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Chapter-l

INTRODUCTION AND PRELIMINARIES

The evolution of non-commutative ring theory spans

a period of about one hundred years beginning in the

second half of the 19th century. This period also saw

~he development of other branches of algebra such as

group theory, commutative ring theory, .. etc. However,

the non-comffiutative Noetherian ring theory has been an

active area of research only for the last thirty years,

eversince Alfred W. Goldie proved some fundamental results

in the late fifties of this century.

The concept of commutative Noetherian Unique

Factorisation Domains has been extended to rings which

are not necessarily commutative, in different ways.

AoW. Chatters [1,2], D.A. Jordan [2J are the forerunners

in this direction. A.W o Chatters in [1] defined Non

Commutative Noetherian Unique Factorisation Domains

[NUFDs]. Although the rings of this class have many

properties of commutative UFDs, there are not many non

commutative rings in this class. In [2J, A.W. Chatters

and D.A. Jordan extended the concept of NUFD to Non

Commutative Unique Factorisation Rings [NUFR].
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REMIl'JDER OF Tt-iE COM~1UTAT lVE CASE

A commutative domain R is a UFO if every non zero

element of R is a unit or is a product of irreducible

elements whi.ch are un i que except for their order and

muLt Lp Li.c a t i.cr- by un i t s , Examples include the ring of

polynomials in a finite number of indeterminates over

a field or the integers; the Gaussian integers, etco

10 Kaplansky [3J has proved that a commutative domain R

is a UFO if and only if every non zero prime ideal of R

contains a principal prime ideal, equivalently every

height one prime idea 1 is princi pa 1 (a heig.ht one prime

in these circumstances being a prime ideal/minimum with

respect to not being zero). Note that if R is a commutative

UFO then so also is the polynomial ring in an indeterminate x

over R and also R is integrally closed.

NON COMMUTATIVE UNIQUE FACTORISATION DOMAINS

In [1] Chatters considered only Noetherian domains

which are not necessarily commutative. An element p in

such a ring R is called prime if pR = Rp and R/pR is a

domain (which implies that if p divides ab then p divides

a or p divides b). The letter C is used to denote the



-3-

elements of R wh i.c h are regular (non-zero divisors)

module all height 1 prime ideals (i.e., if p is a height

1 prime ideal and cd € P for some c E C and d ER, then

d € P ).

Definition 1 01.

A ring R is a NUFD if every height 1 prime ideal

of R is of the form pR for some prime element p equivalently

if every non zero element of R is of the form cPl··· Pn
where c E C and p. are prime elements.

).

Even.though this non-commutative analogue is the exact

extension of UFO, it lacks some properties, for example,

the polynomial ring R[x] over the UFD,R, is a UFO, in the

commutative case. With these unpleasant consequences of

this exterision· in mind Chatters and Jor~an defined Noetherian

Unique Fe c t.or i s at.i o n Rings [2J.

Instead of Noetherian domains, they considered the

more general prime Noetherian rings and used the characterisa-

tion of UFDs by Kaplansky in this definition.

Definition 1.2.

Le t R QC a prime Noetherian ring. Then R is a

Noetherian Unique Factorisation Ring "(NUFR) if every
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non zero prime ideal of R contains a non zero principal prime

ideal.

Since every domain is a prime ring, this class of

rings contains the class of NUFDs. The rings of this

class have aI.rnos t all properties of UFDs but the factorisa

tion can be done only for t.ho s e elements p wi t11 pR = Rp ,

Before entering into more details of the material

of this thesis we give a brief review of the preliminary

materials.

PRELllv\INARIES

Conventions

All the rings in this thesis are assumed to be

associative arid they have identity elements unless it is

otherwise mentioned. To empha"size the order theoretic

na t ur e , we use "the notations of inequalities ~ , < , {

for 'contained in', 'properly contained in' and 'not

contained in' respectively.

We begin with the basic equivalent conditions which

are abbreviated by "No e t.he r i an" honoring, Eo Noether, who
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first"demonstrated the importance and 'usefulness of these

conditions. Rc c a Ll that a collectionA of subsets of a

set /J... satisfies the ascending chain condition (or ACe) if

there does not exist a properly ascending infinite' chain

AI":: A2<C:. of subsets fromA Recall also that a

subset B € v4 is said to be maximal of A J if these doe s

not exist a subset inA wh i ch properly contains B •

•Proposition 1.3.

Let R be a ring and AR be a right R-module. The

following conditions are equivalent.

(a) AR .has ACC on submodules

(b) Every non-empty family of submodules of AR
has a maximal element.

(c) Every submodule of ~is finitely generated.

Definition 1.4.

A module AR is said to be Noetherian if and only

if the equivalent conditions of Proposition 1 03 are

satisfied.

Definition 1.5.

A ring R is right (left) Noetherian if and only if

the right R-rnodu.l.e RH (left R-module RR) is Noetherian.
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If both conditions hold, R is said to be Noetherian.

Example 1 0 6 .

It is easy to observe that the 2 x 2 matrices of

the form [~~

is right Noethcrian but not left Noetherian.

Proposition 1 07.

Let B be a submodule of A. Then A is Noetherian if

and only if 8 and A/S are both Noetherian.

Corollary 1.8.

Any finite direct sum of Noetherian modules is

Noetherian.

Corollary 1.9.

If R is a Noetherian ring, all finitely generated

right R-modules are Noetheriano

Definition 1010.

Given a ring R and a positive integer n, we use

M (R) to denote the ring of all n x n matrices over R.
n

The standard n x n matrix units in M (R) are the matrices
n

e .. (for i,j = 1,2, •.. ,n) such that e .. has 1 as the i_jth
1) 1J

entry and 0 elsewhere.
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Proposition loll.

Let R be a right Noetherian ring and let S be a

subring of M (R). If S contains the 5ubringn

RI = {diagOnal (r,r ... ,r) IrE: R} of all

scalar matrices, then S is right Noetherian. In particular

M (R) is a right Noetherian ring.
n

Proof

It is obvious that R is isomorphic to RI and M (R)n
is generated as a right RI module by the standard n x n

matrix unitso Since R' is right Noetherian and the

number of e .. 1 5 is finite, Mn(R) is a Noetherian RI-module,1.J I

by corollary 1 09. As all right ideals of S are also right

R'-submodules of M (R), we conclude that S is right Noetherian.
n

PRIME IDEALS

It is well known that the prime ideals are the

'building blo~ks' of ideal theory in commutative rings.

We recall that a proper ideal P in a commutative ring is

said to be prime if whenever we have two elements a and b

in R such tha t ab E: P, i t follows tha t either a e P or

b € P; equivalently P is prime if and only if RIp is a

domain.
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In non-commutative rings, it turns out that it is

not a good idea to concentrate on prime ideals P such that

RIp is a domain (ab E P implies a f: P or b E p). In f a c t ,

there are many non-commutative rings with no factor rings

which are domains. Thus the desirable thing is to give

a more relaxed definition for prime idealso The key is

to change the commutative definition by replacing products

of elements by products of ideals which was first proposed

by Krull in 1928.

Definition 1.12.

A prime ideal in a ring R is a proper ideal P of R

such that whenever I and J are ideals of R with IJ ~ P,

either I ~ P or J ~ P, P is said to be a completely prime

ideal, if whenever a,b t R such that ab E P, either a c: P

or b £ P. A prime ring is a ring in which 0 is a prime

ideal and a domain is a ring in which 0 is a completely

prime ideal.

From part (c) of the following proposition it follows

t hat in th e co mmuta t i v e cas e th e pr i me i de a 15 and th e

completely prime ideals coincide with the usual prime ideals

and in non-commutative setting, every completely prime ideal

is a prime ideal.
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Proposition 1~13.

For a proper prime ideal P in a ring R, the following

are equivalent.

(a") P is ~ prime ideal

(b) Rip is a prime ring

(c) If xpy E R with xRy~P, either x £ P or y E: P

Cd) If I and J are any two right ideals of R such

that 1J ~ P, either I ~ P or J ~ P

(e) If I and J are any two left ideals such that

IJ ~ P, either I ~ P or J ~ P.

It follows immediately (by induction) from the above

Jl, ••. ,J n are right (or left) ideals of R such that

3 1J 2 •.. J < P, then some J. < P.- n - 1 -

Proposition 1014.

Every maximal ideal M of a ring R is a prime ideal.

Definition 1.15.

A minimal prime ideal in a ring R is any prime ideal

which does ~0t prope~ly contain any other prime ideal •

For instance, if R is a prime ring, then 0 is a

minimal prime ideal.
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The next two propositions guarantee the existence

of minimal prime ideals in a ring R and their connection

with the ideal 0 in a right Noetherian ring.

Proposition 1.16.

Any prime ideal P in a ring R contains a minimal

prime idealo

Proposition 1.17.

In a right Noetherian ring R, there exist only

finitely many minimal prime ideals, and there is a

finite product of minimal prime ideals (repetitions

allowed) equal to zero.

Remark 1.18.

Given an ideal I in a right Noetherian ring R,

we may apply proposition 1016 to the ring R/r to get

a finite number of minimal prime ideals °1/1 , 02/1, ..•On/1

of R/I such that their product is O. Since Q./I is a
1

minimal prime ideal of RI! for each i, each Q., i=1,2, ••• ,n
1

is a prime ideal of R containing I and the minimality of

Qi's assures that they are minimal among the prime ideals

containing 10 Thus in a right Noetherian ring, given any

ideal I, there exist a finite number of prime ideals
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minimal among all prime ideals of R containing I, such

that their product is contained in I. Such prime ideals

are called minimal prime ideals over I.

SElv\IPRIME IDE.ALS

Definition 1.19.

A semiprime ideal in a ring R is any ideal of R

which is an intersection of prime ideals. A semiprime

ring is any ring in which 0 is a semiprime ideal.

For example, the proper semiprime ideals of Z are

of the form nZ, where n is a square-free integer. In fact,

in a commutative ring R, an ideal I is semiprime if and

only if whenever x € Rand x2 e I, it follows that x c: I.

The example of a matrix ring over a field shows that this

criterion fails in the noncommutative case. However, we

have an analogous criterion.

Proposition 1.20.

An ideal I in a ring R is semiprime if and only if

whenever x €' R with xRx f: I, then x €: I.

Corollary 1.21.

For an ideal I in a ring R, the following conditions

are equivalen t.
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(a) I is a semiprime ideal

(b) If J is any ideal such that J2 S I, then J ~ I.

Corollary 1 022 0

Let I be a semiprime ideal in a ring R, J be any

left or right ideal of R such that In ~ I for some

positive integer n, then J 5 I.

Definition 1.23.

A right or left ideal J in a ring R is nilpotent

provided In = 0 for some positive integer no More generally,

J is nil provided every element of J is nilpotent.

Definition 1.24.

The prime radical of a ring R is the intersection of

all prime ideals of R.

It is easy to observe that the prime radical of any

ring is nil and R is semiprime if and only if its prime

radical is zero.

proposition 1.25.

In any ring R, the prime radical equals the inter

section of all minimal prime ideals.
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In Noetherian rings we have the following important

result.

Proposition 1.26.

In a right Noetherian ring, the prime radical is

nilpotent and contains all the nilpotent right or left

ideals.

Definition 1.27.

Let R be a ring and S be a subset of a right

R-module A. The .annihilator of S is defined as

{r E:. R I s r = 0 for a 11 s ~ s} 0 IfS i sasubset 0 f R,

r(S), the right annihilator of S is defined as

[r E: R I s r :;: 0 for a 11 s ~ S} a nd 1eft ann i h i 1 a tor 1(s )

is defined as {r f. R I rs = 0 for all s E s} 0 A module A

is said to be faithful if annihilator of A = O.

Definition 1.28.

An R-module A is said to be simple if A has no

proper subrnodu l e s . A ring R is said to be simple if it

has no proper ideals.
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Definition 1 029.

An ideal P in a ring R is said to be right (left)

Qximitive pr0vided P = ann RA for some simple right

(left) R-module A. A right (left) primitive ring is

any ring in which 0 is a primitive ideal, ie. any ring

with a faithful, simple right (left) R-module.

Proposition 1 030.

In any ring R, the following sets coincide:

(a) The intersection of all ma ximal right ideals.

(b) The intersection of all ma x ima 1 left ideals.

( c) The intersection of all right primitive ideals.

(d) The intersection of all left primitive ideals.

Definition 1 0:31.

A ring R is semiprimitive (Jacobson Se~i5imple) if

and only if the Jacobson radical J(R) of R is equal to

zero where J(R) is the intersection defined in proposition 1.30.

SEMISIMPLE RINGS

Vector spaces, when viewed module theoretically,
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are distinguished by many nice propertieso For instance,

every vector space is a direct sum of one-dimensional

subspaces. We view simple modules as analogous to one

dimensional spaces, :and the corresponding analogoues to

higher dimenaional vector spaces are the semisimple

modules; modules which are direct sums of simple submodules.

Definition 1.32 0

The socle of an R-module A is the sum of all simple

submodules of A and is denoted by sac A. A is sernisimple

i"f A = s oc A.

In any ring R, it is easy to observe that soc (RR)

is an ideal of R. Similarly soc (RR) is an ideal of R,

but these two socles need not coincide in generalo However,

there are rings in which these two coincide. For instance

R = Mn(D), where n is a positive integer and 0 is a division

ring. In case n = 2, the right idea Is 11 = [g gJ 12 = [g gJ
are the simple right ideals and M2(D) = 11 fB 12 • Similarly

M2 (D) = J l $ 32, where 3 1 = m~ J 2 = [g g] are the

simple left ideals. We state a propositiono
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Proposition 1 033.

For any ring R, the following conditions are

'equiva len t..

(a) All right R-modules are semisimple

( b) All left R-modules are semisimple

( c) RR is semisimple

(d) RR is semisirnple

Definition 1 0 34 .

A ring satisfying the conditions of Proposition 1033

is callpd a semisimple ring.

Definition 1.35.

A module A is Artinian provided A satisfies the

descending chain condition (DCC) on submodules, i.e.,

there does not exist a properly descending infinite chain

of 5ubmodules of A. A ring R is called right (left) Artinian

if and only if the right R-module RR (left R-module RR) is

Artinian. If both conditions hold, R is called an Artinian

ring.

Remark 1 036.

As in the case of Noetherian structures it is easy to

observe that-A is Artinian if and only if Ala and 8 are
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Artinian where B is a submodule of the module A and that

any finite direct sum of Artinian modules is Artinian.

Also, if R is an Artinian ring, so is every finitely

'generated R-module.

Now we state the celebrated theorems on simple and

semisimple rings, due to Weddernburn and Artin.

Proposition 1 037.

For a ring R, the following conditions are equivalent.

(a)

(b)

(c)

(d)

R is right Artinian and J(R) = 0

R is left Artinian and J(R) = 0

R is semisimple

R = M (01) x M (02) x ... x M (Dk) for somen1 n2 n k

positive.integers n1,n2, •.. ,nk and division rings

01'···' Ok-

Hopkins and Levitzki have proved the significant

result that if R is a right Artinian ring then R is also

right Noetherian, and J(R) is nilpotent. The following

proposition is a consequence of this result.
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Proposition 1038.

