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CHAPTER 0

INTRODUCTION

This thesis is concerned with two aspects - One, study of some topological like

concepts in closure spaces and two, study of closure semigroups analogous to the

theory oftopological semigroups.

CLOSURE SPACES

The concept of a topological space is generally introduced in terms of the

axioms for the open sets. However alternate methods to describe a topology in the set X

are often used - in terms of neighbourhood systems, the family of closed sets, the

closure operator, the ~terior operator etc. Of these, the closure operator was

axiomatised by Kuratowski and he associated a topology from a closure space by taking

closed sets as sets A such that cIA = A, where cIA is the toplogical closure of a subset A

ofX. It is also found that cIA is the smallest closed set containing A

Cech introduced the concept of Cech closure space. ( In this thesis we denote

Cech closure space as closure space for convenience ).

v
In Cech's approach the condition ccA =cA among Kuratowski axioms need not

hold for every subset A of X (Here cA denotes the closure of A in X ); when this

condition is also true, c is called a topological closure operator. The concept of closure

v

space is thus a generalization of that of topological spaces. Cech closure space is also

v

called A - space by C.Calude - M.Malitza [C-M]. For them a Cech space is obtained by

removing c(AUB) = cA U cB and introducing A C B -> cA C cB into the axioms of
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v

an A-space. However considering universal acceptability we call the former Cech

closure spaces and the latter monotone spaces.

In 1978, C.Calude and M.Malitza also mentioned [C-M] the concept ofa total

v v
Cech space and a total Kuratowski space. A total Cech space [respectively total

Kuratoswski space] is a closure space [ respectively Kuratoswski closure space] which

also satisfies the condition

c(U A) = U c(A) [respectively cl (U A) = U cl (A)].
iEI iEI iEI iEI

v

Calude and Cazanescu mentioned that [C-C] total Cech spaces are in one-to-one, onto

v

correspondence with reflexive relations and they also studied the category of total Cech

spaces and its full subcategory determined by total Kuratowski spaces.

TIle ideas about the concepts of a continuous mapping and of a set endowed

with continuous operations (compositions) play a fundamental role in general

mathematical analysis. Analogous to the notion of the continuity, we consider the

v
morphisms throughout this thesis. Cech described continuity in closure spaces by means

of neighbourhoods, nets etc. Koutnik studied the convergence in non Hausdorff closure

space [KOJ He studied more about sequential convergence structure in [K02],[K0l].

Mashour and Ghanim in 1982 defined [MA-G)] C- almost continuous as a function

fX-->Y, where X and Y are closure spaces and is said to be a C-almost continuous if

for each xEX and each V c Y with f{x) E VO, there is U C X such that x E U" and

f{U)C( c(U)t They also studied some results related to this concept. D.R.Andrew and

E.K.Whittlesy [A-W] and lames Chew [CHE] studied about closure continuity.

D.N.Roth and lW.Carlson mentioned [RD-C] the degree of a closure operator. They
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v

also found that Cech closure spaces of finite degree provide a nontrivial generalisation

of topological spaces. It was shown that the category of topological spaces and

v
continuous maps is bi-reflective in the category of Cech closure spaces of finite degree

and continuous maps. Y.Kannan [K] defined the degree of closure operators in infinite

case also and studied more about this.

Separation axioms m closure spaces have different implications than the

v
corresponding axioms in topological spaces. According to Cech, a closure space is said

to be seperated [CE2] if any two distinct points are separated by distinct

neighbourhoods. Separation properties in closure spaces have been studied by various

authors. D.N.Roth and J.W.Carlson studied [RO-C] a number of seperation properties.

v
in closure spaces. They showed that Cech closure operator on a finite set can be

represented by a zero-one reflexive matrix. A number of separation properties were

studied for finite spaces and characterised in terms of matrix that represents the closure

operator. Separation properties that carry over to the underlying topology were also

studied. W.J.Thron studied [T] some separation properties in closure spaces. He defined

a space as regular if x ~ c(A) (A is closed in X) implies that there exist D,E C X,

DnE=4> such that x , c(X-D), A nc(X-E)=4>. KC.Chattopadhyay and W.J. Thron studied

[CH-T] some separation properties of extensions and obtained some results on the

above. Chattopadhyay mentioned [CH] Ro,R1 spaces and pointed out that an RI space is

an R, space. Some separation properties on biclosure spaces (X,c.,c2) were studied by

Chattopadhyay and Hazra in 1990 [CH-H]. According to them a biclosure space
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==> x=y where (j is a grill on X and a T) space if c)(x) n c2(x) = x for all x in X . It was

proved that the RI space (X,c),c2) is To if and only if the space is T).

For topological spaces compactness can be expressed in a number of different

v

ways. However for closure spaces some of these statements are not equivalent. Cech

defined [CE2] the term compactness for a closure space (X,c) if every proper filter of

sets on X has a cluster point in X. He described the fundamental properties of compact

closure spaces. He noted that for a closure space (X,c) to be compact it is necessary and

sufficient that every interior cover 'V (an analogue of an open cover in topological

space) of (X,c) has a finite subcover. Chattopadhyay [CH] defined a compact space as a

closure space (X,c) if and only if [Gc+(x)=x EX] is a cover of .Q(X). He denoted by

D(X), a set of ultrafilters on X, by (j, a grill on X then cg=[11: l1E.Q(X), 11 c (j].

W.J.Thron mentioned [T] types of compactness. According to him a closure space (X,c)

is called linkage (F - linkage) compact ifevery linked ( F - linked) grill on X converges.

A grill (j is called linked grill if A,B E G ==> c(A) n c(B) =cP, F - linked grill if AI'

~, ...An E G ==>n[c(,,)]= cP. Some weak forms of compactness like almost

c-compactness were introduced and some of its properties were studied [MA-G1] by

AS.Mashour and M.H.Ghanim. Compactness and linkage compactness were defined by

K.C.Chattopadhyay [CH].

"Cech defined [CE2] and developed some properties of connected spaces.

According to him a subset A of a closure space X is said to be connected in X ifA is not

the union of two non-empty semi-separated subsets of X,
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that is A = AI U ~. (cAI n ~) U (AI n c~) =cP implies AI= cP or ~ = cP. Plastria

studied [P] connectedness and local connectedness of simple extensions. The concept of

v

connectedness which was defined by Cech in closure spaces precisely coincides with

connectedness in the associated topological spaces.

K.C.Chattopadhyay and W.J.Thron were the first persons who studied [CH-T]

the general extension theory of Go closure spaces. They studied some special closure

operators and considered the case when an extension is topological and also compact.

The underlying structure of each nearness space is topological space. The underlying

v
structure of each semi nearness space is a Cech closure space. D.N.Roth and

lW.Carlson showed [RO-Cl that finitely generated Cech closure spaces are a natural

v
generalisation of finite Cech closure spaces. K.C.Chattopadhyay developed [CH] an

extension theory of arbitarary closure spaces which are in general supposed to satisfy no

separation axioms. He introduced the concept of regular extensions of closure spaces

and satisfied this concept in detail.

v
Though much work has been done in topological spaces and in Cech spaces,

there a:re still many problems not attempted. In the first part of this thesis we have made

an attempt in this direction.

TOPOLOGICAL SEMIGROUPS

The theory of topological semigroups originated during the fifties. A.D.Wallace

has contributed much to this area in its earlier days of development. A topological

semigroup is a Hausdorff space S with continuous associative multiplication (x,y) ->

xy of S x S into S . After Wallace's introduction, the study of topological semigroups
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was continued by others. Some of the studies in this direction are due to AD.Wallace [

on the structure of topological semigroups, Bull Amer. Math. Soc. 61 (1955a),95-112 ]

and K.H.Hofinann and P.S.Mostert ( Elements of compact semigroups, Merril book,

Inc, Colombus (1966), AB.Paalman De Miranda, [ Topological semigroups,

Mathematical Centre Tracts, 2nd edition, Mathematiche Centrum Amsterdam 1970 ].

Topological semigroups which are compact will be called compact semigroups.

The theory of compact semigroups is a rich area of research. It is to be noted that a

compact semigroup S contains an idempotent. Some standard results in this area can be

found in the book" The theory oftopological semigroups " lH.Carruth [ CH-A-Ka etc.

Tietze, Alexandroff, Urysohn etc worked on campactification and introduced the

concept of one-point compactification. Tychnoff continued this work and proved that

-J

every Tychnoff space can be embedded in a compact Hausdorff space. Later E.Cech and

M.H.Stone gave the concept of maximal compactification 03X) and stated its

fundamental properties.

Deleeuw, Glicksberg, Hunter etc have studied Bohr compactification of

topological semigroups having universal properties analogous to those of f3X.

lAHildebrant and lD.Lawson investigated [H-L] the conditions under which, a

topological semigroup and a dense ideal have same Bohr compactification. He also

stated more results for weak compactification of semitopological semigroups as well as

the Bohr compactification. lW.Baker and R.lButcher studied [B-B] about Stone -

"Cech compactification of a topological semigroup. In 1990 K S.Kripalini defined
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sermgroup compactification of a topological semigroup and also found some results

related to this.

The theory of closure semigroups, the theory ofBohr compactification and other

types of closure semigroup compactifications seem to have not been attempted by

others. In the second part ofthis thesis we have made an attempt in this direction.

0.2 SUMMARY OF THE THESIS

CHAPTER I

In this chapter we introduce the morphisms in the category of closure spaces and

study the relation between these morphisms and the continuous functions in the

associated topologies. We denote the collection of morphisms from one closure space

into another as Sc(X) and find that Sc(X) is a semigroup. We consider an order relation

between closure operators and prove some related results. In section 2 we point out the

degree of a closure operator and find that the degree is invariant. We also consider the

order of a map and study more about this. In the third section we find that a closure

space can be associated from a monotone space and mention some preliminary concepts

in monotone spaces. We also study the concepts of morphisms and order of map in

monotone spaces.

CHAPTER 2

The second chapter is a study of some separation properties. In section 1 of this

chapter we consider some pointwise separation properties in closure spaces such as

TO,T\ and T2• We also find the relation between the separation properties in (X,c) and

those in the associated topological space (X,t). Some higher separation properties in
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closure spaces have been introduced and studied in section 2. We consider the

hereditariness and productivity of some of these properties in closure spaces. In section

3 of this chapter we explain the above separation properties in the case of monotone

spaces.

CHAPTER 3

Some properties of compactness are studied in the first section of this chapter.

v
Cech studied some properties of compact closure spaces. We find the relation between

compact closure space and the associated compact topological space. Section 2 deals

v
with the concept of connectedness. Though Cech def ined and studied some properties

of connectedness in closure spaces, they are more related to associated topological

spaces. We define connectedness and find the relation between connected closure spaces

and associated topological spaces. It is observed that when a subset A ofX is connected

cA need not be connected. We consider the image of a connected space under a

morphism. In the third section we define and study the concept of local connectedness

and path connectedness in closure spaces. We explain the above notions in monotone

spaces in section 4.

CHAPTER 4

An attempt has been made to introduce and study closure semigroups in the

fourth chapter. We define closure semigroup and find that S is a closure semigroup does

neither imply nor is implied by the fact that it is a topological semigroup in the

associated topology. We give examples in either direction. In this section we also

explain some preliminary concepts of closure semigroups analogous to those in a
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topological semigroup. The concepts of ideal and product in a closure semigroup have

also been studied in section 2. In the third section we consider the notion of

homomorphisms and congruences and prove some related results.

CHAPTER 5

The study of closure semigroup is continued in the fifth chapter. We introduce

Bohr-type compactification and prove its existence. We also consider the set of all

closure semigroup compactifications of a given closure semigroup. We find that this set

is an upper complete semilattice.

