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Chapter 1

Secret Sharing Schemes2

1.1 Introduction

Handling secret has been an issue of prominence from the time4

human beings started to live together. Important things and

messages have been always there to be preserved and protected6

from possible misuse or loss. Some time secret is thought to

be secure in a single hand and at other times it is thought to8

be secure when shared in many hands. Some of the formulae

of vital combinations of medicinal plants or roots or leaves, in10

Ayurveda were known to a single person in a family. When he

becomes old enough, he would rather share the secret formula12

to a chosen person from the family, or from among his disciples.

There were times when the person with the secret dies before he14

could share the secret. Probably, similar incidents might have

made the genius of those era to think of sharing the secrets with16

1



Chapter 1 Secret Sharing Scheme

more than one person so that in the event of death of the present

custodian, there will be at least one other person who knows the 2

secret.

Secret sharing in other forms were prevailing in the past, for 4

other reasons also. Secrets were divided into number of pieces

and given to the same number of people. To ensure unity among 6

the participating people, the head of the family would share the

information with respect to wealth among his children and insist 8

that after his death, they all should join together to inherit the

wealth. 10

To test the valor of the youth of a nation, a king, would hide

treasure in some place in his kingdom and information about it 12

would be placed in pieces at different places of varying grades

of difficulty to reach. Only the brave and the intelligent would 14

reach the treasure.

Military and defense secrets have been the subject matter for 16

secret sharing in the past as well as in the modern days. Secret

sharing is a very hot area of research in Computer Science in 18

the recent past. Digital media has replaced almost all forms of

communication and information preservation and processing. Se- 20

curity in digital media has been a matter of serious concern. This

has resulted in the development of encryption and cryptography. 22

Uniform secret sharing schemes form a part of this large study.

2



Using Visual Cryptography Introduction

A Secret sharing scheme is a method of dividing a secret in-

formation into two or more pieces, with or without modifications,2

and retrieving the information by combining all or predefined sub

collection of pieces.4

The pieces of information are called shares and the process

responsible for the division is called dealer. A predefined sub-6

collection of shares which contains the whole secret in some form

is called an allowed coalition. The process responsible for the8

recovery of the secret information from an allowed coalition is

called a combiner.10

A share contains, logically, a part of the information, but

will be of no use. Thus no single share is of any threat to the12

confidentiality of the secret information. It is also envisaged

that after the dealer process is over, the original information can14

be destroyed forever. This would mean that even the person

responsible for the dealer process will not be a threat, thereafter.16

The secret information is recovered from any allowed coalition

using the recovery process called combiner. The combiner would18

be able to recover the secret information, only if, all shares in

the allowed coalition is present and not with any fewer number20

of shares. Thus, in an allowed coalition, each member share is

equally important such that without anyone of them, the secret22

information cannot be accessed.

Allowed coalition is also referred in the literature by other24

names too, such as, authentic collection, qualified collection

3



Chapter 1 Secret Sharing Scheme

or authorized set. We, in our work, preferred to call the sub

collection of shares as allowed coalition. The set of all allowed 2

coalitions of participants is called the access structure and is

usually denoted by Γ. 4

Secret Sharing is an important tool in Security and Cryptog-

raphy. In many cases there is a single master key that provides 6

the access to important secret information. Therefore, it would

be desirable to keep the master key in a safe place to avoid 8

accidental and malicious exposure. This scheme is unreliable: if

master key is lost or destroyed, then all information accessed by 10

the master key is no longer available. A possible solution would

be that of storing copies of the key in different safe places or giving 12

copies to trusted people. In such a case the system becomes

more vulnerable to security breaches or betrayal [53], [30]. A 14

better solution would be, breaking the master key into pieces

in such a way that only the concurrence of certain predefined 16

trusted people can recover it. This has proven to be an important

tool in management of cryptographic keys and multi-party secure 18

protocols (see for example [33]).

As a solution to this problem, Blakley [9] and Shamir [53] 20

introduced (k, n) threshold schemes. A (k, n)-threshold scheme

allows a secret to be shared among n participants, in such a way 22

that, any k of them can recover the secret, but k − 1, or fewer,

have absolutely no information on the secret. 24

4



Using Visual Cryptography Introduction

Ito, Saito, and Nishizeki [36] described a more general method

of secret sharing. An access structure is a specification of all2

subsets of participants who can recover the secret and it is said

to be monotone if any set which contains a subset that can recover4

the secret, can itself recover the secret. Ito, Saito, and Nishizeki

gave a methodology to realize secret sharing schemes for arbitrary6

monotone access structures.

Subsequently, Benaloh and Leichter [5] gave a simpler and more8

efficient way to realize such schemes.

An important issue in the implementation of secret sharing10

scheme is the size of the shares distributed to the participants,

since the security of a system degrades as the amount of the12

information that must be kept secret increases. So the size of the

shares given to the participants is a key point in the design of14

secret sharing schemes. Therefore, one of the main parameters

in secret sharing is, the average information rate ρ, of the16

scheme, which is defined as the ratio between the average length

(in bits) of the shares given to the participants and the length18

of the secret. Unfortunately, in all secret sharing schemes the

size of the shares cannot be less than the size of the secret,20

and so the information rate cannot be less than one. Moreover,

there are access structures, for which, any corresponding secret22

sharing scheme must give to some participant a share of size

strictly bigger than the secret size. Secret sharing schemes with24

information rate equal to one are called ideal. A secret sharing

5



Chapter 1 Secret Sharing Scheme

scheme is called efficient if the total length of the n shares is

polynomial in n. 2

1.2 Principle of secret splitting

The simplest sharing scheme splits a message between two people. 4

Consider the case where Daniel has a message M , represented

as an integer, that he would like to split between two people 6

Alice, and Bob, in such a way that neither of them alone can

reconstruct the message. A solution to the problem readily lends 8

itself: Choose a random number r. Then r and M − r are

independently random. He gives M − r to Alice and r to Bob as 10

their shares. Each share by itself means nothing in relation to the

message, but together, they carry the message M . To recover the 12

message, Alice and Bob have to simply add their shares together.

Here is another method in which Daniel splits a message 14

between Alice and Bob:

1. Daniel generates a random-bit string R, of the same length 16

as the message, M .

2. Daniel XORs M with R to generate S. 18

i.e., M ⊕R = S.

3. Daniel gives R to Alice and S to Bob. 20

To reconstruct the message, Alice and Bob have only one

step to do: 22

6



Using Visual Cryptography Principle of secret splitting

4. Alice and Bob XOR their pieces together to reconstruct the

message:2

R⊕ S = M .

This technique is absolutely secure. Each piece, by itself,4

is absolutely worthless. Essentially, Daniel is encrypting the

message with a one-time pad and giving the cipher text to6

one person and the pad to the other person. The one-time

pad, which is an unbreakable cryptosystem, was developed by8

Gilbert Vernam and Joseph Mauborgne in 1917. It has perfect

security [42]. No amount of computing power can determine the10

message from one of the pieces.

Shares can be constructed in several alternative forms using a12

random number. For example, M − r
2

and M + r
2

or Mr and M
r
.

Depending on the choice of constructing shares, suitable combiner14

has to be created.

It is easy to extend this scheme to more people:16

Now let us examine the case where we would like to split the

secret among three people. Any suitable splitting and combining18

method can be evolved. For example, the method employed for

splitting the secret into two shares can be extended with the help20

of two random numbers r and s. For example, consider M−r−s
, r and s as the three shares. To reconstruct the message M ,22

simply add the shares. Similarly, we can evolve splitting and

combining methods for a secret to be distributed as n shares with24

7



Chapter 1 Secret Sharing Scheme

the condition that only when all of them are combined together,

the secret could be recovered. 2

Daniel divides up a message into n(≥ 2) pieces:

1. Daniel generates n − 1 random-bit strings S1, . . . , Sn−1 4

having the same length as the message, M

2. Daniel XORs M with n− 1 random-bit strings to generate 6

Sn:

i.e., M ⊕ S1 ⊕ . . .⊕ Sn−1 = Sn. 8

3. Daniel distributes the Si, (i = 1, . . . , n) to the n partici-

pants. 10

4. The n participants working together can reconstruct the

message: 12

S1 ⊕ S2 ⊕ . . .⊕ Sn−1 ⊕ Sn = M .

Note: This protocol has a problem: If any of the pieces gets lost 14

or is not available, the message cannot be reconstructed, since

each piece is as critical to the message as every other piece. 16

1.3 History of Secret Sharing

In [43], Liu considered the following problem: 18

Eleven scientists are working on a secret project. They wish

to lock up the documents in a cabinet so that the cabinet can be 20

8



Using Visual Cryptography History of Secret Sharing

opened, if and only if, six or more of the scientists are present.

What is the smallest number of locks needed? What is the2

smallest number of keys to the locks each scientist must carry?

If we consider any five scientists together, there is a specific4

lock, which they cannot open. Consider a particular scientist.

He must have the keys of those locks which cannot be opened by6

any five scientists from among the other ten scientists.

Among eleven scientists, five scientists can be selected in8 (
11
5

)
= 462 ways, and among ten scientists, five scientists can

be selected in

(
10
5

)
= 252 ways. (More details about one form10

of distribution of keys of the various locks to the scientists is

included in Appendix 1.)12

So, the minimal solution uses 462 locks and 252 keys per

scientist. These numbers are clearly impractical, and they be-14

come exponentially worse when the number of scientists increases.

Moreover, the secret documents are always as a single entity and16

is not being involved in the method. Since the secret is always

in one piece, the level of security is low to that extent. The18

security in this case is solely depending on the locks and the

keys. However, the cabinet with the document as a whole is at20

great risk.

9



Chapter 1 Secret Sharing Scheme

1.3.1 Threshold scheme

In 1979 Shamir [53] and Blakley [9] introduced the concept of 2

sharing of the secret message as a means and a method of

making the message secure. Under this scheme, the message 4

M is divided into n pieces M1,M2,M3, . . . ,Mn, with or without

transformation of the message, in such a way that, for a specified 6

k, (2 ≤ k ≤ n),

1. knowledge of any k or more pieces-Mi makes M com- 8

putable;

2. knowledge of any k − 1 or fewer Mi pieces leaves M 10

completely undetermined (in the sense that all its possible

values are equally likely). 12

Such a scheme is called a (k, n)-threshold scheme. The parameter

k ≤ n is called the threshold value. 14

1.3.2 The Shamir Secret Sharing Scheme

Let k, n ∈ Z, k ≤ n. We will describe the (k, n) Secret Sharing 16

Scheme by Shamir. It uses a prime number, p, which is greater

than n and the set of possible secret. The scheme is based on the 18

following lemma.

Lemma 1.1 20

Let k ∈ Z. Also let xi, yi ∈ Z/pZ, 1 ≤ i ≤ k, where the

10
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xi are pairwise distinct. Then there is a unique polynomial

b ∈ (Z/pZ)[X] of degree ≤ k − 1 with b(xi) = yi, 1 ≤ i ≤ k.2

Proof : The Lagrange interpolation formula yields the poly-

nomial4

b(X) =
k∑

i=1

yi

k∏
j=1,j 6=i

(xj −X)

(xj − xi)
(1.1)

It satisfies b(xi) = yi, 1 ≤ i ≤ k. This shows that at least6

one polynomial exists with the asserted properties. Now we

determine the number of such polynomials.8

Let b ∈ (Z/pZ)[X] be such a polynomial. Write

b(X) =
k−1∑
j=0

bjX
j, where, bj ∈ Z/pZ, 0 ≤ j ≤ k − 1.10

From b(xi) = yi, 1 ≤ i ≤ k, we obtain the linear system
1 x1 x2

1 . . . xk−1
1

1 x2 x2
2 . . . xk−1

2
...

...
...

...
1 xk x2

k . . . xk−1
k




b0

b1
...

bk−1

 =


y0

y1
...

yk−1

 (1.2)12

The coefficient matrix

U =


1 x1 x2

1 . . . xk−1
1

1 x2 x2
2 . . . xk−1

2
...

...
...

...
1 xk x2

k . . . xk−1
k

14

is Vandermonde matrix. Its determinant is

det U =
∏

1≤i<j≤k

(xi − xj).16

11
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Since the xi are distinct by assumption, the determinant is

non zero. So the rank of U is k. This implies that the kernel 2

of the coefficient matrix (1.2) has rank 0, and the number of

solutions of our linear system is p0 = 1. Hence the uniqueness. 4

Now we are able to describe the scheme.

1.3.3 System Design 6

The dealer chooses a prime number p, which is greater than n

and the set of possible secret and nonzero distinct elements xi ∈ 8

Z/pZ, 1 ≤ i ≤ n. Those elements in Z/pZ can, for example, be

represented by their least nonnegative representative. 10

The shares

Let S ∈ Z/pZ be the secret. 12

1. The dealer secretly at random chooses elements bj ∈ Z/pZ,
1 ≤ i ≤ k − 1 and constructs the polynomial 14

b(X) =
k−1∑
i=1

bix
i + S. (1.3)

It is of degree ≤ k − 1. 16

2. The dealer computes the shares yi = b(xi), 1 ≤ i ≤ n.

3. The dealer distributes the share (xi, yi) to the ith share- 18

holder, 1 ≤ i ≤ n.

12



Using Visual Cryptography History of Secret Sharing

So the secret is value b(0) of the polynomial b(X).

Reconstruction of the secret2

Suppose that k shareholders collaborate. Without loss of gen-

erality assume that the shares are numbered, such that, yi =4

b(xi), 1 ≤ i ≤ k with the polynomial b[X] from (1.3). Now we

have6

b(x) =
k∑

i=1

yi

k∏
j=1,j 6=i

xj −X
xj − xi

(1.4)

In fact this polynomial satisfies b(xi) = yi, 1 ≤ i ≤ k and by8

lemma 1.1 there is exactly one such polynomial of degree ≤ k−1.

Therefore, the shareholders can reconstruct the secret as10

S = b(0) =
k∑

i=1

yi

k∏
j=1,j 6=i

xj

xj − xi

(1.5)

1.3.4 A method of solution12

Now a secret is shared by computing points on a random polyno-

mial in (Z/pZ)[X]. So first we must find a way of representing the14

”plaintext” secret as a set of class modulo p. This is not really

part of secret sharing process; it is merely a way to prepare the16

secret so that it can be shared. To keep the things as simple as

possible, we will assume that the ”plaintext” secret contains only18

words written in uppercase letters. Thus the secret is ultimately

a sequence of letters and blank spaces. The first step consists of20

13
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replacing each letter of the secret by a number, using the following

correspondence: 2

A B C D E F G H I J K L M

10 11 12 13 14 15 16 17 18 19 20 21 22

N O P Q R S T U V W X Y Z

23 24 25 26 27 28 29 30 31 32 33 34 35

The blank space between words is replaced by 99. Having

done that, we obtain a number, possibly a very large one, if 4

the secret is large. However it is not a number we want, but

rather classes modulo p. Therefore, we must break the numerical 6

representation of the secret into a sequence of positive integers,

each smaller than p. These are called the blocks of the secret. 8

For example, the numerical representation of the proverb

”A SMALL LEAK WILL SINK A GREAT SHIP” is 10

109928221021219921141020993218212199
2818232099109916271410299928171825 12

If we choose the prime p = 9973, the numerical representation of

the proverb above must be broken into blocks smaller than 9973. 14

One way to do this is as follows:

1099-2822-1021-2199-2114-1020-9932-1821-2199- 16

2818-2320-9910-9916-2714-1029-9928-1718-25

14
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When secret is reconstructed, one obtains a sequence of blocks.

The blocks are then joined together to give the numerical repre-2

sentation of the secret. It is only after replacing the numbers by

letters, according to the table above, that one obtains the original4

secret.

