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Abstract

In this paper, two notions, the clique irreducibility and clique vertex
irreducibility are discussed. A graph G is clique irreducible if every
clique in G of size at least two, has an edge which does not lie in any
other clique of G and it is clique vertex irreducible if every clique in G

has a vertex which does not lie in any other clique of G. It is proved
that L(G) is clique irreducible if and only if every triangle in G has a
vertex of degree two. The conditions for the iterations of line graph,
the Gallai graphs, the anti-Gallai graphs and its iterations to be clique
irreducible and clique vertex irreducible are also obtained.
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1. Introduction

We consider only finite, simple graphs G = (V,E) with |V | = n and |E| = m.
A clique of a graph G is a maximal complete subgraph of G. A graph

G is clique irreducible if every clique in G of size at least two, has an edge
which does not lie in any other clique of G and it is clique reducible if it
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is not clique irreducible [7]. A graph G is clique vertex irreducible if every
clique in G has a vertex which does not lie in any other clique of G and it
is clique vertex reducible if it is not clique vertex irreducible.

The line graph of a graph G, denoted by L(G), is a graph whose vertex
set corresponds to the edge set of G and any two vertices in L(G) are ad-
jacent if the corresponding edges in G are incident. The iterations of L(G)
are recursively defined by L1(G) = L(G) and Ln+1(G) = L(Ln(G)), for
n > 1 [5].

The Gallai graph of a graph G, denoted by Γ(G), is a graph whose vertex
set corresponds to the edge set of G and any two vertices in Γ(G) are adjacent
if the corresponding edges in G are incident on a common vertex and they
do not lie in a common triangle [4]. The anti-Gallai graph of a graph G,
denoted by ∆(G), is a graph whose vertex set corresponds to the edge set
of G and any two vertices in ∆(G) are adjacent if the corresponding edges
lie in a triangle in G [4]. Both the Gallai graph and the anti-Gallai graph
are spanning subgraphs of the line graph and their union is the line graph.
Though L(G) has a forbidden subgraph characterization, both these do not
have the vertex hereditary property and hence cannot be characterized using
forbidden subgraphs [4].

In [1], it is proved that there exist infinitely many pairs of non-isomorphic
graphs of the same order having isomorphic Gallai and anti-Gallai graphs.
The existence of a finite family of forbidden subgraphs for the Gallai graphs
and the anti-Gallai graphs to be H-free for any finite graph H is proved.
The relationship between the chromatic number, the radius and the diam-
eter of a graph and its Gallai and anti-Gallai graphs are also obtained. In
[4], it has been proved that Γ(G) is isomorphic to G only for cycles of length
greater than three. Also, computing the clique number and the chromatic
number of Γ(G) are NP-complete problems.

A graph G is clique-Helly if any family of mutually intersecting cliques
has non-empty intersection [6]. It is hereditary clique-Helly if all the induced
subgraphs of G are clique-Helly [6]. It is also proved in [6] that a graph G is
hereditary clique-Helly, if it does not contain any Hajós’ graph as an induced
subgraph.

The complement of a graph G is denoted by Gc and the graph induced
by a set of vertices v1, v2, . . . , vn is denoted by 〈v1, v2, . . . , vn〉. A complete
graph, a path and a cycle on n vertices are denoted by Kn, Pn and Cn

respectively. The complete bipartite graph is denoted by Km,n, where m

and n are the number of vertices in each of the partition. A vertex of degree
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one is called a pendant vertex and an edge incident to a pendant vertex is
called a pendant edge. A diamond is the graph K4 − {e}, where e is any
edge of K4.

e

e e

e ee






\
\

e

e e

e ee






\
\

e

e e

e ee






\
\

e

e e

e ee






\
\

Hajós’ graphs

In this paper, the graphs G for which L(G) and L2(G) are clique vertex ir-
reducible are characterized and it is deduced that Ln(G) for n > 3 is clique
vertex irreducible if and only if G is K3,K1,3 or Pk where k 6 n + 3. Af-
ter characterizing the graphs G such that L(G), L2(G), L3(G) and L4(G)
are clique irreducible, we prove that Ln(G), n > 5, is clique irreducible
if and only if it is non-empty and L4(G) is clique irreducible. The Gallai
graphs which are clique irreducible and clique vertex irreducible are charac-
terized. A forbidden subgraph characterization for clique vertex irreducibil-
ity of Γ(G) is obtained. Also, the forbidden subgraphs for the anti-Gallai
graphs and all its iterations to be clique irreducible and clique vertex irre-
ducible are obtained.

