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CHAPTER 0

INTRODUCTION

This thesis is concerned with two aspects - One, study of some topological like
concepts in closure spaces and two, study of closure semigroups analogous to the

theory of topological semigroups.

CLOSURE SPACES

The concept of a topological space is generally introduced in terms of the
axioms for the open sets. However alternate methods to describe a topology in the set X
are often used - in terms of neighbourhood systems, the family of closed sets, the
closure operator, the interior operator etc. Of these, the closure operator was
axiomatised by Kuratowski and he associated a topology from a closure space by taking
closed sets as sets A such that clA = A, where clA is the toplogical closure of a subset A

of X. It is also found that clA is the smallest closed set containing A.

Cech introduced the concept of Cech closure space. ( In this thesis we denote

Cech closure space as closure space for convenience ).

In éech's approach the condition ccA =cA among Kuratowski axioms need not
hold for every subset A of X (Here cA denotes the closure of A in X ); when this
condition is also true, c is called a topological closure operator. The concept of closure
space is thus a generalization of that of topological spaces. Cech closure space is also
called A - space by C.Calude - M.Malitza [C-M]. For them a Cech space is obtained by

removing ¢(AUB) = cA U cB and introducing A C B ==> cA C cB into the axioms of
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v
an A-space. However considering universal acceptability we call the former Cech

closure spaces and the latter monotone spaces.

In 1978, C.Calude and M.Malitza also mentioned [C-M] the concept of a total
Cech space and a total Kuratowski space. A total Cech space [respectively total

Kuratoswski space] is a closure space [ respectively Kuratoswski closure space ] which

also satisfies the condition

c(UA)=Uc(A) [ respectively cl(U A,)=U cl(A)].
i€l i€l i€l i€l

v
Calude and Cazanescu mentioned that [C-C] total Cech spaces are in one-to-one, onto
v
correspondence with reflexive relations and they also studied the category of total Cech

spaces and its full subcategory determined by total Kuratowski spaces.

The ideas about the concepts of a continuous mapping and of a set endowed
with continuous operations (compositions) play a fundamental role in general
mathematical analysis. Analogous to the notion of the continuity, we consider the
morphisms throughout this thesis. Cech described continuity in closure spaces by means
of neighbourhoods, nets etc. Koutnik studied the convergence in non Hausdorff closure
space [KO,]. He studied more about sequential convergence structure in [KO,],[KO,].
Mashour and Ghanim in 1982 defined [MA-G,] C- almost continuous as a function
f:X——>Y, where X and Y are closure spaces and is said to be a C-almost continuous if
for each x€X and each V C Y with fix) € V°, there is U C X such that x € U° and
flU)C(c(U))°. They also studied some results related to this concept. D.R. Andrew and

E.K. Whittlesy [A-W] and James Chew [CHE] studied about closure continuity.

D.N.Roth and J.W.Carlson mentioned [RD-C] the degree of a closure operator. They
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also found that Cech closure spaces of finite degree provide a nontrivial generalisation
of topological spaces. It was shown that the category of topological spaces and
continuous maps is bi-reflective in the category of Cech closure spaces of finite degree
and continuous maps. V.Kannan [K] defined the degree of closure operators in infinite

case also and studied more about this.

Separation axioms in closure spaces have different implications than the
corresponding axioms in topological spaces. According to éech, a closure space is said
to be seperated [CE,] if any two distinct points are separated by distinct
neighbourhoods. Separation properties in closure spaces have been studied by various
authors. D.N.Roth and J.W.Carlson studied [RO-C] a number of seperation properties.
in closure spaces. They showed that Cech closure operator on a finite set can be
represented by a zero-one reflexive matrix. A number of separation properties were
studied for finite spaces and characterised in terms of matrix that represents the closure
operator. Separation properties that carry over to the underlying topology were also

studied. W.J. Thron studied [T] some separation properties in closure spaces. He defined

a space as regular if x ¢ c(A) (A 1s closed in X) implies that there exist D,E C X,

DNE=¢ such that x ¢ ¢(X-D), A Ne(X-E)=¢. K.C.Chattopadhyay and W.J. Thron studied
[CH-T] some separation properties of extensions and obtained some results on the
above. Chattopadhyay mentioned [CH] R,R, spaces and pointed out that an R, space is
an R space. Some separation properties on biclosure spaces (X,c,,c,) were studied by

Chattopadhyay and Hazra in 1990 [CH-H]. According to them a biclosure space

(X,c,,c,) is called a T, - space if for each x,y in X,G(c,,x) xG(c,,x) =G(c,,x) x G(c,,y)



==> x=y where G is a grill on X and a T, space if ¢,(x) N c,(x) = x for all x in X . It was

proved that the R, space (X,c,,c,) is T, if and only if the spaceis T,.

For topological spaces compactness can be expressed in a number of different
ways. However for closure spaces some of these statements are not equivalent. éech
defined [CE,] the term compactness for a closure space (X,c) if every proper filter of
sets on X has a cluster point in X. He described the fundamental properties of compact
closure spaces. He noted that for a closure space (X,c) to be compact it is necessary and
sufficient that every interior cover V (an analogue of an open cover in topological

space) of (X,c) has a finite subcover. Chattopadhyay [CH] defined a compact space as a
closure space (X,c) if and only if [Gc+(x)=x €X] is a cover of 2(X). He denoted by
Q(X), a set of ultrafilters on X, by G, a grill on X then G'=[U: Ue2(X), U CG].
W.J. Thron mentioned [T] types of compactness. According to him a closure space (X,c)
is called linkage (F - linkage) compact if every linked ( F - linked ) grill on X converges.
A grill G is called linked grill if A,B € G ==> ¢(A) N ¢(B) =¢, F - linked grill if A,
A,..A € G ==>N[c(A)]= ¢. Some weak forms of compactness like almost

c-compactness were introduced and some of its properties were studied [MA-G1] by
A.S.Mashour and M.H.Ghanim. Compactness and linkage compactness were defined by

K.C.Chattopadhyay [CH].

Cech defined [CE,] and developed some properties of connected spaces.
According to him a subset A of a closure space X is said to be connected in X if A is not

the union of two non-empty semi-separated subsets of X,



that is A = A, U A, (cA, N A) U (A, N cA)) =¢ implies A= ¢ or A, = ¢. Plastria
studied [P] connectedness and local connectedness of simple extensions. The concept of

connectedness which was defined by Cech in closure spaces precisely coincides with

connectedness in the associated topological spaces.

K.C.Chattopadhyay and W.J.Thron were the first persons who studied [CH-T]
the gencral extension theory of G, closure spaces. They studied some special closure
operators and considered the case when an extension is topological and also compact.
The underlying structure of each nearness space is topological space. The underlying
structure of each semi neamess space is a Cech closure space. D.N.Roth and
J.W.Carlson showed [RO-C] that finitely generated Cech closure spaces are a natural
generalisation of finite Cech closure spaces. K.C.Chattopadhyay developed [CH] an
extension theory of arbitarary closure spaces which are in general supposed to satisfy no
separation axioms. He introduced the concept of regular extensions of closure spaces

and satisfied this concept in detail.

Though much work has been done in topological spaces and in Cech spaces,
there are still many problems not attempted. In the first part of this thesis we have made

an attempt in this direction.

TOPOLOGICAL SEMIGROUPS

The theory of topological semigroups originated during the fifties. A.D.Wallace
has contributed much to this area in its earlier days of development. A topological
semigroup is a Hausdorff space S with continuous associative multiplication (x,y) —>

xy of S x S into S . After Wallace's introduction, the study of topological semigroups



was continued by others. Some of the studies in this direction are due to A.D.Wallace [
on the structure of topological semigroups, Bull Amer. Math. Soc. 61 (1955a),95-112 ]
and K.H Hofmann and P.S.Mostert ( Elements of compact semigroups, Merril book,
Inc, Colombus (1966), A.B.Paalman De Miranda, [ Topological semigroups,

Mathematical Centre Tracts, 2nd edition , Mathematiche Centrum Amsterdam 1970 ].

Topological semigroups which are compact will be called compact semigroups.
The theory of compact semigroups is a rich area of research. It is to be noted that a
compact semigroup S contains an idempotent. Some standard results in this area can be

found in the book " The theory of topological semigroups " J.H.Carruth [ CH-A-K|] etc.

Tietze, Alexandroff, Urysohn etc worked on campactification and introduced the
concept of one-point compactification. Tychnoff continued this work and proved that
every Tychnoff space can be embedded in a compact Hausdorff space. Later E.Cech and
M.H.Stone gave the concept of maximal compactification (BX) and stated its

fundamental properties.

Deleeuw, Glicksberg, Hunter etc have studied Bohr compactification of
topological semigroups having universal properties analogous to those of BX.
J.A Hildebrant and J.D.Lawson investigated [H-L] the conditions under which, a
topological semigroup and a dense ideal have same Bohr compactification. He also
stated more results for weak compactification of semitopological semigroups as well as
the Bohr compactification. J.W.Baker and R.J.Butcher studied [B-B] about Stone -

Cech compactification of a topological semigroup. In 1990 K. S.Kripalini defined



semigroup compactification of a topological semigroup and also found some results

related to this.

The theory of closure semigroups, the theory of Bohr compactification and other
types of closure semigroup compactifications seem to have not been attempted by

others. In the second part of this thesis we have made an attempt in this direction.

0.2 SUMMARY OF THE THESIS

CHAPTER 1

In this chapter we introduce the morphisms in the category of closure spaces and
study the relation between these morphisms and the continuous functions in the
associated topologies. We denote the collection of morphisms from one closure space
into another as S (X) and find that S (X) is a semigroup. We consider an order relation
between closure operators and prove some related results. In section 2 we point out the
degree of a closure operator and find that the degree is invariant. We also consider the
order of a map and study more about this. In the third section we find that a closure
space can be associated from a monotone space and mention some preliminary concepts

in monotone spaces. We also study the concepts of morphisms and order of map in

monotone spaces.

CHAPTER 2

The second chapter is a study of some separation properties. In section 1 of this
chapter we consider some pointwise separation properties in closure spaces such as
T, T,and T,. We also find the relation between the separation properties in (X,c) and

those in the associated topological space (X,t). Some higher separation properties in



closure spaces have been introduced and studied in section 2. We consider the
hereditariness and productivity of some of these properties in closure spaces. In section
3 of this chapter we explain the above separation properties in the case of monotone

spaces.
CHAPTER 3

Some properties of compactness are studied in the first section of this chapter.
Cech studied some properties of compact closure spaces. We find the relation between
compact closure space and the associated compact topological space. Section 2 deals
with the concept of connectedness. Though Cech def ined and studied some properties
of connectedness in closure spaces, they are more related to associated topological
spaces. We define connectedness and find the relation between connected closure spaces
and associated topological spaces. It is observed that when a subset A of X is connected
cA nezd not be connected. We consider the image of a connected space under a
morphism. In the third section we define and study the concept of local connectedness
and path connectedness in closure spaces. We explain the above notions in monotone

spaces in section 4.
CHAPTER 4

An attempt has been made to introduce and study closure semigroups in the
fourth chapter. We define closure semigroup and find that S is a closure semigroup does
neither imply nor is implied by the fact that it is a topological semigroup in the
associated topology. We give examples in either direction. In this section we also

explain some preliminary concepts of closure semigroups analogous to those in a



topological semigroup. The concepts of ideal and product in a closure semigroup have
also been studied in section 2. In the third section we consider the notion of

homomorphisms and congruences and prove some related results.

CHAPTER 5

The study of closure semigroup is continued in the fifth chapter. We introduce
Bohr-type compactification and prove its existence. We also consider the set of all
closure semigroup compactifications of a given closure semigroup. We find that this set

is an upper complete semilattice.

