see Table 5B.2; HRMS (ESI) m/z: calcd. 

for C27H37O3 409.2984; found 409.6062 [M+H]+.  
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Figure 5B.5 

HPLC Chromatogram of compound 7 
 

 

Table 5B.2 

NMR spectroscopic data of 7 in CDCl3
a 

 
O

O

OCH3
1

7
11

14

18

21

23

26

27

 

C. 
No. 

δ 13CNMR 
 
H δ1H NMR 

(int., mult., J in Hz)b 

1H-1H 
COSY 

HMBC 
1H         
13C 

1 132.31 - - - - 
2 130.9 2-H 7.77-7.65 (qd, 1H) 3-H C-3,4 
3 129.79 3-H 7.51 – 7.37 (m, 1H) - - 
4 128.84 4-H 7.51 – 7.37 (m, 1H) - - 
5 128.84 5-H 7.51 – 7.37 (m,1H) 6- H - 
6 130.90 6-H 7.77-7.65 (qd, 1H), - - 
7 167.71 - - - - 
8 65.57 8-H 4.31 (d, J = 6.7 Hz, 

 

9- H C-9,7 
9 30.58 9-H 1.71 (m,1H) 27-H C-8 
10 34.12 10-H 1.62 (m,2H) - C-11 
11 148.59 - - - - 
12 135.04 12-H 5.26 (m,1H) 13- H - 
13 72.4 13-H 4.14 (Hα)4.29(Hβ)(d) 

 

12-H C-12 
14 82.92 14-H 4.22 (dd,1H) 15-H - 
15 44.98 15-H 2.29 (td,1H) 16-H C-17 
16 28.24 16-H 1.60 (m,2H) 17-H - 
17 24.33 17-H 1.53 (m,2H) - C-13 
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18 132.5 - - - - 
19 41.02 19-H 2.30 (td,1H) 20-H C-20 
20 27.40 20-H 1.62 (dd,2H) 21-H - 
21 19.75 21-H 1.31 (m,1H) 22-H - 
22 22.35 22-H 2.04 (m,2H) 23-H - 
23 128.71 23-H 5.34 (d,1H) 22-H C-17 
24 18.68 24-H 1.44 (m,1H) 21- 

 

C-25 
25 13.96 25-H 0.89 (d,3H) 24-H - 
26 13.74 26-H 0.94 (d,3H) - - 
27 19.76 27-H 1.21 (d,3H) - C-9 

 

a NMR spectra recorded using Bruker AVANCE III 500 MHz (AV 500) 
spectrometers. bValues in ppm, multiplicity and coupling constants (J = Hz) are 
indicated in parentheses. Assignments were made with the aid of the 1H-1H COSY, 
HSQC, HMBC and NOESY experiments. 
 

5B.2.6.2 Structural characterization of compound 8 

Methyl 8- (2- (benzoyloxy) ethyl) – hexahydro -4- ((E) – pent - 2- enyl) 

- 2H-chromene-6-carboxylate. Colorless oil; UV (MeOH) λmax (log ε): 362 nm 

(3.62); TLC (Si gel GF254 15 mm; CHCl3/MeOH 1:9, v/ v) Rf: 0.5; Rt: 32.684 min 

(HPLC RP C18)( Figure 5B.6); IR νmax (KBr) cm-1 (δOOP= out of plane bending, ν 

= stretching, δ= bending, ρ= rocking vibrations): 838.17 (C-H ρ), 968.1 (HC=CH 

δ), 1454.38 (C-C ν), 1578.21(C-C aromatic ν), 1642 (C=C ν), 1742 (C=O ν), 

2923.22 (C-H ν), 3010.04 (C-H ν); 1H NMR (500 MHz, CDCl3 δ in ppm), 13C 

NMR (125 MHz, CDCl3 δ in ppm), 1H-1H-COSY, and HMBC data, see Table 

Table 5B.2; HRMS (ESI) m/z: calcd. for C25H33O5 413.5239; found 413.6684 

[M+H]+.  
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Figure 5B.6 
HPLC Chromatogram of compound 8 

 
 

 

Table 5B.3 

NMR spectroscopic data of 8 in CDCl3
a 
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O
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C. 

No. 

δ 13CNMR H 
δ1H NMR 

(int., mult., J in Hz)b 

1H-1H 
COSY 

HMBC 

1H         13C 

1 132.0 - - - - 
2 130.84 2-H 7.78-7.65 (qd, 1H) 3-H C-3,4 
3 129.79 3-H 7.51 – 7.37 (m, 1H) - - 
4 128.84 4-H 7.51 – 7.37 (m, 1H) - - 
5 128.84 5-H 7.51 – 7.37 (m,1H) 6- H - 
6 130 90 6-H 7 78-7 65 (qd  1H)   - 
7 167.69 - - - - 
8 65.55 8-H 4.23 (t, J = 6.7 Hz, 2H) 9- H C-9,7 
9 32.05 9-H 1.68 (m,2H) - C-7 
10 22.60 10-H 1.42 (m,1H) 17- H C-11 
11 29.66 11-H 1.58 (m,2H) 12-H - 
12 34.06 12-H 2.23(m,1H) 15- H - 
13 173.28 - - - C-11 
14 56.67 14-H 3.59(s,3H) - - 
15 22.69 15-H 1.29(m,2H) 16-H C-17 
16 33.80 16-H 1.96 (m,1H) - - 
17 68.88 17-H 3.98 (dt, 1H) 10- H C-13 
18 139.28 - - - - 
19 128.33 19-H 5.19 (dt,1H) - C-20 
20 62.13 20-H 4.10 (dd,2H) 19- H - 
21 27.40 21-H 1.94(m,1H/1.96(m,1H) 22-H - 
22 122.98 22-H 5.86(m,1H) 23-H - 
23 114.05 23-H 4.88(m,1H) - C-16 
24 19.18 24-H 1.30(m,2H) 25- H C-23 
25 14.11 25-H 0.89(t,3H) 24-H - 
- - - - - - 
- - - - - - 

 
a NMR spectra recorded using Bruker AVANCE III 500 MHz (AV 500) spectrometers. 
bValues in ppm, multiplicity and coupling constants (J = Hz) are indicated in parentheses. 
Assignments were made with the aid of the 1H-1H COSY, HSQC, HMBC and NOESY 
experiments. 

 
Two novel substituted carboxylate analogues, 7 and 8 (as stated in the 

materials section) were isolated upon repeated bioassay guided chromatography 

over silica columns (Table 5B.2).  

3- (Octahydro-9-isopropyl-2H- benzo [h] chromen-4-yl) - 2- methylpropyl 

benzoate(, a new derivative of the substituted carboxylate was isolated as 
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yellowish oil upon chromatography over silica columns. The 1H-NMR in 

conjugation with 13C-NMR(Figure 5B.7) recorded the signals at δ 5.26, 4.27, 4.22 

and 2.29. The 1H–1H COSY (5B.8.A) couplings were apparent between these 

protons assigned to be as H-12/H-13/H-14/H-15; which support the presence of six 

membered lactone ring system. The relatively downfield shift of the methylene 

proton at δ 4.31and the C-8 carbon at δ 65.57 referred to a possible carboxyl group 

with extended conjugated aromatic moiety in its vicinity. The aromatic protons 

were assigned to be present at δ 7.42-7.77 and the proton integral of the protons 

revealed the presence of aryl ring. The methylene group protons at δ 4.31 and δ 

1.71 were assigned to be at C-8 and 9 positions respectively, and the downfield 

shift (about δ 0.75) was apparently due to the presence of the possible extended 

conjugated moiety in its vicinity. A strong HMBC correlation was found between 

H-8 (δ 4.31)/ C-7 (δ 167.71) (Table 5B.2), which apparently indicate the presence 

of the carbonyl carbon near the methylene group.  

The presence of two quaternary carbons at δ 132.31 and δ 167.71 were due 

to the presence of substituted benzyl moiety. The protons of the –CH- groups at δ 

4.27, 4.22, and 4.31 were deshielded due to the possible oxygenation at its 

vicinity. Also, the 1H–1H COSY (Fig. 5B.8.A) correlations between H-12 (δ 5.26)/ 

Hα-13(δ 4.27), Hβ-13(δ4.14) and H-14 (δ4.22)/ H-15 (δ 2.29), along with the 

proton and carbon connectivities deduced from HSQC (Fig. 5B.8.B) and HMBC 

(Fig. 5B.9.A) experiments (Table 5B.2) confirmed the pyran framework. The 

aromatic ring and carboxyl ester group at the C-7 position of the structure resulted 

in strong deshielding of proton at δ 4.31, the quaternary –C- at δ 132.51, and 

therefore, has been assigned to be present at the junction point between the 

aromatic ring and carboxyl ester group.  

The methine proton at δ 2.29 was characteristic of the junction point of the 

pyran ring with that of the side six membered ring moiety as established by 1H–1H 

COSY correlations and detailed HMBC experiments (Table 5B.2)). The 13C NMR 

spectrum of the purified compound in combination with DEPT experiments 

indicated the occurrence of 27 carbon atoms in the molecule including one ester 

carbonyl carbon at δ 167.71 and  two methylene carbons between δ 65.57, 72.4 
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and methine carbon at δ 82.92 (Table 5B.2)). The latter was found to be 

significantly deshielded due to the presence of oxygen in its vicinity. The –CH- 

proton at δ 34.12 exhibited HMBC correlation with the olefinic quaternary carbon 

atom assigned to be as C-11 (δ 148.59). The low field quaternary signals (13C 

NMR) is in good agreement with that to a quaternary carbon signal carrying the 

carbonyl groups at C-7 of the structure (δ 167.71) and C-1 of the aromatic carbon 

(δ 132.31) attached with the ethyl benzoate side chain.  

The aromatic side chain attached to the pyran ring was substituted at C-11. 

The point of cyclization of the pyran ring was indicated by the low-field shift of 

Hα-13 at δ 4.27 and Hβ-13 at δ4.14, which has been coupled with the H-12 

methine proton at δ 5.26. The latter demonstrated clear 1H–1H COSY correlation 

with Hα/ Hβ-13/ H-12, and between H-14 at δ 4.22 with H-15 at δ 2.29, which 

support the presence of the pyran moiety in the compound. The proton and carbon 

connectivity deduced from HSQC and HMBC experiments confirmed the pyran 

framework attached to the aromatic side chain at the C-11 position of the 

compound. In the HMBC spectrum, it was observed that H-14 (δ 4.22)/C-15 (δ 

44.98 ),H-15(2.29)/C-16, C-17(δ 24.16); H-17 (δ 1.53)/C-19(δ 41.02) were 

correlated with each other (Table 1), which support the presence of the bicyclic 

framework. The –CH proton at C-14 (δ 4.22) appeared to demonstrate long range 

HMBC correlation (Fig. 5B.9.A) with the quaternary carbon at δ 132.5 (C-18).  

The HMBC spectrum of the purified compound also revealed connectivity 

between the protons at C-8 (δ 4.31) to the methylene carbon at δ 65.57. The  

relative stereochemistry of the chiral centers particularly that of C-14 and 15 of the 

bicyclic octahydronaphthalene framework was deduced from the NOESY 

spectrum (Fig. 5B.9.B) and the J-values. NOE couplings were apparent between 

H-12 (δ 5.26)/ H-14 (δ 4.22) thus indicating that these groups must be equatorial 

and on the α-side of the molecule. The methine proton at C-15 group did not 

exhibit NOE interactions with H-12 and H-14, which is at the α-face of the 

molecule, thereby indicating that H-15 is at the axial disposition.  
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The IR absorption band (in MeOH) exhibited bending vibration bands near 

1722.86 cm-1, which denote the ester carbonyl absorption. The olefinic (C=C), and 

ether (C-O-C) groups have been symbolized by the absorption bands at 1654.40 

and 1692.21 cm-1. The ultraviolet absorbance at λ max (log e) 259nm (3.11) was 

assigned to a chromophore with extended conjugation. Its mass spectrum exhibited 

a molecular ion peak at m/z 409 (HRESIMS m/z 409.6062 [M+H]+; D 0.0 amu), 

which in combination with its 1H and 13C NMR data (Table 5B.2) indicated the 

elemental composition of C27H37O3 as 3- (octahydro-9-isopropyl-2H- benzo [h] 

chromen-4-yl) - 2- methylpropyl benzoate with ten degrees of unsaturation. One 

degree of unsaturation from the carbonyl group, four degrees of unsaturation from 

the double bonds of the aromatic ring system, two double bonds, and three degrees 

of unsaturation from the ring system were demonstrated.  

The molecular ion peak at m/z 409 appeared to undergo elimination of 

benzoic acid (m/z 122) to yield octahydro-4-isobutyl-9-isopropyl-2H-benzo [h] 

chromene at m/z 288. The appearance of the fragment at m/z 190 indicated the 

presence of octahydro-2H-benzo [h] chromene moiety, resulted from the side 

chain elimination (Fig. 5B.10). Intramolecular rearrangement of the latter resulted 

in the formation of tetrahydro-2H-pyran (m/z 86), octahydronaphthalene (m/z 136), 

and cyclohexane (m/z 84) via the intermediate decahydronaphthalene (m/z 138). 

The presence of tropylium ion (m/z 91) supports the presence of aryl ring system 

in 7. 

 

 

 



 

 173 

Chapter -5B  Bioprospecting of antagonistic bacteria  
B.amyloliquefacens MTCC 10456 associated with seaweed  

Laurenciae papillosa (SWI4B) for antibacterial metabolites 

 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 

 

A

B

1
7

10
O

O
CH3 O

11

12
A

B
C

Fig. 3

A

B

1
7

10
O

O
CH3 O

11

12
A

B
C

Fig. 3  
 

Figure 5B.7 

(A) 1H, (B) DEPT135  and (C) 13C NMR spectrum of compound 7. 

 

 

 



 

 174 

Chapter -5B  Bioprospecting of antagonistic bacteria  
B.amyloliquefacens MTCC 10456 associated with seaweed  

Laurenciae papillosa (SWI4B) for antibacterial metabolites 

 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 

 

 

 

B

A

Fig. 4

B

A

Fig. 4  

Figure 5B.8 

 (A) 1H–1H COSY - NMR spectrum of 7. The key 1H-1H COSY couplings have 
been represented by the bold face bonds. (B) Prominent HSQC correlation 
spectrum of 7. 
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Figure 5B.9 
 (A)HMBC and (B) NOESY spectra of 7. The key HMBC couplings have been 
indicated as double barbed arrow. The NOESY spectrum have been indicated as 
two sided arrows. 
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Figure 5B.10 
Mass fragmentation pattern of 3- (Octahydro-9-isopropyl-2H- benzo [h] 

chromen-4-yl) - 2- methylpropyl benzoate 
 

Methyl 8- (2- (benzoyloxy) ethyl) – hexahydro -4- ((E) – pent - 2- enyl) - 

2H-chromene-6-carboxylate (Fig. 5B.11.A-C), a new derivative of the substituted 

carboxylate was isolated as colorless oil upon chromatography over silica columns. 

Its mass spectrum exhibited a molecular ion peak at m/z 412 [M]+ (HRESIMS m/z 

413.6684 [M+H]+; D 0.0 amu), which in combination with its 1H and 13C NMR 

data (Table 5B.2) indicated the elemental composition of 8 as C25H32O5 with ten 

degrees of unsaturation. Two degree of unsaturation from the carbonyl groups, 

three degrees of unsaturation from the double bonds of the aromatic ring system 

and two double bonds, and three degrees of unsaturation from the rings were 
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demonstrated. The 1H-NMR in conjugation with 13C-NMR recorded the signals at δ 

1.42, 1.58, 2.23, 1.29, 1.98 and 3.98. The 1H–1H COSY couplings (Figure 5B.12.A) 

were apparent between these protons assigned to be at H-10/H-11/H-12;H-14/H-

15/H-16, which supported the presence of six member ring system of 8. The 

relatively downfield shift of the methylene protons at δ 4.23 and the C-8 carbon at δ 

65.55 referred to a possible carboxyl group with extended conjugated aromatic 

moiety in its close vicinity. The aromatic protons were assigned to be present at δ 

7.37-7.78. The methylene group protons at δ 4.23 and δ 1.68 were assigned to be at 

C-8 and 9 positions respectively, and the downfield shift (about δ 0.75) was 

apparently due to the presence of the possible extended conjugated moiety in its 

vicinity. A strong HMBC correlation was found between H-8 (δ 4.23)/ C-7(δ 

167.69) (Table 5B(2)), which apparently indicate the presence of the carbonyl 

carbon near the methylene group. The presence of two quaternary carbons at δ 

132.0 and δ 167.69 were due to the presence of substituted benzyl moiety. The 

protons of the –CH- groups at δ 4.10, 3.98, and 3.59 were deshielded due to the 

possible oxygenation at its vicinity. The 1H–1H COSY correlations between H-17 (δ 

3.98)/H-16 (δ 1.96), H-20 (δ4.10), and H-19 (δ5.19), along with the proton and 

carbon connectivity deduced from HSQC (Figure 5B.12.B) and HMBC 

experiments (Figure 5B.13.A) confirmed the presence of the pyran framework. 

Unlike the compound 7, additional olefinic –CH- DEPT signals were apparent at δ 

122.98 and 114.05, which demonstrated the presence of an extra trans oriented 

double bond as also confirmed based on the J values. The 1H–1H COSY correlation 

with H-21 (δ 1.94, m, 2H)/ H-22 (δ 5.86, m, 1H)/ H-23 (δ 4.88, m, 1H)/ H-24 (δ 

1.30, m, 2H)/ H-25 (δ 0.89, t, 3H) support the presence of the pentene moiety. 

These results were supported by detailed HMBC experiment (Table 5B.2). The –

CH- proton at δ 34.06 exhibited HMBC correlation with the carbonyl carbon atom 

assigned to be as C-13 (δ 173.28)  (Table 5B.2). The aromatic ring and carboxyl 

ester group at the C-7 position of 8 resulted in strong deshielding of proton at δ 

4.31along with the quaternary carbon atom at δ 132.0, and therefore, has been 

assigned to be present at the junction point between the aromatic ring and carboxyl 

ester group. The methoxy protons at δ 3.59 were attached to carbonyl carbon at C-

13 was confirmed by the HMBC correlation at  H-14 (δ 3.59)/ C-13. The 13C NMR 
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spectrum in combination with DEPT experiments indicated the occurrence of 25 

carbon atoms in 8 including two ester carbonyl carbon at δ 167.69 and 173.28, two 

methylene carbons between δ  32.0 and 65.55 (Table 5B(2)). The latter was found 

to be significantly deshielded due to the presence of possible conjugation in the 

form of the aromatic ring system. The point of cyclization of the substituted ring 

was indicated by clear 1H–1H COSY correlation with H-10/H-11/H-12/H-15/H-

16/H-17, which supports the presence of the six member ring moiety in 8 (Fig. 

5B(11)A). The proton and carbon connectivity deduced from HSQC (Fig. 5B.12.B) 

and HMBC experiments (Fig. 5B.13.A) confirmed the presence of hexahydro-2H-

chromene framework attached to the aromatic side chain at the C-10 position of the 

compound. HMBC correlations between H-17 (δ 3.98)/C-18 (δ 138.28), H-

16(1.96)/C-17; H (δ 4.10)/C-23(δ 114.05) (Table 5B.2) also supported the presence 

of the hexahydro-2H-chromene ring system. The –CH2 proton at C-8 (δ 4.23) 

appeared to demonstrate long range HMBC correlation with ester carbonyl carbon 

at δ 167.69 (C-7). The relative stereochemistry of the chiral centres particularly that 

of C-10, 17 and 12 of the methyl hexahydro-2H-chromene-6-carboxylate 

framework was deduced from the NOESY spectrum (Fig. 5B.13.B) of the 

compound and the J-values. NOE couplings were demonstrated between Hα-17 (δ 

3.98)/ Hα-12 (δ 2.23) thus indicating that these groups might be equatorial and on 

the α-side of the molecule. The methine proton at C-16 group did not exhibit NOE 

interactions with H-17 and H-12, which is at the α-face of the molecule, thereby 

indicating that H-16 is at the axial disposition. The IR absorption band (in MeOH) 

exhibited close resemblance with that of 7, except the presence of greater trans 

olefinic bending  signals near  968.1 cm-1, which apparently indicated that 7 and 8  

shared close structural similarities. The ultraviolet absorbance at λ max (log e) 254 

nm (3.62) was assigned to a chromophore with extended conjugation. Similar mass 

fragments were detected in 8 (m/z 122, 91, and 84) (Fig. 5B.14) as in 7 (Fig. 

5B.10), which supported the structural similarities between these compounds. 

However, two intense peaks at m/z 288 and 190 as described in 7 were absent in 8. 

It is of note that two mass fragment peaks appeared at m/z 224 and 140 were due to 

the presence of methyl hexahydro-4, 8-dimethyl-2H-chromene-6-carboxylate and 

octahydro-2H-chromene, respectively.  
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Figure 5B.11 
(A) 1H, (B) DEPT135  and (C) 13C NMR spectrum of 8. 
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Figure 5B.12 

(A) 1H–1H COSY - NMR spectrum of 8. The key 1H-1H COSY couplings have 
been represented by the bold face bonds. (B) Prominent HSQC correlation 
spectrum of 8. 
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Figure 5B.13 
 (A) HMBC and (B) NOESY spectra of 8. The key HMBC couplings have been 
indicated as double barbed arrow. The NOESY spectrum have been indicated 
as two sided arrows. 
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Figure 5B.14 

 Mass fragmentation pattern of  Methyl 8- (2- (benzoyloxy) ethyl) – hexahydro 
-4- ((E) – pent - 2- enyl) - 2H-chromene-6-carboxylate.  

Utilizing bioassay-guided fractionation, two antibacterial compounds 7 (3- 

(octahydro-9-isopropyl-2H- benzo [h] chromen-4-yl) - 2- methylpropyl benzoate) 

and 8 (methyl 8- (2- (benzoyloxy) ethyl) – hexahydro -4- ((E) – pent - 2- enyl) - 

2H-chromene-6-carboxylate) that represent the scaffold of pks-1 gene encoded 

products, with activity against pathogenic bacteria, have been isolated from the 

ethyl acetate extract of from Bacillus amyloliquefaciens MTCC10456. In each 

stage TLC bioautography overlay assay ensured the bioassay guided purification. 

The live microbs converted MTT to formazan dye to give a blue color, whereas the 

inhibition zones were clear in purple background. The active fractions 

demonstrated a qualitative inhibition zone in the TLC plate which was further 

affirmed through Disc diffusion assay. Polyketides have discovered an application 

as bioactive leads in drug based products for utilization against pathogenic 

microorganisms and diverse immunocompromising afflictions. The common 

examples of polyketides are rapamycin, epothilone B, and erythromycin with 

antibacterial, anticarcinogenic and immunosuppressant properties.  

Among different bacterial genera, Bacillus spp have been perceived to 

contain different pks gene groups and bioactive molecules bearing the polyketide 

backbone. The highly conserved sequences of β-ketoacyl synthase (KS) domains 
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are imparted among all pks, and along these lines, the KS domains are valuable in 

the screening for PKS genes in bacteria. Thus, the positive results in a PCR-based 

screening for pks gene doesn't simply give affirmation of the generation of relating 

metabolites furthermore may show the vicinity of further metabolic pathways. In 

the present study the secondary metabolites of Bacillus amyloliquefaciens 

MTCC10456 with potent antibacterial activities against bacterial pathogens was 

perceived to represent the platform of pks-1 gene encoded products. The 

multifactorial polyketide structures are endued with supplementary O-heterocyclic 

moieties as in 7 and 8 contributing meticulousness to the polyketide functionality. 

The crude extract from Bacillus amyloliquefaciens MTCC10456, the purified 

compounds (7 and 8) and, commercial antibiotics (as control) were analyzed 

against human opportunistic pathogens V. parahaemolyticus, V. vulnificus and A. 

hydrophilla. 3- (Octahydro-9-isopropyl-2H- benzo [h] chromen-4-yl) - 2- 

methylpropyl benzoate (7) demonstrated a great subjective inhibitory spectrum to 

the tested isolates. It is significant to note that the antibacterial activities of the 

crude extract against the test pathogens were greater than those exhibited by the 

pure compounds 7 and 8 with substituted O-heterocyclic moiety. It is evident that 

there might be other bioactive compounds alongside the purified O-heterocycles, 

which acted synergistically to confer more noteworthy antibacterial activities 

against the test food pathogenic organisms utilized as a part of this study.  

The physicochemical parameters such as polarizability, steric, and 

hydrophobic descriptors (lipophilicity, partition coefficients) have a major role to 

influence with biological activities (cinq-Mars et al. 2008). The electronic 

descriptors namely polarizability (Pl); hydrophobic parameter log Pow  to calculate 

n-octanol/water partition coefficient; steric (or bulk descriptor), molar volume 

(MV), molar refractivity (MR), and parachor (P) as calculated by ChemDraw 12.0 

were taken into consideration It is of note that the ability of any molecule to 

penetrate biological membranes is a primary factor in controlling the interaction of 

compounds with biological systems, and is dependent on lipophilicity factors as 

determined by the partition coefficient between 1-octanol and water (log P). The 

increased lipophilicity (log P 5.77) of 7 due to the terminal functional group as the 

4-isobutyl-9-isopropyl-octahydro-2H-benzo[h]chromene as compared to that in 8 
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(log P 4.46) affords better penetration of the former through the lipoidal membrane 

barrier to arrive at the receptor site, thereby resulting in greater antibacterial 

activity of 7 than 8. The compound 7 exhibited significant greater activity against 

test pathogens (at a concentration of 20 µg per disc) than 8 apparently due to the 

presence of more polarizable (polarizability 48.99 X 10-24 cm3) 4-isobutyl-9-

isopropyl-octahydro-2H-benzo[h]chromene group as compared to the less 

polarisable methyl 8-ethyl-4-[(E)-2-pentenyl]-hexahydro-2H-6-chromene 

carboxylate group (45.85 X 10-24 cm3). This lead demonstrated in the present study 

will be significant in explaining the pharmacophore-fit in the macromolecular 

receptor site and exploring the primary site and mode of action of this class of the 

substituted O-heterocyclic analogues. It is therefore imperative that the presence of 

octahydro-2H-benzo[h]chromene system is essentially required to impart the 

greater activity (IZD 20 mm, 25 mcg on disk against A. hydrophila). It is 

significant to note that the compound 7 has greater values of steric descriptors (P 

977.7 cm3, MR 123.58 cm3/mol, MV 385.4 cm3) than 8 (P 940.6 cm3, MR 115.66 

cm3/mol, MV 378.9 cm3) purified from Bacillus amyloliquefaciens MTCC10456. 

