24-LINE OF BRILLOUIN-ERBIUM FIBER LASER UTILIZING A FABRY-PÉROT CAVITY IN L-BAND

T. A. Haddud, M. H. Al-Mansoori, A. K. Zamzuri, S. Shaharudin, M. K. Abdullah, and M. A. Mahdi Photonics and Fiber Optic Systems Laboratory Department of Computer and Communication Systems Engineering Faculty of Engineering, Universiti Putra Malaysia 43400 UPM Serdang, Selangor, Malaysia

Received 1 October 2004

ABSTRACT: In this paper, the generation of a multiwavelength laser source from a Brillouin-Erbium fiber laser in the long wavelength band (L-band) region is experimentally demonstrated. The proposed laser system utilizes a Fabry-Pérot cavity formed by fiber-loop mirrors. Twenty-four lines of Brillouin-Stokes with line spacings of 10 GHz are obtained in the L-band region. © 2005 Wiley Periodicals, Inc. Microwave Opt Technol Lett 45: 165–167, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop. 20758

Key words: Fabry-Pérot resonator; fiber laser; L-band; nonlinear Brillouin scattering; multiwavelength lasing

INTRODUCTION

Multiwavelength generation based on Erbium-doped fiber lasers (EDFLs) have been proposed and demonstrated in the C-band (1530–1565-nm) region for various schemes. Significant progress has been made in improving the schemes and performance of multiwavelength EDFLs during the past few years [1–3]. Multi-wavelength oscillation in the L-band (1570–1605 nm) has also been demonstrated [4–6]. Up to seven channels with 3.2-nm spacing have been obtained on a ring-cavity EDFL [4]. A tunable Fabry–Pérot etalon was used as the intracavity comb filter to achieve multiwavelength operation in an L-band erbium-doped fiber (EDF) ring laser [5]. A maximum of six stable lines with a spacing of 1.3 nm in the wavelength range near 1590 nm has been produced at room temperature.

Recently, multiwavelength Brillouin-Erbium fiber lasers (BE-FLs) with several kinds of cavity configurations have been demonstrated in the L-band region [7–9]. A laser comb of up to 20 lines (including the anti-Stokes) has been obtained in the L-band region using a ring-cavity laser with 10-GHz line spacing [7]. A dual-cavity BEFL that consists of two EDF ring-cavity lasers that share a length of single-mode fiber (SMF) has been reported with a 10-nm tuning range [8]. An efficient BEFL has been obtained by recycling backward a 1550-nm-band amplified spontaneous emission as a secondary pump source for the unpumped EDF [9]. However, research on L-band BEFL has focused on utilizing a ring-cavity-laser system despite the use of other laser-cavity systems.

In this paper, the generation of BEFL signals operating in the L-band region and utilizing a Fabry-Pérot laser cavity is discussed for the first time to the authors' knowledge. A stable operation of

Figure 6 Measured results of the back-to-back transitions

2.3. Broadband Microstrip-Line-to-Rectangular-Waveguide Transition

One of the design parameters of the millimeter-wave module is to minimize the millimeter-wave interface length in order to reduce signal loss and mechanical complexity. Usually the transitions consist of several separated pieces that require judicious assembly, and a tuning mechanism is also essential. However, the module packaging (including the transition) is designed to have a simple structure composed of the least number of parts and robustness to compensate for assembling error.

The E-plane probe, the most commonly used type of transition, is well suited for simple and compact integration of the planar circuits with rectangular waveguide (RWG) [12]. It consists of a microstrip line on an alumina substrate inserted into the WR-15 RWG, as shown in Figure 5. The measured insertion loss of the back-to-back connected transition is 2.2 dB, as shown in Figure 6. The extracted insertion loss for a single transition is less than 0.4 dB from 50 to 75 GHz.

3. CONCLUSION

Broadband planar integration and packaging of millimeter-wave circuits has been proposed and demonstrated at the V-band. The proposed wideband microstrip-line-to-IWG transition is suitable for compact integration of planar circuits and the waveguide on the same substrate. It has features of low loss, wide bandwidth, and a simple structure, compared to conventional IWG transitions. The fabricated planar bandpass filter using the IWG transition exhibits an insertion loss of 3 dB with a 3.3% bandwidth at a center frequency of 62 GHz. The GCPW ribbon-bond interconnection and waveguide transition using the E-plane probe have low loss and robustness to compensate for assembling error. The proposed integration and packaging allow the design of a fully integrated, small-size planar millimeter-wave front-end with low loss.

ACKNOWLEDGMENTS

The authors acknowledge support of this work by Millisys, Inc. and OKI Electric Industry Co., Ltd. through the FAMN project.

REFERENCES

- K. Fujii, M. Adamski, P. Bianco, D. Gunyan, J. Hall, R. Kishimura, C. Lesko, and M. Schefer, A 60-GHz MMIC chipset for 1-Gb/s wireless links, IEEE MTT-S Int Symp Dig (2002), Seattle, WA, 1725–1728.
- H.J. Siweris, A. Werthof, H. Tischer, T. Grave, H. Werthmann, and R.H. Rasshofer, A mixed Si and GaAs chip set for millimeter-wave

automotive radar front-ends, RFIC Symp Dig (2000), Boston, MA, 191-194.

- I. Gresham, N. Jain, T. Budka, A. Alexanian, and N. Kinayman, A compact manufacturable 76-77 GHz radar module for commercial ACC applications, IEEE Trans Microwave Theory Tech 49 (2001), 44-58.
- K. Ohata, Millimeter-wave monolithic GaAs IC interconnect and packaging technology trends in Japan, GaAs IC Symp Dig (1999), 105-108.
- H. Uchimura, T. Takenoshita, and M. Fujii, Development of laminated waveguide, IEEE Trans Microwave Theory Tech 46 (1998), 2438– 2443.
- D. Deslandes and K. Wu, Integrated microstrip and rectangular waveguide in planar form, IEEE Microwave Wireless Comp Lett 11 (2001), 68-70.
- N. Kinayman, C. Eswarappa, N. Jain, and A. Buckle, A novel surfacemountable millimeter-wave bandpass filter. IEEE Microwave Wireless Comp Lett 12 (2002), 76–77.
- T. Budka, Wide-bandwidth millimeter-wave bond-wire interconnects, IEEE Trans Microwave Theory Tech 49 (2001), 715–718.
- G. Strauss and W. Menzel, A novel concept for MM-wave MMIC interconnects and packaging, IEEE MTT-S Int Symp Dig (1994), San Diego, CA, 1141–1144.
- Blondy, A.R. Brown, and G.M. Rebeiz, Low-loss micromachined filters for millimeter-wave communication systems, IEEE Trans Microwave Theory Tech 46 (1998), 2283–2288.
- G.L. Matthaei, L. Young, and E.M.T. Jones, Microwave filters, impedance-matching networks, and coupling structures, Artech House, Dedham, MA, 1980.
- G.A. Pearson and L.M. Devlin, Waveguide packaging, packaging and interconnects at microwave and mm-wave frequencies, IEE seminar, 2000, 2/1-2/7.

© 2005 Wiley Periodicals, Inc.