For a ring R, the following conditions are equivalent.

(a) R is simple left Artinian

( b) R is simple right Ar t i n i a n

( c) R is simple and semisimple

( d) R =M (D), for some positive integer n andn
some division ring D.

RING OF FRACTIONS

In the theory of commutative rings, Loc a l Ls a t i on

at a multiplicative set plays a very important role. Most

important is the idea of a quotient field, without which

one can hardly imagine the study of integral domains.

A very useful technique in commutative theory is the

localisation at. a prime ideal, which ~educes many problems

to the study of local rings and their maximal ideals.

I-Iowever, this is not the case with non-commutative

rings. Although the set of nonzero elements is a multi-

plicative set in any -domain, we have examples of domains

which do not possess a division ring of quotientso It

was in 1930, t~dt o. Ore characterised those non-commutative

domains which possess division rings of fractions. In fact,
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Ore has proved a more general result by classifying

the multiplicative sets in a ring R, at which the right

(left) ring of quotients (fractions) of R exists.

Definition 1 039.

Let R be any ring. A multiplicative set D in R

is said to s2tisfy the right (left) Ore condition if

given r G· R, s E. 0 there exist r' E- Rand s' ~ S such

that r s ' = s r ' (59 r = r' s ) 0 In this case 0 is said to

be a right (left) Ore set. If D satisfies both right

and left conditions, 0 is simply called an Ore set.

Property 1 040.

We have a very useful property in a right Ore set

known as the right common multiple property.

If 0 is a right Ore set in R, then given any

d1,d2, .•• ,dn E 0, there exist d E D and r 1,r2, ... ,rn in R

such that d = dlrl = d2r2 = ... = dnrn. The left common

multiple property is defined like wise.

Definition 1 041.

A multiplicative set 0 in a ring R is said to be

right reversible in R, if for any d ~ 0, rt R with dr = 0,
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there exists d ' E:. 0 such that rd' = O. 0 is defined

to be a right denominator set if D is right Ore and

right reversiole.

Proposition 1.42.

In a right Noetherian ring every right Ore set

is right reversible.

Definition 1.43.

Let D be a multiplicative set in a ring R.

A right guotierjt ring of R relative to 0 is a pair (Q,f)

where Q is a ring and f is a homomorphism from R to Q

satisfying the following conditions.

(a) For any d E D, f(d) is a unit in Q.

(b) For every q £ Q, there exist r € Rand d ~ D
such that q = f(r) f(d)-I.

(c) ker f = [r ~ Rlrd = 0 for some d € DJ.

Remark 1.44.

A right localisation of a ring R with respect to

a multiplicative set 0 is a ring RO-l=-lrd-1Ir6R, e s DJ
such that
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( a) -1= 1 in RD for all d E D.

( b) The map r ----1
-1R to RD •

-1rl is a ring homomorphism from

(c) For r,s ~ Rand d c 0 -1 -1rd = sd if and only if

re = se for some c E Do The c occurs because 0

may contin zero divisors 0 If 0 con s r.s ts of non

1 -1zero divisors, then rd- = sd if and only if r=s.

It can he easily seen that the definitions of a right

quotient ring in 1 043 and the right localisation in remark 1.44

are equivalent.

Now we state Ore's theorem.

Theorem 1 045.

Suppose 0 is a multiplicative set in a ring R.

A right localisation of R relative to D exists if and only

if 0 is a right Ore right reversible set.

Remark 1 046.

Let us write an element of RO- l as a/s where a ~ R,

5 ~ 0 and call a' the numerator and' s'the denominator of this
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expression. Then it can be interpreted that two fractions

are equal if and only if when they are brought to a common

denominator, their numerators agree. It follows from the

right common multiple property of 0 that any two expressions

can be brought to a common denominator. So we'can define the

addition of two fractions by the rule (a/s)+(b/s) = (a+b/s).

Here it can be easily verified that the expression in the

right depends only on a/s and b/s ond not on a,b and s.

To define the product of a/s and bit we determine b l ( R

and SI E 0 such that bS 1 = sb1 and then put (a/s) (b/t)=(abl/tsl) .

Again it is easy to check that this product is well defined.

A ring R is said to be a domain if, it is without zero

divisors. It is obvious that the nonzero elements in a

domain form a multiplicative set and if 0 = R-o, 0 trivially

satisfies the right and left reversibility conditions. From

this fact we get the following corollary of Ore's theorem.

Corollury 1 047.

A domain R has a right division rinq of fractions

(right quotient division ring) if and only if D is a right

Ore set if and only if the intersection of any two nonzero

right ideals is nonzero.
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Definition 1 048.

A domain which satisfies the condition of

Corollary 1 047 is called a right Ore domain. Left Ore

domains are defined analogously.

Ore's theor~m, though proved in 1930, was only a

theoretical curiosity for a long time until Alfred Goldie

proved some results, nowadays known as Goldie's theorems,

in this direction in 1958. The importance of Goldie's

theorems is that it paved the way to many new investigations

and answered many questions posed on non-commutative ring

theory. We have seen that there are many non-commutative

domains whic~ do not possess a right or left division ring

of fractions and there are many rings which do not have

any factor rings which are right or left Ore domains.

Instead of looking for Ore domains and division rings of

fractions, we look for rings from which Simple Artinian

rings can be built using fractions. Goldie's main result

states that if R is a Noetherian ring with 0 a prime ideal

(p a prime ideal), then R has (Rip has) a simple Artinian

ring of fractions. It turns out to be no extra work to

investigate rings from which semisimple ring of fractions

can be builto We begin with some definitions.
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Definition 1 0 4 9 .

A regul~r element in R is any non-zero divisor,

i.e., any x~ R such that r(x) = 0 and L(x) = o.

Note that if R ~ Q are rings and x is any element

of R which is invertible in Q, then x is a regular element

in R.

Definition 1 050.

Let I be an ideal of R. An element x ~R is said

to be regular modulo I provided the coset x+I is regular

in R!l. The set of such x is denoted by e(l). Thus the

set of regular elements in R may be denoted by CR(O). Often

we use the notation CR(I) for C(I).

Definition 1 051.

A right (left) annihilator ideal in a ring R is any

right (left) ideal of R which equals the right (left)

annihilator of some subset x.

Definition le52.

A ring R is said to be of finite right (left) rank

if RR(RR) contains no infinite direct sum of submodules.

Definition 1 053.

A ring R is said to be right (left) Goldie if RR(RR)

has finite rank and R has ACC on right (left) annihilators.
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Definition 1 054.

Let A be a" right R-module and B a submodule of A.

B is said to be an essential submodule of A if B ne 1= o.

for every non zero submodule C of A.

Definition 1.55 ..

Let Q be a ring. A right order in Q is any subring

R ~ Q such that

(a)

(b)

Every regular element of R is invertible in Q

-1Every element of Q has the form ab for some

a ~ R and some regular element b in R.

It is clear that the ring Q in the definition 1055

and the localization of the ring R at the multiplicative

set CR(O) are same.

Remark 1.56.

A right Goldie ring is any ring R, such that R has

finite right rank and ACe on right annihilators. Thus

every righ.t Noe the r i an 4I'hg is righ t Goldie.

Remark 1057.

Goldie ha s proved that in a semiprime right Goldie ring

every essential. right ideal contains a regular element and
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that the right ideal generated by a right regular

element is right essential. As a consequence, in such

rings right regular elements are regular. Also it can

be seen easily that any ideal in a prime right Goldie

ring is essential as a right ideal and as a left ideal

and so it contains regular elements.

Theorem 1.58 (Goldie)

A ring R is a right order in a semisimple Artinian

ring Q if and only if R is a semiprime right Goldie ring.

Theorem 1.59 (Goldie)

A ring R is a right order in a simple Artinian ring

Q .if and only if R is a prime right Goldie ring.

Remark 1060.

The ring Q, as' in theorem 1 058, is called a right

Goldie quotient ring of R. Analogous results exist for

left semiprime (prime) Goldie ringso When both left Goldie

quotient ring and right Goldie quotient ring exist they

can be identified and called ~e Goldie quotient ring.

An important property of QR is that it will be the

injective hull of RR.
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Goldie's theorems give the structure of a semiprime

(prime) right Goldie ring, as it is a right order in a

semisimple Artinian (simple Artinian) ring which in turn

is the finite direct product of matrix rings over division

rings (matrix ring over a division ring). Thus, in

particular we get the structure theorems for semiprime

(prime) right Noetherian rings.

ARTINIAN QUOTIENT RINGS

In the previous section we have seen that every

right Noetherian semiprime ring (every right Noetherian

prime ring) is a right order in a semisimple (simple)

Artinian ring. Now we see the more general case, i.eo,

when Q, the quotient ring, is simply an Artinian ringo

Some times we call Q the total quotient ring as it

consists of all quotients with denominators varying over

the regular elements.

Proposition 1 061.

Let R be a ring which has a right quotient ring Q

which is right Artinian and let A be an ideal of R, then

AQ is an ideal of Q.
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Proposition 1.62.

Let R be a right Noetherian ring with N, the

prime radical and Pl,P2, ••. ,Pn the minimal prime ideals

of R. Then,

(1) The right regular elements are regular modulo N

(3) Let a,e ~ R with c right r-equ I a r , then there

exists be::: Rand dt::;CR(N) such that ad=bc.

(4) R has a right Artinian quotient ring if and

only if, CR(O) = CR(N).

"\Ne state a result, a characterisation of Noetherian

rings which are orders in Artinian rings, proved by

PoF o Smith [4].

Proposition 1 0 63 .

A Noetherian ring R is an order in an Artinian

ring if and only if

t: (;- Spec Rip n CR(0) =~} ~ Minimal (Spec R)

where Spec R denotes the collection of all prime ideals of R.



SCOPE OF THE THESIS

In this thesis we define and study the properties of

a pa.r t.Lcu Lar class ·of Noetherian rings namely, Generalised

Unique Factorisation Rings (GUFR). First of all the class

of GUFRs is a subclass of the class of Noetherian rings

with over rings. A GUFR R is defined as a Noetherian ring

with an over ring S such that every non-minimal prime ideal

of R contains a principal ideal (ioe., there exists a p € R

such that pR = Rp ) which is so called S-invertible ideal.

It can be seen that every commutative Noetherian

integral domain is a GUFR. Further it is easy to see that

every ideal of the form pR = Rp in a prime Noetherian ring

is Q-invertible, where Q is the simple Artinian quotient

ring of Ro Thus one way to look at GUFRs is as a generalisa

tion of NUFRs [2]. The class of GUFRs is quite larger than

the class of NUFRs. A natural example of a GUFR which is

not an NUFR ·is given in the thesis. Many examples of non

commutative Noetherian rings are constructed by twisting

polynomials, using derivations and automorphisrns, over well

known Noetherian (Commutative and non-Commutative) rings.

Using this tool of twisting of polynomials it could be seen

that there a~~ even some prime Noetherian rings which are not

~Jt)Fn~ bu t ;).rp GlJFRs.
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It is found that the elements I p ' which give rise

to S-invertible ideals in the definition of GUFR are

regular elements.

The fact that every commutative domain has a field

of fractions and every NUFR has a simple Artinian quotient

ring (by Goldie's theorem) generalises to the result that

every GUFR has a classical ring of quotients which is

Artinian.

Just as every principal ideal domain is a UFD, every

principal ideal ring with an Artinian quotient ring is a

GUFR. From this we get a characterisation of commutative

GUFRs.

The polynomial ring over a GUFR is studiedo

be proved that R[x] is a prime GUFR, when R is so.

general case, when R is not prime, is investigated.

It could

The

Hereditary Noetherian Prime rings (HNP rings) constitute

a rich class of Prime Noetherian rings. We recall that a

ring R is a right hereditary ring if every right ideal is

projective. Left hereditary rings are defined analogously.

An HNP ring is a Noetherian prime ring which is both left

and right hereditary. We refer the reader to Chatters [5],

Chatters and Ha j a rriav i s [6J, Faith [7J ard Eisenbud and

Robson [8J for details.
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Right bounded HNP rings are HNP rings in which

every essential right ideal contains a two sided ideal.

Le na qa n [9] has shown tha t right bounded HNP rings are

rings with er.ouqh invertible ideals, ioe, in such rings

every nonzero prime ideal contains invertible ideals o

Thus~ a second way to look at prime GUFRs is through

their connection with prime Noetherian rings with enough

invertible ideals. It can be seen that if a prime Noetherian

ring R with enough invertible ideals is such that all its

invertible ideals are principal, then R is a prime GUFR.

In particular, right bounded HNP rings in which each

invertible ideal is principal, are also prime GUFRs.

After proving all the above mentioned results in

Chapter 2, we move over to Chapter 3 in ~hich we study

different extension rings of GUFRs.

A finite central extension [10 (pp. 343-77)J ring

S of a GUFR R is shown to be a GUFR if the regular

elements of R are also regular elements in S. As a

consequence the n x n matrix ring Mn(R) over any GUFR,R,

is f ound to be a GUFR. R] x , Cl], the ring of polynomials,

twisted by an automorphismJover a GUFR [11J and R[x,SJ,

the ring of polynomials/twisted by a derivation $ over

a GUFR [12J are investigatedo
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The concept of a ring with few zero divisors [13]

in the commutative case is generalised to the non-commutative

case and the idea of weakly invertible elements is introduced.

Some analogous results of quasi-valuation rings [13] in the

non-commutative case have been proved. We conclude Chapter 3

with a discussion of integral closure [14J, [15J of a GUFR.

The technique of localisation at a prime ideal in

Commutative Noetherian rings, cannot be brought into non

commutative Noetherian rings as it is. This is because

of the gener~l behaviour of prime ideals in non-Commutative

rings. This is a major problem (ioe., under what conditions,

can a Noetherian ring be localised at its prime ideals?)

still confronting the study of non-Commutative Noetherian

rings. At present, a theory has emerged as the correct

one. Jategaonkar [16], Muller [17] etco are some of the

forerunners in this study. We give a detailed disc~sion

of this recent development in the localisation at prime

ideals in Noetherian rings in Chapter 4 and identify some

prime ideals and cliques of prime ideals at which the

localisation is possible in GUFRs.

In chapter 5, we discuss some problems that arose in

the thesis whi~h are to be investigated. Also, n possible

extension of the concept of GUFR to non-Noetherian case is

given.

The preliminary materials of this chapter have been

taken from [18J, [19J, [20J and [21J.



Chapter 2 .

GENERALISED UNIQUE FACTORISATION RINGS

INTRODUCTION

In commutative ring theory 1 0 Kaplansky [3J

classified the UDFs as those integral domains in which

every non zero prime ideal contains a principal prime

idealo

The unique factorisation concept, in non-

commutative rings, has been investigated by several

mathematicians in different contexts. A.W. Chatters [1]

was one of the forerunners in this direction. In [lJ

Chatters called an element p, in a non-commutative

Noetherian domain R, (henceforth calLed Noetherian

domain) a prime element if pR = Rp and R/pR is a domain.