0.3 PRELIMINARY DEFINITIONS AND RESULTS USED IN THE THESIS

Definition O.3.1ICEzl

A function c from a power set of X to itself is called a closure operation for X

provided that the following conditions are satisfied.

i) c~ = ~

ii) A C cA

iii) c(A U B) = cA U cB

A structure (X,c) where X is a set and c is a closure operation for X will be

v

called closure space or Cech space. Let us consider the following conditions.

iv) A C B ==>cA C cB for every A,B C X

v) For any family of subsets of X, {AJi€I

c(UA) = Uc(A)
iEI iEI
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vi) c(cA) = cA for every A C X

The structure (X,c) where c has the properties (i), (ii) and (iv) is called a

v
monotone space [C-M]. A Cech space which satisfies the condition (vi) is called

v
Kuratowski (topological) space [C-M]. A Cech space (Kuratowski) space is total if the

condition (v) holds [C-M].

Definition 0.3.2 ICE 2)

A closure c is said to be coarser than a closure c' on the same set X if

c'(A)Cc(A) for each Ac X. In this case we say c-cc'.

Definition 0.3.3 ICE 2) ·

The identity relation on the power set of X is the finest closure for X and it will

be called the discrete closure for X. Setting c~=~ and cA = X for every A C X we get

the coarsest closure for X and it will be calledthe indiscrete closure for X.

Definition 0.3.4

A subset A of a closure space (X,c) will be called closed ifcA = A and open if its

complement is closed. That is if c(X-A) = X-A.

Note 0.3.5

If (X,c) is a closure space we denote the associated topology on X by t. That is

t={A' : cA = A } where A' denotes the complement of A . Members oft are the open

sets of (X,c) and their complements the closed sets.
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Convention

We consider spaces (X,c) where c denotes a monotone operator on X; the

associated closure (See Result 1.3.4) is denoted by c and the associated closure space is

(X,c); the associated topology is denoted by t and the associated topological space is

(X,t); the closure in (X,t) will be denoted by cl. C'C I'C2'C' etc denote closure operators on

sets and t,t l,t2,t' etc denote the respective associated topologies and cl,c1I'c~,cl' etc the

respective topological closures.

For any closure c for a set X there is associated interior operator Into.

Definition 0.3.6 ICE2 )

An interior operator Into is a function from power set ofX to itself such that for

each A ex, Into A = X-c(X-A). The set IntoA is called the interior of A in (X,c). Also

A is called a neighbourhood ofx ifxslnt A.

Note 0.3.7

A subset X is open ifand only if int X = X·

Definition 0.3.8 ICEll

Let (X,c) be a closure space and Y C X. The closure c' on Y is defined as

c'A = Y n cA for every A C Y. The closure space (Y,c') is called the subspace of (X,c).

Result 0.3.9 ICEll

Let Y be a subspace of a closure space X. Then (a) If A is closed (open) in X,

then Y nA is closed (open) in Y.
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(b) If Y is closed (open) in X and A is closed (open) in Y then A is closed (open) in X.

Recall: If ccA = cA for every A C X, then the closure operator c is called topological.

Result 0.3.10 (CE1 (

A closure space (X,c) to be topological, it is necessary and sufficient that for

each subspace Y of X every relatively closed (open) set be of the form Y n A with A

closed (open) in X.

Definition 0.3.11 (CE1]

Let {(X.,c.) : a€A} be a family of closure spaces, X be the product ofthe family

{XJ of underlying sets and 1t. be the projection of X onto X. for each a. The product

closure c is the coarsest closure (which exists) on the product of underlying sets such

that all the projections are morphisms.

Result 0.3.12 (CE1 (

If {XJ is a family of closure spaces and Y. is a subspace ofX, for each a, then

fl{YJ is a subspace of fl{XJ.

Result 0.3.13 (CE 1]

If X is the product of the family {XJ of closure spaces and U is a

neigbourhood of x in X, then 1t'(U) is a neigbourhood of1t. x in X.; in particular, if U is

open then 1t.(U) is open.
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Note 0.3.14

Let {(X.,c.):a € A} be a family of closure spaces. The product of the associated

topolog:ies is not necessarily the associated topology of the product closure.

Example 0.3.15 (For details, see the appendix)

Let X = {a,b,c}

c be defined on X such that

c{a}={a}, c{b}={b,c}, c{c}={a,c}

c{a,c }={a,c}, c{a,b }=c{b,c}=cX=X, ccl>=cl>

Then c is a closure operator on X

X x X={(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),( c,b ),(c,c)}

(X,t)={X,cl>, {b}, {b,c} }

(X x X,t x t)={ {(b,b)},{(b,b),(b,c)},{(b,b),(c,b)},{(a,b),(b,b),(c,b)},

{(b,a),(b,b),(b,c)}, {(b,b ),(b,c),(c,b)},

{(a,b),(b,b ),(b,c),(c,b)}, {(b,a),(b,b),(b,c),(c,b)},

{(b,b),(b,c),(c,b ),(c,c)}, {(a,b),(b,b ),(b,c),(c,b), (c,c)}

{(a,b ),(a,c),(b,b ),(b,c),(c.b ),(c,c)},

{(a,b),(b,a),(b,b ),(b,c),(c,b ),(c,c)},

{(b,a ),(b,b ),(b,c),(c,a ),(c.b ),(c,c)},

{(a,b),(a,c ),(b,a ),(b,b ),(b,c),(c.b),(c,c)},
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{(a,b),,(b,a ),(b,b),(b,c ),(c.a ),(c,b),(c,c)},

{(a,b),(a,c),(b,a ),(b,b ),(b,c ),(c,b),(c,c)},

{(a,b),(b,a ),(b,b ),(b,c ),(c,b)},XxX,<j)}

(X,t) x (X,t)= {<j),X x X, {(b,b)},{(b,b),(b,c)},{(b,b),(c,b),},

{(b,b),(b,c ),(c,b),(c,c)} }

Definition 0.3.16 ICE21

Let f (X,c) -->Y is a surjective on to mapping. Then Y is said to be quotient of

X under f if and only if Y is endowed with the closure inductively generated by the

mapping f: X -->Y. That is c'A=t{c(f-1(A»), for every A c Y.

Result 0.3.17

Let g be an onto c-c' morphism from X to Y and for every V c Y containing

g(x) such that g-l(V) is a neighbourhood ofx then V is a neighbourhood of g(x) implies

g is quotient.

Proof

We have to show that c'A=g(C(g-1 (A»), for every A c Y

Given that g-t (V) is a neighbourhood ofx ==> V is a neighbourhood of g(x)

That is, xE X-c(X-g-1(V» ==> g(x) E Y-c' (Y-V)

That is, g(X)E c'(Y-V) ==> xs c(X-g-1(V»

That is, g(x)Ec'A==> xEcg-I(A) by taking A = Y - V
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==> g(x)fgC(g-1 (A»

Any element in c'A is of the form g(x)

Therefore c'A C gcg-I(A)

since g is amorphism, (gctg' (A»C c'gg' (A) C c'A

Therefore c'A = gcg" (A)

so we get g is a quotient map.



CHAPTER 1

MORPHISMS AND ORDER OF A MAP

INTRODUCTION

This chapter begins with the study of c-morphisms from one closure space into

another. The order of a map and order of a closure operator are also studied in this

chapter.

v
Cech studied continuous mapping in closure space [CE2] . He also described this

in terms ofneighbourhoods and in terms ofnets and considered the case when the image

set is topological. In [A-W] D.R.Andrew and E.KWhittlesy studied closure continuity .

~

In section 1.1 we introduce the morphisms in the category of closure spaces

v
(which are the continuous functions in the terminology of Cech) and study the relation

between these morphisms and the continuous functions in (X,t). We consider order

between closure operators and prove certain related results like .. If X is a set, Cl and c2

denote closure operators on X and if f is Cl morphism and C2s:.c1 then f is C I-C2

morphism."

David N. Roth and John W.Carlson mentioned the degree of closure operators in

v
[RO-Cl They proved some results like .. let (X,c) be a finite Cech closure space of

degree k then ck is the closure operator with respect to underlying topology." In section

1.2 we mention the concept of the degree of a closure operator. V. Kannan defined and

studied about order of a map f from a topological space into another set and into
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another topological space [K]. Based on this we give an analogous study about order of

a map f'from a closure space into a set and into another closure space in section 1.2

We also study these concepts in monotone space in section 1.3

1.1 MORPHISMS

In this section we study the notion of morphisms from one closure space into

another.

Definition 1.1.1

A map f: (X,c) -->(Y,c') is said to be c-c' morphism or just morphism if

f{ cA) C c'f{A).

Remark 1.1.2

v
Cech calls a morphism by the term continuous function. However, for us, a

function f: (X,c) -->(Y,c') is continuous means f: (X,t) -->(Y,t') is continuous.

Definition 1.1.3 ICE21

A neighbourhood ofa subset A ofa space (X,c) is any subset U of X containing

A in its interior where X-c(X-U) is the interior of U. By a neighbourhood of a point x

of X we mean a neighbourhood of the one point set {x}.

Note 1.1.4

It is clear that if A C X and ifW is a neighbourhood of A in (X,t) then W is a

neighbourhood of A in (X,c); the converse is not true.
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Example 1.1.5

Let X = {a,b,c}, c be defined on X such that

c{a}={a}, c{b}={b,c}, c{c}=o{a,c}, c{a,c}={a,c}, c{a,b}=c{b,c}=cX=X, c<l>=<I>

v
Then C is a Cech closure operator.

Here {a,c} is a neighbourhood of {a} in (X,c), but it is not a neighbourhood of {a} in

(X,t).

In order that a mapping f of a closure space (X,c) into another one (Y,c') be

c-c' morphism at a point x E X it is necessary and sufficient that the inverse image f-I(V)

of each neighbourhood V of f{x) be a neighbourhood of x, or equivalently that for each

neighbourhood V of'fix) there exists a neighbourhood U ofx such that f{U) c V[CE2] .

Result 1.1.6 ICE2]

If f is a c-c' morphism of a space (X,c) into a space (Y,c') then the inverse image

of each open subset ofY is an open subset ofX.

Result 1.1.7

Let (X,c),(Y,c') be two closure spaces. fis a mapping from (X,c) into (Y,c').If

f is a c-c' morphism, then f is continuous.

Proof

Let f be a c-c' morphism. Then inverse image of every open set is open. So f is

continuous.
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Note 1.1.8

fis continuous does not imply that fis c-c' morphism.

Example

X={a,b,c}

Let c be defined on X such that

c{a}={a}, c{b}={b,c}, c{c}={a,c}, c{a,c}={a,c} , c{a,b}=c{b,c}=cX =X, c<jl=<jl

c is a closure operation on X

c' be defined on X such that

c'{a}={a,b}, c'{b}={b,c}, c'{c}={c}, c'{b,c}={b,c},

c'{a,b}=c'{a,c}=c'X=X, c'<jl=<jl

c' is a closure operation on X.

fis a mapping from X-->X defined in such a way that f{a)=c,f{b)=a, f{c)=c

fis continuous. But fis not a morphism. For, fc({b}) ~ c'f{{b})

Definition 1.1.9 (CE l ]

A cluster point or an accumulation point of a set A in (X,c) is a point x

belonging to e(A-(x»
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Note 1.1.10

If x is a cluster point of a set A in (X,c) then x is a cluster point of a set A in

(X,t). The converse is not true. In Example 1.1.5 a is a cluster point of A = {a,b} in

(X,t), a E cl(A-(a». Since a ~ c(A-(a», a is not a cluster point of A={a,b} in (X,c).

Note 1.1.11

The set of all c-rnorphisms of X is denoted by Se(X) which is a semigroup under

usual composition. The set of all morphisms from (X,c) to (X,c') is denoted by Se..,' (X).

Clearly it is not in general a semigroup under composition.

Note 1.1.12

If csc' then s., (X) is a semigroup.

For this, fis c-c' morphism and g is c-c' morphism

(g 0 f)(cA) = g(f{cA»

c g(c'f{A»

C g c(f{A», since c~c'

c c:'g(f{A» = c'(g 0 f)(A)

That is g 0 f is c-c' morphism and this shows that Se..,' (X) is a semigroup under

composition.
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Result 1.1.13

Let X be a set, c and c' denote closure operations on X. If f is c-morphism and

c'< c then f is c-c' morphism .

Proof

f(cA) C cf(A), since f is c-morphism

C c'f(A), since c'<c

That is f is c-c' morphism

Similarly if f is c-c' morphism and c5.,c' then f is c-morphism .

