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SUMMARY Pyridoxal phosphate is the coenzyme of various decarboxylases involved in the forma-
tion of monoamine neurotransmitters such as y -aminobutyric acid , serotonin , dopamine, and norepi-
nephrine . Adult male Sprague -Dawley rats placed on a pyridoxine -deficient diet for 8 weeks showed
significant hypertension compared with pyridoxine - supplemented controls . Hypothalamic contents of
pyridoxal phosphate , y-aminobutyric acid, and serotonin in the pyridoxine - deficient rats were signifi-
cantly lower than those in pyridoxine -supplemented controls . Hypertension was associated with
sympathetic stimulation . Treatment of pyridoxine -deficient rats with a single dose of pyridoxine (10
mg/kg body weight) reversed the blood pressure to normal levels within 24 hours, with concomitant
restorations of hypothalamic serotonin and y-aminobutyric acid as well as the return of plasma
norepinephrine and epinephrine to normal levels . Also, pyridoxine treatment reversed the hypotha-
lamic hypothyroidism observed in pyridoxine -deficient rats . These results indicate an association
between pyridoxine deficiency and sympathetic stimulation leading to hypertension.
(Hypertension ll: 387-391, 1988)
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HE crucial role played by pyridoxine in the
nervous system is evident from the fact that
the putative monoamine neurotransmitters

such as y-aminobutyric acid (GABA), serotonin (5-
hydroxytryptamine; 5-HT), dopamine (DA), and nor-
epinephrine (NE) are formed through decarboxyla-
tion of the precursor amino acid or amino acid deriva-
tive. We have reported a decrease in the brain levels
of GABA and 5-HT in the pyridoxine-deficient
young rat, with no changes in the levels of the cate-
cholamines.1, 2 Nonparallel changes in serotonin and
dopamine are related to the heterogeneity of the decar-
boxylases for 5-hydroxytryptophan and dihydroxy-
phenylalanine.' Receptor, behavioral, and sleep stud-
ies reported by us attest to the functional consequences
of the decrease in serotonin and GABA in various
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areas of the rat brain." We have also demonstrated the
hypothalamic origin of hypothyroidism in the pyridox-
ine-deficient rat.' Various reports have indicated a re-
lationship between pyridoxine status and hypertension
in pregnant women and women taking anovulatory
steroids.-10 Although an increase in systolic blood
pressure has been reported in pyridoxine deficiency,''
it has not been studied systematically. In the present
report, we elucidate the sympathetic stimulation and
hypertension occurring in pyridoxine deficiency.

Materials and Methods
Animals

Adult male Sprague-Dawley rats (age, 6 weeks;
weight, 139 -} 8 g; Charles River, St.-Constant, PQ,
Canada ) were used in these experiments . They were
divided randomly into three groups : Group I was fed
laboratory chow ad libitum , Group 2 was fed a pyri-
doxine-supplemented (control ) diet, and Group 3 was
fed a pyridoxine-deficient diet ad libitum. The rats in
Group 2 were pair-fed with pyridoxine-deficient rats.

Blood Pressure Measurements

Tail-Cuf Plethvsmographv

Systolic blood pressure was recorded weekly using
tail-cuff plethysmography. At the end of the 8-week
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experimental period, rats in each of the three groups
were subdivided into two groups . One subgroup was
injected with pyridoxine (10 mg/kg body weight i.p.),
and the other with saline. Systolic blood pressures
were recorded after 24 hours.

Direct Arterial Measurement

Pyridoxine-supplemented (control) and pyridoxine-
deficient rats were used for cannulation . Rats were
anesthetized with urethane (100 mg/ 100 g body weight
i.p.), The trachea was intubated to maintain adequate
ventilation. The right carotid artery was exposed and
cannulated for recording of blood pressure. A 21-
gauge 1-in. needle with a blunt tip was fixed to the
pressure transducer , which was connected in turn to a
Beckman Dynograph recorder R51 IA (Berkeley, CA,
USA) to record the arterial pressure. The damping
effect on the blood pressure due to a long and narrow
catheter was corrected by directly attaching the needle
to the pressure transducer.