0.3_PRELIMINARY DEFINITIONS AND RESULTS USED IN THE THESIS

Definition 0.3.1|CE,]

A function ¢ from a power set of X to itself is called a closure operation for X

provided that the following conditions are satisfied.
ehp=1¢

i) A C cA

i) c(A U B)=cA U cB

A structure (X,c) where X is a set and c is a closure operation for X will be

called closure space or Cech space. Let us consider the following conditions.
iv) A C B ==>cA C cB forevery AB C X

v) For any family of subsets of X, {A}

i€l

c(UA) = Uc(A)
i€l i€l
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vi) ¢(cA) =cA forevery A C X
The structure (X,c) where ¢ has the properties (i), (ii) and (iv) is called a
monotone space [C-M]. A Cech space which satisfies the condition (vi) is called

Kuratowski (topological) space [C-M]. A Cech space (Kuratowski) space is total if the

condition (v) holds [C-M].
Definition 0.3.2 |CE,]

A closure ¢ is said to be coarser than a closure ¢' on the same set X if

c'(A)Cc(A) for each AC X. In this case we say c<c'.
Definition 0.3.3 [CE,].

The identity relation on the power set of X is the finest closure for X and it will

be called the discrete closure for X. Setting cd=¢ and cA = X for every A C X we get

the coarsest closure for X and it will be called the indiscrete closure for X.

Definition 0.3.4

A subset A of a closure space (X,c) will be called closed if cA = A and open if its

complement is closed. That is if ¢(X-A) = X-A.

Note 0.3.5

If (X,c) is a closure space we denote the associated topology on X by t. That is
t={A': cA = A } where A' denotes the complement of A . Members of t are the open

sets of (X,c) and their complements the closed sets.
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Convention

We consider spaces (X,c) where ¢ denotes a monotone operator on X; the
associated closure (See Result 1.3.4) is denoted by ¢ and the associated closure space is
(X,c); the associated topology is denoted by t and the associated topological space is
(X,t); the closure in (X,t) will be denoted by cl. c,c,,c,,c' etc denote closure operators on
sets and t,t,,t,.t' etc denote the respective associated topologies and cLcl,,cL,cl' etc the

respective topological closures.
For any closure ¢ for a set X there is associated interior operator Int .
Definition 0.3.6 [CE,]

An interior operator Int_is a function from power set of X to itself such that for
each A C X, Int, A = X-c(X-A). The set Int A is called the interior of A in (X,c). Also

A is called a neighbourhood of x if x€Int A.
Note 0.3.7

A subset X is open if and only if int X = X.

Definition 0.3.8 [CE,]

Let (X,c) be a closure space and Y C X. The closure ¢' on Y is defined as
¢'A =Y N cA for every A C Y. The closure space (Y,c') is called the subspace of (X,c¢).
Result 0.3.9 [CE,]

Let Y be a subspace of a closure space X. Then (a) If A is closed (open) in X,

then Y N A is closed (open) in Y.
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(b) If Y is closed (open) in X and A is closed (open) in Y then A is closed (open) in X.
Recall : If ccA = cA for every A C X, then the closure operator c is called topological.
Result 0.3.10 [CE,]

A closure space (X,c) to be topological, it is necessary and sufficient that for

each subspace Y of X every relatively closed (open) set be of the form Y N A with A

closed (open) in X.
Definition 0.3.11 [CE,]

Let {(X,,c,) : a€A} be a family of closure spaces, X be the product of the family

{X,} of underlying sets and =, be the projection of X onto X, for each a. The product

closure ¢ is the coarsest closure (which exists) on the product of underlying sets such

that all the projections are morphisms.
Result (.3.12 [CE,]

If {X,} is a family of closure spaces and Y, is a subspace of X, for each a, then

M{Y,} is a subspace of TI{X,}.
Result 0.3.13 [CE,]

If X is the product of the family {X,} of closure spaces and U is a
neigbourhood of x in X, then = (U) is a neigbourhood of 7, x in X_; in particular, if U is

open then n (U) is open.
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Note 0.3.14

Let {(X,,c,):a € A} be a family of closure spaces. The product of the associated

topologies is not necessarily the associated topology of the product closure.
Example 0.3.15 (For details, see the appendix)

Let X = {a,b,c}

¢ be defined on X such that

c{a}={a}, c{b}={b,c}, c{c}={a,c}

c{a,c}={a,c}, c{a,b}=c{b,c}=cX=X, cd=¢

Then c is a closure operator on X

X x X={(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)}
(X,0={X.,¢,{b},{b,c}}

(X x Xt x t)={{(b,b)},{(b,b),(b,c}},{(b,b).(c,b)}.{(a,b),(b,b),(c,b)},
{(b,a),(b,b).(b,c)},{(b,b),(b,c),(c,b)},
{(a,b),(b,b),(b,c),(c,b)},{(b,a),(b,b),(b,c),(c,b)},
{(b,b),(b,c),(c,b),(c.c)},{ (a,b),(b,b),(b,c‘),(c,b), (c,0)}
{(a,b),(a,c),(b,b),(b,c),(c.b)(c,c)},
{(a,b),(b,a),(b,b),(b,c),(c,b).(c,c)},
{(b,a),(b,b),(b,c),(c,a),(c.b),(c,c)},

{(a,b),(a,c),(b,a),(b,b),(b.c),(c,b).(c,c)},
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{(a,b).(b,a),(b,b),(b,c),(c,a),(c,b).(c,c)},
{(a,b).(a,c),(b,a),(b,b),(b,c),(c,b).(c,c)},
{(a,b).(b,a),(b,b),(b,c),(c,b)},XxX,}

(X,1) x (X,t)= {$,X x X,{(b,b)},{(b,b),(b,c)},{(b,b),(c,b).},
{(b,b),(b,c),(c,b),(c,c)}}

Definition 0.3.16 |CE,]

Let f: (X,c) ——>Y is a surjective on to mapping. Then Y is said to be quotient of
X under f if and only if Y is endowed with the closure inductively generated by the

mapping f: X —>Y. That is ¢'A=fc(f ' (A))), forevery A C Y.
Result 0.3.17

Let g be an onto c-c' morphism from X to Y and for every U C Y containing
g(x) such that g'(U) is a neighbourhood of x then U is a neighbourhood of g(x) implies

g is quotient -
Proof
We have to show that c'A=g(c(g" (A))), forevery A C Y
Given that g (U) is a neighbourhood of x ==> U is a neighbourhood of g(x)
That is, x€ X-¢(X-g'(U)) ==> g(x) € Y-¢' (Y-U)
That is, g(x)€ c'(Y-U) ==> x€ ¢(X-g"'(U))

That is, g(x)ec'’A==> x€cg'(A) by taking A=Y - U
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==> g(x)ege(g” (A))
Any element in c'A is of the form g(x)
Therefore c'A C geg'(A)
since g is a morphism, (ge(g” (A))C c'gg'(A) C cA
Therefore c'A = gcg' (A)

so we get g is a quotient map.



CHAPTER 1

MORPHISMS AND ORDER OF A MAP

INTRODUCTION

This chapter begins with the study of c-morphisms from one closure space into
another. The order of a map and order of a closure operator are also studied in this

chapter.

Cech studied continuous mapping in closure space [CE,] . He also described this
in terms of neighbourhoods and in terms of nets and considered the case when the image

set is topological. In [A-W] D.R.Andrew and E.K Whittlesy studied closure continuity .

E
In section 1.1 we introduce the morphisms in the category of closure spaces

(which are the continuous functions in the terminology of (vlech) and study the relation
between these morphisms and the continuous functions in (X,t). We consider order
between closure operators and prove certain related results like " If X is a set, ¢, and c,
denote closure operators on X and if f is ¢, morphism and c,<c, then f is c,-c,

morphism."”

David N. Roth and John W.Carlson mentioned the degree of closure operators in
[RO-C]. They proved some results like " let (X,c) be a finite Cech closure space of
degree k then c¢* is the closure operator with respect to underlying topology.” In section
1.2 we mention the concept of the degree of a closure operator. V. Kannan defined and

studied about order of 2 map f from a topological space into another set and into
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another topological space [K]. Based on this we give an analogous study about order of

a map f from a closure space into a set and into another closure space in section 1.2

We also study these concepts in monotone space in section 1.3

1.1 MORPHISMS

In this section we study the notion of morphisms from one closure space into

another.

Definition 1.1.1
A map f: (X,c) —>(Y,c') is said to be c-c' morphism or just morphism if
f{cA) C c'flA).

Remark 1.1.2

Vi
Cech calls a morphism by the term continuous function. However, for us, a

function f: (X,c) —>(Y,c') is continuous means f: (X,t) —>(Y.,t') is continuous.
Definition 1.1.3 |CE,]

A neighbourhood of a subset A of a space (X,c) is any subset U of X containing
A in its interior where X-c(X-U) is the interior of U. By a neighbourhood of a point x

of X we mean a neighbourhood of the one point set {x}.
Note 1.1.4

It is clear that if A C X and if W is a neighbourhood of A in (X,t) then W is a

neighbourhood of A in (X,¢); the converse is not true.
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Example 1.1.5

Let X = {a,b,c}, c be defined on X such that
c{a}={a}, c{b}={b,c}, c{c}={a,c}, c{a,c}={a,c}, c{a,b}=c{b,c}=cX=X, cd=¢
Then ¢ is a Cech closure operator.

Here {a,c} is a neighbourhood of {a} in (X,c), but it is not a neighbourhood of {a} in

(X,1).

In order that a mapping f of a closure space (X,c) into another one (Y,c') be
c-c' morphism at a point x € X it is necessary and sufficient that the inverse image f (V)

of each neighbourhood V of f{x) be a neighbourhood of x, or equivalently that for each

neighbourhood V of f{x) there exists a neighbourhood U of x such that {U) C V[CE,].

Result 1.1.6 [CE,]

If fis a c-c' morphism of a space (X,c) into a space (Y,c") then the inverse image

of each open subset of Y is an open subset of X.
Result 1.1.7

Let (X,c),(Y,c') be two closure spaces. fis a mapping from (X,c) into (Y,c').If
fis a c-¢' morphism, then fis continuous.

Proof

Let f be a c-¢' morphism. Then inverse image of every open set is open. So f'is

continuous.



19

Note 1.1.8

fis continuous does not imply that f'is c-c' morphism.
Example

X={a,b,c}

Let c be defined on X such that
c{a}={a}, c{b}={b,c}, c{c}={a.c}, c{a,c}={a,c}, c{a,b}=c{b,c}=cX =X, cd=¢
c is a closure operation on X
c¢' be defined on X such that
c'{a}={a,b}, ¢'{b}={b,c}, c'{c}={c}, c'{b,c}={b,c},
c'{a,b}=c'{a,c}=c'X=X, c'¢=¢
c'is a closure operation on X.
fis a mapping from X-->X defined in such a way that f{a)=c,f{b)=a, f{c)=c
fis continuous. But fis not a morphism. For, fc({b}) ég cf{{b})
Definition 1.1.9 [CE,}

A cluster point or an accumulation point of a set A in (X,c) is a point x

belonging to c(A-(x))
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Note 1.1.10

If x is a cluster point of a set A in (X,c) then x is a cluster point of a set A in

(X,t). The converse is not true. In Example 1.1.5 a is a cluster point of A = {a,b} in

(X,t), a € cl(A-(a)). Sincea § c(A-(a)), a is not a cluster point of A={a,b} in (X,c)-
Note 1.1.11

The set of all c-morphisms of X is denoted by S (X) which is a semigroup under
usual composition. The set of all morphisms from (X,c) to (X,c') is denoted by S__. (X).

Clearly it is not in general a semigroup under composition.
Note 1.1.12
If csc' then S, (X) is a semigroup,
For this, fis c-c' morphism and g is c-c¢' morphism
(g 0 f)(cA) = g(f{cA))
C g(cfiA))
C g c(flA)), since c<c'
C c'g(ftA)) = c'(g o f)(A)

That is g o f 1is c-c' morphism and this shows that S__, (X) is a semigroup under

composition-
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Result 1.1.13

Let X be a set, ¢ and c' denote closure operations on X. If fis c-morphism and

c'<cthen f isc-c' morphism.
Proof
f{cA) C cflA), since fis c-morphism
C ¢'f{A), since c'<c
That is fis c-¢' morphism
Similarly if fis c-¢' morphism and c<c' then fis c-morphism,
Note 1.1.14

If (X,c) is a closure space, cl is the closure operation in the associated topological

space. Then cl<e-

c(cl(A) = cl(A), since cl is closed in the associated topology

cA C ¢(clA), since A C clA

That is cA C clA

Equivalently, identity map from (X,c) into (X,cl) is a c-cl morphism.
Proposition 1.1.15

Let X be a set ¢ and c' be closure operations on X and cl and cl' be the closure

operations on the associated topological spaces t and t' respectively. If c'<c, then cl'<cl
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Proof

If ¢'<c then any c' closed set is c- closed. For, if B is any c¢' closed set, then

B C ¢B C ¢'B =B. So B=cB. It follows that if F is any c' closed set containing A then

FD clA. In particular cl'A D clA for any set A. That is cl' <cl.
Then we get c'<sc ==> cl'cl.