Note that we have made each letter correspond to a two-digit6

number in order to avoid ambiguities. For example, if we had

numbered the letters so that A corresponds to 1, B to 2, and so8

on, then we wouldn’t be able to tell whether 12 stood for AB or

for the letter L, which is the twelfth letter of the alphabet.10

Of course, any convention that is unambiguous can be used

instead of the one above. For example, one might prefer to use12

ASCII code, since the conversion of characters is automatically

done by the computer.14

Example 1.1

Let us return to the example we considered above. We choose16

p = 9973. To construct a (3, 5)-threshold scheme, where any

three of five people can reconstruct S, suppose the dealer chooses18

xi = i, 1 ≤ i ≤ 5. Also assume that the randomly selected

coefficients b2 and b1 are 1572 and 7583 respectively.20

Thus to share the first block of the secret, we must compute

the polynomial,22

F (x) = 1572x2 + 7583x+ 1099 (mod 9973) at each xi. Thus the

five shares of the first block are:24

15
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s1 = F (1)=1572.12+7583.1+1099 ≡ 281 (mod 9973)

s2 = F (2)=1572.22+7583.2+1099 ≡ 2607 (mod 9973)

s3 = F (3)=1572.32+7583.3+1099 ≡ 8077 (mod 9973)

s4 = F (4)=1572.42+7583.4+1099 ≡ 6718 (mod 9973)

s5 = F (5)=1572.52+7583.5+1099 ≡ 8503 (mod 9973)

Sharing the whole secret, we have the following sequence of

blocks:

s1 = 281-2004-203-1381-1296-202-9114-1003-1381-

2000-1502-9092-9098-1896-211-9110-900-9180.

s2 = 2607-4330-2529-3707-3622-2528-1467-3329-3707-

4326-3828-1445-1451-4222-2537-1463-3226-1533.

s3 = 8077-9800-7999-9177-9092-7998-6937-8799-9177-

9796-9298-6915-6921-9692-8007-6933-8696-7003.

s4 = 6718-8441-6640-7818-7733-6639-5578-7440-7818-

8437-7939-5556-5562-8333-6648-5574-7337-5644.

s5 = 8503-253-8425-9603-9518-8424-7363-9225-9603-

249-9724-7341-7347-145-8433-7359-9122-7429.

2

Let us see how a block of a secret can be reconstructed from

the three shares. For example, the first block of S can be 4

reconstructed from the first blocks of the shares s2, s3 and s5

by using the formula (1.5): 6

b[0] =
2607.3.5

1.3
+

8077.2.5

−1.2
+

8503.2.3

−3.− 2
(mod 9973)

= 2607.5 + 8077.(−5) + 8503 (mod 9973) 8

= −18847 (mod 9973)

= 1099 10

16
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Similarly each block can be reconstructed.

It may be noted that, we are working with prime modulo2

p, in which, the numbers that appear in the denominators

of formula (1.5), have inverses. We can use the Extended4

Euclidean Algorithm to find the inverse: m−1 (mod )p, where,

m 6≡ 0 (mod p). The algorithm and an example are given as6

Appendix 2.

For example, suppose we want to construct the first block of the8

secret from s1, s2 and s5. Here,

b[0] =
281.2.5

1.4
+

2607.1.5

−1.3
+

8503.1.2

−4.− 3
(mod 9973)10

=
281.5

2
+

2607.5

−3
− 8503.1

−6
(mod 9973)

=
281.(15)− 2607.10 + 8503

6
(mod 9973)12

=
−13352

6
(mod 9973)

= −13352 ∗ 8311 (mod 9973)14

[because 6−1 ≡ 8311 (mod 9973)

= −110968472 (mod 9973)16

= 1099 (mod 9973)

1.4 Concluding remarks18

We have seen the development of the subject from the simple case

of (2, 2) sharing to the general (k, n) sharing. Some examples20

17



Chapter 1 Secret Sharing Scheme

are also given. The chapter also contains an algorithm for the

key allotment. We have included simple examples to highlight 2

the various aspects of the existing sharing schemes.

18



Chapter 2

Evolution of Secret2

Sharing Schemes

2.1 Introduction4

In this chapter, we discuss the evolution of Secret Sharing

Schemes. Some important advancements in this area are dis-6

cussed and illustrated with suitable examples. The difficulties

and limitations of the different schemes is also discussed.8

In this section we recall some general notations used and basic

definitions of secret sharing schemes.10

Definition 2.1

A secret sharing scheme permits a secret to be shared among a12

set P of n participants in such a way that only qualified subsets

of P can recover the secret, and any non-qualified subset has14
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absolutely no information on the secret. In other words, a non-

qualified subset knows only that the secret is chosen from a 2

prespecified set (which we assume is public knowledge), and they

cannot compute any further information regarding the value of 4

the secret.

Definition 2.2 6

An access structure Γ is the set of all subsets of P that can recover

the secret. 8

Definition 2.3

The collection of subsets of participants that cannot reconstruct 10

the secret is called prohibited access structure or simply prohibited

structure and is usually denoted by ∆. 12

Definition 2.4

Let P be a set of participants and 2P denotes the collection of 14

all subsets of P. A monotone access structure Γ on P is a subset

Γ ⊆ 2P , such that, 16

A ∈ Γ, A ⊆ B ⊆ P ⇒ B ∈ Γ.

i.e, if an access structure is monotone, then, any superset of 18

an authorized subset must be authorized.

Definition 2.5 20

Let P be a set of participants and let A ⊆ 2P . The closure of A,

denoted by cl(A), is the set 22

cl(A ) = {C | ∃B ∈ A such that B ⊆ C ⊆ P }.

20
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That is, the closure of an access structure Γ is the smallest

monotone access structure containing Γ.2

For a monotone access structure Γ, we have, Γ = cl(Γ).

Suppose Γ is an access structure on P . Then B ∈ Γ is a minimal4

authorized subset, if A 6∈ Γ whenever A ⊂ B. The set of minimal

authorized subsets of Γ is denoted by Γmin and is called the basis6

of Γ. Similarly, for a prohibited structure ∆ on P , B ∈ ∆ is a

maximal unauthorized subset, if A 6∈ ∆ whenever A ⊃ B. It is8

easy to see that, for every monotone access structure, there is a

corresponding set of maximal unauthorized access sets.10

We can see that a monotone access structure Γ is completely

characterized by the family of its minimal authorized subsets12

Γmin, via, Γ = cl(Γmin). Hence monotone access structures can be

determined by the corresponding family of its minimal authorized14

subsets.

Obviously, it is hard to imagine a meaningful method of16

sharing a secret in which the access structure does not possess

the monotone property. It is assumed that there is always at18

least one subset of participants who can reconstruct the secret,

i.e., Γ 6= φ, and also that every participant belongs to at least20

one minimal qualified subset.

For sets X and Y and for elements x and y, to avoid22

overburdening of the notations, we often write x for {x}, xy for

{x, y}, and XY for X ∪ Y .24
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Example 2.1

Let P be P1P2P3P4 and A = {P1P2P3, P1P2P4, P1P3P4, P2P3}. The 2

subset A is not a monotone subset, for both P2P3 and P1P2P3 ∈ A,

where one is a subset of other. 4

The closure ofA, cl(A ) = {P1P2P3, P1P2P4, P1P3P4, P1P2P3P4,

P2P3, P2P3P4 } and the set of minimal subsets of A is, 6

Amin = {P1P2P4, P1P3P4, P2P3}.

Example 2.2 8

Consider the following monotone access structure on

P = P1P2P3P4: 10

A = { P1P2, P2P3, P3P4, P1P4, P1P2P3,

P1P2P4, P1P3P4, P2P3P4, P1P2P3P4 }. 12

The set of minimal authorized subsets of A is given by

Amin = {P1P2, P2P3, P3P4, P1P4} and the corresponding maximal 14

unauthorized access sets are P1P3 and P2P4.

Definition 2.6 16

A Secret Sharing Scheme is called ideal, if the size of the shares

is less than or equal to the size of the secret. 18

Definition 2.7

A Secret Sharing Scheme is called perfect, if, no information 20

about the secret is obtained on pooling of shares of any unau-

thorized set of participants. 22
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2.2 Evolution of the schemes

In the initial stages of work on secret sharing, Blakley [9] and2

Shamir [53] considered only schemes with a (k, n)-threshold

access structure. Benaloh showed an interactive verifiable (k, n)-4

threshold secret sharing scheme which is zero knowledge [6].

In [61], D. R. Stinson and S. A. Vanstone introduced the anony-6

mous threshold scheme. Informally, in an anonymous secret

sharing scheme, the secret is reconstructed without the knowledge8

of, which participants hold which shares. In such schemes the

computation of the secret can be carried out by giving the10

shares to a black box that does not know the identities of the

participants holding those shares. The authors proved a lower12

bound on the size of the shares for anonymous threshold schemes

and provided optimal schemes for certain classes of threshold14

structures by using a combinatorial characterization of optimal

schemes. Further results can be found in [51] and in [26].16

Phillips and Phillips [49] considered a different model for

anonymous secret sharing schemes. In their model, different18

participants are allowed to receive the same shares. They proved

the interesting result that a strongly ideal scheme for an access20

structure Γ on n participants can be realized, if and only if, Γ is

either a (1, n)-threshold structure, a (n, n)-threshold structure, or22

the closure of the edge set of a complete bipartite graph. Further
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results on this type of anonymous secret sharing schemes can be

found in [16]. 2

Non-anonymous secret sharing schemes for graph access struc-

tures have been extensively studied in several papers, such as 4

[18] [19] [22] [15] [14] [59] [60].

Further works considered the problem of finding secret sharing 6

schemes for more general access structures. D. R. Stinson [58]

gives a comprehensive introduction to this topic. 8

Secret Sharing schemes based on Chinese Remainder Theorem

was introduced by Mignotte [47]. Asmuth and Bloom [1] imple- 10

mented a (k, n) threshold scheme based on Chinese Remainder

Theorem in 1983. 12

A black-box secret sharing scheme for the threshold access

structure is one which works over any finite Abelian group. 14

G. Bertilsson and I. Ingemarsson [8] describes a construction

method of practical secret sharing schemes using Linear Block 16

Codes.

A more general approach has been considered by Karnin, 18

Greene and Hellman [39], who invented the analysis (limited

to threshold scheme) of secret sharing schemes when arbitrary 20

probability distributions are involved.

Some other general techniques handling arbitrary access struc- 22
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tures are given by Simmons, Jackson, and Martin [45] [56] and

also suggested by Kothari [41].2

In [17], Brickell introduced the vector space construction

which provides secret sharing schemes for a wide family of access4

structures. In [58], Stinson proved that threshold schemes are

vector space access structures.6

During 1987 Ito, Saito, and Nishizeki [36] described a gener-

alized method of secret sharing scheme whereby a secret can be8

divided among a set P of trustees such that any qualified subset

of P can reconstruct the secret and unqualified subsets cannot.10

They have described a secret sharing scheme, for a generalized

monotone access structure.12

While in threshold schemes proposed by Blakley [9] and

Shamir [53] and in the vector space schemes given by Brickell [17]14

the shares have the same size as the secret, in the schemes

constructed by M. Ito, A. Saito, and T. Nishizeki [36] for general16

access structures, the shares are, in general, much larger than the

secret.18

An important issue in the implementation of secret sharing

schemes is the size of shares, since the security of a system20

degrades as the amount of the information that must be kept

secret increases. J. C. Benaloh and J. Leichter, proved that there22

exists an access structure (namely the path of length three) for
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which any secret sharing scheme must give to some participant a

share which is from a domain larger than that of the secret. 2

Subsequently, Benaloh and Leichter [5] gave a simpler and

more efficient way to realize such schemes. They also proved 4

that no threshold scheme is sufficient to realize secret sharing on

general monotone access structures. In support of their claim, 6

they have shown that there is no threshold scheme such that

the access structure ((A ∨B) ∧ (C ∨D)) can be achieved. [see 8

Example 2.3.]

In [6], Benaloh describes a homomorphism property that 10

is present in many threshold schemes which allows shares of

multiple secrets to be combined to form ”composite shares” 12

which are shares of a composition of the secrets. This property,

makes the entity best suitable in implementing the cases in 14

which, one requires high confidentiality, such as e-voting. While

casting the vote, each voter will take the role of dealer, and the 16

votes casted will be recorded in terms of shares given to each

contesting candidate. Because of the homomorphism property, 18

(i.e., h(ab) = h(a).h(b),) one can combine shares, and compute

the votes scored by each contesting candidate. 20

Capocelli, De Santis, Gargano and Vaccaro [22] proved

that, there exist access structures for which the best achievable 22

information rate (i.e., the ratio between the size of the secret

and that of the largest share) is bounded away from 1. An ideal 24
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secret sharing scheme is a scheme in which the size of the shares

given to each participant is equal to the size of the secret. Brickell2

and Davenport [18] showed a correspondence between ideal secret

sharing schemes and matroids (see also [38]).The uniqueness of4

the associated matroid is established by Martin in [44]. Beimel

and Chor [4] investigate the access structures for which an ideal6

scheme can be constructed for every possible size of the set of

secrets.8

The following are some ”extended capabilities” of secret shar-

ing schemes that have been studied.10

• The idea of protecting against cheating by one or more

participants is addressed in [46], [62], [50], [54], [20], [23].12

The problem of identifying the cheater is solved by Tompa

and Woll [62]. In a sense, it is an improvement on the works14

of Shamir [53]. A cheater might tamper with the content

of a share and make the share unusable for combining, to16

retrieve the secret.

• Prepositioned schemes are studied in [55].18

• Threshold schemes that permit disenrollment of partici-

pants are investigated and redistributing secret shares to20

new access structures has been considered in [10].

• Secret sharing schemes in which the dealer has the feature22

of being able (after a preprocessing stage) to activate a
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particular access structure out of a given set and/or to

allow the participants to reconstruct different secrets (in 2

different time instants) by sending to all participants the

same broadcast message have been analyzed in [13]. 4

• Schemes for sharing several non-independent secrets simul-

taneously have been analyzed in [14]. 6

• Schemes where different secrets are associated with different

subsets of participants are considered in [37]. 8

• The question of how to set up a secret sharing scheme in

the absence of a trusted party is solved in [35]. 10

De Santis, Desmedt, Frankel, and Yung [31] introduced the

notion of threshold sharing for functions and they described how 12

to share a key to a cryptographically secure function f in such a

way that: 14

• Any k shareholders can collectively compute f .

• Even after taking part in the computation of f on some 16

inputs, no set of up to k − 1 shareholders can compute f

on other inputs. 18

B. Chor and E. Kushilevitz [27] investigated secret sharing sys-

tems on infinite domain with finite access structures. 20
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1994, Naor and Shamir [48] described a new (k, n) visual

cryptographic scheme using black and white images, where the2

dealer distributes a secret into n participants. In this scheme,

a shared secret information (printed text, handwritten notes,4

pictures, etc.) can be revealed without any cryptographic compu-

tations. For example, in a (k, n) visual cryptography scheme, a6

dealer encodes a secret into n shares and gives each participant a

share, where each share is a transparency. The secret is visible if8

any k(or more) of participants stack their transparencies together

(in an arbitrary order), but none can see the shared secret if fewer10

than k transparencies are stacked together. It is clear that the

visual secret sharing scheme needs no computation in decryption.12

This property distinguishes the visual secret sharing schemes

from ordinary secret sharing schemes. In [3], G. Ateniese,14

C. Blundo, A. D. Santis, and D. R Stinson gave a construction

method to extend the (k, n) visual cryptography scheme to a16

general access structure which is specified by qualified sets and

forbidden sets. The qualified set is a subset of n participants that18

can decrypt the secret image while a forbidden set is a subset of

participants that can gain no information of the secret image. A20

more detailed discussion about visual cryptographic scheme with

examples are given in the first part of chapter 3.22

Until the year 1997, although the transparencies could be

stacked to recover the secret image without any computation,24

the revealed secret images ( as in [2] [3] [32] [48]) were all black
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and white. In [63], Verheul and Van Tilborg used the concept

of arcs to construct a colored visual cryptography scheme, where 2

users could share colored secret images. The key concept for a

c-colorful visual cryptography scheme is to transform one pixel 4

to b sub-pixels, and each sub-pixel is divided into c color regions.

In each sub-pixel, there is exactly one color region colored, and 6

all the other color regions are black. The color of one pixel

depends on the interrelations between the stacked sub-pixels. For 8

example, if we want to encrypt a pixel of color ci, we color region

i with color ci on all sub-pixels. If all sub-pixels are colored in the 10

same way, one sees color ci, when looking at this pixel; otherwise

one sees black. 12

A major disadvantage of this scheme is that the number of

colors and the number of sub-pixels determine the resolution 14

of the revealed secret image. If the number of colors is large,

coloring the sub-pixels will become a very difficult task, even 16

though we can use a special image editing package to color these

sub-pixels. How to stack these transparencies correctly and 18

precisely by human beings is also a difficult problem. Another

problem is that when the number of sub-pixels is b, the loss in 20

resolution from the original secret image to the revealed image

becomes b. 22

In [34], Hwang proposed a new visual cryptography scheme

which improved the visual effect of the shares (the shares in 24

their scheme were significant images, while those in the previous
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scheme were meaningless images). Hwang’s scheme is very useful

when we need to manage a lot of transparencies; nevertheless,2

it can only be used in black and white images. For this reason,

Chang, Tsai and Chen [24] proposed a new secret color image4

sharing scheme based on modified visual cryptography.