This is analogous to the definition of a prime element

in a commutative Noetherian integral domain. He defined

a Noetherian Uniq~e Factorisation Domain [NUFO] as a

Noetherian domain in which every non zero element is

of the form cPl •.• P , where p.s are prime elementsn 1

and c is a regular element in Ro Equivalently R is a

NUFD if every height 1 prime P of R is of the form pR=Rp.

Examples include all commutative Noetherian UFDs and the
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universal enveloping algebra- U(L) of any solvable or

s em i s i.mpLe Lie algebra in the non-cc ommu t a t i.v e case.

Several basic facts about commutative UFDs are

extended to NUFDs by Chatters in [1]. MoPoGillchrist

and MoKo Smith have proved that NUFDs are often

principal ideal domains (in one of their papers).

In 1986 Chatters and Jordan [2J investigated

unique factorisation in prime Noetherian ringso They

defined a Noetherian unique factorisation ring by analogy

with the characterisation of UFDs by Kaplansky. They

called a prime Noetherian ring a Noetherian unique

factorisation ring (NUFR)- if every non zero prime ideal

contains a principal prime ideal.

In this chapter we define generalised unique

factorisation rings and study the properties of these

rings.

BASIC DEFINITION AND EXAMPLES.

De fin i t ion 2., J~ •

Let R be any ring and S an over-ring of R. An

ideal I of R is said to be S-invertible, if the R-bimodu1e

-1 -1 -1S contains an R-subbimodule I such that 11 =1 I=R.
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Definition 2.2.

An element a in a ring R is said to be a normal

element, if aR = Ra = 10 In this case we call the

ideal I, a normal, ideal.

Definition 2 03.

Let R be a Noetherian ring with an over-ring S.

Then R is called a Generalised Unique factorisation ring

(GUFR), if every non-minimal prime ideal of R contains

a normal~S-invertible ideal.

Examples 2o~.

(1) In any commutative Noetherian domain 0 every

nonzero prime ideal contains Q-invertible principal

ideals, where Q is the quotient field of D. Thus every

commutative i'Joetherian integral domain is a GUFR.

(2) A Noetherian unique factorisation ring, as defined

in [2J is a prime Noetherian ring R in which every non

zero prime ideal contains a normal prime ideal. Taking

S = Q(R), the simple Artinian quotient ring of R, it

can be seen that every normal element in R is invertible

in S and thus every normal prime ideal is S-invertible.

So R is a prime GUFR.
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(3) We give an example of a GUFR which is neither a

cornmu t a t i.ve Noetherian domain nor a f'JUFR.

k 2
Let k be a field and T = k[x1 ... x ]. Let 1= L x. T

n .11
J.=

k
where k $ n. Set R = T/l, then P = ~ x.R is the unique

.1 1
l=

minimal prime ideal of R, where ~. = x.+I for i=1,2,o •• ,k.
1 1

Localise R at P and let the localised ring be Rp. Now

it is easy to see that Rp is an over-ring of R and that

P contains no f~p-invertible principal .ide a l s , B\Jt every

non-minimal prime ideal of R strictly contains P and thus

contains elements of the complement of P, i .n. ~ units

in Rp' which in turn lead to Rp-invertible principal

ideals in non-minimal prime ideal. Thus R is a commutative

GUFR.

Since R can be embedded in Rp' M2(R) ~an be embedded

in M2(Rp)' Because of the order preserving bijection

between the nrime ideals of R and that of M2(R), M2(P)
is the unique minimal prime ideal of M2(R). None of the

elements of ~(P) is invertibl.e in M2(Rp)' therefore

M2(P) contains no M2(Rp)-invertible normal ideah.

Let N be a non-minimal prime ideal of M2(R), then

N ~ M 2(P). Let N = N2(Q), where Q is a prime ideal of R.

Then Q I=.P a nd hence there exists at least one element fa·

-in Q such that a ~ ·P. Then the scalar matrix X with non zero
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entries 'at is in M2 (Q) = N. Put I = X M2(R) = M2 ( R) X,

-1 (' -1the n I .s N. Fur the rm0 re X € M2 Rp I, sin ce Xis

the scalar matrix/with non zero entries a~l which is

-1 -1 () () -1in Rp and thus I = X M2 R = M2 R X is contained

() -1 -1 ( ) ( )in M2 Rp and 11 = I I = M2 R. Therefore M2 R is

a GUFR which is not prime.

Remark 2 05.

(1) The principal ideal theorem for a right Noetherian

ring asserts that the minimal prime ideals over any normal

ideal has height atmost 10 Thus in a GUFR even though

every non-mi~imal prime ideal contains normal ideals, each

normal ideal is contained in either a minimal prime ideal

or in a prime ideal of height 1.

(2) If R is Noetherian ring satisfying descending

chain condition on prime ideals, then R is a GUFR with

the over ring 5 if and only if every height 1 prime ideal

of R contains an S-invertible principal ideal.

(3) By Proposition 1 0 16 , if R is a GUFR with over ring S,

then every prime ideal contains a normal S-invertible ideal

if and only if every minimal prime ideal contains a normal

S-invertib1e ideal.
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Let R be a GUFR with over-ring S. We shall make

use of a certain p a r t i a I quo t i en t ring of R. Let

C =[a€ R/aR = Ra is S-invertjble}. We prove C consists

of regular elements and C is a (right and left) Ore set.

QUOTIENT RINGS

Theorem 2 0 6 .

Let R be a GUFR with the over-ring S. Then C

contains only regulor elements and C is an Ore set.

Proof

Let a E: C, we provelR( a) = r R( a) = o. Sinc e

a f e, aR = Ra is S-invertible and so there exists an

R-subbimodule 1-1 of 5 such that (aR)1-1 = 1-1(aR) = R.

Thus we can find elements r i c R, si ( 1-l f 5 for

n
i=1,2, •.. ,n, such that L (ar.)s. = 1. iAe

· 1 1 11=

n
a l: r.s.=l

· 1 l 1.1=

which implies

lR (a) ~ ~ (a)

r
R

(a) = o.

n
fS(a E r.s.) = lS(l)=O and consequently

. 11.11=
n

< ls( a L r.s.) = IS ( l ) = o. Similarly
- · 1111=

For the second part of the theorem, let a,b e C,

then aR=Ra and bR = Rb. Now abR = a(Rb) = Rabo Since
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aR and Rb are S-invertible ideals, there are R-bimodules

-1 -1 ( ) -1 ( )-1I and J such that aR I = bR J = Ro If we write

Thus a,b f C implies ab E C, i.e. C is a multiplicative

set. To prove that C is an Ore set, let a E C and r ~ R,

then raf Ra ::-:: aR and so ra = art for some r t e R. Thus

C satisfies right Ore condition. Similarly C satisfies

left Ore condition.

Theorem 2 07.

Let R be a GUFR with the over-ring S. Let

T = RC- 1 = C-IR be the localised ring of R at C. Then

T has atmost a finite number of maximal ideals o

Since C is. a right and left Ore set, by proposition

1.42 and theorem 1.45, T = RC- 1 = C-1R exists and the

homomorphism from R to RC-1 (r __ rI-I) is a monomorphism,

since C has only regular elements. Thus T is an over-ring

of S.

To prove that T has only finite number of maximal

ideals, we use the correspondence P ~ PT which is a

bijection from [p ~ Spec Rip n C = ~] to Spec T. Let

PI, •.• ,Pn be the minimal prime ideals of R such that
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P.O C = ~ for i = 1 , 2 , ... , n·. Then P.Ts are prime
1 ).

ideals of T for i=1,2, ... ,ne Let J be an ideal of T

such that P.T < J for each i = 1,2, ... ,n. Then
~

p. T n R < J n R = I for 1 ~ i ~ n ,
1

be the .mi.ni rna I primes over I.

that P. f P.! for i = 1,2, ... ,11, j = 1,2, •.. ,m and
). J

thus each P.' contains elements of Co Therefore the
J

product Pl'P2' ... Pm' also contains elements of C. But

Pl'P2' •.• Pm' S I, consequently I contains an element C,

i.e., I contains a unit of T. Also 'vve have IT = (J n R)T S J.

Hence J contains a unit of T. Thus J = T and we proved

that PIT, P2T, ... ,PnT are maximal ideals of T.

Further, if M is any maximal ideal, then M = P.T
1

for some i = 1,2, •.• ,n. For, if M ~ P.T for all
1

i = 1,2, •.. ,n .

i = 1,2, •.. ,n.

.Then Mn R is not contained in ·P. for any
1

Thus, as above, it can be seen that

(~,nR)nc 1= y1, which implies that M contains a unit of T,

contradicting the maximality of M.This completes the proof.

In an NUFR, the minimal prime ideal not containing

a normal Q(R)-invertible ideal is 0, and so, OT = 0 is

a ma x i ma 1 i ciea 1 0 f ToTh U 5 we 0 b t a in,
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Corollary 2 08.

If R is an NUFR, then T is a simple ring.

Artinian rings are generally regarded as generalisa~

tion of s em i s i.rnp I e Artinian rings. Goldie's theorem gives

a cha ra c te ri sa tion 0 f thos e ring 5 wh Let: a re ord e rs in

semisimple Artinian rings. This result naturally gives

rise to the question: 'tJhich rings can be orders in Artinian

"rings? The importance of Artinian quotient rings is that

they will be useful in the study of localisation at a prime

ideal in Noetherian rings and in the study of finitely

generated torsion free modules over Noetherian r i nq s , It

is seen that there are Noetherian ri.ngs wh i ch lack Ar t i n i an

quotient rings. However, if R is a GUFR, R always have

an Artinian quotient ring. We prove this next.

Every GUFR has an Artinian quotient ringo

Proof

From the definition of a GUFR, every non-minimal prime

id ea 1 c on t a in s no rma 1 i nve rtib 1 e id ea 1 s • Th e 9 en era tors 0 f

the se norma 1 anv e r t i b I e idea 1 s a re in eR (0) (the 5 e t 0 f

regular elements of R), by theorem 2 0 6 . Now the theorem

follows from proposition 1.63, which states that R is a
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Noetherian order in an Artinian ring if and only if

{PE Spee Rip n CR(O) =~] $ Min Spee R.

Remark 2 010.

Thus, even though in the definition of GUFR, we

are not a s scn.i nq that it has an Artinian quotient ring,

it turns out that GUFRs always have Artinian quotient

rings. It is also obvious that the Artinian quotient

-ring is an ov~r-ring of the GUFR, and the so called

S-invertible ideals are invertible with respect to this

Artinian quotient ring also. Hence the terminologies,

over-ring Sand S-invertible ideals, can be av o i d od

in the definition of" a GUFR.

Definition 2.11.

Let X be a right denominator set in a ring Ro If

I is a right ideal of RX-l, the set {a E RI aI-lE I}
is called th~ contraction of I to R and 'r;;:~ is denoted by rC.

-.6

If J is a right ideal of R, then lex-lie E I,x E x} in RX-1

is called the extension of J in RX-1 and is denoted by Je .

Proposition 2.12.

Let X be a right denominator set in a right Noetherian

ringo Then
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( 1) RX-1 is a right No e th e r i.an ring.

(2) For any ideal I of RX-1, r C is an ideal of R.

(3) For any id ea.l I of R, .re is an ideal of RX-1.

(4) For any ideal I of RX-1 I = (rc)e.,

(5) An idea 1 I of RX- 1 is prime (semiprime) if

and orly if re is prime (semiprime) in R.

(6) Let P be a prime (semiprime) ideal of Ro

Then P = QC for some prime (semiprime) ideal

if and only if X ~ C(p).

Proof:

As in [19, theorem 9.20].

Remark 2 013.

We look at T, the partial quotient ring of R at c.

Since C S CR(0),. it is obvious that T ~ Q(R), the Artinian

quotient ring ofR formed by localising R at CR(O)o Now

T has the following properties.

Theorem 2.15.

Let R be a GUFR and T be the partial quotient ring

of Rat Co Then

(1) T is a GUFR

(2) T has an Artinian quotient ring

(3) C(T) = '[t <: Tf tT = Tt is Q(R)-invertible}

has only units of T.
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Proof

Since R is a Noetherian ring and C is a right

and left Ore set, C is a right and left denominator

set by proposition 1.42. Now T = RC- l = C-1R is a

Noetherian ring by proposition 2 012(1).

By theorem 2.7, T has only a finite number of

maximal ideals. We prove that they are the minimal

prime ideals of T. Let M be a maximal ideal of T. If

possible assume P is a prime ideal of T strictly contained

in Mo Then pC is strictly contained in MC, (otherwise
o c e

by (4) of proposition 2.12JP = (pc) ~ = (M ) = M ). But

M is the extension, in T, of some minimal prime ideal

Pl (say) of R. Since R has an Artinian quotient ring
n

CR(O) = n CR(P.), by proposition 1.62, where P1,P , ... ,P
i=l 1 2 n

are the minimal prime ideals of R. Thus we have

C-fCR(O) 5- CR(P l) and so, by proposition 2.12(5), there
cexists a prime ideal Q of T such that PI = Q. Therefore

e e
M = pl

e = (Qc) , i.e., M = (Mc) = (Qc)e= Q. Consequently

we huve pC < MC = QC = Plo Also pC is a prime ideal of R

by proposition 2.12 (5). This violates the minimality of Plo

Thus M does not contain any prime ideal properlyo Hence

the maximal ideals of T are the minimal prime ideals which

implies that T has no non minimal prime ideals and thus

T is obviously a GUFR.
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.(2) Follows immediately from theorem 2.9.

(3) Follows from [1, theorem 2.7J.

vve sketch it. Let t c:: C(T) < T.

s 0 me a f Rand c € C. Thusa = t c , \IV [1e 1'"e c i 5 a unit

of To Since c is a unit of T, we have T = eT = Te and

so C c C(T), sothat a € C(1'). N0 \V a € C f 0 11 0 W 5 fro m

the fact that a f R. Thus 'a' is also a unit in T.

-1Consequently t = ac is a unit in T.

De fin i t·i 0 n 2. 15 .

An idea: P in a ring R is said to be right

localisable, if C(p) = (Xf R/x+p is regular in RIP}

is a right reversible set in R.

Definition 2 016.

A ring R ~s said to have a right Quotient ring,

if CH(O) .is a right reversible set. R is said to ha ve

quotient rinQ t if CR(O) is a right and left reversible set.

For instance, every GUFR has a quotient ring.

Lemma 2.17.

Let R be a" No e th e r i e n ring VJi th a quot.ient ring Q.

Let P = pl~ = Rp be a normal prime ideal of R wi t h p

regular. Then P is localisable.
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In the proof of le~ma 2.17 we have to make use

of the well known AR property and some other localisation

techniques which we have not yet discussed in this thesis.

When we discuss the localisation at a prime ideal in

chapter 4, Wb will give a proof of this lemma.

Lemma 2.18.

Let R be a GUFR and P = pR = Rp be a non-minimal

prime ideal of R. Then p is regular and P is localisable.