The following example shows that the converse of the above proposition is not

true.

Example 1.1.16

Let X = {a,b,c,d}

¢ be defined on X such that

c{a}={a}, c{b}={b,c}, c{c}={c,d}, c{d}={b,d}, c{a,b}={a,b,c},c{a,c}={a,c,d},

c{a,d}={a,b,d}, c{b,c}=c{b,d}=c{c,d}=c{b,c,d}={b,c,d},
c{a,b,c}=c{a,b,d}=c{a,c,d}=cX=X, cd=0

Then c is a closure operation on X

c¢' be defined on X such that

c{a}={a}, c'{c}=c'{d}=c'{c,d}={c.d},
c'{b}=c'{b,c}=c'{b,d}=c'{b,c,d}={b,c,d},
c'{a,c}=c'{a,d}=c'{a,c,d}={a,c,d},

c'{a,b}=c'{a,b,c}=c'{a,b,d}=c'X=X, c'¢=¢
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Then ¢' is a closure operation on X
(X,t) = {X,9,{a},{b,c,d}}
(X,t)={X,9.{a},{b},{a,b},{b,c,d}}
Here cl<el'. But cic'. For c'{b}é‘ c{b}.
Result 1.1.17

Let X,Y be sets. ¢ and ¢’ be closure operations on X,Y respectively and cl, cl' be

the closure operations on the respective associated topological spaces. If f: X—>Y is a

c-¢' morphism, then it is a c-cl' morphism -
Proof
flcA) C c'f{A) forevery A C X
C cl' ffA).
That is f'is c-cl' morphism.

In particular when X=Y and c=c', we get , f is c-morphism implies f is

continuous (as is seen in Result 1.1.7).

Note 1.1.18

It is clear that if ¢'<c and f'is cl-morphism then f'is cl-cI' morphism.

Result 1.1.19

If ¢'<c, then S (X) C S__ (X) and is a monoid although S__, (X) is not even a semigroup

in general.
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Proof
If f €S (X), then f{cA) C cRA)
C c¢'f{A), sincec'<c

This is true for every A C X. Therefore f € S__ (X). That is S(X) is a semigroup under

the induced operation is trivial.
Definition 1.1.20

A homeomorphism is a bijective (one - one - onto) mapping f such that both f

and f™' are morphisms. That is f{cA) = cf{A) for every A C X.

Note 1.1.21

If a function f from (X,c) onto (Y,c") is a homeomorphism then f is a

homeomorphism from (X,t) onto (Y,t'). But the converse is not true.
Example 1.1.22

X ={ab,c}

Let c be defined on X such that

c{a} = {a}, c{b}={b,c}, c{c}={a,c}, c{a,c}={ac},
c{a,b}=c{b,c}=cX=X,cd)=¢

c is a closure operation on X.

c¢' be defined on X such that

c'{b}={b,c}, c'{c}={c}, c'{b,c}={b,c},
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¢{a)='{a,b}=c'(a,c}=cX=X, c9=¢
Then ¢ is a closure operation on X.
(X,)= {X.0,{b}, {b.c}} and (X,t) = {(X.0.{a}.{ab}}

fis a mapping from (X,c) onto (X,c'") defined in such a way that f{a)=c, f{b)=a, f{c)=b.
is a homeomorphism from (X,t) onto (Y,t'). But fis not a homeomorphism from (X,c)

onto (X,c") because fc({b}) ¥ ¢' R{b}).

1.2 DEGREE OF CLOSURE OPERATOR AND ORDER OF A MAP

Definition 1.2.1

v
Let (X,c) be a Cech closure space. We define for each ordinal a, the operator c*

as ¢*(A)=UcP(A) if a is limit ordinal and c¢(cP(A)) if a=PB+1. Then c® is a closure
B<a

operator. The degree of ¢ is defined to be k if k is the smallest ordinal number for which

¢=c*"! (It is called the order of the closure space in [K]).

Example 1.2.2

(1) Let X={a,b,c}

c be defined on x such that
c{a}={a}, c{b}={b,c}, c{c}={a,b,c},
c{a,b}=c{b,c}=c{a,c}=cX=X, cd=¢
Then c is a closure operation on X.

Here the degree of closure operator is two.
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(2) Let X=N

¢ be defined on X such that

cA=AU {xtl: x€ A} forevery A C X

Then c is a closure operation on X

Here the degree of closure operator is ®

(3) Let X=[1,02 ] ordinal space.

¢ be defined on X such that

cA=AU (A+1), (A+1)={x+1 : x € A}

Then c is a closure operator and degree of c is {2 .
Result 1.2.3 [ RO-C]

Let (X,c) be a finite Cech closure space. Then

1. For every natural number n, and A C X, c"(A) C clA
2. For each A C X there exists a smallest m € N such that c"(A)= clA.
Result 1.2.4 [RO-C]

Let (X,c) be a finite Cech closure space of degree k. Then (1) c* is a Kuratowski closure

opearator on X

(2) c* is the closure operator with respect to the associated topology (Xt).
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Result 1.2.5
The order of a closure operator is invariant.
Proof

Let (X,c) and (X,c') be closure spaces which are homeomorphic. Let the degree of ¢ be

k. Then clearly the degree of c' is also k.

Now we consider the order of a map from a closure space X to another set Y

and from a closure space X to another closure space (analogous to the study made

in [K]).
Let X be a closure space and Y be any set. Let f be a function from X onto Y.
Take any subset A of Y. Define
A’=A
A'c=fc(f(A)))
A’ = fle(f (Re(f(A))))) ete.

A%=U AP, ifa is a limit ordinal
B<a

A% =(AP),,if a=B+1

We define A" .= U{ A%: o is an ordinal number }
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Definition 1.2.6

Let X be a closure space and Y be a set f be a map from X onto Y. The order of

the map f denoted by o(f) is the least ordinal number a such that A™ = A" for every

subset A of Y.

Example 1.2.7

Let X = {ab,c}; Y = {1,2,3}

c be defined on X such that

c{a}={a}, c{b}={b,c}, c{c}={a,c},

c{a,b}=c{b,c}=cX=X, c{a,c}={a,c}, co=¢

Then c is a closure operation on X

Let f be a map from X onto Y such that f{a)=1 fb)=3 f{c)=2
The order of the map is 2.

Result 1.2.8

Let (X,c) be a closure space, (X,t) the associated topological space and Y be a
set. If o(f) is the order of a map defined from X to Y and o ,(f) is the order of the map in

the sense of [K] from (X,t) to Y then o, (f)< o(f).

Proof

Let * denote the corresponding notions with respect to (X,t). We know that

cA C clA for every A C X
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A =A%,

A'; = f{c(f'(A))) C flcl(f '(A))) = Al etc.

A%, C A%,

for every ordinal .

Then A™, C A

Since G4(f) is the least ordinal number o such that A™, = A% for every subset A of Y,
o «(f) is less than or equal to o(f) -

Example 1.2.9

Let X=Y=N

c be defined on X such that

c(A) = A U (A+1) for every subset A of X.

Then c is a closure operation on X

Let f be an identity map from X to Y

Here o,(f) is Z. But o(f) is .
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Note 1.2.10

The following are analogous to the corresponding results in topological spaces [K] :
(1) As o increases, A% also increases. That is if a<f} then A% C AP foreach A C Y
(2) If for some a, we have A% = AV then A% =AP, for every B>a.
3)(A),=A forevery ACY

(4) For a subset B of Y, the following are equivalent

(aA) B=A" forsome ACY

(b)B=B",

(c)B =B

(d) £'/(B) is closed.

(5)IfA C B C Y, then A% C AP, for every ordinal number a.

Now we consider that Y is also provided with a closure operator. Take two

closure spaces (X,c) and (Y,c'). fis c-c' morphism.
Note 1.2.11

1. If fis c-¢' morphism, then A', C c'A foreveryAC Y
A' = Re(f(A)))

cf '(A) C f(c'A), since f is c-c' morphism.
fe(f(A))) C F(C'A) C c(A)

Thatis A', C ¢'A
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2. Conversely if A’y C c'A for every A C Y, then f'is c-c' morphism
fle(f'(A))) C ¢'A

So £ flc(f'(A))) C fI(cA) C ...

Therefore cf '(A) C f(c'A)

Hence f'is c-¢' morphism.

3. If fis a clos2d c-c' morphism, then c'A = A’ forevery AC Y.

4. If fis a closed c-¢' morphism then o(f)< 1 -

5. If fand g are two maps from a closure space onto a set Y and if A'; = A’, for each

subset A of Y, then o(f)=o(g).

1.3 C,-MORPHISMS AND ORDER OF MAP IN MONOTONE SPACES

To each monotone space, we can associate uniquely a Cech closure space and

thereby a topological space. The interelations are discussed in this section.

Definition 1.3.1

A monotone operator c, is said to be coarser than a monotone operator c', if

cxA D ', A for each ACX. In this case we say ¢, <c',

Definition 1.3.2

A subset A of a monotone space (X,c,) will be called closed if c,A = A, open if its

complement is closed.



32

Result 1.3.3

For each monotone operator there is a uniquely associated closure operator.

Proof

Let X be a set and c, be a monotone operator on X. Take the collection

{c_: c_is a closure operator coarser than c.}.Take cA = Nc A for all A
Then c is a closure operator.

For, c6 = Nc (¢)=¢

¢(AUB)=N(c(AUB))= N(c, AU ¢ B)=(Nc A)u(Nc B)=cA U cB
A C c A for every a

Therefore A C Nc A

Thus A CcA.

Example 1.3.4

X={a,b,c}

¢4« be defined on X such that

cx{a}={a}, cu{b}={b,c}, ca{c}={c}, ca{a,b}=c.{b,c}=ci{a,c}=cs X=X, c.d=0

Then c, is a monotone operator.

Associated closure operator is
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co=0, c{a} ={a,b}, c{b} = {b,c}, c{c} = {a,c}, c{ab}=c{b,c}=c{ac}=cX =X
The associated topology is indiscrete.

Remark 1.3.5

From (X,c) we can associate a topology (X,t) in the usual manner. From c, we

can associate in a similar way a Kuratowski closure operator directly. It is clear that

both the above two Kuratowski operators are the same.

Definition 1.3.6

A neighbourhood of a subset A of a space (X,c4) is any subset U of X such that

AC X-c«(X-U). By a neighbourhood of a point x of X we mean a neighbourhood of the

one point set {x}.
Note 1.3.7

It is clear that if W is a neighbourhood of A C (X,c), then it is a

neighbourhood of A in (X,c,). But the converse is not true. In the Example 1.3.2, {a,b}
is a neighbourhood of {a} in (X,c,). But it is not a neighbourhood of {a} in (X,c).

Definition 1.3.8

Let (X,c«) be a monotone space and let Y C X. The monotone operator c', on 'Y
is defined as ¢'\A =Y N c,A for every A C Y. Then ¢',is called the relativisation of c,

to Y and the space (Y,c's) is called the subspace of (X,c.).
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Definition 1.3.9

Let X be a set and c, denote a monotone operator on X. A map f: X—>Xis
said to be a c,-morphism if f{c,A) C c,f{A) for every A C X.

Definition 1.3.10

A map f: (X,c,) —> (Y,c'4) is said to be c,-c', morphism if f{c,A) C ¢',f{A) for

each A C X.

Note 1.3.11

fis c,-c'y morphism need not imply that it is c-¢' morphism and vice-versa.
1Y ply p

The following example shows thatf:(X,c,) —> (X,c's) is not a c,-c', morphism
but it is a c-¢' morphism.
Example 1.3.12

X = {a,b,c}

¢« be defined on X such that

ce{a}={a}, cu{b}={b,c}, ci{c}={c}, ca{a,b}=ci{b,c}=ci{a,c}=c. X=X, csd=b.