In that scheme, through a predefined Color Index Table6

(CIT) and a few computations they can decode the secret image

precisely. Using the concept of modified visual cryptography, the8

recovered secret image has the same resolution as the original

secret image in their scheme. However, the number of sub-10

pixels in their scheme is also proportional to the number of

colors appearing in the secret image; i.e., the more colors the12

secret image has, the larger the shares will become. Another

disadvantage is that additional space is needed to store the14

Color Index Table (CIT). In [25], Chang proposed a scheme

wherein the size of the share is fixed and independent of the16

number of colors appearing in the secret image. Further, the

pixel expansion was only 9, which was the least amongst the18

previously proposed methods. But this algorithm is applicable

only for (n, n) schemes. In paper [29], Tsai gives the concept of20

the sharing of the multiple secrets in the digital image.
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2.3 General Secret Sharing Schemes

There are situations which require more complex access struc- 2

tures than the threshold ones. Shamir [53] discussed the case

of sharing a secret between the executives of a company such 4

that the secret can be recovered by any three executives, or by

any executive and any vice-president, or by the president alone. 6

This is an example of the so-called hierarchical secret sharing

schemes. The Shamir’s solution for this case is based on an 8

ordinary (3, n)− threshold secret sharing scheme. Thus, the

president receives three shares, each vice-president receives two 10

shares and, finally, every simple executive receives a single share.

The above idea leads to the so-called weighted (or multiple 12

shares based) threshold secret sharing schemes. Benaloh and

Leichter have proven in [5] that, there are access structures that 14

cannot be realized using such schemes. We present next their

example that proves this. 16

Example 2.3

Consider the access structure A defined by the formula Amin = 18

{AB, CD}, and assume that a threshold scheme is to be used to

divide a secret value s among A,B,C, and D such that only those 20

subsets of A,B,C,D which are in A can reconstruct s.

Let a, b, c, and d respectively denote the weight (number of 22

shares) held by each of A,B,C, and D. Since A together with B
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can compute the secret, it must be the case that a + b ≥ t where

t is the value of the threshold. Similarly, since C and D can2

together compute the secret, it is also true that c + d ≥ t. Now

assume without loss of generality that a ≥ b and c ≥ d. (If this is4

not the case, the variables can be renamed.) Since a+ b ≥ t and

a ≥ b, a+a ≥ a+b ≥ t. So a ≥ t/2. Similarly, c ≥ t/2. Therefore,6

a+c ≥ t. Thus, A together with C can reconstruct the secret value

s. This violates the assumption of the access structure.8

2.4 Applications

Most of the business organizations need to protect data from10

disclosure. As the world is more connected by computers, the

hackers, power abusers have also increased, and most organi-12

zations are afraid to store data in a computer. So there is a

need of a method to distribute the data at several places and14

destroy the original one. When a need of original data arises,

it could be reconstructed from the distributed shares. Initially,16

when it was introduced, its goal was to present its customers a

secure information storage media. Secret Sharing can provide18

confidentiality of the data base. For example, e-voting can be

effectively implemented by secret sharing technique. It can ensure20

confidentiality. It aims to achieve the two somewhat divergent

goals of data secrecy and data availability. If availability were22

the only goal, then simple duplication of the full data among n
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places would prevent the loss of data upto n − 1 places from

erasing the secret. However, this would increase the threats 2

also. Capturing any one place could disclose the secret to an

adversary. If secrecy were the only goal, then solutions might 4

include splitting the data into n pieces and storing each piece at

each of the n places. This would require all n places accessible 6

to get the secret. However, the destruction or alteration of any

one piece would erase the distributed information. It ensures 8

secrecy in the face of adversaries and yet achieves data integrity

and availability with the cooperation of its shareholders. General 10

concept of secret sharing is that, it doesn’t want information to

be centralized at one point. For example, in the preparation of 12

plastic cards, such as ATM cards, it can provide good security.

Presently, a vide range of its applications have been identified. 14

We present next the most important general secret sharing

techniques. 16

2.5 Ito-Saito-Nishizeki Scheme

Ito, Saito, and Nishizeki [36] have introduced the so-called cumu- 18

lative array technique for monotone access structures.

Definition 2.8 20

Let A be a monotone authorized access structure of size n and let

B1, . . . , Bm be the corresponding maximal unauthorized access 22
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sets. The cumulative array f or the access structure A, denoted

by CA, is the n×m matrix, (CAi,j) 1≤i≤n
1≤j≤m

, where,2

CAi,j =

{
0, if i ∈ Bj

1, if i 6∈ Bj

for all 1 ≤ i ≤ n, and 1 ≤ j ≤ n.4

Let us consider now an arbitrary (m,m)-threshold secret

sharing scheme with the secret S and the corresponding shares6

s1, . . . , sm. In the A-secret sharing scheme, the shares I1, . . . , In

corresponding to the secret S will be defined as8

Ii = {sj|CAi,j = 1},

for all 1 ≤ i ≤ n.10

Example 2.4

Let n = 4 and Amin = {{1, 2}, {3, 4}}. In this case, we obtain12

that Amax = {{1, 3}, {1, 4}, {2, 3}, {2, 4}} and m = 4.

The cumulative array for the access structure A is,14

CA =


0 0 1 1
1 1 0 0
0 1 0 1
1 0 1 0

 .

In this case, I1 = {s3, s4}, I2 = {s1, s2}, I3 = {s2, s4} and16

I4 = {s1, s3}, where s1, s2, s3, s4 are the shares of a (4, 4)-

threshold secret sharing scheme with the secret S.18
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2.6 Benaloh-Leichter Scheme

Benaloh and Leichter [5] have represented the access structures 2

using formulae. More exactly, for a monotone authorized access

structure A of size n, they defined the set FA as the set of 4

formulae on a set of variables {v1, v2, . . . , vn} such that for every

F ∈ FA, the interpretation of F with respect to an assignation 6

of the variables is true if and only if the true variables correspond

to a set A ∈ A. They have remarked that such formulae can be 8

used as templates for describing how a secret can be shared with

respect to the given access structure. Because the formulae can be 10

expressed using only ∧ operators and ∨ operators, it is sufficient

to indicate how to ”split” the secret across these operators. 12

Thus, we can inductively define the shares of a secret S with

respect to a formulae F as follows: 14

Shares(S, F ) =


(S, i), if F = vi, 1 ≤ i ≤ n;⋃k

i=1 Shares(S, Fi), if F = F1 ∨ · · · ∨ Fk;⋃k
i=1 Shares(si, Fi), if F = F1 ∧ · · · ∧ Fk,

where, for the case F = F1 ∧ F2 ∧ · · · ∧ Fk, we can use any 16

(k, k)-threshold secret sharing scheme for deriving some shares

s1, . . . , sk corresponding to the secret S and, finally, the shares 18

as Ii = {s|(s, i) ∈ Shares(S, F )}, for all 1 ≤ i ≤ n, where, F is

an arbitrary formula in the set FA. 20

Example 2.5

Let n = 3 and an authorized access structure A given by 22
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Amin = {{1, 2}, {2, 3}}. For example, the formula F = (v1∧v2)∨
(v2 ∧ v3) is in the set FA. In this case, Shares(S, F ), for some2

secret S, can be obtained as

Shares(S, F ) = Shares(S, v1 ∧ v2) ∪ Shares(S, v2 ∧ v3)4

= Shares(s1, v1) ∪ Shares(s2,1, v2) ∪

Shares(s2,2, v2) ∪ Shares(s3, v3)6

= {(s1, 1), (s2,1, 2), (s2,2, 2), (s3, 3)},

where, s1, s2,1 and respectively, s2,2, s3 are shares of the secret8

S with respect to two arbitrary (2, 2)-threshold secret schemes.

Thus, the shares corresponding to the secret S with respect to the10

access structure A are

I1 = {s1}, I2 = {s2,1, s2,2} and I3 = {s3}.12

Example 2.6

Consider the access structure Γmin = {P1P2P3, P1P4}.14

Let the secret s ∈ GF (2r).

A secret sharing scheme for Γmincan be realized in the follow-16

ing way:

Randomly choose x, y ∈ GF (2r).18

Compute z such that s = (x+ y + z) (mod 2r).

Let a1 = x; a2 = y; a3 = z and a4 = y + z (mod 2r).20

Example 2.7

Consider the access structure Γmin = {P1P2P3, P1P2P4}.22

Let s ∈ GF (2r).
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A secret sharing scheme for Γmin can be realized in the

following way: 2

Randomly choose x, y ∈ GF (2r).

Compute z such that s = (x+ y + z) (mod 2r). 4

Let a1 = x; a2 = y; a3 = z and a4 = z.

Example 2.8 6

Consider the access structure Γmin = {P1P2P4, P1P3P4, P2P3}.

Let s ∈ GF (2r). 8

A secret sharing scheme for Γmin can be realized in the

following way: 10

Randomly choose x, y ∈ GF (2r).

Let a1 = x; a2 = s+ y; a3 = s− y and a4 = y − x. 12

Remark 2.1

A share Ii may contain many sub-shares, one sub-share for every 14

minimal access set to which i belongs. Thus, an ordering of

these sub-shares is required in order to select the correct sub-share 16

corresponding to a certain access set in the reconstruction phase.

Remark 2.2 18

They also proposed using general thresholdk,m
1 operators in order

1For m ≥ 1, 1 ≤ k ≤ m, thresholdk,m denotes the formula

∨
1≤i1<i2<...<ik≤ik

 k∧
j=1

Fij

 .

Thus, F1 ∨ F2 ∨ . . . Fm = threshold1,m(F1, . . . , Fm) and
F1 ∧ F2 ∧ . . . Fm = thresholdm,m(F1, . . . , Fm).
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to construct smaller formulae, reducing in this way the size of

the shares. In this case, the definition of Shares(S, F ) can be2

extended for these operators as follows:

Shares(S, F ) = ∪m
i=1Shares(si, Fi),4

if F = thresholdk,m(F1, . . . , Fm), where s1, . . . , sm are the shares

corresponding to the secret S with respect to an arbitrary (k,m)-6

threshold secret sharing scheme.

Example 2.98

Let n = 4 and a monotone authorized access structure A given

by Amin = {{2, 3}, {1, 2, 4}, {1, 3, 4}}. For example, the formula10

F = (v2∧v3)∨ (v1∧v2∧v4)∨ (v1∧v3∧v4) is in the set FA. Using

the threshold operator, we can obtain a shorter formula, namely,12

(v2 ∧ v3) ∨ threshold3,4(v1, v2, v3, v4).

Example 2.1014

Consider the access structure Γmin = {P1P3P4, P1P2, P2P3}.

Let s ∈ GF (2r).16

A secret sharing scheme for Γmin can be realized in the

following way: Construct a (3,4) threshold scheme for the secret18

s and let y1, . . . , y4 be the shares of this threshold scheme.

Let a1 = y1; a2 = y2, y4; a3 = y3 and a4 = y4.20

Example 2.11

Consider the access structure Γmin = {P1P3P4, P1P2, P2P3, P2P4}.22

Let s ∈ GF (2r).
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A secret sharing scheme for Γmin can be realized in the

following way: 2

Construct a (3, 5) threshold scheme for the secret s and let

y1, . . . , y5 be the shares of this threshold scheme. 4

Let a1 = y1; a2 = y2, y5; a3 = y3 and a4 = y4.

Example 2.12 6

Consider the access structure Γmin = {P1P2P3, P1P2P4, P1P3P4}.

Let s ∈ GF (2r). 8

A secret sharing scheme for Γmin can be realized in the

following way: 10

Randomly choose x ∈ GF (2r). Compute y such that s = (x+ y)

(mod 2r). Construct a (2, 3) threshold scheme for the secret y 12

and let y1, y2andy3 be the shares of this threshold scheme.

Let a1 = x; a2 = y1; a3 = y2 and a4 = y3. 14

Example 2.13

Consider the access structure given by Γmin = {P1P2, P2P3, 16

P3P4, P4P5, P5P6, P6P7, P7P8, P8P1}. Let s ∈ {0, 1}.

Let the four distinct numbers a, b, c, d ∈ B = {0, 1, 2, 3}. Let 18

C0 consists of all the 24 column matrices: [ a a b b c c d d ] and let

C1 consists of all the 24 column matrices: [ a b b c c d d a ]. 20

To share s = 0, the dealer randomly chooses one of the matrices

in C0, and to share s = 1, the dealer randomly chooses one of the 22

matrices in C1. The rows of chosen matrix defines shares given
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to each one of the 8 participants.

Let A = {P1P2, P3P4, P5P6, P7P8}, andB = {P2P3, P4P5, P6P7, P8P1}.2

In this example, at the reconstruction stage, if PiPj ∈ A and the

value of the shares of Pi and that of Pj are equal or if PiPj ∈ B,4

and the value of the shares of Pi and that of Pj are not equal,

the secret s = 0; otherwise secret s = 1.6

2.7 Concluding remarks

In this chapter, the different research findings were analyzed and8

the efficiency aa well as the level of difficulty were brought out.

Also discussed were, various examples to illustrate the secret10

sharing schemes in general.
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Chapter 3

Visual Cryptography 2

3.1 Introduction

1994, Naor and Shamir [48] described a new (k, n) visual 4

cryptographic scheme using black and white images, where the

dealer encodes a secret into n participants. In this scheme, 6

a shared secret information (printed text, handwritten notes,

pictures, etc.) can be revealed without any cryptographic com- 8

putations. For example, in a (k, n) visual cryptography scheme,

a dealer encodes a secret into n shares and gives each participant 10

a share, where each share is a transparency. The secret is

visible if any k(or more) of participants stack their transparencies 12

together, but none can see the shared secret if fewer than k

transparencies are stacked together. By identifying that the 14

result of stacking the transparencies are the same as Boolean-

OR operation denoted by ∨ on the binary digits involved, it 16
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is possible to extend the Visual Cryptography schemes to any

binary string. For example, the following scheme describes how2

one could implement Visual cryptography scheme for a single

binary digit. In order to share a binary string, each binary digit4

in it could be shared independently, one after the other using the

same scheme.6

Example 3.1

Let the secret, s,∈ {0, 1}. The (2, 7)− visual secret sharing8

problem can be solved as follows:

Let A =



1 1 0 1 0 0 0
1 1 0 1 0 0 0
1 1 0 1 0 0 0
1 1 0 1 0 0 0
1 1 0 1 0 0 0
1 1 0 1 0 0 0
1 1 0 1 0 0 0


10

and

B =



1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1


12

Let C0 be the set of all the matrices obtained by permuting the

columns of A, and C1 be the set of all the matrices obtained by14

permuting the columns of B
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To share a bit, s = 0 or 1, the dealer randomly chooses one

of the matrix ∈ Cs. Each rows of chosen matrix defines shares to 2

be given to each one of the 7 participants.

A single share in either C0 or C1 is a random choice of three 1s 4

and four 0s, and so they are equally likely. So by having only one

share, one cannot identify whether it is from C0 or from C1. On 6

the other hand, if we combine (i.e., ”OR”) any two shares, we

get a binary string of length 7, consists of all 0s, or four 1s and 8

three 0s depending on whether the shares belong to C0 or C1. In

this scheme, the size of one share is 7 bits. So a bit is expanded 10

to 7 times.

Since each binary digit in the secret is shared by choosing a 12

matrix independently, there is no information to be gained by

looking at any group of binary digits on a share, either. This 14

demonstrates the security of the scheme.

