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Preface

Nonlinear dynamics has emerged into a prominent area of research in the past few

decades, particularly after the wide availability of low cost and fast computation.

Today nonlinear systems are being investigated in almost every discipline. It has

also contributed to the development of a unique stream of interdisciplinary research.

Turbulence, Pattern formation, Multistability etc are some of the important areas of

research in nonlinear dynamics apart from the study of chaos.

Chaos theory is perhaps the one which has provided most counter intuitive results

in comparison with other branches of nonlinear dynamics. The study of chaos theory

started in the modern sense with the investigations of Edward Lorentz in mid 60’s.

Later developments in this subject provided systematic development of chaos theory

as a science of deterministic but complex and unpredictable dynamical systems.

Synchronization of chaotic systems is one of the most important developments

in chaos theory. It is found that two (or even more) chaotic systems, though each

by itself is complex and unpredictable, can be made to behave identically if they

are suitably coupled. Soon it was also found that such synchronized systems can

be used to encrypt messages which led to the development of chaotic encryption

based cryptographic schemes. In addition to this, the synchronization of coupled

complex systems has also contributed tremendously to our understanding of collective

phenomenon of interacting systems in nature.

It has been shown recently that systems driven with random pulses show the

signatures of chaos, even without nonlinear dynamics. This shows that the relation

between randomness and chaos is much closer than as it was understood earlier. The
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effect of random perturbations on synchronization can be also different. In some

cases identical random perturbations acting on two different chaotic systems induce

synchronization. However most commonly, the effect of random fluctuations on the

synchronization of chaotic systems is to destroy synchronization .

This thesis deals with the effect of random fluctuations with its associated char-

acteristic timescales on chaos and synchronization. We try to unearth yet another

manifestation of randomness on chaos and synchronization . This thesis is organized

into six chapters as follows.

In chapter 1 we introduce the basic concepts of nonlinear dynamics and chaos. It

includes the basic definitions of the terms used in chaos theory and also some well

known chaotic systems are discussed. Basic computational tools are dealt with and we

have discussed how they are used in quantifying and characterizing chaotic dynamics.

In this chapter we also introduce the notion of synchronization of chaotic systems.

Also we briefly discuss its main technological application: Chaotic encryption based

cryptographic schemes.

In chapter 2, brief discussions on the theoretical concepts and the dynamical sys-

tems specific to this work are given. We introduce the concept of noise, and two

familiar types of noise are discussed. The classifications and representation of white

and colored noise are introduced. Based on this we introduce the concept of random-

ness that we deal with as a variant of the familiar concept of noise. The dynamical

systems introduced are the Rossler system, directly modulated semiconductor lasers

and the Harmonic oscillator. The directly modulated semiconductor laser being not

a much familiar dynamical system, we have included a detailed introduction to its

relevance in Chaotic encryption based cryptography in communication.

In chapter 3 the studies on the effect of a fluctuating parameter mismatch associ-

ated with characteristic timescales on the synchronization is presented. The studies

are performed on the Rossler system and directly modulated semiconductor laser

systems. We show that the effect of a fluctuating parameter mismatch on synchro-

nization is to destroy the synchronization. Further we show that the relation between

xii



synchronization error and timescales can be found empirically but there are also cases

where this is not possible.

In chapter 4 we present the results of the investigations on a modified harmonic

oscillator. We assume that the freely running drive and the oscillator are coupled

only when the trajectory is within a strip of small width located around the origin

of the position momentum space. There is no coupling between the drive and the

oscillator when the trajectory is outside the strip. The system exhibits chaos. We have

also replaced the deterministic driving with a random forcing and we found that the

stochastic system mimics its deterministic analogue. The dynamics in deterministic

and stochastic cases are characterized by standard tools in chaos theory. We also

found that the nature of the effective fluctuations which affect the stochastic system

is similar to the fluctuations introduced in chapter 3.

In chapter 5 we consider another modified version of the system that we have

presented in chapter 4. The oscillator was subjected to a drive which is spatially

modulated with a rapidly decaying exponential function of the position variable.

Such a modification induces nonlinearities necessary for chaotic behavior. Studies

show that under the variation of the parameters, the system becomes chaotic, which

appears to be the period doubling route to chaos. We also discuss the synchronization

properties of this system.

In chapter 6 we summarize and conclude the present work. A few directions for

future works has also been suggested.
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Chapter 1

Introduction

Nonlinear dynamics deals with systems in which the equation of motion involve non-

linear differential equations or difference equations. Many of the nonlinear equations

are difficult to solve analytically. Also in some cases, no stable analytic solutions

exist. Thus the only option in dealing with most of these equations is numerical

solutions. This need a huge amount of arithmetic calculations, which were impos-

sible for humans before the advent of computers. However, with the advent of low

cost computation many of these equations are solved numerically. It was found that

nonlinear systems often exhibit surprising behaviors, drastically different from those

of their approximately linear counterparts.

As of now, nonlinear dynamics is an interdisciplinary area of research that deals

with phenomenon like multistability [1, 2, 3], pattern formation [4] and chaos [6, 7,

8, 9, 10]. Much of the findings in this area have contributed to our understanding of

nature, and also in the advancement of technology.

1.1 Chaos

In English language, the word Chaos is used to describe a situation which is unpre-

dictable or irregular. In nonlinear dynamics, chaos refers to the complex evolution

1



2 Chapter 1

of a deterministic system, which is highly sensitive to initial conditions. A proper

understanding of this phenomenon started with Lorentz’s observations of a dynami-

cal system derived from a weather model [5]. He found that the system is bounded,

aperiodic and highly sensitive to initial conditions. His paper remained unnoticed

for a while, but around late 70’s chaos theory became an active area of research.

The mathematical frame work that describe the theory is so versatile that it could

be applied to a variety of natural phenomenon. This has lead to the development

of a strong interdisciplinary component, which includes secure communication [11],

biological systems [12, 13, 14, 15], and social interactions [16].

1.2 Chaotic dynamical systems

A dynamical system is a system that evolves in time. A dynamical system can be

deterministic or stochastic. The evolution of a deterministic system is determined

by it past according to some mathematical rule or formula. A stochastic dynamical

system evolves according to some random process, such as the rolling of a dice or the

tossing of a coin.

The dynamical system could either be continuous dynamical system or discrete

dynamical system, depending on whether time is continuous or discrete. The dynam-

ics in the phase space is represented by differential equations in case of continuous

systems and difference equations in case of discrete systems. Such dynamics can again

be classified into two groups. Flows or mappings which conserves phase space vol-

ume or conservative systems and dissipative systems where the phase space volume is

not conserved. Physical systems in reality is usually continuous dissipative systems.

Mappings or discrete systems usually appear as derived from the dynamics of con-

tinuous systems. Conservative systems have been studied in great detail particularly

because of their applications in celestial mechanics.

We first discuss discrete maps, and introduce some of the basic tools and concepts
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required in understanding chaotic dynamics. Later we introduce continuous dynami-

cal systems and the additional tools like Poincare section that is required for studying

such continuous systems.

1.3 Mathematical representation of discrete dy-

namical systems.

Mathematically, dynamical systems are described by the rule that determines the

evolution of the system in time. That is, given the state of the system at time t = n,

the dynamical equations gives the state of the system at time t = n + 1. Consider

a system defined by the variables x1, x2, ...xk and the parameters p1, p2, ...pm. The

dynamical system can be represented as

x1 n+1 = f1(p1, p2, ...pm, x1nx2n...xkn) (1.3.1)

x2 n+1 = f2(p1, p2, ...pm, x1nx2n...xkn)

. .

. .

. .

xk n+1 = fk(p1, p2, ...pm, x1nx2n...xkn)

According to the values of the parameters, the system can be chaotic or periodic. A

chaotic system usually undergoes a series of period doublings and ends up in chaos,

with the variation of these parameters. This transition of the state of the system can

be represented by a bifurcation diagram. In a bifurcation diagram, specially chosen

points from the phase space of the attractor is plotted against the instantaneous values

of a varying parameter. Bifurcation points are those values of the parameter at which

there occurs a qualitative change in the dynamical system (eg: one cycle-two cycle
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or periodic to aperiodic and chaotic). Thus the periodic and chaotic behavior can

be distinguished from the way the points are distributed in the bifurcation diagram.

Another tool that is used in the visual characterization of discrete dynamical systems

is the return map. In a return map, the (n+1)th value of a variable is plotted against

the nth value of the parameter. If the slope of such a map is greater than 1, the map

is chaotic. These ideas will be demonstrated in the case of the logistic map.

1.4 Logistic map

The logistic map [17] is one of the widely studied discrete system in chaos theory. It

is a simple system that display almost all features that is unique to a chaotic system.

The equation for the logistic map is given by the equation,

xn+1 = f(xn) (1.4.1)

where,

f(xn) = µxn(1− xn) (1.4.2)

The dynamics is one dimensional, with a single bifurcation parameter µ. The function

f(x) represents a one-hump map in the interval zero and one. The bifurcation diagram

in figure 1.1 shows the transition from a fixed point to periodic cycles and finally to

chaos in a logistic map. The return map is shown in figure 1.2. It can be seen that

it is similar to the function f(x) which determines its dynamics. The bifurcation

diagrams and return maps are also useful in the study of continuous systems.