C« IS a monotone operator on X.
c is given by

c{a}={a,b}, c{b}={b,c}, c{c}={a,c}, c{a,b}=c{b,c}= c{a,c}=cX=X, cd=¢
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Let f be a map from (X,c,) into (X,c,) defined in such a way that
f{a) =b, fib) = ¢, f{c) = a

f: (X,c) —> (X,c) is c-c morphism. But it is not c,-c, morphism because

feu({b}) ¢ c.fi{b}).
Definition 1.3.13

Let (X,c.«) be a monotone space and Y be a set. f be a map from X onto Y. The
order of the map f denoted by S(f) is the least ordinal number o such that A, = A%

(A7, A% defined in monotone space similar to that in closure spaces) for every subset

AofY.
Note 1.3.14

It is clear that S(f) <o(f).



CHAPTER 2

SOME SEPARATION PROPERTIES IN CLOSURE SPACES

INTRODUCTION

This chapter is devoted to the study of some separation properties of closure

spaces and of monotone spaces analogous to the separation properties of topological

spaces.

Tietze, Kolmogoroff, Frechet, Riez, Hausdorff and others studied separation
properties in topological spaces. The separation properties in closure spaces were defined
and discussed by E.Cech [CE, ]. According to him, any two points can be separated by
distinct neighbourhoods in a separated space. Any point x and closed set not containing x
can be separated by distinct neighbourhoods in a regular space. David.N.Roth and
J.W.Carlson studied a number of separation properties like T,,T,, R,, R, etc [RO-C]

W.J.Thron also discuss separation properties [T].

Section 2.1 is mainly focused to define and study some point separation

properties like T,,T, and T, in closure spaces.

We introduce and study some higher separation properties in section 2.2. We also
find the relation between c-separation properties and t-separation properties.

Some results in the same area related to monotone space have also been studied in

section 2.3.
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2.1. POINT SEPARATION PROPERTIES IN CLOSURE SPACES

In this section we introduce and study some point separation properties in closure

spaces.

Definition 2.1.1
A closure space (X,c) is said to be T, if for every x TL— y in X either x # c{y} or
y é c{x} (éech termed this as feebly semiseparated).
Result 2.1.2
If (X,t) is T then (X,c) is T,
Proof
Let (X,t) be T,. If x % y in X, then either x * cl{y} ory ¢ cl {x}.
But cA C cl A forevery A C X.
So we get x ¢ c{y}ory ¢ c{x}

The following example shows that the converse of the above Result 2.1.2 is not

true.
Example 2.1.3
X ={a,b,c}

Let ¢ be defined on X such that
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¢ {a}=a,b}, c{b}={b,c}, c{c}= {a,c}, c {ab}=c {b,c}=c{ac}=cX =X, ch=¢
c is a closure operation on X.
Here (X,c) is T,. But (X,t) is the indiscrete topology which is not T,,.
Definition 2.1.4

A closure space (X,c) is said to Be T, if for x £ y we have x ¢c{y} and y # ¢ {x}

(éech termed this as semiseparated space)-
Result 2.1.5
For a closure space (X,c) the following are equivalent.
(1) The space (X,c)is T,.
(2) For any x € X, the singleton set {x} is closed .
(3) Every finite subset of X is closed.
Proof .
(1)==>(2)

Let (X,c) be T, . If possible, suppose x is not closed. That is c{x} + {x}. So there

exists y ¥ x, y € c{x}. But this contradicts the fact that (X,c) is T,. Therefore {x} is

closed.

(2)==>()
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For any x € X, the singleton set {x} is closed. Since finite union of closed sets is

closed, every finite subset of X is closed.

(3)=>(2)
Trivial
(2)==>(1)

Singleton sets are closed. Therefore c{x}=x, c{y}=y and so x ¢ c{y} and y¢c{x}.

Therefore (X,c) is T, .
Corollary 2.1.6

(X,c)is T, ifand only if (X,t)is T, .
Note 2.1.7

It is clear that every T, space is also T, . (X,c) is T, need not imply that (X,c) is
T,. In Example 2.1.3 (X,c)is T,butitisnot T,
Definition 2.1.8

A closure space (X,c) is said to be semi-Hausdorf if for x # y either there exists

an open set U such that x€U and y 4 cU or there exists an open set V such that yeV and

xtch. If both conditions hold, then (X,c) is said to be pseudo- Hausdorff.
Result 2.1.9

If (X,t) is Hausdorff , then (X,c) is pseudo-HausdorfY.
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Proof

Let (X,t) be Hausdorff. Then x ¢ y implies there exists disjoint open sets U,V
such that xeU, yeV. That is there exists an open set U such that x€U and y¢01 U and also

there exists an open set V such that yeV and x¢clV. But cA C cl A for each A C X.

Therefore (X,c) is pseudo Hausdorff.
Note 2.1.10
The converse of the above result is not true.

Example 2.1.11

X=NxNU {xy} U {a:i€ N} U ({b:jeN}, a's bs, xy are all distinct and

do not belong to N x N.

Let c be defined on X such that
cA = A U {b, : there exists an infnite number of j such that (ij) € A}
U {a : there exists an infnite number of i such that (ij) € A}, if A C NxN

cA=c¢(A N NxN)U AU {x}, if A contains an infinite number of a,'s and

at most finitely many b's.

cA=c(AN NxN)U AU {y}, if A contains an infinite number of b/s and

at most finitely many a/'s.
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cA=c¢( ANNxN)U AU {x,y} if A contains an infinite number of a's and an

infinte number of bj's.

Here (X,c) is pseudo-Hausdorff. In (X,t) x and y cannot be separated by disjoint

open sets and so (X,t) is not Hausdorff.
Definition 2.1.12

A closure space (X,c) is said to be Hausdorff (éech termed it as separated) if for

any two distinct points, there exists neighbourhoods U of x and V of y such that UNV=¢.
Result 2.1.13

If (X,t) is Hausdorff then (X,c) is Hausdorff .
Proof

Let (X,t) be Hausdorff, then for any two distinct points x and y, there exist
disjoint open sets U and V containing x and y respectively. Since an open set is a
neighbourhood of each of its points and a neighbourhood in (X,t) is also a neighbourhood
in (X,c) , U and V are disjoint neighbourhoods for x and y in (X,c). Hence (X,c) is

Hausdorff.
Note 2.1.14

The converse of the above result is not true.
Result 2.1.15

(X,c) is pseudo-Hausdorff implies (X,c)is T, .
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Proof

If (X,c) is not T;, then there exists x € X such that c¢{x}= {x}. Lety € c{x}. Thus
if U is an open set containing x, cU Dc{x}3 y. So (X,c) is not pseudo-Hausdorff.
Note 2.1.16

(X,c) is semi-Hausdorff need not imply that (X,c) is pseudo-Hausdorff.
Note 2.1.17

(X,c) is pseudo-Hausdorff need not imply that (X,c) is Hausdorff and vice versa.
Result 2.1.18

Every subspace of a pseudo-Hausdorff space is pseudo-Hausdorff.

Proof

Let (X,c) be a pseudo-Hausdorff space and AC X. Since X is pseudo-Hausdorff
there exists points x;é y and open U,V such that X € U, y ¢ cUandy €V, x * cV. Then
ANU and AN V are open setsin A, suchthat x€ ANU,y€ ANV andx ¢ [ANc(A
nVv)iy ,.l [AN c(AN U)] which shows that A is pseudo-Hausdorff.

It is clear that if a closure space is T | (respectively T, ), then every subspaceis T,
(respectively T,) -

Result 2.1.19

A nonempty product space is pseudo- Hausdorff if and only if each factor space is

pseudo- Hausdorff.
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Proof

Suppose X is pseudo-Hausdorff for each a € A. Let x { yin [1X,.  Then for
some co-ordinate a, X, 7‘ y, Since each X is pseudo-Hausdorff, for x;f y, there exists
open sets U, , V_ such that x, € U,y €V, and x, gl ¢ Ve Yo g‘ c, U, Since the
projection maps are ¢ - ¢, morphisms [CE,] and the inverse image of an open set under a
c- morphism is open, n,' U and ' V_are open in [1X_ and xen' U, y €n.' U_.
xt;lna"cava) and y¢n “(c,U,). Butc(n,'U,)C n"(c,U,)and c(n,'V,)C n.'(c,V,)

Therefore, xdc(n,'(V,))and y de(r,(U,)).

Conversely, suppose that [TX_ is nonempty pseudo-Hausdorff. Take a fixed point
b=(b,) where b € X, for each o € A. Then the subspace B, = {x€I1X : x,=b,except for

B=a} is pseudo-Hausdorff. B, is homeomorphic to X_.  Therefore X  is

pseudo-Hausdorff.
Definiiton 2.1.20

A closure space (X,c) is said to be Urysohn space if for x # y, there exists open

sets U,V such that xeU, y €V and cU N ¢V = ¢.
Result 2.1.21
(X,t) is Urysohn space implies (X,c) is Urysohn space.

The proof is similar to the Proof 0of 2.1.13.
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Note
The converse is not true.
Remarks 2.1.22

It is clear that every Urysohn space is pseudo-Hausdorff space. (X,c) is a pseudo-
Hausdorff space need not imply that (X,c) is Urysohn Space. In Example 2.1.11 (X,c) is

pseudo-Hausdorff but it is not Urysohn.
Result 2.1.23

Every subspace of a Urysohn space is Urysohn. The proof is similar to the Proof of

2.1.18.
Definition 2.1.24

A closure space (X,c) is said to be functionally Hausdorff, if for every pair of
distinct points x,y, there exists a c-cl,, morphism f : x —>[0,1] such that f{x)=0 and

fy)=1 where cl, is the usual closure operation in [0,1].

Result 2.1.25
If (X,t) is functionally Hausdorff then (X,c) is functionally Hausdorff.

Proof

Let (X,t) be functionally Hausdorff space. Therefore for every pair of distinct
points x.y there exists a cl-cl; morphism f: X ——>[0,1] such that fx)=0, fy)=1 where cl

is the closure operation in the associated topological space(X,t). Now f{clA) C cl,flA)
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for every ACX. Since cA C clA for every A C X, f{cA) C f(clA) C cl, {A) That is fis

c-cl, morphism. That is (X,c) is functionally Hausdorff.
Note 2.1.26
The converse of the above result is not true.
Result 2.1.27
Every subspace of a functionally Hausdorff space is functionally HausdorfT.
Proof
Let (X,c) be functionally Hausdorff space and Y C X and x,y €Y. Since X is
functionally Hausdorff, there exists a c-cl, morphism from X —>[0,1] such that fix)=0 and

f(y)=1. Let ¢ be the induced closure operation on Y. Since c'A=cA N Y C cA for every

A CY, f restricted to Y is c'-cl, morphism. Thus Y is functionally Hausdorff.

2.2 HIGHER SEPARATION PROPERTIES IN CLOSURE SPACES.

In this section we study regularity, normality, complete regularity etc, in closure

spaces.
Definition 2.2.1

A closure space(X,c) is said to be quasi-regular if for every point x and a closed
set A not containing X, there exists an open set U suchthat x e Uand cUNA=¢. X is

said to be semi-regular if for every point x and closed set A not containing x, there exists
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an open set V such that A C V and x * cV. Ifboth conditions hold, then X is said to be

pseudo-regular.
Definition 2.2.2 [CE,]

A closure space (X,c¢) is said to be regular, if for each point x of X and each subset

A of X such that x # CA and there exists neighbourhoods U of x and V of y such that
unv=¢.
Result 2.2.3

If (X,t) is regular then (X,c) is pseudo-regular. The proof is similar to the Proof of

2.1.9
Note 2.2.4

The converse of the above result is not true. In Example 2.1.11 (X,c) is

pseudo-regular but (X,t) is not regular.

The following example shows that (X,c) is quasi-regular does not imply that it is

semi-regular and pseudo-regular.
Example 2.2.5
Let X be a set of real numbers and let A = {1/n : n=1,2,3...}.