All graph theoretic terminology and notations not mentioned here are
from [2].

2. The Iterations of the Line Graph

Theorem 1. Let G be a graph. The line graph L(G) is clique vertex irre-

ducible if and only if G satisfies the following conditions

(1) Every triangle in G has at least two vertices of degree two,

(2) Every vertex of degree greater than one in G has a pendant vertex at-

tached to it, except for the vertices of degree two lying in a triangle.

Proof. Let G be a graph which satisfies the conditions (1) and (2). The
cliques of L(G) are induced by the vertices corresponding to the edges in G

which are incident on a vertex of degree at least three, the edges in G which
are incident on a vertex of degree two and which do not lie in a triangle
and by the edges in G which lie in a triangle. By (2), the cliques in L(G)
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induced by the vertices corresponding to the edges in G which are incident
on a vertex, have a vertex which does not lie in any other clique of L(G).
By (1), the cliques in L(G) induced by the vertices which correspond to the
edges in G which lie in a triangle, have a vertex which does not lie in any
other clique of L(G). Therefore, G is clique vertex irreducible.

Conversely, assume that L(G) is a clique vertex irreducible graph. Let
〈u1, u2, u3〉 be a triangle in G. Let e1, e2, e3 be the vertices in L(G) which
correspond to the edges u1u2, u2u3, u3u1 in G. T = 〈e1, e2, e3〉 is a clique
in L(G). If d(ui) > 2 for two uis, u1 and u2, then there exist v1 and
v2 (not necessarily different, but different from u3) such that ui is adja-
cent to vi for i = 1, 2. But then, the vertices e1 and e3 will be present
in the clique induced by the edges incident on the vertex u1 and the ver-
tices e2 and e3 will be present in the clique induced by the edges incident
on the vertex u2. Therefore, every vertex in T belongs to another clique
in L(G) which is a contradiction to the assumption that L(G) is clique
vertex irreducible. Hence every triangle in G has at least two vertices of
degree two.

Now, let u ∈ V (G) and N(u) = {u1, u2, . . . , up}, where p > 2 and if
p = 2 then u1 is not adjacent to u2. Let ei be the vertex in L(G) cor-
responding to the edge uui in G for i = 1, 2, . . . , p. Let C be the clique
〈e1, e2, . . . , ep〉 in L(G). If u has no pendant vertex attached to it then every
ui has a neighbor vi 6= u for i = 1, 2, . . . , p. The vis are not necessarily
pairwise different. Moreover, some vi can be equal to some uj with j 6= i,
except in the case p = 2. Therefore, for each i, every ei in L(G) will be
present in another clique, either induced by the edges incident on the vertex
ui in G or by the edges in a triangle containing u and ui in G. But this
is a contradiction to the assumption that L(G) is clique vertex irreducible.
Hence, every vertex of degree greater than one in G has a pendant vertex
attached to it, except for the vertices of degree two which lie in a triangle.

Theorem 2. Let G be a connected graph. The second iterated line graph

L2(G) is clique vertex irreducible if and only if G is one of the following

graphs.

K2 K3 P3 P4 P5 K1,3
d d

d

d d

(i) (ii) (iii) (iv) (v) (vi) (vii)
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Proof. By Theorem 1, L2(G) is clique vertex irreducible if and only if

(1) Every triangle in L(G) has at least two vertices of degree two,

(2) Every vertex of degree greater than one in L(G) has a pendant vertex
attached to it, except for the vertices of degree two which lie in a
triangle.

By (2), every non-pendant edge in G must have a pendant edge attached to
it on one end vertex and the degree of that end vertex must be two.

Case 1. L(G) has a triangle.

A triangle in L(G) corresponds to a triangle or a K1,3 (need not be induced)
in G. Let it correspond to a triangle in G. If any of the vertices of this
triangle has a neighbor outside the triangle, then two vertices in the corre-
sponding triangle in L(G) have neighbors outside the triangle, which is a
contradiction. Therefore, since G is connected, in this case G must be K3.