1.4.1 Chaos in continuous dynamical systems

The dynamical systems in which time is continuous is called a continuous system.

Such systems are usually represented by a set of coupled differential equations. As in

the case of discrete systems, the variables denote the state of the system in the phase
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Figure 1.1: The bifurcation diagram of a logistic map.
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space and the nature of the dynamics is determined by the parameters. In general, a

continuous dynamical system can be represented by the following set of equations,

ẋ1 = f1(p1, p2, ...pm, x1, x2, ...xk) (1.4.3)

ẋ2 = f2(p1, p2, ...pm, x1, x2, ...xk)

. .

. .

. .

ẋk = fk(p1, p2, ...pm, x1, x2, ...xk),

where the dots represents time derivatives.

Nonlinear coupled differential equations can be chaotic in certain regions of the

parameter space. The parameters in this equations, if varied, the system exhibits

both chaotic and periodic behavior. A return map can be obtained from the maxima

of the time series. This is by plotting the (n + 1)th maxima against the nth maxima.

Such a return map can be used to study the dynamical features of the system: like

the absence of a stable periodic behavior. Also a well defined return map means that

the system can actually be reduced to a one dimensional dynamical system. The

reduction of a dynamical system represented by coupled dynamical equations to an

equivalent one dimensional system is discussed in [18].

1.5 The Lorenz system

A well known example of a continuous chaotic system is the Lorenz system [5]. It

is a truncated version of the Rayleigh-Benard model of convection of heat through

fluids. This system was studied by Lorenz, and is the first example of a continuous

dynamical system showing chaotic behavior. The dynamical equations for the Lorenz



8 Chapter 1

−20
−10

0
10

20 −40
−20

0
20

400

5

10

15

20

25

30

35

40

45

50

yx

z

Figure 1.3: Phase space of a Lorenz attractor.

system is given by,

ẋ = σ(y − x) (1.5.1)

ẏ = x(ρ− z)− y

ż = xy − βz

The typical values of the parameters for chaos are: σ = 10, ρ = 28 and β = 8/3.

The phase space trajectory of the system is given in figure 1.3. The system shows

chaotic as well as periodic behavior as the parameters are varied. The bifurcation

diagram obtained by varying ρ is given in figure 1.4. The return map of the lorenz

attractor is well defined and with a slope greater than 1, and was in fact used by

Lorenz as a proof that the time series of this system is chaotic. Figure 1.5 shows the

return map of the Lorenz system.
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Figure 1.6: The schematic diagram of a Poincare section.

1.6 Poincare sections

We have seen in equation 1.12.2 that a dynamical system can be multi dimensional,

and chaotic behavior is possible only in spaces with at least three dimensions. But

many of the quantities that characterize chaotic behavior in a system can be obtained

by studying the dynamics in a lower dimensional space. A systematic way of doing

this is by constructing a Poincare section. In constructing a Poincare section we

consider a subspace of dimension n − 1 in an n dimensional space. For example, a

two dimensional plane defined in the phase space of a three dimensional attractor

is a Poincare section. The method of constructing Poincare sections is illustrated in
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figure 1.6. The phase space trajectories that passes through the section is recorded.

But a constraint imposed: the encounters of the trajectory only in one direction is

considered. Let P1, P2....Pn be N such points recorded in such an evolution. For a

point Pk there will be coordinates p1 and p2 associated with it. Typically, a mapping

of the form,

p1
m+1 = f1(p

1
m, p2

m) (1.6.1)

p2
m+1 = f2(p

1
m, p2

m)

can also be defined. This can be used for several purposes including the calculation

of invariant parameters of the dynamics.

1.7 Power spectrum

Fourier methods in which a signal in time domain t, f(t) is represented in the fre-

quency domain ω, f(ω), is widely used in all branches of science. The power spectrum

of a times series gives the distribution of the power as a function of the component

frequencies. For a periodic sequence, or a regular time series, it consists of finite num-

ber of frequency components in a given frequency range. But the power spectrum

of an irregular time series will contain an infinite number of frequencies. The power

spectrum is widely used as a first test for chaotic behavior. Due to the irregular

nature of the dynamics, the power spectrum of a chaotic time series will be broad.

Usually there can be significantly high power distributions corresponding to some

frequencies. This corresponds to the characteristic frequencies of the system. Figure

1.7 shows the time series and power spectrum of a Lorenz system with ρ = 150.35,

where it is periodic. It can be seen that the majority of power is distributed within

a few frequencies. In figure 1.8, the time series of a chaotic Lorenz system and its

power spectrum is given. The broad power spectrum is a signature of chaotic behav-

ior. However, chaotic behavior can only be confirmed after calculating the Lyapunov
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Figure 1.7: The time series and power spectrum of a periodic Lorenz system.
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exponents.

1.8 Lyapunov exponents

The most important feature of chaotic dynamics is its sensitivity to initial conditions.

Trajectories that start with small differences in the initial conditions diverge expo-

nentially. Mathematically, the divergence of trajectories (see figure 1.9) of two flows

which differ in the initial conditions by an amount ∆X, which can be written as,

∆X(t) = ∆X(0) exp(λt) (1.8.1)

where λ is the Lyapunov exponent which determines how fast the separation between

two such trajectories converge or diverge. One can calculate the rate of exponential

divergence or the Lyapunov exponents from this equation, but not used in practice be-

cause of two reasons. One is that here λ depends on the initial conditions and another

reason is that the arbitrarily chosen trajectories may not belong to the attractor.

Lyapunov exponents as an invariant measure of the divergence of an attractor

are obtained by the Wolf’s algorithm [19]. There the divergence is calculated by the

evolution of a linearized system corresponding to an actual system. The error vectors

that evolves according to the linearized dynamical equations undergo stretching and

folding in chaotic flow. The rate of divergence is calculated as the ratio of initial and

final norms. The error vectors are normalized after the calculation of the norm. The

process repeats and the Lyapunov exponents are obtained by dividing the average

rate of divergence by the time of evolution. This method can be extended to delay

differential equations by approximating them to finite dimensional maps [20]. Delay

differential equations arise if the dynamics involves a delay feedback.
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Figure 1.9: The trajectories that start with small errors diverge in course of the
evolution.
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1.9 Attractors and dimensions

A dynamical system starts its evolution in the phase space with some initial con-

ditions. In most of the cases the initial conditions may not be on the phase space

trajectory on to which a system would eventually settle down. Asymptotically, the

trajectories are ”attracted” to a bounded region in phase space, called attractors,

which are of lower dimension which is a subset of the phase space.

Attractors in the phase space are associated with a characteristic dimension. This

is defined according to the density distribution of the points in the phase space that

a chaotic trajectory visits. Two important dimensions that are used in chaos theory

are the capacity dimension and correlation dimension [6, 7, 8, 9, 10]. The capacity

dimension is related to the scaling properties of the attractor, or the way the attractor

fill the phase space. The correlation dimension is related to the local inhomogeneity

of the attractor, that is the frequency of the visits of the trajectory to a region in

phase space.

A fixed point in phase space is a zero dimensional attractor. A periodic limit

cycle have dimension one and for a quasiperiodic torus having two frequencies have

the dimension two. Attractors resulting from chaotic time evolution possess non

integer dimension and are called strange attractors. This comes from the fact that

the system does not visit every region of the phase space. The regions that come

under the span of the phase space varies in frequency of the trajectory visits in an

irregular but a systematic way. However, certain non chaotic attractors can also be

strange [21].

1.10 Routes to chaos

The routes to chaos are usually referred to the sequence of intermediate states when

a system transforms from one of the stable states to a chaotic state under parameter

variation. Most common route is the period doubling route. The period of the
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Figure 1.10: Routes to chaos: (a) period doubling route (b)quasiperiodicity route (c)
intermittency route.
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oscillations doubles as the parameter is varied and it undergoes a succession of such

period doublings and it reaches a state where the period is infinite, that is a chaotic

state. Another route is the breaking of a quasiperiodic torus in phase space. In

some systems, the transition to chaos is preceded by short irregular interruptions in

the periodic behavior. Such a transition to chaos from a stable state is called the

intermittency route. In addition to this, there are other routes, but is uncommon. In

figure 1.10 a schematic representation of the main routes to chaos are shown.

1.11 Unstable periodic orbits

In the previous section we have seen that the transition to the chaotic state involve

a sequence of periodic states. A system in the chaotic state can still have periodic

orbits that are hidden in irregularities. Let,

xn+1 = f(xn) (1.11.1)

be a discrete map. Consider x∗ such that f(x∗) = x∗, that is a point that get mapped

to itself. Such a point represents a periodic oscillation of the system. One can actually

calculate periodic orbits by solving the equation.

f(x∗)− x∗ = 0. (1.11.2)

The orbit corresponding to x∗ may be stable or unstable according to the derivative

of f(x) evaluated at x∗,
∣∣∣∣
df(x)

dx

∣∣∣∣
}

< 1 stable

> 1 unstable.
(1.11.3)

In the chaotic regime, all the periodic orbits are unstable. The system continues in

a periodic orbit if the initial conditions are on a periodic orbit and if no external

perturbations occur. But this is not possible always due to the limited precision of

the computing device. In an actual physical system, small perturbations or noise
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Figure 1.11: Periodic orbits as the intersection of y = x line to the mapping functions.