Proof

Since P is a non minimal prime ideal of H, from the

defini tion of GUFR and by'lb:oran 2 0 6 , P contains a regular

normal element e(say). Therefore e = prl = r 2P for some

r l,r2 € R. Now the regularity of p follows from the

regularity of e. The second part of the .lemma follows

from lemma 2 017 and from theorem 2.9.

Lemma 2.19.

Let R be a GUFR and P be minimal prime ideal of R.

Then P cannot contain any normal invertible ideal.

Proof

Suppose if possible that P contains a normal

invertible ideal aR = Ra (say). Then a E: CR(0) by
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theorem 2 0 6 . Since R has an Artinian quotient ring,

n
CR(O) = o CH 0\) , where Pl,P2'··· 'P n are t h e d i s t i n c t

i=l

minimal prime ideals of R, so tha t P = P. for some i ,
1

1 5 i S n. Thu s a f CR(O) 5 CR(p i) = CR(P) contradicting

the fact tha~ aR = Ra S P.

Remark 2.20.

if'le consid.er a s pe cia I case of GUFRs , i.e. GUFRs

wi t h all. height 1 primes are of the form pR == Rp , Then)

by lemma 2.1~each p is a regular element in R and so

each pIt = Rp is invertible ( in Q(R) ) and thus p € c.

Further it can be seen that, each c E: C can be written as

, uPl ... Pn , [01" some unit u in R and for some positive

integer n, and p.s are such that p.R = Rp. is a height 1
1 1 1

prime ideal of R for i = 1,2, •.. ,ne Thus the ring T ,

localised ring of R at C, coincides with the partial

quotient ring of R with respect to the multiplicative

set generated by the elements p of R such that pR = Rp

is a height 1 prime.

Theorem 2.21.

Let R be a GUFR and every height one prime ideal

is of the form pR = Rp for some p £ R. Then the following

are e qu i va Len t .
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CR(P) 5 CR(O) for each height one prime ideal P of R.

R = T n (n R ), wh e r e T is the partial quotient ringp
of R at C and n Rp is the intersection of all

locali5?d rings of R at its height one primes.

Proof---

By lemma 2.18 each height 1 prime ideal is localisable

and so Rp exists for each height 1 prime P of R.

Assume 1 Then every element in CR(P) isa regular

e Lomen t and so the homomorphism (r ~ rI-I) from R to Rp

is a monomorphism and hence R S Rp for each height o ne p r i me ,

Also Rp 5. Q(H) for each height one prime. Thus R 5 T n (n Rp) •

Now let qE. T n r n Hp)' then q = r(uPI' •• Pn)-l( T, where u

is a unit of Rand P1·R = Rp. for i = 1,2, ... ,n is a height1 J ,

one prime/by .r erna r k 2.20. Since q €0Rp , q € R for eachP.
1

i = 1,2, ... ,11, where P.s are the height one primes p.R=Rp.
1 1 1

for i = 1,2, ... ,n'and so there are s . € Rand c. € C(P.)
111

for i=J.,2, ... ,n such tha t q = -1
sici for each i=1,2, ..• ,n.

Therefore

i . e. , q up] •.. p. n
= r € R.
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\Ne have c E CR(p ) and uPl ••. pER so there existsn n n I

C 5, since
n

CR(Pn) is u right Ore set. Then

CS = uP
1

•.• (Pnt) = uP l ... P l(t'P )<::Rp = pR =P,n n- n n n n

where t' is such that p t = tIp •n n Now c ( CR(P ) andn n

eSt P implies that s € P = P R = Rp and son n .A.. • n n n

s = Thus rt = qUPl

P t = q c s = q c r 1" 'p € P. A9 a i. n t € eR ( Pn ) imp 1 i o sn n n. n n

Therefore q ( ) - 1 (-1 -1 -1)= r uPl···P = r 2 ' p P PI .. · un n n n-

( -1 -1 -1) ( )-1= r 2 ' Pn-l ... PI U = r 2 uP1 •.. Pn-l •

-1Repeating the argument n-l times, we g~t. q = mu where

m £ Rand u is a unit R. Hence q £ R and it follows that

T n (n Rp) ~ R. This completes the proof of 1 implies 2

Conversely assume 2 Then R ~ Rp for each height one

prime P of R and so the homomorphism ~(r ~ rl- l) from

R -~ Rp is one-one (remark 1 0 4 4 ) . Let d E CR(P) and

_L sdd-1-1assume sd = 0 for some 0 F S e R, then = s I = O.

Thus s £ kerf = O. This contradiction enables us to

conclude that d is left regular. Now d is right regular

f o Ll.ows f r on: the fact that R has an Artinian quotient

ring and so every left regular element of R is regular in Ro

(Proposition 1.62).
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Remark 2.22.

Prime GUFRs are the prime Noetherian rings in

which every non zero (non minimal) prime ideal contains

a normal Q(R)- invertible ideal, where Q(R) is the

simple Artinian quotient ring of R. Thus every NUFR is

a prime GUFR. Examples of prime GUFRs which are not

NUFRs are g~ven in Chapter 3. As in corollary 2.8, it

can be seen that, if R is a prime GUFR, T is a simple

Noetherian ring.

Noetherian rings in which every prime ideal contains

a normal invertible ideal are a generalisation of GUFRs.

But we show that there is nothing to be gained by this

extension as such rings turn out to be prime GUFRs.

Theorem 2.23.

Let R be a GUFI-\ in which ever)' prime ideal c o n t.a i.n s

normal invertible ideals. Then R is a prime GUFR.

Proof

First we prove, in GUFRs with every prime ideal

contains normal invertible ideals, every non zero ideal

contains a normal invertible ideal.
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Let I be a non zero ideal of R. Let Pl,P2 •.• Pm

be the minima 1 primes over I (relna rk 1.18). Then the

produe t P1P2 0.. p m ~ I. By hYpot h e s i S t for 1 $ i $ m ,

th ere ex i s t s -a. E:
1

R s uch that a,R = Ra. < P. and each
1 1 - 1

a.R = Ra., for 1 5 i ~ rn, is invertible. Then
1 1

a la 2 0 •• amR = Ral···a rn 5 P1

invertible.

Now let I and J be two non zero ideals of Ro It

follows by the above paragraph that there exists a € I

and b ~ J such that aR=Ra and bR=Rb and they are invertible.

Thus, by lemma 2 06, both a and bare r-e qu l a r . Consequently

o 1= ab € IJ and we have IJ 1= o. Th e r e f o r e the product of

two nqnzero ideals of R is non zero, which implies R is prime.

A ring R is said to be a sub direct product of the

rings { Si/i E: J} if there is a monomo rph i sm

K: R -~ S = 1t s. (the direct product of S.s) such
itJ 1 1

that n.oK is surjective for all i,
1

the natural projection.

Proposition 2 025.

wh e re 'Tt • :
1

S ----1 S. is
1

R is a sub direct product of Si' i E IJif and. only

if S. is isomorphic to R/K., where K.s are ideals of R
l 1 1

with n K. = O.
i E I J.
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Proof:

As in [22, Proposition 2.10J.

Theorem 2.26.

Every semiprime GUFR is a sub direct product of

prime GUFR s ,

Proof:

P be the minimal prime ideals of R.
n

Then
n
n

i=l
P. = 0, since R

1
is semi prime. Thus, if we

show that RIp., for 1 ~ i ~ n, is a prime GUFR, then
1

the theorem follows from proposition 2.25. It is clear

that Rip· is a prime Noetherian ring, for 1 $ i ~ n.
1

Let pip· be a non zero prime ideal of Rip.. Then P is a
1 1

non-minimal prime ideal of R with P. < Po So ther~
1 -

exists an element a e P such that aR=Ra is invertible.

By lemma 2.19, a ~ P. and thus a is a non zero element
1

o f RIP. with a(R/ P .) = (Rip· )a, ~Jhere a = a+P.. A1 so
1 l l 1

is the simple Artinian quotient ring of Rip·. Now Rip.
1 1

is a prime GUFR follows from the fact that ~ £ pip ..
l

PRINCIPAL IDEAL RINGS

It is well known that every commutative principal

ideal domain is a UFO. We prove an analogous result for

GUFRs.
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Recall that a right (left) regular element in a

ring R is any element x such that xy = 0 implies y = 0

(yx = 0 implies y = 0).

Lemma 2.27.

Let R be a Noetherian ring in which every left

regular element is regular. Suppose aR = Rb for some

a € Rand b regular in R. Then aR = Ra and a is regular.

Proof:

Since aR = Rb, we have a = ub and b = av, for some

u and v in h. Thus bv = av
2

E aR = Rb and
2

b = av = ubv = u(bv) = u(av ) E u(aR) = uRb, therefore

'th e r e exists an e Lcrne n t p Ln R such that b = upb,

i.e. (l-up)b = O. By regularity of b, up = 1, so that

u is left regular and from hypothesis u is regular. Now

using the regularity of u and the equation up = 1, it

can be seen that up = pu = 1. Consequently

aR = Rb = Rpub = (Rp)ub = Rub = Ra

Now the regularity of a follows from the regularity

of b and the fact that Ra = Rb.
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Theorem 2.28.

Let R be a Noetherian ring in which the principal

left ideals generated by regular elements are also

principal right idealso Then R is a GUFR if and only

if R has an Artinian quotient ring.

Proof:

Assume that R has an Artinian quotient ring Q(R).

Let P be a non-minimal prime ideal of Ro Then,pnCR(O)~,

by propos i tion 1.63. Let b € P n CR(0), then by hypo the sis

there exists an element a € R such that Rb = aRe Since

R has an Artinian quotient ring, every left regular element

is "regular (Proposition 1.62). Hence, by lemma ~o27, we

ha ve a E: CR(0 ) and a R = Ra . Sin c e a -1 (' Q ( R), a R = Ra

is Q(R)-invertibleo Also P contains aR = Ra. This

completes the proof of the sufficient part.

The necessary. part of the theorem follows from

theorem 2. ·~'9.

Corollary 2.29.

Suppose R is a Noetherian ring in which every regular

element is normal. Then R is a GUFR if and only if R has

an Artinian quotient ring.
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The next theorem characterises the GUFRs in

commutative case.

Theorem 2 030.

If R is a commutative Noetherian ring, then R is

a GUFR if and only if R has an Artinian quotient ring.

Proof:

Follows from theorem 2.28, as, in every commutative

ring the principal left ideals are two sided ideals.

POLYNOlv1IAL RINGS

Remark 2.31.

It is obvious that when P is a prime ideal of R[x],

P (\ R i saprim e. i d ea 1 0 fR. I f Pis a pr i IDe id e a 1 0 f R,

the map a o + alx + ... + anx n
~ (ao+P)·dal+p)~ + ... +(an+P)x n

is clearly a surjective homomorphism from R[x] to {R/p)[x] with

kernel PR[x]. Consequently ~ is isomorphic to (R/P)[x],

and thus (Rip) is isomorphic to a subring RI of (R[x]/pR[x.]).

First we consider the case when R is a prime GUFR.

By a central element in a ring R, we mean any element x in R

such that xr = rx for all r E: R.
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Lemma 2 032.

Let R be a prirne GlJFr{ a nd T be the partial quotient

ring of R at Co Then every non zero prime ideal of T[x]

can be gen~rated by a central element in T[x].

Proof:

Although the proof is similar to the proof given

in [2J, "'le give it. Le t P be a non ZC1'O p r i me ideal of

T[x]. Since R is prime GUFR, as in corollary 2 08, it can

be seen that T is a simple Noetherian ring. Let f be a non

zero polynomial of P of least degree, deg f = n (say).

The subset of T consists of the leading coefficients of

the polynomials of P of degree n, together with zero,

is a non zero ideal of T and .this equal to T, since T

is simple. Thus 1 is an element of that ideal and hence

wi t ho u t 10S5 of generality we can a s s urne that f i.s a manic

polynomial. Let 9 € P, using division algorithm 9 = fq+r,

where q and ~ are in T[x] and deg r < deg f or r = 0,

but r = 9-fq € P and f is a polynomial of least degree

in P, whi.c h implies r = O. Hen c e 9 = fq ~ fT[x]. i.e.,

P S fT[x] and so P = fT[x]. Furthermore x s f = fox and sf-fs (P

for all s f T, and its degree < degree f. Thus sf-fs - 0

and we get sf = fs for 511 5 € T and consequently

fT [ x] = T [ x] f •
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Theorem 2.33.

Let R be a prime GUFR, then so is R[x].

Proof:

Since f~ is a prime Noetherian ring, so is R[x].

Let Q{R[x]) be the simple Artinian quotient ring of H[x].

Let P be a non zero prime ideal of R[x]. Then

Case-l

Pr) R f. O. Since pC) R is a non zero prime ideal

of Rand R is a prime GlJFI1, pnR con-tains an e Lerncn t l a '

such that aR = Ra. So aR[x] = R[x] a is contained in P

and is Q(R[xJ)- invertible.

Case-I!

pn R = O. Then PT[x] ~ T[x], for, if PT[x] = T[x],

-1 a [ ] [ ]then for any a € C, a = al = T E: T x = PT x , wh i ch

implies a ~ P and thus 0 1= a € p n R = O. But PT[x] is a

proper prime ideal of T[x] and so, by lemma 2 032,

fT[x] = T[x]f = PT[x], for some f e: r l x}, The r e f o r e ,

-1by using common multiple property of e, f = ga for

some a€' C and 9 € P. So 'tJe have 9 = fa and

gR = faR = fRa = Rfa = Rg. This together with gox = x.g

implies that gR[x] = R[x]g and that gR[x] = R[x]g is

contained P. Since R[x] ·is p r i me Noetherian, 9 is a

regular eleITI€II.t of R[x] and so gR[x] is Q(R[x])-in\rertible.

Thus P contains a normal invertible ideal.



Therefore, in both cases we have proved that P

contains a normal invertible ideal and so R[x] is a prime

GUFR.

Remark 2.34.

Let P be a prime ideal of R. Then PR[x] is a prime

ideal of R[x]. We write

Ep = [f E: R[XV(f+PR[X])(R[X]/PH[X]) = (R[X]/PR[X])(f+PR[X]~

Since R[xJ/PR[x] is prime,

(f+PR[x]) (R[x]/PR[x]) = (R[x]/PR[xJ) (f+PR[xJ) implies

that f+PR[x] is regular in R[xJ/PR[x] and that

f £ CR[x] (PR[x]). Therefore E p ~ CR[x] (PR[x]) for each

prime ideal P of R. Also we write

Cl = Lf E R[x] / fR[x] = R[X]f} •

If R["1is a GUFI1, clearly C ~ Cl.

Theorem 2035.

Let R ~e a GUFR and suppose Ep ~ CR[x](O) n Cl,

for every minimal prime ideal P of R. Then R[x] is a GUFR.

Proof:

Sinc e f, i saGUFR., }{ has a n Art i n i an quo tie n t r i n9

and so R[x] has an Artinian quotient ring [23, theorem 306J.

