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CHAPTER ONE 

INTRODUCTION AND PRELIMINARIES 

INTRODUCTION 

In 1921. Emmy Noether proved that a commutative ring has the 

ascending chain condition on ideals if and only if all ideals 

are finitely generated. Such rings. now called commutative 

Noether-ian rings. were extensively studied from the 1920s 

onwards because of their importance in algebr·aic geometry. 

The noether·ian condition is very natural in commutative ring 

theor-y. since it holds f"or the rings of integers in algebraic 

number- f"ields and the co-ordinate rings crucial to alge~aic 

geometry. 

The first important result in the theory of non-commutative 

Noetherian rings was Goldie's theorem (1959) which gives an 

analogue of the familiar result that every commutative domain 

can be embedded in its quotient field. Since then. 

Noether-ian r-ing theory has steadily gathered strength. par-t1y 

from its own impetus and partl y through feedback from 



neighbouring 

appl i caU ons. 

areas 

By no ...... 

in ..... hich Noetherian ideas found 

various methods and results from the 

theory of commutative Noetherian rings have been adapted to 

non-commutative Noetherian rings. 

In commutative ring theory. .....e have the elementary but 

po ..... erful technique of localisation at a prime ideal. If R is 

a commutati ve r"ing and P is a prime ideal in R. then the set 

S = R '- P is multiplicatively closed. and the localisation of 

R at P is got by considering the set R x S and defining an 

equivalence relation ~ on it by (a.b) ~ (c.d) if and only if 

Cad - bc) e = 0 for some ~ E S. This gives the ring of 

fractions Rp. This is the generalisation of the formulation 

of the field of fractions of a commutative integral domain 

(in that case, 5 = R , (O)). 

We can reduce questions on arbi trary rings and modules over 

such rings to the case of local rings via localisation at 

prime ideals. In many important instances, a result ..... ill be 

valid for a ring R. if it holds for every localised ring Rp 

(where P is a prime ideal in R). For a non-commutative ring, 

such a localisation is not. in general. possible. even at the 

zero ideal of an integral domain. Ore (1930) characterised 

those non-commutative domains ..... hich have right rings of 



fractions that are division rings. For' years, mathematicians 

worked to find a procedure which would enable one to 

localise non-commutative Noetherian rings at prime ideals. 

The standard procedure that emerged took the commutati ve 

situation and the situation in Goldie's theorem as models and 

attempted to use Ore's method to localise Noetherian rings at 

3emiprime ideals. 

In the 1970s and 1980s, Jateqaonkar, Mueller and others 

worked on the problem of localisation at a prime ideal. They 

found that ther'e exist "links" between prime ideals and that 

these links "obstruct" localisation. But in the case of 

Noetherian rings satisfying the 

Jategaonkar has found that it 

"second layer condition", 

is possible to describe 

localisation at a prime (or a collection of primes) under 

certain conditions. 

Goodearl (1988) def i ned link s bet. ween uni for m i nj ect i ve 

right modules over a right. Noetherian ring. He observed that. 

links between "tame It inject.ives correspond to prime ideal 

links, while, t.here exist. other inject.ive module links which 

provide more obstructions to Ore localisations than prime 

ideal links do. 
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For a right Noetherian ring. there is a one-to-one 

correspondence between uniform injectives and prime torsion 

classes. Because of this connection. we have tried to study 

Ore localisation using the torsion-theoretic approach. 

Before proceedi ng further. we take a look at the prel i mi nary 

definitions and results required in the rest of the thesis. 

PRElIMINARV DEFINITIONS AND RESULTS 

Most of the material in this section is taken from [G41. 

(GW1. [J]. [ HR 1 and [S1). 

CONVENTIONS 

All rings are assumed to be associative wU .. h 1 and all 

modules are uni tal. We denote the fact that H is a right 

R-module. by writing HR' The set of all right R-modules is 

denoted by ~-R. We use the notations ~. <. I for 

i ncl usi ons among submodul es or ideal s. In particular. if If 

is a module. the notation 8 ~ If means that 8 is a submodule 

of A and the notation 8 < If means that 8 is a proper 

submodule of A. An ideal refers to a two-sided ideal. One 

sided ideals will be referred to as such. 

applies to other one-sided properties also. 

Thi s convent! on 
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THE NOETHERI AN CONDI TI ON 

A collection ,JJ/ of subset.s of a set. A sat.isfies t.he a5cendin~ 

chain condition (ACC) if t.here does not. exist. a properly 

ascending infinit.e chai n A < A < ...... of 
i 2 

subset.s fr"om .Ill. 

A set 8 e ,JJ/ is said t.o be maximal in A. if t.here does not. 

exist. a set. in ,JJ/ which properly cont.ains B. 

PROPOSI TI ON 1.1: Let. R be a ring and A be a right. 

R-module.The following condit.ions are equivalent.: 

a) A has ACC on submodules. 

b) Every non-empt.y family of submodules of A has a maximal 

element.. 

c) Every submodule of A is finit.ely generat.ed. 

A right R-module A is said t.o be No~th.erian if and only if 

the above equivalent. condit.ions are satisfied. A ring R. is 

ri~ht( left) Noeth.erian if and only if t.he right. R-module R 

(left R-module R) is Noet.herian. R is Noeth.erian if it is 

both right and left. Noet.herian. 

If 8 is a submodule of A. t.hen A is Noet.herian if and only if 

8 and A/8 are Noet.herian. Any finit.e direct. sum of 



Noetherian modules is Noetherian. I~ R is a Noetherian ring. 

t.hen all ~init.ely generated right R-modules are Noetherian. 

PR! ME I DEALS 

A proper ideal P in a commutative ring R is said to be prime 

if whenever we have two elements a and b o~ R such that 

ab E P. it ~ollows 

is a prime ideal 

that a E P or b E P. equivalently. P 

i~ and onl y i~ the ~actor ring R/P 

is a domain. We need a non-commutati ve analoQue o~ a pr·lme 

ideal. Ml ideal P in a ring R is said to be completely prime 

if R/P is an integral domain .. Thus. i~ R is commutative. P 

is prime if and only i~ it is completely prime. 

There are non-commutative rings. however. in which there are 

not many completely prime ideals. and sometimes none. For 

example. in a simple Artinian ring. the only proper ideal is 

the zero ideal. Also. we would like every maximal ideal to 

be prime. The ~ollowing de~inition. proposed by Krull in 

19aa. satisfies this property. and reduces to the ~amiliar 

one in commutative rings: P is prime if ~or any ideals 1 

and J. IJ !; P .. I ~ P or J ~ P. nle set of prime ideals o~ R 

is denoted by y~ R. If 0 is a prime ideal. we say that R 

is a prime rinB. 

domain. 

If 0 is a completely prime ideal. R is a 

e 



7 

PROPOSITION 1.2 : For a proper ideal P in a ring R. the 

following are equivalent: 

a) P is a prime ideal. 

b) R/P is a prime ring. 

c) If x. V e R with xRy ~ P. either x e P or y e P. 

d) If I and J are any right ideals of R such that IJ ~ P. 

either I ~ P or J ~ P. 

e) If I and J are any left ideals of R such that 1 J ~ P. 

either I ~ P or J ~ P. 

f) If I. J are r-ight ideals of R. such that 1 n J s P. then 

either I ~ P or J ~ P. TItis is a lattice theoretic 

condition. 

It immediately follows that if P is a prime ideal in a ring R 

and J •....• J are right ideals of R such that J J .... J ~ P 
1 n t 2 n 

then some J, ~ P. 
L 

By a maximal ideal in a ring. we mean an ideal which is a 

maximal element in the collection of proper ideals. Then. 

every maximal ideal H of a ring R is a prime ideal. 

SEMI PRI ME I DEALS 

A semiprime ideal in a ring R is any ideal of R which is an 

intersection of prime ideals. 



PROPOSITION 1. 3: For an ideal I in a ring R. ~he following 

are equivalent..: 

a) I is a semiprime ideal. 

b) If J is any ideal of R such ~ha~ J'l. ~ I. ~hen J ~ I. 

c) If x e R wi~h xRx ~ 1. ~hen x e 1. 

A semiprime rin6 is any ring in which 0 is a semiprime ideal. 

The prime radical of a ring R is ~he in~ersection of all the 

prime ideals of R. A ring R is semiprime if and only if its 

prime radical is zero. In any ring R. the prime radical 

equals t..he in~ersec~ion of ~he minimal prime ideals of R 

ANN! HILATORS 

If M is a righ~ R-module. the annihi tator of H. wri t~en ann H 

(or annR/f) is the set <r e R : mr = 0 for all m. Elf}. If 

H is a right R-module and S is a subset of R. ~hen the 

annihilator of S in H. wri tten ann,? is <x E H: xS = 0>. If 

5 is a left.. ideal of R. then 

is any subset.. of 11. lhe 

ann N = { r ER: Nr = 0 >. 

ann,? is a submodule of H. If N 

annihi latoX' of N is 

Ann N is a righl ideal of R. 

and if N is a submodule of H. lhen ann N is a two-sided 

ideal. In par~icular. ~his defines ~he right annihila~or 

r-ann $ of a subse~ S of R: 

r-ann S = { r ER: sr = 0 V s e S}. The lef~ annihilator 

I-ann S of 5 is defined similarly. 

e 



A right R-module H is said to be fai.th/ut if ann H = O. 11 is 

fully faithluL if ann N = 0 for every non-zero submodule N 

of H. 

ESSENTI AL SUBMODULES 

A submodule W of H is said to be e-$$enti.at in H • denoted 

H· ~ H. if N ~ o .. N 
e 

,... H' ~ 0 for any submodule N of H. If 

H· ~ H. then 11 is called an essent iat extension of H· . If 
~ 

R is considered as a right (or left) R-module. we obtain 

essent ial riBht (or le-It) ideats. A module H is uni form. if 

all its non-zero submodules are essential 

A ring R is ri8ht bounded if every essential right ideal of R 

contai ns an ideal whi ch is essenti al as a right ideal. A 

ring R is ri8ht fully bounded if every prime factor- ring of R 

is right bounded. A ri8ht (te/t) FBN rin4 is any right 

Cleft) fully bounded right. Cleft.) Noet.herian ring. 

rin6 is any right. and left. FBN ring. 

ASSASSI NATORS AND PR! MARY MODULES 

An FBN 

Let R be a right Noet.herian rirlg. and let. V be a uniform 

right. R-modul e. Then t.he set of t.he anni hi 1 at.or ideal s of 

non-zero submodules of V has a unique largest. member. say P. 
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Then P is a prime ideal of R. and is called ~he assassinator 

of V. denoted ass V. For any non-zero submodule W of V. we 

have ass IV = P. Mor·eover. se~~!ng W = annVP' we have W = 0 

and ass W = ann It" = P. 

For an arbitrary right R-module. the set 

( ass V : V is a uniform submodule of 11 ) 

is called the assassinator ol 11. and is denoted as ass 11. 

The members of ass 11 are often referred to as ~he 

assassinator· prime ideals of 11. 

A non-zero right. module 11 over a righ~ Noet.her·ian ring is 

called a primary module if ass 11 is a single~on set.. If P is 

t.he sole member of ass 11. the module 11 is called a P-primary 

module. For any prime ideal P in a right Noetherian ring R. 

the class of all P-primary modules is closed under non-zero 

submodules. essent.ial extensions and arbitrary direct sums. 

Let. S 

A right. 

be a semi prime 

R-modul e 11 is 

ass H S ass( R/S) . 

INJECTlVE MODULES 

ideal in a right Noetherian ring R. 

called an S-primary module if 

A right R-module A is inJective provided that for· any right 

10 
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R-module 8 and any submodule C of" 8. all homomor'phisms C-->A 

extend to homomorphi sms 8--) A. <3i yen H e .At8d-R is call ed an 

injec ti.ve enveLope C injec t i ve hut D of" H. if" Eis a mi ni mal 

injective module cont.aining H. Alt.ernat.ively. an injective 

hull for H turns out to be a maximal essential extension of" 

A. 

PROPOSI TI ON 1. 4: 

i) Every module has an injecti ve envelope. unique upto 

isomorphism and denoted by ECH). 

ii) A right. R-module H is inject...ive if" and only if" H = ECH). 

iii) If H ~ N. t.hen ECI1) = ECN). 

iv) If H is inject...ive and H ~ N. t...hen H is a direct... summand 

of N. 

v) If ! .. ECH) is inJect...ive. C f"or instance. if" A is f"init...e). 
a'Cl'S a 

t.hen EC ! .. H) = ! .. ECH). a'Cl'S C( C("=I'I C( 

vi) Direct. product.s and direct summands of in.1ect.i ve modules 

are injectiYe. 

vi i) A non-zero modul e His uni f"orm if" and onl y if" EC 11) is 

i ndecomposabl e. 

viii) If E is an indecomposable inject...ive module. t.hen E is 

t.he inject...ive hull of" every non-zero submodule of" E. 



If Ho Ware right R-modules such that ECI1) = ECHO). we say 

that H and HO are similar. 

SI MPLE AND SEMI SI MPLE MODULES 

A right R-module A is said to be $impte if A has no proper 

submodules. A ring R is $im.pl.~ if' it has no pr·oper ideals. 

The socle of a right R-module A is the sum of all simple 

submodules of A and is denoted by soc A. This is the direct 

sum of some simple submodules of' A. A is semisimple if 

A = soc A if and onl y if A is a direct summand of any module 

containing it. 