Note 1.1.14

If (X,c) is a closure space, cl is the closure operation in the associated topological

space. Then else-

c(cl(A) = cl(A), since cl is closed in the associated topology

cA C c(clA), since A C clA

That is cA C clA

Equivalently, identity map from (X,c) into (X,cl) is a c-c1 morphism.

Proposition 1.1.15

Let X be a set c and c' be closure operations on X and cl and cl' be the closure

operations on the associated topological spaces t and t' respectively. Ifc'sc, then cl'.s;cl
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Proof

Ifcss then any c' closed set is c- closed. For, if B is any c' closed set, then

B C cB C c'B = B. So B=cB. It follows that ifF is any c' closed set containing A then

F~ cIA. In particular cl'A ~ clA for any set A. That is cl' .scl.

Then we get c'sc ==> cl'scl.

The following example shows that the converse of the above proposition is not

true.

Example 1.1.16

Let X = {a,b,c,d}

c be defined on X such that

c{a}={a}, c{b}={b,c}, c{c}={c,d}, c{d}={b,d}, c{a,b}={a,b,c},c{a,c}={a,c,d},

c{a,d }={a,b,d}, c{b,c}=c{b,d}=c{c,d }=c{b,c,d}={b,c,d},

c{a,b,c }=c{a,b,d}=c{ a,c,d}=cX=X, ccjl=cjl

Then c is a closure operation on X

c' be defined on X such that

c'f a}={a}, c'{c}=c'{d}=c'{ c,d}={ c,d},

c'{b}=c'{b,c }=c'{b,d }=c'{b,c,d}={b,c,d},

c'{a,c}=c'{a.d }=c'{a,c,d}={a,c,d},

c'f a,b}=c'{a,b,c}=c'{a,b,d}=c'X=X, c'cjl=cjl



23

Then c' is a closure operation on X

(X,t) = {X,<j>,{a},{b,c,d}}

(X,t')={X,<j>, {a}, {b), {a,b}, {b,c,d} }

Here cl~l'. Bnt c~c'. For c'{b}~ c{b}.

Result 1.1.17

Let X,Y be sets. c and c' be closure operations on X,Y respectively and cl, cl' be

the closure operations on the respective associated topological spaces. Iff: X->Y is a

c-c' morphism, then it is a e-el' morphism-

Proof

f{cA) C c'f{A) for every A C X

C cl' f{A).

That is f is e-el' morphism.

In particular when X=Y and c=c', we get , f is c-morphism implies f is

continuous (as is seen in Result 1.1.7).

Note 1.1.18

It is clear that if c'<c and fis cl-morphism then fis cl-cl' morphism.

Result 1.1.19

If c'<c, then SJX) C Se..,' (X) and is a monoid although Se-<:' (X) is not even a semigroup

in general.
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Proof

Iff ES,(X), then f{cA) C cf{A)

C c'f{A), since c:« c

This is true for every A C X. Therefore f E Sc.." (X). That is S.(X) is a semigroup under

the induced operation is trivial.

Definition 1.1.20

A homeomorphism is a bijective (one - one - onto) mapping f such that both f

and f- 1 are morphisms. That is f{cA) = cf{A) for every A C X.

Note 1.1.21

If a function f from (X,c) onto (Y,c') is a homeomorphism then f is a

homeomorphism from (X,t) onto (Y,t '). But the converse is not true.

Example 1.1.22

X = {a,b,c}

Let c be defined on X such that

c{a} = {a}, c{b}={b,c}, c{c}={a,c}, c{a,c}={a,c},

c{a,b}=c{b,c }=cX=X,ccjl=cjl

c is a closure operation on X.

c' be defined on X such that

c'{b}={b,c}, c'{c}={c}, c'{b,c}={b,c},



25

c'{a}=c'{ a,b }=c'{ a,c }=c'X=X, c'cj>=<I>

Then c' is a closure operation on X.

(X,t) = {X,cj>,{b},{b,c}} and (X,t') = {X,cj>,{a},{a,b}}

fis a mapping from (X, c) onto (X,c') defined in such a way that f{a)=c, f{b)=a, f{c)=b. f

is a homeomorphism from (X,t) onto (Y,t'). But fis not a homeomorphism from (X,c)

onto (X,c') because f c( {b}) 4= c' f{{b}) .

1.2 DEGREE OF CLOSURE OPERATOR AND ORDER OF A MAP

Definition 1.2.1

v
Let (X,c) be a Cech closure space. We define for each ordinal a, the operator cll.

as cll.(A)=UcP(A) ifa is limit ordinal and c(cP(A» ifa=f3+ 1. Then cll. is a closure

f3<a

operator. The degree of c is defined to be k ifk is the smallest ordinal number for which

C~Ck+l (It is called the order ofthe closure space in [K]).

Example 1.2.2

(1) Let X={a,b,c}

c be defined on x such that

c{a}={a}, c{b}={b,c}, c{c}={a,b,c},

c{a,b }=c{b,c}=c{ a,c }=cX=X, ccj>=cj>

Then c is a closure operation on X.

Here the degree of closure operator is two.
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(2) Let X=N

c be defined on X such that

cA = A U {x+ I: x € A} for every A c X

Then c is a closure operation on X

Here the degree of closure operator is ro

(3) Let x=[1,n ] ordinal space.

c be defined on X such that

cA = A U (A+I), (A+I)={x+1 : x € A}

Then c is a closure operator and degree of c is n .

Result 1.2.3 [ RO-C]

v

Let (X,c) be a finite Cech closure space. Then

I. For every natural number n, and A C X, cO(A) C cIA

2. For each A C X there exists a smallest m € N such that cm(A)= cIA.

Result 1.2.4 [RO-C]

v
Let (X,c) be a finite Cech closure space of degree k. Then (1) ck is a Kuratowski closure

opearator on X

(2) ck is the closure operator with respect to the associated topology (X,t).
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Result 1.2.5

The order of a closure operator is invariant.

Proof

Let (X,c) and (X,c') be closure spaces which are homeomorphic. Let the degree of cbe

k. Then clearly the degree of c' is also k.

Now we consider the order of a map from a closure space X to another set Y

and from a closure space X to another closure space (analogous to the study made

in [K]).

Let X be a closure space and Y be any set. Let fbe a function from X onto Y.

Take any subset A ofY. Define

Aa
f = U AP f ifa is a limit ordinal

f3<a



28

Definition 1.2.6

Let X be a closure space and Y be a set f be a map from X onto Y. The order of

the map f denoted by cr(f) is the least ordinal number a such that A-f = AU

f for every

subset A ofY.

Example 1.2.7

Let X = {a,b,c}; Y = {l,2,3}

c be defined on X such that

c{a}={a}, c{b}={b,c}, c{c}={a,c},

c{a,b}=c{b,c}=cX=X, c{a,c }={a,c}, c~=~

Then c is a closure operation on X

Let f be a map from X onto Y such that f{a)=l f{b)=3 f{c)=2

The order of the map is 2.

Result 1.2.8

Let (X,c) be a closure space, (X,t) the associated topological space and Y be a

set. Ifcr(f) is the order of a map defined from X to Y and cr.(f) is the order ofthe map in

the sense of[K] from (X,t) to Y then cr.(f)~ cr(f).

Proof

Let * denote the corresponding notions with respect to (X,t). We know that

cA C cIA for every A C X
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for every ordinal u.

Since cri£) is the least ordinal number u such that A-r* = Aar* for every subset A ofY,

cr.(f) is less than or equal to cr(f) .

Example 1.2.9

Let X=Y=N

c be defined on X such that

c(A) = A U (A+I) for every subset A ofX.

Then c is a closure operation on X

Let fbe an identity map from X to Y

Here cri£) is 2. But e(f) is 0).
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Note 1.2.10

The following are analogous to the corresponding results in topological spaces [K] :

( 1) As a increases, Aaf also increases. That is ifu<~ then Aar C APf for each A C Y

(4) For a subset B ofY, the following are equivalent

(a) B = A-ffor some A C Y

(b)B=B-f

(c) B = B',

(d) f-I(B) is closed.

(5) If A cBe Y, then Aa
f C APf for every ordinal number u.

Now we consider that Y is also provided with a closure operator. Take two

closure spaces (X,c) and (Y,c'). fis c-c' morphism.

Note 1.2.11

1. If f is c-c' morphism, then AIf C c'A for every A C Y

cf-I(A) C f-l{cIA), since f is c-c' morphism.
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2. Conversely if A'r C c'A for every A C Y, then fis c-c' morphism

f{c(["I(A») C c'A

So f " f{c(f-1(A») C f- 1(c'A) c ...

Therefore cf-1(A) C f-l(C'A)

Hence f is c-c' morphism.

3. Iffis a closed c-c' morphism, then c'A = A'r for every A C Y.

4. Iffis a closed c-c' morphism then cr(f)< 1 .

5. Iff and g are two maps from a closure space onto a set Y and ifA'r = A'g for each

subset A ofY, then cr(f)=cr(g).

1.3 .c*-MORPHISMS AND ORDER OF MAP IN MONOTONE SPACES

To each monotone space, we can associate uniquely a Cech closure space and

thereby a topological space. The interelations are discussed in this section.

Definition 1.3.1

A monotone operator c, is said to be coarser than a monotone operator c'* if

c*A :J c'*A for each A C X. In this case we say c*::5 c'*

Definition 1.3.2

A subset A of a monotone space (X,c*) will be called closed ifc*A = A, open ifits

complement is closed.
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Result 1.3.3

For each monotone operator there is a uniquely associated closure operator.

Proof

Let X be a set and c. be a monotone operator on X. Take the collection

{cu : Cu is a closure operator coarser than c,}.Take cA = ncuA for all A

Then c is a closure operator.

For, co > ncu(<j»=<j>

c(A U B) = n (cu(A U B» = n(cuAU cuB) = (ncuA)U(ncuB) = cA U cB

A C caA for every a

Therefore A c n cuA

Thus A ccA.

Example 1.3.4

X={a,b,c}

c. be defined on X such that

c.{a}={a}, c.{b}={b,c}, c.{c}={c}, c.{a,b}=c.{b,c}=c.{a,c}=c.X=X, c.<j>=<j>

Then c. is a monotone operator.

Associated closure operator is



33

ccl>==4>, c{a} ={a,b}, c{b} = {b,c}, c{c} = {a,c}, c{a,b}= c{b,c}= c{a,c}= cX = X.

The associated topology is indiscrete.

Remark 1.3.5

From (X,c) we can associate a topology (X,t) in the usual manner. From c. we

can associate in a similar way a Kuratowski closure operator directly. It is -clear that

both the above two Kuratowski operators are the same.

Definition 1.3.6

A neighbourhood of a subset A of a space (X,c.) is any subset U of X such that

Ac X-c.(X-U). By a neighbourhood ofa point x of X we mean a neighbourhood of the

one point set {x}.

Note 1.3.7

It is clear that if W is a neighbourhood of A C (X, c), then it is a

neighbourhood of A in (X,c.). But the converse is not true. In the Example 1.3.2, {a,b}

is a neighbourhood of {a} in (X, c.). But it is not a neighbourhood of {a} in (X,c).

Definition 1.3.8

Let (X,c.) be a monotone space and let Y C X. The monotone operator c'; on Y

is defined as c'.A = Y n c.A for every A C Y. Then c'.is called the relativisation of c.

to Y and the space (Y,c'.) is called the subspace of (X,c.).
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Definition 1.3.9

Let X be a set and c, denote a monotone operator on X. A map f: X->X is

said to be a c*-morphism iff{c*A) C c*f{A) for every A C X.

Definition 1.3.10

A map f: (X,c*) --> (Y,c'*) is said to be c.-c', morphism iff{c*A) C c'*f{A) for

each A c x.

Note 1.3.11

fis c*-c'* morphism need not imply that it is c-c' morphism and vice-versa.