The antibacterial compounds 7 and 8 isolated from the ethyl acetate extract of from 

Bacillus amyloliquefaciens MTCC10456 shared similar structures, and therefore, 

might be the result of the identical metabolic pool. In particular the presence of 

isobutyl benzoate moiety in 7 and   propyl benzoate moiety in 8 strongly suggested 

the metabolic relationship between these compounds. It is of note that the 

hydrophobic (log Pow) and electronic descriptor (Pl) had a major role to describe 

the bioactivity of compound 7 isolated from Bacillus amyloliquefaciens 

MTCC10456. Although there is no significant differences in the polarizability 

depicting the electronic descriptor (46-49 X 10-24 cm3) in 7 and 8, the activity of 

the latter was lesser (IZD 18 mm; 25 mcg on disk) than of the former (IZD >20 

mm; 25 mcg on disk), apparently due to the greater hydrophobic values of 7 (log P 

5.57) than that recorded in 8 (log P 4.46). The direct involvement of log P with the 

target bioactivity in 7 implied that hydrophobic rather than the electronic and steric 

effect appears to be the key factor influencing the induction of antibacterial 

activity. This leads demonstrated in the present study will be significant in 

explaining the pharmacophore-fit in the macromolecular receptor site and 
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exploring the primary site and mode of action of this class of the substituted O-

heterocyclic compounds.  

The correlations of metabolite genes, for example, pks with auxiliary 

metabolites having a place with polyketides, and their putative biosynthesis 

pathway in related microorganisms were accounted for in prior studies 

(Moldenhauer et al. 2007; Scotti et al. 1993). B. amyloliquefaciens FZB42 

distinguished gene clusters responsible for synthesis of several antibacterial 

polyketide compounds, for example, difficidin and bacillaene (Chen et al. 2009). 

The pks gene has been doled out to the biosynthesis of bacillaene, a polyketide 

product in the Bacillus amyloliquefaciens FZB42 genome. The pks gene cluster 

was identified from B. amyloliquefaciens CH12, a genetically engineered strain, 

and the putitive biosynthetic pathway of bacillane was elucidated. Cao et al. (2011) 

reported the isolation of Bacillus amyloliquefaciens G1 with potential 

antimicrobial activities from the brackishwater sediment against pathogenic A. 

hydrophila. Polyketide compounds of various types were isolated from a marine 

Bacillus amyloliquefaciens associated with the gorgonian, Junceella juncea (Gao 

et al. 2010). A bacillaene multienzyme complex of transAT PKSs with pks-like 

chemistry was described in a prior study, where introduction of the β-branch and 

subsequent incorporation of olefinic bonds into the noncanonical bimodules has 

been comprehended (Moldenhauer et al. 2007). The pksX polyketide synthase 

(PKS) genes were likewise reported in Bacillus subtilis(Scotti et al. 1993). A step-

wise aldol addition of acetyl-ACP and Grob fragmentation on the enzymatically 

loaded acyl carrier proteins was exhibited to result pks-derived antibacterial 

metabolites bacillaene and curacin ( Calderone et al. 2006; Gu et al. 2006)). 

Mupirocin H, a novel metabolite resulting from mutation of the HMG-CoA 

synthase analogue, mupH in Pseudomonas fluorescens has been accounted for (Wu 

et al. 2007). A previous work demonstrated that unlike fatty acid biosynthesis, the 

biosynthesis of polyketide products don’t follow a rigid sequence ( Weissman and 

Leadlay 2005). A model for biosynthesis of polyketide product 7-O-methyl -5'-

hydroxy-3'-heptenoate-macrolactin was proposed in our prior chapter (chapter 5A), 

which represents the way that propanethioate/malonate as the initial building 

blocks.  
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5B.3 Conclusions 

The bacterial strain under the study is Bacillus amyloliquefaciens 

MTCC10456 with a 16S rRNA gene bank accession number JX203228. The 

bacterium demonstrated a promising antibacterial spectrum and therefore was 

utilized to isolate potential antibacterial metabolites. Macroalgal-associated 

bacterial communities seem to contain a consistent functional profile with features 

identified with an algal host-associated lifestyle (Hollants et al. 2012). The strain 

under study demonstrated a positive hit for polyketide synthase gene (with an 

accession number of KC607821). This showed the conceivable vicinity of 

polyketide metabolite pathway. The recognition of antimicrobial metabolite from 

marine macroalga associated marine bacterium, further reinforceed the theory that 

microbial metabolites of the symbiotic microorganisms helps in chemical defenses 

of the marine macroalgae against pathogenic and fouling microorganisms, 

indicating an ecological role of microbial metabolites in host bacterial interaction 

for these marine organisms.The recently advancing antibacterials bearing the 

polyketide backbone will be progressively vital remembering the development of 

multi-drug resistant bacteria and pathogenic microorganisms against the existing 

antibiotics and related molecules. With the expanding requirement for novel 

medication revelation, marine macroalgae-associated marine epibiotic bacteria 

with potential antimicrobial activity proposes the marine macroalgal species as an 

ideal ecological niche harboring specific bacterial diversity representing a largely 

underexplored source of novel antimicrobial secondary metabolites.  
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CHAPTER 5C 

BIOPROSPECTING OF ANTAGONISTIC 
BACTERIA B.subtilis MTCC 10407ASSOCIATED 

WITH SEAWEED Sargassum myriocystum (SWI 19) 
FOR ANTIBACTERIAL METABOLITES 

 

5C.1 Materials and methods 

5C.1.1 Microbial strain under the study 

The microbial strain used for bioprospecting of antimicrobial compound in 

the current study is B. subtilis MTCC 10407, which was found to be associated 

with brown seaweed Sargassum myriocystum. The seaweed associated bacteria 

were isolated (chapter 3 section 3.2.2) and assayed for their ability to inhibit 

selected pathogenic microorganisms (chapter 3 section 3.2.5). the isolates for 

metabolite purification with antibacterial activity used in the study were selected 

based on their inhibition spectrum (chapter 3 Table 3.2) and the positive hit for 

metabolite gene (chapter42.5 and 4.3.4). 

5C.1.2 Antibiotic resistance and abiotic stress tolerance  

Antibiotic resistance, abiotic stress tolerance and enzyme production profile 

of the strain B. subtilis MTCC 10407 was analyzed using the methodology 

explained in 5.2.2. 

5C.1.3 Optimization of time 

The microorganism under the study was inoculated in nutrient broth and the 

optimum time for the antibiotic production with maximum inhibitory activity was 

analyzed as explained in 5.2.3. 

5C.1.4 Optimization of temperature  

The optimum temperature for the production of antibacterial compound for 

the strain MTCC 10407 was analyzed using the methodology explained under the 

section 5.2.4.  
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5C.1.5 Optimization of pH 

PH for the production of the active metabolite was standardized as 

described under the section 5.2.5. 

5C.1.6 Preparation of crude extract for purification of secondary metabolites 

The antibiotic-producing bacterium, B. subtilis MTCC 10407 (SWI 19) was 

isolated from the brown seaweed Sargassum myriocystum. The preparation and 

recovery of secondary metabolites were carried out by a surface culturing method 

over solid nutrient agar plates (5.2.7). The adsorbed products were subsequently 

extracted with ethyl acetate by homogenization (Arrow Engineering Inc., 

Pennsylvania Ave, USA) followed by refluxing. Evaporation of the solvent under 

reduced pressure (Heidolph Instruments GmbH & Co., Schwabach, Germany) 

yielded the ethyl acetate extract (5.56 g) from the total culture volume of 4 L. 

Subsequently the residual agar was extracted with CH2Cl2 to furnish 

dichlorometane extract. These solvent extracts were evaluated for antibacterial 

activities (5.2.8), against the pathogens (listed in chapter 3 section 3.2.4), and the 

fractions which showed significantly broad spectrum antibacterial activities and 

higher yield were further purified by chromatographic techniques. 

5C.1.7  Bioassay guided purification of antibacterial compound from B. subtilis 

MTCC 10407 associated with seaweed Sargassum myriocystum 

The pooled ethyl acetate extract (5 g) was fractionated by chromatography 

over silica gel (180−230 mesh) on a flash column chromatograph (Biotage SP, 

SP1-B1A, Biotage AB, Sweden), with a stepwise gradient of CH2Cl2/MeOH 

(0−100% MeOH) using the flash silica gel cartridge (Biotage no. 25+M 0489-1) at 

a collection UV wavelength at 256 nm to provide 112 fractions (12 mL). Based on 

analytical TLC, the fractions with similar patterns were pooled together to afford 

seventeen pooled fractions (B3E1−B3E17).These column fractions were evaluated 

for antibacterial activities (5.2.8), against the pathogens (listed in chapter 3 section 

3.2.4) and the fractions which showed significantly broad spectrum antibacterial 

activities and higher yield were further purified by column chromatography or 

preparative TLC (P-TLC) using EtOAc:n-hexane, MeOH:CHCl3, or MeOH:EtOAc 

as mobile phase, whichever required. The schematic diagram showing the 
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purification of B. subtilis MTCC 10407 associated with Sargassum myriocystum 

(SWI19) ethyl acetate extract is shown in Figure 5C.1. 

 

 
 

Figure 5C.1 
Purification scheme for bioactive secondary  

metabolites from MTCC 10407. 
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5C.2 Results and discussion 

5C.2.1 Antibiotic resistance and abiotic stress tolerance  

The strain was susceptible to all the antibiotics tested and was proved to be 

safe for laboratory work. The strain was able to grow from 25°C up to 55°C and 

could with stand a pH range of 6 to 11.5.Strain could grow an NaCl concentration 

from 2% to10%.The ability of the seaweed associated bacterial isolate to grow 

under a wide range of environmental conditions may be a functional adaptation for 

their protective function in varying aquatic environment. 

5C.2.2 Optimization of time, temperature and pH 

Optimum production time is found to be after 72 hours and it declined after 

96 hours. Optimum temperature for production of the compound is found to be 

20°C, whilst the optimum pH for the production is 8 (Figure 5C.2). 

          

Figure 5C.2 
Graphical representation of antibacterial compound production at different 

incubation time,temperature and pH 

5C.2.3 Yield  

The yield (g/L of the spent broth) of the EtOAc extracts of MTCC10407 

SWI 19(1.3g/L of the spent broth) was recorded maximum yield as compared with 

DCM (0.3465 g/L of the spent broth) extract. 
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5C.2.4 Antibacterial activities of the crude extracts by agar diffusion method.  

Antibacterial activity of culture 3 extracts to different pathogens 

Aeromonas hydrophilla and V. vulnificus MTCC 1145 is shown in Figure 5C.3. 

The Figure 5C.3 indicates that the EA fractions are more active than DCM 

fractions of the culture 3. 

 

Figure 5C.3 
Graphical representation of antibacterial activity of  

different solvent extracts to test pathogens 
 

5C.2.5 Secondary Metabolites from B. subtilis MTCC 10407 associated with  

            Sargassum myriocystum (SWI19) 

The yield, antibacterial activities of each column/P-TLC fractions are given 

in Table 5C.1 The Rf of all the P-TLC fractions are also shown in Table 5C.1 

Among the column fractions obtained from the EtOAc fraction of the MTCC 

10407 extract, the fractions B3E8 and B3E9 exhibited significantly higher 

antibacterial activity. The fraction B3E8 (106 mg) was found to be a mixture, and 

was subjected to vacuum liquid chromatography on silica gel (180-230 mesh). The 

column was initially eluted with n-hexane and the eluent polarity was gradually 

increased by addition of EtOAc (n-hexane: EtOAc 19:1 to 1:3, v/v) to furnish 

twenty fractions of 15 ml each, which were reduced to five groups (B3E18 – 
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B3E22) after TLC analysis (n-hexane: EtOAc, 9.5:0.5, v/v). The fraction 

B3E21(52 mg) was further separated by chromatography on silica coated on a 

preparatory thin layer plate using a stepwise gradient system from 0.5% 

MeOH/CH2Cl2 to afford B3E24 2-(7-(2-ethylbutyl)-2,3,4,4a,6,7-hexahydro-2-

oxopyrano[3,2-b]pyran-3-yl)ethyl benzoate (9, ~98% purity, 6.3 mg). Evaporation 

of solvents from the fractions followed by TLC over precoated silica gel GF254 

(particle size 15 mm, E-Merck, Germany) using EtOAc/n-hexane (3:17, v/v) 

supported the purity. The active fraction B3E9 (542.3 mg) eluted at 4% 

MeOH/CH2Cl2 was fractionated by chromatography over silica gel (180-230 

mesh), with a stepwise gradient of CH2Cl2/MeOH (0-100%) to provide four sub-

fractions (45 mL, B3E28 through B3E31). The active fraction B3E28 (23 mg) was 

found to be a mixture, which was further chromatographed over preparatory TLC 

on silica gel GF254 using MeOH/CH2Cl2 (0.5:95.5, v/v) to afford B3E35, 2-((4Z)-2-

ethyl-octahydro-6-oxo-3-((E)-pent-3-enylidene) pyrano[3,2-b]pyran-7-yl)ethyl 

benzoate (10, ~99% purity, 5.9 mg). Evaporation of solvents from 10 followed by 

TLC over precoated silica gel GF254 (particle size 15 mm, E-Merck, Germany) 

using CHCl3/MeOH (9:1, v/v) supported the purity.  

 

Table 5C.1 

Yield, activity Rt and Rf values of the fractions  
at different purification stages 

 
Yield 
(mg) 

Rt 
Rf Antibacterial activity 

EtOAc fraction (FCC 
M/D) 

 
 

 22.66±0.577 

B3E-1(100%D/M) 127.8 
- 

- NA 

B3E-2(100%D/M) 20.3 - - NA 

B3E-3(100%D/M) 8.3 - - NA 

B3E-4(3%D/M) 6.4 - - NA 

B3E-5(3%D/M) 10.5 - - NA 

B3E-6(5%D/M) 5.6 - - 10mm 

B3E-7(7%D/M) 12.9 - - 12mm 

B3E-8(9%D/M) 106 - - 20 

B3E-9(10%D/M) 542.3  - - 16 

B3E-10(10%D/M) 214.4 - - 6mm 
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#NP-Not pure NA-Not active 

 

B3E-11(10%D/M) 132.9 - - 5mm 
B3E-12(20%D/M) 195.0 - - 4mm 
B3E-13(20%D/M) 216.4 - - 7mm 
B3E-14(30%D/M) 48.3 - - NA 
B3E-15(50%D/M) 211.6 - - NA 
B3E-16(100%M) 167.3 - - NA 
B3E-17(100%M) 220.2 - - NA 
B3E –8 (CC H/E) 106 - - 20 
B3E-18(100% H) 14mg - - NA 
B3E-19(10-25% 

E/H) 22mg - - NA 

B3E-20(25-50% 
E/H) 12mg - - 6 

B3E-21(50-100% 
E/H) 52mg - - 15 

B3E-22(100% E) 16mg - - 7 
B3E –21 (4:1M/D ) 52mg - NP 15 

B3E-23 9.8 - 0.12 12 
B3E-24 6.3mg 47.377 0.65 17 

B3E-25 6.2 - 0.74 5 
B3E-26 5.2 - 0.82 NA 
B3E-27 4.3  0.98 2 

B3E 9(CC M/D) 542.3  - - 16 
B3E-28(0-5% M/D) 23 - - 14 

B3E-29(10-25% 
M/D) 40.4 - - NA 

B3E-30(25-50% 
M/D) 9.4 - - 5 

B3E-31(100%M) 11.3 - - 7 
B2E -28 (PTLC 

100% DCM) 23 - NP 14 

B3E-32 2.3 - 0.15 7 
B3E-33 5.77 - 0.23 NA 
B3E-34 1.36 - 0.36 7 
B3E-35 5.9 32.101 0.57 15 

B3E-36 7.2 - 0.8 4 
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5C.2.6 Structural characterization of antibacterial O-heterocycle pyran 

derivatives from B. subtilis MTCC 10407.  

5C.2.6 .1Structural characterization of Compound 9 

2-(7-(2-Ethylbutyl)-2,3,4,4a,6,7-hexahydro-2-oxopyrano [3,2-b] pyran-3-

yl) ethyl benzoate (9). Yellowish oil UV (MeOH) λmax (log ε): 315 nm (3.14); TLC 

(Si gel GF254 15 mm; EtOAc/n-hexane (3:17, v/v) Rf: 0.16; HPLC(Figure 5C.4) Rt: 

47.377 min.; IR (KBr, cm-1) νmax 814.06 cm-1 (aromatic C-Hδ), 1312.76 (C-Oν), 

1378.29 cm-1 (C-Hρ), 1648.94 cm-1 (C=Cν), 1690.28 cm-1 (C-COν), 1738.96 

(C=Oν), 2923.22 cm-1 (alkane C-Hν), 3010.12 cm-1 (aromatic C-Hν); 1H NMR (500 

MHz, CDCl3 δ in ppm), 13C NMR (125 MHz, CDCl3 δ in ppm), 1H-1H-COSY, and 

HMBC data, see Table 5C.2; HRMS (ESI) m/e: 386.4489 calcd. for C23H30O5  

386.4268; found 387.8689 [M+H]+.  

 

 

Figure 5C.4 
HPLC Chromatogram of compound 9 
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Table 5C.2 

1H and,
 13C-NMR spectroscopic data of compound 9 

 

 

O

O

O

O

O
 

 

C. 
No. 

δ 13CNMR 
 
H 

δ1H NMR 
(int., mult., J in Hz)b 

1H-1H 
COSY 

HMBC 
(1H-13C) 

1 132.51     
2 131.32 2-H 7.78 – 7.65(m, 1H) 3-H C-7,3 
3 128.84 3-H 7.57 – 7.43 (m, 1H)   
4 128.11 4-H 7.57 – 7.43 (m, 1H)   

5 128.71 5-H 7.57 – 7.43 (m, 1H) 4-H C-6 
6 130.75 6-H 7.78 – 7.65 (m, 1H) 5-H  
7 167.72     
8 65.57 8-H 4.31 (t,J=7.2Hz, 2H) 9-H C-7,9 
9 30.58 9-H 1.72 (m, 2H)  C-10 

10 43.76 10-H 2.38 (m, 1H) 13-H C-11 
11 179.99     
12 --  --   
13 27.73 13-H 1.68(t,2H) 14-H C-14 
14 72.41 14-Ha   4.23(dq, J=6.7 Hz,1H)  C-15,18 
15 138.77     

16 123.12 16-H 5.34 (d, 1H) 17-H C-17 
17 38.05 17-H 2.04(m,1H) 18-H C-18 
18 71.79 18-H 4.09 (d,J=6.67Hz, 2H)  C-20 
19 27.73 19-H 1.53(m, 2H)   
20  22.7 20-H 1.46 (m, 2H). 19-H C-25 
21 19.16 21-H  1.01 (m, 2H) 22-H C-22 
22 14.12 22-H 0.88(m, 3H)   
23 --  --   
24 19.76 24-H 1.26(m,2H) 25-H  
25 13.12 25-H 0.92(t,3H)   

 

IR bending vibration bands of compound 1 at 1738 cm-1 attributed to the 

ester carbonyl absorption. The IR spectrum revealed a broad absorption band at 

νmax1648 cm-1, symbolized the olefinic system. Its mass spectrum exhibited a 

molecular ion peak at m/e 386 (HRESIMS m/e 387.8689 [M+H]+), which in 
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combination with its 1H and 13C NMR data (Table 5C.2; Figure 5C.5.A-B) 

indicated the elemental composition of C23H30O5 with nine degrees of unsaturation. 

The 13C NMR spectrum in combination with DEPT experiments indicated the 

occurrence of 23 carbon atoms in the molecule, including two carbonyl carbon at δ 

179.99 and δ 167.72, and olefinic carbons at δ 138.77 and 123.12 (Table 5C.2)). 
1H–1H COSY couplings (Figure 5C.5C) were apparent between the protons at δ 

0.92 (H25) / δ 1.26 (H24) / δ 1.44 (H20) / δ 1.01 (H21) / δ 0.88 (H22) in the 

spectrum, which supported the presence of 3-ethyl butane moiety. Two methylene 

groups have been assigned to occupy at the C8-9 positions, and the one with δ 4.31 

shifted downfield due to the presence of an extended conjugation probably linked 

to an aromatic moiety. The aromatic protons showed their characteristic signals at 

δ 7.78-7.58. 1H–1H COSY experiments revealed that the protons at δ 4.31 (t) 

correlate with the methylene protons at δ 1.72 (assigned to be as H-9) and that at δ 

2.38, the latter is assigned to be attached to a strongly electronegative group. 

HMBC correlations were apparent between H-9 (δ 1.72) with that of a carboxyl 

carbon at δ 179.99. The >C=O group at the C-11 position of 9 resulted in strong 

deshielding of the –CH- proton at δ 2.38, and therefore, has been assigned to be 

present at the C-10 position of the structure. The chemical shift of the protons at δ 

1.53, 2.04, 5.37, and 4.09 along with detailed 2D NMR experiments established the 

presence of O-heterocyclic pyran network. The –CH- proton (t) at δ 4.23 is 

characteristic of the junction point of the bicyclic system. The low field quaternary 

signal (13C NMR) was in agreement with that to a quaternary carbon signal 

carrying the carbonyl groups at C-7 of 9, and this was supported by the relatively 

downfield shift of the H-8 signal (δ 4.31), which referred to a possible oxygenation 

in its vicinity. The H–H and C–H connectivities apparent in the 1H–1H COSY and 

HMBC spectra, respectively indicate that one of the nine unsaturations was due to 

the three rings and six double bonds. The relative stereochemistry of the chiral 

center particularly that of the C-10 cyclic framework was deduced from the 

NOESY experiment and the J-values. NOE couplings were observed between Hα-

14/Hα-10 thus indicating that these groups must be equatorial and on the α-side of 

the molecule. Therefore, the C-11 carboxyl group is axial and β-oriented. The 

methine proton at C-16 group did not exhibit NOE interactions with H-14 and H-
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18, which are in the α-face of the molecule, thereby indicating that H-16 is at the 

axial disposition. The molecular ion peak at m/e 386 appeared to undergo 

elimination of benzoic acid (m/e 122) to yield 3-ethyl-7-(2-ethylbutyl)-

tetrahydropyrano[3,2-b]pyran-2(3H)-one at m/e 266. The appearance of the 

fragment at m/e 154 indicated the presence of tetrahydropyrano [3, 2-b] pyran-2 

(3H) -one moiety, resulted from the side chain elimination in 3-ethylpentane (Fig. 

5C(2)A). Intramolecular rearrangement of tetrahydropyrano [3, 2-b] pyran-2 (3H) -

one resulted in the formation of heptenoic acid (m/e 128) via the intermediate (E) -

6-ethylidene-tetrahydropyran-2-one (m/e 126). The presence of tropylium ion (m/e 

91) supports the presence of aryl ring system in 9( Figure 5C.6). 

 

 

Figure 5C.5 
(A) 1H, (B) 13C and (C) 1H–1H COSY - NMR spectrum of 9. The key 1H-1H 

COSY couplings have been represented by the bold face bonds. 
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Figure 5C.6 
Mass fragmentation pattern of O-heterocycle pyran derivative compound 9 from B. 
subtilis MTCC 10407.  The compound 9 undergoes mass fragmentation to yield (1A) 
3-ethyl-7-(2-ethylbutyl)-4,4a,6,7-tetrahydropyrano[3,2-b]pyran-2(3H)-one, (1B) 7-(2-
ethylbutyl)-4,4a,6,7-tetrahydropyrano[3,2-b]pyran-2(3H)-one, (1C) 4,4a,6,7-
tetrahydropyrano[3,2-b] pyran-2(3H)-one, (1D) (E)-tetrahydro-5-hydroxy-6-
propylidenepyran-2-one, (1E) (E)-6-ethylidene-tetrahydropyran-2-one, (1F) 
heptenoic acid, (1G) benzoic acid, and (1H) tropylium ion as major peaks. 

 

5C.2.6 .2Structural characterization of Compound 10 

2-((4Z)-2-Ethyl-octahydro-6-oxo-3-((E)-pent-3-enylidene) pyrano [3, 2-b] 

pyran-7-yl) ethyl benzoate (10). Yellowish oil; UV (MeOH) λmax (log ε): 410 nm 

(2.83); TLC (Si gel GF254 15 mm; CHCl3/MeOH 9:1, v/v) Rf: 0.50;  Rt: 32.101 

min(Figure 5C.7); IR (KBr, cm-1) νmax 727.22 cm-1 (C-Hρ), 814.16 cm-1 (aromatic C-

Hδ), 1371.26 cm-1 (C-Hρ), 1526.21(aromatic C=Cν), 1652.42 cm-1 (C=Cν), 1690.21 

cm-1 (C-CO-Oν), 1726.86 cm-1 (C=Oν), 2923.22 cm-1 (alkane C-Hν), 3346 cm-1 
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(broad O-Hν); 1H NMR (500 MHz, CDCl3 δ in ppm), 13C NMR (126 MHz, CDCl3 

δ in ppm), 1H-1H-COSY, and HMBC data, see Table 5C.3; HRMS (ESI) m/e: 

399.6984 calcd. for C24H31O5 399.1268; found 399.6984 [M+H]+. 