ARTINIAN MODULES 

A modul e A is AI't. i nian if A sati sf i es the descendi ng chai n 

condition (OCC) on submodules. 1. e .• there does not exist a 

pr oper 1 y descendi ng i nf i nile chai n of submodul es of' A. A 

ring R is called I'i~ht(left) AI'tinian if' the righl R-module R 

Cleft R-module R) is Arlinian. If both conditions hold. R is 

called an AI'tinian I'in~. A right R-module A is Arlinian if' 

and only if A/8 and 8 are Artinian where 8 is a submodule of' 

A. Any finite direct sum of' Artinian modules is Arlinian. 

If R is a right Arlinian ring. all finitely generated right 
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R-modules are Artinian. If R is a right Artinian ring. then 

R is also right Noetherian. If R is a non-zero right or left 

Artinian ring. then all prime ideals in R are maximal. 

SEMI SI MPLE ARTl NI AN RI NGS 

In a ring R. the following sets coincide: 

a) The int.ersection of' all maximal right ideals. 

b) The int.ersect.ion of all maximal left ideals. 

This intersection is called the Jacobson radicat J(R) of' R. 

PROPOSI Tl ON 1 • 5: For any ring R. the following 

conditions are equivalent: 

a) R is right. Art.inian and serniprime. 

b) R is left. Artinian and serniprime. 

c) All right R-modules are sernisimple. 

d) All left R-modules are sernisimple. 

e) RR is semisimple. 

f) RR is semisimple. 

g) R is right. Artinian and JeR:) .. o. 

h) R is left Artinian and J(R:) .. o. 

1) All right R-modules are injective. 

J) All left R-modules are injective. 

k) R = M CD) 
n 1. 

1 

x M CD) .... x 
n 2 

2 

for some 

integers n • n ...• nand di vision rings D •.... D . 
1 2 k 1. k 

positive 

13 
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A ring satisfying the above condi tions is called a semisimple 

Art inian rin~. 

PROPOSITION 1. 6: For a ring R. the 1'ollowing 

condi tions are equi valent 

a) R is prime and right Artinian. 

b) R is prim@! and left Artinian. 

c) R is simple and right Artinian. 

d) R is simple and left Artinian. 

e) R is simple and semisimple Artinian. 

f) R ~ M CD) for· some positive integer n and some division 
n 

ring D. 

The rings characterised above are re1'erred to as ~imple 

Art. inian rin~s. 

RINGS OF FRACTIONS 

In the theory of commutative rings. localisation plays a very 

import.ant role. Most basic is the idea 01' a quotient field. 

wit.hout which one cannot imagine studying integral domains. 

Next comes t.he idea of localisation at a prime ideal. which 

reduces many problems to the study of' local rings and their 

maxi mal ideal s . 

However. thi s is not the case wi th non-commutati ve rings. 

Alt.hough the set of non-zero elements is a multiplicative set 
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in any domai n • we ha ve exampl es of domai ns whi ch do not 

possess a di vi si on ri ng of quoti ents. It was in 1930. that 

Ore characterised those non-commutative domains which possess 

di vi si on ri ngs of fr acti ons. In 1962. Gabriel gave the 

necessary condition for a multiplica.tive set in a ring to 

have a right (le~t) ring of ~ractions. 

A subset C o~ a ring R is a m:ultiplicatively closed set i~ 

1 E C and c • C E C .. C c e C. 
1 2 t z A multiplicatively closed 

subset C o~ R is a ri~h.t (left) Or-e set if. gi ven r- e R. 

e e C. there exi st. s e Rand d E C such t.hat rd = cs 

Cdr = se). I~ C is a right and le~t. Ore set. it is called 

an Ore set. C is a ri~h.t reversible set i~ I' E R. c E C with 

er = 0 in R implies I'd = 0 for some d e C. A right Ore. right. 

reversible set is called a ri6h.t denominator set. In a right 

Noetherian ring. every right Ore set is right reversib16. 

Let C be a multiplicat.ive set in a ring R. A ri~ht quotien.t 

rin6 Cor a ri8h.t rin6 of fraction.s or ri6h.t Ore localisation.) 

o~ R relative to C is a pair (Q.~). where Q is a ring and ~ 

is a ring homomorphism ~rom R t.o Q such that. 

a) fCc) is a unit o~ Q for all c e C. 

-t 
b) Each element of Q has the form f(r)~Cc) for some r e R, 

e E C. 

c) Ker f = ( l' E R rc = 0 ~or some c E C ). 



By abuse of notation. we usually ~efe~ to Q as the ~ight ~ing 

of fractions and we write 
-t 

elements of Q in the fo~m re 

for r e R. c e C. 

THEOREM 1.7: Let C be a multiplicative set in a ~ing R. 

Then there exists a ~ight ~ing of f~actions fo~ R with 

respect to Cif and onl y if C is a ~ i ght denomi nator- set. 

If C is the set of ~egula~ elements of R and if the ~ight 

quotient ring QC R) of R ~el ati ve to C exi st.s. we say that R 

is a ri6ht order in QCR). 

A ring R is a domain if it has no ze~o di viso~s. The 

non-zero elements in a domain fo~m a multiplicative set and 

if C = R ...... (O}. then we have the follo ..... ing co~olla~y to the 

above theorem: 

COROLLARY 1.8: A domain R has a ~ight di vision ~ing of 

fractions if and only if C is a r'ight Or-e set if and only if 

the intersection of any t ..... o non-ze~o ~ight ideals is 

non-zero. 

A domain ..... hich satisfies this condi lion is called a ri6h.t Ore 

domain. 
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GOLDI E' S THEOREMS 

A very useful techni que in commutati ve ring theory is to pass 

from a commutati ve ring R to a prime factor ring R/P. In the 

non-commutative case we could ask whether it is possible to 

pass to a factor ring f'rom which a division roing may be built 

fr om fr acti ons . Si nce non -commuta t i ve Noet her i an rings need 

not have any f'actor rings which are domains. this is rather 

restrictive. Instead we look f'or f'actor rings f'rom which 

simple artinian rings can be built using fractions. The main 

resull is Goldie·s theorem which says that if' P is a prime 

ideal in a noetherian ring. then the f'actor R/P has a ring of' 

fractions. It turns out to be no exlra work to investigate 

rings from which semisimple rings of' f'ractions can be built. 

A re8'U.lar element in a ring R is any non-zero-di vi SOl'. i. e .• 

any element x e R such that r-ann(x) = 0 and l-ann(x) • O. 

A ri8htC lelDannih.il.ator in a ring R is any roightClef't) ideal 

of R which equals the right(left)annihilator of' some subset 

of R. 

We say that a right R-module H has lini t~ Gotdie dimension if' 

H does nol contain a direct sum of an infini le number of 

17 



non-zero submodules. A ring R is said to have finite r-i~ht 

Goldie dimension if R has finite. Goldie dimension as a right 

R-module. 

PROPOSI TI ON 1 • 9: If 11 has fini te Goldie dimension. then 

there is a largest positive integer r such that 11 contains a 

direct sum of n non-zero submodules. 

Goldie dimension of 11 

This is called the 

A ril$h.t Goldie r-int5 is any ring R that has finite right 

Goldie dimension and ACC on annihilators. For example. every 

right Noetherian ring is right Goldie. 

PROPOSITION 1.10 (Goldie): Let R be a sem1prime right Goldie 

ring. and let I be a right ideal of R. Then 1 is an 

essential right ideal if and onl y if I contains a regular 

element. 

THEOREM 1.11 (Goldie): A ring R is a right order in a. 

semisimple ring if and only if R is a semiprime right Goldie 

ring. 

THEOREM 1.12 (Goldie. Lesieur-Croisot): A ring R is a right 

order in a simple artinia.n ring if and only if R is a prime 

right Goldie ring. 

18 



Let R be a semiprime right Goldie ring. Any semisimple ring 

Q in which R is a right order is called a r-i~ht Goldie 

quotient. r-in6 0/ R. An important property of Q R is that it 

is an injecti ve hull of RR' 

TORSION CLASSES 

It is often convenient to think of localisation in the 

broader context of torsion classes. We can characterise the 

right Ore condition on a multiplicative set in terms of the 

associated torsion class. In this subsection we define right 

torsion classes and other torsion theoretic ter'ms which we 

use later. 

A ri6ht. torsion class Cl for a ring R is a. non-empty class of 

right R-modules satisfying the following two conditions: 

i) nle direct sum of any family of modules in Cl is also in 0'. 

i i) For any exact sequence 0-) H' -) H-) H" -} 0 of right 

R-modules. H belongs to Cl if and only if H' and H·· both 

belong to 0'. 

It. follows that a torsion class is closed under submodules 

and homomor phi c images. The set of all torsion classes 

over R is denoted by j~o/.)-R. . Over a commutative domain. 

19 



the modules which are t-orsion in t-he usual sense f'orm a r"ight

torsion class. 

We define t-he not-ions t-hat- are usually associat-ed wit-h 

'torsion'. Let- Cl be a right- t-orsion class for a ring R. For 

any right R-module H. t-he unique largest- submodule of H 

belonging to Cl is called t-he CI-torgion submodule of H and is 

denoted as C1t /1) • H is called a CI-torglon module if (;1(/1) = H 

and a CI-t.orsion-free modul.e if' (;1( /1) = O. The class of' 

O'-torsion-f'ree modules is closed under submodules. inject-lve 

hulls, direct- product-s and isormorphic copies. Let- N be a 

submodul e of H. Then N 1 s sai d t-o be Cl-dense in H if' H/N is 

a-torsion and CI-cl.osed in H If' H/N is CI-t-orsion-free. A 

O'-dense (Cl-closed) submodul e of' RR is call ed a Cl-dense 

(O'-dosed) ri~ht. ideal. of R. 

A module B e ...it6d-R is CI-t-orsion-f'ree if and only if" 

HomCA, B) = 0 or" every CI-t-orsion module A e .AtItd-R. A module 

A e .AI4d-R is Cl-torsion if' and only if' HomCA.8) = 0 

for ever"y CI-torsion-free module B e .AI4d-R. 

The set r~'l/.)-R is part-ially ordered under inclusion. Under 

this part.ial order. :r~'Vo)-R is a complet.e lat-t.ice in which 

meet and join of any collect-ion of t-orsion classes exist-. 

20 



Gi yen A e .Ated-R. the torsion class :t< A) co~enera.ted by A is 

the gr-eatest torsion class 0' such that A is O'-torsion-free. 

PROPOSITION 1.13: 

Ca) A r-ight R-module 8 is );<A)-torsion if and only if 

Hom< C , A) = 0 f or all submodul es C of 8 if and onl y if 

HomCB,ECA)) = O. where ECA) is the injective envelope of" A. 

Cb) ~O) is the largest element of j'~'I;C}-R. 

Cc) If A e ~-R. and 8 ~ A. then );<A) = );<B) . 
• 

Cd) For- every 0' e j'd''I;C}-R. there is an i njecti ve modul e E 

... i th Cl = :t< E:) • 

Ce) If LE' are injective right R-modules. then );<E:) ~ );<E') 

if and only if E' can be embedded in a product of copies 

of E. 

Cor-r-esponding to the notion of a prime ideal in the lattice 

of two-sided ideals of" a ring Ca pr-ime ideal is n-irreducible 

by proposition 1.2). Simmons[Sl] has def"ined a prime element 

in t.he lattice of torsion classes. 

A point of j'd''I;C}-R is a .... -irreducible element. i. e .• a point is 

an el ement 7l e j'd''I;C}-R such that Ft ~ :t< 0) and 0'" T ~ Ft 

implies Cl ~ Ft or T ~ Ft for each 0', T e j'd'M-R. 7't-R denotes 

the set. of poi nts of j'd''I;C}-R. 
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EXAMPLE 1.14.: .(t<A) is a point. f'or each uniform module A 

over R. and ):'.<R/P) is a point for each prime ideal P of' R. 

Let. T e ;r~'I/.J-R. A non-zero module H E ~-R is T-criticat if' 

H is T-tor'sion-fr'ee and every non-zero submodule N of H is 

T-dense in H. For example. a simple right R-module is 

T-critical f'or every T relative to ..... hich it is torsion-f'ree. 

A non-zero right R-module is cri t icat it is ~H'J -cri tical. 

Let. T e ;j~'I/.J-R. If T = ';t'<H'J for some critical right R-module 

11. t.hen ..... e say that T is prime [G3l. For example. if H is a 

simple right. R-module. then ~H'J is prime. The set of' all 

prime torsion classes of :r~'I/.J-R is denoted by o(l.-R. Every 

prime torsion class is a point. In a right Noetherian ring 

R. every point is a prime and hence o(l.-R = ,w-R. The map 

~ : ~('I£C-R--> ,w-R is an injection. .....here fjJ(P)" :t<,R/P) 

for P e JP('I.-eC-R. 

If R is a commutative Noetherian ring or an FeN ring. then 

(I.t-R = o(l.-R = ( .:t< R/P) : P & JP(IAG R }. 

PROPOSI TI ON 1. 15: 

CD If 0' e o(l.-R. then there is a uniform injective right 

R-modul e E such that 0' • x.< D . 
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CiD If 0' e <C>(t.-R and H. H' are O'-crit..ical unif'orm 

inject..i ves. t.hen E(11) = ECHII). 

(Hi) Let.. R be a right. Noet.herian ring. 

'r ~ :t.< 0). t.hen 

If T E :r".-v.,-R and 

'r = 1\ ( ::t:< 11) : His a T -cr i t.i cal right. R-modul e }. 

A point n is a princl'.pal point if t.here is an ideal Q such 

that if I is a two-sided ideal of R. t.hen I is n-dense if and 

only if' I ~ Q. Then a is t..he union of all t.he ideal s of' R 

that are not n-dense. and is a is prime. We wri t.e Q = lp( n) 

and say t.hat.. n is a-principaL 

a pr i nci pal po! nt. . 