The following example shows thatf(X,c*) --> (X,c'*) is not a c*-c'* morphism

but it is a c-c' morphism,

Example 1.3.12

X = {a,b,c}

c, be defined on X such that

c, is a monotone operator on X.

c is given by

c{a}={a,b}, c{b}={b,c}, c{c}={a,c}, c{a,b}=c{b,c}= c{a,c}=cX=X, c<j)=<j)
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Let f be a map from (X,c*) into (X,c*) defined in such a way that

f(a) = b, f(b) = c, fie) = a

f: (X,c) -> (X,c) is c-c morphism. But it is not cs-c, morphism because

Definition 1.3.13

Let (X,c*) be a monotone space and Y be a set. fbe a map from X onto Y. TIle

order of the map f denoted by S(f) is the least ordinal number a such that A-r = Anr

( A-r , An
r defined in monotone space similar to that in closure spaces) for every subset

AofY.

Note 1.3.14

It is clear that S(f) :::5cr(f).



CHAPTER 2

SOME SEPARATION PROPERTIES IN CLOSURE SPACES

INTRODUCTION

This chapter is devoted to the study of some separation properties of closure

spaces and of monotone spaces analogous to the separation properties of topological

spaces.

Tietze, Kolmogoroff, Frechet, Riez, Hausdorff and others studied separation

properties in topological spaces. The separation properties in closure spaces were defined

v
and discussed by E.Cech [CE2 ]. According to him, any two points can be separated by

distinct neighbourhoods in a separated space. Any point x and closed set not containing x

can be separated by distinct neighbourhoods in a regular space. David.N.Roth and

lW.Carlson studied a number of separation properties like To ,T. , Ro, RI etc [RO-Cl

W.lThron also discuss separation properties [T].

Section 2. I is mainly focused to define and study some point separation

properties like TO,TJ and T2 in closure spaces.

We introduce and study some higher separation properties in section 2.2. We also

find the relation between c-separation properties and t-separation properties.

Some results in the same area related to monotone space have also been studied in

section 2.3.
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2.1. POINT SEPARATION PROPERTIES IN CLOSURE SPACES

In this section we introduce and study some point separation properties in closure

spaces.

Definition 2.1.1

A closure space (X,c) is said to be To iffor every x ~ y in X either x f c{y} or

y f c{x} (Cech termed this as feebly semiseparated).

Result 2.1.2

If(X,t) is To then (X,c) is To'

Proof

Let (X,t) be To. Ifx +y in X, then either x f cI{y} or y f cl {x}.

But cA c cl A for every A C X.

So we get x 4c{y} or y f c{x}

The following example shows that the converse of the above Result 2.1.2 is not

true.

Example 2.1.3

X = {a,b,c}

Let c be defined on X such that



38

c {a}=a,b}, c{b}={b,c}, c{c}= {a,c}, c {a,b}= c {b,c}= c{a,c}= cX = X, c~=~

c is a closure operation on X.

Here (X,c) is To' But (X,t) is the indiscrete topology which is not To'

Definition 2.1.4

A closure space (X,c) is said to be T) if for x '" y we have x fC{y} and y f c {x}

v
(Cech termed this as semiseparated space).

Result 2.1.5

For a closure space (X,c) the following are equivalent.

(1) The space (X,c) is T).

(2) For any x E X, the singleton set {x} is closed.

(3) Every finite subset ofX is closed.

Proof

(I) ==> (2)

Let (X,c) be T) . Ifpossible, suppose x is not closed. That is c{x} =1= {x}. So there

exists y +x, Y E c{x}. But this contradicts the fact that (X,c) is T 1" Therefore {x} is

closed.

(2) ==> (3)
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For any x E X, the singleton set {x} is closed. Since finite union of closed sets is

closed, every finite subset ofX is closed.

(3) ==> (2)

Trivial

(2) ==> (I)

Singleton sets are closed. Therefore c{x}=x, c{y}=y and so x f c{y} and Yfc{x}.

Therefore (X,c) is T) .

Corollary 2.1.6

(X,c) is T\, ifand only if(X,t) is T1 •

Note 2.1.7

It is clear that every T\ space is also To . (X,c) is To need not imply that (X,c) is

T1• In Example 2.1.3 (X,c) is To but it is not T\.

Definition 2.1.8

A closure space (X,c) is said to be semi-Hausdorff if for x +y either there exists

an open set U such that xEU and y 1cU or there exists an open set V such that yEV and

xfcV. If both conditions hold, then (X,c) is said to be pseudo- Hausdorff

Result 2.1.9

If(X,t) is Hausdorff, then (X,c) is pseudo-Hausdorff
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Proof

Let (X,t) be Hausdorff Then x 1= y implies there exists disjoint open sets U,V

such that XEU, yEV. That is there exists an open set U such that xEU and Y1cl U and also

there exists an open set V such that yEV and xfclV. But cA c cl A for each A C X.

Therefore (X,c) is pseudo Hausdorff

Note 2.1.10

The converse of the above result is not true.

Example 2.1.11

X= N x N U {x,y} U {a.: i E N} U {b, : j EN}, ai's ,bj's, x,y are all distinct and

do not belong to N x N.

Let c be defined on X such that

cA = A U {b. : there exists an infuite number ofj such that (ij) EA}

U {aj : there exists an infuite number ofi such that (ij) E A}, ifA C NxN

cA = c( AnN x N) U A U { x }, ifA contains an infinite number of a;'s and

at most finitely many bj's.

cA = c(A n N x N ) U A U {y}, ifA contains an infinite number of bj's and

at most finitely many a;'s.
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cA = c( AnN x N) U Au {x,y} if A contains an infinite number ofas and an

infinte number of'b.s,

Here (X,c) is pseudo-Hausdorff. In (X,t) x and y cannot be separated by disjoint

open sets and. so (X,t) is not Hausdorff.

Definition 2.1.12

"A closure space (X,c) is said to be Hausdorff(Cech termed it as separated) iffor

any two distinct points, there exists neighbourhoods U ofx and V ofy such that unv=cP.

Result 2.1.13

If(X,t) is Hausdorffthen (X,c) is Hausdorff.

Proof

Let (X,t) be Hausdorff, then for any two distinct points x and y, there exist

disjoint open sets U and V containing x and y respectively. Since an open set is a

neighbourhood of each of its points and a neighbourhood in (X,t) is also a neighbourhood

in (X,c) , U and V are disjoint neighbourhoods for x and y in (X, c). Hence (X,c) is

Hausdorff.

Note 2.1.14

The converse of the above result is not true.

Result 2.1.15

(X,c) is pseudo-Hausdorffimplies (X,c) is T( .
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Proof

If(X,c) is not Tt, then there exists x € X such that c{x}= {x}. Let y € c{x}. TIlUS

ifU is an open set containing X, cV :::>c{x} 3 y. So (X,c) is not pseudo-Hausdorff

Note 2.1.16

(X,c) i.s semi-Hausdorffneed not imply that (X, c) is pseudo-Hausdorff

Note 2.1.17

(X,c) is pseudo-Hausdorffneed not imply that (X,c) is Hausdorff and vice versa.

Result 2.1.18

Every subspace of a pseudo-Hausdorff space is pseudo-Hausdorff

Proof

Let (X,c) be a pseudo-Hausdorff space and Ac X. Since X is pseudo-Hausdorff

there exists points xj= y and open V,V such that X € U, y f. cV and y € V, x f cv. Then

An U and A n V are open sets in A, such that x € A n V, y € A n V and x f. [A nc(A

n V)], y f [A n c(A nu)] which shows that A is pseudo-Hausdorff

It is clear that ifa closure space is T t (respectively To)' then every subspace is T)

(respectively To) .

Result 2.1.19

A nonempty product space is pseudo- Hausdorff ifand only ifeach factor space is

pseudo- Hausdorff
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Proof

Suppose Xa is pseudo-Hausdorff for each a € A. Let x =J y in nxa. Then for

some co-ordinate a, xa =I- Y« Since each X, is pseudo-Hausdorff for xaf Y« there exists

open sets Ua ' Va such that xa € Ua' v; € Va and Xa 1CaVa' v; f Ca Ua. Since the

projection maps are c - ca morphisms [CE2] and the inverse image of an open set under a

Xf7ta-
1c

aVa) and Yf7ta-l(caUa). But c (7ta-
1U

a )C 7taol(caoUaO) and c (7t a-
1V

a )C 7ta
o1(c

a-V,,")

Therefore, xfc(7taol(Va»and Yfc(7ta-
I(UJ ).

Conversely, suppose that nXa is nonempty pseudo-Hausdorff Take a fixed point

b=(ba) where ba€ Xa for each a € A. Then the subspace Ba = {X€nXp : ~=bpexcept for

f3=a} is pseudo-HausdorfI Ba is homeomorphic to Xa.

pseudo-HausdorfI

Therefore X" IS

Definiiton 2.1.20

A closure space (X,c) is said to be Urysohn space if for x 1= Y, there exists open

sets U,V such that x€U, Y€V and cU n cV = cj>.

Result 2.1.21

(X,t) is Urysohn space implies (X,c) is Urysohn space.

The proofis similar to the Proof of2.1.13.



44

Note

The converse is not true.

Remarks 2.1.22

It is clear that every Urysohn space is pseudo-Hausdorff space. (X,c) is a pseudo­

Hausdorff space need not imply that (X,c) is Urysohn Space. In Example 2.1. 11 (X,c) is

pseudo-Hausdorffbut it is not Urysohn.

Result 2.1.23

Every subspace of a Urysohn space is Urysohn. The proof is similar to the Proof of

2.1.18.

Definition 2.1.24

A closure space (X,c) is said to be functionally Hausdorff, if for every pair of

distinct points x,y, there exists a c-cl l , morphism f: x ->[0,1] such that f{x)=O and

f{y)= 1 when: cl, is the usual closure operation in [0,1].

Result 2.1.25

If(X,t) is functionally Hausdorff,then (X,c) is functionally Hausdorff

Proof

Let (X,t) be functionally Hausdorff space. Therefore for every pair of distinct

points x,y there exists a cl-cll morphism f: X -->[0,1] such that f{x)=O, f{y)=1 where cl

is the closure operation in the associated topological space(X,t). Now f{cIA) C cl1f{A)
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for every AcX. Since cA C ciA for every A ex, f{cA) c f(cIA) c cl. f{A) That is fis

e-el, morphism, That is (X,c) is functionally Hausdorff

Note 2.1.26

The converse of the above result is not true.

Result 2.1.27

Every subspace of a functionally Hausdorff space is functionally Hausdorff

Proof

Let (X,c) be functionally Hausdorff space and Y C X and x,y €y. Since X is

functionally Hausdorff, there exists a e-el, morphism from X ->[0,1] such that f{x)=O and

f{y)=1. Let c' be the induced closure operation on Y. Since c'A=cA n Y c cA for every

A C Y, f restricted to Y is e-el, morphism Thus Y is functionally Hausdorff

2.2 HIGHER SEPARATION PROPERTIES IN CLOSURE SPACES.

In this section we study regularity, normality, complete regularity etc, in closure

spaces.

Definition 2.2.1

A closure space(X,c) is said to be quasi-regular iffor every point x and a closed

set A not containing X, there exists an open set V such that x € V and cV n A = cjl. X is

said to be semi-regular if for every point x and closed set A not containing X, there exists
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an open set V such that A C V and x f cv. Ifboth conditions hold, then X is said to be

pseudo-regular.

Definition 2.2.2 [CE1]

A closure space (X,c) is said to be regular, iffor each point x ofX and each subset

A of X such that x f cA and there exists neighbourhoods U of x and V of y such that

unv-e.

Result 2.2.3

If(X,t) is regular then (X,c) is pseudo-regular. The proofis similar to the Proofof

2.1.9

Note 2.2.4

The converse of the above result is not true. In Example 2.1.11 (X,c) is

pseudo-regular but (X,t) is not regular.

The following example shows that (X,c) is quasi-regular does not imply that it is

semi-regular and pseudo-regular.

Example 2.2.5

Let X be a set ofreal numbers and let A = {I In : n= I,2,3...}.

Define the Smirnov's deleted sequence topology 't on X by letting G € 't if

G=U-B where B C A and U is an open set in the Euclidean topology on X. Let c be the

closure in this topology. Then (X,c) is quasi-regular but not semi-regular.
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Note 2.2.6

(X,c) is semi-regular does not imply that (X,c) is pseudo-regular.