Remark 3.1 16

For implementing the visual cryptographic scheme as above, one

does not have to generate the entire collection of matrices such 18

as C0 and C1. One could simply generate two matrices A and

B and store them. During the process of sharing individual bits, 20

depending on the value of s, choose the matrix A or B, generate a

random permutation, µ, of {1,2,. . . ,m}, where, m is the number 22

of columns in it; and permute the rows of the chosen matrix with

respect to µ. The rows of the resulting matrices may be regarded 24

as shares, and be distributed to the various participants.
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3.2 Division of the pixel

In this section, we shall review the basic visual cryptography2

scheme proposed by Naor and Shamir. Here a secret black and

white image is divided into two grey images. In order to share a4

secret black and white image, the concept of their scheme is to

transform one pixel into two sub-pixels and divide each sub-pixel6

two color regions. The sub-pixels are half white and half black

(can be called grey).8

0 0 1 1 1 0 0 1

(a) (b) (c) (d)

Figure 3.1: Different types of pixels along with the
representation.
(a) White pixel (b) Black pixel
(c) LB pixel (d) RB pixel

For example, Figure 3.1 represents four different type of

pixels. The first is a white pixel, the next is a black pixel, and10

the last two are grey pixels. Note that in the grey pixels, the

black and white portions are different. Let us call these pixels12

as LB and RB pixels respectively. We represent a white pixel by

00, black by 11, LB-pixel by 10 and RB-pixel by 01. They can14

be thought of as modified version of pixels to be used in shares.
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3.3 Superposition of pixels

If we stack two LB pixels (or two RB pixels ) we get nothing new, 2

where as, if we stack an LB pixel and an RB pixel, we get a black

pixel. This can be shown as in Figure 3.2. We can see that by 4

the representation used for pixels, the superposition of two pixels

can be thought of as if a binary ”OR” operation.

+ = 10 ∨ 10 = 10

+ = 01 ∨ 01 = 01

+ = 10 ∨ 01 = 11

+ = 01 ∨ 10 = 11

Figure 3.2: Superposition of two grey pixels.
6

3.4 Dealing of a B/W Image

3.4.1 Algorithm to share a pixel into two shares 8

The following algorithm specifies how to encode a single pixel

into two shares: 10
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Algorithm 3.1 (Share a single pixel into two shares)

Input: A pixel P , which is either Black or White2

Output : Two sub-pixels s1 and s2.

Step 1. Let x ∈ {H,T} be the outcome of a coin toss

if (P = white)

if (x = H) r = 1

else r = 2

else if (x = H) r = 3

else r = 4

Step 2. Then the pixel P is encrypted as two sub-pixels

in each of the two shares, as determined by the

rth row in the figure 3.3.

Naor and Shamir devised the following scheme, illustrated in4

Figure 3.3 below.

Every pixel is encrypted using algorithm 3.1. Suppose we look6

at a pixel P in the first share. One of the two sub-pixels in

P is black and the other is white. Moreover, each of the two8

possibilities ”black-white” and ”white-black” is equally likely to

occur, independent of whether the corresponding pixel in the10

secret image is black or white. Thus the first share gives no clue

as to whether the pixel is black or white. The same argument12

applies to the second share. Since all the pixels in the secret

image were encrypted using independent random coin flips, there14
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pixel probability Share#1 Share#2
Superposition of
the two shares

p = 0.5

p = 0.5

p = 0.5

p = 0.5

Figure 3.3: Superposition of two grey pixels.

is no information to be gained by looking at any group of pixels

on a share, either. This demonstrates the security of the scheme. 2

Now let us consider what happens when we superimpose the

two shares (here we refer to the last column of the figure 3.3. 4

Consider one pixel P in the image. If P is black, we get two

black sub-pixels when we superimpose the two shares; if P is 6

white, we get one black sub-pixel and one white sub-pixel when

we superimpose the two shares. Thus, we could say that the 8

reconstructed pixel (consisting of two sub-pixels) has a grey level
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of 2, if P is black, and a grey level of 1, if P is white. There

will be a 50% loss of contrast in the reconstructed image, but it2

should still be visible. In this case, each pixel is divided into two

sub-pixels.4

Definition 3.1

The ratio of the size of the share to the size of the secret is called6

the blowing factor.

Since the result of stacking of pixels can be completely de-8

termined by the binary ”OR” operation, the visual cryptography

scheme could also be implemented to any binary strings of 0s10

and 1s. This method could be extended to any number of

participants. When more number of participants are involved,12

the pixels should be divided into more parts. For example, Noar

and Shamir [48] described how to solve the (2, n) visual secret14

sharing. We present next their solution.

3.4.2 Shamir’s solutions for small k and n16

Let A =


1 0 0 · · · 0
1 0 0 · · · 0
· · · · · ·
1 0 0 · · · 0

 and B =


1 0 0 · · · 0
0 1 0 · · · 0
· · · · · ·
0 0 0 · · · 1


The (2, n) visual secret sharing problem can be solved by the18

following collections of n× n matrices:

C0 = {all the matrices obtained by permuting the columns of A}20
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and C1 = {all the matrices obtained by permuting the columns

of B} 2

Any single share in either C0 or C1 is a random choice of one

black and n − 1 white sub-pixels. To share a pixel P ∈ {0, 1}, 4

randomly choose one of the matrix from CP . Then the pixel P is

shared with the n participants, by giving each row of the chosen 6

matrix to each participant. If we superimpose any two shares

of a white pixel, will have one black and n− 1 white sub-pixels, 8

whereas any two shares of a black pixel, will have two black and

n− 2 white sub-pixels, which looks darker. So the shared secret 10

bit is recovered. The visual difference between the two cases

becomes clearer as we stack additional transparencies. 12

The blowing factor of this (2, n) scheme is n. That is, the

size of a share is n times larger than the size of the secret. It 14

can be shown that the blowing factor can be made smaller. In

example 3.2, we present a (2, 9) visual secret sharing, in which, 16

the blowing factor is 6. In Chapter 5, we present a better scheme

to achieve the same, in which the blowing factor is of O(log2n). 18

Example 3.2
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Let A =



1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0


and B =



1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 1 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0
0 0 0 1 0 1
0 1 0 0 1 0
1 0 1 0 0 0


Let C0 be the set of all the matrices obtained by permuting the2

columns of A

and C1 be the set of all the matrices obtained by permuting the4

columns of B

In this example, one bit is expanded to six bits.6

3.5 A general scheme for (k, k)

Visual cryptography8

We now describe a general construction which can solve any (k, k)

visual secret sharing problem, having a blowing factor 2k−1.10

Let ei be a column vector consisting of i 1s and k− i 0s. The

length of ei is k, and so there are

(
k
i

)
such vectors.12

Let Bi be the exhaustive collection of all ei’s. Bi can be thought

of as a matrix of order k ×
(
k
i

)
.14

Let R = B
(1)
i ∨B

(2)
i ∨B

(3)
i ∨ . . . ∨B

(r)
i ,
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where, B
(1)
i , B

(2)
i , B

(3)
i , . . . B

(r)
i , are any r distinct rows from Bi.

Let n0(R) and n1(R) denote the number of 0s and 1s, respectively, 2

in R.

Consider a particular bit in R. It can be 0, if and only if, all 4

the selected B
(j)
i ’s have the corresponding bit 0. In other words,

since any column contains exactly i 1s, the unselected k− r rows 6

collectively must have all the i 1s in the respective column. Hence

n0(R) =

(
k − r
i

)
. Since the length of R =

(
k
i

)
, the number 8

of 1s in R is given by the following formula:

n1(R) =

(
k
i

)
−
(
k − r
i

)
. (3.1) 10

Lemma 3.1

Let k be a non negative integer. Then, if k 6= 0, 12

k∑
i=0,

i is even

(
k
i

)
=

k∑
i=0,

i is odd

(
k
i

)
= 2k−1, (3.2)

and if k = 0, 14

k∑
i=0,

i is even

(
k
i

)
= 1, and

k∑
i=0,

i is odd

(
k
i

)
= 0. (3.3)

Proof : The case when n = 0, can be verified. 16

So, consider the case when n 6= 0. From the equation

k∑
i=0

(−1)i.

(
k
i

)
= (1− 1)k = 0 (3.4) 18
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separating the negative and nonnegative terms, we get first part

of equation (3.2). Also we have,2

2k = (1 + 1)k =
k∑

i=0

(
k
i

)
. (3.5)

So,4

k∑
i=0,

i is even

(
k
i

)
=

k∑
i=0,

i is odd

(
k
i

)
= 2k−1 (3.6)

Let X denote the matrix obtained by concatenating Bi for all6

nonnegative even integer i ≤ k, and let Y be the matrix obtained

by concatenating Bi for all nonnegative odd integer i ≤ k.8

Now, the number of columns in the matrix X and that of Y

are10

k∑
i=0,

i is even

(
k
i

)
, and

k∑
i=0,

i is odd

(
k
i

)
,

respectively, and by lemma 3.1, both equal to 2k−1.12

So, both X and Y are the same order, k × 2k−1.

Let W = X(1) ∨X(2) ∨X(3) ∨ . . . ∨X(r), (3.7)14

where, X(1), X(2), X(3), . . . X(r), are any r distinct rows from X.
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Then, by equation (3.1),

n1(W ) =
∑

i is even

{ (
k
i

)
−
(
k − r
i

) }
2

=
∑

i is even

(
k
i

)
−

∑
i is even

(
k − r
i

)
=

{
2k−1 − 2k−r−1, if r 6= k
2k−1 − 1, if r = k

4

=

{
2k−r−1.(2r − 1), if r 6= k
2k−1 − 1, if r = k

(3.8)

Similarly, if we take r distinct rows from Y , say, 6

Y (1), Y (2), Y (3), . . . , Y (r), and if we compute

Z = Y (1) ∨ Y (2) ∨ Y (3) ∨ . . . ∨ Y (r), (3.9) 8

then, the number of 1s in Z is given by,

n1(Z) =
∑

i is odd

{ (
k
i

)
−
(
k − r
i

) }
10

=
∑

i is odd

(
k
i

)
−
∑

i is odd

(
k − r
i

)
=

{
2k−1 − 2k−r−1, if r 6= k
2k−1, if r = k

12

=

{
2k−r−1.(2r − 1), if r 6= k
2k−1, if r = k

(3.10)

Let C0 be the set of all the matrices obtained by permuting the 14

columns of X Let C1 be the set of all the matrices obtained by

permuting the columns of Y 16

Equation (3.8) and equation (3.10) tells that any r(< k)

shares of a secret bit from either C0 or C1 together has a random 18
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collection of 2k−r−1.(2r−1) 1s. Consequently, the analysis of any

r(< k) shares makes it impossible to distinguish between C0 and2

C1. On the other hand, k shares from C0 results in a collection of

single 0 along with 2k−1− 1 1s, where as k shares from C1 results4

in a collection of all 1s(no 0s).

Example 3.36

Let n = 4. Consider the matrices X and Y obtained by concate-

nating {B0, B2, B4} and {B1, B3} respectively.8

So, X =


0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1



and Y =


1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

10

Let C0 and C1 be the set of all the matrices obtained by permuting

the columns of X and Y respectively.12

Any single row from C0 or C1, contains four 1s, any combined (∨)

pair of rows contains six 1s, any combined triplet of rows contains14

seven 1s, and any combined quadruple of rows contains seven or

eight 1s depending on whether the rows were taken from C0 or C1.16

In [48] Naor and Shamir also describes, how to extend a (k, k)

scheme to (k, n) scheme for arbitrary n > k.18

Various schemes have been discovered. But a generalized

scheme is not invented so far.20
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3.6 Concluding remarks

In this chapter, we have seen how the Visual Cryptography 2

schemes are distinguished from traditional secret sharing schemes.

We have also seen some examples, to illustrate the benefits of 4

Visual Cryptography.
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Chapter 4

Modified Visual2

Cryptography

4.1 Introduction4

We have seen that in the case of visual cryptography schemes, the

result of stacking of transparencies, can be completely character-6

ized by the boolean ”OR” operation. We know that it favours

1s to 0s. i.e., If we ”OR” two random bits, the result is more8

likely towards 1 than 0. When more random bits are involved,

it will be more and more likely that the result is 1. So, when k10

increases, the distinguishing threshold for 0 bit and 1 bit will be

at a higher level. So, it is natural that as k increases, the blowing12

factor also increases. This threshold will not effect the security of

the system. Its purpose is only to distinguish the two bits from14

one another. So, if one could reduce the distinguishing threshold,
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the blowing factor may decrease. Since ”XOR” does not favour

either 0 or 1, it could be a better choice to ”OR”. This is the 2

difference between traditional Visual Cryptography and Modified

Visual Cryptography. This cannot be implemented in the case of 4

images, where as for binary strings it can be done. It is easy to

see that, in modified visual cryptography, the blowing factor will 6

never increase, (if not decreased) compared with ordinary visual

cryptography. 8

4.2 A Modified scheme for (k, k)

Visual Cryptography 10

We now describe a general construction which can solve any

(k, k) modified visual secret sharing problem, having a blowing 12

factor, one. Let Bi, X, and Y be the matrices defined in sec-

tion 3.5. In Modified Visual Cryptography we perform ⊕ instead 14

of ∨. So, let

R = B
(1)
i ⊕B

(2)
i ⊕B

(3)
i ⊕ . . .⊕B

(r)
i , 16

where, B
(1)
i , B

(2)
i , B

(3)
i , . . . B

(r)
i , are any r distinct rows from Bi.

We claim that, 18

n1(R) =
∑

j

j is odd

(
r
j

) (
k − r
i− j

)
(4.1)

Consider a particular bit in R. It can be 1, if and only if, there 20

are an odd number of B
(j)
i ’s having the corresponding bit 1.
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Since any column contains exactly i 1s, the unselected k − r

rows collectively must have the remaining (i − j) 1s. Since the2

rows are independent, this is possible in

r∑
j=1

j is odd

(
r
j

) (
k − r
i− j

)
4

many places. Here, the range of j can be unrestricted, because(
p
q

)
= 0, if p < q.6

So, equation (4.1) is established.

Let W = X(1) ⊕X(2) ⊕X(3) ⊕ . . .⊕X(r), (4.2)8

where, X(1), X(2), X(3), . . . X(r), are any r distinct rows from X.

Then, by equation (4.1),10

n1(W ) =
∑

i
i is even

∑
j

j is odd

(
r
j

)
.

(
k − r
i− j

)
(4.3)

Because the right side of this equation evaluates to a finite12

number, we can interchange the summation, and get,

n1(W ) =
∑

j

j is odd

∑
i

i is even

(
r
j

)
.

(
k − r
i− j

)
(4.4)14

The inner
∑

runs on variable i, and so,

(
r
j

)
is constant. So

we get,16

n1(W ) =
∑

j

j is odd

 (r
j

)
.
∑

i
i is even

(
k − r
i− j

)  (4.5)
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Since i is even and j is odd, i − j is odd, and so by a change of

variable, 2∑
i

i is even

(
k − r
i− j

)
=

∑
i

i is odd

(
k − r
i

)

=

{
2k−r−1, if r 6= k
0, if r = k

(4.6) 4

[by lemma 3.1,

So, 6

n1(W ) =

 2k−r−1
∑

j

j is odd

(
r
j

)
, if r 6= k

0, if r = k
(4.7)

Again by lemma 3.1, being r 6= 0,
∑

j

j is odd

(
r
j

)
= 2r−1. 8

So, equation (4.7) becomes,

n1(W ) =

{
2k−2, if r 6= k
0, if r = k

(4.8) 10

Similarly, if we take r distinct rows from Y , say,

Y (1), Y (2), Y (3), . . . , Y (r), and if we compute 12

Z = Y (1) ⊕ Y (2) ⊕ Y (3) ⊕ . . .⊕ Y (r), (4.9)

then, the number of 1s in Z is given by, 14

n1(Z) =
∑

i
i is odd

∑
j

j is odd

(
r
j

)
.

(
k − r
i− j

)

=
∑

j

j is odd

∑
i

i is odd

(
r
j

)
.

(
k − r
i− j

)
16
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=
∑

j

j is odd

[ (
r
j

) ∑
i is odd

.

(
k − r
i− j

) ]
(4.10)2

Since both i and j are odd, i − j is even, and so by a change of

variable,4 ∑
i

i is odd

(
k − r
i− j

)
=

∑
i

i is even

(
k − r
i

)

=

{
2k−r−1, if r 6= k
1, if r = k

(4.11)6

[by lemma 3.1,

So, equation (4.10) becomes,8

n1(Z) =


2k−r−1

∑
j

j is odd

(
r
j

)
, if r 6= k∑

j is odd

(
r
j

)
, if r = k

=

{
2k−r−1.2r−1 = 2k−2, if r 6= k
2k−1, if r = k

(4.12)10

Let C0 and C1 be the set of all the matrices obtained by

permuting the columns of X and Y , respectively.12

Equation (4.8) and equation (4.12) tells that any r(< k)

shares of a secret bit from either C0 or C1 together has a random14

collection of 2k−2 1s and 0s. Consequently, the analysis of r(< k)

shares makes it impossible to distinguish between C0 and C1. On16

the other hand, k shares from C0 results in a collection of only

0s, where as k shares from C1 results in a collection of only 1s.18
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4.2.1 Comparison of the schemes

While both the schemes are equally secure, in the former scheme, 2

the result of combining r(< k) shares (i.e., the number of 1s =

2k−r−1.(2r − 1),) varies on r, where as in latter one, it is a fixed 4

value (i.e., 2k−2). This phenomena does not enhance or reduce the

security of the system. So, we suspect that the former scheme, 6

has done some extra effort for unnecessarily distinguishing the

number of shares combined, which is insignificant. So we strongly 8

believe that the blowing factor could be reduced, by striking at

a better modified visual cryptography scheme, than the corre- 10

sponding one. When the secret is recovered by combining all

the k shares, in the former, we have to search for the single 0 12

present, in case, the secret bit is 0. Where as in the latter one,

because the result is either all zeros or all 1s, one can recover the 14

secret bit just by looking at the first bit itself. So, though both

are equally secure, the modified cryptographic scheme is at least 16

more efficient in the combining process.