Define the Smirnov's deleted sequence topology T on X by letting G € 1 if

G=U-B where B C A and U is an open set in the Euclidean topology on X. Let ¢ be the

closure in this topology. Then (X,c) is quasi-regular but not semi-regular.
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Note 2.2.6
(X,¢) is semi-regular does not imply that (X,c) is pseudo-regular.
Result 2.2.7
If (X.t) is regular, then (X,c) is regular. The proof is similar to the Proof of 2.1.13.
Note 2.2.8
The converse of the above result is not true.
Note 2.2.9
(X,c) is regular does not imply that (X,c) is pseudo-regular and vice-versa -
Result 2.2.10 [CE,]
Every subspace of a regular space is regular.
Result 2.2.11
Every closed subspace of a pseudo-regular space is pseudo-regular.
Proof

Let (X,c) be pseudo-regular. Y be closed in X. Let A be closed in Y. Then A is
closed in X [CE,]. y be a point in Y not in A. Since (X,c) is pseudo-regular, there exists
open sets U of A and V of y suchthatych andcVNA=¢. ThenYNUand Y NV are
open in Y containing A and y respectively. A N [Y Ne(Y N V)]=¢ and y f [Y Nc(Y NU)J

which shows that Y is pseudo-regular.
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Result 2.2.12

X is a closure space. X is quasi-regular if and only if for each x € X and an open

neighbourhood U of x there exists a neighbourhood V of x with x eVCcVCU.
Proof

Let X be quasi-regular. x in X and U is an open neighbourhood of x. Then U' is

closed in X. Since X is quasi-regular,for the point x and the closed set U' there exists

open V such that x €V and U' N ¢V =¢. Then ¢V CU, thatisx e V.C cV C U.

Conversely, suppose the condition holds. Let x in X and A a closed set in X. Then

for x and its neighbourhood A' (complement of A ), there exists an open set V such that

x€V CcV C A. Thatisx € Vand cV N A' = ¢. That is X is quasi-regular.
Definition 2.2.13

A closure space (X,c) is said to be semi-normal, if for each pair of disjoint closed
sets A and B either there exists an open set U such that A C U and cU N B = ¢ or there

exists an open set V such that B C V and A N ¢V = ¢. If both conditions hold X is said

to be pseudo-normal.

Definition 2.2.14 [CE,]

A closure space (X,c) is said to be normal, if for any pair of disjoint closed sets A

and B there exists disjoint neighbourhoods U and V containing A and B respectively.
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Result 2.2.15
(X,t) is normal ==> (X,¢) is pseudo-normal. The proof'is similar to the Proof of 2.1.9
Result 2.2.16
(X,t) is normal ==> (X,c) is normal. The proof'is similar to the Proof of 2.1.13
Note 2.2.17
The converse of the above result is not true.
Note 2.2.18

(X,c) is pseudo-normal does not imply that (X,t) is normal. In Example 2.1.11

(X,c) is pseudo-normal but (X,t) is not normal.
Note 2.2.19
(X,c) is semi-normal does not imply that (X,c) is pseudo-normal.

The following example shows that (X,c) is pseudo-normal does not imply that

(X,c) 1s pseudo-regular.
Example 2.2.20

Let X=N
c is defined on X such that
cA=AU {xtl: x € A}

Vacuously (X,c) is pseudo-normal. But it is not pseudo-regular.
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Note 2.2.21

(X,c) is normal does not imply that (X,c) is pseudo-normal and (Xc) is

pseudo-normal does not imply that (X,c) is normal.
Result 2.2.22 [CE,}
In a closure space every closed subspace of a normal space is normal.

Result 2.2.23

In a closure space every closed subspace of a pseudo-normal space is

pseudo-normal.
The proof is similar to the Proof of 2.2.11
Definition 2.2.24

A closure space (X,c) is said to be completely normal if for any two disjoint closed

sets A and B in X there exists open sets U,V suchthat AC U, B C VandcUNcV =4 -
Note 2.2.25

If (3,t) is completely normal, then (X,c) is completely normal and the converse is

not true.

Remark 2.2.26

It is clear that every completely normal space is pseudo-normal space. In Example

2.1.11 (X,c) is pseudo-normal but not completely normal.
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Definition 2.2.27

A closure space (X,c) is said to be completely regular, if for every point x and a
closed set A not containing x, there exists a c-cl, morphism f : x —> [0,1] such that

f{x)=0 and f{y)=1 for everyy € A .
Result 2.2.28

If (X,t) is completely regular, then (X,c) is completely regular and the converse

is not true.
Result 2.2.29
Every subspace of a completely regular space is completely regular.

2.3 SEPARATION PROPERTIES IN MONOTONE SPACES

In thss section we introduce and study some separation properties in monotone

spaces.

Definition 2.3.1

A monotone space (X,c,) is said to be T, , if x f= y implies either x ¢ c«{y} or
yfeu(x} and T, ifx £y implies x § cu{y} and y § cufx).

Note 2.3.2

It is clear that if (X,c) is T, space, then (X,c4) is T, and the converse is not true.
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Example 2.3.3

X=N

Let c, be defined on X such that

c+A =A U (A+1), if A is a one point set, that is c,{x}={x, x+1}
cxA = N, when A is not a singleton.

Here (X,cx ) is T,. The associated closure space (X,c) isnot T,

Note 2.3.4

If (X,¢)is T, , then (X,c,) is T,. The converse is not true.

Example 2.3.5

X=N

Let c, be defined on X such that
cxA = A, if A is a singleton set
cxA =N, when A is not a singleton.

Then c, is a monotone operator on X. Here (X,c4) is T,. But (X,c)isnot T,.
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Remark 2.3.6

It is clear that if (X,c4) is T,, then it is T,. The following example shows that the

converse is not true.
Example 2.3.7

Let X = {a,b,c}

c« be defined on X such that

cefa} = {a,b}, ca{b} = {b}, ci{c} = {a,c},
ca{a,b} = cufb,c} =cu{acl=ceX =X, cad = ¢.

C« 1S a monotone operator on X.

It is T, but not T,.
Definition 2.3.8

A monotone space (X,cy) is said to be semi-Hausdorff if x /= y, then either there
exists an open set U containing x and y fc,.,U or there exists an open set V containing y
and x f c«V. Ifthe both conditions hold, then (X,c,) is said to be pseudo-Hausdorff.

Definition 2.3.9

A monotone space (X,c,) is said to be Hausdorff, if for every pair of distinct points x and

y there exist disjoint neighbourhoods U and V containing x and y respectively.
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Definition 2.3.10

A monotone space (X,c,) is said to be quasi-regular, if for every point x and
closed set A not containing x, there exists an open set U such that x € U and c,U N A =¢.
X is said to be semi-regular, if for every point x and closed set A not containing x, there

exists an open set V such that A C V and x f ¢4 V. If both conditions hold ,X is said to be

pseudo-regular.

Definition 2.3.11

A monotone space (X,c,) is said to be regular, if for every point x and closed set

A not containing x, there exist disjoint neighbourhoods U and V containing x and A

respectively.

Definition 2.3.12

A monotone space (X,c,) is said to be semi-normal, if for each pair of closed scts
A and B, either there exists an open set U such that A C U and c,U N B = ¢ or there

exists an open set V such that B C V and ¢,V N A = ¢. If both conditions hold, X is said

to be pseudonormal.

Definition 2.3.13

A monotone space (X,c4) is said to be normal, if for every pair of distinct closed

sets A and B, there exists disjoint neighbourhoods U and V of A and B respectively.
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Note 2.3.14
It is clear that (X,c) is pseudo-Hausdorff, pseudo-regular, pseudo-normal implics

(X,c4) is pseudo-Hausdorff, pseudo-regular and pseudo-normal respectively. The

converse is not true.
Example 2.3.15

X =N U {0}

Let ¢, be defined on X such that

ceA = A, if A is finite

c«B =B U {0} where B C N and N-B is finite

c+«A =X, if A= N is infinite and not in the form B.

ceN =X

Then c, is a monotone operator.

Here (X,c4) is pseudo-Hausdorff, pseudo-regular and pseudo-normal. Here we
get cA = A, if A is finite and cA = X, if A is not finite. Thus (X,c) is not

pseudo-Hausdorff, not pseudo-regular and not pseudo-normal.



CHAPTER 3

SOME PROPERTIES OF COMPACTNESS AND

CONNECTEDNESS IN CLOSURE SPACES

INTRODCUTION

In this chapter we firstly describe the fundamental properties of compactness.

We define compact closure spaces and study some properties of compactness.

v

Cech defined closure space X to be compact if the intersection of the closures of
sets belonging to any proper filter in X is nonempty. He proved some propertics ol
compactness in closure spaces [CE,]. In section 1 of this chapter, we find the relation

between compactness in (X,c) and (X,t) and prove some related results.

Cech described the concept of connectedness in [CE,] as "a subset A of a

closure space X is said to be connected in X if A is not the union of two nonempty
semi-separated subsets of X. Thatis A=A, U A, ,(cA,N A) U (A, N cA)=¢ implies

that A;=¢ or A,=¢" . It can be easily seen that this is precisely the connectedness of the
associated topological space. Plastria, F obtained certain conditions which imply the
connectedness of simple extensions [P]; it has been proved that local connectedness of

certain subspaces implies the local connectedness of simple extensions.

We define the concept of connectedness in section 3.2 in a slightly different and
perhaps more reasonable way and prove some results in connectedness. We note that

the image of a connected space under a ¢ -c, morphism need not be connected.
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In section 3.3 we introduce the concepts of local connectedness and path
connectedness. We also define compactness and connectedness in monotone spaces in

section 3.4.

3.1. SOME PROPERTIES OF COMPACTNESS

The following definitions and results are due to E.Cech.

Definitions 3.1.1
(i) Let (X,c) be a closure space , F be a proper filter on X and x be an element

of X. We shall say that x is a cluster point of F in (X,c) if x belongs to N {cF: FeF}, that

is if each neighbourhood of x intersects each Fe F.

(i1) A closure space (X,c) is said to be compact, if every proper filter of sets on

X has a cluster point in X.

Results 3.1.2

(1) For a closure space (X,c) to be compact, it is necessary and sufficient that

every interior cover V of (X,c) has a finite subcover.
(it) Any image under a c-morphism of a compact space (X,c) is compact.

(ii1) If (Y,c) is a compact subspace of a Hausdorff closure space (X,c), then Y is

closed in (X,c).

(iv) Every closed subspace of a compact space (X,c) is compact.



57

Result 3.1.3
If (X.c) is compact, then (X,t) is compact.
Proof

Let (X,c) be compact. Then every proper filter of sets on X has a cluster point in

X. Let Fbe a proper filter of sets on X and x be a cluster point. Then x €N (cF), FeF.

That is N (cF) % ¢ but cF C cIF for every FeF. Then N (ch)fd). So (X,t) is compact.
Note 3.1.4

The converse of the above result is not true.

Example
Consider X =NxNU {xy} U {a:1€ N}U {b,:j € N},
a,'s, bj 's, x,y are all distinct and do not belong to N x N.

Let c be defined on X as in Exampl.e 2.1.11

Let A = {(m, m): m=k } for keN.

The family F= {A, : k€N } is a filter base.

cA, = A, forevery A, € F but N*,_ cA, =¢.

So (X,c) is not compact. But (X,t) is compact as can be proved easily.
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Result 3.1.5

Any image under a c -c¢' morphism of a compact closure space (X,c) is compact

in the associated topology of c'.
Using the Result 3.1.2 (ii) and the Result 3.1.3, we get this result.

Note 3.1.6

If (X,cl) is compact and f: (X,cl) —> (Y,c' ) is a surjective c- ¢' morphism, then

(Y,c') need not necessarily be compact.
Result 3.1.7

The associated space (Y,t') of a compact closure space (Y,c') is closed as a

subspace of the Hausdorff space (X,c)

Using the Result 3.1.2 (iii) and cA=X ==>clA=X, we get the above result.

Result 3.1.8

Everv closed closure subspace of an associated topological space (X,t) of a

compact closure space (X,c) is compact.

Proof

Let (Y,c') be a closed subspace of a compact space (X,t). Let Fbe a proper filter

on (Y,c"). Let us consider the smallest filter G on X containing F. F is a filter base
for G. Since clY=Y, we have c'A=clA for each ACY and hence N(c'F)=N(cl F).

Therefore N (cl F)=N(cl G). Since (X,t) is compact N (cl G)4=¢. That is N(c¢' F){=¢.
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Corollary 3.1.9
Closed subspace (Y,t') of compact space (X,c) is compact.

Result 3.1.10

.

(X,c) is compact. Y C X. Then cY is compact.