 

 

 

Figure 5C.7 
HPLC chromatogram of compound 10 

The IR absorption band of 10 exhibited close resemblance with that of 9, 

except the presence of greater olefinic signals near 1653 cm-1, which apparently 

indicated that 9 and 10 shared close structural similarities. Its mass spectrum 

exhibited a molecular ion peak at m/e 399 (HRESIMS m/e 399.6984 [M+H]+), 

which in combination with its 1H and 13C NMR data (Table 5C.3) indicated the 

elemental composition of 10 as C24H30O5 with ten degrees of unsaturation. A 

significant similarity in the NMR spectral data between 10 and 9 was apparent 

(Figure 5C.8.A-B), which indicated their structural similarity. However, unlike the 

compound 9, no DEPT signal was apparent for the C-16 for 10, which indicated 

the carbon as quaternary (δ 142.78) (Figure 5C.8.C). Additional olefinic signals 

were apparent at δ 130.14, 123.78, and 114.63. The 1H–1H COSY correlation with 

H-18 (δ 5.27 dd,1H)/H-19 (δ 1.94-1.97, m, 2H)/H-20 (δ 5.80, m, 1H)/H-21 (δ 4.97, 

dd, 1H)/H-22 (δ 0.87, d, 3H) support the presence of the six member hexadiene 

moiety (Figure 5C.9.A). These results were supported by detailed HSQC and 

HMBC experiments (Fig. 5C.9.B and Fig. 5C.10.A) .The 1H-NMR in conjugation 
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with 13C-NMR recorded the signals at δ 2.38, 1.62, 3.91, and 3.51, and the 1H–1H 

COSY couplings were apparent between these protons assigned to be as H-10/H-

14/H-13/H-12; which supported the presence of six member tetrahydropyranone 

ring system. The aromatic ring and carboxyl ester group at the C-7 position 

resulted in strong deshielding of proton at δ 4.32 along with the quaternary carbon 

atom at δ 132.96, and therefore, has been assigned to be present at the junction 

point between the aromatic ring and carboxyl ester group. The methine proton at δ 

2.38 was characteristic of the junction point of the tetrahydropyranone ring with 

that of the side chain ethyl benzoate moiety as established by 1H–1H COSY 

correlations and detailed HMBC experiments . The point of cyclization of the 

substituted lactone ring was indicated by the low-field shift of H-10 at δ 2.38, 

which has been coupled with the H-14 methylene group at δ 1.62, which also gives 

clear 1H–1H COSY correlation with H-10/H-14/H-13, thus supporting the presence 

of the six member lactone moiety. The relative stereochemistry of the chiral 

centres, particularly that of C-10, 12 and 17 of the hexahydropyrano [3, 2-b] 

pyranone framework was deduced from the NOESY spectrum of the compound 

and the J-values. NOE couplings were observed between Hα-13 (δ 3.91)/Hα-10 (δ 

2.38) thus indicating that these groups must be equatorial and on the α-side of the 

molecule (Figure 5C.10.B). The methine proton at C-12 group did not exhibit NOE 

interactions with H-13 and H-10, which is in the α-face of the molecule, thereby 

indicating that H-12 is at the axial disposition. The compound 10 undergoes mass 

fragmentation to afford similar mass fragments as in 9 (m/e 154, 156, 128, 126, 

122, and 91), which supported the structural similarities between these 

compounds(Figure 5C.6 and Figure 5C.11). Two intense peaks at m/e 266 and 238 

as described in 9 were absent in 10, which apparent signified the modifications in 

the side chain attached at C-17 position of the hexahydropyrano [3,2-b] pyran-

2(3H)-one ring system of the latter. Two mass fragment peaks appeared at m/e 278 

and 250 apparently due to the presence of diethyl-hexahydro-7-(pentenylidene) 

pyrano [3,2-b] pyranone and ethyl-hexahydro-7-(pentenylidene) pyrano [3,2-b] 

pyranone, respectively. 
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Table 5C.3 

1H and,
 13C-NMR spectroscopic data of compound 10 

 O

O

O

O

O

 
 

C. 
No. 

δ 
13CNMR 

 
H 

δ1H NMR 
(int., mult., J in Hz)b 

1H-1H 
COSY 

HMBC 
(1H-13C) 

1 132.3     
2 130.87 2-H 7.50 – 7.42 (m, 1H) 3-H C-3,4 
3 129.95 3-H 

 

7.69 – 7.61 (m, 1H)   
4 128.84 4-H 7.69 – 7.61 (m, 1H)   
5 128.84 5-H 7.69 – 7.61 (m, 1H) 6- H  
6 130.90 6-H 7.50 – 7.42 (m, 1H)   
7 167.73 -    
8 65.57 8-H 4.23 (t, J = 6.7 Hz, 2H) 9- H C-9,10 
9 30.58 9-H 1.67(m,1H)  C-10 
10 34.84 10-H 2.34(m,1H) 14- H C-11 
11 173.52     
12 53.61 12-H 3.59(m,1H) 15- H  
13 69.06 13-H 3.91(m,1H)  C-11 
14 30.12 14-H 1.62(t,2H)  C-10 
15 29.38 15-H 1.45(d,2H)  C-17 
16 142.78     
17 62.16 17-H 4.08(dt, 1H) 23- H C-13 
18 130.14 18-H 5.27(dd,1H) 19- H C-12 
19 27.40 19-Ha/19-Hb 1.94/1.97(m,2H)  C-20 
20 123.78 20-H 5.80(m,1H) 21- H  
21 114.63 21-H 4.97(dd,1H)   
22 14.14 22-H 0.87(d,3H)   
23 19.80 23-H 1.48(m,2H)  C-16 
24 13.81 24-H 0.81(t,3H) 23- H C-23 
25 -- -- --   
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Figure 5C.8 
(A) 1H, (B) 13C and (C) DEPT135 - NMR spectrum of 10. 

 

         

Figure 5C.9 
(A) 1H–1H COSY and (B) prominent HSQC correlation spectra of 10. The key 

1H–1H COSY couplings have been represented by the bold face bonds. 
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Figure 5C.10 
(A) HMBC and (B) NOESY spectra of 10. The key HMBC couplings have 

been indicated as double barbed arrow. 
 
 

 

 
 

Figure 5C.11 Mass fragmentation pattern of O-heterocycle pyran derivative 
compound 10 from B. subtilis MTCC 10407. 
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5C.3 Conclusions 

Two novel O-heterocycle pyrans, 2-(7-(2-ethylbutyl)-2,3,4,4a,6,7-

hexahydro-2-oxopyrano[3,2-b]pyran-3-yl)ethyl benzoate (9) and 2-((4Z)-2-ethyl-

octahydro-6-oxo-3-((E)-pent-3-enylidene)pyrano[3,2-b]pyran-7-yl)ethyl benzoate 

(10) were isolated from the ethylacetate extract of the B. subtilis MTCC 10407, 

which was found to be associated with brown seaweed Sargassum myriocystum 

upon repeated chromatography over silica columns.  
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CHAPTER 5D 

BIOPROSPECTING OF ANTAGONISTIC BACTERIA B. 
amyloliquefacens ASSOCIATED WITH  SEAWEED Padina 

gymnospora(SWI7)FOR ANTIBACTERIAL METABOLITES 
 

 

5D.1  Materials and methods 

5D.1.1 Microbial strain under the study 

 The microbial strain used for bioprospecting of antimicrobial compound in 

the current study is Bacillus amyloliquefaciens associated with Padina 

gymnospora. The seaweed associated bacterial isolates were isolated (chapter3 

section 3.2.2) and assayed for their ability to inhibit selected pathogenic 

microorganisms (chapter3 section 3.2.5).Isolates for metabolite purification with 

antibacterial activity used in the study were selected based on their inhibition 

spectrum (Chapter3 Table 3.2) and the positive hit for metabolite gene (Chapter4. 

2.5 and 4.3.4). 

5D.1.2 Antibiotic resistance and abiotic stress tolerance  

Antibiotic resistance, Abiotic stress tolerance and Enzyme production 

profile of the strain was analyzed using the methodology explained in 5.2.2. 

5D.1.3 Optimization of time 

The microorganism under the study was inoculated in nutrient broth and the 

optimum time for the antibiotic production with maximum inhibitory activity was 

analysed as explained in 5.2.3. 

5D.1.4 Optimization of temperature  

The optimum temperature for the production of antibacterial compound for 

the strain was analyzed using the methodology explained under the section 5.2.4.  
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5D.1.5 Optimization of pH 

The optimum PH for the production of the active metabolite was 

standardized as described under the section 5.2.5. 

5D.1.6 Preparation of crude extract for purification of secondary metabolites 

The antibiotic-producing bacterium, B. amyloliquefacens associated with 

Padina gymnospora (SWI 7). The preparation and recovery of secondary 

metabolites were carried out by a surface culturing method over solid nutrient agar 

plates (5.2.3). The adsorbed products were subsequently extracted with ethyl 

acetate by homogenization (Arrow Engineering Inc., Pennsylvania Ave, USA) 

followed by refluxing. Evaporation of the solvent under reduced pressure 

(Heidolph Instruments GmbH & Co., Schwabach, Germany) yielded the ethyl 

acetate extract (2.87 g) from the total culture volume of 4 L. Subsequently the 

residual agar was extracted with CH2Cl2 to furnish dichloromethane extract.These 

solvent extracts were evaluated for antibacterial activities (5.2.4), against the 

pathogens (listed in Chapter 3 section 3.2.4) and the fractions which showed 

significantly broad spectrum antibacterial activities and higher yield were further 

purified by chromatographic techniques. 

5D.1.7 Purification of secondary metabolites 

The pooled ethyl acetate extract (2.87 g) was was subjected to vacuum 

liquid chromatography on silica gel (180-230 mesh). The column was initially eluted 

with n-hexane and the eluent polarity was gradually increased by addition of 

EtOAc (n-hexane: EtOAc 19:1 to 1:3, v/v) to furnish nine fractions of 50 ml each 

(B7E1-B7E9). These column fractions were evaluated for antibacterial activities 

(5.2.4), against the pathogens (listed in Chapter 3 section 3.2.4) and the fractions 

which showed significantly broad spectrum antibacterial activities and higher yield 

were further purified by column chromatography or preparative TLC (P-TLC) 

using EtOAc:n-hexane or MeOH:CHCl3 or MeOH:EtOAc as mobile phase when 

required. The schematic diagram showing the purification of B. amyloliquefacens 
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associated with Padina gymnospora (SWI7) ethyl acetate extract is shown in 

Figure 5D.1. 

.

 

Figure 5D.1 

Schematic representation showing the purification scheme for bioprospecting of 
antibacterial metabolites in B. amyloliquefaciens associated with Padina gymnospora 

 

 



 

 208 

Chapter – 5D   Bioprospecting of antagonistic bacteria B. amyloliquefacens  
associated with  seaweed Padina gymnospora(SWI7)for antibacterial metabolites 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 

 

5D.2 Results and Discussion 

5D.2.1 Antibiotic resistance, abiotic stress tolerance and optimization of 

growth conditions 

  The bacterial isolate under the study was sensitive to the tested antibiotics 

and had similar abiotic stress tolerance as exhibited by SWI 4B (Chapter 5B).The 

growth conditions were also similar to the above described culture. 

5D.2.2 Yield  

   The yield (g/L of the spent broth) of the EtOAc extracts of SWI 4 is 

recorded as 0.7175g/L of the spent broth is higher than DCM (0.2675 g/L of the 

spent broth) extract. 

5D.2.3 Antibacterial activities of the crude extracts by Agar Diffusion 

Method.  

Antibacterial activity of B. amyloliquefacens MTCC 10456B extracts to 

different pathogens Aeromonas hydrophilla V. vulnificus MTCC 1145 and V. 

parahaemolticus ATCC17802 were shown in Figure 5D.2. The Figure 5D.2 

indicates that the EA fractions are more active than other fractions of the B. 

amyloliquefacens MTCC 10456B associated with Padina gymnospora (SWI7).  

 

Figure 5D.2 

Graphical representation of antibacterial activity of solvent extracts of 
bacterial metabolites against test pathogens. 
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5D.2.4 Secondary metabolites from B. amyloliquefacens MTCC 10456B 

associated with Padina gymnospora (SWI7) 

The fraction B7E6 (780mg) was subjected to vacuum liquid chromatography 

on silica gel (180-230 mesh). The column was initially eluted with n-hexane and 

the eluent polarity was gradually increased by addition of EtOAc (n-hexane: 

EtOAc 1:9 to 1:2, v/v) to furnish twenty three fractions of 15 ml each, which were 

reduced to four groups (B7E10 – B7E13). The fraction B7E11(159 mg) was 

further separated by chromatography on silica coated on a preparatory thin layer 

plate using a stepwise gradient system from 0.5% MeOH/CH2Cl2 to afford B7E18 

and B7E21. Evaporation of solvents from the fractions followed by TLC over 

precoated silica gel GF254 (particle size 15 mm, E-Merck, Germany) using 

EtOAc/n-hexane (3:17, v/v) supported the purity. 

The fraction B7E2 and B7E3 were pooled after TLC analysis (n-hexane: 

EtOAc, 9.5:0.5, v/v) was found to be a mixture with an antibacterial activity of 

25mm (300mg), and was subjected to vacuum liquid chromatography on silica gel 

(180-230 mesh). The column was initially eluted with n-hexane and the eluent 

polarity was gradually increased by addition of EtOAc (n-hexane: EtOAc 19:1 to 

1:3, v/v) to furnish twenty fractions of 15 ml each, which were reduced to five 

groups (B7E23– B7E27) after TLC analysis (n-hexane: EtOAc, 9.5:0.5, v/v). The 

fraction B7E26 (109 mg) was further separated by chromatography on silica coated 

on a preparatory thin layer plate using a stepwise gradient system from 0.8% 

MeOH/CH2Cl2 to afford B4E29 and B7E 36( Table 5D.1).Evaporation of solvents 

from the fractions followed by TLC over precoated silica gel GF254 (particle size 

15 mm, E-Merck, Germany) using EtOAc/n-hexane (3:17, v/v) supported the 

purity. 
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Table 5D.1 

Yield, activity ,Rt and Rf values of the fractions 
 at different purification stages 

 

 

 

 Yield 

 

Rt Rf Antibacterial 

 B7EtOAc fraction 

(FCC)E/H) 

    

B7E1(100% H) 49.2 g - - - 
B7E2(5-10% E/H) 3.7 mg - - 22mm 
B7E3(10-20% E/H) 773 mg - - 24mm 
B7E4(20-25% E/H) 2.59 mg - - - 
B7E5(25-30% E/H) 470 mg - - - 
B7E6(30-35% E/H) 624  mg - - - 
B7E7(30-40% E/H) 720  mg - - 18mm 
B7E8(50% E/H) 56.3 mg - - - 
B7E9(100% E) 104.5 mg   

  

- - - 
B7E6(CC E/H) - - NP 18mm 
B7E10(0-25%E/H) 6.5 mg - - 6mm 
B7E11(25-50% E/H) 159 mg - - 14mm 
B7E12(50-100% E/H) 3.7 mg - - 5mm 
B7E13(100% E) 2.1 mg - - NA 
B7E11 (PTLC 

 

  NP 14mm 
B7E14 1.0 mg - 0.1

 

NA 
B7E15 8.8 mg - 0.2

 

NA 
B7E16 4.6 mg - 0.3

 

8mm 
B7E17 1.9 mg - 0.4

 

6mm 
B7E18 8.2 mg 25.1

 

0.4

 

14mm 

B7E19 6  mg - 0.5

 

NA 
B7E20 5 mg - 0.7

 

NA 
B7E21 9.2mg 15.9

 

0.8

 

12mm 

B7E22 - - 0.9

 

5mm 
B7E-(2-3) (CC E/H) - - NP 24mm 
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5D.2.4.1 Structural characterization of the compound 11 

10-(15-butyl-13-ethyl-2-oxotetrahydro-2H-pyranyl)propyl-2 methylbe- 

nzonate  (11) Yellowish oil; UV (MeOH) λmax (log ε): 242 nm (3.42); TLC (Si 

gel GF254 15 mm; EtOAc/n-hexane (3:17, v/v) Rf: 0.48; Rt: 25.176 min(; IR (KBr, 

cm-1) νmax 818.24 (aromatic C-H δ), 1310.16 (C-O ν), 1372.12 (C-H ρ), 1619.48 

(C=C ν), 2935.34 (alkane C-Hν), 3012.24 (aromatic C-H ν); 1H-NMR (500 MHz, 

Chloroform-d) δ 7.72 (d,1H),7.53 (d,1H), 7.08 (d,1H), 7.06 (m,1H) , 4.22 (t, 1H), 

4.08 (m, 2H), 2.31 (s,3H), 2.29 (m,1H), 2.03 (m,1H), 1.97 (d,2H), 1.72 (m, 2H), 

1.61 (m,1H), 1.36 (m,2H), 1.26(m,2H), 1.28(m,2H), 1.12(m,2H), 1.01 (d,3H), 

0.88(t,3H), 13C-NMR (125 MHz, CDCl3 δ in ppm), 1H-1H COSY and HMBC data, 

see Table 5D.2; HRMS (ESI) m/e: 361.4871(M+H)+  calcd. for C22H32O4  

360.2301; found 361.4871(M+H)+. 

B7E23(0-10% E/H) 12mg - - NA 
B7E24(10-25%E/H) 8.9mg - - NA 
B7E25(25-50% E/H) 2.6mg - - NA 
B7E26(50-100% E/H) 25mg - - 17mm 
B7E27(100% E) 12.8mg - - 9mm 
B7E26 (PTLC 0.8% 

 

25mg - NP 17mm 

B7E28 6.2mg - 0.1

 

NA 

B7E29 9.2mg 37.0

 

0.2

 

15mm 

B7E30 2.1mg - 0.3

 

6mm 

B7E31 1.2mg - 0.4

 

NA 

B7E32 1.6mg - 0.4

 

NA 

B7E33 3.2mg - 0.5

 

NA 

B7E34 1.5mg - 0.6

 

NA 

B7E35 1.8mg - 0.7

 

5mm 

B7E36 7.9mg 32.1

 

0.9

 

13mm 
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Table 5D.2 

NMR spectroscopic data of compound11in CDCl3.
a 

 

 

Position 13C  H-type 1H NMR 
1H-1H 
COSY 

HMBC 
1H         
13C 

1 139.77     

2 148.45     

3 129.66 3-H 7.72 (d,1H) 4-H C-2 

4 128.84 4-H 7.53 (d,1H)   

5 130.84 5-H 7.08 (d,1H) 6- H C-1,6 

6 129.66 6-H 7.06 (m,1H)   

7 171.15     

8 63.27 8-H 4.22 (t, 1H) 9- H C-7 

9 31.92 9-H 
1.72 (m, 2H), 

 

 

 C-10 

10 24.99 10-H 1.61 (m, 1H), 11-H C-11 

11 38.26 11-H 2.29 (m,1H) 15-H C-12 

12 172.34     

13 68.09 13-H 4.08 (m, 2H) 16-H C-14 

14 29.69 14-H 1.36 (m,2H)   

15 21.02 15-H 2.03 (m,1H) 14-H  

16 29.35 16-H 1.97 (d,2H) 17-H C-17 

17 22.81 17-H 1.01 (d,3H)   

18 38.44 18-H 2.31 (s,3H)  C-3 
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19 29.65 19-H 1.26(m,2H) 20-H C-20 

20 22.76 20-H 1.28(m,2H)   

21 19.74 21-H 1.12(m,2H) 22-H C-22 

22 14.11 22-H 0.88(t,3H)   

 

           The compound 10-(15-butyl-13-ethyl-2-oxotetrahydro-2H-pyranyl)propyl-

2-methylbenzonate (11)  was isolated as yellowish oil upon chromatography over 

silica columns. The IR absorption band (in MeOH) exhibited close resemblance 

with that of compound 11. The ultraviolet absorbance at λ max (log e) 242 nm 

(3.42) was assigned to a chromophore with extended conjugation. Its mass 

spectrum exhibited a molecular ion peak at m/e 360 (HRESIMS m/e 361.4871 

[M+H]+; D 0.0 amu), which in combination with its 1H and 13C NMR data (Table 

5D.2 ) indicated the elemental composition of compound  as C22H32O4 with seven 

degrees of unsaturation. Three degrees of unsaturation from the double bonds and 

two degrees of unsaturation from the rings were demonstrated. Remaining two 

were from the carbonyl groups.  

The 1H-NMR in conjugation with 13C-NMR recorded the signals at δ 2.31, 

1.26, 1.28, 1.12 and 0.88 shows 1H–1H COSY couplings(FIGURE 5D.4.A) were 

apparent between these protons assigned to be at H-18/H-19/H-20/H-21 and H-22; 

which support the presence of pentane system in compound 11. The relatively 

downfield shift of the methylene protons at δ 4.22 and the C-8 carbon at δ 63.27 

referred to a possible aromatic conjugated carbonyl group. The aromatic protons 

were assigned to be present at δ 7.72-7.06 and the proton integral of the protons 

revealed the presence of aromatic ring. Signal at 148.45(C-2) downfield shift was 

apparently due to the ring contain methyl substitution. Strong HMBC correlations 

were found between H-8 (δ4.22) and H-9 (δ 1.72) with C-7(δ 171.15) (Table 

5D.2), which apparently indicated the presence of the propyl benzoate group. The 

presence of two quaternary carbons at δ 148.45 and δ 139.77 were due to the 

presence of substituted aromatic moiety. The 1H–1H COSY correlations between 

H-11 (δ 2.29)/H-15(δ 2.03)/H-14(δ 1.36) and H-13(δ4.08) along with the proton 

and carbon connectivities deduced from HSQC (FIGURE 5D.4.B) and HMBC  
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experiments (Table 5D.2) confirmed the presence of the pyranone framework. 

Also additional ethyl signals were apparent at δ 29.35 and 22.81 attached to C-13 

position. These results were supported by detailed HMBC experiment (FIGURE 

5D.4.C).  The presence of –CH3 group at the C-18 position of the compound was 

confirmed by 1H NMR and HMBC experiments (Table 5D.2).  

The methine proton at δ 2.29 was characteristic of the junction point of the 

pyranone ring with that of the side propyl methyl benzoate moiety as established 

by 1H–1H COSY correlations and detailed HMBC experiments (Table 5D.2). The 
13C NMR spectrum of the purified compound in combination with DEPT 

experiments indicated the occurrence of 22 carbon atoms in the compound. (Table 

5D.2). The low field quaternary signal (13C NMR) at C-7 was in agreement with 

that of a quaternary carbon signal carrying aromatic ring C-1 of the structure 

(δ139.77). The point of cyclization of H-11(2.29)/H-15(2.02)/H-14(1.36)/H-

13(4.08) forms six member ring support the presence of pyranone ring.  

The proton and carbon connectivity deduced from HSQC and HMBC 

experiments confirmed the pyranone framework attached to the aromatic ring. The 

relative stereochemistry of the chiral centers particularly that of C-11, 13 and 15 of 

the pyanone framework was deduced from the NOESY spectrum( FIGURE 

5D.4.D) of the compound and the J-values. NOE couplings were observed between 

Hα-11 (δ 2.29) and Hα-13 (δ 4.08) thus indicating that these groups must be 

equatorial and on the α-side of the molecule. The methine proton at C-15 group did 

not exhibit NOE interactions with H-11 and H-13, which is at the α-face of the 

molecule, thereby indicating that H-15 is at the axial disposition. 
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Figure 5D.3 
HPLC Chromatogram of compound11 

 

 

Figure 5D.4 
(A) 1H–1H COSY - NMR spectrum of compound11 (B) Prominent HSQC 

correlation spectrum of compound11 
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Figure 5D.4 

(C) HMBC and (D) NOESY spectra of compound11 

   

5D.2.4.2    Structural characterization of the compound 12(B7E21) 

7,8-Dihydro -7- (15-hydroxypropan-14-yl) -8- isobutylbenzo [c] oxepin-

1(9H)-one (12): Brown oily ; UV (MeOH) λmax (log ε): 296 (3.82) nm TLC (Si gel 

GF254 15 mm; 2% MeOH/CHCl3, v/v) Rf:0.82; HPLC(Figure 5D.5) Rt:15.951 

min.; IR (KBr, cm-1) νmax 732.25 (C-H ρ), 1372.28 (C-H ρ ), 1652 (C=C ν), 

1690.21 (C-CO-C ν), 2854.74 (C-H ν); 1H-NMR (500 MHz, Chloroform-d) δ 

7.75(dd,1H), 7.70 (dd, 1H), 7.53 (dd, 1H), 7.50 (dd, 1H), 4.32(dt,2H), 4.09 (d,2H), 

2.36(d,1H), 2.09(m,1H), 1.75(m,1H), 1.42(m,1H), 1.28(t,2H), 0.99(dd,3H), 

0.96(dd,3H), 0.94(dd,3H). 13C-NMR (125 MHz, CDCl3); 1H-1H COSY and HMBC 

data (details under the Table 5D.3; Figure 5D.6); (HRESIMS m/e 321.1424 

[M+Na]+; D 0.0 amu, cald for C17H24O3Na, 321.3362). 
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Table 5D.3 

NMR spectroscopic data of compound11in CDCl3.
a 

 

Carbon 

no. 

13C 

NMR 

(DEPT) 

H-type 
δ1H NMR 

(int., mult., J in Hz)b 

1H-1H 

COSY 

HMBC 

(1H-13C) 

1 128.83 1-H 7.75(dd,1H) 2-H  

2 128.7 2-H 7.70 (dd, 1H) 3-H C-3 

3 130.72 3-H 7.53 (dd, 1H)  C-2,4 

4 132.34     

5 132.53     

6 130.87 6-H 7.50 (dd, 1H) 7-H  

7 38.06 7-H 2.36(d,1H) 6-H C-13,8 

8 30.58 8-H 
1.75(m,1H) 

 
9-H  

9 65.55 9-H 4.32(dt,2H)   

10 167.68     

11 22.67 11-H 1.28(t,2H) 12-H C-12 

12 19.18 12-H 1.42(m,1H)   

13 29.69 13-H 2.09(m,1H) 14-H C-12,11 

14 71.77 14-H 4.09 (d,2H)  C-15 

15 19.73 15-H 1.09(dd,3H) 13-H  

16 14.08 16-H 0.94(dd,3H) 12-H C-17 

17 13.7 17-H 0.96(dd,3H)   
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   The 13C NMR spectrum of the purified compound in combination with 

DEPT experiments indicated the occurrence of 17 carbon atoms in the molecule 

including three quaternary carbons, eight –CH, three –CH2, and three –CH3 

carbons. The 13C NMR spectrum of the purified compound displayed one 

quaternary carbon (δ 167.46) atoms bearing the carbonyl group and 132.53 and 

132.34 were two quaternary carbons are located in substituted aromatic ring. The 

side chain isopropyl is substituted at C-8 (δ 30.60) based on HMBC and COSY 

relations. The cyclic ring was confirmed by the strong 1H–1H COSY signals of –

CH2 and -CH protons supported HSQC and HMBC signals as detailed under 

Table5D.3The proton at 7-H (δ 2.36) exhibited strong 1H–1H COSY correlation 

(Figure 5D.7.A) with the proton at δ 2.09 (assigned to be 13-H), which in turn 

exhibited 1H–1H COSY correlations between 13-H/14-H and 15-H (Table 5D.3 ). 

These correlations assigned the 15-hydroxypropan-14-yl system. In the 1H–1H 

COSY spectrum, couplings were apparent between H-7/H-8/H-9 which supports 

the presence of oxepin-1(9H)-one skeleton. The 1H–1H COSY correlations 

between H-9 (δ 1.73)/H-11(1.28)/H-11(δ 1.42) and H-16(0.96)/H-12(1.42)/H-

17(0.94) supports the presence of the 8-isobutyl moiety. The proton and carbon 

connectivity deduced from HSQC(Figure 5D.7.B) and HMBC experiments( Figure 

5D.8.A) confirmed the (15-hydroxypropan-14-yl)-8-isobutylbenzo[c]oxepin-

1(9H)-one framework. Placement of the 15-hydroxypropan-14-yl group at C-7 of 

the benzoxepinone was confirmed by the upfield shift about δ 0.65 of –CH (δ 2.95) 

group attached to aromatic ring in the compound. NOE couplings were observed 

between Hα-13 (δ 2.09)/Hα-8 (δ 1.75) indicating that these groups must be 

equatorial and on the α-side of the molecule (Figure 5D.8.B). The methine proton 

at C-7 group (δ 2.36) did not exhibit NOE interactions with H-13 (δ 2.09), which is 

at the β-face of the molecule, thereby indicating that H-7 is at the equatorial 

disposition.  

The olefinic (C=C) groups have been symbolized by the absorption bands 

at 1652 and 1056 cm-1. The ultraviolet absorbances at λ max (log e) 296 (3.82) nm 

indicating the presence of more than one conjugated system in the compound. Its 
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mass spectrum exhibited a molecular ion peak at m/e 276 (HRESIMS m/e 

321.1424 [M+Na]+; D 0.0 amu, cald for C17H24O3Na, 321.3362), which in 

combination with its 1H and 13C NMR data (Table 5D.3) indicated the elemental 

composition of C17H24O3 as 7,8-dihydro-7-(15-hydroxypropan-14-yl)-8-

isobutylbenzo[c]oxepin-1(9H)-one with six degrees of unsaturation. Four degree of 

unsaturation from aromatic ring and one due to carbonyl group. The additional 

degree of unsaturation was due to the cyclic ring.  

 

 
Figure 5D.5 

HPLC Chromatogram of compound 12 
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Figure 5D.6 
(A) 1H, (B) 13C NMR spectrum of compound12 

 

 

Figure 5D.7 
(A)1H–1H COSY - NMR spectrum of compound12 (B) Prominent HSQC 

correlation spectrum of compound12 
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Figure 5D.8  

(A) HMBC and (B) NOESY spectra of compound12.The key HMBC 

couplings have been indicated as double barbed arrow. The NOESY spectrum 

have been indicated as two sided arrows. 