Chronic Catheterization for Blood Sampling

Adult rats fed pyridoxine-supplemented and pyri-
doxine-deficient diets for 8 weeks were prepared for
long-term catheterization using a vascular access port
(Model SLA. Norfolk Medical Products. Skokie. IL,
USA). Blood samples were collected with minimal
,,tress to the animals. The blood samples were centri-
fuged at 5000g for 10 minutes. and the plasma collect-
ed was stored at - 70"C until it was used for NF and
epinephrine (E) determinations.

Determinations of Pyridoxal Phosphate and
Neurotransmitters

Pyridoxal phosphate was determined using tyrosine
apodecarboxylase as described previously.'= 5-1NT.
DA. and NE in the brain were assayed radioenzvmati-
cally." " (;ABA was determined using the radiorc
ceptor assay as described by Frere et al." Plasma NE
and E were determined using high performance liquid
chromatography (HPLC) with electrochemical detec-
tion as developed in our laboratory.

Extraction of Catecholamines from Plasma

For the extraction of catecholamines from plasma.
1 0 ml of plasma was transferred to a tuhc cont;!inin:,
I () iul of distilled water. I hen, 50 Al of 5 niM'l ',mdtuur
hisulfite was added and mixed, followed by 250µl of I
M Tris buffer. pH 8.6. Acid alumina (20 mg) was then
added. The contents of the tube were mixed using a
rotator for 20 minutes . The supernatant was aspirated
using a Pasteur pipette. The alumina was washed twice
with 2 nil of water containing 5 mM sodium hisulfite.
To the final pellet of alumina , 0.2 ml of 0. I N per-
chloric acid was added and mixed in a vertical mixer
for 15 minutes. The supernatant then was used for
HPLC determination of catecholamines.

HPLC Separation Conditions
The extracted sample (20 µl) was injected into a

Beckman HPLC apparatus with an Altex CIS-1P re-

verse-phase column (inside diameter, 25 cm x 4.6
mm; 5µm particle size; Beckman). The mobile phase
consisted of 75 mM sodium phosphate monobasic, I
mM sodium octylsulfate, 50 µM EDTA. and 1 1.5(
acetonitrile. The buffer was adjusted to pH 3.25 with
phosphoric acid, filtered, and deaerated before use. A
flow rate of I rnl/min was used with a Beckman Model
114 solvent dcliyery nodule. The catecltolatttines
were identified by coulontetric detection using an ESA
Model 5100 A detector (Bedford, MA, USA) with
Detector I set at a reduction potential of 0.05 V and
Detector 2 set at an oxidation potential of 0.40 V. A
preinjector guard cell was set at 0.45 V. The peaks
were identified by relative retention times compared
with standards, and concentrations were determined
by comparing peak areas using; a Shimadzu integrator
(Columbia, MD. USA) interfaced with the detector.

Assay of Hormones

Pituitary and serum thyroid stimulating hormone
(TSH) were assayed using reagents and protocol pro-
vided by NIADDK (Bethesda. ,MD. USA). The TSH
values were expressed in terms of the RP-2 stan,!ard.
which is 176 times more potent than the NIACOK-
rTSH-RP- I standard previously supplied. Concentra-
tions of thyroxine (T,) and triiodothyronine (T,) were
determined using T and T, solid-phase radioimmu-
noassav kits purchased from Becton-Dickinson
(Oranecbure, NY. USA). Scrum T, and T, concentra-
tions were expressed in nanoinoles per liter. Protein
was measured according to the method of Lowry
et al.",

Statistical A nalysis

The data from different ;Poups of animals were ana-
lyzed statistically by analysis of variance followed by
Duncan' ; multiple range test.

Results
The mean body weight (in grams) versus time

(weeks on the respective diet) curves for the pyridox-
ine-deficient and control rats are presented in Panel B
of Figure I. Panel A shows the mean systolic blood
pressure (mm H(,) versus time (weeks on the respective
diet) curves for these rats during the experimental peri-
od. The blood pressure of pyridoxine-deficient rats had
iucrrar.cd Ip ti.tttt ) by the 5th week, and by the cud
of the experimental period, the values ( 143 ::t 6 mm
Hit were still significantly (p<0.005) higher com-
pared with control values (123 - 3 mm Hg). Twen-
ty-tour hours after pyridoxine treatment, the blood
pressure of the pyridoxine-deficient rats dropped sig-
nificantly to 119 ± 4 ntnl H^,.. There was no significant
difference between the blood pressure values of the
control and pyridoxine-injected control rats.