4.3 A simple Modified scheme for (k, k) 18

The following is a very simple algorithm to share a binary string

in a (k, k) Modified Visual Cryptography scheme: 20

Algorithm 4.1 ((k, k) Modified Visual Cryptography construc-

tion) 22
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Input: A secret binary bit S ∈ {0, 1}
Output : k bits s1, s2, . . . , sk2

Step 1. let y = 0

For i = 1 to k − 1 do

Generate a random bit, say x,∈ {0, 1}
si = x

y = y ⊕ x
Step 2. sk = y ⊕ S
Step 3. The shares are s1, s2, . . . , sk

The algorithm 4.1 computes k shares of a single binary digit

S. In Step 1, after setting a variable y is 0, it computes k − 14

shares, si, 1 ≤ i ≤ k − 1, which are nothing but random bits.

Also note that, when the for loop in step 1 terminates, the value6

of y is s1⊕s2⊕. . .⊕sk−1. In step 2., the last share, sk is computed

as, sk = y ⊕ S = s1 ⊕ s2 ⊕ . . . ⊕ sk−1 ⊕ S. This implies that,8

S = s1 ⊕ s2 ⊕ . . . ⊕ sk. All the k − 1 shares being random, and

the secret S being unknown, sk will also be random. So, there10

is no information to be gained by looking at r number of shares,

for r < k. Each and every bit of the secret could be shared12

one after the other using the same algorithm. Since every bit

is shared using random bits, looking at consecutive shares also14

gains no information. This proves the security of the scheme.

The blowing factor of the scheme is 1.16

63



Chapter 4 Secret Sharing Scheme

4.4 Generalization of (3, 3) scheme

The following scheme generalizes the (3, 3) scheme described in 2

the last chapter into a (3, n) scheme for an arbitrary n > 3. Let

B be the black n×(n−2) matrix which contains only 1s, and let I 4

be the identity n×n matrix which contains 1s on the diagonal and

0s elsewhere. Let BI denote the n ×(2n − 2) matrix obtained by 6

concatenating B and I, and let BI be the Boolean complement

of the matrix BI. Then C0 = {all the matrices obtained by 8

permuting the columns of BI} C1 = {all the matrices obtained

by permuting the columns of BI} has the following properties: 10

Any single share contains an arbitrary collection of n − 1 black

and n−1 white sub-pixels; any pair of shares have n−2 common 12

black and two individual black sub-pixels; any stacked triplet of

shares from C0 has n black sub-pixels, whereas any stacked triplet 14

of shares from C1 has n+ 1 black sub-pixels, which looks darker.

4.5 Concluding remarks 16

Here, we have seen the difference between traditional Visual

Cryptography and Modified Visual Cryptography. We have also 18

proposed a very simple modified sharing scheme.
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Chapter 5

Balanced Strings and2

Uniform Codes

5.1 Introduction4

We have seen that in modified visual cryptography, the pixels are

expanded by a factor, called the blowing factor. So if one needs6

to improve the efficiency, one has to reduce the blowing factor. In

this chapter, we investigate solutions with small blowing factor.8

For a (k, n) - modified visual cryptography scheme, all the

possible collections of less than k shares for each of the binary10

bit should possess identical properties. Otherwise, some (may

be partial) information is leaked out. So, we can use only alike12

shares, i.e., which have equal length, say z, (= blowing factor)

and consists of same number of 1s (say r). So the number of14
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possible shares are limited to

(
z
r

)
. This number is maximum

when r =
⌊

z
2

⌋
or
⌈

z
2

⌉
. By these choices of r, the shares are more 2

or less balanced in the sense that it has almost same number of

1s and 0s. Let us define the things more precisely. 4

Definition 5.1

Let n0(w) and n1(w) denote the number of 0s and number of 6

1s in a binary string w. W e say that the string w is perfectly

balanced, if n1(w) = n0(w). 8

Then, by our definition, no string of odd length is perfectly

balanced. So we relax that condition, and introduce the concept 10

balanced string.

Definition 5.2 12

A binary string w is considered as balanced, if n1(w)− n0(w) =

0, ( or ± 1), depending on whether the length of w is even or 14

odd, as the case may be.

Definition 5.3 16

A balanced string is called a Uniform Code, if, and only if,

n0(w) ≤ n1(w) ≤ n0(w) + 1. (5.1) 18

For example, 011010, 0101101 are uniform codes, 1010001,

0101101 are balanced strings, where as 0100 is an unbalanced 20

string. Irrespective of whether z is odd or even, a uniform code
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of length z consists of precisely
⌈

z
2

⌉
many 1s and r =

⌊
z
2

⌋
many

0s. Let Uz denote the number of uniform codes of length z. Then2

Uz =

(
z⌊
z
2

⌋) (5.2)

We have investigated the suitability of uniform codes for secret4

sharing schemes, and seen that they are most suitable in modified

visual cryptography.6

In the next section, we present a secret sharing scheme

with modified visual cryptography, in which, the 0s and 1s are8

expanded with uniform codes.

We can see that in a (2, n) secret sharing scheme, each bit can10

be recovered by combining the corresponding modified version

of the bits from any two out of the n shares, depending upon12

whether the shares are same or different. Let z be the length

of modified version of a bit. These uniform codes (by applying14

a random column permutation) are the shares to be distributed

to the n participants. So we have chosen z such that n ≤ Uz.16

Because, we want to reduce the blowing factor, we choose the

smallest integer z, such that n ≤ Uz where n is the number of18

participants.

This choice of z ensures the existence of enough distinct shares20

for distribution to the n participants.

It may be noted that our choice of z implies,22

Uz−1 < n ≤ Uz, (5.3)
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otherwise z might not be the smallest integer with the said

property. Since n ≥ 2, (otherwise, no sharing at all), Uz ≥ 2, 2

and so z ≥ 2. It can be proved that z = O(log n).

In fact, it can be shown that 4

z <
6

5
.(log2 n) + 2 (5.4)

We consider two matrices, A and B, each of order n× z. While 6

rows in A are a random selection of identical Uniform codes, the

rows in B consist of a random selection of distinct Uniform codes. 8

The resulting structure can be described by an n × z Boolean

matrix, S = [sij], where Sij = 1, if and only if, the jth bit in the 10

ith share is 1.

A solution to the 2 out of n modified visual secret sharing scheme 12

consists of two collections of n × z Boolean matrices C0 and C1.

To share a bit of value 0, the dealer randomly chooses one of 14

the matrices in C0, and to share a bit of value 1, the dealer

randomly chooses one of the matrices in C1. The rows of the 16

chosen matrix define the modified version of the bit to be given

to the n participants. 18

Definition 5.4

The solution is considered valid if the following pair of conditions 20

are met:

1. Any share of a secret bit from either C0 or C1 is indistin- 22

guishable in the sense that it contains a random selection

of the same number of 1s and 0s. 24
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2. The result of combining (means ”OR” or ⊕, depends on

whether it is traditional or modified Visual cryptography,2

as the case may be) any pair of shares of a secret bit from

C0, must be distinguishable from that of C1.4

Consequently, the analysis of a single share makes it impossible

to distinguish between C0 and C1. At the same time, if two shares6

are available, one can reveal the secret.

5.2 An Efficient (2, n)- threshold scheme8

Let B be an n×z matrix, in which each row represents a distinct

uniform code, and A be an n × z matrix, in which each row is10

the same as the first row of B.

Then a (2, n)− visual secret sharing problem can be solved12

by using the following collections of n× z matrices:

C0 = all the matrices obtained by permuting the columns of A14

C1 = all the matrices obtained by permuting the columns of B

Any single share in either C0 or C1 is a random selection of
⌈

z
2

⌉
1s16

and
⌊

z
2

⌋
0s. Consequently, the analysis of a single share makes it

impossible to distinguish between C0 and C1. However, combining18

two shares from C0 results in a binary string consisting of only

0s, where as two shares from C1 results in binary string which has20

one or more 1s.
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The shares are constructed by using the Algorithm 5.1 de-

scribed below: 2

Algorithm 5.1 ((2, n) uniform construction)

Input: A binary string B = b1b2 . . . bt of length t. 4

Output : n blocks S1, S2, . . . , Sn of length t.z

Step 1. For i = 1 to n do

Initialize each share Si to null.

Step 2. For i = 1 to t do

if (bt = 0) randomly select a matrix C from C0.

else randomly select a matrix C from C1.

For j = 1 to n do

concatenate the jth row of C with Sj.

It may be noted that each participant gets the same or different 6

uniform codes depending on whether the respective bit is 0 or 1.

8

Algorithm 5.2 (To recover the secret information)

Input : Shares A = a1a2 . . . at and 10

B = b1b2 . . . bt of t blocks of z bits each.

Output: The secret information S = s1s2s3 . . . st. 12

Step 1. For i = 1 to t do

if (ai = bi) si = 0;

else si = 1;

Step 2. The recovered secret S = s1s2s3 . . . st.
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Example 5.1

Let there be 10 participants 1, 2, . . . , 10 and suppose the secret2

encoded in binary is 100110.

The value of z, obtained from the inequality (5.3) is, z = 54

and the list of uniform codes of length 5 are shown in Table 5.1.

Table 5.1: The list of all the 10 uniform codes of length 5.

Sl. No. Code Sl. No. Code

1. 00111 6. 10101

2. 01011 7. 10110

3. 01101 8. 11001

4. 01110 9. 11010

5. 10011 10. 11100

Let A =



0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1


and B =



0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0


6

Let C0 = {all the matrices obtained by permuting the columns of

A} and C1 = all the matrices obtained by permuting the columns8

of B}
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The shares computed for each participant are as shown in

Table 5.2. Let us compare any two shares block-wise, for example,

Table 5.2: The shares computed for different partici-
pants.

Sl. No. shares

1 01101 10110 11100 10101 01110 01011

2 01011 10110 11100 00111 11100 01011

3 00111 10110 11100 10011 11010 01011

4 01110 10110 11100 10110 10110 01011

5 11001 10110 11100 01101 01101 01011

6 10101 10110 11100 11001 01011 01011

7 11100 10110 11100 11100 00111 01011

8 10011 10110 11100 01011 11001 01011

9 11010 10110 11100 01110 10101 01011

10 10110 10110 11100 11010 10011 01011

2

3rd and 5th shares. We see that, the first blocks are different, the

next two blocks are the same, subsequent two blocks are different, 4

and the last blocks are same. So the first bit is 1, next two bits

are 0s, and so on. The entire secret is 100110. 6

It may be seen that, if we just perform block bitwise-OR by

using the two shares, we get the following bit sequence, 11111 8

10110 11100 11111 11111 01011 and each bit of the secret can be

computed by counting the number of 1s in the successive blocks 10

of 5 bits. If the number of 1s in a block is 3, the corresponding

bit in the secret must be 0, and if more than 3, it must be 1. 12
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5.3 An upper bound of the Blowing

factor2

Theorem 1

2z

z + 1
≤ Uz ≤ 2z−1, (5.5)4

for all positive integers z.

Proof: This can be proved as follows:6

First we prove that the recurrence relation satisfied

by Uz =

(
z⌊
z
2

⌋) is,8

Uz =


(

2z
z+1

)
Uz−1, if z is an odd number

2. Uz−1, if z is an even number
(5.6)

This can be done by taking the two cases separately as follows:10

Case 1. z is an odd number, say, z = 2m − 1, where m is an

integer12

Uz =

(
2m− 1
m− 1

)
=

(2m− 1)(2m− 2) . . . (m+ 1)

1.2. . . . .(m− 1)
14

=
(2m− 1)

m
.
(2m− 2)(2m− 3) . . . (m+ 1).m

1.2. . . . .(m− 1)

=

(
2.z

z + 1

)
.Uz−1 (5.7)16
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Case 2. z is an even number, say, z = 2m, where m is an integer

Uz =

(
2m
m

)
2

=
(2m)(2m− 1) . . . (m+ 1)

1.2. . . . .(m− 1).m

= 2.
(2m− 1)(2m− 2) . . . (m+ 1)

1.2. . . . .(m− 1)
4

= 2. Uz−1 (5.8)

So, 6

Uz =


(

2z
z+1

)
Uz−1, if z is an odd number

2. Uz−1, if z is an even number

Since
(

2z
z+1

)
< 2, whenever z > 0, equation (5.6) becomes, 8

2.

(
z

z + 1

)
Uz−1 ≤ Uz ≤ 2.Uz−1 (5.9)

Applying the inequality (5.9) (z−1) times, and using the fact 10

that U1 = U0 = 1, we get,

2z

z + 1
≤ Uz ≤ 2z−1 (5.10) 12

Theorem 2

Uz 6∈ O(Bz), for any B < 2. 14

Proof: If possible, assume that Uz ∈ O(Bz), for someB < 2.

Then ∃k > 0 and an n0, such that, 16

Uz ≤ kBz, for all z ≥ n0. (5.11)
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Then by inequality (5.10), 2z

z+1
≤ kBz, for all z ≥ n0.

This implies that2 (
2

B

)z

≤ k(z + 1), for all z ≥ n0. (5.12)

Since 2
B
> 1, inequality (5.12) is absurd, since, the left side is4

exponential and the right side is linear. Hence the theorem.

Theorem 36

(
9

5

)z−1

<

(
z⌊
z
2

⌋) , (5.13)

for all positive integers z, except z = 3 and 5.8

Proof: It can be easily settled in the case of z = 2, 4, 6, and

7 by comparing the respective values:10

• when z = 2,
(

9
5

)
<

(
2
1

)
= 2,

• when z = 4,
(

9
5

)3
= 729

125
<

(
4
2

)
= 6,12

• when z = 6,
(

9
5

)5
= 59049

3125
<

(
6
3

)
= 20,

• when z = 7,
(

9
5

)6
= 531441

15625
<

(
7
3

)
= 35.14

If z ≥ 9, we have,
9

5
≤ 2z

z + 1
(5.14)16
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So, if z ≥ 8, the recurrence relation (5.6) becomes,(
9

5

)
Uz−1 ≤ Uz (5.15) 2

Applying the above inequality (z − 8) times, we get,(
9

5

)z−7

U7 ≤ Uz (5.16) 4

and hence we get,
(

9
5

)z−1
< Uz, since

(
9
5

)6
< U7.

So, (9
5
)z−1 < Uz =

(
z⌊
z
2

⌋) , when z is any integer other than 3 6

and 5 and hence the theorem.

So, if we select z as per inequality (5.3), we have, 8

Uz−1 < n ≤ Uz, (5.17)

and by Theorems 1, and 3, we get, 10(
9

5

)(z−2)

< n ≤ 2(z−1), (5.18)

when z − 1 is other than 3 or 5, i.e, when z is other than 4 or 6. 12

Taking logarithm, we get,

(z − 2). log2

(
9

5

)
< log2 n ≤ z − 1. 14

Since 5
6
< log2

(
9
5

)
, we have,

5

6
(z − 2) < log2 n ≤ z − 1, 16

and hence,

z <
6

5
.(log2 n) + 2 (5.19) 18
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If z = 4, then 4 ≤ n ≤ 9, and in this case,

6
5
(log2 n) + 2 ≥ 4.4 > z.2

If z = 6, then 11 ≤ n ≤ 20, and in this case,

6
5
(log2 n) + 2 > 6.15 > z. So, equation (5.4) is established.4

5.4 Concluding remarks

We have presented a secret sharing scheme, in which the size of6

a share is in the O(log2 n) times the size of the original secret,

where n is the number of participants. It may be noted that the8

the blowing factor of the scheme suggested by Shamir, is n.
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Scheme for (n− 1, n) 2

threshold

6.1 Introduction 4

In this section, we present our method to construct an (n− 1, n)

secret sharing scheme based on the modified visual cryptography. 6

In this scheme, every bit is expanded to dn
2
e many bits.