 

5D.2.4.3 Structural characterization of the compound 13(B7E29) 

13-(Amino methyl)-11-hydroxyoctanyl 10-phenylpropanoate (13) : yellow oil: UV 

(MeOH) λmax (log ε): 268 nm (3.15); TLC (Si gel GF254 15 mm; CC 30% EtOAc:n-

hexane, v/v); Rt: 37.079 min(Figure 5D.9) ; Rf 0.24; IR (KBr, cm-1) νmax 718.29 (C-

H ρ), 812.47 ( aromatic C-H δ), 1372.96 (C-H ρ ), 1458.33 (C-H δ ), 1467.92 (C-H δ 

), 1560.32(C=C ν ), 1693.18 (C-CO-C ν), 1720.81 (C=O ν), 2946.85 (C-H ν ), 3340 

( br O-H ν); 1H-NMR (500 MHz, Chloroform-d) δ 7.34 -7.25(m, 3H), 7.22-

7.20(m,2H) , 4.24(m,1H), 3.68(t,1H), 2.96(t,2H), 2.69(t,2H), 2.36(dt,1H), 

2.16(s,2H), 1.72(d,3H), 1.62(m,1H), 1.28(m,2H), 0.89(t,3H); 13C-NMR, 1H-1H-

COSY and HMBC data (details under the Table 5D.4 ); HRMS (ESI) m/e: 279.6824 

calcd. for C16H25O3 279.2825; found 279.6824 [M+]. 
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Table 5D.4  

NMR spectroscopic data of compound13in CDCl3.
a 

 

Carbon 

no. 

13C 

NMR 

(DEPT) 

H-type 
δ1H NMR 

(int., mult., J in Hz)b 

1H-1H 

COSY 

HMBC 

(1H-13C) 

1 128.53 1-H 7.29(m,1H) 2-H  

2 129.35 2-H 7.34 (m, 1H) 3-H C-3 

3 127.28 3-H 7.26 (m, 1H) 4-H C-4,5 

4 126.34 4-H 7.20 (t, 2H)   

5 140.22     

6 128.24 6-H 7.21 (m,1H) 1-H  

7 31.91 7-H 2.96(t,2H) 8-H C-8 

8 

37.57 
8-H 

2.69(t,2H) 

 
  

9 176.93     

10 67.29 10-H 4.24(m,1H) 11-H C-11 

11 40.33 11-H 3.68(t,1H)  C-12 

12 24.79 12-H 1.62(m,1H)   

13 34.5 13-H 2.36(dt,1H) 12-H C-12,11 

14 N 14-H 2.16 (s,2H)   

15 22.67 15-H 1.28(m,2H) 16-H C-16 

16 14.09 16-H 0.89(t,3H)   

17 29.69 17-H 1.72(d,3H) 10-H  

      

 The phenylpropanoate derivative 13-(amino methyl)-11-hydroxyoctanyl 10-

phenylpropanoate (13) was isolated as semisolid upon repeated column 
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chromatography using silica gel as adsorbent. The 1H, 13C, DEPT, 1H–1H COSY, 

HSQC and HMBC NMR spectra of 13-(amino methyl)-11-hydroxyoctanyl 10-

phenylpropanoate is shown in Figure 5D.10, Figure 5D.11 and Figure 5D.12 

respectively. The IR absorption band (in MeOH) exhibited free –OH stretching 

vibrations near 3340 cm-1. The bending vibration bands near 1720.81 cm-1 denotes 

the ester carbonyl absorption. The IR spectrum revealed broad absorption band at 

νmax 3400 to 3100 cm-1, attributed to hydroxyl functionality. The ultraviolet 

absorbance at λ max (log e) 268 nm (3.15); was assigned to a chromophore with 

extended conjugation. Its mass spectrum exhibited a molecular ion peak at m/e 279 

(HRESIMS m/e 279.6824 [M]+; D 0.0 amu), which in combination with its 1H and 
13C NMR data (Table 5D.4) indicated the elemental composition of C16H25O3 as 

13-(amino methyl)-11-hydroxyoctanyl 10-phenylpropanoate with five degrees of 

unsaturation. 

The 1H NMR in conjugation with 13C-NMR (Figure 5D.10 A-B) recorded 

the presence of methane signals at δ 0.89 and 1.72 and  the 1H–1H COSY 

couplings (Figure 5D.11.A) were apparent between these protons assigned to be at 

H-16 and H-17 which support the presence of two methyl groups. The relatively 

downfield shift of the methylene proton at δ 2.96 at H-7 and the δ2.69 at H-8 

indicates the methylene protons were attached to aromatic ring. The aromatic 

protons were assigned to be present at δ 7.19-7.24, δ 7.27-7.34 and the proton 

integral of the protons revealed the presence of five aromatic protons. The broad 

IR absorption band (in MeOH) at 3100-3350 cm-1 was due to the –OH groups in 

the skeleton exhibit free –OH stretching vibrations, which has been supported by 

the 1H-NMR signals at about δ 6.50. The exchangeable hydroxyl protons at δ 6.50 

(1H, bs in CDCl3) disappeared upon addition of D2O. The methine group protons 

at δ 4.24 (H-10) and δ 3.68(H-11) are assigned to be at C-10 and 11 positions, 

respectively, and the downfield shift (about δ 1.25 ) is apparently due to the 

presence of the carbonyl groups. A strong HMBC correlation was found between 

H-10 (δ 4.22)/ C-9 (δ 174) (Table 5D.4), which apparently indicated the presence 

of the carbonyl carbon near the methine group. The presence of two quaternary 

carbons at δ 140.22 and δ 174 are due to the presence of substituted benzyl moiety. 

The 1H–1H COSY correlations between H-7 (δ 2.96) and H-8 (δ 1.2.69) along with 
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the proton and carbon connectivities deduced from HSQC (Figure 5D.11.B) and 

HMBC(Figure 5D.12.A) experiments (Table 5D.4) confirmed the phenyl 

propanoate framework. The –CH proton at δ 1.62(assigned to be at C-12) exhibited 

strong 1H–1H COSY correlations with the methylene protons at δ 1.28(H-15)/ 

0.89(H-16)/2 and 2.36(H-8) which established the presence of 13-(amino methyl)-

11-hydroxyoctanyl chain of the compound. The methylene group at the C-7 

position of the structure resulted in strong deshielding of the aromatic quaternary –

C- at δ 140.22 and therefore, has been assigned to be present at the junction point 

attached with aromatic ring. The methine proton at δ 4.22 is characteristic of the 

junction point of the phenylpropanoate ring with that of the side chain amino 

methyl-11-hydroxyoctanyl moiety was established by 1H–1H COSY correlations 

and detailed HMBC experiments (Table 5D.4). The 13C NMR spectrum in 

combination with DEPT experiments indicated the occurrence of 16 carbon atoms 

in the molecule including one ester carbonyl carbon at δ 174 (Table 5D.4). The 

proton and carbon connectivity deduced from HSQC and HMBC experiments 

confirmed the 13-(amino methyl)-11-hydroxyoctanyl framework attached at C-10 

position.  

The –CH protons at C-11 (δ 3.68) appeared to demonstrate the presence of 

hydroxyl group. Long range HMBC correlation δ 2.96(H-7) and δ 2.69(H-8) with 

aromatic carbon at δ 140(C-5) and 128.15(C-6) indicates these methylene groups 

attached to aromatic ring. This along with extensive 2D NMR analyses assigned 

the presence of phenyl propanoate, amino methyl and one hydroxyl moieties. The 

relative stereochemistry of the chiral centres particularly that of C-10, 11 and 12 of 

the compound was deduced from the NOESY spectrum (Figure 5D.12.B) of the 

compound and the J-values. The methine proton at C-11 group did not exhibit 

NOE interactions with H-10 and H-12, which is at the α-face of the molecule, 

thereby indicating that H-11 is at the axial disposition.  

 

 

 

 



 

 225 

Chapter – 5D   Bioprospecting of antagonistic bacteria B. amyloliquefacens  
associated with  seaweed Padina gymnospora(SWI7)for antibacterial metabolites 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 

 

 

 
Figure 5D.9 

HPLC Chromatogram of compound 13 

 

.  

Figure 5D.10 

(A) 1H, (B) 13C NMR (Inset DEPT)spectrum of compound13 
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Figure 5D.11 
A) 1H–1H COSY - NMR spectrum of compound13 (B) Prominent HSQC 

correlation spectrum of compound13 

 

 

Figure 5D.12 

A) HMBC and (B) NOESY spectra of compound13.The key HMBC couplings 
have been indicated as double barbed arrow. The NOESY spectrum has been 
indicated as two sided arrows. 
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5D.2.4.4 Structural characterization of the compound 14(B7E29) 

9-(tetrahydro-12-isopropyl-11-oxofuran-10-yl) ethyl 4-ethoxy-2-hydroxy- 

benzoate (14): Yellowish oil UV (MeOH) λmax (log ε): 253 nm (2.63); TLC (Si gel 

GF254 15 mm; EtOAc/n-hexane (3:17, v/v) Rf: 0.98; Rt: 32.175 min.( Figure 

5D.13); IR (KBr, cm-1) νmax 814.02 (aromatic C-H δ ), 1310.16 (C-O   ν), 1377.22  

(C-H ρ), 1614.92  (C=C ν), 1691.24 (C-C-O ν), 1736.92 (C=O  ν), 2924.21 (alkane 

C-H ν), 3010.11 (aromatic C-H ν);  1H NMR (500 MHz, Chloroform-d) δ 7.65(dd, 

1H), 7.45 (dd,1H), 6.51 (s, 1H), 4.22(dt,2H), 4.02 (dt,2H), 3.56 (dd,2H), 

2.29(m,1H), 1.98(m,1H), 1.65(m,2H), 1.59(m,2H), 0.93(dd,3H), 0.81(dd,3H), 

1.08(t,3H)   13C NMR (125 MHz, CDCl3 δ in ppm), 1H-1H-COSY, and HMBC 

data, see Table 5D.5; HRMS (ESI) m/e: 336.1573(M)+ calcd. for C18H24O6 

336.4008; found 336.4008 [M]+. 

Table 5D.5 
NMR spectroscopic data of compound14in CDCl3.

a 

 

1

2

3

4

5

6

7
O 8

9
10

11
O

12

13

14

O 15

16

O

17 18OHO
 

 

Carbon 

no. 

13C 

NMR 

(DEPT) 

H-type 

δ1H NMR 

(int., mult., J in 

Hz)b 

1H-1H 

COSY 

HMBC 

(1H-
13C) 

1 131.14 1-H 7.45 (dd,1H) 6-H C-2 

2 157.62     

3 101.6 3-H 6.51 (s, 1H)   

4 158.02     
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5 148.45     

6 128.79 6-H 7.65 (dd, 1H) 7-H C-5,1 

7 173.42     

8 66.33 8-H 4.22(dt,2H) 9-H C-7,9 

9 30.24 9-H 1.65(m,2H) 10-H C-8,10 

10 33.51 10-H 2.29(m,1H) 13-H C-11 

11 177.26     

12 71.76 12-H 4.02 (dt,2H) 14-H  

13 24.81 13-H 1.59(m,2H)  C-12,11 

14 29.5 14-H 1.98(m,1H) 12-H C-15 

15 19.16 15-H 0.93(dd,3H) 13-H  

16 14.11 16-H 0.81(dd,3H) 12-H C-17 

17 72.25 17-H 3.56 (dd,2H) 18-H  

18 22.6 18-H 1.08(t,3H)   

 

                         

The IR bending vibration bands near of compound 14 at 1736.92 cm-1 

attributed to the ester carbonyl absorption. The IR spectrum revealed broad 

absorption band at νmax 1614.92 cm-1, symbolized the olefinic system. The bending 

vibration bands near 814.02 cm-1 and stretching vibration at 3010.11 cm-1 denoted 

the aromatic C-H vibrations. The ultraviolet absorbance at » max (log ε) 253 nm 

(2.63) was assigned to a chromophore. Its mass spectrum exhibited a molecular 

ion peak at m/e 336, which in combination with its 1H and 13C NMR data (Table 

5D.5) indicated the elemental composition of C18H24O6. The 1H NMR in 

conjugation with 13C-NMR and DEPT spectra recorded the presence of four 

methylene, six methine, three methyl, and five quaternary carbon atoms. Its mass 

spectrum exhibited a molecular ion peak at m/z 336 (HRESIMS m/e 336.1573 

[M]+; D 0.0 amu), which in combination with its 1H and 13C NMR data (Table 

5D.5) indicated the elemental composition of C18H24O6 as compound 14 with 
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seven degrees of unsaturation (Figure 5D.14). Three degree of unsturation from 

double bonds, two degrees of unsturation from the aryl and furan ring systems, 

two from the carbonyl moieties. Couplings were apparent between the protons at δ 

4.22 (H-8)/ δ 1.65 (H-9)/ δ 2.30 (H-10)/ δ 1.59 (H-13) and 4.02(H-12) in the 1H–
1H COSY spectrum (Figure 5D.15.A), which supported the presence of 10-ethyl 

furan moiety.  

The methine signal H-12 at δ 4.02 appeared downfield due to the presence 

of electronegative systems at close proximity. One methylene groups have been 

assigned to occupy at the C-17 position, shifted downfield due to the presence of 

oxygen moiety. The HSQC (Figure 5D.15.B) and HMBC experiments (Figure 

5D.16.A) revealed that the ester group linked to the isopropyl at δ 4.02. The 

aromatic protons showed their characteristic signals at δ 7.65 -7.45and 6.51. 

Extensive HMBC and HSQC experiments revealed the presence of substituted 

furan moiety in the compound. 1H–1H COSY experiments(Figure 5D.15.A) 

revealed that the protons at δ 2.29(m) correlate with the methylene protons at δ 

1.65 (assigned to be as H-9) and, the later is assigned to be attached to a carbonyl 

electronegative group.  

The –CH2- proton appeared downfield at δ 4.22 apparently due to the 

presence of the electronegative oxygen group and was assigned to be present at the 

C-8 position of the above stated compound. The carboxyl group at the C-11 

position of the compound resulted in strong deshielding of the –CH- proton at δ 

2.29, and therefore, has been assigned to be present at the C-10 position of the 

structure. The chemical shift of the protons at δ 1.98, 0.89 and 0.84 along with 

detailed 2D NMR experiments established the presence of O-heterocyclic furan 

ring system. The –CH- proton at δ 4.02 is characteristic of the junction point of the 

cyclic system with carboxylic side chain. The 13C NMR spectrum of the purified 

compound in combination with DEPT experiments indicated the occurrence of 18 

carbon atoms in the molecule including furan carbons at δ 158-101. (Table  5D.5). 

The low field quaternary signals (13C NMR) were in agreement with that to a 

quaternary carbon signal carrying the furan ring. The H–H and C–H connectivities 

apparent in the 1H–1H COSY and HMBC spectra respectively indicate that one of  
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the seven  unsaturations was due to the two ring and five double bonds. The 

relative stereochemistry of the chiral centre particularly that of C-12 cyclic 

framework was deduced from the NOESY experiment (Figure 5D.15.B) and the J-

values. NOE couplings were observed between Hα-10/Hα-14 thus indicating that 

these groups must be equatorial and on the α-side of the molecule. Therefore, the 

C-12 proton is axial and β-oriented.  

 
 
 

Figure 5D.13 
HPLC Chromatogram of compound 14 
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Figure 5D.14 

(A) 1H, (B) 13C NMR (Inset DEPT)spectrum of compound14 
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Figure 5D.15 

A) 1H–1H COSY - NMR spectrum of compound14 (B) Prominent HSQC 
correlation spectrum of compound14 

 

 
 

Figure 5D.16 

A) HMBC and (B) NOESY spectra of compound14.The key HMBC couplings 
have been indicated as double barbed arrow. The NOESY spectrum have 
been indicated as two sided arrows. 
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5D.3 Conclusion 

Bioprospecting of antibacterial metabolites in antagonistic bacteria B. 

amyloliquefacens associated with seaweed padina gymnospora (SWI7) revealed a 

multi component mode of antagonism. The crude ethyl acetate extract of the 

bacterial metabolites yielded four antibacterial compounds 11 through 14. The 

compounds were 10-(15-butyl-13-ethyl-2-oxotetrahydro-2H-pyranyl)propyl-2-

methylbenzonate (11), 7,8-dihydro-7-(15-hydroxypropan-14-yl)-8-isobutylbenzo 

[c] oxepin-1 (9H)-one (12), 13-(amino methyl)-11-hydroxyoctanyl 10-

phenylpropanoate (13) and  9-(tetrahydro-12-isopropyl-11-oxofuran-10-yl) ethyl 4-

ethoxy-2-hydroxybenzoate(14). 
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CHAPTER 6 

Secondary metabolites and seaweed-bacterial interactions 

 

6.1 Background of the study 

 Seaweeds are highly productive components of the coastal ecosystem 

releasing dissolved organic carbon into surrounding waters, thus harboring suitable 

living substrata for microbial colonization (Ali et al. 2012). It has been shown that 

these chemically mediated interactions between the seaweeds and their associated 

bacteria are based on the exchange of nutrients, minerals, and secondary 

metabolites. However, the interactions of seaweeds with their associated microbes 

have not been thoroughly investigated (Hollants et al. 2012). Emergence of 

antibiotic resistant bacteria and the need for novel, antimicrobial compounds lead 

to the exploration of new habitats to screen the production of bioactive substances. 

These seaweed species was reported to suffer remarkably low levels of microbial 

infection, despite lacking cell-based immune systems (Kubanek et al. 2003). In 

recent years, it has been suggested that certain seaweed species may utilize surface 

associated bacteria that produce inhibitory compounds to prevent surface fouling 

(Kumar et al. 2011). 

Although the ecological relevance of most bacterial associates on or within 

seaweeds remains unclear, nutrient-rich seaweed surfaces attract many 

opportunistic micro and macroorganisms, thereby creating a greatly competitive 

environment in which the production of defensive compounds can serve as 

powerful tools for bacteria to out compete other surface colonizers. Seaweed–

bacterial associations are appealing from evolutionary, ecological, and applied 
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perspectives, and there is a strong need to integrate the aspects of different 

biological disciplines such as microbiology, phycology, ecology, and chemistry in 

seaweed–bacterial interactions (Hollants et al. 2012). 

Keeping these reports in background in the current chapter we are making 

an attempt to illustrate the ecological interaction between seaweed host and its 

associated active bacterial flora. Seaweed–bacterial interactions were studied by 

comparing the antibacterial metabolites of colonizing bacteria with its host derived 

seaweed secondary metabolites in Chapter 6A. We have extended the analysis to 

understand the effect of seaweed extract and the metabolic precursors of the 

seaweed extract on the growth and fatty acid profile of the bacterial species to 

understand the interactions between the host seaweed and their associated bacterial 

flora in chapter 6B. 
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Chapter 6A 

ANTIBACTERIAL SECONDARY METABOLITES AND 
SEAWEED BACTERIAL INTERACTIONS 

 

6A.1 Background of the study  

Seaweeds along with their associated bacterial communities are potential 

sources of biotechnological interest due to the production of a great diversity of 

compounds exhibiting broad spectrum biological activities. Marine microbial 

symbionts are possibly the true producers or take part in the biosynthesis of some 

bioactive marine natural products isolated from the eukaryotic hosts as reported in 

similar studies (Kubanek et al. 2003; Zhao et al. 2011). Pluralities of culture 

dependent and independent studies on sponges and their associated microbiota 

validated this hypothesis (Zhang et al. 2009; Li 2009). Investigations of seaweed–

bacterial associations lag behind those of other marine eukaryotes (Hollants et al 

2012; Goecke et al. 2010). Although examples are rare (Kubanek et al. 2003), it is 

believed that marine eukaryotes may use their surface-associated bacteria as a 

source of antimicrobial chemical defenses in competition and in the protection of 

the host (Penesyan et al. 2010). Similarly, studies in sponges have shown co-

detection of the chemical fingerprints of the bacterial metabolites in the host 

extracts and some bacterial compounds, which were shown to have a role as 

chemical mediators of interactions within the sponge-associated bacterial 

compartment (Quevrain et al. 2014).  

In this study, we have adopted a culture dependent method to isolate 

heterotrophic B. subtilis MTCC 10407 (chapter 3 section 3.2.2) associated with 

brown seaweed Sargassum myriocystum at the Gulf of Mannar in the southeast 

coast of India to explore them as a source to isolate O-heterocycle pyran 
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derivatives of presumed polyketide origin, with activity against human 

opportunistic food pathogenic bacteria. The potential of the seaweed-associated B. 

subtilis MTCC 10407 to produce antimicrobial secondary metabolites was 

analyzed by polymerase chain reaction employing amplifying genes encoding for 

polyketide synthetase (pks). Seaweed–bacterial interactions were studied by 

comparing the antibacterial metabolites of colonizing bacteria with its host derived 

seaweed secondary metabolites. The PKS-assisted biosynthetic pathway of the O-

heterocycle pyrans was proposed and the ecological interactions of seaweed and its 

associated bacterial metabolites have been demonstrated based on co-detection of 

the chemical fingerprint of the bacterial metabolites in the host extracts.  

6A.2 Materials and methods 

6A.2.1 General 

Reagents and analysis as explained in chapter5 (5.2.4 and 5.2.7).Bacterial 

pathogens as in chapter 3(3.2.4) 

6A.2.2 Seaweed samples and associated antibacterial isolates 

The brown seaweed Sargassum myriocystum was collected by scuba diving 

from the intertidal zone of the Gulf of Mannar region in South-East coast of India 

situated at 9° 17' 0" North, 79° 7' 0" East. The seaweed samples were processed 

and the associated bacterial strains were isolated as described earlier 

(chapter3.2.2). The isolated strains were assayed for antagonistic activity against 

test pathogens (chapter 3.2.4).The inhibitory activity was assayed by a spot over 

lawn assay as described earlier (chapter 3.2.5). Bacteria with antagonistic 

properties were identified using classical biochemical methods followed by 16S 

rRNA gene sequencing using the primes AGAGTTTGATCCTGGCTCAG 

(forward) and ACGGCTACCTTGTTACGACTT (reverse) (Weisburg et al. 1991) 

as described in chapter 3(3.2.7.2). The isolate under the present study was B. 

subtilis MTCC 10407 isolated from Sargassum myriocystum (chapter 3 section 

3.2.2). The candidate strain was subjected to metabolite gene (pks) screening using 

the primer RTRGAYCCNCAGCAICG (forward) and VGTNCCNGTGCCRTG 

(reverse) as reported earlier (chapter 4 section 4.2.5).  
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6A.2.3 Bioassay guided purification of antibacterial compound from B. subtilis 

MTCC 10407 associated with seaweed Sargassum myriocystum  

B. subtilis MTCC 10407 was cultured over solid nutrient agar plates. The 

preparation and recovery of secondary metabolites from antibiotic-producing 

bacterium B. subtilis MTCC 10407 was carried out as described in chapter 

5C(section 5C.1.4) and structural characterization as explained in Chapter 

5C(section 5C.2.6).Purified bacterial secondary metabolites compound 9 and 

compound 10 are used for present study. 

6A.2.4 Bioassay guided chromatographic purification of the ethyl acetate 

extract of Sargassum myriocystum 

  The ground shade-dried seaweed samples (400 g) were extracted with 

MeOH (2000 ml x 3) at an elevated temperature (40-45oC) for 3 h. The samples 

were filtered through filter paper (Whatman No. 1) and the pooled filtrate was 

concentrated (50 °C) in vacuo to one-third volume, before being partitioned with n-

hexane (150 ml ×3), CH2Cl2 (150 ml ×3) and EtOAc (150 ml ×3) in succession. 

Evaporation of the solvents from these fractions under reduced pressure furnished 

n-hexane (3.6g), CH2Cl2 (4.24g), and EtOAc (7.5g) fractions. The aliquot of the 

EtOAc extract (7.5 g) of S. myriocystum was slurried in silica gel (3 g, 60–120 

mesh), and loaded into a glass column (90 cm X 4 cm) packed with silica gel (60–

120 mesh, 50 g) as adsorbent before being subjected to vacuum liquid 

chromatography. The column was initially eluted with n-hexane, to remove the 

waxy material. The eluent polarity was gradually increased by addition of EtOAc 

(n-hexane: EtOAc 199:1 to 1:19, v/v) to furnish twenty-five fractions of 30 ml 

each, which were reduced to 9 groups (SM 1-9) after TLC analysis (n-hexane: 

EtOAc, 9:1, v/v). The fraction 4 (SM 4) obtained by eluting with n-hexane: EtOAc 

(5:1, v/v) was found to be a mixture, which was flash chromatographed (Biotage 

AB SP1-B1A, 230–400 mesh, 12 g; Biotage AB, Uppsala, Sweden) on a silica gel 

column (Biotage, 230–400 mesh, 12 g; Sweden, Biotage No. 25+M 0489-1) at a 

collection UV wavelength at 242 nm using a step gradient of ethyl acetate/n-
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hexane (0-20% EtOAc) to afford 95 fractions (9 ml each). The fractions with 

similar patterns were pooled together to afford four pooled fractions (SM4-1 - SM 4-

4). The sub-fraction SM 4-3 as eluted with EtOAc/n-hexane (3:17, v/v) was further 

separated by chromatography on silica gel GF254 (particle size 15 μm) coated on a 

preparatory thin layer plate using a stepwise gradient system from 0.5% 

MeOH/CH2Cl2 yielded compound 15, i.e., 2-(8-butyl-3-ethyl-3,4,4a,5,6,8a-

hexahydro-2H-chromen-6-yl)ethyl benzoate (6.2 mg ). The fractions SM 7 and SM 

8 as eluted with n-hexane: EtOAc (3:7 and 1:4 v/v, respectively) were pooled 

together before being chromatographed on a silica gel column (180-230 mesh, 

3.5x15cm) using a step gradient of CHCl3: MeOH (100:0 to 9:1, v/v) to afford 

fifty-three fractions (10 ml each). Based on analytical TLC (n-hexane: EtOAc, 9:1, 

v/v), the fractions with similar patterns were pooled together to afford five pooled 

fractions (SM 7-1 through SM 7-5). The sub fraction SM 7-4 eluted with CHCl3: 

MeOH (23:2, v/v) was fractionated over preparatory TLC on silica gel GF254 using 

a stepwise gradient system from 3% CH2Cl2: MeOH to obtain four sub-fractions 

(SM 7-4-1 - SM 7-4-4). Repeated chromatographic separation of PG7-4-4 on silica gel 

GF254 using CH2Cl2: MeOH (97:3, v/v) afforded 3-(methoxycarbonyl)-4-(5-(2-

ethylbutyl)-5, 6-dihydro-3-methyl-2H-pyran-2-yl) butyl benzoate (16, 6.15 mg) as 

major component. Evaporation of solvents from 16 followed by TLC over silica 

gel GF254 (particle size 15 mm) using CHCl3: MeOH (99:1, v/v) supported the 

purity.  

6A.2.5 Antimicrobial assay 

Antibacterial activities of the compounds were analyzed using a disc 

diffusion method with compound impregnated discs as explained in chapter 

5(5.2.6). 

6A.3 Results 

6A.3.1 Isolation and antibacterial activities of Bacillus subtilis MTCC 10407 

associated with intertidal seaweed Sargassum myriocystum 

The bacterial isolate with antibacterial activity was identified as a Bacillus 

subtilis strain and has been submitted at Microbial Type Culture Collection and 
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Gene Bank (MTCC) of Institute of Microbial Technology (Chandigarh, India). The 

strain under the present study has been designated as MTCC10407 (Figure 6A.1). 