Direct measurement of arterial pressure by carotid
artery catheterization indicated a significant increase
in both systolic and diastolic blood pressures of the
pyridoxine-deficient rats when compared with those of
the controls (Table 1).

Hypothalamic contents of pyridoxal phosphate,
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GABA, and 5 -HT of pyridoxine -deficient rats were

significantly (p <0.01) lower than those of control rats
(Table 2). DA and NE contents of the hypothalamus
were not decreased in the pyridoxine-deficient rats.
There was minimal stress to the rats when blood was
drawn through the vascular access port . This is indicat-
ed by a comparison of plasma catecholamine of blood
collected from the vascular access port with that ob-
tained by decapitation of the animal . NE and E levels
in the peripheral plasma of pyridoxine -deficient rats

were significantly (p<0.01) higher compared with
those of the controls (Table 3 ): Treatment of hyperten-
sive rats with pyridoxine restored hypothalamic pyri-
doxal phosphate , GABA, 5-HT, and serum NE and E
within 24 hours to normal levels (see Tables 2 and 3):
Pyridoxine treatment of the control (pyridoxine-sup-
plemented ) rats had no significant effect on any of
these parameters.

Pyridoxine -deficient rats showed a significant de-
crease in serum TSH, T, (p<0.01), and serum T,
(P<0.05), There was also a significant increase in
pituitary TSH content ( p<0.01) in the pyridoxine-
deficient rats (Table 4). Pyridoxine injection to pyri-
doxine-deficient rats reversed the hypothyroidism ob-
served due to pyridoxine deficiency within 24 hours.

Discussion

Our results indicate that pyridoxine deficiency in the
adult male rat leads to true arterial hypertension, which
is reversed within 24 hours by pyridoxine treatment.
This complete reversal within such a short time would
exclude vessel wall damage as the primary cause of the
hypertension.

Treatment of pyridoxine -deficient rats with pyridox-
ine restored systolic blood pressure , serum TSH, T,,

T;, NE. E, pituitaryTSH, and hypothalamic 5-H 'f and
GABA to normal levels within 24 hours . The plasma
renin activity of the pyridoxine -deficient rats was still
elevated 24 hours after pyridoxine treatment (con-
trol, 1.03 ± 0.24 pmol/L/sec; pyridoxine-deficient,
2.38 ± 0.20 pmol/L/sec ; pyridoxine - injected pyridox-
ine-deficient, 2.23 ± 0 . 33 pmol/L/sec ), excluding a
primary renal cause of hypertension in these animals.

Pyridoxine deficiency is characterized by slow
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FIGURE 1. A. Mean systolic blood pressure (mm Hg) versus

time (weeks) for pyridoxine-deficient (n = 20) and control

(n = 15) rats. B. Mean body weight (g) versus time (weeks)

for the two groups. SE bars are also given. The test rats were

maintained on a pyridoxine-deficient diet from Weeks 0 to 8,

while the control rats were maintained on a pyridoxine-supple-

mented diet throughout this period. At the end of the 8th week,

control and pyridoxine-deficient rats were iniected with pyri-

doxine, 10 mglkg, and blood pressures were measured 24 hours

later.

TABLE 1. Arterial Blood Pressure of Pyridoxine- Deficient and
Pyridoxine-Suppletnerne (l (Control) Rats

Animal status

Diastolic
a rterial pressure

In)u) Ili)

systolic
arterial pressure

(111111 Ilg)

Pyridoxine - supplemented
(control ) 77±3 111 ±2

Pyridoxine -deficient 105 ± 6* 147 ± 5,

Values are means ± SEM of live separate determinations in each
group.

*p<0.005, tp<0.00I, compared with control (by Student's
unpaired r test).