The point a represents an unstable periodic orbit with
∣∣∣(df(x)

dx
)x=a

∣∣∣ > 1 and the point

b represents a periodic orbit as
∣∣∣(df(x)

dx
)x=b

∣∣∣ < 1.
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always affect the dynamics and it is difficult if not impossible to maintain a totally

error free dynamics in reality.

Unstable periodic orbits(UPOs) are highly significant in determining the nature

of the chaotic dynamics occurring in a system. Many invariant parameters of a chaotic

system can be extracted from UPOs [22]. In addition to this, stabilization of a UPO

can also suppress chaotic behavior [23] with a delayed feed back. Also this is one of

the most widely used methods to control chaos in a variety of systems.

1.12 Synchronization of Chaos

Synchronization[24] in physical systems has been known for three centuries. Christian

Huygens in 1665 noted that two clocks hanging from the same support leads to

the synchronization of their pendulums. Synchronization, in one form or another is

present in many of engineering and physical problems [11, 26, 27, 25, 24].

It sounds incredible that chaotic systems, which evolve unpredictably and irregu-

larly can be synchronized. However, Yamada and Fujisaka[25] and Pecora and Carol

[26, 27] have shown that this is possible. Synchronization of chaotic systems is now

one of the hottest areas of research in physics and in other fields. It finds direct

application in chaotic encryption-based cryptographic schemes, which is widely used

in secure communication[11]. Apart from technological applications, synchronization

is one of the highly successful attempt to understand organized behavior in nature

[24].

1.12.1 Coupling schemes

The most common method used for synchronization is to couple two such chaotic

systems. The coupling can be unidirectional or bidirectional. In a unidirectional cou-

pling, one of the systems is left to evolve on its own and the dynamics of the other

is modified so as to achieve synchronization. In bidirectionally coupled systems, the
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Figure 1.12: (a)bidirectional coupling, (b) unidirectional coupling.

mutual coupling modifies the dynamics of both of the systems so as to maintain syn-

chrony. In fig. 1.12 unidirectional and bidirectional coupling schemes are illustrated.

Mathematically such coupling can be expressed as,

Ẋ = f(X) + CΦx,y(X,Y ) (1.12.1)

Ẏ = f(Y ) + CΦy,x(X,Y )

where X = (x1 x2...xn)T , Y = (y1 y2...yn)T , and Φ(X, Y ) = (φ1(x, y) φ2(x, y)...φn(x, y))T

are the vectors and the coupling functions that define the evolution. The coupling

functions can be any function of the phase space variables. The method that is most
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commonly used for synchronization is a diffusive coupling, where the coupling func-

tion is simply the difference between any of the two similar variables of the coupled

system. The final mathematical form of such a coupled evolution can be,

ẋ1 = f1(p1, p2, ...pm, x1, x2...xk) (1.12.2)

ẋ2 = f2(p1, p2, ...pm, x1, x2...xk)

. .

˙xm = fm(p1, p2, ...pm, x1, x2...xk) + cx,y(ym − xm)

.

. .

ẋk = fk(p1, p2, ...pm, x1, x2...xk)

ẏ1 = f1(p1, p2, ...pm, y1, y2...yk)

ẏ2 = f2(p1, p2, ...pm, y1, y2...yk)

. .

˙ym = fm(p1, p2, ...pm, y1, y2...yk) + cy,x(xm − ym)

. .

. .

ẏk = fk(p1, p2, ...pm, y1, y2...yk)

here, cx,y and cy,x are appropriately chosen coupling strengths. In a unidirectional

coupling scheme, either cx,y or cy,x is zero. One of the main advantages of this type

of diffusive coupling is that the dynamics of the coupled systems are affected only

according to its deviation from synchrony. In a perfectly synchronized state, the

perturbations vanish. We mainly focus on this coupling scheme in the present thesis.
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1.13 Types of synchronization

The nature of the synchronization between two coupled systems depends on various

dynamical aspects. The most important are: the extent to which the systems are

identical and the coupling strength.

1.13.1 Perfect or Exact synchronization

Consider two chaotic systems represented by X(t) and Y (t), which are coupled in

any of the coupling scheme. If | X(t) − Y (t) |→ 0 as t → ∞, the synchronization

is said to be Exact Synchronization or Perfect Synchronization. The stability of

such a synchronized state is determined by Transverse Lyapunov Exponents (TLE)

introduced by Pecora and Carol [28]. Transverse Lyapunov exponents are Lyapunov

exponents in the direction normal to the synchronization manifold X(t) = Y (t) [28].

1.13.2 Phase and Lag synchronization

Defining a phase for chaotic oscillations is not as straightforward as in regular oscil-

lations. However, using Hilbert transform, the phase of Chaotic oscillations can be

derived from a given time series. A weak entrainment between two coupled chaotic

system may lead to their phase difference to be with in a small, well defined constant.

Such a phenomenon is called Phase Synchronization [29]. It usually happens if the

coupling strength is low or the systems are not identical, even if coupling strength

is appreciable. Coupled nonidentical chaotic oscillators with high coupling strength

leads to Lag Synchronization. Lag Synchronization refers to the case where the syn-

chronization occur with a time lag between the two systems [30].

1.13.3 Generalized Synchronization

In some situations, even though the behavior of the coupled systems are not identical,

a functional relationship can be established between them. Such a phenomenon is
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Figure 1.13: Schematic diagram of a secure communication scheme.

called Generalized Synchronization [31].

1.14 Secure communication using Chaos

Consider two chaotic systems C1 and C2 whose outputs are c1(t) and c2(t) respectively

and are synchronized to due a coupling. Let S be the source which produce the signal

s(t) that has to be communicated. The signal is mixed with the chaotic oscillations

in low amplitudes and is transmitted through the communication channel. At the

receiving end, c2(t) is subtracted from the incoming signal which gives s(t) + c1(t)−
c2(t). In an ideally synchronized case c1(t) = c2(t), and the signal is retrieved with

high fidelity. Due to the fact that the parameter values of the chaotic systems used

for encryption is kept secret, an eavesdropper is unable to synchronize his system

with the transmitter and will never get the transmitted data with any reasonable

fidelity. Thus chaotic encryption can provide reasonable security needed for data

transmissions in reality. Now, is this method cent percent secure ? The answer is no.

But that is equally true with all cryptographic schemes.
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Though chaotic encryptions schemes are demonstrated successfully, both numer-

ically and experimentally, it is still far away from being implemented commercially.

One of the main reasons is the sensitivity of a chaotic state to external perturbations.

Signal which is transmitted through a communication channel is affected by noise

before it reaches the receiving end. Also the parameters of the system can change

considerably according to the changes in the environment. This induce mutual para-

meter mismatches that damage synchronization. Thus the practical implementation

of chaotic encryption based cryptographic schemes require many of these issues to be

addressed.

1.15 Conclusion

We have introduced the basic concepts regarding chaos theory and synchronization

of chaotic systems. Also we have discussed the basic computational tools that are

used in chaos theory.
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Chapter 2

Randomness in synchronization

and chaos

2.1 Introduction

Chaos and synchronization are two well understood notions in nonlinear dynamics,

but the term randomness is a much more general notion and its interpretation can

be ambiguous. In this chapter, we introduce the concept of randomness that we have

used in the present work. We first introduce noise, i.e. we discuss two of the most

familiar kind of noises and discuss how they are classified and represented. Then

we introduce the concept of randomness as a variant of the concept of noise. In

addition to this, we also give a brief introduction of the dynamical systems that we

have employed in our studies.

2.2 White and coloured noise

Noise in actual dynamical systems originates as the result of some physical processes.

For example, the thermal noise which originates as the result of the agitation of the

31
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Figure 2.1: The time series and frequency spectrum of white noise.

charge carriers in a conductor. On the basis of the fourier spectrum, noise is classified

mainly into two categories: the white noise and the coloured noise.

2.2.1 White noise

If the amplitudes of all the frequency components of a noise are uniform, it is called

white noise. In fig 2.1 the time series and the power spectrum of a white noise source

are shown. It can be seen that all the components have identical amplitudes and

the fluctuations about zero are frequent. Also no typical trend can be found in these
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Figure 2.2: The time series and frequency spectrum of coloured noise.

fluctuations.

2.2.2 Coloured noise

The most familiar form of coloured noise resembles the time series of a random walk.

Figure 2.2 shows the timeseries and the power spectrum of a colored noise source. It

can be seen that the time series is irregular and the power spectrum is inhomogeneous

with relatively high amplitudes for the lower frequencies. Time series of the colored

noise shows local trends, which can be interpreted as the system retaining some

memory about its past. This leads to short range temporal correlations.
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2.2.3 Correlations in time

The correlations in time is an important factor when considering the features of a

noise source. Such correlations decide the effect of the fluctuations on the dynamics

[1]. The correlations in time for white noise dies out very quickly. The correlation

function for white noise can be expressed as

〈ξ(t)ξ(t1)〉 = 2Dδ(t− t1) (2.2.1)

Here D is the strength of the noise.