PROPOSITION 1.101 

Every prime t.orsion class is 

CD If E is a unif'orm inject..ive right. R-module. t.hen. 

V'Cx.(E)) = ass E. 

(ii) If n is a principal point.. and I is a t.wo-sided ideal of' 

R. then R/I is n-torsion if' and only if' I ~ ~n). 

C-TORSION AND C-TORSION-FREE MODULES 

Given a mult..iplicat..ive set. C in a ring R.. t.here is a t..orsion 

class Pc associat.ed wit.h it.: A right. R.-module H is said t.o be 

pc-torsion (or C-t.orsion) if. for every m. E H. t.here is C E C 
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such that me = O. H is PC-tol'SiOn- free if PC(H)'" O. wher-e 

PC(1f) is t.he pc-torsion submodule of H. If C is a right. er-e 

set.. then 11 is PC-t.orsion-free if afld only if. given m. e H. 

t.here is no c e C; such t.hat. me • O. 

The right Ore condit.ion on C cart be chArActerised in terms of 

C. as follo ..... s: 

PROPOSITION 1.171 A mul t.i plicat.i ve set C in a ring R is 

right. Ore if and only if VcR il! (l pc-torsiofl module for 

every c e C if andoflly if for any H e .Atctd-R. 

PC( H) .,. { m. eH: me := 0 for some c e C }. 

If C is t.he set. of regular elements of P-.. .....e use Ut9 

t.erm .. torsion· for 'C-torsion' and ttor5ion-fr~~' for 

• C-t.or si on -fr ee' . 

For any ideal 1 of R • ..... e deflate by ~I). the mult.iplicative 

set. of element.s of R that are regular modulo I. i. e .• 

~([) = (r eR: r+l is regular in R/I ). 

PROPOSITION 1.18 [LM]: If R is a right NoetheriAn r-inQ. then 

p~CS) = )j..R/$) for any semiprime idea.1 S of ~. 



THE UNIFORM INJECTIVE MODULE Ep 

Let P be a. pr! me ! deal in a right Noether! an ring R. We use 

the notation Ep to denote the right R-!nject! ve hull of" a 

uniform right ideal of' R/P. Upto an R-!somorphism. the 

indecomposable right R-injective module Ep is uniquely 

determi ned by P. If' n denotes t.he Gol di e di mens! on of' R/P. 

t.hen ECR/P) ~ Epn. Then assCEp) - assCECR/P) = P and 

~R/P) = :t;CECR/P) =:t;CEp'. 

T~ MODULES AND WILD MODULES 

Let V be a uniform right. module over a right Noet.hertan 

ring R. Set P = ass V. W = annVP. and R" = R/P. Then P 1s a 

prime ideal of' R. and the uniform right R" -module W has no 

non-zero unf'ai thf'ul submodules. Moreover. as a module over 

t.he prime right Noetherian ring R·" W is eit.her a torsion 

module or a torsion-f'ree module but not both. 

If the R· -module W is torsion t.hen we call the R-module V a 

wild module or a P-'Wlld module" if we wish to convey that P 

1s the assassinator of V. If the R· -module W is torsion-free 

then we call the R-module V a tame module or a P-tame module. 

It' is torsion-free over R" .. ECw) R is a direct summand of 
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Hence.a unif'orm right. R-module V over a r·1qht. 

Noetherian ring is P-tame if and only if E(V) ~ Ep' Thl.JS a 

P-tame unifor·m module is uniquely deter·mined by P upto 

similari ty. 

EXAMPLE 1. 19: Unif'orm modules over commutati ve Noether·ian 

rings and over r·ight Artinian rings are tame. A uniform 

module over· a simple Noetherian ring is tame if and only if' 

it is t.or·sion-t'ree. 

A SUMMARV OF THE THESIS 

In this t.hesis. we st.udy Ore localisation and related ideas 

fr·om the point of view of tor·sion classes. Hence we have 

t.ried to get torsion-t.heoret.ic versions of· var·ious 

defini tions and r·esul ts of Jategaonkar. Goodearl etc.. In 

t.he case of commutative rings. f·or a prime ideal P. the set 

R'\. P is a right Ore multiplicative set. The localisation of' 

R at P. which is the localisation of' P.. at the set P.. " P. 

always exists. If R is not commut at i ve • then R " Pis not 

rlecessari 1 Y a mu! ti pl icati ve set. 

in this case is 

The counter·part of' R" P 

~(P) = { r eR: r+P e R/P is regular }. 

which is a multiplicative set and is equal to R '- P if" R is 

i~6 



o:ommutatl ve. The localisation of R at 't1(P). called the 

localisation 01 R at P exists if and only if ~CP) is a right 

denomi na t... or· set. Hence it is important to fi nd when ~C P) is 

right Ore. 1 n [G4] Goodear 1 consi der s. l' or a r· i ght modul e E 

over a right Noetherian ring R. the multiplicative set 

..KC £) = {r eR: ann Er:: 0 }. 

By [J. proposition 3.1. 4]. if R is a prime ideal in a right 

Noetherian ring R. then ~P) is right Ore if and only if 

~(P) S ..KC EC R/P)). In chapter two. we get a generalisation 

of this result for an arbitrary multiplicat.ive set C. by 

def! ni ng. for a torsi on cl ass T e ;j'~~ R. a mul t.i pi i cat.i ve 

set 

c = ( r & R : R/rR is T-torsion }. 
( 

Then C is right. Ore if and onl y if C s: C We see that. if E . Pc 

1 s an i nj ect. i ve right. R-modul e • then C:t<. E) :0:: ..KC E) . Using 

torsion classes. we get. some situations when ~CP) is right 

Ore. for P e y~ R. 

Gi ven a mul ti pI i cat.i ve set C in a ring R. it is known t.hat. 

there is a right Ore set contained in C. which contains all 

right Ore sets contained in C. Using t.orsion classes. we 

construct this largest right Ore subset. 

Let R be a r·ight Noetherian ring. To st.udy t.he regularity of 

an element of R at different prime ideals. it is convenient 
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to put a topology on JP(t«. R. Two such topologies are the 

Zariski topology and the patch topology. In [st]. Simmons 

has general i sed the Zari ski topology to prime torsion 

the patch topology theories. In the case of prime ideals. 

and the "generic regularity condition" are impor-tant in the 

study of localisation. Hence we find it appropriate to get a 

torsion-theoretic version of these concepts. We discuss some 

properties of the pat.ch topology a.nd see t.hat if R is 

Ariinian. then t.he patch topology on ~fl,-R is t.he discrete 

t.opology. We also see some collections of pr-ime torsion 

classes that satisfy the generic regularity condition. 

As we have already mentioned. Jategaonkar has defined links 

bet.ween prime ideals and Goodearl has gener-alised these links 

bet.ween uniform inject.ive right modules over a right 

Noet.her i an ring. In chapter four. we define links between 

prime torsion classes 

(Goodear 1 ) link bet ween 

in such a way that an 

t.wo uniform inJectlYes 

injectiye 

implies a 

generalised inject.iye link between the prime tor-sion classes 

cogenerated by t.hem. An example shows t.hat t.hese links 

provide more obstructions to Ore localisation t.han inJectiye 

links do. We also see some set.s that are "r-ight stable" 

under these link s . 
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The cons"tr-uct~ion of the lar-ges"t r-ight Or-e subset of a 

multipicative set has motivated us to define ne ..... links 

between pri me "tor-sion cl asses. I n chapter- fi ve. .....e def i ne 

these links COr-e links) and obser-ve that they provide 

obstr-uc"tions to Or-e localisations in the fol10 ..... ing sense: If 

a multiplicative set C in R is a r-ight Or-e set. then. 

whenever- c s C 
1" 

...... e should have C S C for- pr-ime "torsion 
(Y 

classes (Yand T such that (Y 1s Or-e-linked "to T. 

The f 011 o ..... i ng r- es ul "t of Ja"tegaonkar is i mpor-tan"t in 

char-acter-ising 10ca1isab1e sets of prime ideals: Let X be a 

non-empty set of pr-ime ideals in a r-ight Hoether-ian ring R. 

If X is "right stable" and satisfies the "righ"t second layer-

condi tion" and the "r-1ght intersec"tion condi tion". then 

~O() = flpe)( 'gC P) is a r- i ght Or-e set.,. 

We defi ne a inter-section condi ti on for- a se"t of uni f"or-m 

injectives Cor-. equivalently. the pr-ime tor-sion classes 

cogener-ated by them). analogous "to Jategaonkar-' s condi tion. 

using .KCD instead of 'gCP') and obtain a ver-sion of the above 

resul t. for- Ore 1 inks. ..... 1 "thou"t assumi ng the r i gh"t second 

layer condi tion. 

We also discuss the behaviour- of Or-e links in var-ious cases 
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and obtain some si tuations when the set 

n < eT : T e "r-t cl (1" ) is r-ight Ore. 

We conclude by discussing the scope for- further work and by 

mentioning certain pr-oblerns that ar-ose in the 

torsion-theoretic study of Ore localisation and links. 

~posi..I1o'f)'S 2.·1,} 2"4,, 2,''', 4.1.a. ... 4.1.L, a.~d .Q..xo..)"'(')ple 4·.i' tJ,)~"e 

o\.·cneJtde..d U1 'Tn~ f'I) ·Phi/· di8se"nt(4G:on. ~e.ct1 o.-ne ..,-nenGone.J 

-he.)te. +0""- ~ .s~~ of co'!V)p.PeJe.r:ess. 



CHAPTER TWO 

TORSION CLASSES AND MULTIPLICATIVE SETS 

INTRODUCTION 

For- ,l. ring R. t.here is a bi fect.ion of ?>ft-R int.o t.he 

'~ollection of- all isomorphic classes of' unif'orm inject.ive 

right R-modul es. gi ven by 

{
HE ..&d-R 

r l-> 

This map is 

E ~ ECH) for some T-critical right} 

R-module H 

..... ell-defined. since. if' H.H· are 

r-critical. t.hen EOO IS ECH').!f' R is right Noet.herian. t.his 

map is a bi j ect.i on [ <31 ] . Thi s f'act~ induces us to study 

10cal1sat.ion f'rom t.he point of' vie..... of' torsion t.heories. 

Since this approach seems to be promising ...... e have tried to 

generalise various resul t.s of Jategaonkar. Goodear-l etc. to 

+.0r-s1on cl asses. 

In this chapt.er ...... e define. f'or a t.orsion t.heory T. a 

corresponding mult.iplicative set. C as the set of elements of' 
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R that generate T-dense right ideals. We see its connection 

with the multiplicative set ~(P) of elements regular modulo a 

prime ideal P and the set .KCE') of elements that act regularly 

on an 1 nj ecti ve right R-modul e £. We obtain some results 

I~oncerning the right Ore condi tion for- these sets. We also 

see a ne", proof of the fact that every mul ti pl icati ve set S 

has a largest right Ore subset (i.e .• one that contains every 

right Ore subset of $). Sever-al of these resul ts ",er-e 

published in (SC]. 

THE MUL TIPUCA TIVE SET C T 

PROPOSITION 2.1: Let T e :r~'I,O-R. Then the set 

C = {r eR: R/rR is T-torsion in R) 
T 

is multiplicatively closed. 

PROOF: Clearly, 1 e C . 
T 

If r, r e C • 
t Z T 

t:hen r P../r r R 
t t Z 

is a homomor-phic image of R/r R , i. e .• r l' R is T-dense in 
2 t z 

l' R. 
1 

NOTE: 

So r l' R is T-dense in R. 
t z i. e .• l'r -eC 

t Z T 

CD If T = -tCO)}, the smallest torsion class. then C :s <1}. 
T 

(1D C = R .. 0 e C .. T = ..At4d-R. the largest torsion class. 
T T 
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NOTE 2.2: Let.At be the cla.ss of all multiplicative sets in 

R. Define f 

9 Then both 

f and g are order-preserving. 

PROPOSITION 2.3: If T e :r~II/.)-R. then Pc ST. 
T 

PROOF: If 11 is a. right R-module which is Pc -torsion. then 
T 

for every x e H. there is e E R such that R/eR is T-~orsion 

and xe = O. So xR is a homomorphic image of R/eR. Hence xR 

is T-torsion for all x eH. i. e .• H is T-torsion. 

PROPOSITION 2.4: If C is a multiplicative set. then C S 

if and only if C is a right Ore set. 

PROOF: By proposition 1.17 we know that C is a right Ore set 

if and only is R/eR is pc-torsion for every C E C. i.e .• if 

and only if c e C for every eEC. 
Pc 

COROLLARY 2.6: If C is a right Or-e set for some T e :r~'I/.)-R. 
T 

then C 
T 

= C 
Pc 

T 
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PROOF: By proposit.ion 2.4. 

2. J and not.e 2.2. C 
Pc 

T 

s C 
T. 

C s C 
T Pc 

T 

By pr·oposi t.ion 

PROPOSITION 2.6: If C is a right. Or·e set.. t.hen C is a 
Pc 

right. Ore set. but. t.he converse i s not~ t.rue. 

PROOF: We have 

c = { r e R 
Pc 

R/rR is PC-t.orsion } 

= { r eR: given s E R. t.here is e e C such that se e rR } 

By proposit.ion 2.4. c s C 
Pc 

Hence. if r E C and s e R. 
Pc 

there is e e C such lhat se erR. 
Pc 

fo see that the converse is not true. let k be a field. and 

let R be t.he ring ofax2 upper lriangular mat.rices over k. 

Then R is an Arlinian ring wilh two prime ideals P nd Q. 

",here 

Then ~P) = R " P and ~(Q) = R " Q. 

We comput.e C 
p~CP) 

b] e C • for. laking [d 
o p~P) 0 
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if ther-e is E Rand 

= 

ac +bC] 2 9 

o 
= 

which is a contradiction. 