TABLE 2. Effect of Pyridoxine on Pyridoxal Phosphate, y-Aminobutvric Acid, Serotonin, Dopamine, and Norepineph-
rine Contents in the Hypothalamus of Control and Pyridoxine-Deficient Adult Rats

Animal status

Pyridoxal
phosphate
(nmol/g)

GABA
(µmol/g)

Serotonin
(nmol/g)

Dopamine
(nmol/e)

Norepinephrine
(nmol /g)

Group 1: pvridoxinc-
supplenlcuted (control) 3.41) '-0?6 5.33 x:0.16 1.35 ±1.05 1.06 0.20 3,342-0.20

Group 2: pyridoxine-
treated (control) 3.26±0.19 5.46 ± 0.21 1.49 ± 0.06 1.12 ± 0.16 3.29 ± 0.14

Group 3: pyridoxine-
deficient (expenn)enCd) 1.80) ! 0.16* 4.34±0.16' 0.92±0.04* 1.13±0.18 3.03±0.40

Group 4: pyndoxine-
treated (experimental) 3.06±0.16 5.32 ±0.21 1.85 ±0.13t 1.21 ±0.22 3.25 ±0.28

Values are means .r SEM of 10 separate determinations in each group. GABA = y-aminobutyric acid.
*p <0.01. compared with Groups 1, 2, and 4; tp <0.01, compared with Groups 1, 2, and 3 (by Duncan's multiple

range test).
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TABLE 3. Effect of Pyridoxine on Plasma Levels of Norepineph-
rine and Epinephrine in Control and Pyridoxine-Deficient Adult
Rats

Animal status
Norepinephrine

(nmoUL)
Epinephrine

(nmol/L)
Group I: pyridoxine- supple-

mented (control ) 3.06 ±0.28 1.89 ± 0.28
Group 2: pyridoxine- treated

(control) 3.44±0.27 1.52±0.16
Group 3: pyridoxine-deficient

(experimental) 9.04±0.21* 4.39±0.21*
Group 4: pyridoxine- treated

(experimental) 3.97±0.32 2.73 ± 0.24
Values are means ± SEM of eight to 12 separate determinations

in each group.
*p<0.01, compared with Groups 1. 2. and 4 (by Duncan's

multiple range test),

growth and suppressed appetite in rats. Hence, it could
be questioned whether the observed hypertension in
pyridoxine-deficient rats is a consequence of malnutri-
tion of the deficient rats. To answer this question, in
another experiment we compared control rats (pyri-
doxine-supplemented rats that were pair-fed with
pyridoxine-deficient rats) with pyridoxine-deficient
rats to examine the effect of generalized malnutrition
on blood pressure. Rats subjected to generalized mal-
nutrition had significantly lower blood pressure
(87 ± 4 mm Hg) compared with controls (1 14 ± 5 min
Hg) and pyridoxine-deficient rats (149 ± 10 mrn Hg).
Thus, the hypertension seen in pyridoxine-deficient
rats was not a consequence of generalized malnutrition
in these rats.

Pyridoxine deficiency in the rat could also result in a
hypcrexcitable state. Seizures are seen in the pyritlox
ine-dependent state as well as in experimental pyridox
ine deficiency in young rats. Although spontaneous
seizures were not observed in adult pyridoxine-defi-
cient rats, we investigated the effects of anticonvulsant
drugs such as phenytoin, valproic acid, and diazepam
on the blood pressure of these rats. A single dose of
phenytoin (6 mg/l00 g body weight i.p.) decreased the
systolic blood pressure in pyridoxine-deficient rats
within 30 minutes from 135 ± 4 mm Hg to 105 ± 3
mm Hg. The effect lasted for 6 hours, at the end of
which the blood pressure was elevated again. Valproic

acid (16 mg/100 g body weight i.p.) reversed the high
systolic blood pressure in the pyridoxine- deficient rats
within 10 minutes from 133 ± 3 mm Hg to 108 ± 2
mm Hg. The effect lasted for only 30 minutes. In
similar short-term experiments, diazepam (8 mg/I 00 g
body weight i.p.) had no effect on the systolic hyper-
tension of the pyridoxine-deficient rat. Both valproic
acid, which is supposed to act through facilitation of
inhibition," and phenytoin, which is supposed to act
primarily on membranes," produce transient pharma-
cological effects. In contrast, pyridoxine administra-
tion resulted in a reversal of hypertension that lasted
for several days after pyridoxine treatment. Pyridox-
ine, at the dose studied, does not have any effect on
blood pressure in normal rats. Also, a physiologically
inactive derivative of pyridoxine, such as 4-pyridoxic
acid, has no effect on the hypertension of the pyridox-
ine-deficient rat, thus indicating the specificity of pyri-
doxine action in the pyridoxine-deficient rat.