Result 2.2.7

If'(Xt) is regular, then (X,c) is regular. The proofis similar to the Proof of2.1.13.

Note 2.2.8

The converse ofthe above result is not true.

Note 2.2.9

(X,c) is regular does not imply that (X,c) is pseudo-regular and vice-versa.

Result 2.2.10 (CEl )

Every subspace of a regular space is regular.

Result 2.2.11

Every closed subspace of a pseudo-regular space is pseudo-regular.

Proof

Let (X,c) be pseudo-regular. Y be closed in X. Let A be closed in Y. Then A is

closed in X [CE2]. y be a point in Y not in A. Since (X,c) is pseudo-regular, there exists

open sets U ofA and V ofy such that y f cU and cV n A = cP. Then Y n U and Y nv are

open in Y containing A and y respectively. An [Y nc(Y n V)]= cP and y f [Y n c(Y nU)]

which shows that Y is pseudo-regular.
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Result 2.2.12

X is a closure space. X is quasi-regular ifand only if for each x E X and an open

neighbourhood V ofx there exists a neighbourhood V ofx with x EVCcVCV.

Proof

Let X be quasi-regular. x in X and V is an open neighbourhood of x. Then U' is

closed in X. Since X is quasi-regular,for the point x and the closed set U' there exists

open V such that x EV and U' ncV = <p. Then cV CV, that is x E V C cV C V.

Conversely, suppose the condition holds. Let x in X and A a closed set in X. Then

for x and its neighbourhood A' (complement of A ), there exists an open set V such that

xEV C cV CA. That is x E V and cV n A' = <p. That is X is quasi-regular.

Definition 2.2.13

A closure space (X,c) is said to be semi-normal, if for each pair of disjoint closed

sets A and B either there exists an open set V such that A C V and cV n B = <p or there

exists an open set V such that B C V and A n cV = <p. Ifboth conditions hold X is said

to be pseudo-normal.

Definition 2.2.14 [CE2]

A closure space (X,c) is said to be normal, if for any pair of disjoint closed sets A

and B there exists disjoint neighbourhoods V and V containing A and B respectively.
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Result 2.2.15

(X,t) is normal ==> (X,c) is pseudo-normal. The proofis similar to the Proof of2.1.9

Result 2.2.16

(X,t) is normal ==> (X,c) is normal. The proofis similar to the Proof of2.1.13

Note 2.2.17

The converse of the above result is not true.

Note 2.2.18

(X,c) is pseudo-normal does not imply that (X,t) is normal. In Example 2.1.11

(X,c) is pseudo-normal but (X,t) is not normal.

Note 2.2.19

(X,c) is semi-normal does not imply that (X,c) is pseudo-normal.

The following example shows that (X,c) is pseudo-normal does not imply that

(X,c) is pseudo-regular.

Example 2.2.20

LetX=N

c is defined on X such that

cA = Au {x+1: x € A}

Vacuously (X,c) is pseudo-normal. But it is not pseudo-regular.
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Note 2.2.21

(X,c) is normal does not imply that (X,c) IS pseudo-normal and (X,c) IS

pseudo-normal does not imply that (X,c) is normal.

Result 2.2.22 [CE l ]

In a closure space every closed subspace of a normal space is normal.

Result 2.2.23"

In a closure space every closed subspace of a pseudo-normal space IS

pseudo-normal.

The proof is similar to the Proof of 2.2. 11

Definition 2.2.24

A closure space (X,c) is said to be completely normal if for any two disjoint closed

sets A and B in X there exists open sets U,V such that A c U, B c V and cU n cV =<1> .

Note 2.2.25

If(X,t) is completely normal, then (X,c) is completely normal and the converse is

not true.

Remark 2.2.26

It is clear that every completely normal space is.pseudo-normal space. In Example

2.1.11 (X,c) is pseudo-normal but not completely normal.
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Definition 2.2.27

A closure space (X,c) is said to be completely regular, if for every point x and a

closed set A not containing x, there exists a e-el, morphism f: x --> [0, I] such that

f{x)=O and f{y)=1 for every yEA.

Result 2.2.28

If(X,t) is completely regular, then (X,c) is completely regular and the converse

is not true.

Result 2.2.29

Every subspace of a completely regular space is completely regular.

2.3 SEPARATION PROPERTIES IN MONOTONE SPACES

In this section we introduce and study some separation properties in monotone

spaces.

Definition 2.3.1

A monotone space (X,c.) is said to be To , ifx f y implies either x f c.{y} or

y/c.{x} and T, ifx t y implies x, c.{y} and y, c.{x}.

Note 2.3.2

It is clear that if(X,c) is To space, then (X,c.) is To and the converse is not true.
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Example 2.3.3

X=N

Let c. be defined on X such that

c.A = A U (A+ 1), ifA is a one point set, that is c.{x}={x, x+ I}

c.A = N, when A is not a singleton.

Here (X,c; ) is To. The associated closure space (X,c) is not To.

Note 2.3.4

If(X,<:) is T 1 , then (X,c.,) is T1• The converse is not true.

Example 2.3.5

X=N

Let c. be defined on X such that

c.A := A , ifA is a singleton set

c.A = N, when A is not a singleton.

Then c. is a monotone operator on X. Here (X,c.) is T\. But (X, c) is not T •.
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Remark 2.3.6

It is clear that if(X,c",) is T), then it is To' The following example shows that the

converse is not true.

Example 2.3.7

Let X = {a,b,c}

c, be defined on X such that

c",{a} = {a,b} ,c",{b} = {b}, c",{c} = {a,c},

c",{a,b} = c",{b,c} = c",{a,c}= c",X = X, c",cP = cP.

c, is a monotone operator on X.

It is To but not T).

Definition 2.3.8

A monotone space (X,c",) is said to be semi-Hausdorff if x 1= y, then either there

exists an open set U containing x and y tc",U or there exists an open set V containing y

and x / c,V. Ifthe both conditions hold, then (X,c",) is said to be pseudo-Hausdorff

Definition 2.3.9

A monotone space (X,c",) is said to be Hausdorff, if for every pair of distinct points x and

y there exist disjoint neighbourhoods U and V containing x and y respectively.
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Definition 2.3.10

A monotone space (X,c.) is said to be quasi-regular, if for every point x and

closed set A not containing x, there exists an open set U such that x E U and c.U n A =cjl.

X is said to be semi-regular, if for every point x and closed set A not containing x, there

exists an open set V such that A C V and x I c.V. Ifboth conditions hold ,X is ~aid to be

pseudo-regular.

Definition 2.3.11

A monotone space (X,c.) is said to be regular, if for every point x and closed set

A not containing X, there exist disjoint neighbourhoods U and V containing x and A

respectively.

Definition 2.3.12

A monotone space (X,c.) is said to be semi-normal, if for each pair of closed sets

A and B, either there exists an open set U such that A C U and c.U n B = cjl or there

exists an open set V such that B C V and c.V n A = cjl. Ifboth conditions hold, X is said

to be pseudonormal.

Definition 2.3.13

A monotone space (X,c.) is said to be normal, if for every pair of distinct closed

sets A and B, there exists disjoint neighbourhoods U and V of A and B respectively.
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Note 2.3.14

It is clear that (X,c) is pseudo-Hausdorff, pseudo-regular, pseudo-normal implies

(X,c.) is pseudo-Hausdorff, pseudo-regular and pseudo-normal respectively. The

converse is not true.

Example 2.3.15

x = Nu {O}

Let c. be defined on X such that

c.A = A, if A is finite

c.B = B U {O} where BeN and N-B is finite

c.A = X, ifA = N is infinite and not in the form B.

Then c. is a monotone operator.

Here (X,c.) is pseudo-Hausdorff, pseudo-regular and pseudo-normal, Here we

get cA = A, if A is finite and cA = X, if A is not finite. Thus (X,c) is not

pseudo-Hausdorff not pseudo-regular and not pseudo-normal.



CHAPTER 3

SOME PROI)ERTIES OF COMPACTNESS AND

CONNECTEDNESS IN CLOSURE SPACES

INTRODCUTION

In this chapter we firstly describe the fundamental properties of compactness.

We define compact closure spaces and study some properties of compactness.

v
Cech defined closure space X to be compact ifthe intersection ofthe closures or

sets belonging to any proper filter in X is nonempty. He proved some properties or

compactness in closure spaces [CE2]. In section I of this chapter, we find the relntion

between compactness in (X,c) and (X,t) and prove some related results.

Cech described the concept of connectedness in [CE2] as "a subset ;\ or n

closure space X is said to be connected in X if A is not the union of two nonempty

semi-separated subsets of X. That is A = AI U ~ ,(cAIn ~) U (AI n c~)=cP implies

that AI=cjl or ~=cjl" . It can be easily seen that this is precisely the connectedness of the

associated topological space. PIastria, F obtained certain conditions which imply the

connectedness of simple extensions [P]; it has been proved that local connectedncss of

certain subspaces implies the local connectedness of simple extensions.

We define the concept of connectedness in section 3.2 in a slightly different and

perhaps more reasonable way and prove some results in connectedness. We note thut

the image of a connected space under a c -Cl morphism need not be connected.
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In section 3.3 we introduce the concepts of local connectedness and path

connectedness. We also define compactness and connectedness in monotone spaces in

section 3.4.

3.1 SOME PROPERTIES OF COMPACTNESS

v
The following definitions and results are due to E.Cech.

Definitions 3.1.1

(i) Let (X,c) be a closure space, :f be a proper filter on X and x be an element

ofX. We shall say that x is a cluster point ofF in (X,c) ifx belongs to n {cF: FE:f}, that

is if each neighbourhood of x intersects each FE :f.

(ii) A closure space (X,c) is said to be compact, if every proper filter of sets on

X has a cluster point in X.

Results 3.1.2

(i) For a closure space (X,c) to be compact, it is necessary and sufficient that

every interior cover 11 of (X,c) has a finite subcover.

(ii) Any image under a c-morphism ofa compact space (X,c) is compact.

(iii) If(Y,c) is a compact subspace ofa Hausdorffclosure space (X,c), then Y is

closed in (X,c).

(iv) Every closed subspace ofa compact space (X,c) is compact.
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Result 3.1.3

If'(X,c) is compact, then (X,t) is compact.

Proof

Let (X,c) be compact. Then every proper filter of sets on X has a cluster point in

X. Let :r be a proper filter of sets on X and x be a cluster point. Then x En (cF), FEJ.

That is n (cF) '" ~ but cF c ciF for every FEJ. Then n (clF)+~. So (X,t) is compact.

Note 3.1.4

The converse of the above result is not true.

Example

Consider X = N x N U {x,y} U { aj : i EN} U {bj : j E N},

aj's, bj 's, x,y are all distinct and do not belong to N x N.

Let c be defined on X as in Example 2.1.11

Let Ak= {(m, m): III ~ k} for kEN.

The family :r= {Ak : kEN } is a filter base.

c~ = ~, for every Ak E:r but n""k=\ cA k =~.

So (X,c) is not compact. But (X,t) is compact as can be proved easily.
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Result 3.1.5

Any image under a c -C' morphism of a compact closure space (X,c) is compact

in the associated topology of c'.

Using the Result 3.1.2 (ii) and the Result 3.1.3, we get this result.

Note 3.1.6

If(X,cl) is compact and f: (X,cl) --> (Y,c' ) is a swjective c- c' morphism, then

(Y,c') need not necessarily be compact.

Result 3.1.7

The associated space (Y,t') of a compact closure space (Y,c') is closed as a

subspace of the Hausdorffspace (X,c)

Using the Result 3.1.2 (iii) and cA=X ==>clA=X, we get the above result.

Result 3.1.8

Every closed closure subspace of an associated topological space (X,t) of a

compact closure space (X,c) is compact.

Proof

Let (Y,c') be a closed subspace of a compact space (X,t). Let :Jbe a proper filter

on (Y,c'). Let us consider the smallest filter (j on X containing :J. :J is a filter base

for (j. Since clY=Y, we have c'A=clA for each AcY and hence n(c'F)=n(cl F).