~c P) C ~ ~ 0) such that 
" 9 

• i.e .• .!f9 = O. 

iD If a E ~. ~hen [: :] e C f" or if a = O. then 
p~CP) 

clear. 

If a ~ O. bke [: ~] E R. If [:. ::] E Rand 

E 'eCP) (.!f ~ 0) such that 
9 

6 9] • i.e .• 6 9 = O. which is false. 
/69 

35 



11 D I fa. b E k.. t. hen [0 a] e C • for. i f a = O. t. hen 
o b P'e]CP) 

~e have t.he proof by case (11). If a ~ O. consider 

[
0 0] ° 1 E R. 

(~ ~ 0). such t.hat. 
3 

[: :] [:' ::] = [: 

[: acJ [~ :J 3 ' = 
be 

9 

0 

][:' ~.] • t.hen 
1 6 9 

Thus = 0 and be Slnce a ~ O. ac = -!!'9' ! 9 

we have c = O. So 6 =0 ...... hich is a cont.r·adict.ion. 
:t 9 

lv) If a.b.e e k. such t.hat. a ~ O. e ~ O. t.hen 

[: :] e C • 1'or. 91 yen [ 
P'e]CP) 

[ a-:e -1 -1· 
a (e+/-bc ~)] 

e Rand 
-1 

c 8 

[: :] [ 
-t. 

a e 

o 

e f 
] @ 

R ...... e have 
0 ~ 

[ : :] E ~P) such t.hat. 

: ]----CA) 



Cases l i). l i i). <..: i i i). (i v) 'loge'lher' cover all 'lhe el emen'ls 

of R and hence we ge'l 

c 
PecP) 

= ~CP) n ~CQ). 

a. b. c e~. a ~ o. c ~ o.} 

Now by case <..i v). 
[: :] E C and hence by equa'lion (A), 

P'e(P) 

'lie see that C is right Or'e. Bu'l ~(P) is not right Ore, 
P'eCP) 

since, 

r 0 
u 

J 
[0 1 

J e R such that H [: 
b 

] e R -= ~(P) and 0 

L ° 1 () c 

and [ 
d e J E ~P) Cl .. 0). then 
0 f 

01 [a 
1 J 0 

' .... hereas [0 1 J [d e]... [0 '] and these two cannot be 
o 0 ° I ° 0 

equal for .f ~ o. 



NOTE: Following Stenst~om [521. we say that a multiplicative 

set C in a ~ing R satisfies p~ope~ty SO if, fo~ a. b E R. 

(lb e R implies a E C. 

PROPOSITION 2.7: If a multiplicative set C in a ring R 

satis1'ies SO, then C S C. 

PROOFs Let r e C 
Pc 

Pc 

Si nce 1 ER. t her e a~ e c of! C. d E R 

such that 1.e = r.d. i.e .• rd e C. By property SO. r E C. 

NOTE 2.8s If R/P is a ~ight Goldie ring. then gCP) satisfies 

SO. fo~. let ab E ~P). If a = a+P E R/P. then 

ab E ~CO) S R/P. Thus ab is invertible in QCR,/P). i.e .• 

abQ( R/P) = QC R,,'P) . Al so abQC R/P) S QC R.,.'P) . Thus. 

aQCR./P) ... QCR/P). i. e. a is invertible in QCR.,.'P). i. e .• 

a e ~CP). 

NOTE 2.9: If E is a right R-moduIe. then the set ,,¥CD 

defined as .K'CD={ r e R: annE...r = 0 ) is a multiplicative set 

(G41. The set .K'CD satisfies SO. for. if ab e ..N'CD. t.hen. 

for x E E. if xab = O. then x .. O. Now • if xa ,. O. then 

xab ... 0 and so x ... O. i. e .• a e .KCD. 
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PROPOSI TI ON 2. 10: Let. n = ;r.:.D. wher-e E is an inject.ive 

right.R-module. Then 

.NC £) [ is a r-ight. ideal of R. I ~ Rand R/l } . 

is n-t.or-sion-fr-ee 

PROOF: Denot.e t.he left. hand side of t.he above expr-ession by 

't. Let. c e .,..ye E) • and let 1 be a r-ight. ideal of R. 1 J1t R. such 

that R/I is n-tor-sion-f'r-ee. Then :t<ECR/1)) ~ n = :t<D. i. e .• 

EC~/I) can be embedded in say. E'. a pr-oduct. of copies of' E. 

Then .,..ye Ee R/ I) ) ::: .,..ye E') = .,..ye E) . Hence c E At: Ee R/1) ) . Now if 

eel. then t.here is 1+1 e ECR/I) such t.hat C1+1)c c c+1 • o. 

But since we have C E .,..yCECR/1)). t.his means 1+1 = 0, which is 

false. So c eR" I. Hence .,..yCD S Y. 

Next. • 1 et. c e '[. and 0 ~ x E E. Si nce xR is a submodul e of· 

E. xR is n-t.or-sion-fr-ee. So ann x is one of the 1'5 in t.he 

definit.ion of' Y. Hence c eR" ann x. i.e .• xc ~ o. Thus 

c e .,..yeD. i.e .• '[ s: .,..yCE). This completes the pr-oof. 

NOTE: By the above pr-oposition. it is clear- that if' E. E' 

are injective r-ight R-modules. with :t;CD:: :t<E'). then 

.KCD = .,..yCE'). 

PROPOSITION 2.11: Let. C be a multiplicat.ive set. in a r-ing R. 

If E is an injective r-ight R-module •• then, e xCD = .KCD. 
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PROOF: Let. r- e c~ £). i. e.. R/r-R is ;r( D -tor-si on. Let 1 be 

a proper right ideal of R such that R./l is 

~£)-tor-sion-free. If reI. then rR is a submodule of 1 and 

hence VI is :t;CD-tor-sion. Thus. R/ lis :tC E) -t or si on -f r- ee 

and :t< E) -torsion. which is fal se. si nce I pi! R. Hence 

By Pr-oposition e. r e .KCD. i.e .• C,tCE) S .KCD. 

Next. let c e .KCD. SUppose ther-e is a homomor- phi sm 

f : R/cR --)E such that fC1+cR) = x (say). Then 

xc = f ( 1 +c R) c = o. Si nce c e .KC E). we get x ... O. 1. e .• 

fCl +cR) = O . 

.KC £) S C )..~( E) . 

Hence l' = O. TI1US R/cR is ~D -tor-s10n. Thus 

NOTE 2.12: If P is a prime ideal in a r-ing R. then ~~P/P) 

is the largest of all P-principal points. for-. let n be a 

P-pr- i nci pal poi nt . Then. v;( n) = P. Now. for- a two-sided 

.ideal I of R • VI is n-torsion if and onl y if 1 $. lp(n). 

Hence R/P is not n-tor-sion. By [J. pr-oposition 6.4.2]. 

R/P is n-tor-sion-fr-ee. i. e .• ';t<R/P) ~ n. 

PROPOSITION 2.13: If E is an injective r-ight R-module over- a. 

r-ight. Noether-1an r-1ng R. such tha.t ~D is a. P-principal 

point for some prime ideal P of R. then .KCD S ~P). 
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PROOF: By note 2.12. :t<R/P) ~ :teE). 

So • .KCE) s .KCECR/P)) = C = C SO ~(P). by 
.:tC R/P) P~C P) 

proposition 2.11. proposition 2.7 and note 2.S. 

COROLLARY 2.14: If R is a r"ight Noether"ian ring and E is a 

uniform injective with ass E :& P. then A'CE) SO "tKP). 

PROOF: Since E is a uniform injecti ve right R-module. we 

have v;(:tCE) = ass E by proposit.ion 1.16. 

COROLLARY 2.15: If R is a right Noetherian ring and P 1s a 

prime ideal in R. then .KCECR/P)) = ~CP) if and only if 'eC.P) 

is right Ore. 

PROOF: Follows from propositions 2.4 and 2.13. 

THE RIGHT ORE CONDITION ON g( P) 

In the next few proposi tions. we see some s1 tuations where 

~P) is right Ore (for a prime ideal P). using torsion 

classes. 

PROPOSITION 2.16: If R is a right duo ring (i.e .• a ring in 

which every right ideal is two sided). then g(P) is right Ore 

for every prime ideal P in R. 



PROOF: By assump~ion. i~ r e R. ~hen r-R = P...rR. Now 

r e C i~ and only i~ R/rR is ~(P)-tor-sion if and only 
P'f,( P) 

if R/RrR is ~(P)-tor-sion i~ and only i~ P.r-R S P if and only 

if r e R ',- P. Since ~CP) S;; R ',- P. we have ~CP) S C 
p~CP) 

So. by pr-oposition 2.4. ~P) is r-ight Ore. 

PROPOSITION 2.17: Let R be a right Noetherian ring and P 

be a pr! me ideal o~ R. I~ CR/P)R is injective. then g(P) is 

right Ore. 

PROOF: Since (R/P)R is injec~ive. we have 

.KCECR/P)) = .¥CR/P) = { r eR: annR/ p = 0 } 

= {. r e R xr ... 0 .. x = 0 ~or any x e R/P } 

Thus. by 

= (, r t5 R sr e P .. $ e P for any s eR} 

proposition 2.11. g(P) S c 
p~CP) 

By proposi ~ion 

G. 4. ~CP) is right Ore. 

COROLLARY 2. 18: If R is semisimple Arlinian and P is any 

prime ideal o~ R. then gCP) is right Ore. 

PROOF: Over- a semis!mple Artin!an ring. any module is 

injecti ve. 
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COROLLARY 2. 19: If R is sern1simple Ar-'linian. and E is any 

simple righ'l R-module. 'lhen .KC£) = ~P). where P = ass E. 

PROOF: Since R is sern1simple Ar-'linian. E is 'lame and so 

By corollary 2. 19, ~(P) is righ'l Or-e and so by 

corollary 2.15, we have ~CP) = .KCECR/'P) = .KCD. 

NOTE 2.20: In a general right Noe'lherian ring R. if E and E' 

are uniform injec'lives wi'lh ass E = ass E'. then A'CE) need 

no'l be equal 'lo .KC E'), for. let E be a uni form i njec'li ve 

righ'l module over a simple right Noetherian ring R. Then 

~(O) is righ'l ~e and so by corollary 2.15, 

Now. suppose c e ~ 0) such 'lhat ~'R pi R. 

~CO) = ...teE). o 

assen'lial righ'l ideal and so R/cR is 'lorsion. Let. E be a 

uniform submodule of R/cR. Then E 1s 'lors10n. Hence. given 

x e E. there is r e ~CO) such that. xr = O. i.e .• r e .K(E). 

So ~(O) % .KC E). 

THE LARGEST RIGHT ORE SUBSET OF A HUL TIPUCA TIVE SET 

So far. we have seen many si'lua'lions when mul'lipl1cat.1ve sets 

of interest to us are right ~e. But we know 'lha'l t.here are 

cases when se'ls are not right ~e. Now. given a 

43 



multiplicative set C we give a new proof' that there exists a 

right Or-e set contained in C which contains all right. Or-e 

subsets of C_ 

Thi s f act has been known for a long time. A pr'oof is 

given in [GW. Exercise 9FJ. However. our proof' will lead t.o 

a char-acterisation of this subset as an inter-section of' 

right cliques. as conjectured in [G4J. in the case C = CCP). 

To prove the next theorem. we define. for any mult.iplicat.ive 

subset C of R. a sequence of subsets C • for every ordinal a. a 

Let C = C C = C n C. and for any successor or-dinal a. 
0 1 Pc 

let C = CC ) . For a limit ordinal a. let C = n(1<a C". aH. a 1 et 

Then the C ·s form a descending chain of multiplicative 
at 

sets in R. 

LEMMA 2.21: If T is a r-ight Or-e subset of a multiplicative 

set C. then T s: C . 
1 

THEOREM 2. 22: Let C be a multiplicative set in a ring R. 

Then C has a right Or-e subset which contains every r-ight Or-e 

subset of C. 

PROOF: The map a ~> C .from the ciass of ordinals to the a 

power set of C. cannot be one-one since the ordinals do not. 
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for-m a set.. Hence for some a. C = C ::2 n { C 
a a+t 11 

(~ is an 

ordinal number }. By proposition a.4. C is a right Or-eo set. a 

By lemma a. al. it contains every right Ore subset of C. 
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CHAPTER THREE 

THE PATCH TOPOlOGY 

INTRODUCTION 

Let R be a right Noetherian ring and Yf'I,U R denote the set of 

prime ideals of R. To consider regularity of an element of R 

at different prime ideals. it is convenient to put a topology 

on Y~ R. One such topology is the Patch topology 

introduced by Hochster in 1989. In 1980. Goodearl defined 

the generic regularity condition for subsets of Yf'I,U R. and 

this helps us to clarify the discussion of various continuity 

resul ts on Y(I.eC R. 

In this chapter. we gi ve an analogue of the Patch topology 

for prime torsion classes and discuss its properties. We 

also define the generic regularity condition for prime 

torsion classes. In the case of prime ideals this condition 

has an important role in the study of localisation. Though 

we s~udy pa~ch ~opology and generic regularity condition on 

prime torsion classes for their own sake. we hope that they 

can be used in the torsion theoretic approach to 

localisation. 



Let R be a ring with ACC on ideals. Then the sets VCI) n WCJ) 

Cl, J ideals of R) form a base for the open sets of the patch 

topoto~ on JP~ R. where 

V(I) = ( P e y~ R : P ~ 1 } 

WC J) .. { P e y~ R : P I:. J }. 