We denote the quotient ring of R[x] by Q(R[xJ).
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Let PI be a non-minimal prime ideal of R[x].

Then,

Case-I.

P 1 C\ R .i_~) a non minimal prime ideal of R. Then,
, J

from the definition of GUFR, Pln R contains an element a

such that aR = Ra 5 PIn Rand aR = Ra is invertibleo

Hence aR[x] = R[x]a $ PI and it is easy to see that

aR[x] = R[x]a is Q(R[x])-invertible.

Case-lIe

PI tl R is a minimal prime ideal of R. Let P = PIn R.

Then PR[x] is a minimal prime ideal of R[x] and so

PR[x] ~ PI ioe., PR[x] < PI' By lemma 2.19, P contains

no normal invertible idea~ and as in the proof of theorem 2 026

(Rip) is a prime GUFR.

Since (Rip) is a prime GUFH, (R/P)[x] is a prime

GUFR by theorem 2.33 and hence so is (R[x]/PR[x]). Since

PR [ x] < PIthere i sag e PIsueh th a t

(g+PR[xJ) (R[x]/PR[x]) = (R[x]/PR[x]) (g+PR[x]) is contained

in Pl' (where PI' is the copy of Pl in R[x]/PR[x]), ioeo,

9 € Ep $ CR[x] (0) n Cl and thus g is regular in R[x] and

gR[x] = R[xJgo Consequently gR[x] = R[x]g is ·contained

in PI and is Q(R[x])-invertible.

Thus in both cases PI contains Q(R[x])-invertible,

normal ideals. Hence R[x] is a GUFR.
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RI~JGS yVITli [::NOUGH INVER~rIBI.JE ILJEALS

IN erecall t h () tar i n 9 R i s s aid t 0 be righ t (1 eft)

hereditary, if all of its right (left) ideals are

projective. If f{ is No e t.h e r i an , then 1\ is left hereditary

if and only if R is right hereditary [6, corollary 8018J

and in this case R is called hereditary.

Definition 2.36.

If every essential right ideal of a ring R contains

a non zero ideal, then R is said to be right bounded. By

symmetry we define left bounded rings and R is said to

be bounded if it is both left and r i qh t bounded.

Definition 2.37.

If every non zero ideal of a ring R contains an

invertible ideal, then R is said to be a ring with enough

invertible ideals.

We state some results that are given in CS].

Lemrna 2. 38 •

If R is a right bounded hereditary Noetherian prime

Ring, then R has enough invertible ideals.

Lemma 2039.

If R h~s enough invertible ideals, then R is bounded

or p r cm i t i v e ,
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Lemlna 2 040.

If R is a prime GUFR, then R is a ring with enough

invertible ideals.

Proof:

Since R is a prime GUFR, every non-zero prime ideal

contains a r.o rrna I invertible ideal. Now, if I is any non

zero prime ideal of Rand Pl,P2 •.. Pn are the prime

ideals minimal over I, the product PI •.• 'pn S I and is

obvious that P1P2 ••. Pn contains an invertible ideal

as each p. contains normal invertible ideal for 1 < i < n.
1 - -

Lemmas 2 039 and 2.40 together gives

Theorem 2.41.

If R is a prime GUFR, then R is either bounded or

primitive.

Definition 2.42.

If an ideal I of a ring R contains a regular element,

then I is called an integral ideal.

GUFRs can be characterised using their integral

ideals.
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Th e o r ern 2.43.

Let R be a Noetherian ring with an Artinian

quotient ring. Then R is a GUFR if and only if every

integral ideal contains a normal invertible ideal.

Proof

Assume t.h a t R is a GUFR. Let I be an integral

ideal and Pl,P2 •.• P n be the prime ideals minimal over I.

Suppose if possible that p. is minimal for some i. Since
].

I is an integral ideal, there is an element x £ I n CH(O)

and x € I implies x € Pi· Let 01,Q2 ... Qm be the minimal

m
primes of ft. Then CH(O) = n CH(W.), since H has an

j=l J

Artinian qvc t i.e n t r i nq , Now the minimali ty of P. implies
1

that P. = Q. for some j , 1 ~ j ~ m, Thus
1 J

m
x € CR(O) .- n CR(Qj) · Consequently x c CR(Qj) and

j=l

x E P. = Q.o From this contradiction, we conclude that
1 J

each P. is non-minimal for 1 ~ i ~ n. Thus each P., for
1 1

1 S i S n, contains a normal invertible ideal and now

the proof follows as in the proof of lemma 2 040.

Conversely, since R has an Artinian quotient ring,

every non minimal prime ideal of R c o n t a i ns a r-eo u La r

element, i.e., each non-minimal prime ideal is an integral

ideal. Thus each of t.hem contains a normal invertible

ideal by e s c ump t i.o n , This completes the proof.
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Theorem 2.44c

If R is a right bounded hereditary Noetherian

prime ring in which every invertible ideal is' normal.

Then R is a prime GUFR.

Proo f:

Since every invertible ideal is normal, the

theorem follows from lemma 2 0 38 0

COMPLETELY FAITHFUL MODULES

Definition 2.45.

Let R be a ring and M be a right R-module. Then

l\~ is

(1) Unfaithful if it is not faithful.

(2) Completely faithful if A/B is faithful

for all submodules A ) B of M.

(3) Local~y unf~ithful provided every finitely

generated submodule is unfaithful.

(4) Locally Artinian provided every finitely

generated submodule is Artinian.

From theorem 2 040 and the results [23, lemma 2 0 4 ,

theorem 2.6],we get the following theorems for a prime GUFR.
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Theoren12.46.

Let R be a pri.me GUFR' and lv\ be a cyclic R-rnodule 0

If N is a submodule of M such that

(1) N is completely faithful and M/N unfaithful, or

(2) N is unfaithful and M/N completely faithful Q

Then N is a direct summand of Mo

Proo f:

As in [ 24, lemma 2.3J.

Theorem 2.47.

Let R be a prime GUFR and A98,C right R-moduleso

Then t.h e exact sequence 0 ----t A ---+ B~ C -----.,. 0

splits provid9d anyone of the following statements holds.

(1) A is completely faithful and C is locally

unfa.i t.h f u L,

(2) A is unfaithful and C is completely faithful,

(3) A is locally unfaithful and C is completely

faithfulo

Proo f:

As in [24, theorem 2 04J.

Remark 2 04.8.

For any macule M, it can be proved, using Zornvs
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lemma, that there existr a unique maximal completely

faithful submodule C(M), which contains every completely

faithful submodule of M. [24, lemma 2 0 2J.

Theorem 2 049.

Let R be a prime GUFR and let M be a locally

Artinian right R-module. Then there exists a locally

unfaithful submodule N of M such that M = C(M) e N.

Proof

As in [24, theorem 2.6J.



Chapter-3

EXTENSIONS AND RINGS WITH MANY NORMAL ELEMENTS,

INTRODUCT ION

In this chapter, we discuss rings which are extensions

of GUFRs namely the finite centralising extensions, Ore

extension and the ring of polynomials twisted by a derivation.

Also we introduce the concept of rin~s with many normal

elements.

We show that any finite centralising e xt.e n s i o n of a

GUFR is a GUFR 0 As a corollary of this result, M (R), the
n

n x n matrix ring, over a GUFR R is a GUFR. A sufficient

condition for the Ore extension, over a Noetherian ring

with Artinian quotient ring, to be a GUFR is obtained. The

Noetherian rings with Artinian quotient rings such that

the Ore extensions over them are prime GUFRs a r e characterised.

The skew polynomial rings over some special Noetherian rings

are investigatedo

We extend the concept of rings with few zero divisors[13]

in the commutative case to rings with many normal elements

in the non-ecomrnu t a t.I ve case. By introducing the concept of

weakly invertible elements, we study some properties of

Noetherian rings with many normal elements. Also, we prove

some results.on the integral closure of Noetherian rings, in

this chapter.
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CENTRALISING EXTENSIONS

Definition 3.1.

Let R ~nd S be rings with R S So If the R-module

SR has a finite set of generators {Zi/i=1,2, ... ,n]

each of which normalises (i.e., z.R = Rz. for each i,
1 1

1 5 i S n). Then S is called a finite normalising

extension of R. I f z . r = r z . for a 11 i = 1, 2, • . . , n
1 l'

and for all r € R; then R is called a finite centralising

extension of R.

Definition 3 0 2 .

Let 5 be a finite centralising extension of R.

If, I E Spec S has the property that (JrlR)/(IflR) is

essential as an ideal of R/(In R) for each ideal J of S

with I < J, then we say that S satisfies essentiality at I.

If this holds for every I € Spec S, then we say that S

satisfies essentiality.

Lemma 303.

Let S be a finite normalising extension of Rand

P € Spec S. Then PO R is a semiprime ideal of R. However,

if S is a finite centralising extension)then P n R is prime.

Proof:

As in [10, theorem 1002.4.J
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If S is a finite normalising extension of Rand

S is right Noetherian, then S satisfies essentiality.

Proof:

As in [10, proposition 10.2.12J.

Theorem 3.50

Let R be a GUFR and S be a finite centralising

extension of Ro Also suppose that C 5 CS(O), where

C = ta ( R/aR=Ra is invertible). Then S is a GUFR.

Since S is a finitely generated left and right

R module, S is Noetherian. Now we prove C is an (left

and right) Ore set in S. Let a 6 C and s E S, then

+ r z )n n

Here we are assuming that tZuZ2,.,zn1 is a centralising

set of generators of S over R and we used the property

that for each r E R a rer ' a; for some r' c: R. Thus for

any s € S, there exists Si € S such that as = I ·s a, 1.e.

as ~ Sa. Similarly we have Sa ~ as, it follows that C is

an Ore set as in theorem 2 06.
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. ( ) -1-1Slnce C 5 Cs 0 , T = se = C S is an over-ring

of S and since every centralising extension is a

nor~alising extension, by lemma 3.4, S satisfies

essentiality. Let P be a non. minimal prime ideal of S.

Then, by lemma 3.3, Po R is a prime ideal of R and it

is a non mi.n i me I prime ideal of R. For, if P () R is

minimal, then Pan R = PO R for any minimal prime ideal

Po of S with P < P (p necessarily exists as P is non-o 0

minimal), which is a violation to the essentiality of S

(because under these circumstances (po R)!(P n R) should
o

be essential in Rip n R and so (pn R)/(P () R) should be
o 0

non zero in R!P 0 R). Consequently there exists an element
o

o f= a € C such tha t aR=Ra ~ P () R and hence as=Sa ~ P is

T-invertible. This completes the proof.

Corollary 3.6.

If R is a GUFR, then so is M (R).
n

Proof:

Clearly we can identify R with the sUbring of scalar

matrices, in Mn(R). Then Mn(R) is a finite centralising

extension of R, with generators, the matrix units,

teee! i=l,2,o .. ,n} It is also easy to see that every
1) . ·)=1,2, ••• ,n.
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regular element of R is regular in M (R). Now then

corollary follows from theorem 3 05.

TWISTED POLYNOMIALS

In this section we study some aspects of the

~elationship between a ring R, where R is a Noetherian

ring an automorphism a, and the Ore extension ring

R[x,a] = S. The elements of 5 are polynomials in x

with coefficients from R written on the left of x.

We define xr = a(r)x f o r all r € R. A typical element

of S has the form, f(x) = a +alx+ •.• + a xn = a +ono

+ ••• + xn a:-1(a), where n> 0 and a.~ R.
n - 1

The automorphism a on R can be extended to 5 by setting

a ( x ) = x s 0 th a t

Definition 3.7

An a-ideal I of a ring R with an automorphism a

is any ideal I of R with a(I) ~ I. An a-prime ideal of R

is an a-ideal P such that if X and Y are two a-ideals

with Y:i S P, then either X s P or'! s P. R is said to be

an a-prime ring, if 0 is an a-prime ideal.
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Remark 3.8.

It is easy to see that, if R is a Noetherian ring

and I an a-ideal, then a(I) = I and if R is a prime

ring, then R is an a-prime ring. Further, if S = R[x,cr]

is an Ore ex~ension of R, then xS = Sx and x ( CS(O).

We need some lemmas from [11].

Lemma 3.9.

Let R be a Noetherian ring and S = R[x,a] be an

Ore extension of R. Then

(1) S is Noetherian

(2) An ex-prime ideal P of S (o.r R) if) i1 s crni.p r Lme

ideal.

(3) If A is an a-ideal of S, S/(A n Fl)S is isomorphic

to (R/(A n R)) [x,a].

Lemma 3.10.

Let P be a prime ideal of S. Then either

( 1) x € P and P = P t1 R + xS, 0 r

(2) x € Cs(P) and a(P) = P.
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Lemma 3.110

Let P be a prime ideal of S, such that a(P) = P;

then pn R is a prime ideal of Rand a(pnR) = P "R.

Lemma 3.12.

Let P be a prime ideal of S with a(P) = P; then

(PO R)S is a prime ideal of S.

Theorem 3.13.

Let R be a Noe the rian ring wi th an Artinia 11 quotien t

ring and let a be an automorphism on R. If every non zero

a-prime ideal of R contains a normal invertible a-ideal;

then S = R[x,~] is a GUFR.

Proof:

By lemma 3 0 9 , S is a NoethGrian ring. Suppose that

every non zero a-prime ideal of R contains a normal

invertible a-idealo We shall show that S has an Artinian

quotient ring Q(5) and every non-minimal prime ideal of S
~

con ta ins a "norma 1 invertible idea 1.

Assume t.h a t S is not prime. Let P be a non-minimal

prime ideal of S. If x € P, then x € Cs(O) by remark 308.

If x i P, then x ~ CS(P) and a(P) = P by lemma 3 010.
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In this case pn R is an a-prime ideal by lemma 3.11

and pn R 1= O. For, if pn R = 0, then 0 is an a-prime

ideal of R again by lemma 3.11, and hence oS = 0 is a

prime ideal of S by lemma 3012, which is not possible

as S is not prime.

Since PO R is a non zero a-prime ideal of R, by

assumption, it contains a normal invertible a-ideal

aR = Ra, it follows that a € CR(O). Now we prove that

a € CS(O).· .. ' Let f {x ) e S. Then

n+ a x , where n is a non-negative
n

integer and a . , for 1 s i S n, are in R.
l.

f(x)oa = (a o + alx + ... + a xn)a
n

= a a + ala(a)x + ... + a an(a)xn
0 n

Consider

and so if f(x)a = 0, then a. = 0 for all i=1,2, •• o,n,
1

as a is an automorphism. i.e. f(x) = O. Similarly, if

a. g(x) = 0 for some g(x) £ S, we get g(x) = 0 ancl thus

a is regular in S. Thus in both cases (i.e., x € P and

x t p) we proved that P contains a regular element.

Therefore, every non-minimal prime ideal of S contains

a regular element and hence S has an Artinian quotient

ring Q(5) (say) by proposition 1.63.