Therefore n (cl F)=n(cl G). Since (X,t) is compact n (cl G)tcP. That is n(c' F)tcP.
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Corollary 3.1.9

Closed subspace (Y,t') of compact space (X,c) is compact.

Result 3.1.10

(X,c) is compact. Y C X. Then cY is compact.

Proof

Let c' be the closure on cY induced by c. Let:J be a filter on cY. We have to

prove that n( c' F), FEJ is nonempty. {cF n cY : FE:J} is a filter base on X. Since X is

compact, n(cF n cY) is nonempty. So n c' F=n(cF n cy)fcP.

Definition 3.1.11

A closure space (X,c) is locally compact if and only if each point in X has a

neighbourhood base consisting of compact sets.

Note 3.1.12

(X,c) IS locally compact does not imply that (X,t) IS locally compact and

VIce-versa.

Result 3.1.13

Let (X,c) be locally comapct. Iff is an open c-c' morphism from (X,c) onto (Y,c'),

then Y is locally compact.
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Proof

Suppose y EY. Let V be a neighbourhood of y. Take x E f -l(y). Since f is c-c'

morphism and X is locally compact, we can find a compact neighbourhood U such that

f{U)c V . x E Int, U so y E f{ Int, U) C f{U) . Since f is open, f{Intx U) is a

neighbourhood ofg. Hence f{U) is a compact neighbourhood ofy contained in V.

3.2 CONNECTEDNESS IN CLOSURE SPACES.

In this section we introduce and study connectedness.

Definition 3.:~.1

(X,c) is said to be disconnected if it can be written as two disjoint nonempty

subsets A and B such that cA U cB=X, cA n cB = cj> and cA and cB are nonempty. A

space which is not disconnected is said to be connected.

Example 3.2.2

X = {a,b,c}

c can be defined on X such that

c {a}={a,b}, c{b}=c{c}=c{b,c}={b,c}, c{a,b}=c{a,c}=cX=X, ccI>=cj>

Then c is a closure operation on X.

Here (X,c) is connected because we can not find nonempty subsets A and B such

that cA U cB=X and cA n cB=cj>.
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Definition 3.2.3

(X,c) is said to be feebly disconnected if it can be written as two disjoint

nonempty subsets A and B such that A U cB=cA U B=X and cA n B=lj>=A n cB.

Note 3.2.4

It is clear that (X,c) is disconnected implies (X,c) is feebly disconnected. The

following example shows that the converse is not true.

Example 3.2.5

X={a,b,c}

c{a}={a,c },c{b }=c{c}=c{b,c}={b,c},c{a,b }=c{a,c }=cX=X,clj>=lj>

c is a closure operation on X.

Here (X,c) is feebly disconnected, but not disconnected.

Result 3.2.6

(x.t) is disconnected ==> (X,c) is disconnected.

Proof

(X,t) is disconnected implies that it is the union of two disjoint nonempty subsets

A and B such that cIA U clB=X, cIA n clB=lj> and cIA, clB are nonempty. cIAnclB=lj>.

So cA n cB=lj>. That is (X,c) is disconnected.

Note 3.2.7

(X,t) is connected need not imply that (X,c) is connected.
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Example

X={a,b,c} . Let c be a closure operation defined on X in such a way that

c{a}={a},c{b}={b,c},c{c}=c{a.b}=c{b,c}=cX=X, ccjl=cjl

(X,t)={X,cjl,{b,c} }

Here (X,c) is disconnected, but (X,t) is connected.

Remark

Connectedness of a subspace Y of(X,c) can be defined in the same manner.

Note 3.2.8

Let (X,c) be a closure space and Y be a connected subset of (X,c). Then cY

need not be connected.

Example 3.2.9

X={a,b,c,d,e}

Let c be defined on X such that

c{a}={a},c{b}={a.b,c},c{c}={b,c},c{d}={b,c,d},

c{a,b}=c{a,c}=c{b,c}=c{a,b,c}={a,b,c},

c{c,d}={b,c,d}, c{a,d}=c{b,d}=c{a,b,d}=c{a,c,d}=c{b,c,d}=c{a,b,c,d }={a,b,c,d},

c{e}=c{a,e}=c{b,e}=c{c,e}=c{d,e}=c{a,b,e}=c{a,c,e}=c{a,d,e}=c{b,c,e}=c{c,d,e}

=c{b,d,e}=c{a,b,d,e }=c{a,c,d,e }=c{b,c,d,e}=cX=X,ccjl=cjl

Here Y={b,c} is connected.
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cY={ a,b,c}; if c' isthe induced closure operation on cV, then

c'{a}={a},c' {c}={b,c} ,c' {b}=c'{a,b }=c'{b,c }=c' {a,c }=c'cY=cY.

cY is disconnected.

Note 3.2.10

If cA and cB form a separation of X and ifY is a connected subset of X, then Y

need not be entirely within either cA or cB.

Example 3.2.11

X={a,b,c}

Let c be a closure operation defined on X such that

c{a}={a},c{b }={b,c} c{c}={a,c} ,c{ a,b }=c{b,c}=cX=X,c{a,c }={a,c}.

Y={ a,c} is connected-

Note 3.2.12

The image of a connected space under a c -c' morphism need not be connected.

Example

Let X={a,b,c,d,e}. A closure operation c is defined on X as in Example 3.2.9

Let Y={a,b,c}

c' be defined on Y such that

c'{a}={a},c' {b}={b,c} ,c' {c}=c' {a,b }=c'{b,c }=c' {a,c}=c'X=X c'cjl =cjl.
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Let f be a map from (X,c) into (Y,c') defined in such a way that f(a)=a, f(b)=c, f(c)=b,

f(d)=c, f(e)=c

Here f is a c-c' morphism. But f(X) is disconnected.

Result 3.2.1J

Suppose Cl is a closure operator on Y with degree k and f is a c-c] morphism

from (X,c) to (Y,cJ If Cl k(A) and c]k(B) form a separation of Y, then c(f-I(C 1
k(A» and

c(f-I(C1k(B» form a separation on X.

Proof

Then f-I(C]k(A» U f-](cJk(B»=X

That is c(f-](C1k(A» U c(f-l(c]k(B»=X, since f-I(Clk(A» c c(f·1(c]k(A»

In similar manner

Hence c(f-](C]k(A» and c(f-l(c1k(B» form a separation on X·

Result 3.2.14

Let (X,c) be connected and fis a c-c] morphism from (X,c) on to (Yic.} Then

(Y,t 1) is connected.
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Proof

Since f{ cA) C c) f{A) C ell f{A), fbeing c -c) morphism and we get f is c - cl,

morphism. Suppose cl) A and ell B form a separation on Y . Then cl.A U ell B=Y and

c11 A n c1
I
B=cjl . f -)(el)A) U f -)(c1

I
B)=X and f -1(cl)A) n f -1(el)(B)=cjl. By the above

result c(f -)(c1
I
(A» and c(f -'(el)B» form a separation on X. This is a contradiction.

Hence (Y,t) is connected.

3.3 PATHWISE AND LOCAL CONNECTEDNESS

In this section we define and study pathwise connectedness and local

connnectedness.

Definition 3.3.1

A space (X,c) is pathwise connected if and only if for any two points x and y in X,

there is a cl, -c morphism f: I -->X such that f{o) =x and f{l}=y where ell is the usual

closure on I, fis called a path from x to y.

Result 3.3.2

(X,c) is pathwise connected implies (Xt) is pathwise connected.

Proof

If(X,c) is pathwise connected, then for any two points x and y in X there is a

cl-c morphism f: 1--> X such that f{O)=x and f{l)=y. Iffis cl-c morphism,then fis

et-cl morphism. Therefore (X,t) is pathwise connected.



66

Note 3.3.3

The converse of the above result is not true.

Note 3.3.4

Pathwise connected space need not be a connected space.

Definition 3.3.5

A space X is said to be locally connected at x if for every neighbourhood U ofx,

there is a connected neighbourhood V of x contained in U. If X is locally connected at

each ofits points, then X is said to be locally connected.

Definintion 3.3.6

A space X is said to be locally path connected at x iffor every neighbourhood U

of x, there is a path connected neighbourhood V of x contained in U. If X is locally

path connected at each of its points, then it is said to be locally path connected.

Note 3.3.7

A space (X,c) is locally connected need not imply that (X,t) is locally connected

and vice-versa.

A parallel study of the above concepts in the set up of closure spaces IS

interesting; however we are not attempting it in this thesis.
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3.4. COMPACTNESS AND CONNECTEDNESS IN MONOTONE SPACES

Definition 3.4.1

Let (X,c*) be a monotone space. ]' be a proper filter on X and x be an element

ofX. We shall say that x is a cluster point of ]'in (X,c*) if x belongs to n{c*F : FE]' }.

That is each neighbourhood ofx intersects each FE]'.

Definition 3.4.2

A monotone space (X,c*) is said to be compact, if every proper filter of sets on

X has a cluster point in X.

Remark 3.4.3

It is clear that if (X,c*) is compact, then (X,c) is compact but the converse is not

true.

Result 3.4.4

Any image under a c-c, morphism of a compact monotone space (X,c*) onto a

monotone space (Y,c;' ) is compact.

The proof is similar to the Proof of41 A-I5 in [CE2].

Result 3.4.5

Every closed subspace of a compact monotone space is compact.

The proof is similar to the Proof of41 A-lOin [CE2] .
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Result 3.4.6

If (Y.c' ) is a compact subspace of a Hausdorffmonotone space (X,c*),then Y is

closed in X.

The proof is similar to the Proof of41 A-II in [CE2] •

Definition 3.4.7

A monotone space (X,c*) is said to be disconnected if it can be written as two

disjoint nonempty subsets A and B such that c*A U c*B = X, c*A n c*B=<p. A space

which is not disconnected is said to be connected.

Remark 3.4.8

(X,c) is disconnected implies (X,c*) is disconnected,and the converse is not true.

Example 3.4.9

X={a,b,c}

c, be defined on X such that

c, is a monotone operator.

(X,c*) is disconnected. But (X,c) is connected.



CHAFfER 4

CLOSURESEMIGROUPS

INTRODUCTION

In this chapter we introduce closure semigroups and study some of their

properties. The concepts like homomorphism,congruences and products in the context

of closure semigroups are discussed.

A topological semigroup is a Hausdorff space S with continuous associative

multiplication (x,y) -> xy of S x S into S. The study of topological semigroups was

initiated perhaps by AD. Wallace during fifties; it was continued by others like

K.H.Hofinann, P.S. Mostert, AB. Paalman De Miranda and Hewitt and during these

years the subject has developed in many directions.

v

The notion of a topologized algebraic structure was studied [CE2] by Cech.

v
According to Cech, a topological group is a triple (G, c, u ) where G is a set, II is 11

closure on G and o is a mapping satisfying the following conditions:

(I) o : «G, u) x (G,u» -> (G,u) is "continuous"

(2) The mapping x -> X-I: (G,u) -> (G,u) is "continuous"

v
In the terminology that we are going to introduce here, Cech's topological group

should have been called a closure group. He proved that every "topological group" is 11
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topological space. That is the underlying space of a "topological group" is a topological

space. He also studied topological rings and fields.

In section 1 of this chapter we define closure senngroups and prove the

non-relation between a closure semigroup and the associated topological semigroup. A

preliminary study of closure semigroups is also attemped here.

The concepts of homomorphisms and congruences in the context of closure

semigroups are studied in section 3. The study of closure semigroups that we do here is

somewhat on the same lines as the development of the theory of topological semigroups

as is available in [CA-H-KJ

4. I.BASIC CONCEPTS

In this section we define and study some properties of closure semigroups.

Definitions 4.1.1

A closure semigroup IS a nonempty set S together with an associative

multiplication (x,y)-->xy from «SxS),c x c) into (S,c) which is a c x c-c morphism.

Example 4.1.2

Let X=N.