The roles of 5-HT and GABA in central regulation
of blood pressure havd been studied." =0 Hypothyroid-
ism is also known to cause hypertension. although the
mechanism of this action is not known." We also in-
vestigated the possibility that the reversible hype-ten-
sion seen in the pyridoxine-deficient rats is related to
general sympathetic stimulation. The concentration of
NE in peripheral plasma can be taken as reflecting
sympathetic activitv." The significant increase in se-
run, NE in the pyridoxine-deficient rats indicates gen-
eral sympathetic stimulation. The sympathetic hyper-
activity could be date to the effect of pyridoxine
deficiency at the sympathetic nerve terminals and in
the adrenal gland itself.

l);tltfstront and Foxe'` ha%c ticntonstr;ucd the coinci-

dence of itiedull;uy indoleanitiie tracts with neural
pathways controlling c;udiuvasrtilar function. In Con-
siderinw, the central serotoninergic influence on blood
pressure, the peripheral effects cannot be ignored. The
current controversy about the role of central serotonin-
ergic neurons in the control of blood pressure can be
attributed to the tendency to treat them as a homoge-
neous network subserving a single function. Chalmers
et al.-" stress that the medial elements of the B, and B5
serotoninergic cell groups contained within the medul-
lary raphe nuclei may have a depressor action, It has
been suggested that the hypotensive effect of long-

TABLE 4. Effect of Pvridoxine on Pituitary and Serum Tlrvroid Stinnrlating Hormone and Serum Thyroxine and
Triiodothvronine in Control and I'vrido.rine-Deficient Adnlr Rats

Animal status
Pituitary TSH

(peg/me protein)
Serum TSH

(tcg/L)
Serum T4
(nmol/L)

Serurn T3
(nmol;L)

Group 1: pyridoxine- supplemented
(control) _2.39-0.18 3.91±0.228 89_5 0.98-0.04

Group 2: pyridoxine-treated (control) 2.43--0.19 4.19-0.82 92±8 1.00-0.06
Group 3: pyridoxine-deficient

(experimental) 5.90±0.481 1.9.4t0.61* 64 t9' 0.84±0081
Group 4: pyridoxine- treated

(experimental) 3.70±0.27 3.-16 t 0.63 90 ± 3 1.15 s 0.07

Values are means ± SEM of eight to 12 separate determinations in each group. TSH = thyroid stimulating hormone;
T4 = thyroxine; T3 = triiodothyroninc.

*p<0.01, tp<0.05, compared with Groups 1, 2, and 4 (by Duncan"s multiple range test).
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term 5-hydroxytryptophan infusion is due to an action
in the brainstem.=5 Serotonin may participate as a mod-
ulator of sympathetic activity. Various hypertensive
states share as a common factor an increased sympa-
thetic outflow. Intracerebroventricular injection of
norepinephrine and other a-agonists has been shown to
reduce blood pressure and heart rate in a number of
species.26 a-Adrenergic receptors in the hypothalamus
and brainstemappear to mediate this effect." An inter-
action between serotoninergic and noradrenergic neu-
rotransmission has been suggested, taking into account
the anatomical proximity of both pathways.

Central GABAergic transmission has been suggest-
ed to cause hypotensive effects. Intracerebroventricu-
lar injection of GABA produces a hypotensive re-
sponse28 that is blocked by bicuculline.-° The bilateral
microinjection of hicuculline into the ventrolateral va-
sopressor neuron pool causes a dose-related increase in
blood pressure, pulse pressure. and heart rate.29 Ad-
ministration of GABA or its agonists such as muscimol
to the brain causes a reduction in blood pressure and
heart rate in several species.")-." A reduced sympathet-
ic outflow has been implicated in the mediation of the
cardiovascular effects of' GABA." Hence, we specu-
late that the decreased serotoninergic and GABAergic
central neurotransmission in the pyridoxine-deficient
rat, acting through stimulation of sympathetic outflow,
could cause the reversible hypertension in this animal
model.
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