-74-

Now, if x ( P, then xS = Sx is contained in P

and xS = Sx is Q(S)-invertible. Otherwise, we prove

that as = Sa is Q(S)-invertible, where a is as in the

above pa re q ra ph , Let 9 E: S and assume 9=cofc1x+~. _+cmxm

whe re c. £ R, for 0 ~ i ~ n . Sin c e a (aR) = aR, i t
1

follows that a(a) = au, for some unit u in Ro Consider

+ C xffi)a = c a + c1xa + ••• +c xffia
ID 0 m

• •• + n1( ) mc a a xm

[where d. =
1

i-I
n aj(~), where n stands for product]

j=O

Thus Sa ~ as and similarly as ~ Sa. Also a € P and the

proof is complete as as = Sa is Q(S)-invertible (since

Next assume that S is prime. Then S has a simple

Artinian quotient ring Q(S) by Goldie's theorem. In this

case, the proof is similar to the proof given in

[2, theorem 4.1J, we sketch ito
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Lo t P be a non-minimal prime ideal of S. If x E' P,

then xS = Sx s P and is QCS)-invertibleo O'th erw i s e ,

cons ider E = [a £ R/aR = Ra is an invertible a-ideal of R}.
It is easy to ,see that E is an Ore set in R. Let T be the

localised ring of R at E. Then a can be extended to an

automorphism ~ T such ( -1 = a:(a)c-1on that ~ ac ) for all
-1

E T. Thus T* T[x,~J is an Ore extension of T andac =

T is ~-simple, ioeo, T and 0 are the only ~-ideals of T.

As in the proof of lemma 2.32, it can be seen

that for any prime ideal P of T* with x ~ P, there exists

a central element f € T* such that P = fT* = T*f.

If P n R ~ 0, the proof is as in the general case.

If Pl1 R = 0, ~~ €/ P, it can be seen that x 4 PT* and PT*

is a non zero prime ideal of T* and thus PT* = fT* = T*f

for some f E T*, by the above ob s e r va t i cn , It is obvious

that xf = fx and Rf = fR. By the common multiple property
-1

of E, we have f = gd where q € P and d € E. Using the

fact a(d) = du (since a(dR) = dR) for some unit u in R

and dR = Rd, we get

Rg = Rfd = fRd = fdR = gR and

xg = xfd = fxd = fa:(d)x = fdux = fdxu- 1 -1= gxu
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so that Sg = gS $ P. Since S is prime 9 € CS(O) and

hence gS = 5g is Q(S)-invertible. Thus when S is prime

every non zero prime ideal P contains a normal invertible

ideal and so S is a GUFR.

Remark 3 014.

In the proof of the above theorem, we have not used

the non-minimality of P. Thus in S every (non zero)

prime ideal contains a normal invertible ideal. Hence

S is a prime GUFR by theorem 2.2~ and R is an a-prime ring

by lemma 3011. However, in this case we have the follow

ing cha r ac te r t s e t.Lo n ,

Theorem 3.15.

Let R be a Noetherian ring with an Artinian quotient

ring and let a be an automorphism on R. Then S = R[x,a]

is a prime GUFR if and only if R is an a-prime ring in

which every non-zero a-prime ideal contains a normal

invertible a-ideal.

Proof:

Sufficient part of the theorem follows from theorem 3.13.



Necessity

Since S is a prime ring it follows that R is

a-prime. Let P be a non-zero a-prime ideal of Ro

Because PS is a non-zero prime ideal of S, there is a

non-zero element 9 of PS such that 95 = 59 is 0(5)

invertible, where Q(5) is the simple Artinian quotient

ring of S. Clearly x ~ PS o For, if x £ PS, then

n
x = L r , f. , where r.E P and f. e S, ( 1)

i=o 1 1 1 1

for 0 S i ~ n.

Equating the coefficient on both sides of (1) we get

and the remaining coefficients in R.H.S of (1) vanish.
k.

(Here we are assuming that f. = a, + a1'lx + •.. + a' k x 1
1 10 1 .

1

for each i and ki is a non-negative integer). But each

r i E: P, for 0 ~ i ~ n , implies that 1 £ P. Thus g 1= x,

and without loss of generality we may assume that

n
9 = Co + clx + 0 •• + cnx , where c i £ P for ea eh i.

Since g5 = 59, we have gR = Rg and since 9 is regular

in S, 9 is regular in R. Now c.R =
1

Rc. for each i.
1

For, let r e R, then a-i(r) f: Ro Since gR = Rg, there
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is an r' E R such that

E t i th · th f f i c i t tqua lng e 1 coe lClen s,we ge

c.r = r'c., which implies c.R < Rc. and similarly
1 1 . 1 - ].

Rc. < c.R. This observation together with the fact that
1 - 1

9 is regular in R implies that c. is a regular element
1

of R, for some i, 0 5 i ~ n.

Next we prove c.R = Rc. is an a-ideal of R. We
1 1

consider a(r)x (co+c1x + •.. + cnxn) = (co+c1x+ ••• +cnxn)r'x

f I ~ R Eoua t i th · th t f f i · t for some r ~ 0 qua lng e 1 . erm coe 1clen S 0

this expres~~on we get a(r) a(c.) = c.a~r'), i.eo
1 J.

a(rc.) = c.a:tr') and hence a(c.R) = a:(Rc.) < c.R.
1 ]. 1]. .. 1

Thus the non zero~prime ideal P contains at least

one regular element c. such that c.R = Rc. is an a-ideal
]. J. J.

and c.R = Rc . is Q(R)-invertible, since c. € CR(O). This
1 1. l.

completes the proof.
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OOefinition 3.16.

If R is a ring and d R~ R is a derivation

on R, then the extension S = R[x, d] of R is the ring

of skew polynomials with coefficients written on the

left of x , Here xa is defined as, a x + J (a), for all

a € R.

Definition 3.,17.

An ideal I of R is said to be a .I-ideal if

d (I) ~ I. A 'S -ideal I of R is said to be er -prime,

if for all J -ideals A,S of R such that AB S I, either

A < I or B < I.- -

The following lemma relates the ideals R and those

Lemma 3.18.

(1) If J is an ideal of S, then JflR is ad-ideal of R.

(2) If I is a J -ideal of R, then IS is an ideal of S.

(3) If P is a prime ideal of S, then P n R is a

J -prime ideal of R.

(4) If Q is a J -pri'me ideal of R, then QS is a

prime ide~l of So

r t:"" )\ J If R is Noetherian, then so is S.
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As in [12, lemma 1 03].

Lemma 3 019.

Let R be a Noetherian ring and d: R ~ R

a derivation. Then the following are equivalento

(1) R[x, J ] is prime

(2) R is J -prime

(3) The prime radical N of R is a prime ideal of R

k
S=i(N)and n = 0 for some integer k.

i=l

Proof:

As in [12, theorem 2 02].

Remark 3 020.

If a Noetherian ring R with a derivation satisfies

anyone of the above equivalent conditions, then CR(O)=CR(N)

so that R has an Artinian quotient ring.

Theorem 3.210---------
Let R be a d -prime Noe the ria n ring such tha t every

non-zero d -prime ideal contains a normal invertible

t -ideal. Then R[x, J] is a prime GUFI{.

Proof:

s = R[x,~ ] is Noetherian by lemma 3.18(5). S is

prime by lemma 3.19 and both Rand Shave Artinian quotient

rings by remark 3 020 and Goldie's theorem respectively.
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Le t E = fb f R / bR = Rb is an invertible ,f -ideal] •

Then E is an Ore set consisting regular elements and the

localised ring T, of R at E, is an ~-simple ring, ioeo,

o and T are the only n-ideals of T, where ~ is the

extension of J to T defined by ~(ac -1) = J(a)c- l for

-1all ac ~ T. If P is a non-minimal prime ideal of S,

then as in the pattern of the proof of the theorem 3 013,

we have, PT[x, cl ] = fT[x, d ] = rt». et ]f
J
for some f € T[x,J]

d t f gd - l for L:' P d d r: E d han we ge = some 9 ~ an ~ an we aye

gR = Rg. Also, xg = xfd = fxd = f(dx + J(d)) = fdx+£i(d)

= fdx + fdu, for some u£ R.

Thus xg = fd(x+u) = g(x+u) and it follows that 5g 5 g5

and similarly 95 ~ Sg. Thus gS = 5g is contained in P

and is Q(S)-invertible, since 9 E CS(O).

RINGS WI1~1-1 ~NY NORN\AL ELEMENTS

In thi~ section we introduce the concept of many

normal elements, which is a generalisation of GUFRs o

By a normal element, we mean a normal regular element

in this sectiono

Definition 3.22.

Let R be any ringo Then R is called a ring with

many normal elements if R has only a finite number of

prime ideals not containing any normal elements.
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Examples 3023

(1) In [13J, a commutative ring with few zero divisors

are defined as any commutative ring with only a finite

number of maximal O-ideals, where a maximal O-ideal is an

ideal maximal with respect to not containing non-zero

divisors. Since every maximal O-ideal is a prime ideal,

it follows that in the commutative case, rings with few

zero-divisors are rings with many normal elements.

(2) If R is a GUFR, then every non-minimal prime ideal

contains a normal element. Since the number of minimal

prime ideals in any Noetherian ring is finite, it follows

that every GUFR is a ring with many normal elements.

Remark 3.24.

Let R be a Noetherian ring with many normal elements

and C = {a (R/aR = Ra is normal} • Then as in theorem 2.7,

it can be prov e c; that C is an Ore set and the localised

ring T = RC-l = C-1R has only a finite number of maximal

ideals, precisely the extensions of the prime ideals of R

not containing normal elements. Also T is an over-ring,

since C has only regular elementso

Vve s tar e a theorem known as t h e "prime avoidance"

theorem [20, proposition 2012 0 7 ] .
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Theorem 3.25

If A and B are two ideals of a ring R and

C>= {P1 ... pJ is a collection of prime ideals of R

t
with A~B ~ U p . , then ei th er A ~ B or A s P. for

i=l 1 1

some i.

Theorem 3.26

Let D and 6' be finite co Ll.e c t i.o n s of non zero

prime ideals in a ring R with neither P ~ Q nor Q ~ p

for any PGA and Q € ~l Then there exist at least one

element u E n
PG~

Proof:

P such tha t u t U Q.
Q E 6'

Let 6 = {:1 ••• pJ and6'= [Q1 ••• Qm}· Then

m
U

i=l
Q.•

1

m
For, if PI 5 U

i=l
Q. ,

1 <
m
U

i=l
Q.•

1

Thus by "p r i me avoidance" ei th er Pl = 0 or PI < Q. for
J

some j , which is impossible. Similarly

m m
P2 $ U Q.• Denote V Q. = u. Then there exists

i=l 1 i=l 1

01= P1 €' P1 such that P1~ U and 01= P2 E P2 such that

P2 t U. Now P1RP2 1= O. For, if P1RP2 = 0, then
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each j which is not possible. An argument using "prime

avoidanc e" theorem again shows tha t RPl RP2R ~ U.

Thus there exists at least one element p € RPl RP2R such

th a t p rt U. Sinc e pERP1 RP2R, P Go P1 () P2 • Ne x t

consider P3 and proceed as above, we get an element

pi £: Rp RP3R such that pi Eo U, also pi c Rp RP3R such

that p ' € U, also p ' e: PIr) P2('\ P3• Continue t.he process

until all the P.'s exhausted, we get an element
1

n
u E n P. such tha t u f.

.1 1
1=

De fin i t ion 3 0 27 •

m
(J Q .•

j=l J

Let R b~ a ring and S an over-ring of R. Then a

weakly S-invertible element in R is any element a in R

n
such that 1 = E a.ab. for some a.,b. in S, for l$i$no

i=l 1 1 1 1

Equivalently the ideal SaS = s.

Example s 3.28.

(1) Every unit in a ring R is weakly R-invertible.

(2) If R is a prime Noetherian ring with the

simple Artinian quotient ring OCR), Q(R)aQ(R)=Q(R)

for any 0 f:. a ~ R; Thus every non zero element

in R is weakly Q(R)-invertible.



-85-

Theorem 3.29.

Let R be a Noetherian ring with many normal

eleme nts and T be the partial quo tiffi t ring of R

at C =(a € R/a is normal) . Then for any z in T and

x c: C, there is ~, an element u such that z + ux is

weakly T-invertible.

Proof:

By remark 3.~4, T is an over-ring of Rand T

has only a finite number of maximal idealso

Let ~ = [M/M is a maximal ideal of T with z e M]
and ~. = (M/M is a maximal ideal of T with z ~ M]

Then ..0 and ill are finite collections of prime ideals

and ne i the r M S. MI nor M' ~ M for any 1\1 E ~ and ~~ lEd'

as they are ma~imal idealso Thus by theorem 3.26, there

exists an element u 6: M, for all M E AI and u tf. M

for any M€ A • Then the eleme nt z+ux ~ M for any maximal

ideal of To For, if z+ux c M for some M€Ll, then

z+ux-z ux .. M. But <: C and -1 e T, it follows= t:; x so x

that -1 -1 M;if E M for M E ~I,U = ul = uxx € z + ux some

then z+ux-ux = z c r~. Further, if A =~, then take u = 0

and if AI =~, then take u = 10
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Thus the ideal T(z+ux)T is not contained in any

maximal ideal of T and hence (z+ux) is weakly I-invertible.

Theorem 3 0 30 .

Let R be a Noetherian ring with many normal elements

and I be a one sided ideal of R containing a normal element.

Then I can be generated by a set of weakly T-invertible

elements.

Proof:

Suppose I is a left ideal. Let (Zl'Z2 p • • ,zJ be

age nera tin9 set 0 f I a nd x be ana r ma 1 e 1erne ntin I.

Consider zl' by theorem 3.29, there exists an element

U1
, such tha .~ zl+u1'x is weakly T-invertibleo Since

I -1 for "i € R anti Cl € e, haveu = u1c 1 some we.l

-1
u1'c l does not belong to the maxima 1 idealsu1 = u1l =

not containing U I
1 and u1 belongs to all maximal ideals,

which contains u1 ' . Thus as in the proof of theorem 3 0 2 9 ,

Zl + u1x is a weakly I-invertible element in R. Similarly

we get a collection (Zi+Uix] of weakly T-invertible

elements for each zi. Since x is normal, x £ C and so

x is invertible in T. Thus [zi+uix,x} is a collection

of weakly T-invertible elements in 10 We prove this is

generating set for 10
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Let r E: I. • • 0 + r zn n

where r. E R, for 1 S i S n.
1.

= rl(zl+u1x) + r 2(z2+ u2x) + ... + rn(zn+un x)

- (rlu l + r2u 2 + 0 •• + rnun)x.

Thus r can be generated by [zi+uiX'x] 0 This completes

th e proof.

Theorem 3 0 3.1 .

Let R be a Noetherian ring with many normal elements.

Also assume that for any pair of weakly I-invertible elements

x and y, either Rx ~ Ry or Ry ~ Rx. Then

A = [1/ I is a left ideal of R containing a normal element]

is linearly ordered.