Let c be defined on X such that cA =A U {x+1 : x € A}

Then c is a closure operation on X. Here X IS a semigroup WIder the

operation(x,y)-->max{x,y}. Since the map(x,y) -->max{x,y} is c x c-c morphism,(X,c)

is a closure semigroup.
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Note 4.1.3

If A and B are subsets of a -closure semigroup (S,c), we use the notation

AB={ab:a EA and bEB},

Remark

A closure semigroup need not be a topological semigroup in the associated

topology.

Example 4.1.4

Consider X={a,b,c}.

Let c be defined on X such that

c{a}={a}, c{b}={b,c}, c{c}={a,c}, c{a,c}={a,c}, c{a,b}=c{b,c}=cX=X, c<j>=<j>

Then c is a closure operator on X

X x X={(a,a),(a,b),(a,c ),(b,a),(b,b),(b,c ),(c,a),(c,b),(c,c)}

(X,t)={X,<j>, {b},{b,c} }

(X,t) x (X,t)={ <j>,XxX, {(b,b)}, {(b,b),(b,c)},{(b,b),(c,b)}, {(b,b),(b,c),(c,b ),(c,c)} }

(See Appendix for details)

It is a closure semigroup under the binary composition (x,y) -->x, but not 11

topological semigroup. Since the inverse image of {b} is not open in (X,t) x (X,t).
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Remark

A semigroup which is also a closure space and is a topological semigroup under

the associated topology need not be a closure semigroup.

Example 4.1.5

Let X=N

c be defined on X such that cA=A U {x+1 : x EA}

Then c is a closure operator on X.

X is a semigroup under (x,y) -->x+y. It is a topological semigroup. But it is not a

closure semigroup.

For, (4,2)-->6

Let W={5,6} be a neighbourhood of 6.

We cannot find neighbourhoods U,V for 4 and 2 such that f\U x V) = U+V~ W.

Definition 4.1.6

A subgroup G of a closure semigroup is a closure group if the map x -->x· 1

sending x to its inverse is c-c morphism on G.

In this context, it will be interesting to note the following :-

Result 4.1.7 (CEz)

Every closure group is a topological space; more precisely the underlying closure

space of a closure group is topological.
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Theorem 4.1.8

Let (X,c,),(Y,c
2),(Z,c])

be closure spaces. Let A be a compact subset of X,B 11

compact subset ofY, f: X x Y-->Z a Cl x C2-(:3 morphism and W a neighbourhood of

f{A x B) in Z. Then there exist neighbourhoods U of A in X and V ofB in Y such that

f{U x V) C W.

Proof

f is Cl X C2-C3 morphism and W is neighbourhood of f{A x B). Then fl(W) is 11

neighbourhood ofAx B in X x Y. For each (x.y) in A x B there exist neighbourhoods

M ofx and N ofy such that M x N C f-I(W). Since B is compact, for fixed xEA, there

is finite interior cover M I ,M1 ... M; in X containing x and correspondingly N I,N2, •. Nil in

Y such that B C NI U ... U Nn =Q. Let P=M 1 n ....n M,..Then P is a neighbourhood of

B in Y and P x Q C f -I(W). Since A is compact there exists a finite interior cover

PI..·POl in X and correspondingly Q)...QOl in Y such that B C Q1 n...QOl and A C PI

U ... U POl' Let U=Q 1 n...n QOl and V=P 1 U ... U POl' U and V are neighbourhoods of A

and B in X and Y and U x v c f-I(W). f{U x V) C W.

Result 4.1.9

Let A and B be subsets of a closure semigroup. IfA and B are compact, then AB

is compact.
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Proof

AB = {ab: aA,bEB}, AB = f{A x B). Since S is a closure semigroup and

f: S x S--> S is a c x c-c morphism, then f{A,B) =AB is compact.

Note 4.1.10

IfA and B are connected subsets of closure semigroup S, then AB need not be

connected.

Definition 4.1.11

An element e of a semigroup S is called an idempotent if e2=e and the sel of

idempotents of S is denoted E (S) .

Theorem 4.1..12 rCEll

A closure space (X,c) is Hausdorffifand only if the diagonal 6. ={(x,x):Xf."X [of

X x X is closed in the product space X x X.

Result 4.1.13

Let (X,c) be a Hausdorffspace and f:X-->X a c-morphism. Then the set of

fixed points of fis closed in X.

Proof

Let f : (X,c) -->(X,c) be a c - morphism, Define g X--> X x X by

g(x)=(f{x),x). Then g is e-el morphism, For this,

Let g(A) =(f{A),A) where (f{A),A)= {(f{x),x) : x EA}
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g(cA) = (f{cA),cA) C (c t{A),cA) C (cl f(A),cl A) = cl(t{A),A) =clg(A)

Therefore g is e-el morphism.

Let D = {x: t{x)=x}. We have to prove that D is closed. That is cD=D.

Let y EcD. Then g(cD)=g c(g-J 6) where 6 is the diagonal elements in XXX

C cltgg" 6) C cl6 = 6

g(cD) C 6

g(y) = (t{y),y) E 6

That is, f(y) =y, yED

Therefore cD=D. D is closed. Hence the set of all fixed points is closed.

Results 4.1.14

If S is a closure semigroup, then E (S) is a closed subset of S.

Proof

E(S) is the set of fixed points of the c -morphisms x-->,c. By the above result

E(S) is closed.

Result 4.1.15

Let S be a closure semigroup. For e, fEE(S), define e .s f if ef=fe=e. Then ~ is a

partial order on E and is a closed subspace of S x S.

The proof is similar to the Proof of 1.6 as in [CA-H-KJl
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Definition 4.1.16

If S is a semigroup and aES, then the function x-->xa is called right translation

by a and is denoted by P a and x -->ax is called left translation by a and is denoted

by Aa.

Definition 4.1.17

An element e of a semigroup S is called a left identity for S if ex=x for all xES, 11

right identity for S ifxe=x for all xES and identity for S ife is both left and right identity.

A semigroup which has an identity is called a monoid.

Definition 4.1.18

A subsemigroup of a closure semigroup S is a nonempty subset T of S such that

T2 C T (That is TT eT).

Result 4.1.19

Let (S,c) be a closure semigroup . T be a subspace of S whcih IS also a

subsemigroup. Then T is also a closure semigroup.

Proof

Let (S,c) be a closure semigroup. Then the multiplication f: (S,c) x ( S,c) is 11

C X c-c morphism.

T CS, c'A=T n cA for each ACT

c' is closure operation on T
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Then the multiplication (T,c') x (T,c')--> (T,c') is a c' x c'-c' morphism.

Example 4.1.20

Consider X=N

c be defined on X such that cA=A U {x+ 1 : x EA}

Y be the set of all even natural numbers

c'A=Y n cA = A,for every A C Y.

Thus c' is the discrete closure operation on Y and (Y,c') is a closure subsemigroup.

4.2. IDEALS OF A CLOSURE SEMIGROUP

In this section we define and study ideals in closure semigroups.

Definition 4.2.1

A nonempty subset L of a semigroup S is a left ideal of S if SL cL·

Note 4.2.2

Here we consider only the case of left ideals. In a similar manner we can

consider the case of right ideals and ideals.

Result 4.2.3

Let L be a left ideal of a closure semigroup S. Then cL is a left ideal of S.

Proof

Let L be a left ideal of S. We have to show that ScL C cL
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ScL= cScL, Since cS=S.

C c(SL), since multiplication is a morphism and f{(cA)C cf{A)

C cL, since L is left ideal and SL C L

Therefore ScL C cL.

Note 4.2.4

IfA is a subset ofa semigroup S, then we denote L(A)=S'A=A U SA.

Result 4.2.5

Let S be a compact semigroup and let A be a compact subspace of S. Then

L(A)=A U SA is compact.

Corollary 4.2.6

Let S be a compact semigroup and let a E S. Then L(a) is compact.

Definition 4.2.7

A left ideal of a semigroup S is called a minimal left ideal if it properly contains

no other left ideal.

Result 4.2.8

If S is a compact semigroup, then each minimal left ideal is compact.

Proof

Let L be a minimal left ideal of Sand xEL. Then Sx is a left ideal of Sand Sx C

L. Since L is minimal,we get L = Sx.
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But Sx =x U Sx, since x U Sx is left ideal and Sx = L is minimal.

Thus L=x U Sx=L(x) and by corollary 4.2.6, we get L is compact.

As in the case ofa topological semigroup, we can find the cartesian product or a

collection ofclosure semigroups.

Definition 4.2.9

Let {S;}i £ I be a collection of 'closure semigroups. Then coordinatcwise

multiplication on Il{S;} i£I is given by (fg)(j)=f{j)g(j)·

Result 4.2.10

Let {S;} j e I be a collection of closure semigroups and S=fl {SJ i e I" Then S with

coordinatewise multiplication and product closure is a closure semigroup and cnch

projection 1tj : S->Sj is an onto c-cj morphism.

Proof

Let {S;}i£1 be a collection of closure semigroups. In each Si' the multiplication

is associative. Therefore the multiplication is associative in S.

1tj(XY)=(XY)j=x(j) y(j)=1tj(x)1tj (y). Thus each 1tj is a homomorphism.

That is multiplication on S is a morphism follows from the fact that its

composition with each projection is amorphism.

Result 4.2.11

Let {SJ ie , be a collection of semigroups and let S= I] { SJ i e I" "111cn,
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(1) If e, €Si for each i € I and e€ S is defined by e(i)=e; for each i € I, then e E E(S) if

and only ifej € E(Sj) for each i € I.

(2) If A j C Si for each i € I, then D{AJ; £ I is a left ideal of S if and only if Ai is 11 left

ideal ofS, for each i € I.

The proof is analogous to the Proof of theorem 2.2 of [CA-H-KJ

4.3. CONGRUENCES IN CLOSURE SEMIGROUPS

In this section we introduce the concept of congruences in closure semigroups

analogous to that in topological semigroups. Recall that if Sand Tare sernigroups, a

function ep:S->T is called a homomorphism ifep(xy)=ep(x) ep(y) for each x,y E S. Irq)

is surjective (onto) then ep is called a surmorphism, If ep is also injective then ep is called

an algebraic isomorphism and S and T are said to be algebraically isomorphic.

Definition 4.3.1

If S and T are closure sermgroups and cfJ: S--> T is both an algebraic

isomorphism and a c- homomorphism, then ep is' called a closure isomorphism and S

and T are said to be closurewise isomorphic.

Definition 4.3.2

A relation R on a semigroup S is said to be left compatible, if (a.b) E Rand x ( S

implies that (xa,xb) E R.

In a similar manner, we can define right compatible and compatible.
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Definition 4.3.3

A compatible equivalence on a semigroup S is called a congruence on S. An

equivalence R on a semigroup S is a congruence ifand only if(a,b)€R and (c,d)€R imply

(a.c,b.d)€R.

Definition 4.3.4

IfR is an equivalence on a set X and x €X then, {y EX: (x,y) € R} is called the R

-class of X containing x. The set X/R of R- classes is called the quotient ofX mod Rand

the function n: X-->X/R which assigns to each x in X the R-c1ass containing x is called

the natural map. 7t is onto map. The set7t-1(7t(x)) is the R class ofx.

Definition 4.3.5

If Sand Tare semigroups and cP : S-> T is a homomorphisrn., we denote by

k(cP) the relation {(x,y) € SxS :cP(x)=ep(y)}.

Result 4.3.6

Let X,Y and Z be spaces and let f,g and h be fimctions such that the following

diagram commutes,
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(a) Iffis quotient and his CI-C3 morphism, then g is C2-C 3 morphism and

(b) Ifboth f and h are quotient, then g is quotient.

Proof

(a) Let x € Y, y € Y and y € g-Ih(x) and x € f "(y). Let U be a cJ- neighbourhood of

h(x). Then h-I(U) = f -I(g-I(U» is a Cl neighbourhood of x EX. Since f is quotient gl( U)

is a c2 - neighbourhood ofy €y. Then g is c2 - c3 morphism.