6.2 A new scheme 8

Let the participants be {P1, P2, P3, . . . , Pn}. In this case, the

access structure consists of all the n− 1 participants, namely: 10

Γ =
n⋃

i=1

P1P2 . . . Pi−1P̂iPi+1 . . . Pn−1Pn
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Here the P̂i indicate the absence of the participants Pi in the set.

The complete elements can be listed as follows:2

1. P̂1 P2 P3 P4 . . . Pn−2 Pn−1 Pn

2. P1 P̂2 P3 P4 . . . Pn−2 Pn−1 Pn

3. P1 P2 P̂3 P4 . . . Pn−2 Pn−1 Pn

4. P1 P2 P3 P̂4 . . . Pn−2 Pn−1 Pn
...

...
...

...
. . . . . . . . .

...
...

n. P1 P2 P3 P4 . . . Pn−2 Pn−1 P̂n

We can see that the first two sets differ in P1 and P2; the next4

two sets differ in P3 and P4; and so on. If we combine these sets

pairwise, if n is even, there are exactly n
2

pairs of sets and if n6

is odd, there are
⌊

n
2

⌋
many pairs and one set left out. Let the

secret be B = B1B2B3 . . . Bt. Our scheme will generate n shares8

for each bit Bi of the secret.

6.3 Algorithm for sharing one bit10

among n shares

The following Algorithm describes how to share a single bit b12

among n shares.

Algorithm 6.1 (Sharing one bit among n shares)14

Input: A binary bit b ∈ {0, 1}
Output: The n shares S1, S2, . . . , Sn, where,16

each Si is of length dn
2
e bits.
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Step 1. Let Si,j denote the jth bit of Si

For j = 1 to
⌊

n
2

⌋
do

x = b

For i = 1 to n do

if (i 6= 2j − 1 AND i 6= 2j) {
Generate a random number r ∈ {0, 1}
Si,j = r

x = x⊕ r
}

S2j−1,j = S2j,j = x

Step 2. If (n is odd) then { \\ Here j = dn
2
e

x = b

For i = 1 to n− 2 do

Generate a random number r ∈ {0, 1}
Si,j = r

x = x⊕ r
Sn−1,j = x

} \\ Note that in this case, Sn,j is unknown

Step 3. The shares are S1, S2, . . . , Sn

Algorithm 6.2 (Recover the shared secret bit b)

Input: n− 1 shares S1S2 . . . Sj−1Sj+1 . . . Sn, 2

each of length dn
2
e bits

Observe that Sj is the missing share. 4

Output: The shared secret bit b

Step 1. Let c = d j
2
e and x = 0
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For k = 1 to n do

if (k 6= j) x = x⊕ Sk,c

b = x

Step 2. The shared secret bit is recovered as b

Lemma 6.1

The above scheme is a (n−1, n) threshold secret sharing scheme,2

in which the size of a share is dn
2
e bits.

Proof : It is easy to observe the following from Algorithm 6.1.4

1. For each j ∈ {1, . . . ,
⌊

n
2

⌋
}, the Step 1. of the algorithm

generates n−2 random bits and assigns one each to Si,j for6

i ∈ {1, . . . , n} \ {2j − 1, 2j}.

2. The final value of x computed in the inner for loop is8

x = b⊕ S1,j ⊕ . . .⊕ S2j−2,j ⊕ S2j+1,j ⊕ . . .⊕ Sn,j

3. This value of x is assigned to S2j−1,j and S2j,j.10

So, S1,j ⊕ . . .⊕ S2j−1,j ⊕ S2j+1,j ⊕ . . .⊕ Sn,j = b

and S1,j ⊕ . . .⊕ S2j−2,j ⊕ S2j,j ⊕ . . .⊕ Sn,j = b12

4. If n is odd, Step 2 of the algorithm generates n− 2 random

bits and assigns one each to Si,j for i ∈ {1, . . . , n− 2}.14

The final value of x computed in the for loop is

x = b⊕ S1,j ⊕ . . .⊕ Sn−2,j16

5. This value of x is assigned to Sn−1,j.

So, S1,j ⊕ . . .⊕ Sn−1,j = b18
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Algorithm 6.3 (Sharing a secret among n shares)

Input: A binary string B = B1B2 . . . Bt of length t 2

Output : The n shares S1, S2, . . . , Sn, where,

each Si is of length dn
2
e times t. 4

Step 1. For i = 1 to n do

Initialize Si to NULL

Step 2. For i = 1 to t do

Compute the n shares corresponding to Bi

using Algorithm 6.1 and append to the

corresponding Sj, for j = {1, . . . , n}.

Algorithm 6.4 (Recover the shared secret)

Input: n− 1 shares S1S2 . . . Sj−1Sj+1 . . . Sn, 6

each of length t times dn
2
e

Observe that Sj is the missing share. 8

Output: The shared secret B = B1B2 . . . Bt

Step 1. Let S
(1)
j , S

(2)
j , . . . S

(t)
j be the consecutive bits of length

dn
2
e in Sj, for j ∈ {1, . . . , n}

For i = 1 to t do

Recover the secret bit Bi by using Algorithm 6.2

with input S
(i)
j , for j ∈ {1, . . . , n}

Step 2. The shared secret is B = B1B2 . . . Bt

Example 6.1 10

Let a (4, 5) threshold secret sharing scheme be constructed for the

secret B = 10111 10111 10111 (which corresponds to ”www”). 12
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Here n = 5, so each bit will be expanded to 3 bits. The

random bits generated by the Algorithm 6.3, and assigned at2

various places in the shares are as follows: (the * indicates NULL

bit and - indicates an unknown bit)4

Table 6.1: Random bits assigned in the shares by
Algorithm 6.1.

S1 *10*01*10*00*10*10*01*10*10*11*10*01*01*10*00

S2 *10*00*10*11*01*11*10*10*00*01*01*10*10*01*11

S3 1*10*10*00*01*10*10*11*01*10*11*01*10*10*01*1

S4 0**1**0**0**1**0**1**0**1**0**1**0**1**0**1**

S5 01–01–10–01–01–10–01–11–11–01–00–11–00–00–10–

The bit values at the NULL positions are evaluated and the

final shares are as seen in Table 6.2.6

Table 6.2: Final Shares computed by Algorithm 6.1.

S1 010101010100110010101110010111110001001110000

S2 010100010111101011110110000101101010010101011

S3 101011010010111011001100111011100101001000101

S4 000110011010111011100001110010100000101000101

S5 01–01–10–01–01–10–01–11–11–01–00–11–00–00–10–

Suppose we want to reconstruct the secret from 1st, 3rd, 4th

and 5th shares. If we compute S1⊕S3⊕S4⊕S5, we get, result as8

10-01-11-11-10-11-01-10-10-10-11-01-10-11-100. Here 2nd share

is missing. So every first bit in the block of 3 bits are selected10
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as : 10111 10111 10111

Suppose we want to reconstruct the secret from 1st, 2nd, 3rd, 2

and 4th. If we compute S1 ⊕ S2 ⊕ S3 ⊕ S4, we get, result as

101100001011011001110101011011011110111011011 4

Here 5th share is missing. So every third bit in the block of 3

bits are selected as : 10111 10111 10111 6

6.4 Concluding remarks 8

We have now presented an (n − 1, n)-threshold secret sharing

scheme, in which the size of a share is
⌈

n
2

⌉
times the size of the 10

secret.
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Chapter 7

An Efficient Scheme -2

Using Balanced Strings

7.1 Introduction4

In this chapter, we present our method to construct an (n, n)

secret sharing scheme based on the modified visual cryptography.6

Assume that the secret is represented as a binary string B =

b1b2b3 . . . bt. Our scheme will generate n shares after concatenat-8

ing a single bit, bt+1 at the right end of the secret. The resulting

structure of the share can be described as a k× t Boolean matrix10

C = [Sij], where, 1 ≤ i ≤ n, 1 ≤ j ≤ (t + 1) and k ∈ O(2n).

The construction is considered valid if, for any Boolean string12

B = b1b2 . . . bt, there exist solutions, S1, S2, . . . , Sn, such that,

B = S1 ⊕ S2 ⊕ . . . ⊕ Sn, where, S1, S2, . . . , Sn are rows in C. In14

the proposed scheme, the rows of C consist of all the possible
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balanced strings of length t. By Theorem 2, the cardinality of

the class of uniform codes and balanced strings are in O(2n). We 2

can choose C as the set of all uniform code or balanced strings.

The proposed scheme is based on the following theorem 4

related to even parity strings and balanced strings:

Theorem 4 6

Let T be an even parity binary string of length t. Then we can

find two balanced strings A and B, such that T = A⊕B. 8

Proof : We can assume, without loss of generality that, the

leading 2m, (0 ≤ m ≤
⌊

t
2

⌋
) digits of T are 1s and remaining 10

t− 2m(≥ 0) digits are 0s. Now, let A = PQ be the binary string

obtained by concatenating the strings P and Q, where, P is the 12

perfectly balanced string consisting of exactly m 1s, followed by

m 0s, and Q is the balanced string consisting of exactly
⌊

t−2m
2

⌋
14

1s and
⌈

t−2m
2

⌉
0s. Note that Q is perfectly balanced, only if t

is an even number. Choose B = PQ, where, P is the Boolean 16

complement of P , so that T = A ⊕ B. Since the complement

of a perfectly balanced string is also a perfectly balanced string 18

and concatenation of a perfectly balanced string and a balanced

string is a balanced string, both A and B are balanced strings. 20

Hence the theorem.

Remark 7.1 22

Interchanging the number of 1s and 0s in Q, will lead to a decom-

position of T in uniform codes. But decomposition in perfectly 24
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balanced strings will be possible only if t is even. However, such

a decomposition, in general, need not be unique. Also, once we2

find A, we can immediately obtain B, as B = T ⊕ A.

It may be noted that, among the 2m 1s in T , exactly m 1s are4

in matched position with P , and the other m 1s are in matched

position with Q. The matching can be made randomly. The bits6

in P and Q, corresponding to a 0 in T are same (either both 0 or

both 1) and they can be assigned randomly, with ensuring that,8

n1(P ) = n1(Q) =
⌊

t
2

⌋
.

Now we shall describe the construction details of a (2, 2)- secret10

sharing scheme and extend it to an (n, n)- scheme in the next

section.12

7.2 A (2, 2) Construction

Let B = b1b2b3 . . . bt be the secret information to be shared14

between two participants. We describe an efficient (2, 2) scheme

by making use of the theorem 4. First of all, the necessary16

condition to use the theorem is that, the concerned string must

be even parity. So, we extend the secret by appending a single18

bit at the right end. If we discard the appended last bit, we get

precisely the secret. The length of the extended string is just20

one more than that of the secret. The Algorithm 7.1 extends the

string and makes the resulting string an even parity.22
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Algorithm 7.1 (Append a single bit at the end)

Input: A binary string Bt = b1b2 . . . bt of length t. 2

Output : An even parity string Et+1 = e1e2 . . . et+1

of length t+ 1, such that ei = bi, for i ≤ t. 4

Step 1. noOfOne = 0;

For i = 1 to t do

ei = bi;

if (bi = 1) noOfOne = noOfOne + 1;

Step 2. if (noOfOne is odd) et+1 = 1;

else et+1 = 0;

Step 3. The extended string is Et+1 = e1e2 . . . et+1.

Now, using construction method in theorem 4, we split this

extended string and obtain the two shares. The very simple 6

algorithm 7.2, shown below, finds the decomposition of the

extended string, as in theorem 4. 8

Algorithm 7.2 (Sharing an even parity binary string between

two blocks) 10

Input: An even parity binary string Et+1 = e1e2 . . . et+1.

Output : Two blocks S
(1)
t+1 = s

(1)
1 s

(1)
2 . . . s

(1)
t+1 and 12

S
(2)
t+1 = s

(2)
1 s

(2)
2 . . . s

(2)
t+1 of length t+ 1 each.

Step 1. Set all bits of S
(1)
t+1 and S

(2)
t+1 null.

Step 2. noOfOne = 0;

For i = 1 to (t+ 1) do
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if (ei = 1) then

noOfOne = noOfOne+ 1;

if ( noOfOne is odd) s
(1)
i = 1;

else s
(1)
i = 0;

Step 3. Randomly assign the rest null bits of S
(1)
t+1

to 0 or 1,such that n1

(
S

(1)
t+1

)
=
⌊

t+1
2

⌋
.

Step 4. For i = 1 to t+ 1 do

s
(2)
i = s

(1)
i ⊕ ei.

The algorithm 7.3 shares any binary string between two

shares, by using algorithm 7.1 and then algorithm 7.2.2

Algorithm 7.3 (Sharing any binary string between two blocks)

Input: A binary string Bt = b1b2 . . . bt.4

Output : Two blocks S
(1)
t+1 and S

(2)
t+1 each

of length t+ 16

Step 1. Let Et+1 = e1e2 . . . et+1 be the extended string

obtained by Algorithm 7.1 with the input Bt.

Step 2. Obtain the shares S
(1)
t+1 and S

(2)
t+1

by Algorithm 7.2 with input Et+1.

Algorithm 7.4 (Recover the secret information)

Input : Two shares S1 and S2 of 0s and 1s of8

length t+ 1

Output: The secret information Bt = b1b2 . . . bt.10
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Step 1. Bt+1 = S1 ⊕ S2

Step 2. The recovered secret is B = b1b2b3 . . . bt

(Note that bt+1 is unwanted.)

Recovery: From Et+1 = S
(1)
t+1 ⊕ S

(2)
t+1, it follows that, if we

just discard last bit of Et+1 we get Bt. i.e, the recovery procedure 2

is that, just ⊕ the two shares, we get the extended string, and

discard the last appended bit we get the secret. Hence the 4

following lemma:

Lemma 7.1 6

The Algorithm 7.3 described above is a (2, 2)- modified visual

cryptography scheme, in which the size of the share is just one 8

bit more than the size of secret. More over, all the shares are

balanced strings. 10

Example 7.1

Let the secret B be 12

10011 00101 00011 10010 00101 10100

(which corresponds to the word ”secret”). 14

Here length of the secret t = 6 * 5 = 30. By Step 1. of

Algorithm 7.3, the extended secret is 16

Bt+1 = 10011 00101 00011 10010 00101 10100 1.

By Step 1. of Algorithm 7.2, initialize S1 and S2 null. 18
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In Step 2, S1 is computed as

1**01**0*1***010**1***0*10*1**0 (Here * indicates null bits.)2

and by Step 3, S1 is randomly set as

11101100010100100111010010011104

Finally by Step 4. of Algorithm 7.2,

S2 = S1 ⊕Bt+1 = 01110101000101010101011001001116

Recovery : Compute S1 ⊕ S2 and get

Bt = 10011001010001110010001011010018

Last bit is 1 and is deleted to get B : 10011 00101 00011 10010

00101 10100.10

7.3 A (n, n) Construction

We in this section develop a secret sharing scheme among n12

blocks.

Algorithm 7.5 (Sharing a secret among n blocks)14

Input: A binary string Bt = b1b2 . . . bt of length t.

Output: n blocks S1, S2, . . . , Sn of length t+ 1.16

Step 1. bt+1 = 0;

Step 2. Randomly assign n-2 blocks,

{S2, . . . , S(n−1)}, with
⌈

t+1
2

⌉
0s and

⌊
t+1

2

⌋
1s.

Step 3. Compute Kt+1 = Bt+1 ⊕ S2 ⊕ . . .⊕ S(n−1).
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Step 4. if (Kt+1is odd parity) then

kt+1 = kt+1.

bt+1 = bt+1.

Step 5. Compute S1 and Sn by Algorithm 7.2, with

input Kt+1, such that, Kt+1 = S1 ⊕ Sn.

Algorithm 7.6 (Recover the secret information)

Input : n shares S1, S2, . . . ,Sn of length t+ 1 2

Output: The secret information Bt = b1b2 . . . bt.

Step 1. Compute the string Bt+1 = b1b2b3 . . . bt+1

such that Bt+1 = S1 ⊕ S2 ⊕ S3 ⊕ . . .⊕ Sn

Step 2. Discard the last bit of Bt+1 and

the recovered secret Bt is b1b2b3 . . . bt

Lemma 7.2 4

The Algorithm 7.5 described above, is an (n, n)- modified visual

cryptography scheme, in which the size of the share is just one 6

bit more than the size of secret. More over, all the shares are

balanced strings. 8

Proof : It is clear that Step 1 of algorithm 7.5 appends a

single bit at the end of the input string Bt and the extended string 10

Bt+1 is obtained. Note that the last bit appended is insignificant.