Colored noise possess correlations that decay slowly and is exponential in most of

the cases. The relation,

〈ξ(t)ξ(t1)〉 = 2Dλ exp (−λ | t− t1 |) (2.2.2)

gives the correlation in time for coloured noise.

2.2.4 When is a noise considered delta correlated ?

At this point, one should ask the question, can a fluctuating quantity be really delta

correlated. In reality there exist no fluctuation that is totally uncorrelated to any of

the previous instances, because all such perturbations arise as a result of some physical

process. But, If the correlation time is much less compared to any characteristic

timescale of the system under consideration, it is considered to be delta correlated.

For example in equation 2.2.2 λ → ∞ represents a delta correlated noise.

2.2.5 Fluctuations with large timescales and randomness

When the timescales or the correlation time associated with the fluctuations is very

large, the features of the fluctuation become more pronounced in the dynamics as

casual random modifications. In this situation, many estimates regarding the effect

of perturbations can be made without strict statistical considerations. For example,
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the effect of fluctuations in phase on the coherence properties of a monochromatic

wave [2] assumes the fluctuations to be associated with large timescales.In the present

work we study random fluctuations with time scales much higher than that of the

systems under consideration.

2.3 Systems under consideration

In this section we discuss the basic systems that we have used in our investigations.

We introduce the Rossler attractor, Directly modulated semiconductor laser and the

Driven damped harmonic oscillator.

2.3.1 Rossler Attractor

Coupled Rossler systems are one of the most widely used dynamical systems in the

study of synchronization. Rossler systems gained popularity mostly due to its sim-

plicity, its, ability to synchronize, simplicity and the interesting nature of the results

obtained. The Rossler system is represented by the dynamical equations,

ẋ = −y − z (2.3.1)

ẏ = x + 0.18y

ż = 0.2 + z(x− 10)

The phase space trajectory of the system is given in figure 2.3. This system exhibits

both chaotic and periodic behavior according to the values of the parameters.

The exact synchronization of coupled Rossler systems is widely discussed in [4].
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Figure 2.3: The phase space of the Rossler oscillator.
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Rossler oscillators coupled diffusively can be represented as follows,

ẋ1,2 = −y1,2 − z1,2 ± α(x2,1 − x1,2) (2.3.2)

ẏ1,2 = x1,2 + p1,2y1,2

ż1,2 = 0.3 + z1,2(x1,2 − 10).

The synchronization of two coupled chaotic systems is usually illustrated by synchro-

nization plots wherein two of the corresponding variables of the coupled systems are

plotted against each other. Exact synchronization will give the typical y = x line,

and deviations from exact synchrony can easily be identified as the deviation from

this pattern. The synchronization plot corresponding to c = 0.3 for the diffusively

coupled Rossler oscillators is shown in figure 2.4. It can be seen that the behavior

the variables x1 and x2 are identical in time. But synchronization is destroyed with

a lower coupling strength c = 0.1, as shown in figure 2.5 Stability of synchronization

can be determined by Conditional Lyapunov Exponents (CLE). The stability of the

synchronized states of Rossler systems in terms CLE is given in [4]. It is shown that

the coupled Rossler systems with identical parameter values give stable synchroniza-

tion for a wide range of coupling strengths. The coupling strength c ranges from 0.25

to 1.4 and the most stable synchronization is achieved around 0.9. In coupled Rossler

systems, exact synchronization is impossible if the parameter values are not identical.

On increasing the coupling strength, phase synchronization occurs and with further

increase in coupling strength the systems attain a state of lag synchronization[3].

2.3.2 Harmonic Oscillator

The harmonic oscillator is an oscillator whose frequency is independent of the ampli-

tude and initial conditions. Not all oscillators are harmonic oscillators. For example,

consider a simple pendulum, which is almost harmonic when the amplitude is low.

But for higher amplitudes, the frequency depends on the amplitude. Interestingly the
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frequency can be infinite for the highest amplitude as shown in figure 2.6.

The most common examples of harmonic oscillators are the spring-mass system

and an LCR circuit shown in figure 2.7. In the spring-mass system, a mass which

is allowed to slide on a plane is attached to a spring whose one end is fixed. The

harmonic oscillations arise in the LCR circuit as a result of the oscillations of the

charge that is stored in the capacitor. We focus on the spring mass system because

it is more suitable from a mechanical point of view. The dynamical equation of a

spring-mass system can be written as,

d2x

dt2
+ Ω2x = 0 (2.3.3)

Here, Ω represents the angular frequency of the drive. A general solution to this

equation can be written as,

x(t) = A sin Ωt + Φ (2.3.4)

where Φ is the initial phase of the oscillator. The position and momentum oscillate

sinusoidally with a mutual phase difference of π
2
. This results in a circular phase space

trajectory as shown in figure 2.8.

In reality all oscillators are associated with damping. The equations of motion of

such oscillators also include a damping and driving terms in addition to the quantities

present in equation 2.3.3.

The dynamical equation of the damped driven harmonic oscillator is given by,

d2x

dt2
+ γ

dx

dt
+ Ω2x = asin(ωt) (2.3.5)

Here, γ, Ω and ω represents the damping coefficient, the angular frequency of the

oscillator and the angular frequency of the drive respectively. The term a represents

the amplitude of the forcing. The behavior in time, after the transients have vanished

can be represented by the equation,

x(t) =
a√

(ω2 − Ω2)2 + γω2
sin(ωt− δ) (2.3.6)
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Figure 2.6: Dependence of the frequency on the amplitude in the case of a simple
pendulum. a) the frequency is almost independent of the amplitude. b) the frequency
can be zero for some initial conditions.
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Figure 2.7: Examples of harmonic oscillators: the LCR circuit and spring mass sys-
tem.
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Figure 2.8: The phase space trajectory of a harmonic oscillator.
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Figure 2.9: When not driven, the trajectories of a harmonic oscillator spirals down
to a fixed point in the position-momentum space.
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Figure 2.10: Schematic diagram of a mechanical driven harmonic oscillator.

The term δ represents the phase difference between the drive and the oscillator, which

is equal to tan−1 γω
Ω2−ω2 . When not driven, or with | a | = 0, the system spiral down

to a fixed point in the position momentum space. This is illustrated in figure 2.9.

A physical realization of this is shown in figure 2.10. Here the end of the spring is

connected to a moving rotating disc in order to realize the driving modulations. An

interesting mathematica demonstration of this is also available [5].

2.4 Directly modulated semiconductor lasers

Study of chaotic dynamics of semiconductor lasers have received much attention in the

past few decades due to the applicability of chaotic synchronization of such systems

in the field of optical secure communication [6, 7, 8, 9, 10, 11, 12, 13]. Semiconductor

lasers are generally very stable systems when operated with only a dc bias current.

However, instabilities are induced in their dynamics by the inclusion of additional

degrees of freedom. The different methods proposed for producing chaotic outputs are

giving external optical injection [14, 15, 16, 17], giving optical feedback [18, 19, 20],
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direct GHz current modulation [21, 22, 23, 24, 25, 26, 27, 28] and giving delayed

optoelectronic feedback [29, 30, 31, 32, 33]. Positive delayed optoelectronic feedback

is the conventional method of generating ultra-short pulses [34] from semiconductor

lasers. The dynamics of semiconductor lasers with direct current modulation has

been widely studied [35, 36, 37, 38, 39]. It has already been proved that the effect

of mode gain reduction occurring due to nonlinear processes is suppression of chaotic

dynamics [40]. A bi-directional coupling between two such lasers is also found to

suppress chaotic dynamics [41]. A positive delayed optoelectronic feedback combined

with strong current modulation is found to suppress chaotic dynamics and bistabily

in semiconductor lasers [42, 43]. The effect of such a combination in inducing chaotic

dynamics through a quasiperiodic route in quantum-well lasers also has been studied

[30].

The most preferred light source in the optical communication systems is the di-

rectly modulated semiconductor lasers with GHz modulation. Chaotic synchroniza-

tion of two such lasers is a widely investigated topic because of its applicability in

optical secure communication [44, 45, 46, 47]. For InGaAsP lasers used in optical

communication systems, the nonlinear gain reduction is very strong and its direct

consequence on the dynamics of such lasers is the suppression of chaotic outputs.

Earlier studies on the dynamics of directly modulated semiconductor lasers based on

the rate equations for carrier and photon population inside the laser cavity, predicted

period doubling and chaos in some range of modulation frequency and modulation

depth [23, 24]. These rate equations have to be modified to include a small power

dependent reduction in mode gain occurring due to phenomenon such as spectral hole

burning [48, 49]. The dynamic response of semiconductor laser strongly depends on

the nonlinear gain and therefore it has a significant role in modeling semiconductor

laser dynamics [50, 51]. The optimum value of nonlinear gain reduction factor for

InGaAsP lasers is between 0.03 and 0.06 and it has been proved that this system ex-

hibits chaotic dynamics only for nonlinear gain reduction below 0.01 [40]. This makes

the investigations on the methods of producing chaotic outputs from such lasers under
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optimum parameter values very important for their applicability in secure communi-

cation systems.