If the triangle in L(G) corresponds to a K1,3 in G, then two of the edges
of this K1,3 cannot have any other edge incident on any of its end vertices.
Therefore, G cannot have a vertex of degree greater than three. Moreover,
two vertices of K1,3 in G must be pendant vertices. Again, by (2) and since
G is connected, we conclude that G is either K1,3 or the graph (vii).

Case 2. L(G) has no triangle.

Since L(G) has no triangle, G cannot have a K3 or a vertex of degree greater
than or equal to 3. Therefore, since G is connected, G must be a path or
a cycle of length greater than three. Again, by (2), G cannot be a path of
length greater than five or a cycle. Therefore G is K2, P3, P4 or P5.

Corollary 3. Let G be a connected graph. The nth iterated line graph

Ln(G) is clique vertex irreducible if and only if G is K3,K1,3 or Pk where

n + 1 6 k 6 n + 3, for n > 3.

Theorem 4. The line graph L(G) is clique irreducible if and only if every

triangle in G has a vertex of degree two.

Proof. Let G be a graph such that every triangle in G has a vertex of
degree two. Let C be a clique in L(G).

Case 1. The clique C is induced by the vertices corresponding to the
edges in G which are incident on a vertex of degree at least three.
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An edge of C can be present in another clique of L(G) if and only if the
corresponding pair of edges in G lies in a triangle. Thus, if every edge of C

lies in another clique of L(G), then G has an induced Kp, where p is at least
four. But, this contradicts the assumption that every triangle in G has a
vertex of degree two.

Case 2. The clique C is induced by the vertices corresponding to the
edges in G which are incident on a vertex of degree two and which do not
lie in a triangle.

In this case, C is K2 which always has an edge of its own.

Case 3. The clique C is induced by the vertices corresponding to the
edges which lie in a triangle T in G.

Since T has a vertex v of degree two, the vertices corresponding to the
edges which are incident on v induce an edge in C which does not lie in any
other clique of L(G). Therefore, G is clique irreducible.

Conversely, assume that G is a clique irreducible graph. Let 〈u1, u2, u3〉
be a triangle in G. Let e1, e2, e3 be the vertices in L(G) which correspond
to the edges u1u2, u2u3, u3u1 of G. T = 〈e1, e2, e3〉 is a clique in L(G). If
d(ui) > 2 for each i, there exist v1, v2, v3 such that ui is adjacent to vi for
i = 1, 2, 3 (v1, v2 and v3 are not necessarily different, but they are different
from u1, u2 and u3). Then the edges e1e2, e2e3 and e3e1 of L(G) will be
present in the cliques induced by edges which are incident on the vertices
u1, u2 and u3 respectively. Therefore, every edge in T is in another clique of
L(G), which is a contradiction.

Theorem 5. The second iterated line graph L2(G) is clique irreducible if

and only if G satisfies the following conditions

(1) Every triangle in G has at least two vertices of degree two,

(2) Every vertex of degree three has at least one pendant vertex attached

to it,

(3) G has no vertex of degree greater than or equal to four.

Proof. Let G be a graph such that L2(G) is clique irreducible. By The-
orem 4, every triangle in L(G) has a vertex of degree two. Then, we have
the following cases.

Case 1. The triangle in L(G) corresponds to a triangle in G.
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Let 〈u1, u2, u3〉 be a triangle in G. Let e1, e2, e3 be the vertices in L(G)
which correspond to the edges u1u2, u2u3, u3u1 of G. At least one of the
vertices of the triangle 〈e1, e2, e3〉 in L(G) must be of degree two. Let e1 be
a vertex of degree two in L(G). Since e2 and e3 belong to N(e1) in L(G), e1

has no other neighbors in L(G). Therefore, the corresponding end vertices,
u1 and u2 in G have no other neighbors. Hence (1) holds.

Case 2. The triangle in L(G) corresponds to a K1,3 (need not be in-
duced) in G.

Let e1, e2, e3 be the vertices in L(G) corresponding to the edges uu1,

uu2, uu3 in G. At least one of the vertices of the triangle 〈e1, e2, e3〉 in L(G)
must be of degree two. Let e1 be a vertex of degree two in L(G). Vertices
e2 and e3 belong to N(e1) in L(G) and hence e1 has no other neighbors in
L(G). Therefore, the corresponding end vertices, u and u1 in G have no
other neighbors. Since u has no other neighbors (3) holds and since u1 has
no other neighbors (2) holds.