In Step 2. it generates n − 2 shares, S2, S3, . . . , Sn−1. They are 12

all random balanced strings. In Step 3, from the equation,

Kt+1 = Bt+1 ⊕ S2 ⊕ . . .⊕ S(n−1) (7.1) 14
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the following equation holds:

Bt+1 = Kt+1 ⊕ S2 ⊕ . . .⊕ S(n−1) (7.2)2

In step 4, we ensure that Kt+1 is even parity. If not, the last

insignificant bit will be toggled to make it even parity. In4

this case, it also toggles the last bit of Bt+1, so that equa-

tion (7.2) is still valid. Finally, in step 5, share, Kt+1, between6

two shares S1 ⊕ Sn by Algorithm 7.2 with input Kt+1. So,

Bt+1 = S1 ⊕ S2 ⊕ . . .⊕ S(n−1) ⊕ Sn. Further more, each of the8

blocks S1, S2, . . . , Sn is a balanced string.

Example 7.210

For a (5, 5) threshold scheme, secret B = 101101110 is taken.

By step 1, the extended string, Bt+1 of length 10 is,12

10110111 00.

Randomly assign five 1s and five 0s to 3 rows {S2, S3, S4} in S.14

Therefore,

S2 = 1011000101,16

S3 = 0101010110, and

S4 = 1100101010.18

Step 3. computes K = 10011001 01, and

in Step 5., 10011001 0 is split into20

S1 = 1010110010, and

S5 = 0011010110.22
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All the 5 shares are as listed below:

S1 = 1010110010, 2

S2 = 1011000101,

S3 = 0101010110, 4

S4 = 1100101010, and

S5 = 0011010110. 6

Recovery: Computes S1 ⊕ S2 ⊕ S3 ⊕ S4 ⊕ Sn, and obtains

Bt+1 = 10110111 01. 8

Deleting the last bit of Bt+1, we get the secret as

Bt = 10110111 0. 10

7.4 Security Analysis

In this section, we discuss the security of the proposed scheme. 12

In order to show the security of the (2, 2) construction, suppose

an illegal user gets one of the two shares. Lemma 7.3 shows that, 14

guessing the secret correctly, is very difficult.

Lemma 7.3 16

With only one share, the probability of guessing the shared secret

correctly in our construction is

(
t+ 1⌊

t+1
2

⌋)−1

. 18

Proof : In our construction, it is easy to observe that each

share contains
⌈

t+1
2

⌉
1s. There are

(
t+ 1⌊

t+1
2

⌋) many variations 20
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for a block, and the probability of guessing one block correctly

is

(
t+ 1⌊

t+1
2

⌋)−1

. Hence the probability of an illegal user, who has2

only one share, guessing the shared secret is

(
t+ 1⌊

t+1
2

⌋)−1

.

In order to show the security of an (n, n) construction, sup-4

pose there are fewer than n participants cooperating to guess the

shared secret. Lemma 7.4 shows that even though there are n−16

participants cooperating, the probability of guessing the shared

secret correctly is still very low.8

Lemma 7.4

The probability of guessing the shared secret correctly in our10

construction is

(
t+ 1⌊

t+1
2

⌋)−1

, if only n − 1 shares are used to

guess the share.12

Proof : The proof is similar to that of Lemma 7.3.

7.5 Concluding remarks14

In this chapter, we have classified three types of balanced strings,

and established a very strong theorem related to balanced string.16

As per the theorem, any string can be written as the ring sum

(⊕) of two balanced strings. We have used this property and18

presented a secret sharing scheme, in which the size of a share is

just one bit more than the size of the original secret.20
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Chapter 8

Permutation Ordered 2

Binary Number System

8.1 Introduction 4

In the course of our research work we have formulated a new

number system. This number system is found to be very useful 6

and more efficient than the conventional number systems under

use. We have used this number system in some of our newly 8

introduced secret sharing schemes.

8.2 A new number system 10

We consider a general number system, called, Permutation Or-

dered Binary (POB) Number System with two non negative 12

integral parameters, n and r, where n ≥ r. The system is
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denoted by POB(n, r). In this number system, we represent

all integers in the range 0, . . . ,

(
n
r

)
− 1, as a binary string, say2

B = bn−1bn−2 . . . b0, of length n, and having exactly r 1s.

Each digit of this number, say, bj is associated with its4

position value, given by

bj.

(
j
pj

)
, where, pj =

j∑
i=0

bi ,6

and the value represented by the POB-number B, denoted by

V (B), will be the sum of position values of all of its digits.8

i.e.,

V (B) =
n−1∑
j=0

bj.

(
j
pj

)
(8.1)10

It can be proved that, since exactly

(
n
r

)
such binary strings

exist, each number will have a distinct representation. In order12

to emphasize that a binary string, B = bn−1bn−2 . . . b0 is a POB-

number, we denote the same by using the suffix ’p’. For example,14

001110100p is a POB(9, 4) number represented by 33. However,

such a string, regarded as a binary number will have a decimal16

value of 116. We can arrange all those string in the ascending

order, by considering this decimal value as in Table 8.1 . Indeed,18

Table 8.1 represents POB(9, 4) number system completely.

97



Chapter 8 Secret Sharing Scheme

Table 8.1: List of POB(9,4) numbers
Sl. POB Numbers Binary Sl. POB Numbers Binary
No. 1 2 3 4 5 6 7 8 9 value No. 1 2 3 4 5 6 7 8 9 value
0 0 0 0 0 0 1 1 1 1 15 31 0 0 1 1 1 0 0 0 1 113
1 0 0 0 0 1 0 1 1 1 23 32 0 0 1 1 1 0 0 1 0 114
2 0 0 0 0 1 1 0 1 1 27 33 0 0 1 1 1 0 1 0 0 116
3 0 0 0 0 1 1 1 0 1 29 34 0 0 1 1 1 1 0 0 0 120
4 0 0 0 0 1 1 1 1 0 30 35 0 1 0 0 0 0 1 1 1 135
5 0 0 0 1 0 0 1 1 1 39 36 0 1 0 0 0 1 0 1 1 139
6 0 0 0 1 0 1 0 1 1 43 37 0 1 0 0 0 1 1 0 1 141
7 0 0 0 1 0 1 1 0 1 45 38 0 1 0 0 0 1 1 1 0 142
8 0 0 0 1 0 1 1 1 0 46 39 0 1 0 0 1 0 0 1 1 147
9 0 0 0 1 1 0 0 1 1 51 40 0 1 0 0 1 0 1 0 1 149
10 0 0 0 1 1 0 1 0 1 53 41 0 1 0 0 1 0 1 1 0 150
11 0 0 0 1 1 0 1 1 0 54 42 0 1 0 0 1 1 0 0 1 153
12 0 0 0 1 1 1 0 0 1 57 43 0 1 0 0 1 1 0 1 0 154
13 0 0 0 1 1 1 0 1 0 58 44 0 1 0 0 1 1 1 0 0 156
14 0 0 0 1 1 1 1 0 0 60 45 0 1 0 1 0 0 0 1 1 163
15 0 0 1 0 0 0 1 1 1 71 46 0 1 0 1 0 0 1 0 1 165
16 0 0 1 0 0 1 0 1 1 75 47 0 1 0 1 0 0 1 1 0 166
17 0 0 1 0 0 1 1 0 1 77 48 0 1 0 1 0 1 0 0 1 169
18 0 0 1 0 0 1 1 1 0 78 49 0 1 0 1 0 1 0 1 0 170
19 0 0 1 0 1 0 0 1 1 83 50 0 1 0 1 0 1 1 0 0 172
20 0 0 1 0 1 0 1 0 1 85 51 0 1 0 1 1 0 0 0 1 177
21 0 0 1 0 1 0 1 1 0 86 52 0 1 0 1 1 0 0 1 0 178
22 0 0 1 0 1 1 0 0 1 89 53 0 1 0 1 1 0 1 0 0 180
23 0 0 1 0 1 1 0 1 0 90 54 0 1 0 1 1 1 0 0 0 184
24 0 0 1 0 1 1 1 0 0 92 55 0 1 1 0 0 0 0 1 1 195
25 0 0 1 1 0 0 0 1 1 99 56 0 1 1 0 0 0 1 0 1 197
26 0 0 1 1 0 0 1 0 1 101 57 0 1 1 0 0 0 1 1 0 198
27 0 0 1 1 0 0 1 1 0 102 58 0 1 1 0 0 1 0 0 1 201
28 0 0 1 1 0 1 0 0 1 105 59 0 1 1 0 0 1 0 1 0 202
29 0 0 1 1 0 1 0 1 0 106 60 0 1 1 0 0 1 1 0 0 204
30 0 0 1 1 0 1 1 0 0 108 61 0 1 1 0 1 0 0 0 1 209
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Table 8.1 Continues
Sl. POB Numbers Binary Sl. POB Numbers Binary
No. 1 2 3 4 5 6 7 8 9 value No. 1 2 3 4 5 6 7 8 9 value
62 0 1 1 0 1 0 0 1 0 210 94 1 0 1 0 0 1 0 1 0 330
63 0 1 1 0 1 0 1 0 0 212 95 1 0 1 0 0 1 1 0 0 332
64 0 1 1 0 1 1 0 0 0 216 96 1 0 1 0 1 0 0 0 1 337
65 0 1 1 1 0 0 0 0 1 225 97 1 0 1 0 1 0 0 1 0 338
66 0 1 1 1 0 0 0 1 0 226 98 1 0 1 0 1 0 1 0 0 340
67 0 1 1 1 0 0 1 0 0 228 99 1 0 1 0 1 1 0 0 0 344
68 0 1 1 1 0 1 0 0 0 232 100 1 0 1 1 0 0 0 0 1 353
69 0 1 1 1 1 0 0 0 0 240 101 1 0 1 1 0 0 0 1 0 354
70 1 0 0 0 0 0 1 1 1 263 102 1 0 1 1 0 0 1 0 0 356
71 1 0 0 0 0 1 0 1 1 267 103 1 0 1 1 0 1 0 0 0 360
72 1 0 0 0 0 1 1 0 1 269 104 1 0 1 1 1 0 0 0 0 368
73 1 0 0 0 0 1 1 1 0 270 105 1 1 0 0 0 0 0 1 1 387
74 1 0 0 0 1 0 0 1 1 275 106 1 1 0 0 0 0 1 0 1 389
75 1 0 0 0 1 0 1 0 1 277 107 1 1 0 0 0 0 1 1 0 390
76 1 0 0 0 1 0 1 1 0 278 108 1 1 0 0 0 1 0 0 1 393
77 1 0 0 0 1 1 0 0 1 281 109 1 1 0 0 0 1 0 1 0 394
78 1 0 0 0 1 1 0 1 0 282 110 1 1 0 0 0 1 1 0 0 396
79 1 0 0 0 1 1 1 0 0 284 111 1 1 0 0 1 0 0 0 1 401
80 1 0 0 1 0 0 0 1 1 291 112 1 1 0 0 1 0 0 1 0 402
81 1 0 0 1 0 0 1 0 1 293 113 1 1 0 0 1 0 1 0 0 404
82 1 0 0 1 0 0 1 1 0 294 114 1 1 0 0 1 1 0 0 0 408
83 1 0 0 1 0 1 0 0 1 297 115 1 1 0 1 0 0 0 0 1 417
84 1 0 0 1 0 1 0 1 0 298 116 1 1 0 1 0 0 0 1 0 418
85 1 0 0 1 0 1 1 0 0 300 117 1 1 0 1 0 0 1 0 0 420
86 1 0 0 1 1 0 0 0 1 305 118 1 1 0 1 0 1 0 0 0 424
87 1 0 0 1 1 0 0 1 0 306 119 1 1 0 1 1 0 0 0 0 432
88 1 0 0 1 1 0 1 0 0 308 120 1 1 1 0 0 0 0 0 1 449
89 1 0 0 1 1 1 0 0 0 312 121 1 1 1 0 0 0 0 1 0 450
90 1 0 1 0 0 0 0 1 1 323 122 1 1 1 0 0 0 1 0 0 452
91 1 0 1 0 0 0 1 0 1 325 123 1 1 1 0 0 1 0 0 0 456
92 1 0 1 0 0 0 1 1 0 326 124 1 1 1 0 1 0 0 0 0 464
93 1 0 1 0 0 1 0 0 1 329 125 1 1 1 1 0 0 0 0 0 480
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8.3 POB-representation is unique

We prove that the POB-representation is unique in the sense that 2

the binary correspondence of a POB-number is unique.

Theorem 5 (POB-representation is unique) 4

The value of a POB-number, V (B) of B = bn−1bn−2 . . . b0 com-

puted by the formula (8.1) given above, produces distinct values 6

in the range 0, · · · ,
(
n
r

)
− 1.

Proof : First, we prove that, 8

0 ≤ V (B)≤
(
n
r

)
− 1 (8.2)

and then we prove that formula computes distinct values for 10

distinct POB-numbers.

Let bd1 , bd2 , . . . , bdr , with 12

0 ≤ d1 < d2 < . . . < dr ≤ n− 1 (8.3)

be the binary digits of B, having value 1. 14

Then the formula (8.1) takes the form

V (B) =
r∑

i=1

(
di

i

)
(8.4) 16

From the inequalities listed in (8.3), we get,

dr−1 ≤ dr − 1
dr−2 ≤ dr−1 − 1
dr−3 ≤ dr−2 − 1

...
...

...
...

...
d1 ≤ d2 − 1

18
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Adding the first k inequalities listed above, we get,

dr−k ≤ dr − k, for k = 0, 1, . . . , r − 1 (8.5)2

Substituting k = r − i, inequality (8.5) becomes,

di ≤ dr − r + i, for i = r, r − 1, . . . , 1 (8.6)4

Combining the inequalities (8.3) and (8.6), we get,

0 ≤ di ≤ dr − r + i, for i = 1, 2, . . . , r (8.7)6

It may also be noted that(
n
0

)
= 1, whenever n ≥ 0 (8.8)8 (

p
i

)
=

(
p− 1
i− 1

)
+

(
p− 1
i

)
(8.9)(

p
i

)
≤

(
q
i

)
whenever p ≤ q (8.10)10

So, equation (8.4) becomes,

V (B) =
r∑

i=1

(
di

i

)
12

≤
r∑

i=1

(
dr − r + i

i

)
, [ by (8.7) & (8.10)

=

(
dr − r + 1

0

)
+

r∑
i=1

(
dr − r + i

i

)
− 114

[ by (8.7) & (8.8)

=

(
dr + 1
r

)
− 1 (8.11)16

[ by (8.9) applied r times
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i.e, if j is the highest integer with bj = 1, then

V (B) ≤
(
j + 1
r

)
− 1.

In other words, if V (B) ≤
(
j + 1
r

)
− 1, then

bn−1 = bn−2 = · · · = bj+1 = 0

and if V (B) ≥
(
j + 1
r

)
, then at least one of

bn−1, bn−2, · · · , bj+1 6= 0.

Since dr ≤ n− 1, we get, V (B) ≤
(
n
r

)
− 1.

As V (B) is the sum of non-negative terms, we have,

0 ≤ V (B) ≤
(
n
r

)
− 1.

So, the above formula will generate a maximum of

(
n
r

)
values. 2

Now, let X = xn−1xn−2 . . . x0 be any POB-number having r

1s, such that X > B (by considering them as binary numbers). 4

Being X > B, there is at least a digit xl in X such xl 6= bl. Let l

be the biggest suffix such that xl 6= bl. 6

Then, xn−1xn−2 . . . xl+1 = bn−1bn−2 . . . bl+1, xl 6= bl and X >

B implies xl = 1 and bl = 0. Now consider the strings Xl = 8

xlxl−1 . . . x0 and Bl = blbl−1 . . . b0. Both the strings Xl and Bl

have equal number of 1s, say k ≤ r and hence can be regarded 10
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as POB numbers(may be with different parameters).

Being Xl starts with 1, V (Xl) ≥
(
l
k

)
, and Bl starts with 0,2

V (Bl) ≤
(
l
k

)
− 1.