Proof:

Let I and J be two elements of A 0 Suppose if

possible that I $ J and J J I. Then, by theorem 3.30,

there exists at least one weakly I-invertible element b (say)
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in the generating set of I such tha t b 9- J and

similarly there is a weakly I-invertible element

c E J such tha t c ~ I. Since Rb 5 I and Rc ! I,

we have Rc ~ Rb and similarly Rb ~ Rc, which contradicts

the hypothe3is~ Thus either I $ J or J ~ I, and the

proof is complete.

Theorem 3.32.

Let R be a Noetherian ring with many normal

elementsn Also assume that for any pair of weakly

I-invertible elements x and y either xR ~ yR or

yR s xR. Then = {Ill is a right ideal of R }
'. con ta ining a normal e leme n t

is linearly ordered.

Proof:

As in theorem 3.31.

INTEGRALLY eraSED RINGS

Q~finition 3 033.

Let R be any ring and M be an R-module. Then M

is said to be integrally closed if any endomorphism of

any finitely generated submodule extends to an endomorphism

of M. A ring R is said to be right (left) integrally closed

if RR(RR) is integrally closed [14J.
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Definition 303.4

Let R be a 5ubring of Q. We say that R is classicaly

right (left) integrally closed in Q, if R contains a nv

n-l
+ Y a 1n-

element y of Q for which there exiGt

of R such that yn = a o + ya l +

elements a ,a1,···,a 1o n-

n-l)
a IY •n-

R is classically integrally

closed in Q if it is classically right and left integrally

closed in Q [14J.

Lemma 3 03.5.

Suppose the ring R is integrally closed and is an order

in a ring Q. Then the following assertions are true.

(1) bmb-1 € Rand b-1mb E R for all b e eR (0) and m E: R.

(2) If A is a finitely generated submodule of OR and

f e End A, then there exists d (; R such tria t f(a)=da

for all a € A.

Proof

As in [14, lemma 2 012J.

Theorem 3036.

Let R be a s ernip r i.me r i.qh t I\loetherian ring \vi th the

~ ern i r; i mp 1 (; Art i n i a n Cl \J 0 t i (l n t .r i fl (1 lJ. ~-; u IJ}) 0 ~) e .il [;() t h <1 t

f(l)( R for all i « cnd ~H' Then R is classically right

t n t e o r a Ll.v closer; in Q.
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Proof

First we prove that R is right integrally closed.

Let I be a right ideal of R such that f 1 t End IRe Then

f l e Honn(IR RR)· Since I R and RR are CR(O) torsion

free submodules of RR' f l can be extended to f 2 c HOlllq(IQ, RQ)

[16, corollary 2.2.5J, ioe., f 2 E: HOlTQ(IQ,Q) 0 Since Q is a

semisimple Artinian ring, every unitary right Q-mo~ule is

injective, and so in particular QQ is injective. Thus

f 2 € H0lTlq(IQ,Q) can be extended to f 3 c End QQ and thus

f 3 E: End OR 0 Now f 4 = f 3/H E. End RR' which follows from

the hypothesis that f(l) E H for all f E: End RHo Also

f 4/1 = f 1. Therefore f 1 E: End I H can be extended to

f 4 ~ End RR. This completes the proof that RR is right

integrally closed.

We prove R is right classically integrally closed

[ ] n n-lin Q, as in 14. Let y € Q such that y =a +ya 1+ · · .+Y a 1o n-
where n ~ 0 and a. € R for 0 ~ i ~ n-l. Let A be the right

1

2 n-lR submodule of Q generated by l,y,y, .... ,y Then

yA ~ A and f(a) = y.a is an endomorphism of A. Thus by

lemma 3036, there exists d € R such that f {a ) = da for all

a £ A. Since 1 £ A, we have f(l) = d and consequently

y = d £ R an~ the proof is complete.



Corolla ry 30370

Let R be a semiprime GUFR with the quotient ring Q.

Also suppose that f(l) £ R'for every right and left R

endomorphism f of Q. Then R is classically integrally

closed in Qo

Examples 3.38

( 1) Corollary 306 states that M (R) is a GUFR, whenevern

R is a GUFR. Thus for any commutative Noetherian integral

domain RJMn(R) is a prime GUFR.

(2) Let R = k[t,y] be the polynomial ring in two

commuting indeterminates over a field k of characteristic

zero. Let be the derivation 2y ~t + (y2+ t) ~y. Then R

has only two -prime ideals, namely (y2+ t+ l) and tR + yR.

The only height 1 primes of R[x, J ] are the extensions of

these two d -prime ideals o It is easy to see that these

extensions contain normal invertible Ldea Ls and so R[x, cl ]

is a GUFf{. But R[x,J] is not an NUFR [2, example 5 02.].



Chapter 4

LOCALISATION
INTRODUCTION

In this chapter, we investigate the localisation

at prime ideals in GUFf{s. Persuaded by the importance

of localisation in commutative rings and its application

in t h c study of modules over c ommut a t i v e rings, several

mathematicians investigated localisation at prime ideals

in non-commutative rings, in particular in Noetherian

rings, after Goldie proved his theorems for prime and

semiprime Ncetherian rings.

8 ut, bee ()use 0 [ the 9 e n era 1 be la a v i 0 U r 0 f F) rime

ideals in non-commutative rings, the complement of a

prime ideal need not be a multiplicative set in general.

Although the complement of every completely prime ideal

in a Noetherian ring is a multiplicative set, there are

some completely prime ideals, whos e complements do not

satisfy the ()re condition. Thus in general the

localisation at the complement of a prime ideal can be

ruled out in Noetherian rings.

So, instead of looking at the complement of a

prime ideal P in a Noetherian ring R, jf we look at the

set CR(P) = {r ~ R/r+P is regular in RIP} , then we

can gain something. ~e say that a prime ideal in a
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Noetherian ring is right localisable if CR(P) is a

right Ore seta It is obvious that in commutative rings

CR(p) ,coincides wi th the complement of P in R. But

Unlike in commutative rings, CR(P) need not be a right

Ore set in many cases.

First we look at the obstacles to the localisation

at a prime ideal in .Noetherian rings and then discuss

a newly developed t.e chn Lqu e of Lo c a Li s a t i.on at a

collection of prime ideals in which the elements are

related in a special manner.

We b eq i n with an example. rAost of the material

in the preliminaries of this chapter is taken from [16J,

[25J and [26].

Example 4 0 1 0

Let k be a field and let R be the 2 x 2 upper

triangular matrices over k. Then R is an Artinian (and

thus Noetherian) ring with two prime ideals, the ideal Q

of rnatrices in R who s e upper left corner is zero and the

ideal P of matrices in R whose lower right corner is zeroo

NO'N Rip and R/Q are both isomorphic to k, and QP = O.

Also PO = pn Q = J, the Jacobson radical of R. Note that

Q and P are completely prime ideals and thus C(Q) = R-Q

and C(p) = R- P.
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Now i f [~~] ~ C(Q) a nd [~~ ] ~ R ,

then [~~I [a:1d ~J = [~ ~J [~~J, ioeo C(Q) is

a right Ore set and thus Q is right localisable.

On the other hand, C(p) is not right Ore, since for the

elements [~ TI €C(P) and [~ ~ bR.

~ ~J ~ ~ =k ~] ~ ;j where [: ~ E.R

and l: ;1 ~C(P) if and only if f = c = 0, but in that

case l: d tC{p) .

Definition 4 02.

Let 0 be a right Ore set in a ring R, and M be a

right R-module. An .element m '.-M is said to be torsion

if md = 0 for some d E D. reM) ={m £ M/md = oJ is

called the torsion submodule of M. If r(M) = M, then

M is said to be torsion module and if T(M)=O, then

M is said to be torsion free.

Note that in example 4.1, Rip and R/Q are prime

Noetherian rings and so the regular elements in the se

rinas are Ore sets. Also note tha t JP = QJ = 0 and thus
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J is faithful and torsion free as both right Rip and

Le ft R/Q module.

Lemma 4 03.

Let R be a right Noetherian ring, C is a right

Ore set in R, a nd A a rd B be id ea 1 S 0 f R with A <:. B .

Suppose also that reS/A) = P and !(S/A) = Q, where

P and Q are prime ideals of R, and that s/A is torsion-

free as a right RIP-module. If C ~ C(P), then also

C~C(Q).

The situation in example 4 01 is exactly the same

as in lemma 4 03. Thus to localise the ring of example 4 01

at a right Ore set C inside Sl(P), we must include CR(Q).

Thus C ~ CR(p) n CR(0). But CR(P) Cl CR(0) = uni ts of R.

Since C has only units, we cannot localise RJat C,further.

Definition 4 04.

Let R be a Noetherian ring and Q,P be prime ideals

of R. If there exists an ideal A of R with QP 5 A < QClP

sue h 'tha t ~ (Q n pIA) = Q and r (Q n p I A) = P and

Q n piA is left R/Q, right Rip torsion free module,

then \Ne say that g is linked to P (via A < QC\p) and

denoted by Q~ P.
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Remark 4 05.

It can be seen t.ha t in Noc t.h e r i an rings t.he torsion

free condition in the definition of 4 04 is equivalent to

the condition that every non zero sub-bimodule of Q n piA

is faithful as a right Rip and as a left R/Q module.

Definition 4 0 6 0

Let R be a No e t he r i a n ring. Suppose Spec R d e no t es

the C 0"11e c t i on 0 f a 11 prime id ea 15 0 fR. ~ve say a sub s et

X of Spec R is right stable, if whenever P ( X, Q G Spec R,

and Q ~ P, vve have Q ~ x. Vve say X is stable if Q~ p

implies either both Q,P E X or both Q,P ~ X. If

P ~ Spec R the right cliglle 0_[ P .d eno t ed by rt cl (P)) is

the smallest right stable subset of Spec R containing P.

The clique of P £ Spec R is the smallest stable subset

containing P.

Thus ~ve have the following corollary of lemma 4.30

Corollary 4 07.

If R is a right Noetherian ring and C is a right

Ore set contained in C(p), then C~ nfR(Q)/Q f:. rt cl pJ.

If C is an Ore set and R is Noetherian, then

cl p} 0
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Remark 4.8.

We note two things about links between prime

idealso

(1) Q~P if and only if Q/QP ~ plop in R/(~P.

(2) If C is uny right denominator set in R disjoint

from Q and P, then Q ~ P if and only if

QC- 1~ PC-1 in RC- l [27].

ExamQles 4.9.

(1) In example 4 0 1 the only prime ideals of Rare

Q and P and the rt cl P = {p,Qj .

(2) In a commutative Noetherian domain R, if

P is any prime ideal rt cl P = t PJ.

Defini.tion 4.10.

Let P be a right localisable prime ideal in a ring

R and Rp be the localised ring of R at C(P). If for any

finitely generated right Rp-module M, containing a simple

right Rp-submodul~ 5, which is also essential in M,

M is Artinian, or equivalently Mpn = 0 for some n, then

P is said to be classically right localisable.

Definition 4011.

A right R-module M is said to be uniform, if

every non zero s ubmo d u Le of tv' is e s s e n t i a I in 1\1.
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Remark 4 012.

Let P be a classically right localisable prime

id ea 1 in R, Q be a pr i IDe id ea 1 0 f R wi t h Q < P, and

there exist a f,·9 uniform R-module lvi, with ann(M) = Q,

containing a copy U of a non zero right ideal of Rip.

By passing to R/Q, we assume Q = O. We can localise at

CR(P) and get the simple Rp/PRp- module U ® Rp insid e

M @Rp, so there is. an n with (M ® Rp) pnR = o. Thisp

implies tha t Mpn is CR(P)-torsion, so Mpn () U = o.
n 0 and n = o. This contradictionThus 1vlP = hence P

shows that apart from the links between prime ideals

we have another obstruction to localisation at a prime

id ea 1.

Definition 4 0 13 .

A prime ideal P, in a ring R, satisfies the right

second layer condition (sol.c) if the situation of the

above remark does not occur, i.e., no such Q exists.

Left second layer condition is defined analogously.

Theorem 4.14.

Let R be a Noetherian ring and let P be a prime

ideal of Ro Then P is classically right localisable

if and only if [pJ is right stable and P satisfies

the right second layer condition.
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Definition 4 015.

An ideal I of R is said to have the right

Artin-Rees (Arrl-2£Qper~y if for any finitely generated

right R module M containing an essential submodule L

with LI = 0, there is a positive integer n such that

n
MI = O. In this case we call I a right AR Lde a l ,

Left AR property is defined analogously.

Re ma r k Lt 4 1 () .

( 1) A prime id ea 1 P wi th the ri gh t AR property

always satisfies the right second layer

conditiono

( 2 ) Ani (j E: a 1 I 0 f R i srigh tAR i fandon 1y i f

for every right ideal K of R, there is a

positive integer n such that KC\I n < KI.

Theorem 4 017.

If R is a Noetherian ring and P is a prime ideal

with the right AR property, then P is classically

localisable if and only if there is no prime ideal Q

of R with P < Q and Q ~ P.

Lemma 4.18.

Suppose an ideal in a right Noetherian ring R has

the right AR p ro p e r t v , If Q ~ P in Spec R and if I .$ P,

then I S Q.
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Lemma 4 019.

An invertible ideal in a (right) Noetherian ring

has the (right) AR property.

Let R be a Noetherian ring with a quotient ring Q.
, J

Let P = aR = ha be a prime ideal with a regularo Then

R has a partial quotient ring S obtained by localising

R at the Ore set {l,a,a
2

•.• J It is easy to see that

P = aR = Ra is S-invertible and hence P has the (right

and left) AR property. Using induction and regularity

of a, it is easy to see that C(p) ~ C(pn) for every n.

Now by [28, proposition 2 0 1 ] , P is localisable which gives

the proof of lemma 2.17.

Given a prime ideal P, any right localisation at P

must be found by inverting a right Ore set C ~ CR(p) ·

Thus, in fact, C ~ () [CR (Q) IQ , rt cl p} by corollary 4 07.

Let X != Spec R and define C(X) = () { CR( Q ) IQ' XJ. If X

is a right clique and if we want to localise at X, then

c(x) must be a right Ore set. We also want some nice

properties for the quotient ring.

Definition 4 0 20 .

Let R be a Noetherian ring and X < Spec R. Then
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X is classically right localisable if C(X) is a right

Ore set and the localisation R., = H C(X)-l has the
A

following properties.

(1) For every P ~ X, the ring RX/PRX is Artinian.

(2) The only right primitive ideals are PRX for

p E. x.

(3) Every finitely generated RX-module which i~

an es~ential extension of a simple right

RX-module is Artinian.

Definition 4.21.

Let X S Spec R. Then X satisfies the right

intersection condition if for any r i qh t ideal I of R

such that I nCR(p) 1= ~ for every P £; X, the intersection

I () C (X) i s non - emp t Y• vV e say X sat i s fie s right

second layer condition if every prime ideal in X

satisfies right second layer condition and we say X

satisfies the incomparability conditiol1 if there do not

exist prime ideals P,Q € X with Q < P.

Proposition 4.22.

If R is a Noetherian ring and X is a right stable

subset of Spec R satisfying the right intersection

condition and right second layer condition, then C(X)

is Cl right O'r-e set.
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Theorem 4 023.