Conversely, assume that G is a graph which satisfies all the three con-
ditions. A triangle in L(G) corresponds to a triangle or a K1,3 (need not be
induced) in G. A triangle in L(G) which corresponds to a triangle in G has
at least one vertex of degree two by (1). Again, a triangle in L(G) which
corresponds to a K1,3 in G has at least one vertex of degree two by (2) and
(3). Therefore, every triangle in L(G) has at least one vertex of degree two
and by Theorem 4, L2(G) is clique irreducible.

Theorem 6. Let G be a connected graph. If G 6= K3 then, L3(G) is clique

irreducible if and only if G satisfies the following conditions

(1) G is triangle free,

(2) G has no vertex of degree greater than or equal to four,

(3) At least two of the vertices of every K1,3 in G are pendant vertices,

(4) If uv is an edge in G, then either u or v has degree less than or equal

to two.

Proof. Let L3(G) be clique irreducible. By Theorem 5, L(G) satisfies:

(1′) Every triangle in L(G) has at least two vertices of degree 2,

(2′) Every vertex of degree three in L(G) has at least one pendant vertex
attached to it,

(3′) L(G) has no vertex of degree greater than or equal to 4.
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A triangle in L(G) corresponds to a triangle or a K1,3 (need not be induced)
in G. Every triangle in L(G) has at least two vertices of degree two implies
that every triangle in G has its three vertices of degree two. i.e., G is a
triangle, because G is connected. Since G 6= K3, G must be triangle free.
Also, every K1,3 in G has at least two pendant vertices and the degree of
a vertex cannot exceed three. Therefore (1), (2) and (3) hold. Again (3′)
implies that no edge in G can have more than three edges incident on its
end vertices. Therefore, (4) holds.

Conversely, assume that the given conditions hold. Since G is triangle
free, a triangle in L(G) corresponds to a K1,3 (need not be induced) in G.
Therefore, by (2) and (3) every triangle in L(G) has at least two vertices of
degree two.

Let e be a vertex of degree three in L(G) and let uv be the correspond-
ing edge in G. Since e is of degree three in L(G), the number of edges
incident on u in G together with the number of edges incident on v in G

is three. If u (or v) has three more edges incident on it then u (or v) will
be of degree at least four which is a contradiction to the condition (2).
Therefore, u has two neighbors and v has one neighbor (or vice versa) in
G. Let u1 and u2 be the neighbors of u, and let v1 be the neighbor of v

in G. Then 〈u, v, u1, u2〉 = K1,3 in G and hence at least two of v, u1 and
u2 must be pendant vertices. Since v is not a pendant vertex, u1 and u2

must be pendant vertices. Therefore, e has two pendant vertices attached
to it in L(G) corresponding to the edges uu1 and uu2 in G. Hence (2′)
is satisfied.

Again, (2), (3) and (4) together imply (3′). Since the conditions (1′),
(2′) and (3′) are satisfied, by Theorem 5, L3(G) is clique irreducible.

Theorem 7. Let G be a connected graph. The fourth iterated line graph

L4(G) is clique irreducible if and only if G is K3,K1,3, Pn with n > 5 or Cn

with n > 4.

Proof. Let L4(G) be clique irreducible. Then by Theorem 6, if L(G) 6= K3

then L(G) must be triangle free. If L(G) = K3 then G is either K3 or K1,3.
If L(G) is triangle free then G is triangle free and cannot have vertices of
degree greater than or equal to three. Therefore, G is either a path or a
cycle of length greater than three.

Conversely, if G is K3,K1,3, Pn or Cn then L4(G) is either a triangle, a
path or a cycle and all of them are clique irreducible.
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Corollary 8. For n > 5, Ln(G) is clique irreducible if and only if it is

non-empty and L4(G) is clique irreducible.

3. The Gallai Graphs

Theorem 9. The Gallai graph Γ(G) is clique vertex irreducible if and only

if for every v ∈ V (G), every maximal independent set I in N(v) with |I| > 2
contains a vertex u such that N(u) − {v} = N(v) − I.