2.4.1 Laser model

Semiconductor lasers with direct current modulation can be represented by the fol-

lowing rate equations for the photon density (P ), carrier density (N), and the driving

current (I) [26, 40]

dN

dt
= (

1

τe

)[(
I

Ith

)−N − {(N − δ)

(1− δ)
}P ] (2.4.1)

dP

dt
= (

1

τp

)[
N − δ

1− δ
(1− εP )P − P + βN ] (2.4.2)

I(t) = Ib + Im sin(2πft) (2.4.3)

where τe and τp are the electron and photon lifetimes, N and P are the carrier

and photon densities, I is the driving current, δ = n0

nth
, ε = εNLS0 are dimensionless

parameters where n0 is the carrier density required for transparency, nth = τeIth

eV
is

the threshold carrier density, εNL is the factor governing the nonlinear gain reduction

occurring with an increase in S, S0 = Γ τp

τe
nth, Ith is the threshold current, e is the

electron charge, V is the active volume, Γ is the confinement factor and β is the

spontaneous emission factor. Ib = b × Ith is the bias current where b is the bias

strength, Im = m × Ithis the modulation current where m is the modulation depth

and fm is the modulation frequency [35]. Parameter values for which the system

output will be chaotic are: τe = 3 ns and τp = 6 ps are the electron and photon

life times. δ = 692 × 10−3 and β = 5 × 10−5 and Ith = 26 mA. In figure 2.11 the

phase space [52] of the laser in the chaotic regime is shown with the given parameters.

However, the delay feedback can can also induce chaos in this laser system, notably

for lower values of epsilon [53].



48 Chapter 2

Figure 2.11: The phase space of a directly modulated semiconductor laser in the
chaotic regime.
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2.5 Conclusion

In this chapter we have clarified the concept of randomness that we study in this

work. The systems that we consider are also introduced.
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Chapter 3

Effect of parameter fluctuations on

coupled chaotic systems

3.1 Introduction

In chapter 2 we discussed Rossler attractors and the directly modulated semiconduc-

tor laser systems. In this chapter we study the effect of parameter fluctuations on the

synchronization properties of these systems. We consider a system of bidirectionally

coupled Rossler attractors and unidirectionally coupled directly modulated semicon-

ductor laser systems. Synchronization of coupled chaotic systems has generated a lot

of research activities over the last several years.

Synchronization of chaos has been studied extensively in physical, chemical and

biological systems. Different types of synchronization such as complete, generalized,

lag and phase synchronization are described in literature. One of the methods by

which the synchronization of chaotic systems can be achieved is by coupling two

identical systems, which can be either unidirectional or bidirectional[1, 2, 3, 4, 5, 6,

10, 12, 11, 24, 7]. Synchronization in arrays of coupled laser systems has also been

investigated under various coupling schemes[10, 12, 11, 24]. Complete synchronization

55
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Figure 3.1: A schematic illustration of the fluctuation that affect the dynamics ac-
cording to equation 3.7.1.

of identical chaotic systems is of considerable interest because of its applicability in

secure communication[12, 24]. By identical systems we mean a set of systems whose

parameters are exactly equal. It is found that complete synchronization is not possible

when there is a small but finite mismatch of the parameters of the systems[9, 8, 7].

In coupled non autonomous systems, the effect of phase mismatch or a finite constant

frequency detuning is to destroy the synchronization altogether[18].

3.2 Parameter fluctuations

To study the effect of fluctuations it is essential to identify a parameter whose mis-

match is most effective in destroying synchronization. We denote this parameter as
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p and the fluctuations to the parameter is assumed to occur in time as follows,

p1t = p0 + ξ1t (3.2.1)

p2t = p0 + ξ2t,

where ξ1t and ξ2t are two delta correlated zero mean random variables. In figure3.1

such a fluctuation is illustrated.

We define ∆̃p, as a measure of the amplitude of fluctuations as follows,

∆̃p = 〈| δp(t) |〉t, (3.2.2)

where δpt = p1t − p2t and 〈...〉t denotes time average.

In nature, parameter fluctuations are associated with characteristic time scales. In

a laser this can be of the order of nano or micro seconds and in the case of biological

systems the timescales can be of the order of hours or days.

To study the effect of time scales of parameter fluctuation on synchronization, we

define the fluctuation rate φ, as number of perturbuations/unit time. Different fluc-

tuation rates can be achieved numerically by modifying the parameter as in eq.3.7.1

in certain chosen time steps. Rest of the time the value of the parameter remains

constant at the modified value. The error in synchronization is studied with respect

to φ.

3.3 Effect on synchronization

Coupled Rossler oscillators are well known for numerical studies in synchronization.

This is due to its simplicity and the ability to synchronize. Also,the results obtained

[14, 16] can usually be generalized to other chaotic systems. We consider a system of
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bidirectionally coupled Rossler oscillators given by the following equations,

ẋ1 = −y1 − z1 + c(x2 − x1) (3.3.1)

ẏ1 = x1 + p1y1

ż1 = 0.2 + z1(x1 − 10)

ẋ2 = −y2 − z2 + c(x1 − x2)

ẏ2 = x2 + p2y2

ż2 = 0.2 + z2(x2 − 10).

The parameter values are chosen as p0 = 0.18,∆̃p = 0.05 and the coupling strength

c = 0.25, for all the fluctuation rates. Keeping these parameters constant, we study

the effect of the fluctuation rates on the quality of synchronization.

Fig.3.2 shows the synchronization plot in the presence of parameter fluctuations.

It can be seen that the synchronization is robust. With the same value of ∆̃p the

synchronization is destroyed with a lower fluctuation rate as shown in fig.3.3. To

quantify the synchronization error we used the similarity function defined by,

S2(τ) =
〈[x1(t + τ)− x2(t)]

2〉
[〈x2

1(t)〉〈x2
2(t)〉]

1
2

. (3.3.2)

Here τ is set to zero, which gives S(0), the error in synchronization. Fig. 3.4 shows

the plot of S(0) vs. fluctuation rate. It can be seen that the error diminishes rapidly

with the increase in the fluctuation rate. Keeping φ as a constant, and increasing the

amplitude of fluctuations, it is found that S(0) increases with ∆̃p. Also the rate of

increase of S(0) is higher for a lower value of φ, for a range of coupling strengths [15],

as shown in figure 3.5.

In addition to random fluctuations to the parameter, we also investigated the

effect of deterministic modulations to the parameter [16]. The parameters of the

coupled systems are assumed to evolve in time as follows,
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Figure 3.2: Synchronization is maintained in the presence of parameter fluctuations.
φ = 1000 and ∆̃p = 0.05
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Figure 3.3: Synchronization is destroyed in the presence of parameter fluctuations
with low fluctuation rates. Fluctuation rate φ = 25 and ∆̃p = 0.05
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Figure 3.4: The synchronization error decreases with the increase in the fluctuation
rate. It can be seen that high coupling could not stabilize synchronization with lower
fluctuation rates. Here ∆̃p = 0.05 and coupling strength c = 0.5.
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Figure 3.5: For two fluctuation rates, φ = 50 (red) and φ = 500(black): the
synchronization error grows as the amplitude of fluctuation is increased.
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Figure 3.6: S(0) vs. φ plot of coupled Rossler systems under fluctuations following

uniform distribution. Here ∆̃p = 0.05.
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p1 = p0 + a sin 2πft, (3.3.3)

p2 = p0 − a sin 2πft,

where the f the frequency of modulation and a = 0.1 is the amplitude of modulation.

It can be seen in figure 3.7 that the synchronization error levels off as the frequency

of modulation is increased. Note that high coupling strengths only reduce the syn-

chronization error, but the stability of synchrony is achieved only at high modulation

frequencies. Thus modulation frequency is important in determining the stability of

synchronization.

3.4 Discussion

In general the robustness of synchronization with high fluctuation rates and destruc-

tion of synchronization with low fluctuation rates can be understood as follows. Let

the evolution of the coupled systems in phase space be represented by the dynamical

equations

Ẋ1 = f1(p1, X1) + Cf(X2 −X1) (3.4.1)

Ẋ2 = f1(p2, X2) + Cf(X1 −X2).

Where X represents the phase space variables, p the parameter whose fluctuation is

considered, and C, the coupling constant.

With eq.3.4.1 we can write an equation for the rate of separation X1 −X2 of the

trajectories as,
d(X1 −X2)

dt
= Ẋ1 − Ẋ2 = M(p1, p2, X1, X2), (3.4.2)

Where M(p1, p2, X1, X2) is a function of the dynamical variables, the parameters of

the coupled systems and ∆p the parameter mismatch. This can be expanded in terms

of ∆p and the effect of fluctuations can be separated out.

M(p1, p2, X1, X2) = Ms(p0, X1, X2) + E(p0, X1, X2, ∆p1, ∆p2). (3.4.3)
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Figure 3.7: The synchronization error decreases with the increase in the in frequency
of modulation. It can be seen that the modulation frequency is more important than
coupling strength in determining the stability of synchronization. Here the amplitude
of modulation a = 0.1.
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where E(p0, X1, X2, ∆p1, ∆p2) can be written as,

E(p0, X1, X2, ∆p1, ∆p2) = ∆p1
∂M(p1, p2, X1, X2)

∂p1

|p1=p0

+∆p2
∂M(p1, p2, X1, X2)

∂p2

|p2=p0 .