It was identified through biochemical, fatty acid methyl ester analysis and 16S 

rRNA gene sequencing, and the sequence was deposited under the accession 

number JF834077 (Chapter 3 section 3.2.7). The strain was found to be positive for 

the polyketide synthase gene (pks), and the KS domain sequences obtained during 

the study have been deposited under the accession number KC607823 (Chapter 4 

section 4.2.5). Although it is difficult to predict the products of pks based upon the 

derived sequences due to the presence of smaller gene fragments, an attempt was 

made to correlate the structural properties of produced secondary metabolites with 

the presence of pks gene. The strain possessed a broad spectrum antibacterial 

activity against human opportunistic food pathogenic bacteria V. parahaemolyticus 

ATCC®17802™ (15 mm), V. parahemolyticus MTCC 451 (17 mm), V. vulnificus 

MTCC 1145 (22 mm), A. hydrophilla (12 mm), V. harveyi (15 mm), V. angullarum 

(11.3 mm), and V. alginolyticus (15 mm). 

 

 
 

Figure 6A.1 

(A) The Gram stained B. subtilis MTCC 10407. The antibacterial activities of ethyl 
acetate extract of B. subtilis MTCC 10407 and the compounds purified (compound 
9(1) compound  10(2) against Aeromonas hydrophilla on Mueller Hinton agar plates 
were shown as inset. ‘EA’ designates the ethyl acetate extract of B. subtilis MTCC 
10407. The bactericidal inhibition zones are visualized as clearance around the disc 
impregnated with the test materials. (B) Antibacterial activities of the purified 
compounds (1-4) against Aeromonas hydrophilla on Mueller Hinton agar plates. (C) 
Inhibitory activities of the purified compounds (1-4) against Vibrio alginolyticus 
MTCC 4439 as visualized on MTT sprayed Mueller Hinton agar plates. The live cells 
were changed to blue color. The bactericidal zones of the active compounds were 
visualized as yellow color. [#compound 15(3) and compound 16(4)] 
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6A.3.2 Antibacterial activities of chromatographic fractions of Sargassum 

myriocystum and its associated B. subtilis MTCC 10407 by agar 

diffusion method 

The ethyl acetate extract (10mcg on disk) of B. subtilis MTCC 10407 

exhibited an inhibitory zone diameter of greater than 20 mm against the 

experimental pathogens (Figure 6A.1.B, Table 6A.1). The compound 9(1) and 

10(2) isolated from B. subtilis MTCC 10407 demonstrated significant antibacterial 

activity (inhibitory zone diameter of greater than 15 mm against A. hydrophilla, 10 

mcg on disk) against these pathogenic bacteria (Figure 6A.1.B, Table 6A.1). The 

seaweed derived compounds (3 and 4) showed a negligible inhibition zone 

(<10mm) (Figure 6A.1.B, Table 6A.1). These results were further validated by 

spraying the plates with 3-(4, 5-dimethylthiazol-2-Yl)-2, 5-diphenyltetrazolium 

bromide (MTT) sprayed on the Mueller Hinton agar plates (Figure 6A.1.C). 

Table 6A.1 
Antibacterial activity of the crude ethyl acetate extract and the O-heterocyclic 
pyrans (1, 2) from B. subtilis MTCC 10407 and the homologous compounds (3, 

4) from the brown seaweed Sargassum myriocystum 

  Antimicrobial activity (mm) against test pathogens 

 Crude extract # 1a(9) 2a(10) 3b(15) 4b(16) 

V. parahemolyticus * 24.33±0.577 11.0±1.00 11.0±1.00 7,00±1.0 3.33±0.58 

Vibrio vulnificus 22.66±0.577 12.66±0.577 14.0±1.00 7.33±0.58 4.60±0.58 

Aeromonas 
hydrophilla 26.0±1.00 17.66±0.577 15.0±1.00 8.33±0.58 7.00 ±1.00 

# Ethyl acetate extract of B. subtilis MTCC 10407 associated with brown seaweed Sargassum  
  myriocystum 
a  Compounds from B. subtilis MTCC 10407(9 and10) 

b  Compounds from Sargassum myriocystum(15 and 16) 
* V. parahemolyticus ATCC® 17802™   
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6A.3.3 Structural characterization of antibacterial O-heterocycle pyrans from 

B. subtilis MTCC 10407 

Two novel O-heterocycle pyrans, 9 and 10 (as stated in the materials 

section) were isolated upon repeated chromatography over silica columns (as 

explained earlier chapter5C section 5C.2.7).  

6A.3.4 Structural characterization of secondary metabolites from Sargassum 

myriocystum 

Two compounds 15 and 16 (as stated in the materials section 6A.2.4) were 

isolated upon repeated chromatography over silica columns. The structural details 

of the compounds were as follows. 

6A.3.4.1  Structural characterization of compound 15 

2-(8-Butyl-3-ethyl-3, 4, 4a, 5, 6, 8a-hexahydro-2H-chromen-6-yl) ethyl 

benzoate (15). White semisolid; UV (MeOH) λmax (log ε): 235 nm (3.84); TLC (Si 

gel GF254 15 mm; CHCl3/MeOH 99:1, v/v) Rf: 0.45; GC Rt: 8.6 min; IR (KBr, cm-

1) νmax 729.29 (C-Hρ), 1376.26 (C-Hρ), 1454.38 (C-Hδ), 1466.91 (C-Hδ), 1506 

(aromatic C-Hν), 1642 (C=Cν), 1736.96 (C=O ν), 2854.7 (C-Hν); 1H NMR (500 

MHz, CDCl3 δ in ppm), 13C NMR (126 MHz, CDCl3 δ in ppm), 1H-1H-COSY, and 

HMBC data, see Table 6A.2; HRMS (ESI) m/e: 416.5668 calcd. for C25H37O5 

416.4814; found 416.5668 [M+H]+.  

The IR bending vibration bands of compound 9 at 1736.96 cm-1 attributed 

to the ester carbonyl absorption. Its mass spectrum exhibited a molecular ion peak 

at m/e 416, which in combination with its 1H (Figure 6A.2.A) and 13C NMR data 

(Table 6A.2) indicated the elemental composition of C25H36O5 with eight degrees of 

unsaturation. The 13C NMR spectrum in combination with DEPT experiments 

(Figure 6A.2.B) indicated the occurrence of 25 carbon atoms, including two 

carbonyl carbons at δ 173.30 and δ 167.70 and olefinic carbons at δ 132.46 and 

114.05 (Figure 6A.3.B). The –CH2- protons appeared at δ 4.11 was due to the 

presence of the dihydropyran ring system and has been assigned to be present at 

the C-18 position of the ring structure. 1H–1H COSY experiments revealed that the 

protons at δ 4.33 (d) correlated with the methylene protons at δ 1.72 (assigned to 
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be as H-9) and the –CH proton at δ 2.34, the latter was assigned to be attached to a 

strongly electronegative group (Figure 6A.4.A). A typical signal characteristic of –

OCH3 group was apparent at δ 3.69, which enabled to deduce the presence of 

methyl 4-methoxybutanoate moiety in the compound. The methine proton (t) at δ 

4.24 is characteristic of the junction point of the 3, 6-dihydro-2H-pyran moiety 

with that of the side chain. The proton and carbon connectivity deduced from 1H–
1H COSY, HSQC(Figure 6A.4.B) and HMBC experiments(Figure 6A.5.A) 

confirmed the C4 framework attached to the dihydro-2H-pyran moiety at the C-17 

position of the ring structure . Strong 1H–1H COSY correlations were apparent 

between the protons at δ 2.02 (-CH, assigned to be as C-17)/δ 1.52 (-CH2, C-19)/ δ 

1.44 (-CH2, C-20)/ δ 1.02 (-CH2, C-21)/ δ 0.88 (-CH3, C-22), which along with the 

results detailed above support the presence of 3-butyl-3,6-dihydro-5-methyl-2H-

pyran moiety. The detailed spectral analyses demonstrating the presence of the 

relative stereochemistry of the chiral centers, particularly that of C-10 (with the 

proton chemical shift at δ 2.34 as deduced from HSQC experiments) carrying the –

COOMe group of the framework, and that of C-14 (bearing the –CH group proton 

at δ 4.24) and C-17 (bearing the –CH group proton at δ 2.02), was deduced from 

the NOESY spectrum (Figure 6A.5.B) and the J-values. NOE couplings were 

observed between Hα-10 (δ 2.34)/ Hα-17 (δ 2.02) thus indicating that these groups 

must be equatorial and on the α-side of the molecule (Fig. 6A.5.B).  

Table 6A.2 

NMR spectroscopic data of 15 in CDCl3
a 

O
O O

CH3

O CH3

O
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C. 

No. 
δ 13CNMR 

 

H 

δ1H NMR 

(int., mult., J in Hz)b 

1H-1H 
COSY 

HMBC 

(1H-13C) 

1 132.45     

2 130.87 2-H 7.77 – 7.69 (m, 1H) 3-H C-1 

3 129.95 3-H 7.55 (dq, J = 6.8Hz,1H) 4-H  

4 128.80 4-H 7.55 (dq, J = 6.8Hz,1H)   

5 128.84 5-H 7.55 (dq, J = 6.8Hz,1H) 6-H  

6 130.90 6-H 7.77 – 7.69 (m, 1H)  C-5,7 

7 167.70     

8 65.57 8-H 4.33 (t, J = 6.7 Hz, 2H) 9-H C-7,9 

9 30.37 9-H 1.72(m,2H) 10-H  

10 34.13 10-H 2.34(m,1H) 13-H C-8,11 

11 173.30     

12 51.43 12-H 3.69(s,3H)  C-11 

13 29.70 13-H 1.61(m,2H) 14-H C-14 

14 68.16 14-H 4.24 (t, J = 5.9 Hz, 1H)   

15 114.05     

16 129.93 16-H 5.38 (d, J = 9.3Hz, 2H) 17-H  

17 38.74 17-H 2.02(m,1H) 18-H,19-H C-18,20 

18 71.79 18-H 4.11 (d, J = 6.7 Hz,1H)  C-16 

19 22.69 19-H 1.52(m,2H)   

20 22.63 20-H 1.44(m,2H) 21-H C-25 

21 19.05 21-H 1.03(m,2H) 22-H C-22 

22 14.96 22-H 0.88(m,2H)   

23 24.89 23-H 2.16(s,3H)   

24 22.99 24-H 1.26(m,2H)   

25 13.96 25-H 0.92(m,3H)   
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Figure 6A.2 
(A) 1H and (B) DEPT135 - NMR spec trum of 15 
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Figure 6A.3 

Comparison of 13C-NMR between the compounds (A) 9 isolated from B. subtilis 
MTCC 10407 and (B) 15 from seaweed Sargassum myriocystum 
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Figure 6A.4 
(A) 1H–1H COSY and (B) prominent HSQC correlation spectra of 15. The key 1H–1H 

COSY couplings have been represented by the bold face bonds. 
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Figure 6A.5 
(A) HMBC and (B) NOESY spectra of 15. The key HMBC couplings are 

indicated as double barbed arrow. 
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6A.3.4.2 Structural characterization of compound 16 

3 - (Methoxycarbonyl) -4- (5-(2-ethylbutyl) - 5, 6-dihydro – 3 – methyl - 

2H - pyran-2-yl) butyl benzoate (16). Pale yellow powder; UV (MeOH) λmax (log 

ε): 229 nm (3.40); TLC (Si gel GF254 15 mm; CHCl3: MeOH 99:1, v/v) Rf: 0.86; 

GC Rt:17.22 min; IR (KBr, cm-1) νmax 731.29 (C-Hρ), 812.06 (aromatic C-Hδ), 

1376.26 (C-Hρ), 1466.91 (C-Hδ), 1650.12 (C=Cν) 1690.21 (C-CO-Cν), 1742.02 

(C=Oν), 2856.74 (C-Hν), 2921.22 (C-H ν), 3010.12 (aromatic C-Hν); 1H NMR (500 

MHz, CDCl3 δ in ppm), 13C NMR (126 MHz, CDCl3 δ in ppm), 1H-1H-COSY, and 

HMBC data, see Table 6A.3; HRMS (ESI) m/e: calcd. for C24H35O3 371.2462; 

found 371.7478 [M+H]+. 

Table 6A.3 

NMR spectroscopic data of 16 in CDCl3
a 

O

OO

 

C. 
No. 

δ 
13CNMR 

 
H 

δ1H NMR 
(int., mult., J in Hz)b 

1H-1H 
COSY 

HMBC 
(1H-13C) 

1 132.50     
2 130.91 2-H 7.55 (dq, J = 6.8Hz,1H) 3-H C-7,3,4 
3 128.86 3-H 7.77 – 7.69 (m, 1H)  C-4,6 
4 128.71 4-H    
5 128.84 5-H 7.55 (dq, J = 6.8Hz,1H) 6-H  
6 132.31 6-H 7.77 – 7.69 (m, 1H)   
7 167.72     
8 65.58 8-H 4.22 (t, J = 6.8Hz, 2H) 9-H,21-H C-7,9,10 
9 38.05 9-H 1.72(m,2H) 10-H C-10 
10 30.57 10-H 1.36(m,1H) 11-H C-11,9 
11 126 11-H 5.15(m,1H)   
12 130.76     
13 72.41 13-H 3.78(m,1H) 14-H C-14,9 
14 40.97 14-H 2.30(m,1H) 15-H C-13,18,17 
15 37.88 15-H 1.63(m,2H)   
16 45.02 16-H 2.18(m,2H) 14-H  
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17 34.62 17-H 2.02(m,1H) 18-H C-16 
18 71.79 18-H 4.08(d,2H)  C-20,14 
19 19.76 19-H 0.98(m,2H) 17-H C-18,17 
20 13.74 20-H 0.81(t,3H) 19-H C-19 
21 29.9 21-H 1.44(t,2H) 9-H C-9 
22 18.65 22-H 1.26(m,2H) 21-H C-21 
23 27.73 23-H 0.91(t,3H) 

 
 
 

  
24 --  --   
25 --  --   
 

The IR bending vibration bands of compound 16at 1742 cm-1 attributed to 

the ester carbonyl absorption. Its mass spectrum exhibited a molecular ion peak at 

m/e 370 [HRESIMS m/e 371.7478 (M+H)+](Figure 6A.6), which in combination 

with its 1H and 13C NMR data (Table 6A.3) indicated the elemental composition of 

C24H34O3 with eight degrees of unsaturation . Two methylene groups have been 

assigned to occupy at the C8-9 positions, and the one with δ 4.22 shifted downfield 

due to the presence of an extended conjugation probably linked to an aromatic 

moiety (Fig. 6A.8.A). The 13C NMR spectrum in combination with DEPT 

experiments (Figure 6A.8.B-C) indicated the occurrence of 24 carbon atoms in 16 

including  one carbonyl carbon at δ 167.70  and olefinic carbons at δ 130 and 

125.98 (Table 6A.3). The HMBC correlation of the proton at δ 4.22 with the 

carbon atom at δ 167.72 apparently indicated the presence of -C=O(O) moiety. 1H–
1H COSY experiments revealed that the protons at δ 4.22(t) correlate with the 

methylene protons at δ 1.72 (assigned to be as H-9) and HMBC correlations were 

apparent between H-9 (δ 1.72) with that of a carboxyl carbon at δ 167.72, which 

apparently indicated the presence of ethyl benzoate moiety. The C-18 position of 

the compound resulted in strong deshielding of the –CH2- proton at δ 4.08 ppm 

probably linked to oxygen. The chemical shift of the protons at δ 4.08, 2.02, 1.57, 

2.18 and 3.78 ppm along with detailed 2D NMR experiments established the 

presence of pyranose moiety. The proton and carbon connectivity deduced from 
1H–1H COSY (Figure 6A.8.A), HSQC (Figure.6A.8.B) and HMBC 

experiments(Figure 6A.9.A) confirmed the C4 framework attached to the C-10 

position of the hexahydro-2H-chromene framework. The H–H and C–H 

connectivities apparent in the 1H–1H COSY and HMBC spectra respectively 

indicate that bicyclic framework. The relative stereochemistry of the chiral centers, 
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particularly that of C-10 (with the proton chemical shift at δ 1.36 as deduced from 

HSQC experiments) carrying the –C=C- group and that of C-7 (bearing the –CH2 

group proton at δ 4.29) and C-18 (bearing the –CH2 group proton at δ 4.08), was 

deduced from the NOESY spectrum(Figure 6A.9.B) of the compound and the J-

values. NOE couplings were observed between Hα-10 (δ 1.36)/Hα-18 (δ 4.08) thus 

indicating that these groups must be equatorial and on the α-side of the molecule. 

NOESY correlation between 10-H (δ 1.36) and 11-H (δ 5.17) indicated that they 

were on the same side of 16. 

 

A

B O

OO

m/e: 370

O
OH

CH+

m/e: 122

m/e: 91
4E

O

m/e: 250

O

m/e: 166

O

m/e: 138

4

4A

4B4C

4D

O
O

O O

CH3

O CH3

H

O
OH

3G

CH+

m/e: 122

m/e: 91
3H

O O

CH3

O CH3

H

O

O

O

H

O

O

O

O

O

OO

OH

O
OO

3E
3C3D

HO
O

3F

3
3A

m/e: 296

3B
m/e: 282

m/e: 156m/e: 158

m/e: 416

m/e: 142

m/e: 163

 
 

Figure 6A.6 

(A) Mass fragmentation pattern of 15 from seaweed Sargassum myriocystum; The compound 
15 undergoes mass fragmentation to yield (3A) methyl 2-((5-(2-ethylbutyl)-5,6-dihydro-3-
methyl-2H-pyran-2-yl)methyl)butanoate, (3B) 3-ethyl-7-(2-ethylbutyl)-hexahydro-8a-



 

 

Chapter – 6A  antibacterial secondary metabolites 
 and seaweed bacterial interactions 

 

251 

 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 

 

methylpyrano[3,2-b]pyran-2(3H)-one, (3C) hexahydropyrano[3,2-b]pyran-2(3H)-one, (3D) 
tetrahydro-5-hydroxy-6-propylpyran-2-one, (3E) tetrahydro-6-propylpyran-2-one, (3F) 
octanoic acid, (3G) benzoic acid, and (3H) tropylium ion as major peaks. The molecular ion 
peak at m/e 416 appeared to undergo elimination of benzoic acid (m/e 122) to yield methyl 2-
((5-(2-ethylbutyl)-5,6-dihydro-3-methyl-2H-pyran-2-yl)methyl)butanoate at m/e 296, which 
underwent intramolecular rearrangement to afford a fragment with m/e 282 (3-ethyl-7-(2-
ethylbutyl)-hexahydro-8a-methylpyrano[3,2-b]pyran-2(3H)-one). The appearance of the fragment 
at m/e 156 indicated the presence of hexahydropyrano[3,2-b]pyran-2(3H)-one, (3D) 
tetrahydro-5-hydroxy-6-propylpyran-2-one moiety, resulted from the side chain elimination of 
3-ethylpentane (Figure 2B). Intramolecular rearrangement of tetrahydro-propylpyranone 
resulted in the formation of octanoic acid (m/e 163). The presence of tropylium ion (m/e 91) 
supports the presence of aryl ring system in 1. (B) Mass fragmentation pattern of 16 from 
seaweed Sargassum myriocystum (A) The compound 16 undergoes mass fragmentation to yield 
(4A) 8-butyl-3,6-diethyl-3,4,4a,5,6,8a-hexahydro-2H-chromene, (4B) 3-ethyl-7-(2-ethylbutyl)-
hexahydro-8a-methylpyrano[3,2-b]pyran-2(3H)-one from the 1-butyl-3-ethylcyclohex-1-ene 
moiety upon the elimination of alkyl side chains from the C-1 and C-3 positions, (4C) 
3,4,4a,5,6,8a-hexahydro-2H-chromene derived from the elimination of ethyl side chain from 
the C-3 carbon atom of the 3-ethyl-tetrahydro-2H-pyran moiety, (4D) benzoic acid, and (4E) 
tropylium ion as major peaks. The molecular ion peak at m/e 370 appeared to undergo 
elimination of benzoic acid (m/e 122) to yield 8-butyl-3,6-diethyl-3,4,4a,5,6,8a-hexahydro-2H-
chromene at m/e 250, which underwent elimination of alkyl side chains from the C-1 and C-3 
positions from the 1-butyl-3-ethylcyclohex-1-ene moiety to afford a fragment with m/e 166 (3-
ethyl-7-(2-ethylbutyl)-hexahydro-8a-methylpyrano[3,2-b]pyran-2(3H)-one). The latter 
underwent elimination of ethyl side chain from the C-3 carbon atom of the 3-ethyl-tetrahydro-
2H-pyran moiety to afford 3, 4, 4a, 5, 6, 8a-hexahydro-2H-chromene at m/e 138.  

 

 

Figure 6A.7 
(A) 1H, (B) 13C and (C) DEPT135 - NMR spectra of 16. 
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Figure 6A.8 
(A) 1H–1H COSY and (B) prominent HSQC correlation spectra of 16. The key 1H-1H 

COSY couplings have been represented by the bold face bonds. 
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Figure 6A.9 

(A) Prominent HMBC and (B) NOESY spectra of 16. The key HMBC 
couplings are indicated as double barbed arrow. 



 

 

Chapter – 6A  antibacterial secondary metabolites 
 and seaweed bacterial interactions 

 

253 

 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 

 

 

6A.4 Discussion 

The surface of marine organisms such as seaweeds is more nutritious than 

inanimate material and seawater (Penesyan et al. 2009), and have long been known 

to support abundant populations of bacteria (Kubaneck et al. 2003). The seaweed 

associated bacterial flora was reported to be predominant as symbiotic organisms 

on seaweeds, and are potential sources of antibacterial metabolites. Aeromonas 

hydrophila, Vibrio vulnificus and Vibrio parahaemolyticus, which were reported to 

be as human pathogens, and cause gastroenteritis and lethal instances of septicemia 

in immunocompromised individuals, were used to understand the antagonistic 

properties of the seaweed-associated bacteria.  

The study of the chemical ecology of living surfaces of marine organisms 

and the symbiotic relationships between seaweeds and their microbial flora can 

provide important biotechnological information with significance for the 

production of bioactive secondary metabolites. Marine Bacillus species was 

reported to produce versatile secondary metabolites including lipopeptides, 

polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins( Amstrong 

et al. 2001). Kanagasabhapathy et al. (2008) investigated the antimicrobial activity 

of epiphytic bacteria from several red seaweeds, and found that the highest activity 

was produced by certain Bacillus species especially B. cereus and B. pumilus. Our 

results are in agreement with these studies since the major populations of our 

isolates were Bacillus comprising of B. subtilis, B. amyloliquefaciens and B. 

cereus. 

In our survey the antagonistic bacteria associated with seaweed Sargassum 

myriocystum predominantly represented by the phylum Firmicutes (Bacillus spp) 

that was reported to dominate among the strains with polyketide synthase (pks) 

genes (Chapter 4). The bacterial strain used in the present study MTCC10407 

(NCBI accession number-JF834077) showed identity to Bacillus subtilis strain 

jinfen 1 (JX960641). Although the ecological relevance of most bacterial 

associates on or within the seaweeds remained unclear, Bacillus species are 

http://www.ncbi.nlm.nih.gov/nucleotide/411178770?report=genbank&log$=nucltop&blast_rank=10&RID=97H5MV28015
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efficient producers of compounds with antimicrobial and antifouling 

characteristics, making them greatly successful colonizers of seaweed surfaces ( 

Goecke et al.2010) . 

Bacteria with inhibitory characteristics exist symbiotically on the seaweed 

surface, providing it with a microbe-mediated defense community. Although 

examples are rare, studies in seaweeds (Kubaneck et al. 2003)  and sponges 

(Quevrain et al. 2014) have shown the chemical fingerprint of the bacterial 

metabolites in the host extracts and host derived compounds. It is hypothesized that 

marine eukaryotes may use their surface-associated bacteria as a source of 

antimicrobial chemical defences in competition and in the protection of the host 

(Penesyan et al. 2009). The biosynthesis of a large number of natural products 

require the participation of sophisticated molecular machines known as pks 

(Donadio et al. 2007). B. subtilis MTCC 10407 under the present study is found to 

be positive for pks gene with an NCBI accession number KC607823. The 

phylogenetic study shown that the amplified gene products of the present study 

were of bacterial type I pks (results not shown). Earlier studies in sponge 

associated bacteria too found that the bacterial strains to harbor type I bacterial pks 

(Zhang et al. 2009). Bacterial type I pks was reported to produce a wide range of 

biomedical important secondary metabolites ( Piel et al. 2004). During our study of 

biologically active natural products from seaweeds and its associated bacteria( 

Chakraborty et al.2010)  we could notice that the antibacterial activities of seaweed 

derived compounds were lesser than those of the associated bacterial communities. 

This led us to investigate whether bacteria or the seaweed is the original source of 

antibacterial compounds. In the present study, we have taken a Bacillus subtilis 

strain MTCC10407 associated with the seaweed host Sargassum myriocystum with 

a broad spectrum activity with important tested pathogens  as a model organism to 

explain the chemical interactions of seaweed and its associated bacteria.  

The guiding principles to determine the bioactivity of the secondary 

metabolites from bacteria vis-à-vis seaweed was designed by utilizing different 

descriptor variables viz., electronic, hydrophobic, and steric parameters 

(Chakraborty et al.2010). The electronic descriptors viz., molecular polar surface 
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area based on fragment contributions (tPSA), polarisability (Pl); hydrophobic 

parameter log Pow  to calculate n-octanol/water partition coefficient; steric (or bulk 

descriptor), molar volume (MV), molar refractivity (MR), and parachor (P) as 

calculated by ChemDraw 12.0 were taken into consideration (Table 6A.4). 

 Using bioassay-guided fractionation, two antibacterial compounds 9 (2-(7-

(2-ethylbutyl)-2,3,4,4a,6,7-hexahydro-2-oxopyrano[3,2-b]pyran-3-yl)ethyl 

benzoate) and 10 [2-((3Z)-2-ethyl-octahydro-6-oxo-3-((E)-pent-3-

enylidene)pyrano[3,2-b]pyran-7-yl)ethyl benzoate] of presumed polyketide origin, 

with activity against pathogenic bacteria, have been isolated from the ethyl acetate 

extract of from B. subtilis MTCC 10407(Chapter 5C). The multifactorial 

polyketide structures are endued with supplementary O-heterocyclic moieties that 

contribute rigor to polyketide structure. Two homologous compounds 15 (3-

(methoxycarbonyl)-4-(5-(2-ethylbutyl)-5, 6-dihydro-3- 

methyl-2H-pyran-2-yl)butyl benzoate) and 16 [2-(8-butyl-3-ethyl-

3,4,4a,5,6,8a-hexahydro-2H-chromen-6-yl)ethyl benzoate] also have been isolated 

from the ethyl acetate extract of host seaweed Sargassum myriocystum. It is 

interesting to note that the tetrahydropyran-2-one moiety of the 

tetrahydropyrano[3,2-b]pyran-2(3H)-one system of 9 might be cleaved by the 

metabolic pool of seaweeds to afford methyl 3-(dihydro-3-methyl-2H-pyranyl) 

propanoate moiety of 15, which was found to have no significant antibacterial 

activity (Figure 6A.10, Table 6A.1). It is therefore imperative that the presence of 

dihydro-methyl-2H-pyran-2-yl propanoate system is essentially required to impart 

the greater activity (IZD 17 mm, 10 mcg on disk). It is significant to note that 

seaweed might metabolically engineer the parent compound 9 of bacterial origin in 

its metabolic pool for some other reasons probably related to the structural 

integrity and rigidity of the seaweed cell wall. This hypothesis can further be 

supported by the fact that transformed product 15 has greater values of steric 

descriptors (P 982.5 cm3, MR 118.59 cm3/mol, MV 402.4 cm3) than the parent 

compound 9 (P 872.9 cm3, MR 107.71 cm3/mol, MV 338.0 cm3) purified from B. 

subtilis MTCC 10407.  The biotransformation of the bacterial metabolite to15 in 

seaweed might thus contribute to the adaptive mechanism of the seaweed to form a 
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tougher cell wall to resist the pathogenic bacterial flora in the oceanic ecosystem. 