Proof. Let G be a graph such that its Gallai graph Γ(G) is clique vertex
irreducible. A clique C in Γ(G) of size at least two is induced by the vertices
corresponding to the edges which are incident on a common vertex v ∈
V (G) whose other end vertices form a maximal independent set I of size
at least two in N(v). Let I = {v1, v2, . . . , vp}, where p > 2, be a maximal
independent set in N(v). Let ei be the vertex in Γ(G) corresponding to
the edge vvi in G for i = 1, 2, . . . , p. Let C be the clique 〈e1, e2, . . . , ep〉 in
Γ(G). Let ei be the vertex in C which does not belong to any other clique
in G. Therefore, ei has no neighbors in Γ(G) other than those in C. Hence,
N(vi) − {v} = N(v) − I.

Conversely, assume that for every v ∈ V (G), every maximal independent
set I = {v1, v2, . . . , vp} in N(v) contains a vertex u such that N(u)− {v} =
N(v) − I. If C is a clique of size one, it contains a vertex of its own.
Otherwise, let C be defined as above. By our assumption, there exists a
vertex u = vi such that N(u) − {v} = N(v) − I. Therefore, ei has no
neighbors outside C. Hence C has a vertex ei of its own.

Theorem 10. If Γ(G) is clique vertex reducible, then G contains one of

the graphs in Figure 1 as an induced subgraph.

Proof. Let G be a graph such that Γ(G) is clique vertex reducible and
let C be a clique in Γ(G) such that each vertex of C belongs to some other
clique in Γ(G). Consider the order relation � among the vertices of C

where e � e′ if N [e] � N [e′]. If � is a total ordering, then every vertex
adjacent to the minimum vertex e is also adjacent to all the vertices in C.
Therefore, by maximality of C, e cannot have neighbors outside C. This
is a contradiction to the assumption that e belongs to some other clique of
Γ(G). So, there exist two vertices e1 and e2 in C which are not comparable.
That is, there exist vertices f1 and f2 of Γ(G) such that ei is adjacent to fj
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if and only if i = j. Let vv1 and vv2 be the edges corresponding to e1 and
e2, respectively. Then v1 and v2 are non-adjacent. Let u1 and u2 be the end
points of f1 and f2, respectively, which are both different from v, v1 and v2.
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Figure 1

Case 1. Both f1 and f2 correspond to the edges incident to v.
In this case, u1 and u2 are adjacent to v, ui is adjacent to vj if and
only if i 6= j and u1 and u2 can be either adjacent or not. Therefore
〈v, v1, v2, u1, u2〉 is the graph (i) or (ii) in Figure 1.

Case 2. None of f1 and f2 correspond to the edges incident to v.
In this case, u1 and u2 are adjacent to v1 and v2, respectively, and not to
v. If u1 = u2 then G contains an induced C4. If u1 6= u2 and G does not
contain an induced C4, then 〈v, v1, v2, u1, u2〉 is either P5 or C5.

Case 3. Exactly one of f1 and f2 correspond to the edges incident to v,
say f1.

In this case, u1 is adjacent to both v and v2 and is not adjacent to v1.
The vertex u2 is adjacent to v2 and is not adjacent to v. If u2 is adjacent to
v1 then G contains an induced C4. Otherwise, 〈v, v1, v2, u1, u2〉 is the graph
(vi) or (vii) in Figure 1.

Theorem 11. The Gallai graph Γ(G) is clique irreducible if and only if for

every v ∈ V (G), 〈N(v)〉c is clique irreducible.

Proof. A clique C in Γ(G) of size at least two is induced by the vertices
corresponding to the edges which are incident on a common vertex v ∈
V (G) whose other end vertices form a maximal independent set I of size
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at least two in N(v). Therefore, C has an edge which does not belong
to any other clique of Γ(G) if and only if I has a pair of vertices both of
which together does not belong to any other maximal independent set in
N(v). But, this happens if and only if every clique of size at least two in
〈N(v)〉c has an edge which does not belong to any other clique in 〈N(v)〉c,
since a maximal independent set in a graph corresponds to a clique in its
complement.