This is valid for small ∆p, neglecting its higher powers or if the higher derivatives of

M(p1, p2, X1, X2, ∆p1, ∆p2) with respect to p is zero. Also it should be noted that

the parameter values are not near a bifurcation point.

Here Ms(p0, X1, X2) represents the quantity which offers a stable synchroniza-

tion manifold, that is, when Ms(p0, X1, X2) alone is present on the right hand side

of the separation equation, the coupled systems synchronize as t −→ ∞. The con-

ditions for such a synchronization is widely discussed in literature [6]. The term

E(p0, X1, X2, ∆p1, ∆p2) represents the effect of the parameter mismatch. Coupled

systems synchronizes if the overall effect of this term vanishes as t −→∞.

In the present example of coupled systems (eq.3.3.1) the rate of separation of

trajectories can be written as follows,

d(x1 − x2)

dt
= (y1 − y2) + (z2 − z1) + 2C(x2 − x1) (3.4.4)

d(y1 − y2)

dt
= (x1 − x2) + p1y1 − p2y2

d(z1 − z2)

dt
= (x1z1 − x2z2) + 10(z2 − z1)

.

Assuming that we start from an approximately synchronized state,x1 ' x2, y1 ' y2

and z1 ' z2, we can write eq.3.4.4 as,

d(x1 − x2)

dt
' 0 (3.4.5)

d(y1 − y2)

dt
' p1y1 − p2y2

d(z1 − z2)

dt
' 0.
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Here it can be seen that M(p1, p2, X1, X2) = p1y1−p2y2 and E(p0, X1, X2, ∆p1, ∆p2)

can be calculated as,

E(p0, X1, X2, ∆p1, ∆p2) = ∆p1
∂(p1y1 − p2y2)

∂p1

|p1=p0 (3.4.6)

+∆p2
∂(p1y1 − p2y2)

∂p2

|p2=p0 .

= ∆p1y1 −∆p2y2

= ξ1ty1 − ξ2ty2.

as the instantaneous parameter mismatches ∆p1 = ξ1t and ∆p2 = ξ1t. Also the

form of E(p0, X1, X2, ∆p1, ∆p2) can be generalized to

E(p0, X1, X2, ∆p1, ∆p2) =
∑

i

αiξtixi(t) (3.4.7)

with many coupling schemes. Here ξts are the the fluctuation terms, α s are constants

and x(t)s are the phase space variables of the coupled system. Perturbations of these

nature are clearly multiplicative noise who’s effect on synchronization has not been

studied.

Here the effect of fluctuations vanishes because the ξti’s are zero mean rapidly

fluctuating quantities and x(t)’s are the phase space variables that evolve slowly

when compared to the the rapid fluctuations or modulations of the parameter. Thus

x(t)’s can be assumed to be constant, in the time required for the fluctuations to get

summed to zero.

However with a low fluctuation rate the quantity E(p0, X1, X2, ∆p1, ∆p2) can af-

fect the synchrony because the phase space evolution time is comparable to the in-

terval where a fixed parameter mismatch persists. Thus with a lower fluctuation rate

the system always get time to respond to the parameter mismatch before it being

canceled out. In other words the sum on the R.H.S of eq.3.4.7 does not vanish with-

out considerably modifying the phase space variables x(t) when the fluctuation rates

are low. Apart from gaussian random fluctuations, we also studied perturbations
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with a uniform distribution. The results were qualitatively similar to that of gaussian

perturbations as shown in figure 3.6. This suggests that the fluctuation rate φ is more

significant than the statistical nature of the fluctuations.

In a case where the parameters are modulated the fluctuating terms ξs are replaced

by the oscillating terms. The mechanism of retaining stability of synchrony at high

frequency modulations is similar to that of random parametric perturbations. The

contributions of the parameter mismatch vanishes with fast zero mean oscillations.

The analytical treatment of this is straight forward and not much different from that

of random fluctuations.

3.5 Effect of fluctuations in Laser dynamics

In chapter II we have introduced the directly modulated semiconductor laser and

its applications in secure communication. Investigations in this direction is still a

hot topic of research [26, 27, 28]. Here we show that such laser systems are also

considerably influenced by the fluctuations of the parameters. Another aim of our

studies in lasers is to show that there are examples in which a well defined relation

between the fluctuation rates (φ) and the synchronization error S(0) cannot always

be established.

3.6 Laser model

The dynamical equation of a directly modulated semiconductor laser can be expressed

as [13],

dN

dt
= (

1

τe

)[(
I

Ith

)−N − {(N − δ)

(1− δ)
}P ] (3.6.1)

dP

dt
= (

1

τp

)[
N − δ

1− δ
(1− εP )P − P + βN ]

,
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where, N and P are the normalized carrier and photon densities respectively. τe =

3 ns and τp = 6 ps are the electron and photon life times. δ = 692 × 10−3 and

β = 5 × 10−5 are two dimensionless parameters and Ith = 26 mA is the threshold

current. The modulating current in the system is given by

I(t) = Ib + Im sin(2πft). (3.6.2)

Here, Ib = 40.3 mA is the biasing current, Im = 14.3 mA is the modulating current

and f = 0.8 × 109 Hz the frequency of modulation. Two such laser systems can be

synchronized by an optoelectronic feedback [23, 24]. In this scheme, the difference in

photon densities of the drive and response systems is fed into the drive current of the

response system.

The dynamics of the coupled system can be represented by the following equations,

dN1

dt
= (

1

τe

)[(
I1

Ith

)−N1 − {(N1 − δ)

(1− δ)
}P1] (3.6.3)

dP1

dt
= (

1

τp

)[
N1 − δ

1− δ
(1− εP1)P1 − P1 + βN1]

I1(t) = Ib1 + Im1 sin(ω1t)

dN2

dt
= (

1

τe

)[(
I2

Ith

)−N2 − {(N2 − δ)

(1− δ)
}P2]

dP2

dt
= (

1

τp

)[
N2 − δ

1− δ
(1− εP2)P2 − P2 + βN2]

I2(t) = Ib2 + Im2 sin(ω2t) + 0.003105(P1 − P2).

Such a system synchronizes when the parameters of both oscillators match [23]. Syn-

chronization of coupled non-autonomous systems is highly sensitive to parameter

mismatch [18], especially of the driving frequency. Being a non-autonomous system,

this laser system is also highly sensitive to parameter mismatch, especially to those

occurring in the driving frequency [25]. When we introduce parameter fluctuation, it

is assumed that the average parameter values of both the systems are identical and

are equal to the values for which they are designed for secure communication purpose

[29].
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3.7 Parameter fluctuations

Let ω1 and ω2 be the driving frequencies of the systems. Fluctuations in the system

are incorporated as

ω1 = ω0 + ξ1(t) (3.7.1)

ω2 = ω0 + ξ2(t), (3.7.2)

where, ξ1 and ξ2 are zero mean delta correlated random variables. Once the fre-

quency is modified, it remain constant for a characteristic timescale associated with

the fluctuation, which is equal to 1
φ
. With this modification, the angular frequencies

of coupled systems fluctuates about ω0 = 5.03× 109, which is the mean angular fre-

quency. The amplitudes of the fluctuations are quantified by ∆̃ω which is defined

as,

∆̃ω = 〈| δω(t) |〉, (3.7.3)

where, δω(t) = ω1(t)−ω2(t). The Similarity function is used to quantify the synchro-

nization error. In this case, the similarity function in terms of photon density can be

written as,

S2(τ) =
〈[P1(t + τ)− P2(t)]

2〉
[〈P 2

1 (t)〉〈P 2
2 (t)〉] 1

2

. (3.7.4)

3.7.1 Numerical results

The variation of the synchronization error (S(0)) with respect to the fluctuation rate

φ is studied. The error decreases as the fluctuation rate increases. The effect of

Gaussian as well as uniform fluctuations on synchronization are studied. Figures 3.8

and 3.9 shows the variation of synchronization error for increasing values of fluctuation

rates in the case of Gaussian and uniform perturbations respectively. It can be seen

that in both the cases, the convergence of the S(0) is not uniform as in the case of

Rossler attractors. However for larger fluctuation rates, S(0) falls to very low values.
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Figure 3.8: In coupled laser systems, the synchronization error S(0) decays with the

increase in the fluctuation rate. ξ’s follow gaussian distribution and ∆̃ω = 8.5761×107
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Figure 3.9: Synchronization error S(0) decays with the increase in the fluctuation
rate. Here the coupled Laser system is subjected to fluctuations that follow uniform
distribution. ∆̃ω = 2.5409× 107.
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3.8 Conclusion

In this chapter we have shown that the effect of a fluctuating parameter involved in

the dynamics of coupled systems is to destroy synchronization. The effect of such

fluctuations on the quality of synchronization depends on the time scale associated

with the fluctuations. In some cases a well defined relation can be found between the

timescales and the similarity function S(0). But in systems which are very sensitive

to parameter mismatch, no such relation can be derived.
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Chapter 4

Chaos in an intermittently driven

damped oscillator

4.1 Introduction

It is generally known that continuous linear systems cannot exhibit chaotic time

evolution. However recently it has been shown that chaotic behavior can occur in

systems without explicit non linearities. Hirata et.al. [1] have shown that continuous

chaotic wave forms can be constructed by the superposition of certain pulse basis

functions. In a linear second order filter driven by randomly polarized pulses, chaotic

behavior is observed when the time series is viewed backwards in time [2]. Further

they have shown that by reversing the time series, folded band chaos similar to Rössler

attractor can also be synthesized [3]. Even if the time reversal is not physical, this

reveals the importance of pure randomness which is associated with chaotic behavior.