Thus, there exists an interesting chemical ecological interaction between the 

secondary metabolites produced by the seaweed bacteria and the seaweed host 

organism.  

The antibacterial compound 10 isolated from the ethyl acetate extract of 

from B. subtilis MTCC 10407 and 16 from seaweed Sargassum myriocystum 

shared similar structures, and therefore, might be the result of the identical 

metabolic pool of seaweed and bacteria. In particular the presence of ethyl 

benzoate moiety in 10 and 16 from seaweed-associated bacteria and seaweed 

strongly suggested the ecological and metabolic relationship between these 

compounds. The seaweed derived metabolite 16 did not show an appealing 

antibacterial property, and therefore, it can be concluded that the compound has a 

different role, probably related to structural functionality of seaweed. It is 

interesting to note the greater hydrophobic coefficient of 16 (log P 5.68) than that 

recorded in 10 (log P 4.28), which apparently support its role in cell wall structure 

and its integrity.  

Polyketides have discovered an application as bioactive leads in drug 

based products for utilization against disease causing microorganisms and different 

immunocompromising ailments. Among different bacterial genera, Bacillus spp 

have been perceived to contain different pks gene groups and bioactive atoms 

bearing the polyketide backbone. The much rationed successions of β-ketoacyl 

synthase (KS) areas are imparted among all pks, and hence, the KS spaces are 

valuable in the screening for pks genes in microbes. Consequently, the positive 

results in a PCR-based screening for pks gene doesn’t just give confirmation of the 

generation of relating metabolites additionally may demonstrate the presence of 

further metabolic pathways of auxiliary metabolite union. In the present study the 

secondary metabolites of B. subtilis MTCC 10407 with potent antibacterial action 

against bacterial pathogens was recognized to represent the platform of pks-1 gene 

encoded products. 
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It is of note that the hydrophobic (log Pow) and steric descriptors (P, MR 

and MV) had a major role to describe the bioactivity of compound 9 isolated from 

B. subtilis MTCC 10407and compound 15 from the host seaweed. Although the 

tPSA depicting the electronic descriptor is identical (61.83) in 9 and 15, the 

activity of the latter was lesser (IZD 8mm; 10 mcg on disk) than of the former 

(IZD 17mm; 10mcg on disk), apparently due to the greater steric values (P= 982.5 

cm3) of 3 than that recorded in 1 (P= 872.9 cm3) (Table 6A.4).  

Table 6A.4 

Physicochemical descriptor variables of 9 and 15 derived from B. 
subtilis MTCC 10407 vis-à-vis 10 and 16 isolated from brown seaweed 

Sargassum myriocystum 

 Physicochemical descriptor variables 

Compounds Electronic Hydropho
bic Steric 

 tPSA 
Pl (X 10-

24 cm3) 
Log P 

MR 
(cm3/mol) 

P 
(cm3) 

MV 
(cm3) 

O

O

O

O

O
 

9 

61.83 42.19 3.97 107.71 872.9 338.0 

O

O

O

O

O

 
10 

61.83 44.84 4.28 113.11 900.6 354.7 

O
O O

CH3

O CH3

O

 
15 

61.83 46.66 5.21 118.59 982.5 402.4 

O

OO

 
16 

35.53 43.35 5.68 110.11 887.4 368.7 

 

Pl: Polarisability (cm3/mol), P: Parachor (cm3); tPSA: Calculation of polar surface area 
based on fragment contributions; CLogP to calculate n-octanol/water partition coefficient 
(log Pow); MR: molar refractivity (cm3/mol); CMR to calculate molar refractivity; MV: 
molar volume (cm3).  
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The compound 10 isolated from B. subtilis MTCC 10407 also demonstrated 

to possess greater antibacterial activities against pathogenic organisms than 16 

purified from Sargassum myriocystum. It is of note that unlike compound 9, the 

compound 10 with 6-oxo-3-(pentenylidene) pyrano[3,2-b]pyranyl moiety showed 

greater polarisability (44.8 X 10-24 cm3), and therefore, the electronic descriptors 

might play a predominant role in determining the antibacterial activity. The 

electronic factor such as tPSA was found to significantly contribute towards the 

greater antibacterial activity of 10. In particular, the tPSA of 10 was recorded to be 

significantly greater (61.8) than the related seaweed metabolite 16, which recorded 

a lesser tPSA value (35.5). This might be due to the absence of the -O-C=O group 

from16, possibly due to the biochemical transformation of 10 in the seaweed 

metabolic pool.  

The direct involvement of polarisability (Pl) with the target bioactivity in 

10implied that inductive (field/polar) rather than the steric effect (parachor) 

appears to be the key factor influencing the induction of antibacterial activity. This 

leads demonstrated in the present study will be significant in explaining the 

pharmacophore-fit in the macromolecular receptor site and exploring the primary 

site and mode of action of this class of the substituted O-heterocyclic compounds 

belonging to pyranyl ethyl benzoate analogues.  

Polyketides emblemize a highly diverse group of natural products having 

structurally intriguing carbon skeletons. The extraordinary divergence of 

polyketide structures results from the type of biosynthetic starter and extender 

units(Khosla et al. 1999). The chain extension module of type-I pks harbors the 

acyl carrier protein (ACP) and ketosynthase (KS) domains that synergistically 

catalyze a series of decarboxylative Claisen condensation involving different 

starter and extender units on ACP and KS subunits of pks to result in the 

elongation of the polyketide chain affording the formation of the intermediate 

biosynthetic product as ACP-S-7-(2-ethylbutyl)-2,3,4,4a,6,7-hexahydro-3-(2-

hydroxyethyl)-2-mercaptopyrano[3,2-b]pyran-2-ol (Figure 6A.11.A). A series of 
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condensation, dehydration, and ketoreduction of the intermediate polyketides result 

in the biosynthesis of 2-(7-(2-ethylbutyl)-2,3,4,4a,6,7-hexahydro-2-oxopyrano[3,2-

b]pyran-3-yl)ethyl benzoate. It is of note that in the biosynthetic route leading to 

the formation of 2-((7Z)-octahydro-2-oxo-7-((E)-pent-3-enylidene) pyrano [3, 2-b] 

pyran-3-yl) ethyl benzoate is also a pks biosynthetic product (Figure 6A.11.B). A 

model for biosynthesis of the pks gene product can be proposed (Figure 6A.11.C), 

which account for the fact that S-3-(1-hydroxypropyl)-4, 7-dioxooctanethioate as 

the starting building blocks instead of acetate/malonate in the biosynthesis of this 

polyketide backbone.  

Earlier reports indicated the concerted zipper-type cyclization reaction of 

polyepoxides by pks-1 system( Bhatt et al. 2005; Gallimore et al 2006)through a 

semiacetal hydroxy group. Similar biosynthetic routes have been postulated in the 

formation of the polyether ladders of marine toxins maitotoxin (Gallimore et al 

2006) and pyran rings of tetronomycin and ambruticin. The connections of pks 

metabolite gene with auxiliary metabolites fitting in with polyketides, and their 

putative biosynthesis pathway in related microbes was accounted for in prior 

studies (Moldenhauer et al.2007).  

All in all, pks uses malonyl/methylmalonyl/ethylmalonyl subsidiaries of 

CoA and hydroxymalonyl/aminomalonyl/methoxymalonyl ACP extender units to 

biosynthesize a widely diverse natural products bearing the polyketide backbone. It 

is of note that during the course of pks-catalyzed biosynthesis of 2-(7-(2- 

ethylbutyl)-2,3,4,4a,6,7-hexahydro-2-oxopyrano[3,2-b]pyran-3-yl)ethyl benzoate, 

the ACP and KS subunits of the enzyme build their products from an 2-(7-(2-

ethylbutyl)-hexahydro-2-oxopyrano[3,2-b]pyran-3-yl)ethyl benzoate starter unit 

and malonate extender units.  

The biosynthetic route of 2-(7-(2-ethylbutyl)-hexahydro-2-oxopyrano[3,2-

b]pyran-3-yl)ethyl benzoate starts from thioacetate unit attached to the ACP 

domain, and is accomplished by a stepwise process of decarboxylative Claisen 

condensations and ketoreduction. In particular, the biosynthetic route of the pyran 
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ring system features the extraordinary blueprint of nature to yield complex 

molecules from simpler units by pks enzymatic cascade.  

 
 
 
 

 
 

Fig. 6A.10 

Hypothetical biosynthetic transformation of 9 in the seaweed metabolic pool by 
methyltransferase reactions that utilized S-adenosyl methionine type of compound. 
The oxygen atom of 9 engages in SN2 nucleophilic attack on the electrophilic methyl 
carbon of S-adenosyl methionine to afford 3-(methoxycarbonyl)-4-(5-(2-ethylbutyl)-3, 
6-dihydro-2H-pyran-2-yl) butyl benzoate. This followed the electrophilic addition 
reactions to asymmetrical alkenes, where the nucleophile is a π-bond on 4-
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(benzoyloxy)-2-((5-(2-ethylbutyl)-5, 6-dihydro-2H-pyran-2-yl)methyl) butanoic acid, 
proceed through the stabilization of the carbocation intermediate to yield 3-
(methoxycarbonyl)-4-(3,6-dihydro-3-methyl-5-(2-methylbutyl)-2H-pyran-2-yl)butyl 
benzoate. This was followed by the double bond shifting in the pyran ring system of 
3,6-dihydro-3-methyl-5-(2-methylbutyl)-2H-pyran-2-yl to 5,6-dihydro-3-methyl-5-(2-
methylbutyl)-2H-pyran-2-yl. 
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Fig. 6A.11 

(A) Hypothetical biosynthetic pathways of 1, showing the loading, decarboxylation and elongation 
steps catalyzed by the pks-1. Both enzymes build their products from 5-ethyl-3-(hydroxymethyl) 
heptanethioate starter unit and malonate extender units. The intermediates shown bound to the pks 
are hypothetical, but consistent with experimental results. Chain extension is initiated by 
decarboxylation of malonyl-ACP to ACP-S-7-ethyl-5-(hydroxymethyl)-3-oxononanethioate by the 
KS domain. The 7-ethyl-5-(hydroxymethyl)-3-oxononanethioate group is then passed from the 
ACP to the active site cysteine of the KS. The ACP is loaded with 7-ethyl-5-(hydroxymethyl)-3-
oxononanethioate and then KS-catalysed decarboxylative Calisen condensation takes place 
resulting in ACP-S-9-ethyl-2-(2-hydroxyethyl)-7-(hydroxymethyl)-3,5-dioxoundecanethioate. The 
latter undergoes ketoreduction followed by dehydration to afford ACP-S-9-ethyl-3,5-dihydroxy-2-
(2-hydroxyethyl)-7-(hydroxymethyl) undecanethioate. The mercaptyl sulfur atom of the latter 
undergoes nucleophilic attack by the 5-OH group in the substituted undecanethioate system 
yielding ACP-S-6-(4-ethyl-2-(hydroxymethyl)hexyl)-3,6-dihydro-3-(2-hydroxyethyl)-2-mercapto-
2H-pyran-2-ol. C5 olefinic carbon atom of the 2H-pyran ring system undergoes intramolecular 
nucleophilic attack by the 2’-OH group of 4-ethyl-2-(hydroxymethyl) hexyl moiety to afford ACP-
S-7-(2-ethylbutyl)-octahydro-3-(2-hydroxyethyl)-2-mercaptopyrano[3,2-b]pyran-2-ol, which 
undergoes dehydrogenation yielding ACP-S-7-(2-ethylbutyl)-hexahydro-3-(2-hydroxyethyl)-2-
mercaptopyrano [3,2-b] pyran-2-ol. (B) The biosynthetic route of 1 starts from thioacetate unit 
attached on the ACP domain, and is accomplished by stepwise process of decarboxylative Claisen 
condensations and ketoreduction. DH catalyzes the elimination of the water molecule in the 
intermediate KR product 5, 7-dihydroxy-3-oxooctanethioic S-ACP to afford benzothioic S-ACP. 
The nucleophilic attack of the terminal 2-hydroxy group (as 2-hydroxyethyl moiety) of 7-(2-
ethylbutyl)-hexahydro-3-(2-hydroxyethyl)-2-mercaptopyrano[3,2-b]pyran-2-ol-S-ACP on the 
thioester-activated carbonyl carbon atom of benzothioic S-ACP result in the formation of 2-(7-(2-
ethylbutyl)-hexahydro-2-hydroxy-2-mercaptopyrano[3,2-b]pyran-3-yl)ethyl benzoate-S-ACP. A 
subsequent elimination of ACP-SH afforded 2-(7-(2-ethylbutyl)-hexahydro-2-oxopyrano[3,2-
b]pyran-3-yl)ethyl benzoate. (C) Sequence of events in the hypothetical biosynthetic pathway of 
pks product as compound 2, showing the loading, decarboxylation and elongation steps catalyzed 
by the pks-1. Both enzymes build their products from an S-3-(1-hydroxypropyl)-4, 7-
dioxooctanethioate starter unit and malonate extender units. Chain extension is initiated by 
decarboxylation of malonyl-ACP to ACP-S-5-(1-hydroxypropyl)-3,6,9-trioxodecanethioate by the 
KS domain. The latter undergoes ketoreduction and dehydration to afford ACP-S-5-(1-
hydroxypropyl)-3-oxodeca-5,8-dienethioate. The ACP-S-5-(1-hydroxypropyl)-3-oxodeca-5,8-
dienethioate group is then passed from the ACP to the active site cysteine of the KS. The ACP is 
loaded with one unit of ACP-S-7-ethyl-5-(hydroxymethyl)-3-oxononanethioate and then KS-
catalysed decarboxylative Claisen condensation takes place resulting in ACP-S-2-(2-hydroxyethyl)-
7-(1-hydroxypropyl)-3,5-dioxododeca-7, 10-dienethioate. Two alternate steps of ketoreduction of 
the latter yielded ACP-S-3-hydroxy-2-(2-hydroxyethyl)-7-(1-hydroxypropyl)-5-oxododeca-7, 10-
dienethioate. DH catalyzes the elimination of the water molecule in the intermediate KR product to 
afford ACP-S-5-hydroxy-2-(2-hydroxyethyl)-7-(1-hydroxypropyl) dodeca-3,7,10-trienethioate. The 
nucleophilic attack of the 5-OH group (as 5-hydroxy-2-(2-hydroxyethyl)) on the thioester-activated 
carbonyl carbon atom of ACP-S-5-hydroxy-2-(2-hydroxyethyl)-7-(1-hydroxypropyl)dodeca-3,7,10-
trienethioate result in the formation of a cyclic 2H-pyran product as 3,6-dihydro-3-(2-
hydroxyethyl)-6-(2-(1-hydroxypropyl)hepta-2,5-dienyl)-2-mercapto-2H-pyran-2-ol in the 6-
membered pyran ring lactone system. A subsequent intramolecular nucleophilic attack by the 1-
hydroxypropyl-OH group in the 2-(1-hydroxypropyl)hepta-2,5-dien-1-yl)- system on the C-3 of the 
2H-pyran ring system yielded 6-ethyl-3-(2-hydroxyethyl)-2-mercapto-7-(pent-3-en-1-ylidene) 
octahydropyrano [3,2-b]pyran-2-ol-S-ACP. The carbonyl carbon atom of benzothioic S-ACP 
undergoes nucleophilic attack by the 3-OH group in the 3-(2-hydroxyethyl)-system of 6-ethyl-3-(2-
hydroxyethyl)-2-mercapto-7-(pent-3-en-1-ylidene)octahydropyrano [3,2-b]pyran-2-ol-S-ACP 
yielding pyrano [3,2-b]pyran-3-yl) ring system of ACP-S-2-(6-ethyl-octahydro-2-hydroxy-2-
mercapto-7-(pent-3-enylidene)pyrano[3,2-b]pyran-3-yl)ethyl benzoate. A subsequent elimination of 
ACP-SH afforded the final PKS product as 2-(octahydro-2-oxo-7-(pent-3-enylidene) pyrano [3, 2-
b]pyran-3-yl) ethyl benzoate. 
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6A.5 Conclusions 

The previous decade saw the disclosure of different bacterial polyketide 

leads with colossal significance as novel alternatives to the existing antibiotics for 

use against multi-drug resistant human opportunistic food pathogens. In this study, 

we depicted two new variants of antibacterial O-heterocyclic pyran derivatives of 

polyketide origin. These novel polyketide products may be promising to develop a 

new generation of drug candidate for utilization against the multiresistant 

microbial pathogens. The fact that polyketides of this type are unprecedented from 

seaweed and the structural similarity of the seaweed derived homologous 

compounds to the microbial metabolites suggests that these could be the products 

of symbiont, and it is biotransformed by the seaweed metabolic pool. We have 

likewise given confirmation to a biosynthetic course of these compounds, and this 

may prompt to identify novel drug target. The present work may have a footprint 

on the use of O-heterocyclic polyketide products for biotechnological, food and 

pharmaceutical applications. 
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Chapter 6B 

CHEMICAL ECOLOGY OF SEAWEED-ASSOCIATED ANTAGONISTIC 

BACILLUS sp BASED ON DIFFERENTIAL MEMBRANE FATTY ACID 

COMPOSITION  

 

6B.1 Background of the study 

Seaweeds or marine macroalgae have been challenged throughout their 

evolution by microorganisms, and have developed in a world of microbes. 

Therefore, it is not surprising that a complex array of interactions has evolved 

between seaweeds and bacteria, which depend on chemical interactions of various 

kinds (Goecke et al. 2010). Seaweeds harbor a rich diversity of associated 

microorganisms with functions related to host health and defense. In particular, 

epiphytic bacterial communities have been reported as essential for normal 

morphological development of the seaweed host, and bacteria with antifouling 

properties are thought to protect chemically undefended seaweeds from 

detrimental, secondary colonization by other microscopic and macroscopic 

epibiota. This tight ecological relationship suggests that seaweeds and epiphytic 

bacteria interact as a unified functional entity or holobiont (Egan et al. 2013). 

Bacterial communities belonging to the phyla Proteobacteria and Firmicutes are 

generally the most abundant on seaweed surfaces (Singh and Reddy 2014; 

Chakraborty et al. 2014). Although surface-associated marine bacteria may be 

potential sources of novel secondary metabolites of various bioactivities, the 

literature contains a few reports relating to the chemical ecology of these 

organisms (Boyd et al. 1999). 

The bioactivity of bacterial species grown under symbiotic condition depends 

on several abiotic and biotic factors, among which the growth environment plays a 

major role. The extreme forms of salinity and oxidative stress in oceanic 
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ecosystems made the bacterial species to modulate their biochemical profile to 

adapt and survive in the stressed conditions (Hazel 1995). This adaptation is 

largely accomplished by changing membrane fatty acid chain length, unsaturation 

degree, and branching pattern (Hazel 1995). Since the symbiotic bacteria could 

able to grow on the host organism, i.e., the seaweed, it is imperative that the 

seaweed metabolites may play an important role in determining the growth, 

bioactivity, and viability of the resident bacterial flora. It was also reported that the 

addition of seaweed extract to the culture medium caused the increased formation 

of anteiso fatty acids (anteisoC17:0) related to these fatty acid substrates, and the 

tolerance of marine bacteria grown at laboratory culture conditions depends to a 

significant extent on a greater proportion of the above-described fatty acids in the 

membrane. There is, therefore, a need to investigate the bacterial communities 

living on different coexisting seaweeds using new technologies, and to investigate 

the production, localization and secretion of the biologically active metabolites 

involved in those possible ecological interactions (Goecke et al. 2010). 

Seaweed associated bacteria were found to be rich in bacterial strains with 

polyketide synthase (pks) gene (Chakraborty et al. 2014). Polyketides constitute 

one of the major classes of natural products many of these compounds or 

derivatives thereof have become important therapeutics for clinical use (Hertweck 

et al. 2009). Bacterial pks genes are structurally type I, but act in an iterative 

manner to produce aromatic polyketides (Zhang et al. 2013). Polyketide 

biosynthesis has much in common with fatty acid biosynthesis. Not only are they 

alike in the chemical mechanisms involved in chain extension but also in the 

common pool of simple precursors employed, such as acetylcoenzyme A (CoA) 

and malonyl-CoA (MCoA) units. In general, both polyketides and fatty acids are 

constructed by repetitive decarboxylative Claisen thioester condensations of an 

activated acyl starter unit with malonyl-CoA derived extender units (Hertweck et 

al. 2009). The type I iterative pks genes can be further divided to non-reducing pks, 

the products of which are true polyketides; partially reducing pks and fully 

reducing pks, the products of which are fatty acid derivatives (Hertweck et al. 

2009). 
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The fatty acid profile of Bacillus subtilis, the gram-positive bacteria, is 

dominated by the iso- and anteiso-branched fatty acids. Branched chain amino 

acids are used as the precursors for their synthesis of isoleucine for anteiso; and 

valine and leucine for iso-branched fatty acids. Bacillus subtilis cells use two 

distinct mechanisms of adaptation to stress conditions such as those cultured in 

laboratory using artificial growth medium. This may explain the role of these 

branched fatty acids in surviving in the stressed oceanic environments. The long-

term membrane adaptation employs an increase in low melting anteiso-branched 

fatty acids (mostly anteisoC15:0 and anteisoC17:0) that effectively fluidize the 

membrane (Suutari and Laakso 1992) thereby preventing the stress related 

conditions. Modulation of fatty acid composition to ensure survival at the stressed 

conditions is an important bacterial strategy for growth (Suutari and Laakso 1994). 

It was reported that 2-methylbutyric acid, a precursor of anteiso fatty acids, 

restored the anteisoC15:0 content, membrane fluidity, and growth of the mutants, 

whereas isobutyrate and isovalerate, precursors of iso fatty acids, did not (zhu et al. 

2005). Hence, as far as stress factor adaptation of the bacterial species is 

concerned, the central strategy is to increase the proportion of anteisoC15:0 and the 

compounds related to 2-methyl butyric acid. The vast majority of previous studies 

of the fatty acid composition of bacteria have employed complex media for 

growth. Tsai and Hodgson described a minimal medium that does not require 

BCFA supplements . Such capacities have been suggested to be related to its 

atypically high iso and anteiso, odd-numbered BCFA content (Annous et al. 1997). 

The fatty acid profiles of the seaweed associated antagonistic bacilli are 

found to have an increased amount of iso and anteiso fatty acids. The pks gene is 

the functional gene determining the bacterial active metabolite, and also there were 

reports that the seaweed derived polyketide metabolites are related to bacterial 

metabolites (Kubaneck et al. 2003; Chakraborty et al. 2014). Polyketide 

biosynthesis has much in common with fatty acid biosynthesis, and was reported to 

have multiple role determining the bioactivity and growth in artificial culture 

media. Not only are they alike in the chemical mechanisms involved in chain 

extension but also in the common pool of simple precursors employed, such as 

http://www.sciencedirect.com/science/article/pii/S0223523414001445
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acetylcoenzyme A (CoA) and malonyl-CoA (MCoA) units (Hertweck et al. 2009). 

Based on these facts we hypothesized that there might be a relation in the presence 

of fatty acids, antibacterial activity, and the presence of functional pks genes 

responsible for the antibacterial activity. We have adopted a culture dependent 

method to assess the bioactivity of the cultivable antagonistic heterotrophic 

bacterial communities associated with the intertidal seaweeds at the Gulf of 

Mannar in the Southeast coast of India bordering the Bay of Bengal. We extended 

the analysis to understand the effect of seaweed extract and the metabolic 

precursors of the seaweed extract on the growth and fatty acid profile of the 

bacterial species to understand the chemical ecological relationship between the 

host seaweed and their associated bacterial flora. The possible biosynthetic route of 

the 2-methyl butyric acid from the seaweed metabolite has been proposed, which 

also corroborates the role of isoleucine and 2-methyl butyric acid for greater 

growth, bioactivity and viability of the seaweed associated bacterial flora in a 

culture dependent method. The ecological interaction between seaweed host and its 

associated active bacterial flora and their importance in the growth and 

antibacterial activities have been illustrated. 

6B.2 Materials and methods 

6B.2.1 Isolation and molecular identification of the seaweed associated 

antagonistic bacteria  

Intertidal seaweeds belonging to Phaeophyceae and Rhodophyceae were 

collected by scuba diving from the intertidal zone of Mandapam situated at 9° 17' 

0" North, 79° 7' 0" East, Gulf of Mannar region in southeast coast of India. The 

brown seaweeds were Anthophycus longifolius, Sargassam myriocystum, Padina 

gymnospora, Turbinaria ornata and Dictyota dichomata, whereas red seaweeds 

were Hypnea valentiae and Laurentiae pappilosa. The seaweed samples were 

processed and the associated bacterial strains were isolated as reported earlier 

(chapter 3). The bacterial strains were assayed for antagonistic activity against 

pathogens (chapter 3). Measure of antagonistic activity was recorded as the 

diameter of inhibition zones and bacteria with antagonistic properties were 

http://www.sciencedirect.com/science/article/pii/S0223523414001445


 

 
271 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 
 

Chapter- 6 B  Chemical ecology of seaweed-associated antagonistic 
 Bacillus sp based on differential membrane fatty acid composition  

 
identified using classical biochemical methods followed by 16S rRNA gene 

sequencing (chapter 3). The bacteria were screened for the presence of metabolite 

genes encoding polyketide synthetase (pks-I) involved in natural product 

biosynthetic pathway. Different sets of degenerate primers targeting pks-I were 

used to screen the biosynthetic potential of the bacterial isolates to elicit bioactive 

polyketides (chapter 4). 

6B.2.2 Preservation of bacterial strains on seaweed extract agar  

The seaweed species used to isolate the associated Bacillus sp were used to 

prepare the seaweed extract agar. For each bacterial strain the respective host 

derived dried powder of seaweed aqueous extract was used (chapter 3) 

6B.2.3 Chemistry  

Chemical reagents and analytical methods used were explained in chapter 5 

6B.2.4 Fatty acid analyses and gas chromatography  

The bacterial cells were saponified, methylated, and extracted to afford 

bacterial fatty acid methyl esters (FAMEs) as described previously (chapter 3). 