THE PATCH TOPOLOGV ON $>t-R 

Let R be a ring in which all points are principal, i.e .• a 

poi nt pr i nci pal ring (for exampl e, a right Noether'i an ring). 

DEFINITION 3.1: For each ideal I in R. define 

6(1) = ( n e ~-R : RYI is n-torsion } 

6'(1) = ( n e ~-R : R/l is not n-torsion } = ~-R , oCl) 

Then. for ideals I, • 12 of R' 

6(I)u6Cl)=6Cl +1) 
, 2 t 2 

6 • ( I ,) n 6' Cl? = 6' ( I t + 1 z) and 

6(1 ) n 6Cl ) = 6Cl n 1 ) so that for ideals 1 , 12 , J, J .. 
t 2 t 2 t £ 

of R. we have 

(6' (I ) n 6C J )) n C 6' Cl) n 6( J )) = 0' (I + I ) n oC J n J ). 
, , 2 2 'Z '2 

Hence, the sets of the form o'Cl) n OCJ) (I. J ideals of R) • 

form the base of open sets of a topology Cthe patch topolo~ 

on y~ R). 

By proposition 1.18Cii). for an ideal 1 and prime ideal P of 

R. I !S: P if and only if R/l is not :t<RYP)-torsion. Hence we 
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have the following r·esult. 

NOTE 3.2: For P e; .JP{I-eC R, P e V( I) () W(J) if and onl y if 

;t.</VP) e 6'( I) () 6(J). 

PROPOSITION 3.3: Let R be a ring with ACC on ideals. The 

map t/J : .JP{I-eC R -->{U-R with ,peP) D ~R/P) (where P e Y{I-eC RJ 

is a topological embedding. where Y{I-eC R and o~-R are given 

the coresponding patch topologies. 

PROOF: Let 6'(1) () 6(J) be a basic patch open set in {U-R 

where I, J are ideals of R. Then we have 

t/J -I [ 6 ' ( I) () 6( J) 1 = 6 ' C I) n 6( J) n ,pe.JP {I-eC RJ, whi chi s open 

1 n f/J (.JP{I-eC R). Hence f/J is conti nuous. Now, 

t/JC vc I) () W( J) ) = { t/JC ( P) : P E V( J) () W( I) } 

= 6'(1) n 6CJ) n ,pe.JP{I-eC R), which is open in 

tjJC.'J'("I;eC R). Hence t/J is an open map. 

PROPOSITION 3.4: Let <:t e 

nei ghbour hoods 6' ( v;C <:t) ) n 6C J) 

(U-R Then 

form a base for 

the patch 

the patch 

neighbourhoods of <:t, where J is an ideal properly containing 

y;( Cf) • 

PROOF: Any patch neighbourhood of a point Cf E (U-R must 

contain a neighbourhood of the form 6'(1) n 6(J) ;:, <:to Since 
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o e 6'Cy,oCO')) and 6'Cy,oCO')) S 6'(1), we may r"eplace o'C[) by 

6'CtpCO')). Now, 6'Cy,oCO')) n 6CJ) = 6'Cy,oCO')) n 6Cy,oCO') + J), and 

so we replace J by y,oCO') + J. Thus. every patch-neighbourhood 

of 0' contains a neighbourhood of the form 6'CtpCO')) n 6CJ), 

where J is an ideal properly containing y,oCO') 

PROPOSITION 3.5: If R is a ring with ACC on ideals, t.hen 

~-R with the patch topology is a compact space. 

PROOF: Let X be a family of patch-open sets covering ~-R. 

Suppose no finite subfamily of X covers ~-R. Then, since 

~-R = 6'(0), we may use ACC on ideals to choose an ideal Q 

maximal with respect to the property that no finite subfamily 

of X covers 6'(0). If A and 8 are ideals proper"ly containing 

Q, ther"e must be a fini te subfamil y Y of X that covers 6'CA) 

and 6'(B). Then, since 6'CAB) S; 6'CA) u 6'CB), Y covers 

cS'CAB). Hence 6'CAB) ~ 6'CQ). So, AB f Q, i. e., Q is a 

prime ideal in R. 

Choose U in X such that .l:<R/Q) e U. Then xCR/Q) must have a 

patch -nei ghbour hood 6' (y,oC xC R/Q))) n 6( J) , for some ideal 

J ~ VI<:r.:. R/Q)) • s uc h t hat 6 ' C VI< xC R/"Q) ) ) n 6C J) s U, i. e. , 

~R,."'Q) must have a patch-neighbourhood 6' CQ) n 6C J), where 

J > Q. such that 6'(Q) n 6(J) s U. 
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Now. by rnaximality of Q. o'(J) can be cover-ed by some finite 

subfamily Y' of X. But o'(Q) " 0'(J) = o'(Q) n 0(J) SO U. So 

6'(Q) can be cover-ed by Y' U {U} contr-ar-y to our- choice of Q. 

Thus ther-e must be a finite subfamily of X which cover-s ,u-R. 

Recall that ther-e is a sur-Jection VI: ~t-R --) Yrr-ec R gi ven 

by n r-t tpC n) . 

DEFINITION 3.6: A point-pr-incipal r-ing is a T-ri.n~ if the 

map VI: (l;t-R --) Yrr-ec R is in,jective. 

PROPOSITION 3.7z J>t-R with the patch topology is Hausdor-ff 

if and only if R is a T-r-ing. 

PROOF: Suppose R is aT-ring. Let 0, n be distinct points 

in (IIt-R. Then ei ther R/tpCo) is n-tor-sion or R/tpCn) is 

~-torsion (For. if not. then tpCo) = tpCn). i.e .• 0 = n. since . 
R is aT-ring). say. R/tpCo) is n-tor-sion. Then. since 

6CR.) = (IIt-R. o·(tpCo)) n o(R) is a patch-neighbourhood of 0 

and o·(tpCn)) n o(tpCcr)) is a patch neighbour-hood of nand 

t.hese are disjoint since o'(tpCo)) and o(tpCo)) are disjoint. 

TI1US. if R is a T-ring. then {IIt-R with the patch topology is 

Hausdorff. 

No...... suppose R is not aT-ring. Then. there is a prime 



to~sion class 0 and a p~ime ideal P such ~ha~ ~o) = p, bu~ 

Cl ;ill! Tt = ::t<R/P). By no~e 2.12, 0 ~ Tt. Now, any neighbourhood 

of 0 contains a neiqhbou~hood of the fo~m 6'(~o)) n 6(J) 9 0 

whe~e J > p, i. e .• 0 E! 6'(P) n 6(J). Since R./J is o-~o~sion. 

R/J is Tt-~o~sion, i. e .• Tt E 6(J). Now, Tt E 6'(~Ft)) and 

v;<:.o) = ~Tt), and so Tt e o'(~o)), i.e .• Ft E 6'(~o)) n 0(J). 

Thus. any neighbou~hood of 0 con~ains Tt also. i.e .• we cannot 

find a neighbou~hood N of 0 such tha~ Ft e N. i.e .• ~-R. with 

patch topology is not even T if R. is no~ a T-~ing. , 

PROPOSITION 3.8.: $)t-R. with patch topology is totally 

disconnected. 

PROOF: Si nce 6' (0) = 6( R.) .. (I-t-R., fo~ an ideal [, we have 

o'([) = 0'(1) () 0(R:) and 6(1) = 0'(0) () o([), both of which 

a~e patch-open and patch-closed. So, the basic open sets 

0'(1) () 0(J) fo~ ideals [, J of R. a~e all patch-closed. 

Hence the patch topology on ~-R. has a basis of open sets 

which a~e also closed. 

PROPOSITION 3.9: If R. is a ~lght Ar-~inian ~ing. ~hen the 

patch ~opology on ~-R. is the disc~ete ~opology. 

PROOF: Since R is A~tinian, we have 
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P e YfL«, R ). 

If P e YfL«, R. t.hen OCP) • < n e ft,t-R : R/P is n-t.orsion }. 

Let n e ft,t-R. say. n = :t,<R/Q) for some Q e YfL«, R. Since all 

prime ideals of R are maximal. we have Q $ P if Q pi! P. Hence 

;c:.R/P) $ :t,<R/Q). 1. e .• R/P is not. :t,<R/Q)-torsion-free. 1. e .• 

by CJ. proposition 6.4.2]. R/P is ~R/Q)-torsion. i.e .• 

:t;CR/Q) e oCP). Thus we have oCP) = ft,t-R " <l:;<R/P)) for any 

prime ideal P in R. i.e.. o·CP) = <:t,<R/P)}. Hence all 

singletons are open in the patch-t.opology on ft,t-R. i. e .• 

when R is Arti ni an. the patch topology on ft,t-R is the 

discrete topology. 

NOTE 3.10: For a torsion class n in ~4''I/.)-R. let E be an 

inJective right R-module such that n := :t:(E). Then we denote 

.KCn) = .KCD. TIlis is well-defined by proposition 2.10. 

THE GENERIC REGULARITY CONDITION ON :Pt-R 

DEFINITION 3.11: Let. X s ~~-R. We define generic regularity 

condition as follows. If. for any n e ~~-R and any c e .KCn). 

there is a patch-open neighbourhood U of n such t.hat c e .KCq) 

for -any q e U n X. t.hen we say that. X satisfies the Reneric 

re6uLarity condition. 



PROPOSITION 3.12: If R is right. Ar-t.inian. t.hen any X SO o('l.-R 

sat.isfies t.he generic regularit.y condit.ion. 

PROOF: By proposi t.ion 3.9. t.he pat.ch t.opology on o('l.-R is 

the discret.e t.opology. Hence given n ,.. l:<R/P) e o('l.-R and any 

c e ~(n). o'(P) = < l:<R/P)} is a pat.ch-open-neighbourhood 

of n. 

PROPOSITION 3.13: If R is a right. duo ring. t.hen any 

X SO o('l.-R sat.isfies t.he generic regularit.y condit.ion. where a 

~ight. duo ring is as defined in proposit.ion 2.17. 

PROOF: If ~ e o('l.-R • t.hen c e ~(~) if and only if R/cR is 

~-t.orsion if and only if R/RcR is ~-t.orsion if and only if 

~ e 6(RcR). Now. 6(RcR) is an open set. and hence is an open 

neighbourhood of~. Hence. given T e o('l.-R and c e ~(T). 

there is a pat.ch-open neighbourhood U = 6(RcR) of T such that. 

c e ~(~) for any ~ e U (and hence for any ~ E U n X). 



GHAP fER FOUR 

GENERALISED INJECTIVE LINKS 

INTRODUCTION 

In the theo~y of commutative Noethe~ian ~ings. seve~al 

fundamental ~esults a~e obtai ned by usi ng the p~ocedu~e of 

localisation at pr-ime ideals. In the non-commutative case. 

localisation at a p~ime ideal is not always possible and itJ 

has been found that if we wish to localise at one pr-ime. we 

have to look at a whole bunch of pr-imes "linked" to the fir-st 

one. In the 19705 and 1980s. Jategaonka~. Muelle~ and othe~s 

wo~ked on this p~oblem. 

Ther-e is a large class of Hoether-ian ~ings that satisfy a 

ce~t.in condition called the "second layer- condition" by 

Jategaonkar in which it is possible to desc~ibe localisation 

at a pr-ime (or a collection of" primes) unde~ condi tions that. 

apply widely. However. there a~e important classes of rings 

that do not satisfy this condition. A study of localisation 

in such ~ings was started by Goodearl (19S8). He found a 

closer connection between prime ideal links and the second 



layer and used it. t.o define links bet.ween uniform inject.ive 

right. modules over a right. Noet.herian ring. He observed t.hat. 

links bet.ween t.ame inject.ives correspond precisely t.o links 

bet.ween prime ideals. while. in gener~l. ot.her links exist.. 

which provide more obst.ruct.ions t.o Ore localisat.ions t.han 

prime ideal links do. 

In our endeavour t.o st.udy localisat.ion using t.orsion classes 

we have defined links bet.ween prime t.orsion classes in such a 

way t.hat. an inject.ive link bet.ween t.wo uniform inject.ives (as 

defined by Goodearl) implies a t.orsion-t.heoret.ic link bet.ween 

t.he prime t.orsion classes cogenerat.ed by t.hem. Some of t.he 

result.s of t.his chapt.er are in [CS]. 

PRELIMINARIES 

Most. of t.he mat.erial in t.his sect.ion is t.aken from [J] and 

[G41. 

DEFINITION 4.1: Let. R be a right. Noet.herian ring and let. P. 

Q be prime ideals in R. We say t.hat. 0 is ti~~d to P (via 

t.he i deal A < 0 n P). denot.ed 0 ~ P. if OP ~ A ~ 0 n P such 

t.hat. t.he right. R/P-module (0 n P)/A is t.orsion-free. and 

t.he left. R/O-module (0 n P)/A has no non-zero unfai t.hful 

submodules [J] 
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DEFINITION 4.2: Let X s: "'(1.«. R. We say X is ri~ht stable 

if. whenever- P eX. Q e Y(I.«. R. and Q ~ P. we have a e X. 

We say X is stable if Q ~p implies either- both Q. P e X or-

both Q. P e X. If P e "'(1.«. R. the ri~ht clique of P. denoted 

r-t cl C P) is the small est r- i ght stabl e subset of "'flA-C R 

containing P. i. e .• r-t cl P is the smallest set of pr-imes 

containing P and all pr-ime ideals a in R such that 

Q"""'> a ,--......> a ~" ...... "",,)a -> P. wher-e at C1 ~ i ~ n) ar-e 
n n-t t 

pr-ime ideals in R. The clique of" P E "'flA-C R is the smallest 

stable subset containing P. 