(b) Let y € Y. U be a subset of Z containing g(y) such that g-I(U)= f o

l ( g-I(U) is 11 c l -

neighbourhood of x € X, since f is a Cl -c2 morphism. Since h is quotient, U is a Cl -

neighbourhood ofg(y). By (a), g is a Cl - c3 morphism. Then g is quotient by the result

0.3.17

Result 4.3.7

Let (A, Cl)' (B,c2) and (C, c.) be closure semigroups, a: A --> B a quotient

surmorphism and f3: A --> C a Cl - c3 homomorphism such that k(a) C k(f3). Then

there exists a unique c2- c3 homomorphism y : B --> C such that the following diagram

commutes.
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Proof

Define y(x) = P( a -I [x) for each x EH. y is a homomorphism. By the above

result, y is CZ-c3 morphism.

Result 4.3.8 (CA -0 -Kt)

Let S and T be semigroups and let cI>: S --> T be a surmophism. Then keel') is

a congruence on S and there exists a unique algebraic isomorphism 'fI: SI k(cI».. > T

such that the following diagram commutes.

(S,c)

Result 4.3.9

If'(Sic.) and (T,cz) are Hausdorffclosure semigroups and cI>: S --> T is a C.- Cl

morphism, then k (cI» is a closed congruence on S and the following are equivalent:

(a) 'Y.\ is a closure morphism

(b) 'Y is a closure isomorphism

(c) cI> is a quotient.

Finally ifany one of these conditions is satisfied, then S/ k(c1» is a closure semigroup.
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Proof

By the above result, k(cP) is a congruence on S.

cP : S --> T is a Cl -c2 morphism. n : S --> S / k(4)) is a natural map.

(k(cP) = ( (x,y) € S x S : cP (x) =cP (y) }, k(n)= ( (x,y) € S x S: n(x) = n(y) I. 1I is

clear that k (n ) = k (cP). Using the Result 4.3.6 and k (n) = k(4)), we obtain a (,;1-(,;1

morphism such that the above diagram commutes.

To prove k(cP) is a closed congruence

k(cP) = (4) x 4>r l (6 (T )), 6 T is closed in T x T.

Then k(4» is closed.

(a) ==> (b)

'[/-1 is a closure isomorphism, rt is onto and is a quotient map.

We know that '[/ is algebraic isomorphism.

By 4.3.6 '[/ is a closure isomorphism.

(b) ==> (a)

'[/ is closure isomorphism, n is quotient map. By Result 4.3.6 (b), 4> is quotient.

(c) ==> (a)

cP is quotient and n is also quotient. Then by Result 4.3.6 (a) '[/-1 is closure morphism.
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Finally if these conditions are satisfied,then clearly S/k(q» is a scmigroup. Thai is

a closure semigroup follows from the fact that (ak(P), bk(P» --> abk(P) is 11

morphism



CHAPTERS

CLOSURE SEMIGROUP COMPACfIFICATIONS

INTRODUCTION

"E. Cech and M.H. Stone gave the concept ofmaximal compactification PX and

stated its fundamental properties. Deleeuw,Glicksberg and Hunter have studied Bohr

compactification of topological semigroups having universal properties analogous to

those of pX. The theory of Bohr compactification and other types of closure

semigroup compactifications seems to have not been attempted by others.

In 1990 K S.Kripalini defined the semigroup compactification of a topological

semigroup. In [KRt], [KRJ,~], she proved that if (P,B) is a Bohr compactification

of a topological semigroup S and R is any closed congruence on B, then the quotient

space BIR is a semigroup compactification of S and conversely any semigroup

compactification (a,A) of S is topologically isomorphic to BIR for some closed

congruence on B. The lattice structure of the collection of all semigroup

compactifications ofa topological semigroup are also studied.

In section I of this chapter we define in the closure space context the semigroup

compactification and Bohr-type compactification and prove the existence of this

analogous to Bohr compactification of a topological semigroup. We find also the

relation between Bohr-type compactification and other semigroup compactifications. In

section 2, we define an order between closure semigroup compactification and find that
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it is a partial order. We also prove that k\(S), the set of all closure semigroup

compactifications is an upper complete semilattice.

5.1. SEMIGROUP COMPACTIFICATIONS

Defmition 5.1.1

A semigroup compactification of a closure semigroup (S,c) is an ordered pair

(g,(T,c'» where (T,c') is a compact semigroup and g : S->T is a dense c-c'

homomorphism of S into T.

Defmition 5.1.2

A subset A of(X,c) is said to be dense in (X,c) ifcA=X.

Defmitiom 5.1.3

If (S,c) is a closure semigroup,then a Bohr-type compactification is a pair

(W,(B',c'» such that (B',c') is compact, W: S -> B' is a dense c-c' homomorphism and if

g:(S,c)--->(T,c") is a c-c" homomorphism of S into a compact semigroup (Tic"), then

there exists a unique c'-c" homomorphism f: (B'-e") -> (T,c") such that the following

diagram commutes.

(S,c)----...
g
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Result 5.1.4

2
D

Let D be a dense subset ofa Hausdorff space X. Then card X :5; 2 .

The proofis similar to the Proofof2.42 in [CA - H -K].

Result 5.1.5

Let (S,c) be a closure semigroup. Then there exists a collection {(cPa ,Sa)}:a£A)

such that Sa is a compact semigroup and cPa : S -> Sa is a dense c - ~ homomorphism

for each a€ A, and if g : S -> T is dense c - c' homomorphism of S into compact

semigroup (T,c'), then there exists 8 € A and a closure isomorphism f: Sa -> T such

that the following diagram commutes.

f

(S,c)----...
g

The proofis similar to the Proofof2.43 in [CA -H-Kt ].

Result 5.1.6

If (S,c) is a closure semigroup, then there exists a Bohr-type compactification

(W,(B',c'» of S.
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Proof

Let {Sa}a e A be the collection ofResuh 5.1.5

Define o : S -> n {Sa }a e A such that cr(x) (a) = 4'a(x). o is c -Ilc,

homomorphism. (cf Theorem 17.c .10 of [CEJ). Let B'= oo(S). Define J3':8 ->B' so

that J3'(x) = cr(x) for each x E S. Then J3' is a dense morphism. Suppose

g:(S,c)-->(T,c") is a c - cn homomorphism. With no loss of generality, we can assume

that g is dense. Then by 5.1.5, there exists 8EA and a closure isomorphism h : S 6->T

such that h 04'= g. Define f: B' ->T by f= h 0 7t cS • Then f 0 ~ = g and f is a c'-e"

homomorphism. Since J3' : S -> B' is dense, fis unique.

Result 5.1.7

Let (S,c) be a closure semigroup and let (a,(A,c'» and (J3',(B',c'» be Bohr-type

compactifications of S . Then there exists a c'_c" isomorphism 'l': A -> B such that

the following diagram commutes.

a r')
(S,c),- ......
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Proof

Since (a,(A,c'» is a Bohr-type compactification of(S,c), there exists a c' - e"

homomorphism '1': (A,c') ->(B,c") such that the diagram commutes. That is f3='1' ..a.

Similarly since (W,(B',c"» is a Bohr-type compactification of(S,c), there exists a c"-e'

homomorphism if> : (B,c") -> (A,c') such that the diagram commutes. a = if> 0 f3

if> 0 '1' is unique. We know that if> 0 '1'= lA and similarly'!' 0 if> = lB' Then '1'is c'-e"

isomorphism.

Result 5.1.8

Let (S,c) be a closure semigroup with Bohr-typecompactification (W,(B',e'». If

(a,(A,c"» is any semigroup compactification of S, then

(a) there exists a c'-c" homomorphism y :(B,c') -> (A,c") such that yf3=a.

(b) The equivalence defined by y on B is a closed congruence.

Proof

a) By definition of(f3,(B,c'» there exits a c' -c" homomorphism y: B -> A such that

yf3=a .

(b) Let R be a relation defined on B by y, R = {(x,y)€B x B :y(x) = y(y)} is an

equivalence relation. R is a congruence on B. To prove this,

Let (x,y), (x',y') € R

(x,y) € R > y (x) = y (y)
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(x',y)€R => y (x') = y (y)

y(xx') = y(x)y(x') since y is homomorphism.

= y(y)y(y) = y(W)

That is (xx',W)€R Hence R is a congruence on B.

Note

When A is Hausdorff then R is closed congruence. For this, y is 8 c-c'

morphism. Then y x y is a c-c' morphism.

~A is closed in A x A. Hence R is closed in B x B·

Result 5.1.9

Let (S,c) be a Hausdorff closure semigroup with Bohr-type compactification

(~,(B,c'». If R is a closed congruence on (B,c'), then there exists a semigroup

compactification (a,A) of S so that the congruence defined by this compactification is R.

Proof

Let R be a closed congruence on B. B is a compact semigroup. Then B/R is 8

compact semigroup. Define y : B ->B/R, the natural map. Take A=B/R with the

quotient map y. Define a: S -> A such that a = y 0 ~, a is weD defined and a is 8

c-c" morphism. Since y is c' - cn morphism and ~ is c _cn morphism. a is dense. For,

c(a (S» = c«y 0 ~)(S»
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=y(c(f3(S»), [y is closed].

= y (B) =A, [ y is swjective].

Thus we have a : S -> A is a dense c _e" homomorphism. Therefore (a. A) is

a semigroup compactification.

5.2. IATIICE STRUCTURE OF SEMIGROUP COMPACTIFICATIONS

Definitien 5.2.1

Two semigroup compactifications (a,(A,c'»),( y,(B,c"» are said to be equivalent

ifthere exists a one-one onto homomorphism tP : A -> B such that tP is c' -e" and c"_e'

morphisms and commute the following diagram.

(A.c')

a

(S.c)

Note

(a,(A,c'»~( y,(B,e"» ifthere exists a one-one onto c' -c" homomorphism f: A ->8

such that fa =y.

Result 5.2.2.

Two semigroup compactifications (a,(A,c'» and (y,(B,c"» are equivalent if and

only if(a,(A,c'»~( y,(B,c"» and (y,(B,c"»~(a,(A,c'».
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Proof

Suppose (a,(~c'» and ( y,(B,c"» are equivalent. By the definition of

equivalence, there exists a one-one onto homomorphism 4>: A -> B such that 4> is

c'-c" and c"_c' morphisms and 4>a =y. Therefore, (a,(~c'»~( y,(B,c"», a=4>-ly

4>-1: (B,c") -> (A,c') is one-one onto c"- c'morphism. Then (y,(B,c"»~(a,(~c'».

Conversely, suppose that (a,(~c'»~(y,(B,c"» and (y,(B,c"»~(a,(~c'». Since

(a,(~c'»~(y,(B,c"» , there exists a one-one onto c'-c" homomorphism ~ : A -> 8

such that ~a = y. Since (y,(B,c"»~(a,(~c'» there exists a one-one onto c" _Cl

homomorphism f;: B -> A such that f;y=a.

f; 0 ~ is a Cl_Cl morphism. For,

f; 0 ~ = I A , where I A is identity on X. Similarly ~ 0 f; = lB'

Note 5.2.3

The collection kl(S) of all semigroup compaetifications of (S,c) is a partially

ordered set.

Result 5.2.3

k, (S) is an upper complete semilattice.
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Proof

To prove k, (S) is a upper complete semilattice, we have to prove that the set

{ai S} j El has a least upper bound with respect to the partial order relation z , Define

a:S ->ni El {ai S} by (a (xj), = a i (x). Since {a is} is a subset ofk1(S), each a is is

a c-c, morphism. It follows that a is a c-Ilc, morphism. Since product of compact

closure spaces are compact [C EJ, ni El {o, S} is a compact semigroup. Let A=c(a(S»

is a compact semigroup. Therefore a : S -> A is a dense morphism and (a, A) is a

semigroup compactification of S.

For each isl, let a: A->a is be the restriction to A ofthe projection map.

Thus ( a,A)~ ( a i' a is) for each i€I

1t j 0 f= gjso that fis c -Cl morphism

From this we get fao = a

(fao) (S) =a(S) = A
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f{uoS) ~ f'(u, (S» = (fuo)(S) = u (S)

Therefore f'(u, S) ~ u(S)

c f{uoS) ~ oo(S) =A

Therefore ( u,A) is the least upperbound.
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