Fatty acid profiles were evaluated on a Perkin-Elmer (USA) AutoSystem XL gas 

chromatograph (HP 5890 Series II) equipped with an Elite-5 (crossbond 5% 

diphenyl 95% dimethyl polsiloxane) capillary column (30m X 0.53mm i.d., 

Supelco, Bellfonte, PA) with split/splitless injector, using a flame ionization 

detector as described previously (chapter 3).  

6B.2.5 Seaweed material and preparation of crude extracts 

 The brown seaweed Anthophycus longifolium was used to isolate the 

associated antagonistic bacteria Bacillus subtilis SWI 2. This seaweed species was 

used as a model to understand the chemical ecology of seaweed derived secondary 

metabolites and their relationship with the fatty acid biosynthesis, growth and 

antagonistic properties of the associated bacterial species (Bacillus subtilis SWI 2). 

The seaweed was freshly collected from the Gulf of Mannar in Mandapam region 

located between 8º48′ N, 78º9′ E and 9º14′ N, 79º14′E on the southeast coast of 
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India. The samples collected were washed in running water for 10 min, transported 

to the laboratory and shade dried (35±3 °C) for 36 h. The shade dried seaweeds 

were powdered and used for further experiments. The powdered seaweed samples 

(100 g) were extracted three times with ethylacetate-methanol (1:1 v/v, 50–60 °C, 

3 h), filtered through Whatman No. 1 filter paper and the pooled filtrate was 

concentrated (50 °C) in vacuo (Heidolph Instruments GmbH & Co., Schwabach, 

Germany) to furnish the seaweed crude methanol-ethyl acetate (MeOH-EtOAc) 

extract.  

6B.2.6 Chromatographic purification of sbstituted vinylphenanthrenyl-2-

methylbutanoate from Anthophycus longifolium  

An aliquot of the crude MeOH-EtOAc extract (10 g) of Anthophycus 

longifolium was slurried in silica gel (4 g, 80–120 mesh), and loaded into a glass 

column (120 cm X 4 cm) packed with silica gel (80–120 mesh, 50 g) as adsorbent 

before being subjected to vacuum liquid chromatography. The column was initially 

eluted with n-hexane, followed by addition of EtOAc (n-hexane: EtOAc 99:1 to 

0:100, v/v) to furnish 18 fractions of 50 ml each, which were reduced to 5 groups 

(F1-F5) after TLC analysis (n-hexane: EtOAc, 4:1, v/v). Fraction 3 (F3) obtained by 

eluting with n-hexane: EtOAc (1:1, v/v) was found to be a mixture, which was 

flash chromatographed (Biotage AB SP1-B1A, 230–400 mesh, 12 g; Biotage AB, 

Uppsala, Sweden) on a silica gel column (Biotage, 230–400 mesh, 12 g; Sweden, 

Biotage No. 25+M 0489-1) at a collection UV wavelength at 256 nm using a step 

gradient of CH2Cl2:MeOH (CH2Cl2:MeOH 99.5:0.5 to 19:1, v/v) to afford 160 

fractions (8 ml each), which were reduced to three pooled fractions (F3-1-F3-3) after 

TLC analysis (n-hexane: EtOAc, 5:1, v/v). The fraction F3-2 eluted with CH2Cl2: 

MeOH (49:1, v/v) on subsequent preparatory thin layer chromatographic 

purification using n-hexane: EtOAc (4:1, v/v) afforded dodecahydro-3-methoxy-

4a-methyl-2-vinylphenanthren-7-yl-2-methyl butanoate (17, 6.5 mg). Evaporation 

of solvents followed by TLC over precoated silica gel GF254 (particle size 15 mm, 

E-Merck, Germany) using using 5% ethylacetate /n-hexane supported the purity. 
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6B.2.7 Structural characterization of compound 13 

Physicochemical data of 1, 2, 3, 4, 4a, 4b, 5, 6, 7, 8, 10, 10a-dodecahydro-

3-methoxy-4a-methyl-2-vinylphenanthren-7-yl-2-methyl butanoate (1): colorless 

liquid; UV (MeOH) λmax(log ε): 243nm (2.89) and 265nm (2.35) ; TLC (Si gel 

GF254 15 mm; n-hexane/EtOAc 95:5, v/v) Rf: 0.45; Rt: 4.6min.; IR νmax (KBr) cm-1 

( δOOP= out of plane bending, ν = stretching, δ= bending vibrations): 481.08 

δOOP(C-CO), 1056.71 ν(C–O), 1121.80 νs(C-O-C), 1282.20 δin-plane(CH-OH), 

1376.96 δ(C-H) of(O=C-CH2), 1461.43 δas(C-H), 1728.15 δ (C=O), 1656.80 

ν(C=C), 2854.74 νs(C-H) of (-O-CH2), 2923.22 (alkane ν(C-H), 2957.04 alkanes 

νas (C-H), 3437.24 ν(O-H); 1H-NMR(CDCl3, 500MHz,δ ppm) δ 5.82 (ddt,J 

=16.9,10.2,6.7Hz, 1H), 5.53–5.15 (m,1H), 5.09–4.81 (m,2H), 4.30 (p,1H), 4.19–

4.06 (m,1H), 1.53–1.31 (m,2H), 1.28 (t,J=14.7Hz,1H), 0.94 (d,J=20.5Hz,3H), 0.88 

(t,J=6.9Hz,3H), 0.85–0.81 (s,3H), 2.38 (d,J=4.09Hz,2H),  2.31 (td,J=7.5, 4.1Hz, 

1H), 2.10–1.96 (m,4H), 1.78–1.52 (m,6H), 1.45–1.34 (m,2H);13C-NMR 

(CDCl3,125MHz, δppm) δ167.70, 139.27, 130.89, 128.84, 114.05, 74.29, 65.56, 

56.14, 38.70, 35.07, 34.06, 33.82,31.93, 31.44, 30.58, 30.20, 29.70, 29.66, 29.51, 

28.96, 22.69, 19.19, 14.11, 13.72; 2D-NMR data, see Table 6B.1(Figure 6B.3.A-

B); HRMS (ESI) m/z: calcd. for C23H37O3 361.5422; found 361.5842 [M+H]+.  

Table 6B.1   

NMR spectroscopic data of 1,2,3,4,4a,4b,5,6,7,8,10,10a-dodecahydro-3-
methoxy-4a-methyl-2-vinylphenanthren-7-yl 2-methylbutanoate in CDCl3.

a 

O

O

O

1

3 6

9

12 16

17

19

23

21
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Carbon 

no. 
13C 

NMR 
(DEPT) 

H δ1H NMR 
(int., mult., J in Hz)b 

1H-1H 
COSY 

HMBC 
(1H-13C) 

1 30.20 1-H 1.38 (m, 2H) 2-H C-2,10 

2 28.96 2-H 1.72 (m, 2H) 3-H  

3 74.29 3-H 4.30 (p, 1H)  C-19,4,2,1 

4 34.06 4-H 2.38 (d, J= 4.09Hz, 
1H) 

3-H C-6,5,7 

5 130.89 - - - - 

6 128.84 6-H 5.33 (m, 1H) - C-7 

7 29.70 
7-Ha 

7-Hb 
1.98 (m, 1H), 
2.00 (m,1H) 

 
6-H 

C-6,8,9 

8 31.44 8-H 1.52 (m, 2H) 7-Ha C-14,18,9 

9 35.07 - - - - 

10 31.93 10-H 1.28 (t, J=7.5Hz,1H), 1-H C-1,18 

11 29.66 11-H 1.58 (m, 2H) 12-H C-12 
12 65.56 12-H 4.13 (m, 1H) 13-H C-13,17 
13 38.70 13-H 2.03 (m,1H) 15-H C-15,16 

14 30.58 14-H 1.60 (t, 2H) 8-H C-13 

15 139.27 
15-H 5.82 (ddt, 

J=16.9Hz,1H) 
- - 

16 114.05 
16-Ha 
16-Hb 

4.97 (dd,1H) 
5.09 (dd,1H) 

15-H C-13,14 

17 56.14 17-H 3.66 (s,3H) - C-12 

18 19.19 18-H 1.33(s,3H) - C-11 

19 167.70   - - 

20 33.82 20-H 2.31 (m,1H) 23-H, 21-
H 

- 

21 22.69 21-H 1.68 (p,2H) - - 

22 13.72 22-H 0.87 (d,3H) 21-H C-21 

23 14.11 23-H 0.98 (t,3H) - C-20,21 
 

a NMR spectra recorded using Bruker DPX 300 and AVANCE 300 MHz spectrometers. 
bValues in ppm, multiplicity and coupling constants (J¼ Hz) are indicated in parentheses. 

Assignments were made with the aid of the 1H–1H COSY, HMQC, and HMBC 

experiments. 
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6B.3 Results  

6B.3.1 Isolation, Molecular Identification and Preservation of the Seaweed 

Associated Antagonistic Bacteria  

About 22% of the seaweed associated bacterial isolates shown inhibition 

against at least one pathogen used in the study, with 9% of this showing broad 

spectrum activity against the pathogen screened. Among these potential bacterial 

species, twelve belonged to Bacillus sp,(Chapter3;) which were considered in the 

present study. The preserved cultures were found be to be viable and active for 

more than three years during random testing. The antimicrobial patterns of these 

isolates against the pathogens used in the study have been summarized in the Table 

3.2(Chapter3). The identifications of the bacterial isolates were confirmed through 

16S rRNA gene based molecular evolutionary analysis using the neighbor-joining 

method as described earlier (Chapter 3). The PKS positive gene sequences were 

deposited under NCBI accession numbers KC589396- KC589400; KC607821- 

KC607823 as reported earlier (Chapter 4). 

6B.3.2 Analysis of Cellular Fatty Acid of Bacillus sp isolated from seaweeds 

 Bacillus subtilis (SWI 19, SWI 3, SWI 2, and SWI 4a) had considerable amounts 

of anteiso fatty acids (38.65% in SWI 2 to as high as 47.43% in SWI 19 than their 

iso counterpart fatty acids (0.88-1.46%) (Table 3.4, Figure 6B.1.A-B). No 

unsaturated fatty acids were detected in Bacillus subtilis SWI 19 and SWI 2, 

whereas B. subtilis SWI 3 and SWI 4a produced monounsaturated fatty acid to the 

tune of 2.77 and 4.15%, respectively. The anteiso fatty acids content is found to be 

41-51% of the total fatty acids when Bacillus amyloliquefaciens (SWI 5, SWI 7, 

SWI 6, and SWI 4B) (Table 3.4). The representative FAME profiles for Bacillus 

subtilis (SWI 19, SWI 3, SWI 2, and SWI 4a) and Bacillus amyloliquefaciens 

(SWI 5, SWI 7, SWI 6, and SWI 4B) along with one strain of Bacillus cereus SWI 

1 were shown in Fig. 6B.2.A-D. In Bacillus subtilis maximum of 5-6 peaks were 

recognized as typical of this isolate, of which 4 peaks belonging to iso and anteiso 

series of C15 and C17 fatty acids had areas equal to or greater than 70 percent of the 

total percentage FAME area (Fig. 6B.1.B), and these peaks were identified using 
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the MIDI system. In Bacillus amyloliquefaciens SWI 5, a total of ten peaks were 

recognized as typical of FAME profiles. A total of fourteen peaks were recognized 

as typical of Bacillus cereus SWI 1 on the basis of their presence in repeated 

samples of the two isolates used in this study. Fatty acids present in Bacillus 

subtilis (SWI 19, SWI 3, SWI 2, and SWI 4A), Bacillus amyloliquefaciens (SWI 5, 

SWI 7, SWI 6, and SWI 4B), and Bacillus cereus SWI 1were shown in Table 3.4 

 

 

 
 

Fig. 6B.1 
(A) FAME profile of Bacillus sp. (B) Comparison of specific group of fatty acids 

in different bacterial isolates and the ratio of different FAMEs. 

B 

A 
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Fig. 6B.2 

Representative FAME profile of (A) Bacillus subtilis SWI 3, (B) Bacillus subtilis SWI 
2, (C) Bacillus amyloliquefaciens SWI 7, and (D) Bacillus amyloliquefaciens SWI 4B. 

Peaks labeled 1-20 correspond to the fatty acids in Table 3.4. 

A B 

C D 
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6B.3.3 Structural Characterization of Vinylphenanthrenyl-2-Methylbutanoate 

from Anthophycus longifolium  

The brown seaweed Anthophycus longifolium was used to isolate the 

associated antagonistic bacteria Bacillus subtilis SWI 2. The compound 

dodecahydro-3-methoxy-4a-methyl-2-vinylphenanthren-7-yl 2-methylbutanoate 

was obtained from the EtOAc-MeOH extract of the seaweed Anthophycus 

longifolium as a colorless liquid, and was isolated upon chromatography over silica 

columns. The compound has the molecular formula of C23H36O3 on the basis of 

HRMS showing a molecular ion peak at m/z 361.5842 [M+H]+ (cald for C23H37O3, 

361.5422). The IR spectrum revealed broad absorption band at νmax 1728 cm-1 

attributed to be due to the presence of carbonyl carbon, to the olefinic system 

(1656 cm-1), and carbons attached to oxygen C-O stretching (1056 cm-1). The IR 

absorption band (in MeOH) at 3437.24cm-1 is due to –O-H stretching vibrations. 

The 13C NMR signals afforded characteristic methylene signals (-CH2) at δ114.05 

(Figure 6B.3A), which showed strong 1H-1H-COSY correlation with the protons at 

δ5.82 belonging to the carbon atom at δ 139.27. This indicated that the olefinic 

bond situated to external to ring system by continuous 1H-1H-COSY correlation to 

13-H (δ 2.03) of C-13. The carbon atom at C-5 (δ 130.89) was evident in the 13C-

NMR spectrum, although no signal of the same was apparent in the DEPT 

spectrum. The HSQC correlation between the carbon atom at C-6 (δ 128.84) and 

the proton at δ5.33 (ddt) indicates the signature peak of exocyclic bond of A ring in 

the bicyclic ring system. Based upon the spectral information from the DEPT and 
13C-NMR signals, it can be concluded that there are three quaternary carbons, eight 

–CH, eight –CH2, and four –CH3 carbons. The four 13C-NMR signals at C-5, C-6 

and C-15, C-16 indicated the presence of two olefinic bonds. A total of six degrees 

of unsaturation with three double bonds and three ring system has been established 

by detailed spectroscopic analysis. The cyclic rings confirmed by the strong 1H-1H-

COSY( Figure 6B.4.A-B) correlation signals also support the HSQC ( Figure 

6B.4.C) and HMBC( Figure 6B.5.A-B)  signals. The 13C NMR spectrum of the 

purified compound displayed a quaternary carbon (δ 167.7) atom bearing the 

carbonyl group. The low field quaternary signals (13C NMR) is in agreement with 
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that to a quaternary carbon signal carrying the carbonyl groups at C-19 of the 

phenanthrene ring structure and C-3 of the side chain (2-methyl butanoate) 

attached with the phenanthrene framework at the 3C position of the ring. This was 

supported by the relatively downfield shift of the methylene H3, 4 signals (δ 4.30 

and δ 2.38, respectively), which referred to a possible oxygenation in its vicinity. 

The carboxyl carbon attached to ring A at positon 3 confirmed by the HMBC 

experiment (Table 6B.1). The mass fragment at m/z 101 (C5H9O2) formed due to 2-

methyl butyric carboxy radical. The proton at 20-H (δ 2.31) exhibited downfield 

shift and was attributed to be attached to the carbonyl carbon, and exhibited 1H-1H-

COSY correlation with the protons at 23-H and 21-H. The ring systems A, B, and 

C has been affirmed to be connected, and this has been confirmed by the strong 
1H-1H-COSY correlations between 1-H/2-H,2-H/3-H/4-H, 6-H/7-Hb/8-H/14-H/13-

H, 13-H/15-H/16-H, 12-H/11-H (Figure 6B.4A-B). The methoxy carbon at C-17 (δ 

56.14) gives HSQC at 17-H (δ 3.66) singlet (Figure 6B.4C) situated on C-12 by 

HMBC and hydrogen 12-H attached to C-12 gives peaks at down field δ 4.13 (m) 

due to it attached to oxygen (Figure 6B.5A-B). The NOESY (Figure 6B.5.C) signal 

showed that the protons at 3-H and 6-H are aligned to one side, which indicate that 

the C-O band at C-3 remains above the plane. In the 1H–1H COSY spectrum, 

couplings were apparent between 1-H (δ 1.38)/2-H (δ 1.72)/3-H (δ 4.30)/4-H (δ 

2.38), 6-H (δ 5.33)/7-H (δ 2.00)/8-H (δ 1.52)/11-H (δ 4.13)/12-H (δ 4.13)/13-H (δ 

2.03), which support the presence of substituted phenanthrene skeleton with 

olefinic bonds and oxygenation in the side chain. The proton and carbon 

connectivity deduced from HSQC and HMBC experiments confirmed the 

phenanthrene framework attached to the side chain 2-methylbutanoate moiety at 

the 3rd position of the former (Fig. 6B.4 and 6B.5). The H–H and C–H 

connectivities apparent in the 1H–1H COSY and HMBC spectra respectively 

indicate that three of the six unsaturations were due to the ring framework. The 

relative stereochemistry of the chiral centres, particularly that of C-3 and 12 

carrying the side chains of the framework and that of C-8, 10, and 20 were deduced 

from the NOESY spectrum of the compound and the J-values. NOE couplings 

were observed between 3-Hα (δ 4.30)/13-Hα (δ 2.03) thus indicating that these 

groups must be equatorial and on the α-side of the molecule (Fig. 6B.5C-D). NOE 
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correlations between 12-Hβ (δ 4.13)/10-Hβ (δ 1.28)/8-Hβ (δ 1.52) indicated the 

close proximity of these groups and their β-disposition. Therefore, the C-3 2-

methyl butanoate group is axial and β-oriented.  

O

O
O

A B

O

O
O

A B

 

Figure 6B.3 
(A) 13C-NMR and (B) 1H-NMR spectra of 1,2,3,4,4a,4b,5,6,7,8,10,10a-

dodecahydro-3-methoxy-4a-methyl-2-vinylphenanthren-7-yl -2-
methylbutanoate. 
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Figure 6B.4 

2D NMR correlations in 1,2,3,4,4a,4b,5,6,7,8,10,10a-dodecahydro-3-methoxy-4a-
methyl-2-vinylphenanthren-7-yl -2-methylbutanoate. (A) Key 1H−1H COSY 
couplings; (B) the key 1H–1H COSY couplings have been represented by the bold face 
bonds; (C) key HSQC correlations. 
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Figure 6B.5 
2D NMR correlations in 1,2,3,4,4a,4b,5,6,7,8,10,10a-dodecahydro-3-methoxy-
4a-methyl-2-vinylphenanthren-7-yl -2-methylbutanoate. (A) Key HMBC 
couplings; (B) the key HMBC couplings are indicated as double barbed 
arrow; (C) key NOESY correlations; (D) The NOE couplings are indicated as 
double barbed arrow. 
 

6B.3.4 Correlations between Fatty Acids and antibacterial Activity  

While analyzing the fatty acid composition of the seaweed associated 

bacterial flora with antibacterial activity, it was interesting to note that the Bacillus 

strains were found to be rich in iso and anteiso fatty acid content. A significant 

correlation between branched chain fatty acids and antibacterial activity of 

seaweed associated Bacillus sp was realized by Pearson correlation analysis (Fig. 

6B.6). Antibacterial activity vis-à-vis iso and anteiso fatty acids were found to be 

positively correlated, thereby realizing the role branched chain fatty acids in 

antibacterial properties of seaweed associated Bacillus sp. 
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Fig. 6B.6 
Correlation between antibacterial activities activity to fatty acid content of the 
seaweed associated Bacillus spp by scatterplot analyses. Scatterplot diagrams 
showing the correlation of antibacterial activity were shown as A-D. 

 

6B.4 Discussion 

The surface of marine organisms such as seaweeds are more nutritious than 

inanimate material and seawater (Zeng et al. 2005), and have long been known to 

support abundant populations of bacteria (Ali et al. 2012). Studies of the surface 

associated microbial communities of seaweeds have provided a considerable deal 

of knowledge regarding chemical interactions with their host and between 

members of the microbial community (Penesyan et al. 2009). The study of the 

chemical ecology of living surfaces of marine organisms and the symbiotic 

relationships between them and their microbial flora can also provide important 

biotechnological information with significance for the production of bioactive 

secondary metabolites. Marine Bacillus species was reported to produce versatile 

http://www.sciencedirect.com/science/article/pii/S0223523414001445


 

 
283 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 
 

Chapter- 6 B  Chemical ecology of seaweed-associated antagonistic 
 Bacillus sp based on differential membrane fatty acid composition  

 
secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty 

acids, polyketides, and isocoumarins (Amstrong et al. 2001). These structurally 

diverse compounds exhibit a wide range of biological activities, such as 

antimicrobial, anticancer, and antialgal activities (Mondol et al. 2013). 

Kanagasabhapathy et al. (2008) investigated antimicrobial activity of epiphytic 

bacteria from several red algae and found that the highest activity was produced by 

certain Bacillus species especially B. cereus and B. pumilus. Our results are in 

agreement with these studies since the major populations of our isolates were 

Bacillus comprising of B. subtilis, B. amyloliquefaciens and B. cereus. 

Marine surface associated microorganisms may require conditions that 

resemble their native environment in order to produce the maximum amount of 

bioactives (Penesyan et al. 2009; Ben Ali et al. 2012). It has been known that 

several epiphytic bacteria lose their ability to produce antimicrobial compounds 

after many subcultures on artificial growth media (Ben Ali et al. 2012). In the 

present report the seaweed-associated bacterial strains were maintained on agar 

slants with a modified seaweed extract agar that mimic the native environment. 

The active isolates preserved their abilities to produce inhibitory substances against 

the sensitive pathogens after successive sub-culturing on marine agar giving the 

persistent inhibition of growth of pathogens over the years, whereas they exhibited 

reduction in inhibitory zone diameter when they were subjected to routine 

subculture on marine agar with seaweed supplements. A similar result was 

reported by Ben Ali et al. (2012) that the antibacterial activity of Bacillus sp J9 

isolated from seaweed Jania rubens showed a decrease of activity when grown 

after several transfers on marine agar. 

A fatty acid profile is a stable phenotypic expression of a bacterial 

genotype when the bacteria under the study were grown in controlled culture 

conditions (Welch 1991). Fatty acid metabolism is constitutive and directed by the 

chromosome, and is not known to be under plasmid control. The presence of 

certain fatty acids in bacteria has been shown to correlate with taxonomic 

conventions (Drucker 1976). Hence the patterns of fatty acids, once identified, 

have resulted in the production of ‘fingerprints’ of bacteria. This has led to the use 
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of fatty acid profiles as a key for chemotaxonomic classification. The fatty acid 

patterns of the various species of Bacillus can be divided into two groups, either 

the anteisoC15:0 or the isoC15:0 that are most abundant among the fatty acids (Kaneda 

1966). The group, in which the anteisoC15:0 is most abundant, includes most 

Bacillus species (B. subtilis group), whereas the other group, in which iso fatty 

acids are predominantly present (~55%), among which isoC15 is most abundant 

(29.4%), includes only the B. cereus. The B. cereus group had two other features 

distinguishing it from the remaining species: (i) the range of chain length of the 

fatty acids is wider, containing C13-iso fatty acids (~4%) and small but significant 

amounts of monounsaturated fatty acids (8.04% of the total) were present (Table 

3.4).  

The hydroxyl fatty acids such as 3-hydroxytetradecanoic acid (C14:0 3OH) 

and 2-hydroxy-13-methyltetradecanoic acid (C15:0 iso 2OH) were not present in 

Bacillus subtilis (SWI 19, SWI 3, SWI 2, and SWI 4a) and Bacillus 

amyloliquefaciens (SWI 5, SWI 7, SWI 6, and SWI 4B). The only exception being 

Bacillus cereus SWI 1, for which it has been recorded to the tune of 2.83 and 9.69 

percent, respectively (Table 3.4, Figure 6B.1A). Hydroxyl fatty acids play a major 

role in antibacterial activity of Bacillus cereus. The hydroxyl group of this group 

of fatty acids gives them special properties, such as higher viscosity and reactivity 

when compared with other fatty acids (Hou and Forman 2000). It is significant that 

these bacteria belonging to Bacillus subtilis and Bacillus amyloliquefaciens don’t 

contain hydroxyl fatty acids, which have been implicated in the pathogenesis of 

several diseases such as 3-hydroxymyristic acid (3OH C14:0) that are also 

associated with lipopolysaccharide compounds (Galanos et al. 1977). Hydroxy 

fatty acids also reported to exhibit a wide range of antimicrobial activities (Sjogren 

et al. 2003). Sjogren et al. (2003) proposed that hydroxyl fatty acids readily 

partition into the lipid bilayers of fungal membrane and increase membrane 

permeability and the release of intracellular electrolytes and proteins. 

Bacillus subtilis and Bacillus amyloliquefaciens as in the present study 

were found to contain many of the cellular fatty acids known to be present in the 

related species (Kondo and Ueta 1972). The fatty acid compositions of bacteria, 
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including Bacillus, are significantly different from those of higher organisms in 

having no polyunsaturated fatty acids (fatty acids with more than one 

unsaturation). The predominance of terminally methyl branched iso and anteiso 

fatty acids having 12 to 17 carbons is a characteristic observed in all species of 

Bacillus studied (Weerkamp and Heinen 1972). The normal fatty acids such as 

myristic and palmitic, the most common fatty acids in the majority of organisms, 

are generally minor constituents in the genus Bacillus. The total content of 

monoenoic fatty acids was found to be 8.04 percent in B. cereus SWI 1 as 

compared to 2-4 percent in B. amyloliquefaciens and 0-4 percent in B. subtilis 

(Figure 6B.1B).  

Most common monounsaturated fatty acids in nature are ω-9-isomers (Dart 

and Kaneda 1970). However, in the present study, Bacillus subtilis (SWI 19, SWI 

3, and SWI 4a) predominantly were found to contain cis-hexadec-5-enoic acid 

(C16:1ω11c) as the sole monoenoic fatty acid (2.77 and 4.15 percent, respectively) 

(Figure 6B.2). No monoenoic fatty acid was apparent in Bacillus subtilis SWI 19 

and SWI 2. Interestingly, cis-16-methylheptadec-7-enoic acid (C17:1 iso-ω10c) 

was found to be the present in Bacillus amyloliquefaciens (SWI 5, SWI7, SWI6, 

and SWI4B) (<2 percent) other than C16:1 ω11c (2.8-3.4 percent). In Leptospira, 

up to 50 percent of the cellular fatty acids were reported to be as methyl 

hexadecanoate (C16:0), the remainder being unsaturated, whilst T. pallidurn was 

found to possess predominantly methyl hexadecanoate, methyl octadecenoate 

(C18:1) and methyl octadecanoate (C18:0) (Welch 1991). However, the major 

straight chain fatty acid components of Bacillus subtilis (SWI 19, SWI 3, SWI 2, 

and SWI 4a), as demonstrated in this study were hexadecanoate (C16:0, 10-18 

percent in different Bacillus subtilis species) and octadecanoate (C18:0, 7-10 

percent). The fatty acid C17:0 was found to be absent in Bacillus subtilis SWI 2. 