PROPOSI TI ON 4. 3 & Let R be a r- i ght Noet her- i an ring. P a 

pr-ime ideal of Rand C a r-ight Ore set in R. I f" C s: CC P) • 

then C S CCQ) for all Q E r-t cl CP). 

EXAMPLE 4.4: For- the ring in pr-oposition 2.8. the only pr-ime 

ideals are a and P and the only link is Q ~P. Then we have 

r-t cl Q = { a } and r-t cl P = { P. Q } 

DEFINITION 4.5: Let 5 be a semi pr- i me ideal in a r- i ght 

Noether-ian r-ing R and let H be an S-pr-imary r-ight R-module. 

Then the first layer of H is defined as the module annH S. 

This is defined by H alone (independently of 5). 



Consider the module ECH/annH S). This module can be 

is a family of pairwise non-isomorphic indecomposable 

injectives. { /-l. : i El) is a family of non-zero cardinals. 
~ 

~nd E.C/-li.) denotes the direct sum of a family of copies of E. 
~ l 

that is indexed by a set of car di nal i t Y 1-'., 
l 

The family 

{ E. 
l 

i El) is uniquely determined by H upto permutation 

and isomorphism. and. for i El. 1-'. is uniquely determined by 
~ 

E .. 
~ 

The second layer of H is defined as the set of the similarity 

classes of the indecomposable injectives E . • i E 1. 
~ 

Then. 

the second layer of H is just the set of the similarity 

classes of uniform submodules of H/annH S. Often. we loosely 

treat a set of the representatives of the second layer of H 

as if it were the second layer of /1. 

DEFINITION 4.6: A prime ideal P in a right Noetherian ring R 

is said to satisfy the ri6ht second layer condition if every 

uniform module in the second layer of CEp)R is tame. A prime 

ideal P in a Noetherian ring is said to satisfy the 5econd 

Layer condi t ion if P satisfies the right and left second 

layer condition. 

57 



A set. X or prime ideals in a (right) Noat.herian ring R is 

said to satisfy the (right.) second layer condition if every 

member of X does. Finally. the ring R is said to satisfy the 

(right) second layer condition if y~ R satisfies it. For. 

example. FBN rings. having no ..... ild modules. sat.isfy the 

second layer condition. 

DEFINITION 4.71 If X S y~ R. we say X sat.isfies t.he rt~ht 

int.ersect.ion condit.ion if any right ideal of R that has 

non-empty intersection with 'eR(P) for every P e X also has 

non-empt.y intersection with 'eR"O = fPeX 'e(P). 

PROP~TION 4.8 [3. lemma 7.1.4]1 Let X be a non-empt.y set 

of prime ideals in a right. Noetherian ring R. Assume X is 

right stable and that. it satisfies the right. second layer 

condit.ion as ..... ell as the right intersection condition. 

~(}O is a right Ore set in R. 

Then 

Goodearl [G4] studies t.he influence of injective module 

st.ructure on localisation questions for non-commut.ative 

Noet.herian rings. 

DEFI NI TI ON 4. 91 If F.E are uniform inJectlve right modules 

over a right Hoetherian ring R • ..... e say that ther-e is a t inlt 
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from. F to E • wr"itten F rv)E • if F is isomorphic to a direct 

summand of the injective hull of E/annECassD. 1.e .• F-'"'"'-)E. 

if and onl y if the isomorphism class of F" belongs to t.he 

second layer of E. 

The ri6h.t c~iq'Ue 01 E consists of E and all those uniform 

injective right R-modules F" such that 

F" ~E """>E ~ ..... . -->E ~E 
n n-~ ~ 

for some uniform injective R-modules Ei (1 ~ i ~ n). 

Inject.i ve module links provide obst.ructions to Ore 

localisations in R. in the following sense. 

PROPOSITION ~.10 [G4. proposition 1.2]: Let C be a right 

Ore set in a right Noetherian ring R. and let E be a 

uniform injective right R-module. If C S ~(E). then C S ~(F") 

for all F in the right clique of E. 

The notion of linked uniform injectives. when r"est.r-icted t.o 

tame injectives is equivalent. to the notion of linked primes. 

as follows. 

THEOREM ~. 11 : [ G4 • t heor em 1. 4] I Let R be a right 

Noet.herian ring. and let P. Q E y~ R. THen Q ---->P if and 
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It can also happen that a Q-wild uni~o~m injective is linked 

to a P-tame uni~o~m injective. In this case, Q need not link 

to P. Thus, the~e can exist links between uni~o~m injectives 

that do not co~~espond to links between the assassinato~ 

p~imes. 

Fo~ a ~ight Noethe~ian ~ing R, since the~e is a bijection o~ 

o(l.-R onto the collection o~ all isomo~phism classes of 

unifor"m injective ~ight R-modules. we de~ine links between 

p~ime to~sion classes. in such a way that an injective link 

between two uni~o~m injective modules implies a link between 

the p~ime to~sion classes cogene~ated by them. 

GENERALISED INJECTIVE LINKS BETWEEN PRIME TORSION CLASSES 

DEFINITION 4.12: Let R be a ~ing and G. n E o(l.-R. Let E be 

a uni~o~m injective ~ight R-module with n = :t<E). Put 

ass E = P and annECP) = L. We say that G is link.ed to n 

wri tten G"""> n if G ~ :t<E/L) 

NOTE 4.13: This definition is independent o~ the choice of 

E. 1. e .• i~ n = ';tCE) = :t<E O) Cwhe~e E,E' a~e injective ~ight 

IR-modules) wi t.h ass E = ass E' = P. L = annECP). and 

L' = annE.CP). then we have :t<E/L) = :tCE'/L'). ~o~. since 

'>:;<EO) ~ :t<E). by p~oposit.ion 1.13(e). E' is embedded in 
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niEl Ei ' (where Ei ~ E for every i e I) say, x t--> (xi)' 

If r e R, then xr t--) (xi r). L&t Li = annE P. Then 
i 

x e L' if and only if xi e Li for every i e 1. 

map f: E'/L' t-->nieI (Ei/L i ) with x+L' 

Then f is well-defined and is one-to-one, 

So we have a 

~> (xi +L i )· 

since if 

(xi+L i ) = 0, then x+L'·O. 

product of copies of E/L 

So E' /L • can be embedded in a 

and thus we have 

PROP~TION 4.14: Let R be a right Noetherian ring. and E, 

F be uniform inJect-ive right R-modules. If F ~>E as in 

definition 4.9. then :t<F) ~:t<E:). 

PROOF: Since F ->E. F can be embedded in ECE/annECassD). 

Hence :t< F) ~ :t< E/ann E( assD ) and so :t< F) --->:t< E) . 

The next proposi tion shows how torsion-theoretic links 

obstruct localisation. 

PROP~TION 4.15a Let n. q e ~~-R and C be a right Ore set 

in R.lf C S .K(n) , then C S .KCq). for every q,-.J)n. 

PROOF: Let n = :t<D. where E is a uniform injective right 

R-module. Let ass E = P and annE P = L. Then. since o~>n. 
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we have a;;::;r.( E/L) . Si nce C S .KC n). we have Pc ::5 P.KC n) ::5 n 

by propositions a.3 and a.l1. Hence. using [G4. lemma 1.11. 

we have Pc ::5 xCE/L). and hence Pc ::5 0'. Since C is r-ighl Ore. 

using proposition a.4. we have se. a By proposition 

2.11. C S .;YCa) for every 0' ,.....)n. 

The following example shows that generalised injective links 

provide more obstructions to Ore localisation than injective 

links do. 

EXAMPLE 4. 16: Let R = Z . the ring of integers and let 

E = ZCp~ = n 
{a/p : n = O. 1. 2 •.....• 0 ~ a ::5 0-1 }. 

have. for a prime p. 

ECZ/pZ) ~ ZCp~ S G/Z = { a/O : 0 ~ O. 0 ::5 a ::5 0-1}. 

have an embedding of Z/pZ into ZCpOt..) with i ~> i./p. 

We 

So we 

Now E is an indecomposable injective and ass E = pZ. Let 

L = annECassE) = { O. l/p •....• Cp-l)/p }. Then E/L ~ E. 

Al so Eis f ai t hful as a right R-modul e • i. e.. ann E :I O. 

i.e .• for each I' e R. there is x e E such that Xl' ~ O. Hence 

we can embed R = Z in a product of copies of E. 

But ECE/annECassE)) = ECE/L) ~ E. which is indecomposable. 



So t.he right. clique of E Cas in definit.ion 4.9) consist.s of 

E alone. i. e. • R is not. 1 i nk ed t.o E. 

DEFINITION 4.17: Let. X S ~~-R. We say X is ri~ht stable if. 

whenever n e X. 0' e ~~-R and 0' ~ n. we have 0' e X. If 

n e ~ft.-R. t.he riaht cLique of n. denot.ed rt. cl n. is t.he 

smallest. right. st.able subset. of' ~ft.-R cont.aining n. 

NOTE 4.18: By proposit.ion 4.15. we have: If n e ~ft.-R and C 

is a right. Ore set. in Rand C S .KC n). t.hen C S .KC 0') f'or 

ever'y 0' e rt. cl n. 

PROPOSITION 4.19: If' C is a right Ore set disjoint fr'om a 

prime ideal P in a right. Noetherian ring R. then we have. 

Pc ~ 1\ ( 0' e ·:;,,,,-R : 0' e rt. cl C:tCR/P))). 

PROOF: Since C is disjoint. 

[B. Theorem a.1Cc)] and 

proposit.ion 1.18. 

0' e rt. cl xf. R/P) . 

Hence. 

hence 

by 

from P. we have C S e(p) by 

Pe ~ Peep) = :tCR/P) by 

note 4.18. for every 

PROPOSITION 4.20: If R is a prime right Noet.herian ring and 

E is a f'ully fait.hf'ul unif'orm inject.ive right. R-module. then 

t.here is no prime t.orsion class linked to .l;'.<D. i. e.. the 

right. clique of' xf.D consist.s of xf.D alone. 
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PROOF: Since E is ~ully ~aith~ul. ass E = O. Hence. we have 

L = ann E (ass D = E. So. i~ a e ~~-R such that a~>n. lhen 

a ~ ):.CE/L) = ):.CE/D = ):.CO) which is the largesl torsion 

class. i.e .• a = ):.CO). which is not a prime lorsion class. 

Hence. rt cl ):.CD = < ):.CD ). 

PROP~TION 4.211 I~ E is a simple uni~orm injective over a 

right Noetherian r"ing. then there is no prime torsion class 

linked to ):.CD. 

PROOF: Let ass E = P. Since E is simple. L = annE P = 0 or 

E. I~ L = E. then i~ a e ~~-R and a ~>):.CD. we have 

a ~ ):.CE/L) = :teO) which is not possible. as in pr-oo~ o~ 

proposition 4.20. But L ~ O. since P = ass E is the 

annihila"tor- o~ some non-zero submodule o~ E. Hence "there is 

no prime torsion class linked lo ):.CD and 

rt cl ):.CD = < ):.CD ). 

NOTE: Let n = :tCD. ~or a unl~orm injective E. P = ass E. 

L = annE P. TIlen Cl -->n .. Cl ~ 'X;<E/L). Hence. i~ CI'-"") n. then 

I is a-closed .. I is ;tCE/L)-closed f"or any r-lght ideal I of" R 

Thus. 

U < I: lis Cl-closed and Cl ~> n ) S U < I: lis ~(E/L) -closed ) 

Hence. we have. 

n C D '- I) -~ n CR " I) 
I is ""-closed '" ... I i ...r r- L) 1 d V' s ~ .... c./ -c ose 
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Let us reproesent the left hand side of the above equation by 

A and the right hand side by B. Now. if ~E/L) is a prime 

tor si on cl ass. then ~ E/L) > n. So. then. A S B and so we 

have A = B. Thus. if ~E/L) is prime. then. 

n { .KCO') : 0' roJ)n } = .KCECE/L)) 

SOME RIGHT STABLE SETS 

DEFI NI TI ON 4. GZ: Let R be a right Noetherian ring and 

0' e r~~-R. We define rcO') = { n e ~~-R : n ~ 0' }. 

PROPOSITION 4. G3: Let R be a right Noet.heria.n roi ng and let 

x S ~~-R. If C is a multiplicative set in R such t.hat 

PROOF: Let 0' e X. Then C S CO'. Hence Pc ~ Pc ~ 0' by 
0' 

PROPOSI TI ON 4. Z4: Let. D be a. right. Or-e s&t. in a. r- i ght. 

Noether-ian ring R. Then rCPD) is r-ight st.able under 

generalised injective links. 

PROOF: Let n e rCPD) and 0' ~n. Then n ~ PD and so 

S C • i. e .• n D S .KC n) by pr-oposi tion 2.4. So. by 



proposition 4.15. D S ~(c). i.e .• PD ~ p~(c) ~ c. by 

propositions 2.3 and 2.11. i.e .• C E rCPD). 

NOTE: If" P is a right localisable prime ideal in a right 

Noether"ian ring R. then P'8(P) E rcp~(p)) (since P<fJ(P) is a 

prime torsion class by example 1.14 and proposition 1.19) and 

so. by proposition 4.24. rt cl (XCR/P) s rCXCRYP)). 

PROP~TION 4.25: Let R be a right Noetherian ring. If" C is 

a right Ore set in R such that Pc is a point. then. f"or 

c E C. rt cl Pc s 6(RcR:). where 6(1) (f"or an ideal 1 in R:.> is 

as in def"inition 3.1. 

PROOF: Since C is right Ore. by proposition 2.4. 

C S C = ~(PC). Hence c E ~(PC). i. e .• R/"cR is Pc -torsion. 
Pc 

So R/RcR is Pc -torsion. Now. by nole 4.19. C S .Kec) f"or 

every c E rt cl Pc • i.e .• C E 6(RcR:) f"or every c e rt cl PC' 

i. e .• rt cl Pc S 6(RcR:.>. 