Proof

Let ¢' be the closure on cY induced byc. Let F be a filter on cY. We have to
prove that N(c' F), FE€F is nonempty. {cF N cY : F€J} is a filter base on X. Since X is

compact, N(cF N cY) is nonempty. So N ¢' F=N(cF N cY)=I=¢.
Definition 3.1.11

A closure space (X,c) is locally compact if and only if each point in X has a

neighbourhood base consisting of compact sets.

Note 3.1.12

(X,c) is locally compact does not imply that (X,t) is locally compact and

vice-versa.

Result 3.1.13

Let (X,c) be locally comapct. If f is an open c-¢' morphism from (X,c) onto (Y,c'),

then Y is locally compact.
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Proof

Suppose y €Y. Let V be a neighbourhood of y. Take x € f "'(y). Since f is c-¢'
morphism and X is locally compact, we can find a compact neighbourhood U such that
AU)C V.xeInt U soye€ f{ Int Uy C RU) . Since f is open, f{Int, U) is a

neighbourhood of g. Hence f{U) is a compact neighbourhood of y contained in V.

3.2 CONNECTEDNESS IN CLOSURE SPACES.

In this section we introduce and study connectedness.
Definition 3.2.1

(X,c) 1s said to be disconnected if it can be written as two disjoint nonempty
subsets A and B such that cA U ¢cB=X, cA N cB = ¢ and cA and cB are nonempty. A

space which is not disconnected is said to be connected.

Example 3.2.2

X ={ab,c}

c can be defined on X such that

c {a}={a,b}, c{b}=c{c}=c{b,c}={b,c}, c{a,b}=c{a,c}=cX=X, cd)=0
Then c is a closure operation on X.

Here (X,c) is connected because we can not find nonempty subsets A and B such

that cA U cB=X and cA N c¢B=¢.
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Definition 3.2.3

(X,c) is said to be feebly disconnected if it can be written as two disjoint

nonempty subsets A and B such that A U ¢cB=cA U B=X and cA N B=¢=A N cB.
Note 3.2.4

It is clear that (X,c) is disconnected implies (X,c) is feebly disconnected. The

following example shows that the converse is not true.
Example 3.2.5
X={a,b,c}
c{a}={a,c},c{b}=c{c}=c{b,c}={b,c},c{a,b}=c{a,c}=cX=X,cd=0
c is a closure operation on X.

Here (X,c) is feebly disconnected, but not disconnected.
Result 3.2.6

(x,t) is disconnected ==> (X,c) is disconnected.

Proof

(X,t) is disconnected implies that it is the union of two disjoint nonempty subsets

A and B such that clA U cIB=X, clA N cIB=¢ and clA, cIB are nonempty. clANclB=¢.

So cA N cB=¢. That is (X,c) is disconnected.
Note 3.2.7

(X,t) is connected need not imply that (X,c) is connected.
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Example

X={a,b,c} . Let c be a closure operation defined on X in such a way that
c{a}={a},c{b}={b,c},c{c}=c{a.b}=c{b,c}=cX=X, cd=¢
(X,={X,9,{b,c}}
Here (X,c) is disconnected, but (X,t) is connected.
Remark

Connectedness of a subspace Y of (X,c) can be defined in the same manner.
Note 3.2.8

Let (X,c) be a closure space and Y be a connected subset of (X,c). Then cY

need not be connected.

Example 3.2.9

X={a,b,c,d,e}

Let c be defined on X such that

c{a}={a},c{b}={ab,c},c{c}={b,c},c{d}={b,c,d},
c{a,b}=c{a,c}=c{b,c}=c{a,b,c}={a,b,c},

c{c,d}={b,c,d}, c{a,d}=c{b,d}=c{a,b,d}=c{a,c,d}=c{b,c,d}=c{a,b,c,d}={a,b,c,d},

c{e}=c{a,e}=c{b,e}=c{c,e}=c{d,e}=c{a,b,e}=c{a,c,e}=c{a,d,e}=c{b,c,e}=c{c,d,e}

=c{b,d,e}=c{a,b,d,e}=c{a,c,d,e}=c{b,c,d,e}=cX=X,cd=¢

Here Y={b,c} is connected.
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cY={a,b,c};if c' isthe induced closure operation on cY, then
c'{a}={a},c'{c}={b,c},c'{b}=c'{a,b}=c'{b,c}=c'{a,c}=c'cY=cY.
cY is disconnected.

Note 3.2.10

If cA and cB form a separation of X and if Y is a connected subset of X, then Y

need not be entirely within either cA or cB.
Example 3.2.11
X={a,b,c}
Let c be a closure operation defined on X such that
c{a}={a},c{b}={b,c} c{c}={a,c},c{a,b}=c{b,c}=cX=X,c{a,c}={a,c}.
Y={a,c} is connected -
Note 3.2.12
The image of a connected space under a ¢ -c' morphism need not be connected.
Example
Let X={a,b,c,d,e}. A closure operation c is defined on X as in Example 3.2.9
Let Y={a,b,c}
¢' be defined on Y such that

c'{a}={a},c'{b}={b,c},c'{c}=c'{a,b}=c'{b,c}=c'{a,c}=c'X=X c'p =¢.
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Let f be a map from (X,c) into (Y,c') defined in such a way that f{a)=a, f{b)=c, fc)=b,

f{d)=c. fe)=c
Here f'is a c-¢' morphism. But f{X) is disconnected.
Result 3.2.13

Suppose ¢, is a closure operator on Y with degree k and f is a c-c, morphism
from (X,c) to (Y,¢,). If ¢,*(A) and c,*(B) form a separation of Y, then ¢(f '(c, (A)) and

o(f (c,*(B)) form a separation on X.

Proof

Let ¢ {(A) U ¢, X(B)=Y and c }(A) N ¢,{(B)=¢.

Then £(c,{(A)) U £(c," (B))=X

That is ¢(f '(c,(A)) U o(f "(c,"(B))=X, since f(c,“(A)) C o(f(c,"(A))
£(c,"(A)) N f'(c"(B))=0.

But o(f '(c,5(A)) C £(c,(c,{(A))=f "¢ *(A)=f "c {(A)

In similar manner

o(f'(c(B)) C f(c,A(B)). Therefore, o(f (¢, (A)) N off *(c,(B))=

Hence c(f "(¢,“(A)) and c(f "(c,*(B)) form a separation on X -

Result 3.2.14

Let (X,c) be connected and f'is a c-c, morphism from (X,c) on to (Y,c, ). Then

(Y.,t,) is connected.
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Proof
Since f{cA) C ¢, {A) C cl, f{A), fbeing ¢ -c, morphism and we get fis c - cl,
morphism. Suppose cl, A and cl, B form a separation on Y . Then cl A U cl, B=Y and
c, AN clB=¢. f'(cl,A) U f(cl,B)=X and f "(cl,A) N f(cl,(B)=¢. By the above
result c(f "(cl,(A)) and c(f "(cl,B)) form a separation on X. This is a contradiction .

Hence (Y,t) is connected.

3.3 PATHWISE AND LOCAL CONNECTEDNESS

In this section we define and study pathwise connectedness and local

connnectedness.
Definition 3.3.1
A space (X,c) is pathwise connected if and only if for any two points x and y in X,

there is a cl, -c morphism f : I —>X such that f{lo) =x and f{1)=y where cl, is the usual

closure on I, f'is called a path from x to y.
Result 3.3.2
(X,c) is pathwise connected implies (X,t) is pathwise connected.
Proof
If (X,c) is pathwise connected, then for any two points x and y in X there is a

cl;-c morphism f: I-—> X such that f§0)=x and f{1)=y. If fis cl,-c morphism,then fis

cl,-cl morphism. Therefore (X,t) is pathwise connected.
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Note 3.3.3
The converse of the above result is not true.

Note 3.3.4

Pathwise connected space need not be a connected space .

Definition 3.3.5

A space X is said to be locally connected at x if for every neighbourhood U of x,
there is a connected neighbourhood V of x contained in U. If X is locally connected at

each of its points, then X is said to be locally connected.

Definintion 3.3.6

A space X is said to be locally path connected at x if for every neighbourhood U
of x, there is a path connected neighbourhood V of x contained in U. If X is locally

path connected at each of its points, then it is said to be locally path connected.

Note 3.3.7

A space (X,c) is locally connected need not imply that (X,t) is locally connected

and vice-versa.

A parallel study of the above concepts in the set up of closure spaces is

interesting; however we are not attempting it in this thesis.
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3.4. COMPACTNESS AND CONNECTEDNESS IN MONOTONE SPACES

Definition 3.4.1

Let (X,c«) be a monotone space. F be a proper filter on X and x be an element

of X. We shall say that x is a cluster point of Fin (X,c,) if x belongs to N{c,F : F€'F }.

That is each neighbourhood of x intersects each FeF.
Definition 3.4.2

A monotone space (X,c,) is said to be compact, if every proper filter of sets on

X has a cluster point in X.

Remark 3.4.3
It is clear that if (X,c,) is compact, then (X,c) is compact but the converse is not

true.

Result 3.4.4

Any image under a c-c, morphism of a compact monotone space (X,c,) onto a
monotone space (Y,c,' )is compact.

The proof'is similar to the Proof of 41 A-15 in {CE,)].
Result 3.4.5

Every closed subspace of a compact monotone space is compact.

The proof'is similar to the Proof of 41 A-10 in [CE,] .
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Result 3.4.6

If (Y,c' ) is a compact subspace of a Hausdorff monotone space (X,c4),then Y is

closed in X.
The proof is similar to the Proof of 41 A-11in [CE,] .

Definition 3.4.7

A monotone space (X,c,) is said to be disconnected if it can be written as two

disjoint nonempty subsets A and B such that c,A U c,B = X, c,A N c,B=. A space

which is not disconnected is said to be connected.

Remark 3.4.8

(X,c) is disconnected implies (X,c,) is disconnected,and the converse is not true.

Example 3.4. 9

X={a,b,c}

c« be defined on X such that

cala}={a},cu{b}={b,c}, cu{c}={b,c}, cx{a,b}=cs{b,c}=c{a,c}=c.X=X,csp=0

Cx IS a monotone operator.

(X,c4) ts disconnected. But (X,c) is connected.



CHAPTER 4

CLOSURE SEMIGROUPS

INTRODUCTION

In this chapter we introduce closure semigroups and study some of their
properties. The concepts like homomorphism,congruences and products in the context

of closure semigroups are discussed.

A topological semigroup is a Hausdorff space S with continuous associative
multiplication (x,y) —> xy of S x S into S. The study of topological semigroups was
initiated perhaps by A.D. Wallace during fifties; it was continued by others like
K H.Hofmann, P.S. Mostert, A.B. Paalman De Miranda and Hewitt and during these

years the subject has developed in many directions.

The notion of a topologized algebraic structure was studied [CE,] by Cech.
According to éech, a topological group is a triple (G, o, u ) where G is a set, u is a

closure on G and o is a mapping satisfying the following conditions :
(1) o: (G, u) x (G,u)) —> (G,u) is "continuous"
(2) The mapping x —> x': (G,u) —> (G,u) is "continuous"”

Vv
In the terminology that we are going to introduce here, Cech's topological group

should have been called a closure group. He proved that every "topological group" is a



70

topological space. That is the underlying space of a "topological group" is a topological

space. He also studied topological rings and fields.

In section 1 of this chapter we define closure semigroups and prove the
non-relation between a closure semigroup and the associated topological semigroup. A

preliminary study of closure semigroups is also attemped here.

The concepts of homomorphisms and congruences in the context of closure
semigroups are studied in section 3. The study of closure semigroups that we do here is
somewhat on the same lines as the development of the theory of topological semigroups

as is available in [CA-H-K].

4.1.BASIC CONCEPTS

In this section we define and study some properties of closure semigroups.

Definitions 4.1.1

A closure semigroup is a nonempty set S together with an associative

multiplication (x,y)-—>xy from ((SxS),c x c) into (S,c) which is a ¢ x c-c morphism.
Example 4.1.2

Let X=N.
Let c be defined on X such that cA =A U {x+1:x € A}

Then ¢ is a closure operation on X. Here X is a semigroup under the

operation(x,y)——>max{x,y}. Since the map(x,y) ——>max{x,y} is ¢ x c-c morphism,(Xc)

is a closure semigroup.
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Note 4.1.3

If A and B are subsets of aclosure semigroup (S,c), we use the notation

AB={ab:a €A and beB}.