These fatty acids (saturated straight chain) represent about 10-18 percent in the 

different species of Bacillus amyloliquefaciens (SWI5, SWI 7, SWI 6, and SWI 

4B) used in the present study. In addition, minor variations in the fatty acid 

composition of the different Bacillus species studied were recorded. These 

‘fingerprints’ of the Bacillus species may therefore have an application for 

determining their genetic and taxonomic relationships. 
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The two branched series (iso and anteiso) of the fatty acids account for 70 

to 82 percent of the total acids in Bacillus subtilis, and 76 to 85 percent of the total 

acids in Bacillus amyloliquefaciens (Figure 6B.1B). The unsaturated fatty acids are 

generally absent or present only in very small amounts in the Bacillus species as 

also supported by earlier studies (Kaneda 1969). Earlier it has been reported that 

bacterial cells can maintain membrane fluidities at stress environmental conditions 

(Hazel 1995). This adaptation is largely accomplished by changing membrane fatty 

acid chain length, unsaturation degree, and branching pattern. Proper membrane 

fluidity of the bacterial cells grown at extreme conditions can be achieved by 

increasing unsaturated fatty acid, branched chain fatty acids, and shorter-chain 

fatty acids (Suutari, and Laakso 1994).  

The tolerance of marine bacteria grown at laboratory culture conditions 

depends to a significant extent on a greater proportion of the above-described fatty 

acids in the membrane. Earlier reports indicated that L. monocytogenes increased 

its anteisoC15:0 content to more than 70 percent when grown at low temperatures 

because lipids containing anteisoC15:0 have significantly lower phase transition 

temperatures than those containing iso fatty acids and/or anteisoC17:0 (Kaneda 

1991). The higher contents of anteisoC15:0, with its effects on membrane fluidity 

(Jones et al. 2002), enables this organism to grow at artificial growth media. We 

wanted to demonstrate how Bacillus subtilis and Bacillus amyloliquefaciens 

produce their characteristically high content of anteisoC15:0. Fatty acid chain 

shortening was a critical response to further increase the anteisoC15:0 level when the 

total anteiso content was already high (Kaneda 1991). Therefore, a greater 

proportion of anteisoC17:0 probably could not support growth at culture conditions 

as also evident from the higher proportion of anteiso fatty acids (anteisoC15 and 

anteisoC17) in the Bacillus species (higher than 4% in SWI 3 and SWI 4a). It is 

noteworthy that B. subtilis could increase its anteiso: iso fatty acid ratio (>1.0), but 

could not efficiently shorten fatty acid chain length under their symbiotic growth 

condition. As a result, anteisoC15:0 content in B. subtilis was significantly higher 

(~40%) in Bacillus subtilis.  
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The fatty acid pattern of a given species of Bacillus can act as a 

"fingerprint" if the organism is grown under culture conditions where the 

exogenous supply of the precursors of chain initiators including the "naturals" 

supplied through the host extract is significant. It was reported that 2-

methylbutyric acid, a precursor of anteiso fatty acids, restored the anteisoC15:0 

content, membrane fluidity, and growth of the mutants at low temperatures, 

whereas isobutyrate and isovalerate, precursors of iso fatty acids, did not (Zhu et 

al. 2005). Hence, as far as adaptation of the bacterial species in the artificial culture 

conditions is concerned, the central strategy is to increase the proportion of 

anteisoC15:0 and the compounds related to 2-methyl butyric acid (Zhu et al. 2005).  

The complex seaweed extract medium might provide considerable amounts 

of dodecahydro-3-methoxy-4a-methyl-2-vinylphenanthren-7-yl 2-methylbutanoate 

to the culture medium that biosynthetically converted to the precursor molecules 

(isoleucine and 2-methylbutyric acid) of the branched-chain α-keto acids and 

branched chain amino acids (Figure 6B.7), thereby causing the increased formation 

of anteiso C15 and C17 fatty acids. It is significant to note that the fatty acids 

present in Bacillus subtilis (SWI 2) grown on a medium containing Zobell Marine 

agar supplemented with seaweed extract with substituted vinylphenanthrenyl 

methylbutanoate resulted in the optimum growth of the bacterial species. In 

support of this, recent reports have shown that two species of thermophilic Bacillus 

(Weerkamp and Heinen 1972) and some species of Propionibacterium (Moss et al. 

1969) synthesize isoC15:0 acid most abundantly, but neither shorter-chain fatty acids 

(C12 and C13) nor unsaturated fatty acids are synthesized in any significant 

amounts. Although the number of species examined in the present study in a given 

genus is rather limited, the pattern seems to be uniform within these genera.  

The preferential incorporation of α-(2)-methyl butyrate into anteisoC15 

indicates that the terminal isobutyryl group (C-15 and C-17) must be derived from 

isobutyrate. Furthermore, the greatly increased formation of anteisoC15:0 in the 

presence of precursor compounds present in the seaweed extract might provide the 
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substrate for biosynthesis of branched chain fatty acids in the culture medium. This 

also indicated that the formation of the terminal isobutyryl group is a rate-limiting 

factor for the synthesis of anteisoC15:0 in B. subtilis (Brock et al. 1967). In the 

present study, the secondary metabolite dodecahydro-3-methoxy-4a-methyl-2-

vinylphenanthren-7-yl 2-methylbutanoate isolated from the CH2Cl2/MeOH extract 

of seaweed Anthophycus longifolium might be the precursor, which possibly 

undergoes the elimination of dodecahydro-6-methoxy-4b-methyl-7-

vinylphenanthren-2-ol to afford 2-methylbutyric acid. The latter is a known 

precursor compound of isoleucine, which subsequently afford the branched chain 

amino acids belonging to anteisoC15:0 and anteisoC17:0 series. As shown under the 

Figure 6B.7, 2-amino-3-methylpentanoic acid (isoleucine), which might be 

synthesized from 2-methylbutyric acid undergo deamination by branched-chain 

amino acid transaminase yielding 2-keto-3-methyl valerate. The later undergo 

dehydrogenation by branched-chain 2-keto acid dehydrogenase to afford enzyme 

bound 2-methyl-butyryl-S-CoA.  

The enzyme fatty acyl synthase builds the fatty acid products from a 2-

methyl butyrate starter unit and malonate extender units. The chain extension 

might be initiated by decarboxylation of malonyl-S-ACP to 4-methyl-3-oxo-

hexanoyl S-ACP by the KS domain. A series of condensation and chain extension 

reactions involving the enzyme cascades β-hydroxyacyl-ACP-dehydrase (DH), 

enoyl reductase (ER), and ketoreduactase (KR) afforded ante-iso C15:0 S-ACP via 

the reaction intermediates such as 6-methyl-3-hydroxy-octanoyl S-ACP, 6-methyl-

oct-2-enoyl S-ACP, and 4-methyl-octanoyl S-ACP. Thiolase catalyzed elimination 

of the water molecule from anteisoC15:0 S-ACP afforded anteisoC15:0 followed by 

another extension cycle of fatty acid synthase that resulted in anteisoC17:0. The fact 

that the seaweed extract led to the formation of appreciable quantities of 

anteisoC15:0 and anteisoC17:0 supported the hypothesis that the compound present in 

the seaweed might provided the substrate for biosynthesis. 
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Fig. 6B.7 

Hypothetical sequence of events for biosynthesis of the bacterial fatty acids 
anteisoC15:0 and anteisoC17:0 fatty acids from the precursor 2-keto-3-methyl valerate, 
showing the loading, decarboxylation and elongation steps catalysed by the fatty acid 
synthase. Dodecahydro-3-methoxy-4a-methyl-2-vinylphenanthrenyl-2-
methylbutanoate isolated from the MeOH-EtOAc extract of seaweed Anthophycus 
longifolium transformed to dodecahydro-6-methoxy-4b-methyl-7-vinylphenanthren-
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2-ol and 2-methylbutyric acid (2-keto-3-methyl valerate), the biosynthetic precursor 
of branched chain anteiso fatty acids. The enzyme builds the fatty acid products from 
a 2-methyl butyrate starter unit and malonate extender units. The intermediates 
shown bound to the PKSs are hypothetical, but consistent with experimental results. 
(1) Chain extension is initiated by decarboxylation of malonyl-S-ACP to 4-methyl-3-
oxo-hexanoyl S-ACP by the KS domain, (2) 4-methyl-3-hydroxy-hexanoyl S-ACP 
converted to 4-methyl-hex-2-enoyl S-ACP by the enzymatic action of b-Hydroxyacyl-
ACP-dehydrase (DH); (3) enoyl reductase (ER) converts 4-methyl-hex-2-enoyl S-
ACP to 4-methyl-hexanoyl S-ACP; (4) the 4-methyl-hexanoate group is then passed 
from the ACP to the active site cysteine of the KS and the ACP is loaded with 
another unit of malonate and then KS-catalysed condensation takes place resulting in 
6-methyl-3-oxo-octanoyl S-ACP; (5) Another cycle of chain extension starts to yield 
ante-iso C15:0 S-ACP via the reaction intermediates such as 6-methyl-3-hydroxy-
octanoyl S-ACP, 6-methyl-oct-2-enoyl S-ACP, and 4-methyl-octanoyl S-ACP; (6) 
thiolase catalyzes the elimination of the water molecule in the intermediate product 
to afford anteisoC15:0; (6) Another extension cycle of fatty acid synthase results in 
anteisoC17:0 S-ACP and resultatant tholase catalyzed anteisoC17:0. 

 

In this study, we have attempted to make a correlation of the fatty acid 

contents of the seaweed-associated bacteria with their antibacterial activity. 

Antibacterial activity and iso/anteiso fatty acids were found to be positively 

correlated (Figure 6B.6). The Pearson correlation analysis of the fatty acid contents 

of the seaweed associated bacterial isolates vis-à-vis the antibacterial activities of 

these isolates to the pathogen tested.  

A positive correlation between the total branched chain iso and anteiso 

fatty acids vis-à-vis the antibacterial activities (r2=0.570) against pathogenic 

bacteria demonstrated the ecological relationship between the pks genes regulating 

branched chain fatty acid biosynthesis and antibacterial activity of the seaweed-

associated Bacillus sp. It is of note that during the correlation analysis pks negative 

strains were omitted as they were found to deviate from this correlation. This 

apparently demonstrated the role of PKS enzymes in the production of antibacterial 

compounds as also demonstrated in our earlier study (chapter 5A). The strains with 

pks genes were found to possess greater antibacterial activity whereas pks 

negatives had lesser activity even though they had a greater content of branched 

chain iso and anteiso fatty acids. 

 

http://www.sciencedirect.com/science/article/pii/S0223523414001445


 

 
291 

Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India 
 

Chapter- 6 B  Chemical ecology of seaweed-associated antagonistic 
 Bacillus sp based on differential membrane fatty acid composition  

 
 

6B.5 Conclusions 

Fatty acid methyl ester derivatives were examined as a means of 

characterizing seaweed-associated bacterial isolates Bacillus subtilis (SWI 19, SWI 

3, SWI 2, and SWI 4a), Bacillus amyloliquefaciens (SWI 5, SWI 7, SWI 6, and 

SWI 4B), and Bacillus cereus SWI 1, and studying the differential composition of 

branched chain iso and anteiso fatty acids to understand their effects on the 

bioactivity and viability. The group, in which the anteisoC15:0 was most abundant, 

includes most Bacillus species (B. subtilis group), whereas the other group, in 

which iso fatty acids were predominantly present (~55 percent), among which iso-

C15 was most abundant (29.4 percent), includes only the B. cereus. This also 

accounts for the dominance of Bacillus sp in seaweed associated culturable 

isolates. Fatty acids present in grown on a medium containing Marine agar 

supplemented with seaweed extract resulted in optimum growth of the bacterial 

species. The addition of seaweed extract containing dodecahydro-3-methoxy-4a-

methyl-2-vinylphenanthren-7-yl 2-methylbutanoate, to the culture medium caused 

the increased formation of anteiso fatty acids (anteisoC15:0) related to these fatty 

acid substrates. The present study demonstrated how the seaweed associated 

epiphytic bacterial flora utilize the  precursors from the host seaweeds to 

biosynthesize greater contents of the branched chain fatty acids, which provide 

greater stability and antibacterial activity of the bacterial flora under laboratory 

culture conditions.  

 

http://www.sciencedirect.com/science/article/pii/S0223523414001445
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CHAPTER 7 

SUMMARY AND CONCLUSION 
 

Disease caused by bacterial pathogens has been widely recognized as a 

major cause of economic loss in many commercially cultured fish and shellfish 

species the world over, with mortality of larval stages in hatcheries and the 

growout stages in different mariculture systems. Pathogenic vibrios are involved 

in significant mortalities in the larviculture and grow out phases of famed fishes. 

In an attempt to control the proliferation of pathogenic vibrios, the prophylactic 

and therapeutic use of antibiotics has been practiced in commercial hatcheries, 

creating more serious problem of antibiotic resistance among the microflora in the 

environment. The problem of antibiotic resistance and its epidemiological 

consequences led to the exploration of several alternate approaches for disease 

management in mariculture systems. Amongst them the most popular and 

practical approach is the use of aquaculture-grade chemicals from beneficial 

bacterial sources as prophylactics. 

Control of the unwanted microorganisms is essential in all aspects of life, 

and microbial diseases must be treated in humans, animals, and plants. Emergence 

of antibiotic resistant bacteria and the need for novel, antimicrobial compounds led 

to the exploration of new habitats to screen the production of bioactive substances. 

Seaweeds and microbial populations associated with seaweeds constitute the major 

biologically active flora of marine food pyramid due to their enormous 

biodiversity. Due to a competitive role for space and nutrient, the marine bacteria 

associated with marine macroorganisms, invertebrates and seaweeds could produce 

more antibiotic substances. These marine microbial symbionts are possibly the true 

producers or take part in the biosynthesis of potential antimicrobial substances. 

These seaweed associated bacteria are able to produce antimicrobial compounds 
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and this response represents a chemically induced defense response when the host 

seaweed is faced with a potential competing organism in the marine environment. 

Kubaneck et al. (2003) have found antifungal compounds from seaweeds, which 

were structurally related to microbial compounds. The antimicrobial compounds 

could be the byproduct of symbiosis between the seaweed and an as-yet 

unidentified microbe. This hypothesis could explain why the seaweeds are rarely 

infected, despite constant exposure to potentially deleterious microorganisms. 

Quevarin et al. (2014) have carried out similar studies in sponges, and have proven 

to have homologous compounds in both host and their associated microbes. Based 

on this background it is necessary to have insight into the ecological interactions 

between different seaweed species and related marine ecosystem. Therefore the 

potential of exploring the antimicrobial lead molecules of seaweed-associated 

microbial flora is highly promising one, and offer a multitude of potential 

applications in various fields of biotechnology.  

Seaweed-associated heterotrophic bacterial communities were screened to 

isolate potentially useful antimicrobial strains. In this study, 234 bacterial strains 

were isolated from 7 seaweed species in Gulf of Mannar of the South-East coast of 

India. The strains having consistent antagonistic activity were chosen for further 

studies, and this constituted about 9.8% of the active strains isolated. The bioactive 

strains were shortlisted and phylogenetically analyzed. Phylogenetic analysis using 

16S rDNA sequencing, assisted with classical biochemical identification indicated 

the existence of two major phyla, Firmicutes and Proteobacteria. The antagonistic 

bacterial isolates have been submitted to the Microbial Type Culture Collection 

and Gene Bank (MTCC) of Institute of Microbial Technology (Chandigarh, India), 

an International Depository Authority under the Budapest Treaty. The possibility 

to encode the active metabolite gene by plamids were further analysed and they 

were subsequently screened for the presence of metabolite genes involved in 

important natural product biosynthetic pathway. 

 Antimicrobial activity analysis combined with the results of amplifying 

genes encoding for polyketide synthetase (PKS-I) and nonribosomal peptide 

synthetase (NRPS) shown that seaweed-associated bacteria had broad-spectrum 
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antimicrobial activity and potential natural product diversity, which further proved 

that these microbes are valuable reservoirs of novel bioactive metabolites. These 

epibionts might be beneficial to the seaweeds by limiting or preventing the 

development of competing or fouling bacteria. Phylogenetic analysis of 

ketosynthase regions with respect to the diverse range of ketosynthase (KS) 

domains showed that the KS domains from the candidate isolates were of type I. 

Seaweed-associated bacteria with potential antimicrobial activity suggests the 

seaweed species as an ideal ecological niche harboring specific bacterial diversity 

representing a largely underexplored source of novel antimicrobial secondary 

metabolites.  

Further studies with these isolates were focussed to identify the potential 

lead antimicrobial compounds from the seaweed-associated bacterial flora, and to 

unravel their biotechnological potential. Bioprospecting of antibacterial 

metabolites in Bacillus subtilis MTCC 10403 (SWI2) associated with brown 

seaweed Anthophycus longifolium revealed the bacterium is a promising bacterial 

candidate for bioprospecting. A total of six antibacterial metabolites, namely, 7-O-

methyl-5’-hydroxy-3’-heptenoate-macrolactin (1), 6-(4-acetylphenyl)-5-

hydroxyhexanoic macrolactin (2), 2-(7-(2-ethylbutyl)-2,3,4,4a,6,7-hexahydro-2-

oxopyrano [3,2-b] pyran-3-yl) ethyl benzoate (3), methyl-3-(2-((E)-2-(2-(furan-2-

yl)ethyl)-1-hydroxy-6-methylhept-4-en-3-yl)-1,2,3,4,4a,5,6,8a-

octahydronaphthalen-7-yl) propanoate (4), 5a,6,7,8,9, 9a-hexahydro-7-isopentyl-8-

methoxynaphtho[2,1-b]furan (5) and methyl 3-(4a,5,6,8,8a,9-hexahydro-4-((E)-3-

methylpent-1-enyl)-4H-furo[3,2-g]isochromen-6-yl) propanoate (6) were purified 

from the crude ethyl acetate-methanol extract (1:1, v/v) of the bacterial isolate. All 

the isolated compounds exhibited broad spectrum antagonistic activities to the 

tested pathogens. 

 The past decade witnessed the discovery of various polyketide leads from 

bacterial sources with tremendous importance in food control and human health 

perspective. The newly evolving antibacterials bearing the polyketide backbone 

will be increasingly important keeping in mind the development of multi-drug 

resistant bacteria and pathogenic microorganisms against the existing antibiotics 
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and related molecules. In this study, two new variants of macrolactin, 7-O-methyl -

5'-hydroxy-3'-heptenoate-macrolactin and 6-(4-acetylphenyl)-5-hydroxyhexanoic 

macrolactin were described. These novel polyketide product holds promise to 

develop new generation drug candidates for use against the multiresistant 

microbial pathogens. The evidence for a biosynthetic route of macrolactin has been 

provided, and this may lead to the identification of a new target for antimicrobial 

lead molecule discovery programs. The results of this screening led to the 

conclusion that these polyene antibiotics are widespread metabolites of seaweed-

associated bacterial populace particularly belonging to Bacillus species.  

Bacillus amyloliquefaciens MTCC10456 isolated from the seaweed 

Laurenciae papillosa demonstrated a promising antibacterial spectrum. B. 

amyloliquefaciens MTCC10456 demonstrated a positive hit for polyketide 

synthase gene with an accession number of KC607821. This showed the 

conceivable vicinity of antimicrobial activity of the seaweed associated bacterial 

isolate with the polyketide metabolite pathway. Two novel substituted carboxylate 

analogues, 3- (octahydro-9-isopropyl-2H- benzo [h] chromen-4-yl) - 2- 

methylpropyl benzoate (7) and 3- (octahydro-9-isopropyl-2H- benzo [h] chromen-

4-yl) - 2- methylpropyl benzoate (8) were isolated upon repeated bioassay guided 

chromatography over silica columns. The compound 7 exhibited significantly 

greater activity against the test pathogens (at a concentration of 20 µg per disc) 

than 8. 

Bioprospecting of antibacterial metabolites in bacteria B. subtilis MTCC 

10407 associated with seaweed Sargassum myriocystum yielded two novel O-

heterocycle pyrans, 2-(7-(2-ethylbutyl)-2,3,4,4a,6,7-hexahydro-2-oxopyrano[3,2-

b]pyran-3-yl)ethyl benzoate (9) and 2-((4Z)-2-ethyl-octahydro-6-oxo-3-((E)-pent-

3-enylidene)pyrano[3,2-b]pyran-7-yl)ethyl benzoate (10). Similarly bioprospecting 

of antibacterial metabolites in antagonistic bacteria B. amyloliquefacens MTCC 

10456, which is a biochemically identical strain associated with seaweed Padina 

gymnospora demonstrated the presence of multiple antibacterial compounds. The 

bacterium was similar in biochemical activities to MTCC 10456, with a different 

antibacterial spectrum to the pathogens tested. Hence the strain is designated in the 
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study as B. amyloliquefacens MTCC 10456B. The crude ethyl acetate extract of B. 

amyloliquefacens yielded four antibacterial compounds, namely, 10-(15-butyl-13-

ethyl-2-oxotetrahydro-2H-pyranyl)propyl-2-methylbenzonate (11), 7,8-dihydro-7-

(15-hydroxypropan-14-yl)-8-isobutylbenzo[c]oxepin-1(9H)-one (12), 13-(amino 

methyl)-11-hydroxyoctanyl 10-phenylpropanoate (13) and 9-(tetrahydro-12-

isopropyl-11-oxofuran-10-yl) ethyl 4-ethoxy-2-hydroxybenzoate (14).The 

recognition of antimicrobial metabolites from seaweed-associated marine bacteria, 

further reinforces the theory that microbial metabolites of the symbiotic 

microorganisms helps in chemical defences of the host species against the 

pathogenic and fouling microorganisms, indicating an ecological role of microbial 

metabolites in host bacterial interaction in these marine organisms.  

Chemically driven interactions are important in the establishment of cross 

relationships between marine surface-associated microorganisms and their 

eukaryotic host. It is therefore, that the seaweed–bacterial ecological interactions 

were studied by comparing the antibacterial metabolites of colonizing bacteria with 

its host derived seaweed secondary metabolites. Two homologous compounds, 

namely, 3-(methoxycarbonyl)-4-(5-(2-ethylbutyl)-5, 6-dihydro-3-methyl-2H-

pyran-2-yl)butyl benzoate (15) and 2-(8-butyl-3-ethyl-3,4,4a,5,6,8a-hexahydro-2H-

chromen-6-yl)ethyl benzoate (16) have been isolated from the ethyl acetate extract 

of host seaweed Sargassum myriocystum. It is interesting to note that the 

tetrahydropyran-2-one moiety of the tetrahydropyrano[3,2-b]pyran-2(3H)-one 

system of compound 9 might be cleaved by the metabolic pool of seaweeds to 

afford methyl 3-(dihydro-3-methyl-2H-pyranyl) propanoate moiety of compound 

15, which was found to have no significant antibacterial activity. It is therefore 

imperative that the presence of dihydro-methyl-2H-pyran-2-yl propanoate system 

is essentially required to impart the greater antibacterial activity. The 

biotransformation of the bacterial metabolite 3-(methoxycarbonyl)-4-(5-(2-

ethylbutyl)-5, 6-dihydro-3-methyl-2H-pyran-2-yl) butyl benzoate (15) in seaweed 

might contribute to the adaptive mechanism of the seaweed to form a tougher cell 

wall to resist the pathogenic bacterial flora in the oceanic ecosystem. Thus, there 

exists an interesting chemical ecological interaction between the secondary 

metabolites produced by the seaweed bacteria and the seaweed host organism. The 
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antibacterial compound 10 isolated from the ethyl acetate extract of from B. 

subtilis MTCC 10407 and 16 from seaweed Sargassum myriocystum shared similar 

structures, and therefore, might be the result of the identical metabolic pool of 

seaweed and bacteria. In particular the presence of ethyl benzoate moiety in 10 and 

16 from seaweed-associated bacteria and seaweed strongly suggested the 

ecological and metabolic relationship between these compounds. The seaweed 

derived metabolite 16 did not show an appealing antibacterial property, and 

therefore, it can be concluded that the compound has a different role, probably 

related to structural functionality of seaweed.  The fact that polyketides of this type 

are unprecedented from seaweed and the structural similarity of the seaweed 

derived homologous compounds to the microbial metabolites suggested that these 

could be the products of symbiont, and it is biotransformed by the seaweed 

metabolic pool. 

The bioactivity of bacterial species grown under symbiotic condition 

depends on several abiotic and biotic factors, among which the growth 

environment plays a major role. The fatty acid profiles of the seaweed associated 

antagonistic bacilli are found to have an increased amount of iso and anteiso fatty 

acids. The pks gene is the functional gene determining the bacterial active 

metabolite, and also there were reports that the seaweed derived polyketide 

metabolites are related to the bacterial metabolites. Polyketide biosynthesis has 

much in common with fatty acid biosynthesis, and was reported to have multiple 

role determining the bioactivity and growth in artificial culture media. Not only are 

they alike in the chemical mechanisms involved in chain extension but also in the 

common pool of simple precursors employed, such as, acetyl coenzyme A (CoA) 

and malonyl-CoA (MCoA) units. It was hypothesized that there might be a relation 

in the presence of fatty acids, antibacterial activity, and the presence of functional 

pks genes responsible for the antibacterial activity of the seaweed-associated 

bacterial flora. It is therefore the analysis of bioactive cultivable antagonistic 

heterotrophic bacterial communities associated with the intertidal seaweeds was 

carried out to understand the effect of seaweed extract and the metabolic 

precursors of the seaweed extract on the growth and fatty acid profile of the 

bacterial species, and to understand the chemical ecological relationship between 
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the host seaweed and their associated bacterial flora. Fatty acid methyl ester 

derivatives were examined as a means of characterizing seaweed-associated 

bacterial isolates and studying the differential composition of branched chain iso 

and anteiso fatty acids to understand their effects on the bioactivity. The addition 

of seaweed extract containing dodecahydro-3-methoxy-4a-methyl-2-vinylphen- 

anthren-7-yl 2-methylbutanoate, to the culture medium caused the increased 

formation of anteiso fatty acids (anteisoC15:0) related to these fatty acid substrates. 

The present study demonstrated how the seaweed associated epiphytic bacterial 

flora utilize the  precursors from the host seaweeds to biosynthesize greater 

contents of the branched chain fatty acids, which provide greater stability and 

antibacterial activity of the bacterial flora under the laboratory culture conditions.  

With the expanding requirement for novel medication revelation, seaweed-

associated marine epibiotic bacteria with potential antimicrobial activity proposes 

the seaweed species as an ideal ecological niche harboring specific bacterial 

diversity representing a largely underexplored source of novel antimicrobial 

secondary metabolites. These epibionts might be beneficial to the seaweeds by 

limiting or preventing the development of competing, pathogenic and fouling 

bacteria. The recently advancing antibacterials bearing the polyketide backbone 

will be progressively vital remembering the development of multi-drug resistant 

bacteria and pathogenic microorganisms against the existing antibiotics and related 

molecules. The fact that polyketides of this type are unprecedented from seaweeds 

and the structural similarity of the seaweed derived homologous compounds to the 

microbial metabolites suggested that these could be the products of symbiont, and 

it is biotransformed by the seaweed metabolic pool. The present study also 

strengthened the hypothesis that seaweed associated epiphytic bacterial flora utilize 

the precursors from the host seaweeds. The present work may have an impact on 

the exploitation of antibacterial lead molecules from seaweed-associated bacterial 

flora for food, pharmaceutical and biotechnological applications. 
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