COROLLARY 4.26: If" R is a right Noetherian ring and '8(P) is 

right Ore f"or some P E YfW!C R. then f"or c E ~P). we have 

rt cl XC R/P) S 6( RcR.:>. 1. e.. rt cl XC R/P) S f'\:EC 6( RcR:>. 

PROOF: By pr opO~i ti on 1. 19. P'8( P) e XC R/P) and by exampl e 

1. 14. XC R/P) is a poi nt. The result now f"ollows f"rom 

proposition 4.25. 
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PROPOSI TI ON ..... 27: If R is a semisimple Ar-tinian ring. then 

6C 1) is right stabl e under general i sed i njecti ve links for 

any two-sided ideal 1 of R. 

PROOF: Since R is semisimple Ar-tinian. 

oC)",-R = < :t<R/P): P e .Y(I.«R } and so. if C E R. and 0' E 6CR.cPJ. 

then 0' = :t<R/P) for some P E .Y(I.«R. By corollary 2.18. 

Since ()' E 6(R.cR.). R./R.cR. is ()'-torsion and 

hence. by proof of proposition 4.25. rot cl :t<R/P) S 6(R.cR:J. 

i. e.. 6CRci<J is right stable under generalised in,jective 

links for any C E R. 

Now. let 1 be a two-sided ideal in R.. If C E I. then 

RcR ~ 1. and so 6C Rci<J S 6C I). If 0' E 6C I). then ()' = :t< R./P) 

for some prime ideal P in R. By proposition 1.18(ii). 1 i P. 

i.e .• there is c E 1 such that RcR i P. 

i.e .• :t<R/P) E 6(RcR). i.e .• there is c e 1 such that 

0' E 6( RcR). 1. e.. 6( I) S UCE1 6( RcR). Thus 

6(1) = U 16(RcR). Since 6(RcR.) is right stable under links. 
CE 

for any c E C. so is 6(1) for any ideal 1 of R. 
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CHAPTER FIVE 

ORE LINKS 

INTRODUCTION 

In chapter t'our. we have defined tor-sion-theoretic links 

between prime torsion classes and we have seen that they are 

extensi ons of i njecti ve li nks 1 n some sense. Thus 

generalised injective links are important. 

as a matter of theoretical interest. 

but. so far. only 

Meanwhile. the 

construction. in theorem 2.23 of the largest right Ore subset 

of a multiplicative set has motivated us to define entirely 

new links between uniform injectives (or. equivalently. 

between the prime torsion classes cogenerated by them). In 

this chapter. we define these links. which we call Ore 

links. and al so a r- i ght i ntersecti on condi ti on for uni form 

injectives. Using these. we see that we can obtain a version 

of proposition 4. a using the sets .KCD instead of ~P). and 

without assuming the right second layer condition. 



MOTIVATION FOR ORE LINKS 

Lel R be a right Noelherian ring and let S be a 

multiplicalive sel in R salisfying properly SO Ci.e .• for 

a. b E R. ab E S ~ a E S). 

Lel S ... S. S = ( r eR: R/rR is S -lorsion}. and 
o 1 0 

S = CS) for any successor ordi na.l 0. 
ot ... 1 01 1 

Then 

s=s 25 2S 2 ...... 
012 

Now. by proposilion 1.15Ciii). 

= 1\ ( x;(H) : H is an S.-crilical righl R-module }. 
I. 

............ (1) 

Then. we have 

si. .... = .KCPS) 
i. 

= n ( .KC EC H) ) 

Lel S E 5 '- S 
i i+1 

H is an S.-crilica.l righl R-module } 
I. 

where i is a successor or di nal . Then 

R/sR is S. 
\.-1 

-t.orsion bul nol S 
i. 

-lorsion. Hence. by 

equalion el) above. R/sR 1s nol ~H)-lorsion for some H which 

is S. -cri lical. 
I. 

Then. H is nol S. -lorsion. bUl for every 
I. 

non-zer'o submodule N of H. H/N is S. - lorsion. Now. since 

Si. = n <. .KCEC11')) 

lhere is an S. 
I.-to 

I. 

11' is an S. -cri lical righl R-module }. 
1.-1 

-cri lical module H' which is nol 

.KCECH'))-lorsion. bul H/N is .KCECH'))-torsion for every 

non-zero submodule N of H. Then, H is .KCECH'))-lorsion-free. 



for. if no'l. 1 e'l 'lhe .KC EC M' )) -'lorsi on submodul e of M be 

M ~ O. 
1 

Then. by 'lhe above s'la'lemen'l. 

.KCECM·))-'lorsion. bu'l by 'lhe property of torsion submodules. 

M/M is .KCECM·))-'lorsion-free. which is a con'lradict.iOn. 
t 

Thus. 11 is .KC EC W)) -'lorsion-free. but. M/N is .KC EC M')) -'lorsion 

for every non-zero submodule N of H. i. e .• H is 

.KCECM·))-critical. We say that.. x:< 11) is Or-e- t inked to x:< H· ) • 

since t..his link occurs while looking at.. t..he const..ruc'lion of 

'lhe larges'l righ'l Ore subset.. of a mult..iplicat..ive set... 

ORE LINKS BETWEEN PRIME TORSION CLASSES 

DEFINITION 5.1: If q. T E o~-R. fo~ a ~ight Noetherian ring 

R. we say that q is Or-e-Li~ed to T. wrilt..en q ~T if and 

only if q = l;<11) fo~ some .KCT)-c~it..ical ~ighl R-module H 

NOTE 5.2: Since q. T E o~-R. by proposition 1.15Ciii) we can 

find uniform inject..ive right R-modules F and £ such t..hat.. 

and T = X:<D. o Then x:< F) ,-) x:< D i 1" and onl y i 1" 

xS:. F) = :tC 11) for- some .KC D -c~ i 'li cal ~ i ght.. R-modul eM. i. e.. if 

and only if F = ECI1) for some .KCD-crit..ical right R-module H. 

by proposition 1.15(ii). TI1US. we may loosely say 'lhat F is 

Ore-linked to E. We will use ar-e links bet..ween uniform 

inject..ive modules. or. equivalently between the prime torsion 

classes cogenerat..ed by them. as the sit..uatlon requires. 
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We note that. given any torsion class 0'. there is always a 

O'-critical right R-module [G11. Hence. given T e ~~-R. there 

is always a 0' e ~~-R such that 0' ~>T. 

NOTE 5.3: A right stable subset oC ~~-R and a right clique 

are deCined in analogy with deCinition 4.17. 

In this chapter. unless otherwise mentioned. links. cliques 

and related ter"ms will be with reCerence to Ore links. 

We have the following proposition. which shows how Qr"e links 

obstruct localisation. 

PROPOSI TI ON 5. 4: Let R be a right Noetherian ring. Let 

T. 0' e o(l.-R and C be a r·ight Ore set in R. Then. iC C se. 
T 

we have C S C Cor every 0' e rt cl T under Ore links. 
0' 

PROOF: I C 0' ;?,> T • we have 0' .. :tC If) Cor some C 
T 

-cri tical 

right R-module H. Then. since H is Pc - torsion-Creep 
T 

• i. e.. 0' ~ Pc . Since C se. we have 
T 

~ 0' • i. e .• 

since C is right Ore. 

T 

S C 
0' 

By proposition 2.4. C S 

We next note a result that we Crequently use. 

C 
0' 
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PROP~TION 5.5 [Gl. proposi~ion 19.2]: I~ T e o~-R. then a 

right R-module H is T-critical o~ and only i~ T = xCMD. 

PROP~TION 5.6: I~ R is a right Noetherian ring and 

T e o~-R such that Pc = T. then T has only a self-Ore link. 
T 

PROOF: I ~ 0' E o~-R such that 0',2;> T. then 0' = .:to(~ MD for some 

C -critical right R-module H. 
T 

Then. by assumpti on. His 

T-critical and so. by proposition 5.5. T = >::CH). i.e .• 0' = T. 

COROLLARY 5.7: If R is a commutative Noether-ian ring. and 

o 
~. T e o~-R. then 0' ~>T i~ and only if Cl = T. 

PROOF: Since R is commutat.ive Noether-ian. T = xCR/Q) for 

some Q e Yrr-ec R and ~Q) = .KC EC R/Q)) . So by propositions 

2.11 and 1.18. we have Pc = P .KCECR/Q)) = P~CQ) = xCR/Q) = T. 
T 

Hence. by proposition 5.6. 0' = T. Al so • i f 0' = T = xC £") 

where £ is a uniform inject.ive. then by proposit.ion 9.9. £" 1s 

r-crit.ical and so O'~>T. 

COROLLARY 5. 8: I~ R is a semisimple Art.inian ring and 

o 
:1. T e o~-R. then 0' r-o) T i ~ and onl y if 0' = T. 



PROOF: Since R 1s semisimple Artinian T = :tCR/Q) for some 

Q e Y(I.eC R and by corollaries 2.18 and 2.15. 

gCQ) = ~CECR/Q)). Hence the result follows from the proof of 

corollary 5.7. 

Hext. we see that generalised inJective links and Ore links 

need not imply each other. 

PROPOSI TI ON 5. 9: Let R be a right Noetherian ring. Then a 

prime ideal link Q ,......>P ned not imply an Ore link between 

:t<VQ) and :tCVP). 

PROOF: Let Q --> P wi th \KP) right Ore. Then by propositions 

2.11. 1.19. and corollary 2.15. we have 

= :tCR./P). PC:t<R/P) = P ~(ECVP)) = p~P) 

Hence. if :tC R/Q) re.>:tC R/P) by proposi tion 5. e. we have 

.:t<VQ) = ;tCR/P). i.e .• Q - P. Thus. if Q,-...>P with Q J1l P and 

gCP) right Ore. we cannot have ;tCR/Q) ,s>:t<,R./P). 

PROPOSITION 5.10: Let R be a right Noetherian ring. Then an 

Ore link between two prime torsion classes need not imply 8. 

generalised injective link between them. 

PROOF: Let R be semisimple Art!n!an and E: a simple right 

R-module. Then. by proposition 4.21. there is no 0 e ~~-R 
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such t.hat. 0' ;-.I):tC E) C gener-al i sed i nj ect. ~ ve link) but. • by 

cor-ollar-y 5.9. :t<D is Or-e-linJced t.o .'t<D. 

PROP~TION 5.11: Let. R be a r-ight. Noet.her-ian ring and C be 

a r-ight. Or-e set.. in R such t.hat. Pc e o(L-R. 

links. for- any c e C. r-t. cl Pc ~ 6CRcR). 

Then. under- Or- e 

In par-t.icular-. if 

'eC P) is r- i ght. Ore and c e 'BC P). t.hen r-t. cl :t< R/P) ~ 6C RcR) • 

where 6(RcR:) is as in definit.ion 3.1. 

PROOF: Analogous t.o t.he pr-oof of pr-oposit.ion 4.25. 

PROPOSITION 5.12: If R is semisimple Art.inian. t.hen for- any 

t,wo- sided ideal I of R. 6(1) is r-ight. st.able under- Or-e 

links. 

PROOF: Analogous 'lo 'lhe pr-oof of pr-oposit.ion 4.27. 

PROPOSITION 5.13: Let. R be a r- i ght. Noel her- i an r- i ng and 

't' e OfL-R such t.hal !5 T. Then lher-e is 0' e o(L-R such 

thal 0' ~ T and 0' ~>T. 

PROOF: Since Pc ~ T. by [Gl. pr-oposilion 19.1e]. t.her-e is a 
T 

Pc -cr-it.ieal r-ight.. R-module H lhal is T-lor-sion. 
't' 

o :t< If) -> T. bul )::C /1) ~ T. 

Then 
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PROP~TION 5.14: Let R be a right Noetherian r-ing and E be 

a simple injective right R-module. Then ):( E) ,..2.> xC E) . 

PROOF: Since E is simple. E is T-cr-itical with respect to 

any torsion class ~or which it is torsion-~ree. Now. by 

pr opos it i on 2. 3 • Pc S :te E). i . e.. by pr-opos it ion 2. 11 • 
:teE) 

o 
P ..KC E) ~ :te E) and so Eis ..KC D -cr i ti ca!. 1. e.. :tC E) .-.J>:te E) . 

PROPOSITION 5.15: Let R be a right Noether-ian ring. SUppose 

x = ( Cf. T J- is a stable· set o~ prime torsion classes with 

0' 2.>T and T ~). being the only links. Then Cf = T. 

PROOF: By de~inition o~ Ore links. 0' = ::t(/1) 
- t 

f'or some P -
C 

T 

critical right R-module Hand T = ~/1) for some Pc -
t 2 

Cf 

critical right R-module /1 
2 

By pr-oposition 1.15Ciii). we 

have 

Pc = /\ ( xf:. /1) 

T 

H is a Pc -critical right R-module }. 
T 

Hence Pc 
T 

= XC Ht) c: 0' and Pc ST. i. e .• Cf ST. Si milarl y 
T 

T ~ 0'. 

PROPOSITION 5.16: If R is a right Artinian r-ing. then for 

every P E Y('I-eC R. we have ;rf.R/P) .2.> :tCR/P). 



PROOF: Suppose t.here is no Ore link l.<R/P) ~> .l::CR/P). t.hen 

'):!:.R/P) ~ x.(/'D :for any .KCECR/'P))-crit.ical right. R-module 11. 

Then. we have. 

P = "< ~./. /1) : HR is .KC EC R/'P) ) -cr i t i eal } • .KC EC R/'P) ) A'. .... 

by proposit.ion 1.15Ciii). Now. by propositions 2.3 and 2.11. 