Remark

A closure semigroup need not be a topological semigroup in the associated

topology.

Example 4.1.4

Consider X={a,b,c}.

Let ¢ be defined on X such that

c{a}={a}, c{b}={b,c}, c{c}={a,c}, c{a,c}={a,c}, c{ab}=c{b,c}=cX=X, c=¢
Then c is a closure operator on X

X x X={(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b).(c,c)}

(X,0={X,9,{b},{b,c}}

(X,1) x (X,6)={$,XxX,{(b,b)},{(b,b),(b,c)},{(b,b),(c,b)},{(b,b),(b,c),(c,b),(c,c)} }
(See Appendix for details)

It is a closure semigroup under the binary composition (x,y) —>x, but not a

topological semigroup. Since the inverse image of {b} is not open in (X,t) x (X,t).



72

Remark

A semigroup which is also a closure space and is a topological semigroup under

the associated topology need not be a closure semigroup.
Example 4.1.5

Let X=N

¢ be defined on X such that cA=A U {x+1 :x € A}
Then c is a closure operator on X.

X is a semigroup under (x,y) ——>x+y. It is a topological semigroup. But it is not a

closure semigroup.

For, (4,2)——>6

Let W={5,6} be a neighbourhood of 6.

We cannot find neighbourhoods U,V for 4 and 2 such that {U x V) = U+V(t w.

Definition 4.1.6

A subgroup G of a closure semigroup is a closure group if the map x ——>x'

sending x to its inverse is c-c morphism on G.
In this context, it will be interesting to note the following :-

Result 4.1.7 [CE,]

Every closure group is a topological space; more precisely the underlying closure

space of a closure group is topological.
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Theorem 4.1.8

Let (X,c),(Y,c,).(Z,c,) be closure spaces. Let A be a compact subset of X.B a
compact subset of Y, f: X x Y-—>Z a ¢, x c,-¢c, morphism and W a neighbourhkood of
flA x B) in Z. Then there exist neighbourhoods U of A in X and V of B in Y such that

fUxV)CW.
Proof

f is ¢, x c,-c, morphism and W is neighbourhood of fA x B). Then f'(W) is a

neighbourhood of A x B in X x Y. For each (x,y) in A x B there exist neighbourhoods
Mofxand N of y such that MxN C f (W). Since B is compact, for fixed x€A, there
is finite interior cover M, M, ..M_ in X containing x and correspondingly N,,N,...N in
Y such that B C N, U..U N, =Q. Let P=M, N ...N M, .Then P is a neighbourhood of
BinYand PxQ C f'(W). Since A is compact there exists a finite interior cover

P,..P_ in X and correspondingly Q,..Q_ in Y such that B C Q, N..Q_and A C P,

U..UP_. Let U=Q, N..N Q, and V=P, U..U P_. U and V are neighbourhoods of A

and Bin XandYand UxV C f'(W). fUxV)C W.

Result 4.1.9

Let A and B be subsets of a closure semigroup. If A and B are compact, then AB

is compact.
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Proof

AB = {ab: aA)beB}, AB = f{A x B). Since S is a closure semigroup and

f: S x S—> Sis a ¢ x c-¢c morphism, then {A,B) =AB is compact.

Note 4.1.10

If A and B are connected subsets of closure semigroup S, then AB need not be

connected.
Definition 4.1.11

An element e of a semigroup S is called an idempotent if e’=e and the set of

idempotents of S is denoted E (S) .

Theorem 4.1.12 [CE,]

A closure space (X,c) is Hausdorff if and only if the diagonal A ={(x,x):x€X }of

X x X is closed in the product space X x X.

Result 4.1.13

Let (X,c) be a Hausdorff space and f :X——>X a c-morphism. Then the set of

fixed points of fis closed in X.

Proof

Let f: (X,c) —>(X,c) be a ¢ - morphism. Define g : X—> X x X by

g(x)=(f{x),x). Then g is c-cl morphism. For this,

Let g(A) =(f{A),A) where (f{A),A)= {(f(x),x) : x € A}
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g(cA) = (ficA),cA) C (c RA),cA) C (cl f(A),cl A) = cl(fA),A) =clg(A)
Therefore g 1s c-cl morphism.
Let D = {x : x)=x}. We have to prove that D is closed. That is cD=D.
Let y €cD. Then g(cD)=g c(g" A) where A is the diagonal elements in XxX
C cl(gg' A)CcA = A
g(cD)C A
gly) = (fy)y) € &
That is, f(y)=y, yéD
Therefore cD=D. D is closed. Hence the set of all fixed points is closed .
Results 4.1.14
If S is a closure semigroup, then E (S) is a closed subset of S.
Proof

E(S) is the set of fixed points of the ¢ -morphisms x—>x>. By the above result

E(S) is closed.
Result 4.1.15

Let S be a closure semigroup. For e, fEE(S), define e < f if ef~fe=e. Then < isa

partial order on E and is a closed subspace of S x S.

The proof is similar to the Proof of 1.6 as in [CA-H-K|]
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Definition 4.1.16

If S is a semigroup and a€$S, then the function x—>xa is called right translation
by a and is denoted by p, and x ——>ax is called left translation by a and is denoted
by A,
Definition 4.1.17

An element e of a semigroup S is called a left identity for S if ex=x for all x€S, a

right identity for S if xe=x for all x€S and identity for S if e is both left and right identity.

A semigroup which has an identity is called a monoid.
Definition 4.1.18

A subsemigroup of a closure semigroup S is a nonempty subset T of S such that

T> C T(Thatis TT C T).
Result 4.1.19

Let (S,c) be a closure semigroup . T be a subspace of S whcih is also a

subsemigroup. Then T is also a closure semigroup.
Proof

Let (S,c) be a closure semigroup. Then the multiplication f: (S,c) x ( S,c) is a

¢ x c-¢c morphism.

TCS,cA=T N cAforeachACT

c' is closure operation on T
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Then the multiplication (T,c") x (T,¢')—> (T,c') is a ¢' x ¢'-c' morphism.
Example 4.1.20
Consider X=N

¢ be defined on X such that cA=A U {x+]1 :x € A}

Y be the set of all even natural numbers

cA=Y N cA=A(forevery ACY.

Thus ¢' is the discrete closure operation on Y and (Y,c') is a closure subsemigroup.

4.2. IDEALS OF A CLOSURE SEMIGROUP

In this section we define and study ideals in closure semigroups.
Definition 4.2.1
A nonempty subset L of a semigroup S is a left ideal of Sif SL C L-

Note 4.2.2

Here we consider only the case of left ideals. In a similar manner we can

consider the case of right ideals and ideals.

Result 4.2.3

Let L be a left ideal of a closure semigroup S. Then cL is a left ideal of S.

Proof

Let L be a left ideal of S. We have to show that ScL C ¢L
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ScL=cScL, Since cS=S.
C o(SL), since multiplication is a morphism and f{(cA)C cfA)
C cL, since L isleft ideal and SL C L
Therefore ScL C cL.
Note 4.2.4
If A is a subset of a semigroup S, then we denote L(A)=S'A=A U SA.
Result 4.2.5

Let S be a compact semigroup and let A be a compact subspace of S. Then

L(A)=A U SA is compact.
Corollary 4.2.6

Let S be a compact semigroup and let a € S. Then L(a) is compact.
Definition 4.2.7

A left ideal of a semigroup S is called a minimal left ideal if it properly contains

no other left ideal.

Result 4.2.8

If S is a compact semigroup, then each minimal left ideal is compact.

Proof

Let L be a minimal left ideal of S and x€L. Then Sx is a left ideal of S and Sx C

L. Since L is minimal we get L = Sx.
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But Sx =x U Sx, since x U Sx is left ideal and Sx = L is minimal.
Thus L=x U Sx=L(x) and by corollary 4.2.6, we get L is compact.

As in the case of a topological semigroup, we can find the cartesian product of a

collection of closure semigroups.
Definition 4.2.9

Let {S;}, ., be a collection of closure semigroups. Then coordinatewise

multiplication on IT{S,},,, is given by (fg)(3)=fj)e})-

Result 4.2.10

Let {S.},., be a collection of closure semigroups and S=I1{S } Then § with

el
coordinatewise multiplication and product closure is a closure semigroup and cach

projection &, : S—>S, is an onto c-c; morphism.
Proof

Let {S;},., be a collection of closure semigroups. In each §,, the multiplication

is associative. Therefore the multiplication is associative in S.

7 (xy)=(xy).=x() y(§)=m,(x)m,(y). Thus each =, is a homomorphism.

That is multiplication on S is a morphism follows from the fact that its

composition with each projection is a morphism.

Result 4.2.11

Let {S;};., be a collection of semigroups and let S= [1{S.}. .. Then,
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(1) If e, €Sifor each i € I and e€ S is defined by e(i)=¢, for eachi €, then e € E(8) il

and only if ¢, € E(S,) for each i € I.

(2) If A, C S, for each i € I, then [1{A},,, is a left ideal of S if and only if A, is a left

i€l

ideal of S, for each i € L.

The proofis analogous to the Proof of theorem 2.2 of [CA-H-K].

4.3. CONGRUENCES IN CLOSURE SEMIGROUPS

In this section we introduce the concept of congruences in closure semigroups

analogous to that in topological semigroups. Recall that if S and T are semigroups, a

function ®:S—>T is called a homomorphism if P(xy)=P(x) P(y) for each x,y € S. If P

is surjective (onto) then @ is called a surmorphism, If @ is also injective then @ is called

an algebraic isomorphism and S and T are said to be algebraically isomorphic.
Definition 4.3.1

If S and T are closure semigroups and @: S—> T is both an algebraic

isomorphism and a ¢c- homomorphism, then @ is called a closure isomorphism and $

and T are said to be closurewise isomorphic.

Definition 4.3.2

A relation R on a semigroup S is said to be left compatible, if (a,b) e Rand x € S

implies that (xa,xb) € R.

In a similar manner, we can define right compatible and compatible.
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Definition 4.3.3
A compatible equivalence on a semigroup S is called a congruence on S. An

equivalence R on a semigroup S is a congruence if and only if (a,b)€R and (c,d)€R imply

(a.c,b.d)eR.
Definition 4.3.4

If R is an equivalence on a set X and x €X then, {y €X: (x,y) € R} is called the R
-class of X containing x. The set X/R of R- classes is called the quotient of X mod R and
the function m: X——>X/R which assigns to each x in X the R-class containing x is called

the natural map. 7t is onto map. The set-n”'(n(x)) is the R class of x.

Definition 4.3.5

If S and T are semigroups and ¢ : S—> T is a homomorphism, we denote by

k(@) the relation{(x,y) € SxS :P(x)=P(y)}.
Result 4.3.6

Let XY and Z be spaces and let f,g and h be functions such that the following

diagram commutes.

(Y.c) *(Z,c,)
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(a) If fis quotient and h is c,-c, morphism, then g is c,-c, morphism and
(b) If both f and h are quotient, then g is quotient.

Proof

(a)Letx€Y,y€eY andy € g'h(x) and x € f'(y). Let U be a c,- neighbourhood of
h(x). Then h'(U) = f '(g"(U)) is a c, neighbourhood of x €X. Since f is quotient g'(U)

is a c,- neighbourhood of y €Y. Then g is c,- ¢, morphism.

(b) Let y € Y. U be a subset of Z containing g(y) such that g'(U)=f" (g'(U))isa ¢,

neighbourhood of x € X, since fis a c, -c, morphism. Since h is quotient, U is a ¢, -

neighbourhood of g(y). By (a), gis a c, - ¢, morphism. Then g is quotient by the result

0.3.17

Result 4.3.7

Let (A, c,), (B,c,) and (C, c,) be closure semigroups, a : A —> B a quoticnt
surmorphismand f3: A —> C a ¢, - ¢, homomorphism such that k(a) C k(). 'Then
there exists a unique c,- ¢, homomorphism y : B —> C such that the following diagram

commutes.

Y
(B,cz)) »(C,c,)

a

(Ac)
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Proof
Define y(x) = B ( ™ (x)) for each x €B. y is a homomorphism. By the above
result, y is c,-c, morphism.