In this chapter we study a weakly damped driven linear oscillator where the oscillator

and the drive are coupled only when the trajectory is in a thin strip in the phase space

[4].
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Figure 4.1: The schematic diagram of the driving. The drive and the oscillator are
coupled when the trajectory is in side the strip located at the origin of the phase
space.

4.2 Basic model

The basic model discussed in this chapter is a damped oscillator which is driven only

in a thin strip of the phase space. that is, as the trajectory enters the strip the

coupling between the drive and the oscillator becomes active. When not driven, the

oscillator performs a damped motion and the drive runs freely. This is schematically

shown in figure 4.1. We choose the origin as the location of the strip because orbits

with lower energy may not encounter the strip, if it is located far from the origin.

Such orbits will spiral towards zero as in the case of an ordinary damped oscillator.

First we consider a deterministic drive. The dynamics is characterized using stan-

dard techniques. We also study a model in which the oscillator is driven by a sto-

chastic drive. That is, as the trajectory enter the strip, the oscillator is subjected

to a random forcing. We show that the stochastic system mimics its deterministic

analogue. Also it is shown that the effective forcing is associated with a timescale,

this makes the forcing similar to the fluctuation that we have studied in the previous
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chapter.

4.3 Deterministic driving

4.3.1 Dynamical equations

The dynamical equation for a harmonic oscillator, which is coupled to the drive only

in a strip in the phase space can be written as,

d2x

dt2
+ γ

dx

dt
+ Ω2x = µ(s, x)a sin(ωt) (4.3.1)

where,

µ(s, x) =

{
1 if | x | ≤ s

0 otherwise.
(4.3.2)

Here, γ is the damping coefficient, Ω is the angular frequency of the oscillator and

ω is the angular frequency of the drive. Thus with a deterministic drive, what the

dynamical equations represent is a legitimate deterministic system in every sense.

4.3.2 Numerical results

Numerical simulations were done using the Runge-Kutta algorithm with a step size

of 10−3. We choose the following values for the parameters: Ω = 1.0, γ = 0.1,

ω = 0.3, s = 0.1 and a = 2.5. The parameters were chosen by numerical trials to

express the concepts clearly, and are fixed during the evolution of the system in time.

Fig.4.2 shows the phase space plot of the system. Note that there is a discontinuity

in a strip of width 2s near 0 in the the phase space, where the oscillator is coupled

to the drive. A closer view of the strip is given in Fig. 4.3. It can be seen that

the trajectories that approach the origin may either cross the strip with or without

considerable modifications, or it may get reversed. Fig. 4.4 shows the time series x(t)

of the system. The amplitude of oscillations, and the number of oscillations between

two consecutive crossings of the strip are irregular. This corresponds to the phase
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Figure 4.2: Phase space trajectory of the oscillator (Ω = 1.0, γ = 0.1, ω = 0.3,
s = 0.1 and a = 2.5).
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Figure 4.3: Close view of the strip. Note the trajectories: a) reverse direction b) cross
the strip but suffers deformation, c) cross the strip without considerable modification.
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Figure 4.4: Time series of the system (Ω = 1.0, γ = 0.1, ω = 0.3, s = 0.1 and
a = 2.5).
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Figure 4.5: Power spectrum of the time series x(t) (Ω = 1.0, γ = 0.1, ω = 0.3,
s = 0.1 and a = 2.5).
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Figure 4.6: Bifurcation diagram obtained by varying the strip width s. Chaotic
behavior disappears as the width of the strip is (Ω = 1.0, γ = 0.1, ω = 0.3 and
a = 2.5).

space dynamics which consists of reflections in the strip and transitions which modify

the trajectories. The power spectrum as shown in Fig. 4.5 is broad which confirms

the aperiodic behavior in time.
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Figure 4.7: Bifurcation diagram obtained by varying the damping coefficient γ.
Chaotic behavior is suppressed as the damping is increased (Ω = 1.0, ω = 0.3,
s = 0.1 and a = 2.5).



88 Chapter 4

Varying the parameters s and γ, the system exhibits both chaotic and periodic

oscillations. From the bifurcation diagrams shown in Fig. 4.6 and Fig. 4.7, it can

be seen that the chaotic behavior disappears for higher values of γ and s. Also note

that for s ' 1 there is a transition to the case of an ordinary driven damped linear

oscillator, where no chaotic behavior is expected.

We used DATAPLOREr [5] for the analysis of the time series. The time delay

required for reconstructing a timeseries is a widely discussed topic [4]. With a delay

of 1.56, it is found that the autocorrelation function falls to 0.5. With this delay,

embedding dimension was calculated using False nearest neighbors method [7]. It

is found that the percentage of nearest neighbors approaches zero with embedding

dimension 3. Lyapunov exponents were calculated with embedding dimension 3,

number of nearest neighbors 37 and the degree of the extrapolating polynomial 3.

The result obtained is multiplied by the sampling frequency of the input signal to

calculate the Lyapunov exponents. The Largest Lyapunov exponent is found to be

3.19. We obtained 2.148 as the Kaplan-Yorke dimension. The reconstructed phase

space of the attractor is shown in fig. 4.8. It is similar in appearance to other

chaotic systems in several respects. The trajectories are not closed and it fill the

phase space, but not uniformly. The oscillations are bounded though the trajectories

diverge locally.

4.4 Random driving

4.4.1 Dynamical equations

In this section we consider the effect of random driving on the oscillator dynamics.

Random forcing is achieved by the drive assuming a random value ξ each time the

phase space trajectory enters the strip. The amplitude of forcing ξ is Gaussian random
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Figure 4.8: The delay reconstructed attractor (Ω = 1.0, γ = 0.1, ω = 0.3, s = 0.1,
a = 2.5 and ∆t = 1.56 ).
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variable with variance σ2 = 1√
2

and zero mean. We define χ(s, x) as follows,

χ(s, x) =

{
ξ if | x | ≤ s

0 otherwise.
(4.4.1)

Retaining µ(s, x) defined as in eq. 4.3.1 for comparison, the dynamical equation is,

d2x

dt2
+ γ

dx

dt
+ Ω2x = aµ(s, x)χ(s, x) (4.4.2)

4.4.2 Numerical results

Replacing the deterministic drive with a random drive, the resulting system mimics

it deterministic analogue in many respects. The position momentum space of the

oscillator is shown in figure 4.9. Figure 4.10 shows the attractor reconstructed from

the timeseries of the system by delayed coordinates. We used a delay of 1.1 seconds,

a delay with which the autocorrelation function falls to half its original value [4],

for reconstructing the attractor from its timeseries. reflection-transmission dynamics

inside the strip is also similar to the deterministic case as shown in figure 4.11. We

calculated the invariant parameters, it was found that the the Lyapunov exponent

is 2.92 and the Kaplan-Yorke dimension is 2.31. A positive lyapunov exponent and

Kaplan-Yorke dimension between 2 and 3 is a sure indication of chaos. The invariant

parameters with both driving schemes is given in table 4.1 for comparison.

Invariant parameters Deterministic driving Random driving
Lyapunov exponents 3.19 2.92

Kaplan-Yorke dimension 2.148 2.31

Table 4.1: Invariant parameters of deterministic and random driving schemes
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Figure 4.9: The position-momentum space of the oscillator under random driving. (
Ω = 1.0, γ = 0.1, s = 0.1, a = 2.5 and ∆t = 1.1).
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Figure 4.10: The reconstructed attractor resulting from random driving ( Ω = 1.0,
γ = 0.1, s = 0.1, a = 2.5 and ∆t = 1.1).
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Figure 4.11: Close view of the phase space strip of a randomly driven oscillator.
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Figure 4.12: The density distributions of the driving times: a) deterministic driving
b) stochastic driving
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4.5 Nature of the forcing

The effect of a forcing on the dynamics can depend on many factors. The most

important are the amplitude and the time for which such a forcing persists. With Eq.

4.3.1 the dynamics of the system in terms of phase space variables is well defined. The

only degree of freedom available for an irregular behavior is through the time interval

in which the system is driven. It is shown in fig 4.12 that the distribution of the

driving times is peaked in deterministic as well as in random drivings schemes. It is

interesting to note that the nature of the distribution is the same but the distribution

is more sharply peaked for the random forcing.

4.6 Conclusion

We have shown that weakly damped linear driven oscillator can exhibit chaotic be-

havior if the coupling between the drive and the oscillator are applied only at a narrow

region of the phase space. Similar chaotic behavior can be observed with a purely

random drive. Though physically similar mechanisms exist for such a behavior, math-

ematically, they are different. Under stochastic driving, the forcing term is constant

inside the strip and the duration for which the forcing persists, is distributed with

a distribution function which is sharply peaked. This implies that the net forcing

experienced by the oscillator is similar to the kind of fluctuation that we have studied

in Chapter III.
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Chapter 5

Harmonic oscillator with

exponential damping

5.1 Introduction

In this chapter we study a system which is a modification of the system that we

have studied in the previous chapter. We study an oscillator in which the drive is

spatially modulated with an exponentially decaying function of the position variable.