Theorem 12. The second iterated Gallai graph Γ2(G) is clique irreducible

if and only if for every uv ∈ E(G), either 〈N(u)−N(v)〉 and 〈N(v)−N(u)〉
are clique vertex irreducible or one among them is a clique and the other is

clique irreducible.

Proof. By Theorem 11, Γ2(G) is clique irreducible if and only if for every
e ∈ V (Γ(G)), 〈N(e)〉c is clique irreducible.

Let e = uv ∈ E(G), N(u)−N(v) = {u1, u2, . . . , up} and N(v)−N(u) =
{v1, v2, . . . , vl}. Also let ei = uui for i = 1, 2, . . . , p and fj = vvj for
j = 1, 2, . . . , l. NΓ(G)(e) = {e1, e2, . . . , ep, f1, f2, . . . , fl}. 〈N(e)〉c is clique
irreducible if and only if every maximal independent set I in 〈N(e)〉 has a
pair of vertices of its own. ei is not adjacent to ej if and only if ui is adjacent
to uj. Similarly, fi is not adjacent to fj if and only if vi is adjacent to vj .
So, I = {ei1 , ei2 , . . . , eik , fj1 , fj2 , . . . , fjl

} if and only if {ui1 , ui2 , . . . , uik} is a
clique in 〈N(u) − N(v)〉 and {vj1 , vj2 , . . . , vjl

} is a clique in N(v) − N(u).
Therefore, every maximal independent set I in NΓ(G)(e) has a pair of ver-
tices of its own if and only if either both 〈N(u)−N(v)〉 and 〈N(v)−N(u)〉
are clique vertex irreducible or one among them is a clique and the other is
clique irreducible.

Theorem [6]. If G is hereditary clique-Helly, then it is clique irreducible.

Theorem 13. If Γ(G) is clique reducible then G contains one of the graphs

in Figure 2 as an induced subgraph.

Proof. Let Γ(G) be a clique reducible graph. By Theorem [6], Γ(G)
contains at least one of the Hajós’ graph as an induced subgraph. The
Hajós’ graphs is an induced subgraph of Γ(G) if and only if G contains one
of the graphs in Figure 2 as an induced subgraph. Hence the theorem.
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Note. The converse is not necessarily true.
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Figure 2

Let G be the graph in Figure 3. V (G) = {v, v1, v2, v3, u1, u2, u3, w1, w2, w3,

w4, w5, w7, w7, w8}. Let 〈v, v1, v2, v3, u1, u2, u3〉 be the graph (i) in Figure
2 and let wis for i = 1, 2, . . . , 8 induce a complete graph. Also, let w1 be
adjacent to {v1, v2, v3}, w2 be adjacent to {v1, v2, u3}, w3 be adjacent to
{v1, u2, v3}, w4 be adjacent to {v1, u2, u3}, w5 be adjacent to {u1, v2, v3}, w6

be adjacent to {u1, v2, u3}, w7 be adjacent to {u1, u2, v3}, w8 be adjacent to
{u1, u2, u3} and v adjacent to wi for i = 1, 2, . . . , 8.
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In Γ(G) the vertices corresponding to the edges with one end vertex v induces
K6 minus a perfect matching in which the vertices of each of the eight
triangles are adjacent to another vertex each. The remaining vertices induce
the graph H = 4K1,8. Therefore, Γ(G) is clique irreducible.

4. The Iterations of the Anti-Gallai Graphs

Theorem 14. The anti-Gallai graph ∆(G) is clique vertex irreducible if and

only if G neither contains K4 nor one of the Hajós’ graphs as an induced

subgraph.

Proof. Let G be a graph which does neither contain K4 nor one of the
Hajós’ graphs as an induced subgraph. The cliques of ∆(G) are induced by
the vertices corresponding to the edges of G incident on a vertex of degree
at least 3 whose other end vertices induce a complete graph and by the
vertices corresponding to the edges which lie in a triangle. In the first case
G contains an induced K4, which is a contradiction. Therefore, the cliques
of ∆(G) are induced by the edges which lie in a triangle. Let 〈u1, u2, u3〉
be a triangle in G. Let e1, e2, e3 be the vertices in ∆(G) corresponding
to the edges u1u2, u2u3, u3u1 in G. Then 〈e1, e2, e3〉 is a clique in ∆(G).
If a vertex ei for i = 1, 2, 3 lies in another clique of ∆(G), then the edge
corresponding to ei lies in another triangle. Therefore, the end vertices of
the edge corresponding to ei in G has a neighbor vi for i = 1, 2, 3. vi 6= vj if
i 6= j and v1, v2, v3 are not adjacent to u3, u1, u2, respectively, since otherwise
G contains a K4, which is a contradiction. Then, 〈u1, u2, u3, v1, v2, v3〉 is one
of the Hajós’ graphs, a contradiction. Hence, G is clique vertex irreducible.