Result 4.3.8 [CA -H -K ]

‘Let S and T be semigroups and let @ : S —> T be a surmophism. Then k(¥) is

a congruence on S and there exists a unique algebraic isomorphism ¥ : S/ k(®) - > T

such that the following diagram commutes.

b4
S/ k(P) *(T.c)

(8,0

Result 4.3.9

If (S,c,) and (T,c,) are HausdorfT closure semigroups and @ : S —> Tisa ¢,- ¢,

morphism, then k (9) is a closed congruence on S and the following are equivalent :
(a) ¥Y'is a closure morphism

(b) ¥ is a closure isomorphism

(c) P is a quotient.

Finally if any one of these conditions is satisfied, then S/ k(®) is a closure semigroup.
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Proof
By the above result, k(%) is a congruence on S.
¢ :S—>Tisac,-c, morphism. n : § ——> S / k(®) is a natural map.

k(P)={(x,y) €eSxS: P x)=P(y)}, kin)={(xy)€SxS: na(x)=n(y)} Itis
clear that k (n ) = k (). Using the Result 4.3.6 and k () = k(®P), we obtain a ¢-¢,

morphism such that the above diagram commutes.

To prove k(@) is a closed congruence

k(P) = (P x PY'(A(T)), ATisclosedin Tx T.

Then k(@) is closed.

(a) ==>(b)

¥ is a closure isomorphism, 7t is onto and is a quotient map.

We know that ¥ is algebraic isomorphism.

By 4.3.6 ¥ is a closure isomorphism.

(b) ==>(a)

¥ is closure isomorphism, 7 is quotient map. By Result 4.3.6 (b), ¢ is quotient.
(c) ==>(a)

@ is quotient and 7 is also quotient. Then by Result 4.3.6 (a) ¥ is closure morphism.



85

Finally if these conditions are satisfied,then clearly S/k(@) is a semigroup. That is

a closure semigroup follows from the fact that (ak(®), bk(®P)) ——> abk(®P) is a

morphism.



CHAPTER §
CLOSURE SEMIGROUP COMPACTIFICATIONS

INTRODUCTION

E. Cech and M.H. Stone gave the concept of maximal compactification X and
stated its fundamental properties. Deleeuw,Glicksberg and Hunter have studied Bohr
compactification of topological semigroups having universal properties analogous to
those of [BX. The theory of Bohr compactification and other types of closure

semigroup compactifications seems to have not been attempted by others.

In 1990 K S.Kripalini defined the semigroup compactification of a topological
semigroup. In [KR], [KR,],[KR,], she broved that if (B,B) is a Bohr compactification
of a topological semigroup S and R is any closed congruence on B, then the quotient
space B/R is a semigroup compactification of S and conversely any semigroup
compactification (a,A) of S is topologically isomorphic to B/R for some closed
congruence on B. The lattice structure of the collection of all semigroup

compactifications of a topological semigroup are also studied.

In section 1 of this chapter we define in the closure space context the semigroup
compactiﬁcation and Bohr-type compactification and prove the existence of this
analogous to Bohr compactification of a topological semigroup. We find also the
relation between Bohr-type compactification and other semigroup compactifications. In

section 2, we define an order between closure semigroup compactification and find that
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it is a partial order. We also prove that k(S), the set of all closure semigroup

compactifications is an upper complete semilattice.

5.1. SEMIGROUP COMPACTIFICATIONS

Definition 5.1.1

A semigroup compactification of a closure semigroup (S,c) is an ordered pair
(g,(T,c")) where (T,c') is a compact semigroup and g : S—>T is a dense c¢-c'
homomorphism of S into T.
Definition 5.1.2

A subset A of (X,c) is said to be dense in (X,c) if cA=X.
Definitiom 5.1.3

If (S,c) is a closure semigroup,then a Bohr-type compactification is a pair
(B',(B',c")) such that (B',c") is compact, §': S —> B'is a dense c-c' homomorphism and if
g:(S,c)—>(T,c") is a c-c" homomorphism of S into a compact semigroup (T,c"), then
there exists a unique c'-c" homomorphism f : (B'-c") —> (T,c") such that the following

diagram commutes.

(B',c")

(8,0) »(T.c")
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Result 5.1.4

(=]

Let D be a dense subset of a Hausdorff space X. Then card X < 2%
The proof is similar to the Proof of 2.42 in [CA - H-K].
Result 5. 1.5

Let (S,c) be a closure semigroup. Then there exists a collection {(®,_,S )}:a€A)
such that S, is a compact semigroup and ®_: S —> S_ is a dense ¢ - ¢, homomorphism
for each a€ A, and if g : S —> T is dense ¢ - ¢' homomorphism of S into compact
semigroup (T,c'), then there exists 6 € A and a closure isomorphism f: S, —> T such
that the following diagram commutes.

.Ss

&, f

(8,0 5 »(T,¢)

The proof is similar to the Proof of 2.43 in [CA -H-K|].

Result 5.1.6

If (S,c) is a closure semigroup, then there exists a Bohr-type compactification

(B',(B',c")) of S.
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Proof

Let {S,}, . o be the collection of Result 5.1.5

Define 0 : S —> I1 {S_ }, . A such that o(x) (a) = P(x). o is c -[c,
homomorphism. (cf. Theorem 17.c .10 of [CE,]). Let B'= co(S). Define ' :S —>B' so
that B'(x) = o(x) for each x € S. Then B' is a dense morphism. Suppose
g:(S,c)—>(T,c") is a ¢ - ¢" homomorphism. With no loss of generality, we can assume
that g is dense. Then by 5.1.5, there exists 6€A and a closure isomorphism h : S ,—>T
such that ho$=g. Define f: B'—>Tbyf=hon,;. Then foP=gandf isac'-c"
homomorphism. Since B': S —> B' is dense, f'is unique.

Result 5.1.7

Let (S,c) be a closure semigroup and let (a,(A,c')) and (B',(B',c')) be Bohr-type

compactifications of S . Then there exists a c'-c" isomorphism ¥ : A —> B such that

the following diagram commutes.

(A,c)

(S,¢) — »(B,c")
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Proof

Since (a.,(A,c')) is a Bohr-type compactification of (S,c), there exists a c' - ¢”
homomorphism ¥: (A,¢') —>(B,¢") such that the diagram commutes. That is =¥ « a.
Similarly since (B',(B',c")) is a Bohr-type compactification of (S,c), there exists a c"-c'

homomorphism @ : (B,c") —> (A,¢') such that the diagram commutes. a = P - 8

&P o ¥ is unique . We know that @ o ¥ =1, and similarly ¥ o ¢ = I;. Then ¥ is ¢'-c"
isomorphism.

Result 5.1.8

Let (S,c) be a closure semigroup with Bohr-type compactification (f',(B',c')). If

(c,(A,c")) is any semigroup compactification of S, then

(a) there exists a ¢'-c" homomorphism v :(B,c') —> (A,c") such that yB=a.

(b) The equivalence defined by y on B is a closed congruence.

Proof

a) By definition of (3,(B,c')) there exits a ¢' -c" homomorphism y : B —> A such that
yB=a .

(b) Let R be a relation defined on B by y, R = {(x,y)éB x B :y(x) = y(y)} is an

equivalence relation. R is a congruence on B. To prove this ,

Let (xy), (x\y) € R

(xy)€ R=>y(x)=y(y)



91
(x<,y)eR =>7y (x) =7 (¥)
Y(xx) = y(x)y(x') since 7y is homomorphism.
=y(y(y') = v(yy)

That is (xx',yy')€R. Hence R is a congruence on B.

Note

When A is Hausdorff then R is closed congruence. For this, y is a c-c'
morphism. Then y x y is a c-¢' morphism.

R=(rx7)'(AA))

AAisclosedin Ax A. Hence Risclosedin B xB-
Result 5.1.9

Let (S,c) be a Hausdorff closure semigroup with Bohr-type compactification
(B,(B,'")). If R is a closed congruence on (B,c'), then there exists a semigroup

compactification (a,A) of S so that the congruence defined by this compactification is R.

Proof

Let R be a closed congruence on B. B is a compact semigroup. Then B/R is a
compact semigroup. Define y : B —>B/R, the natural map. Take A=B/R with the
quotient map y. Define a: S —> A suchthat a=vy.B, aiswell definedand aisa

c-¢" morphism. Since 7 is ¢' - ¢" morphism and B is ¢ -c" morphism. a is dense. For,

o(a (8)) = c((y - BXS))
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=Y(c(B(S))), [ vis closed].
=7 (B) =A, [y is sugjective].

Thus we have o : S —> A is a dense ¢ -c" homomorphism. Therefore ( a, A) is

a semigroup compactification.

5.2. LATTICE STRUCTURE OF SEMIGROUP COMPACTIFICATIONS

Definition 5.2.1

Two semigroup compactifications (o,(A,c')),( v,(B,c")) are said to be equivalent
if there exists a one-one onto homomorphism @ : A —> B such that P is ¢' -c" and c"-¢'

morphisms and commute the following diagram.

(AC)
¢
(04
(S ‘c) Y ; (B,C")

Note

(o,(A,c"))=(7,(B,c")) if there exists a one-one onto ¢' -c" homomorphism f: A —>B

such that fa =y.
Result 5.2.2.

Two semigroup compactifications (c.,(A,c')) and (y,(B,c")) are equivalent if and

only if (a,(A,¢'))=( v,(B,c")) and (7,(B,c"))=(a,(A.c")).
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Proof

Suppose (o,(A,c)) and ( v,(B,c")) are equivalent. By the definition of
equivalence, there exists a one-one onto homomorphism @ : A —> B such that P is

¢'-c" and c"-¢' morphisms and Pa =y. Therefore, (a,(A,c"))=( v,(B,c")) , =Py
¢ : (B,c") —> (A,c') is one-one onto c"- ¢' morphism. Then (y,(B,c"))=(a,(A,c")).

Conversely, suppose that (a,(A,c"))=(y,(B,c")) and (7,(B,c"))=(c,(A,c")). Since
(a,(A,c))=(y,(B,c")) , there exists a one-one onto c'-c" homomorphism f : A —> B
such that fo = y. Since (y,(B,c"))=(c,(A,c")) there exists a one-one omto c" -c'

homomorphism f, : B —> A such that fy=a.

f, o f, is a ¢'-c' morphism. For,‘
£, of, (c,A) = £ (£ (6,A)) C £ (c(fA)) C c,Ef, (A) = ¢, ( o (A))
foffoa = foy=a
£ of =1I,,where 1, isidentity on X. Similarly f, o f, = I,..

Note 5.2.3

The collection k,(S) of all semigroup compactifications of (S,c) is a partially

ordered set.
Result 5.2.3

k, (S) is an upper complete semilattice.
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Proof

To prove k, (S) is a upper complete semilattice, we have to prove that the set

{a; S}, ., has a least upper bound with respect to the partial order relation >=. Define
a:S >IN, { & S} by (a (x)),= a,(x). Since {o; S} is a subset of k,(S), each «, Sis
a c-c, morphism. It follows that o« isa c-[Ic; morphism. Since product of compact

closure spaces are compact [CE ], I, { «; S} is a compact semigroup. Let A=c(a(S))
is a compact semigroup. Therefore a : S —> A is a dense morphism and (@, A)isa

semigroup compactification of S.
For eachi€l, let a: A—>a S be the restriction to A of the projection map.
(m,0a)(x)=(a(x)),= a(x)sothat &, a=a,
Thus ( a,A)= (o, o,S) for each i€l
Let (ay, a, S )= (o, a; S) forevery i€l
g :a,S —> oS is defined by g a,=a;
Define f: a,S —>, I, { o; S}by (Ry)),=g(y)
=, o f= g, so that f'is ¢ -c' morphism
f(a,x);= g (a, (x)) =e(x) = (a (X)),
From this we get fo,=a

(fay) (8) =a(S)=A
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fa, S) D £(at, (S)) = (for, XS) = & (8)
Therefore f(ct, S) D a(S)
¢ fa, S) D caf(S) =A
(0,0,8) = (ot ,A)

Therefore ( a,A) is the least upperbound.
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[CEl
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D.R.ANDREW &
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J.W.BAKER

& R.J.BUTCHER

M.K.BENNETT

G.BIRKHOFF
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R.J.KOCH

J.H.CARRUTH

“J.AHILDEBRANT &

R.J.KOCH

v
E.CECH

E.8ECH
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