The significance of this study, in view of the present work is that achieving chaos in

this system proves that the chaotic dynamics that we have studied in the previous

chapter is structurally stable. That is, the nature of the attractor is not considerably

modified with small changes in the dynamical equations of the system.

The dynamical equation of a damped driven harmonic oscillator [1, 2, 3] is given

by,

d2x

dt2
+ γ

dx

dt
+ Ω2x = a sin(ωt). (5.1.1)

Where the term γ represents the damping coefficient. In a mechanical system this is

the damping force proportional to the velocity(ẋ). The term Ω represents the angular

frequency of the oscillator which is given by Ω = k
m

where k is the restoring force per
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unit displacement from the equilibrium and m is the mass. ω represents the frequency

of the drive and a represents the amplitude of the forcing applied by the drive.

The dynamical equation of a modified damped driven harmonic oscillator in which

the driving term have a spatial dependence can be written as,

d2x

dt2
+ γ

dx

dt
+ Ω2x = a exp(−αx2) sin(ωt). (5.1.2)

. The driving term sin(ωt) of the original harmonic oscillator is modified to exp(−αx2) sin(ωt).

This can also be written as a system of coupled equations,

ẋ = y (5.1.3)

ẏ = −Ω2x− γy + a exp(−αx2) sin(z)

ż1 = ω.

The function exp(−αx2) with high values of α is a rapidly decreasing function

of the space variable. Thus the driving becomes inhomogeneous and there will be

regions in the phase space where the effect of the driving is practically absent. This

is schematically given in the figure 5.1. The region shaded in grey represents the

coupling strength between the drive and the oscillator in various spatial regions.

Though the harmonic oscillator is a perfectly linear system, the spatial dependence

of an exponential form introduces strong nonlinearities because the term exp(−αx2)

can be written as,

exp(−αx2) = 1 + Σ∞
n=1

(αx2)n

n
.

To study the chaotic dynamics of the system, parameter values which are best suited

for the illustration of the concepts are chosen. These values are, Ω = 1.0, γ = 0.1,

a = 6.25, α = 80.0and ω = 0.3. In figure 5.2 The phase space of the system is given.

The reconstructed attractor is shown in figure 5.4. It can be seen that the topology

of the reconstructed figure possess many similarities to that of other chaotic systems.

We used a time delay of 0.5s as the time lag required for reconstructing the dynamics

[4].
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Figure 5.1: Spatial modulation of the drive. The shaded region denotes the spatial
modulation experienced by the drive. Thus with an exponential dependence on the
space variables the effect of the drive is restricted to a smaller region in phase space.
Also there are regions where the effect of the sinusoidal forcing is absent.
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The power spectrum of the time series in the chaotic regime is shown in figure 5.3.

It can be seen that the power spectrum is broad which indicates aperiodic behavior

of the system. The lyapunov exponents of the attractor is computed using a Matlab

version of the Fortran program provided by Wolf. et. al [5]. It can be seen from

figure 5.5 that the lyapunov exponents of the system converges to positive, zero and

negative values: which is a clear indication of chaotic behavior. The longer time

needed for the convergence of the Lyapunov exponents is a common characteristic of

driven systems [3].

5.2 Parameter variations

Many of the nonlinear systems exhibit chaos depending on the parameter values of

the system. As we have seen in chapter I, varying the parameters of a system leads

to orbits of different periodicities and also chaotic behavior. The key element in the

dynamics of this system is the parameter α. We study the effects of varying this

parameter keeping all other parameters constant as defined earlier.

The parameter α enters the dynamics through the term exp(−αx2). Thus when

α = 0 or for the smaller values of α, one can expect a regular dynamics similar to that

of the damped driven harmonic oscillator. On increasing α the nonlinearities starts to

influence the dynamics. Here we can expect periodic oscillations. With higher values

of α the nonlinearities affect the dynamics strongly such that the dynamics becomes

different from that of the original harmonic oscillator and can result in chaos.

The bifurcation diagram of the system is given in figure 5.6. It can be seen that

as α increases the system become chaotic through successive period doublings. There

are also periodic windows and successive period doublings in the bifurcation diagram,

that are characteristics of chaotic dynamics.

Varying the parameter ω the system exhibits some interesting oscillatory behav-

iors. The system is chaotic when the drive frequency is considerably less than that

of the drive. However when the drive frequency and the natural frequency of the
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Figure 5.2: The displacement-velocity space of the oscillator in the chaotic regime.
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Figure 5.3: The power spectrum of the time series for the parameter values Ω = 1.0,
γ = 0.1, a = 6.25, α = 80.0and ω = 0.3.
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Figure 5.4: The delay reconstructed phase space of the oscillator.
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Figure 5.5: Convergence of the Lyapunov exponents as t −→∞.
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Figure 5.6: The bifurcation diagram of system under the variation of α.
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oscillators match it can be seen that the system becomes periodic. The maximum

amplitude of oscillations in the periodic regime occurs when the frequency of the

drive and the natural frequency of the oscillator match. However, periodic orbits are

possible when the frequency of the drive is higher than that of the oscillator. The

bifurcation diagram corresponding to the variation of ω is given in figure 5.7. From

figure 5.8 it can be seen that chaotic behavior does not occur if the damping coefficient

is high. At high values of damping, orbits of different periodicities can be observed.

5.3 Synchronization

In this section, we study the synchronization properties of the oscillator in the chaotic

regime. Synchronization is achieved by diffusive coupling. The coupled equations can

be represented as,

ẋ1 = y1 + c(x2 − x1) (5.3.1)

ẏ1 = −Ω2x1 − γy1 + a exp(−αx2
1) sin(z1)

ż1 = ω

ẋ2 = y2 + c(x1 − x2)

ẏ2 = −Ω2x2 − γy2 + a exp(−αx2
2) sin(z2)

ż2 = ω,

where c denotes the coupling strength. The schematic diagram of the coupling scheme

is given in figure 5.9. The Conditional Lyapunov exponents (CLE) [6] of the coupled

systems are calculated. The variation of maximal conditional Lyapunov exponent

with respect to coupling strength is plotted in figure 5.10. It can be seen that with

both unidirectional and bidirectional coupling, chaotic synchronization is achieved be-

tween the oscillators. The synchronization plot of the systems coupled bidirectionally

with a coupling strength of 0.2 is given in figure 5.11.
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Figure 5.7: a) The bifurcation diagram of system under the variation of ω, b) zoomed
view of the resonance part
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Figure 5.8: The bifurcation diagram of system under the variation of γ.
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Figure 5.9: Diffusively coupled spatially modulated harmonic oscillators: a schematic
representation.
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Figure 5.10: Variation of the maximal Conditional Lyapunov exponent with increase
in coupling strength.



113

Figure 5.11: The synchronization plot of the coupled modulated harmonic oscillators.
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5.4 Conclusions

The driven damped harmonic oscillator can be transformed to a chaotic oscillator by

modifying the driving term with a spatial dependence of an exponential nature. The

system follows the familiar period doubling route to chaos. Synchronization of such

systems is possible for a wide range of coupling strengths.
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Chapter 6

Summary, conclusions and future

prospects

6.1 Summary and conclusion

We have shown that a randomly fluctuating parameter on synchronization of chaotic

systems destroys the synchronization. In some systems, it is possible to establish the

relation between the characteristic timescales associated with the fluctuation and the

quality of synchronization. But there are also situations in which this is not possible.

We studied a modified harmonic oscillator in which the drive and the oscillator

are coupled only when the phase space trajectory is inside a small strip in the phase

space. The resulting oscillator exhibits chaotic behavior. A stochastic analogue of this

system can also be constructed by replacing the deterministic drive with a random

one. It was found that such a system mimics its deterministic analogue.

In stochastically driven chaotic oscillator the effective driving is the random forc-

ing with associated timescales, where the timescales are distributed with a density

function which is peaked. The peaked nature of the distribution suggests that a

timescale which is characteristic to such forcing exists.
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Replacing the strip in the earlier chapter, we studied a damped harmonic oscillator

in which a spatial modulation which is an exponential function of the position variable,

is applied to the drive. The system exhibits chaotic dynamics which is much similar

to the familiar chaotic systems. This shows that the dynamics of the stochastically

driven oscillator and its deterministic analogue is not much different from the behavior

of regular chaotic systems.

To conclude, a fluctuating quantity which is associated with characteristic timescales

destroys synchronization. On the other hand, such fluctuations can also induce chaos.

Thus we have shown that phenomenon which is equivalent to chaos and that cannot

be synchronized exists. Also we have established one of the close relations between

determinism and randomness in nature.

6.2 Future prospects

In future we would like to extend our studies to modified versions of the intermittently

driven system. This include driving with random forcing which follows other distrib-

utions, and hence to find out what the actual distribution with which the dynamics

is most similar to chaos. Though the previous results that describe chaotic behavior

under random driving involves time reversal, it also has a similarity to our system:

the system is driven by random pulses. Establishment of a connection between our

model and the model given by Corron et. al. is also proposed. In future, we also plan

the physical realization of the mathematical models that we have studied.
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