Conversely, assume that G is clique vertex irreducible. If G contains
K4 or one of the Hajós’ graphs as an induced subgraph, then there exists a
clique in ∆(G), corresponding to a triangle in G, which shares each of its
vertices with some other clique of ∆(G).

Lemma 1. If G is K4-free then Γ(G) is diamond free.

Proof. Let G be a graph which does not contain K4 as an induced sub-
graph. Therefore, a triangle in ∆(G) can only be induced by a triangle in
G. If two vertices of the triangle in ∆(G) have a common neighbor, then it
forces G to have a K4, a contradiction. Therefore, ∆(G) is diamond free.
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Theorem 15. The second iterated anti-Gallai graph ∆2(G) is clique vertex

irreducible if and only if G does not contain K4 as an induced subgraph.

Proof. By Theorem 14, ∆2(G) is clique vertex irreducible if and only if
∆(G) does neither contain K4 nor one of the Hajós’ graphs as an induced
subgraph.

Let G be a graph which does not contain K4 as an induced subgraph.
Therefore, G does not contain K5 as an induced subgraph and hence ∆(G)
does not contain K4 as an induced subgraph. Again, by Lemma 1, ∆(G)
cannot have diamond as an induced subgraph and hence it does not contain
any of the Hajós’ graph as an induced subgraph. Hence, ∆2(G) is clique
vertex irreducible.

Conversely, assume that ∆2(G) is clique vertex irreducible. If G contains
K4 as an induced subgraph then in ∆(G) the vertices corresponding to the
edges of this K4 induce K6 minus a perfect matching which is the fourth
Hajós’ graph, a contradiction. Therefore, G does not contain K4 as an
induced subgraph.

Theorem 16. The nth iterated anti-Gallai graph ∆n(G) is clique vertex

irreducible if and only if G does not contain Kn+2 as an induced subgraph.

Proof. By Theorem 15, ∆n(G) is clique vertex irreducible if and only if
∆n−2(G) does not contain K4 as an induced subgraph. ∆n−2(G) does not
contain K4 as an induced subgraph if and only if ∆n−3(G) does not contain
K5 as an induced subgraph. Proceeding like this, we get that ∆(G) does
not contain Kn+1 as an induced subgraph if and only if G does not contain
Kn+2 as an induced subgraph. Therefore, ∆n(G) is clique vertex irreducible
if and only if G does not contain Kn+2 as an induced subgraph.

Theorem [3]. If a graph G has no induced diamond, then every edge of G

belongs to exactly one clique.

Theorem 17. The anti-Gallai graph ∆(G) is clique irreducible if and only

if G does not contain K4 as an induced subgraph.

Proof. Let G be a graph which does not contain K4 as an induced sub-
graph. By Lemma 1 and Theorem [3], ∆(G) is clique irreducible.

Conversely, if G contains a K4 = 〈u1, u2, u3, u4〉, then it follows that the
clique in ∆(G), corresponding to the triangle 〈u1, u2, u3〉 in G, shares each
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of its edges with some other clique. Therefore, if ∆(G) is clique irreducible,
then G cannot have K4 as an induced subgraph.

Theorem 18. The nth iterated anti-Galli graph ∆n(G) is clique irreducible

if and only if G does not contain an induced Kn+3.

Proof. By Theorem 17, ∆n(G) is clique irreducible if and only if ∆n−1(G)
does not contain an induced K4. ∆n−1(G) does not contain an induced K4

if and only if ∆n−2(G) does not contain an induced K5. Proceeding like
this, we get, ∆(G) does not contain an induced Kn+2 if and only if G does
not contain an induced Kn+3. Therefore, ∆n(G) is clique irreducible if and
only if G does not contain an induced Kn+3.
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