P .KCECVP)) ~ )j:.R/P). and since R is Artinian. t.here are only 

finit.ely many point.s in <>(l.-R. Since ;t<R/'P) is a point.. t.here 

is an .KCECR/P)-critical right R-module Hi such t.hat. 

~H? S xCR/'P). but. by assumpt.ion ;t<Ht ) - :t<R/P). i.e .• 

But. since R is Artinian. :t<R/P) is minimal 

in o~-R by (Gl.proposit.ion le.lel. i.e .• we cannot. have 

Hence t.here has to be an Ore 1 i nk 

PROPOSITION 5.17: Let. R be a right. Noet.herian ring and let. 

0' E <>(l.-R. Then the pr'ime t.orsion classes Or'e-linked t.o a 

satis:fy t.he incomparabilit.y condit.ion. i.e .• i:f T .::4a. t.hen 

any prime tor'sion class n. such that n S Tor' n ~ T. cannot 

be Ore-linked to 0'. 

PROOF: 1fT ~> 0'. then T = )j:. /1) :for some Pc -er i ti cal right. 
0' 

R-module /1. But. by (Gl. pr opos i t i on 1 g. 21 ]. )::C /1) i s a 
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minimal elemen~ o~ rcPC ) = { n e ~~-R : n ~ Pc }. i.e .• all 
T T 

prime ~orsion classes t.hat. are Ore-linked t.o T are minimal 

element.s o~ rcPC ) and hence cannot.. be great.er t.han or lesser 
T 

t.han one ano~her. 

PROP~TIOH 5.18: I~ R is a. right. Noetherian ring and 

0'. T e ~fI.-R such t.hat. 0' ....e.)T. t.hen 0' cannot. be st.rictly 

great.er t.han T. 

PROOF: By de~ini ~ion o~ Ore links. 0' =- :t<1O ("or some Pc -
T 

critical righ~ R-module H. Hence 0' ~ Pc . By proposit.ion 
T 

2.3. Pc ~ T. As in proposition 5.17. since 0' is a minimal 
T 

element. o~ rcPC ) • we cannot. have 0'.) T. 
T 

PROP~TIOH 5.19: Let R be a right. Noetherian ring and E be 

a uni~orm inject.ive right. R-module such t.hat t.he only prime 

torsion class Ore-linked t.o )::<£') is i t.sel(". Then .KC £') is 

right Ore. 

PROOF: By proposi~ion 1.15Ci11). we have; 

P .KCD = " ( );<10 : H is .KCD-crit1cal }. Now. since );<0 is 

the only prime torsion class Ore-linked to )::<£'). P.KC£,) .. )::<D 
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:;,y defini lion of Ore links. So CP.N'CD ::: C:t;<E) ::: ~(D. by 

proposi li on 2. 11 . Hence. by proposilion 2.4. ~(D is righl 

::>re. 

L.el us say lhal a prime lorsion class 0' e -ofl,-R satisfies 

~ondilion CA) if eilher 

~a) lhere is only a self link to 0'. or 

::b) lhere is no self link lo 0'. 

PROP~TION 5.20: Let R be a right Noetherian ring and 

~ E -ofl,-R such lhal for any T E rt cl 0' (under Ore links). 

Cl) T salisfies condilion (A) and 

C2) lhere are only finilely many prime torsion classes linked 

lo T then flrEr'tcla .K(T) is rioht Ot-•• 

PROOF: Lel 0' ::: :t;<D for a uniform injective right R-module 

E. by proposil1on 1.15(i). By propositions 2.3 and 2.11. 

~D :! P ~CE) and by proposi tion 1.15Ciii). we have 

P KCD ::: ( ~11) : H is .KCD-critical ). By assumplion Ci). 

there are only finilely many );;CH)'s on the righl hand side of 

this equation. If xCD does nol have a self-link. then since 

~D is a point. lhere is an ~(D-critical right R-module H 
:t 

If xCD has only a self-link. then 

the result follows form proposition 5.19. Similarly. 

considering lhe prime lorsion classes Ore-linked to ';t<H). we 
:t 

79 



can find an .HCH)-critical 
t 

right R-module H such that z 

x(H) > );.<H). 
t z Proceeding likewise. we get a descending 

chain );CE) > X<Ht) > X<Hz) > .•...... in rt cl );CE) and this 

chain is finite since. by [G1.proposition 19.17]. <)(I.-R 

satisfies the descending chain condition. Thus we get a 

finite chain );CE) > );CH) > :t<H) > ....... > :t<H). Cf'or some 
t 2 n 

n) and );CH) will have only a self'-link (since. otherwise. 
n 

the chain will continue). By proposition 6.19. .K(11) is 
n 

right Ore and by note 2.2 and proposition 2.11 • .K(11) S .KC£). 
n 

and so. by proposi tions !S." and 2.11 • .KCH) S .K( T) f'or every 
n 

T E rt cl );C E) • Hence. we have 

which is right Ore. 

PROP~TION 5.21: If R is a right Noetherian ring and 

Cl e oO(I.-R such that r·t cl Cl is fi nite and every T e rt cl Cl 

satisfies condition (A). then ~ertcla .KCT) is right Ore. 

PROPOSITION 5.22: Let R be an FBN ring. 

that every T e rt cl Cl satisfies condition (AU. then the set 

rlrertcla .HCa) is right Ore. 

PROOF: Si nce R is FBN. <)(I.-R - ( :t< R/P) : P ~ Y(I.eC R }. Let 

T = );CR/Q). Then. if "R&: R :S :t<R/Q). t.here is R t E ~ such 

that n ~ :tf..R/Q). for any L S J"'~-~. by [st. lemma 2.4). 
t 

The proof is then similar to that proposition !s.20. 
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DEFINITION 5.23: Let R be a ~lght Noethe~lan ring and let X 

be a non-empty set o~ unl~orm Injecliv& rlght R-modules. We 

say that X satls~les the inter5ection condition i~. whenever 

I is a right ideal o~ R which contains an element o~ ~E) ~or 

each E e X. then I contains an element of NCx). whe~e 

.KC X) = nc:eX .KC E) . 

The following is our counterpart o~ tJ. theorem 7.1.4] 

THEOREM 5.24: Let R be a ~lghl Noetherian ring and let X be 

a set o~ uniform inJective ~ight R-modules. ~ighl slable 

under Ore links and satis~ylng the right Inte~section 

condition. Then 

Ca) If N is an .KCX)-critlcal rlght R-module. then ECN:> e X. 

Cb) .KCX) is right Ore. 

PROOF: 

Ca) Suppose that for every E E X. N is ~E)-torsion. 

for every n e N. there is p E ~E) such thal np = O. i.e .• 

r-annCn) n .KCD ;tl 0 ~or each £ E X. Then. by ~ight 

intersection condi lion. ~-ann(n) n .,tOO " 0. So N Is 

.KC X) -tor si on. 

.KC X) -cri tical. 

.KC D -torsion. 

whi ch 1 s a contr-adi cll on. since N is 

Hence. there 1 s £ E X such lhat N 1 $ not 

Now. if N is a non-zero submodule of N. lhen 
t 

is .KC X) -torsion. i. e .• N/N 
i 

1s .KC £ ) -torsion. 
t 
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1. e .• for each E e X. N/N is .KCE )-torsion. 
t t t 

Hence. for the 

above E 1n X. N'/N 1s .KCD-torsion for each non-zero 
1 

submodule N of N. but N is not .KCD-torsion. i.e .• N is 
1 

.KCD-critical. i.e .• N~>E. Now. Et!! X and X is right stable 

under ~e links. so N e X. 

Cb) Let c e .KC}(). Assume thal R./cR is nol .KC}()-torsion. 

Then let /1 be a submodule of R./cR maximal wi lh respect to the 

property that N = CR./cR)/H is not M:}()-torsion. Then N is 

.KC}() -cri ti cal . By Ca). there is E e X such that ECN) ~>E . 

Thus ECN) e X. Since c e .KC}() = rlFeX...teF'). we have 

c e .KCECN)). i. e .• annECN) c • o. Hence annN c Ill: o. Now. N 

1s a homomorphic image of R/cR, say, f : R./cR ---} N such 

that f is a sur jection. Let fC1 +cR) ... x. Si nce R/cR is 

cyclic. N is cyclic and is generated by x. Hence x '" O. 

Then fCc+cR) = xc, and c+cR = O. but xc ", 0 since annN c = O. 

which is a contradiction. Hence. by proposilion 1.17 • .KC}() 

is right Ore. 

PROP~TION 5.25: Let R be a right Noetherian ring and let 

x = { o. T } be a stable subset of ~~-R such thal lhe only 

link to T is O...s.>T. Then.KC}() is right Ore. 

injective right R-modules. Then :t< E) = :t< H) for some 
2 t. 
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.K(E ) -cri lical z righl R-module H . z Then by propositions 

1 . 15( i i i). 2. 3 and 2. 11 • P .K( E) = -x.c E 2) ~ -x.c Et) . 
t 

Hence 

.K(Ez) S .K(E!). Then • .K(X) .. .K(E1 ) n .J((Ez). Thus X sa.tisf'ies 

t.he righl int.ersect.ion conditioon and so by proposition 5.24 • 

.HOD is right. Ore. 

SCOPE FOR FURTHER WORk 

So far. we have seen how t.orsion cla.sses can be used in Ore 

localisat.ion and reIaled areas. Now. we discuss some 

problems lhat. arose in t.he above study and which are still 

unsolved. 

Ca) As already ment.ioned. in t.he case of prime ideals. the 

generic regularit.v condition has a.n imporlanl role in lhe 

sludy of localisalion. Il would be inleresting lo see the 

conneclion belween lhe generic regularily condilion 

(definilion 3.11) and Ore-localisation in the 

torsion-lheorelic case. 

(b) We have defined lwo lypes of links between prime lorsion 

classes. Though the direct conneclion between lhe two is 

ruled oul (propositions 5.9 and 5.10). it 1s quite possible 

t.hal t.hey are related lo each other in some way. 
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Cc) By proposition 5.16. we see that if R is an Artinian 

o ring and Cl e ofL-R. then Cl ~>CI. Now. let Q. P e y~ R such 

that -x<.R.,/Q) ~>-x<.R/P). 1. e .• -x<.VQ) = -x<.H) f"or some .N1.:ECVP) 

C=~CEp))- critical right R-module H. By note 5.2. EQ = ECH). 

Let I = J(P...) be the Jacobson radic.l of R. Then I is a 

semi prime ring and so R/I is a semisimple Ar-tinian ring. 

Now. let E' = annE I • F· = annE I • H· = annH Q and 
P Q 

~. = ~C annE )VI' Then. we have. CF·)VI = ECH·)VI • by 
P 

[GW. exercise 4El. Since E" • F" are uniform inJective 

modules over a semisimple Artinian ~ing. they are simple and 

so. F· = H'. 

tor-sion-f~ee. 

Hence. H' VI is ei the~ .K' -tor-si on o~ .K' -

If H' VI is .K' -to~sion-f~ee. then it is 

~'-critical and hence F" ~>E' as VI-modules. By co~ollary 

5.9. F' = EO. i.e .• annE I = annE 1. By [J. proposition 
Q P 

4.4.3]. annE I = annE Q and annE 1 = annE Po i.e .• 
Q Q P P 

annE Q = annE P 0 Hence 0 annC annE Q) = annC annE P). i. e. • 
Q P Q P 

Q = Pi. e .• the Ore link -x<.VQ) ..2>-x<.VP) is a self-link. 

There is also the case when H' VI is .Ko-torsion. It would be 

interesting to know what happens then. 

Cd) If R is a right Noethe~ian ring. then any finite set of 

prime ideals satisfies Jategaonkar-'s ~ight inter-section 

condi tion (J. pr-oposi tion 7.2.4). From the pr-oof of thi s 
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p~opos1~ion. it can be seen ~hat in a semip~ime ~ight 

Noe~he~ian ~ing. any Cini~e se~ oC tame injectives satist'y 

the ~ight inte~section condition as in def'inition 5.23. Mor'e 

gene~ally. if X is a finite set of indecomposable injectives 

over- a ~ight Noe~he~ian ~ing. ~hen does X satisfy the ~ight 

in~e~section condi~ion? 

(e) An ideal P in a ~ing R is ri6ht primitive iC P = annR A 

fo~ some simple r-ight R-module A. If' X S y~ R. we say X is 

a ctassicaUy ri6ht tocaU.sabte set if' ~X) = flpe)( ~P) is a 

r-ight Or-e 
-t 

set and the localisation RX = ~(X) has the 

following p~ope~~ies: 

1) RX /' PRX is a simple ~ing Co~ all P E X. 

Z) Eve~y ~ight p~imi ti ve ideal of' Rx has the f'o~m PRX f'or 

some P € x. 

3) Ever·y f'initely generated ~ight RX -module which is an 

essential ext.-ension of' a simple ~ight RX -module is 

A~tinian. 

A set X of p~ime ideals oC R is said to satisfy the 

incom.parabiLity condition if' ~he membe~s of X ar'e pai~wise 

incompar-able. i. e .• no membe~ of X is p~operly con~ained in 

any othe~ membe~ of X. Then. by [J. Theo~em 7.1.5]. we have 
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THEOREM: A non-empty set X of prime ideals in a (right) 

Noether"ian ring is (right) classically localisable if and 

only ir it is (right) stable and satisfies the (right) second 

layer condition. the (right) intersection condition and the 

incomparability condition. 

It would be interesting to get an analogous definition of a 

classically localisable set of uniform injectives Cor. 

equivalentJly. of prime torsion classes) and to get a tJorsion

theoretic version of the above theorem. 

~ . . . . . . . 
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