If R is a Noetherian ring and X ~ Spec R, then

X is classically right localisable if and only' if

(1) X is right stable,

(2) X s at i s f i.e s the right second layer condition,

(3) X satisfies the right intersection condition, and

(4) X sa tisfies the incomparability conditiono

Thus we have characterised the classically right

localisable subsets of Spec R in Noetherian ringso

The same can be done for classicully left localisable

subsets by defining the left second layer condition,

left intersection property and left stability etco

analogously.

We conclude this section of preliminaries with two

theorems.

Theorem 4.24.

If R is a Noetherian ring and X is a right stable

subset of Spec R satisfying the right second layer condition

and the right intersection condition, then C(X) is a right

Ore set ..
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Th e o r ern 4.25.

If R is a right Noetherian ring and X is a finite

subset of Spec R, then X satisfies. the right intersection

conditiono

MINIW~L PRIMES IN GUFRs

We have seen in chapter 1 that every GUFR has an
n

Artinian qULtient ring and so CR(N) = n CR(P.),
· 1 11=

where PI' ... , Pn are the minimal primes of R, is a

right Ore set. Also in chapter 1, we proved that the

minimal primes cannot contain any normal invertible

ideals, ioe., P. n c =~, for each i, 1 ~ i ~ n .
1.

Now we look at the right cliques of minimal prime ideals

of a GUFR.

Fjrst we state some lemmas.

Let 0 be an Ore set in a prime Noetherian ring R.

Then D consists of regular elements or 0 € D.

Lemma 4.27.

Let R be a prime Noetherian ring and C be an Ore

set in R such that 0 ~ C. Let M be a torsion free

righ t H.-module. Then MC-\S a tors ion free righ t RC- 1

module.
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Lemma 4.28.

Suppose P and Q are maximal ideals in a Noetherian

ring R. Then Q ~ P if and only if QP ~ Q 0 P.

Theorem 4 0 2 9 .

Let R be a GUFR and P,Q € Spec R with P € Min Spec R

and Q ~ Min (Spec R). Then Q is not linked to P.

P roo f:

Suppose Q~ P. Since Q is not minimal, there

exists a normal invertible ideal I of R such that I 5 Q.

By lemma 4 019, I has (right and left) AR property. Thus

we have a positive integer n such that rnn(pnQ) ~ I(pnQ)

by the left AR property of I. Because of the link from

Q to P, we have an ideal A of R with QP ~ A < Qn P such

tha t r ( Q~P ) = P and I ( Q~ P ) = Q. Thus,

(on p)In~ (Q(\ p)n In = Inn (on p) s I(Qn p) ~ Q(Qn p) ~ A.

i.e. (Qnp)I n ~ A and so In ~ r (Q~ P ) = P. Since P

is prime I ~ P, which violates the assumption that P is

minimal and contains no normal invertible ideals. There-

fore Q~ P.

Theorem 4 0 30 .

Let R be a GUFR and P,O e Min (Spec R)o Then

Q~ P if and only if QP F o n P.
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Proof:----
If Q~ P, it is obv i o us that there exists an

id ea 1 A wi th OP ~ A < Q n P and th us QP f:. Q n p •

Conversely, assume OP ~ o n r . Suppose if

possible that Q +> PS' The set C of regular normal

elements is an Ore set in Rand P ne = Qnc = 91, since

-1 -1
P and Q are minimal primes. So by r-erna r k 408)QC .~ PC

in RC-I. But QC- 1 and PC- 1 are maximal ideals of RC- 1

by theorem 2.7 and hence by lemma 4.28, QC-I PC-I=Qc-In PC-I:

Now let x E: Q n P, then T= xl-1
E: PC-I n QC-I,

x EO (QC-I) (pC-I), thus there exist a. E Q, b. E P
1 J.

and c. ,d. E: C for i=1,2, •.• ,n such that
1 1

-1 n -1 -1 n a. b.x 1. 1
X = xl = = I: (a.c. )(b.d. ) = ~ cr:- . But1 i=l 1. 1 1 1 i=l c.

1. 1

a. b.
_.! 1
c. er:-

1 1

a .• b. '
1 1= d. c. I
1. 1

for each i = 1,2,o .• ,n, where b.' € R
1

and c . ' E: C such that b. c. ,
= c. b. ,

( remark 1.46) .
1 1. 1 1 1

n a.b. ,
Therefore x

L
1 1 .Now b. E P, therefore1 = d.e. I

i=l 1 1
1

c i b ." = b v c ." c P, for each i = 1,2, •.• ,n. i.e,
1 1 1 1

R c v b ." 5. P. Since c. c C, R c. = c. R, which implies
1 J. 1 1 1

c. R b.' < .P for i = 1,2, ••• ,n. Hence b.' € P for each
1 1 - 1

i = 1,2, .•. ,n)as CnP =~. c. E
1

C for each i = 1,2, ... ,n
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Con s equen t Lv a.b.' E OP for i = 1,2, ... n
1 1

x ( -1and so I f Qp)C • Since C has only regular elements,

we have x € QP, it follows that Qnp ~ QP, wh i ch contradicts

the assumption tha t Q () P 1= QP and we have Q~ P.

Remark 4 031.

Let P be a minimal prime ideal in a GUFR. Define,

x (p) = {Q E Spec R/Q ~PJ,
0

X1(P) = {Q e Spec R/O~Pl for some PI € Xo(p))

Xj+I(P)= {Q £ Spec R/Q~P. for some P.£x.(P)} for j > 1.J J J

By theorems 4 029 and 4 0 30 we have

X
o

(p) = {O E Min Spec R/OP 1= Q n p] and

x , l(P) = f O E Min Spec R/QP. 1= Q(lP. for some P. EX.(p)l
J+ t J J J J J

for j = 0,1,2, .... Thus we have the right clique of

p =
00

u
j=o

x .(p)
J

= X(p).

Then} right clique of P = X(p) =

Theorem 4.32.

Let R be a GUFR and P a minimal prime ideal of R.
00

lJ X. ( p), whe re
j=o J

Xo(P) = {QE: Min spec H/QP 1= Q n p} and

X. J(P) ={"Q E Min Spec R/QP. 1= oo P., for some P.E X.(P)]
J+ . J J J J

for j = 0,1,2, ....
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Theorem 4.33.

For eac~ minimal prime P in a GUFR, X{P) is a

classically right localisable set.

Proof:

For each j = O,1,2,oooJXj(P) is a subset of

Min (Spec R) and so X(p) =
00

U
j=O

x. (P')
J

is also a subset

of Min (Spec R). Since Min (Spec R) is finite, X(p)

is also finite and thus by t.h eor ern 4.25, X(P) satisfies

right Ln t e r s e c ti o n c ond i t io n . The elements of X{p)

are minimal primes and so none of them properly

contains any other prime ideal of R and so X{p)

satisfies right second layer condition. Further X(p)

has only incomparable elements as they are minimal ,

and X{p) is right stable as it is a right clique. Now

the 't he or ern follows from theorem 4.23.

HEIGHT 1 PRIME IDEALS IN A GUFR.

Now we look at the height 1 prime ideals of a

GUFR. We state a lemma, the proof of which follows

from [16, corollary 3.3.10J.

Lemma 4.34.

Let R be a Noetherian ring. An ideal I of R has

right J\R p ro pe r t v if and o nl y if for every right R-module
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M annihilated by I, I~(lV~) =

is the injective hull of M.

Theorem 4035 ..

00

n
U annE(M)I , where E(M)

n=l

Let P be a height 1 prime ideal of a GUFR. Then;'

P satisfies the right second layer condition.

P roo f:

Assume that there exists a prime ideal Q of R

such that Q ( P and Q = ann M for some finitely generated

uniform right R-module M containing a copy U of a non

zero right ideal of Rip. Since P is height 1 prime, Q

is a minimal prime ideal of R and so Q contains no

normal invertible Ldea k, Let I be the normal invertible

ideal contained in P. Put J = I+Q. Then J/Q is an

invertible ideal of R/Q and so it has the right AR

property. Since M is an R/Q module,by the above lemma
00

we have E(M) = U annE(M) (J/Q)n. But M is finitely
n=l

generated and is contained in E(M). This together with

the fact that [annE(M) (J/Q)n) is an ascending chain of

submodules of E(M) implies that there exists a positive

integer k such that M S annE(M) (J/Q)k, ioe., M(J/Q)k=o

which implies (J/Q)k ~ ann M = Q and Jk/Q (Q. Hence
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Jk < Qo Consequently J ~ Q, since Q is prime. Thus

I ~ Q, which contradicts the selection of Q. Therefore

P satisfies the right second layer condition.

Corollary 4.36.

Let P be a height 1 prime ideal of a GUFR such

that {p} is right stable. Then P is classically right

localisableo

Proof:

This is an immediate c on s eque n c e of theorem 4.14

and theorem 4035.

A semiprime ideal S of a Noetherian ring is said

to be classically right localisable if the finite set

of prime ideals associated with S is classically right

localisable. Thus we get another consequence of theorenl

4.35 and theorem 4.23.

Corollary 4.37.

Let S be a semiprime ideal in a GUFR and assume

that the associated prime ideals of S are height 1

prime ideals. Suppose also that the collection of

associated primes is right stable. Then S is classically

r i.qh t Lo c a.l i s a bl e ,
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Defini.tion 4 038.

Let R be a Noetherian ring. A subset X of Spec R

is said to be a .§J2arse subset if, given any Q € .Spec R

and given any c £ CR(Q), we have

Remark 4 039.

Let R be a GUFR and I be a normal invertible

ideal of R. Put XI = '.p, Spec RI height P = 1 and I < pJ

Then by principal ideal theorem XI /: (fjo LetQ ~ Spec 11

and c £ C(Q). Then, if Q is minimal,! cannot be

contained in Q, since R is a GUFR, whereas

n{p ~ XII Q < P and C f- CR(P)J contains I. Further,

if Q is nonminimal, then height of Q ~ 1 and so there

exists no height 1 prime P such that Q < P and so

'.. {p E XI/Q < P, c ~ CR(P~== \21. Thus in both cases

o f:: n{p f xr/o< P, c f- CR(P)J. Therefore Xr is a

s pa r s e set in R.

The 0 r ern 4 0 40 •

Le t R be a GUFR and I be a normal invertible ideal

of R. Also assume that for a prime idealQ,{PE. XI/Q ~pJ

is right s t ab Le , Then [p E. Xr/O ~pJ is a c La s s i c a l Ly

right localis~ble seto
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Proof:

Put X = \ P E. Xr/Q ~ PJ 0 Since the elements

of X are height 1 prime ideals, X satisfies the right

second layer condition and the incomparability condi-

tion. The sparsity of XI implies that X is finite

[16, theorem 6.2~14J and so X satisfies the right

intersection property. Now the rGsult follows from

theorem 4.23 and the hypothesis that X is right -st ab Le ,

Frorn Th eo r ern 4.35 and __ . _. __~ 4. 25" it follows that

Theorem 4·.41.

Every finite right stable set consists of height 1

prime ideals in a GUFR is right classically localisable.
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REMARKS

In this concluding chapter, we shall review some

of the results given in the previous chapters and discuss

the scope of further work.

In chapter 2, we have proved that every GUFR has

an Artinian quotient ring, by proving that every non-

minimal prime ideal contains a regular element, which

gives rise to a normal ideal. Thus the definition of a

GUFR can be reformed as·a Noetherian ring in,which every

non-minimal prime ideal contains a normal regular element.
4

The theorem 2.30 that R is a commutative GUFR if

a nd only if t;, has an Artinian quotient ring, leads to

the relevant question; is every commutative Noetherian

ring a GUFR? Or does every commutative N6ethcrian ring

ha~e an Artinian quotient ring? In partjcular cases of

c omrnu t a t i ve Noetherian rings, I t vca n be proved t.h at they

have Artinian quotient ringso For instance, if R is a

commutative Noetherian irreducible (i.e., for any ideal

A of R, A < A10 A2 , whenever A < Al and A2) ring, then

R has an Artinian quotient ring. In the general case,

we can say only upto the extent that a commutative

Noethcrian ring R can be embedded in a commutativp
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Artinian ring, more precisel~R is a subdirect product

of Lrr educ i b I.e No e th e r i an rings, i. e. rings with Artinian

quotient ringso

In theorem 2 035, to prove that R[x] is a GUFR, we

assumed that Ep < CR[x] (0) () Cl for every minimal prime

ideal P of R. We do not know whether this condition can

be relaxed. However, other than for prime rings R, no

examples of R[x]sJwith non mi n i rnn I prime ideal. P.lcould

be found out with the property that, ~

mi n i malpr i me i d ea 1 i n R.

P () R is a

We shall state a result given in [29, pp. 59-60J.

Lemma 5.1.

Let R be a right order in Q and AR a submodule of

QR that contains a regular element of R. Then AR is a

projective if and only if there exist elements Yl ..• Yn
in Q and al ..• an lh A such that Yi A 5 R for all i and

1 = a1Yl + a2Y2 + ••• + any n .

Now if R is a right bounded prime GUFR and I is

an essential right ideal of ~, then I contains an ideal J,

which in turn contains a normal ideal aR = Ra (say) of R
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-1 -1and so a I = R and a a = 1. Thus by the lemma given

above, in a right bounded prime GUFR, every essential

right ideal is projective, which is a partial converse

of theorem ~~44. We do not know whether every right

ideal of a right bounded prime GUFR is projective.

Ano th er question that arose in chapter 2 is about

the integrally closed rings. We proved that the semi

prime GUFRs are integrally closed, if every right and

left endomorphisms of Q over R takes the identity

element of Q to R itself. The relevant question is:

If R is a commutative Noetherian UFO, then, is every R

endomorp~ism of Q takes the identity element of Q to R?

(Here Q is the quotient field of R). The question is

important because in the case when R is a commutative

Noetherian UFO, it is always integrally closed.

In chapter 3, we proved that the finite centralising

extension of a GUFR is a GUFR. The case of finite normalising

extension of a GUFR is yet to be proved. Ihe obstacle in this

case is that we cannot connect the prime ideals of R with

the prime ideals of a finite normalising extension directly.

(lemma 303)
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In chapter 4, theorem 4.35 assures the right

second layer condition for height one prime ideals

in a GUFR. The right second layer condition for a

prime ideal of height> 1 in a GUFR is yet to be

discussed. Also, it is not yet investigated whether

{p €. Xr/Qr--t p} in theorem 4.4J, is always right

stable or not. However, from [26], it follows that,

in a GUFR if every height 1 prime ideal is maximal,

then each XI is right stable, satisfies the right

second layer condition (theorem 4.35) and the in-

comparability condition.

It may be possible to extend the concept of

GUFRs to (non-Noetherian) rings with (left and right)

Krull dimension [30]. The analogous nature of such

rings with Noetherian rings is a major source of

interest in them. The invertible ideals, in rings

with (left and right) Krull dimension, also behave

well o A study of invertible ideals in rings with

Krull dimension is given in [31].
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