So, V (Xl) > V (Bl) and thus, we get V (X) > V (B).4

i.e., if X and B are two distinct POB-numbers then V (X) 6=

V (B) and hence, the formula (8.1) generates exactly

(
n
r

)
6

POB-values. Therefore the POB-representation is unique. Hence

the theorem.8

Moreover, V( ) preservers the natural order in binary number

system.10

8.4 POB-number and POB-value

In a practical situation, for any (n, r) threshold secret sharing12

system, it is required to find out the distribution of all of its

keys. In all there will be

(
n

r − 1

)
keys, to be distributed among14

n participants. Which means, given a key, we should identify

participants who should hold that particular key. In a sense, the16

key no. is the POB-value, and the allotment to participants is

contained in the corresponding POB-number. Essentially, the18

position of 1s in the POB-number represents the participants

holding the specific key. Therefore, the problem of allotment20

of keys to participants is equivalent to finding the POB-number
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corresponding to a POB-value. We have developed an algorithm

for this problem. 2

For a given pair of parameters n and r with r ≤ n, the

algorithm takes three inputs: n, r and value with 0 ≤ value ≤ 4(
n
r

)
−1 and produce POB-number corresponding to the value.

Algorithm 8.1 (Generate POB-number corresponding to a 6

given POB-value)

In a POB(n, r) number system, if a POB-value, ′value′ is given, 8

the algorithm generates the binary digits of the corresponding

POB-number: B, such that value = V (B). 10

Input : Three numbers: n, r and value with r ≤ n and 0 ≤
value ≤

(
n
r

)
− 1. 12

Output: The POB-number B = bn−1bn−2 . . . b0.

Step 1. Let j = n and temp = value.

Step 2. For k= r down to 1 do:

1. Repeat {
2. j = j − 1;

3. p =

(
j
k

)
;

4. if (temp ≥ p)

5. temp = temp− p;

6. bj = 1;

7. else bj = 0;

8. } Until (bj = 1);

9. Next k
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Step 3. if (j > 0)

For k = j − 1 down to 0 do:

bk = 0;

Remark: B = bn−1bn−2 . . . b0 is the POB-number.

Lemma 8.1

Algorithm 8.1 generates the POB-number corresponding to the2

given POB-value.

Proof : At step 2, of the algorithm, a maximum of r bjs4

will be equal to 1. It may be observed that at any stage of the

algorithm, 0 ≤ temp. Further, in any iteration of Step 2, for a6

k, at j = k − 1, p =

(
k − 1
k

)
= 0 and so temp ≥ p (in line

no. 4 of Step 2) and hence, bj will be equal to 1, if not so for a8

higher value of j. Hence, it is clear that, after execution of Step

2, the binary string B = bn−1bn−2 . . . b0 will have precisely r 1s10

and n− j 0s. By Step 3, it will have r 1s and n− r 0s.

It may also be noted that, in step 2 of the algorithm, the12

following two conditions hold good:

(i.) in line no. 1,14

0 ≤ temp ≤
(
j
k

)
− 1 (8.12)

and (ii.) in line no. 9,16

0 ≤ temp ≤
(

j
k − 1

)
− 1. (8.13)
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This can be proved as follows:

At the first time when the control reaches the line no. 1, 2

in Step 2., we have, temp = value, j = n, k = r. So,

inequality (8.12) trivially holds good as per the specification, 4

0 ≤ value ≤
(
n
r

)
− 1, mentioned in the input. In line no.

2, j is decremented by 1, so that in line no. 2, with new value of 6

j, inequality (8.12) takes the form

0 ≤ temp ≤
(
j + 1
k

)
− 1 (8.14) 8

In line no. 4, if temp ≤ p− 1, where p =

(
j
k

)
, then bj will

be set to 0, and the Repeat · · · Until loop continues with none 10

of the variables modified and control reaches line no. 1, so that

inequality (8.12) holds good in this case. 12

On the other hand, if temp ≥ p, then, temp is decremented

by a value of p =

(
j
k

)
, bj will be set to 1, so that the Repeat 14

· · · Until loop terminates and control reaches line no. 9. By

using equation (8.9), the new value of temp satisfies 0 ≤ temp ≤ 16(
j

k − 1

)
− 1. i.e., inequality (8.13) holds good at line no 9.

In this case, value of k is decremented by 1, and if k ≥ 1, 18

the for loop continues and control reaches line no. 1, and

inequality (8.13) becomes inequality (8.12) with the new value 20

of k.
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By principle of induction, the argument holds good for the

new set of values of j, k and temp so long as k reaches 1.2

It may be noted that, when k reaches 1, in Step2, and for a

j, when bj = 1, at line no. 6 of Step 2,4

temp ≤
(

j
k − 1

)
− 1 = 0. Since, temp ≥ 0, temp = 0. In Step

3. we fills rest of bjs (if any), with 0. We have already ensured6

that there are exactly r number of bjs with 1s.

Whenever bj is assigned 1, temp is diminished by p which is8

indeed

(
j
k

)
and for the last j when bj is assigned 1, in the

algorithm, temp = 0. Thus POB-value of the B generated by10

the algorithm is value and the correctness of the algorithm is

established.12

If we want to compute all the POB-values sequentially, we

could even have easier algorithm as follows:14

Algorithm 8.2 (Generate all POB-numbers)

In a POB(n, r) number system, the algorithm prints all the POB16

Numbers sequentially.

Input : Positive integers n and r, with the condition r ≤ n.18

Output: All the POB-numbers in POB(n, r) number system.

Step 1. Let B = bn−1bn−2 . . . b0 be a binary string,20

suchthat, bi =

{
1, if 0 ≤ i ≤ r − 1
0, if r ≤ i ≤ n− 1

[B is the first POB-number in the POB(n, r) number sys-22

tem.]
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Step 2. Let done = 0

1. Repeat {
2. Print B

3. Let NoOfZeros = 0, i = 0 and j = 1.

4. while (bj = 1 or bi = 0) do {
5. if (bi = 0) NoOfZeros = NoOfZeros+ 1;

6. if (j = n− 1) done = 1;

7. i = j;

8. j = j + 1

9. }
10. bj = 1;

11. j = i−NoOfZeros;
12. while(i ≥ j) do {
13. bi = 0, i = i− 1

14. }
15. while(i ≥ 0) do {
16. bi = 1, i = i− 1

17. }
18. } Until (done = 1);

Given a POB-number B with POB-value V (B), the algo- 2

rithm 8.3, described below, will generate the successor of the

POB-number, which corresponds to the value V (B) + 1. The 4

algorithm may be used at the key distribution time for an easier

and fast computation of the distribution of various keys. 6

In a POB(n, r) number system, given a POB-number B =

bn−1bn−2 . . . b0, with POB-value V (B), the following algorithm 8
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generates the binary digits of the POB-number, having POB-

value V (B) + 1 and algorithm returns 1. If the input B is the2

last POB-number, the algorithm returns 0 as an indication that

the output is not correct.4

Algorithm 8.3 (Generate the next POB-number)6

Input : An n digit POB-number B = bn−1bn−2 . . . b0.

Output: The POB-number corresponding to POB-value = V (B)+8

1, and return 1 or 0.

Step 1. Search for the substring 01 in B from right end, i.e.,10

find the max j, such that bj = 0, bj−1 = 1

Step 2. If the search in Step 1 failed, return 0, as B contains12

no substring as 01, B is the maximum number that can be

represented,14

Step 3. Set bj = 1, bj−1 = 0 and reverse the substring bj−2 . . . b0

and return 1. The resulting string corresponds to V (B)+1.16

It can be seen that the algorithm 8.4 discussed below, gener-

ates the predecessor of POB-number, which corresponds to the18

value V (B)− 1

Algorithm 8.4 (Generate Predecessor POB-number)20

Input : An n digit POB-number B = bn−1bn−2 . . . b0.

Output: The POB-number corresponding to POB-value = V (B)−22

1, and return 1 or 0.
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Step 1. Search for the substring 10 in B from right end, i.e.,

find the max j, such that bj = 1, bj−1 = 0 2

Step 2. If the search in Step 1 failed, return 0, as B contains

no substring as 10, and B = 0, the smallest number that 4

can be represented.

Step 3. Set bj = 0, bj−1 = 1 and reverse the substring bj−2 . . . b0 6

and return 1.

The resulting string corresponds to V (B)− 1. 8

8.5 Illustrations

If B = 001101010, the next no. is 001101100; 10

If B = 000111100, the next no. is 001000111;

If B = 111100000, B is the largest number which can be repre- 12

sented, and so it returns zero. If B = 101001100, the predecessor

no. is 101001010; 14

If B = 001000111, the predecessor no. is 000111100;

If B = 000001111, B is the smallest number which can be 16

represented, and so it returns zero.

Remarks 18

Given two positive integral values n and r such that

n ≥ r, there will be exactly

(
n
r

)
members in POB(n, r). Using 20
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Algorithm 8.1 and taking 0 . . .

(
n
r

)
- 1 as POB-values, the

corresponding POB-numbers can be generated and therefore the2

entire POB(n, r) system could be generated by the Algorithm

8.1.4

8.6 Concluding remarks

We have generalized the concept of balanced string, and have6

introduced a new number system, called Permutation Ordered

Binary Number System. We have proved that the POB-number8

representation is unique. Also, several algorithms to manipulate

POB-number system are discussed. This number system has10

great potential in Secret Sharing.
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Chapter 9

Improvement Scheme 2

Using POB Numbers

9.1 Introduction 4

In this section we describe the construction details of a (2, 2)

secret sharing scheme and in the next section, the construction 6

details of an n out of n scheme for n ≥ 3. The simplest version

of the scheme assumes that the secret consists of a sequence of 8

bytes and each byte is handled separately. The construction is

based on the following theorem, which is a particular case (when 10

t = 9) of the theorem 4, discussed in the last chapter.
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Theorem 6

Let T be a binary string of even parity, having length 9. Then we2

can find two binary strings A and B each having exactly four 1s

and five 0s such that T = A⊕B.4

9.2 A (2, 2) Construction

Let K = k1k2 . . . k8 be one byte of the secret information to6

be shared between two participants. In order to share the byte

between two participants, we first extend the byte by inserting a8

bit at random position, r, 1 ≤ r ≤ 9. The inserted digit will be

such that, the resulting extended string T is of even parity. This10

extended string T is split into two POB(9, 4) numbers, according

to theorem 6, such that T = A ⊕ B. The shares S1 and S2 are12

the values V (A) and V (B) represented by the POB-numbers A

and B respectively. Note that V (A) and V (B) are 7 bits long.14

9.2.1 Algorithm to Share one byte between
two shares16

The details of construction is described in the following Algo-

rithm 9.1.18

Algorithm 9.1 (Sharing a byte between two blocks)

Input: A binary string K = K1K2 . . . K8.20

Output : Two blocks S1 and S2 of length 7 bits.
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Step 1. Let A and B are two 9 bits long integers.

Set all the bits of A and B to null,

randomly select an integer r in [1. . . 9].

Step 2. The input string K is extended to T

by inserting one bit at position r.

Compute the binary string T = T1T2 . . . T9

where Ti =


Ki, if i < r
Ki−1, if i > r
0, if i = r and K is even parity
1, if i = r and K is odd parity

Step 3. noOfOne = 0;

For i = 1 to 9 do

if (Ti = 1) then

noOfOne = noOfOne+ 1;

if (noOfOne is odd) Ai = 1;

else Ai = 0;

Step 4. Randomly assign the rest null bits of A

to 0 or 1, and let A consists of four 1s and five 0s.

Step 5. let j = 0.

For i = 1 to 9 do

Bi = Ai ⊕ Ti

Step 6. Let S1 and S2 be the POB-values corresponding

to the POB-numbers A and B, respectively.
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9.2.2 Algorithm to Recover the shared byte

Algorithm 9.2 (Recover the secret information)2

Input : Two shares S1 and S2 of length 7 bits each and the random

integer r.4

Output: The secret information K = K1K2K3 . . . K8.

Step 1. Let A and B be the POB-numbers

corresponding to S1 and S2 respectively.

Step 2. For i = 1 to 8 do

if (i ≥ r) j = i+ 1;

else j = i;

Ki = Aj ⊕Bj.

Step 3. The recovered secret is K = K1K2K3 . . . K8

Lemma 9.16

The above scheme is a 2 out of 2 secret sharing scheme.

Proof : It may be observed that, in step 2 of Algorithm 9.1,8

the extended string T is of even parity. Since the length of T is

9, it can have a maximum of eight 1s. Let T contains 2m, (0 ≤10

m ≤ 4) 1s. Then in Step 3, the 2m bits of A, corresponding

to the 1s in T will be set to 1s and 0s equally. The Step 4 of12

Algorithm 9.1, ensures that A contains four 1s and five 0s. The

string B = A ⊕ T , computed in Step 5, also consists of four 1s14

and five 0s, as per Theorem 4. So the shares S1 and S2, which are

POB-values of A and B, are each of 7 bits length. The condition16
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B = A ⊕ T in Step 5, implies T = A ⊕ B, and if we drop out

rth bit of T, we get, K. Thus, the above scheme is a 2 out of 2 2

secret sharing scheme. Besides, each byte is shared by a seven

bit string. 4

It may be seen that in algorithm 9.1, the size of shares is only

7 bits, while the size of the original secret message is 8 bits. The 6

new scheme provides a gain of one bit per one byte of secret in

its representation. 8

Example 9.1

Let us consider a secret of two bytes, say, K = 11011110 10100001 10

Let the random numbers generated to share these two bytes

be 4, and 3 respectively, so that the extended string T (inserted 12

bits are underlined) is as follows:

Step 2. 110011110 101100001. 14

The string A after step 3 and 4 are as follows:

Step 3. 10**1010* 1*01****0. 16

Step 4. 101010100 100110100

The string B = A⊕ T , computed in Step 5 is: 18

011001010 001010101.

The indices of these codes are 98, 88 and 59, 20. 20

The final shares are 1100010 1011000 and 0111011 0010100.
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Recovery : The codes corresponding to the numbers are as

follows:2

A : 101010100 100110100

B : 011001010 0010101014

Compute T = A⊕B = 110011110 101100001

Deleting the 4th and 3rd bits from the consecutive blocks of T ,6

we get, the secret K = 11011110 10100001.

9.3 An (n, n) Construction8

9.3.1 Algorithm to Share one byte between n

shares10

The details of construction is described in the following Algo-

rithm 9.3.12

Algorithm 9.3 (Sharing a secret among n blocks)

Input:A single byte string K = K1K2K3 . . . K8.14

Output : n shares S1, S2, . . . , Sn of length 7 bits.

Step 1. Let A1, A2, . . . An be null strings of length 9 bits.

Step 2. Randomly assign n-2 POB(9,4)-numbers one

for each of Ai, 2 ≤ i ≤ n− 1.

Let r =
⌈

V (A2)+1
14

⌉
Step 3. The input string K is expanded to T
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by inserting one bit at position r.

Compute the binary string T = T1T2 . . . T9

Ti =


Ki, if i < r
Ki−1, if i > r
0, if i = r and K is even parity
1, if i = r and K is odd parity

Step 4. Let W = T ⊕ A2 ⊕ A3 ⊕ . . .⊕ An−1

Step 5. Let W = W1W2 . . .W9

noOfOne = 0;

For i = 1 to 9 do

if (Wi = 1) then

noOfOne = noOfOne+ 1;

if (noOfOne is odd) A1i = 1;

else A1i = 0;

Step 6. Randomly assign the rest null bits of A1 to 0 or 1,

let A1 consists of four 1s and five 0s.

Step 7. Compute An = W ⊕ A1

Step 8. For i= 1 to n do

Si = V (Ai).

Algorithm 9.4 (Recover the secret information) 2

Input : n shares S1, S2, . . . ,Sn of length 7 bits each.

Output: The secret information K = K1K2K3 . . . K8. 4

Step 1. Let A1, A2, . . . An be the POB-numbers corresponding

to S1, S2, . . . ,Sn respectively and r =
⌈

S2)+1
14

⌉
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Compute T = A1 ⊕ A2 ⊕ A3 ⊕ . . .⊕ An

Let T = T1T2 . . . T9

Step 2. For i = 1 to 8 do

if (i ≥ r) j = i+ 1;

else j = i;

Ki = Tj.

Step 3. The recovered secret is K = K1K2K3 . . . K8

Lemma 9.2

The above scheme is an n out of n secret sharing scheme.2

Proof : In Step 2, of Algorithm 9.3, Ais are assigned as

random POB(9, 4)-numbers, V (A2) is a random number in [0,4

. . . , 125] and hence, r =
⌈

V (A2)+1
14

⌉
, is uniformly at random

number in [1,. . . ,9]. It may be noted that after Step 3, the6

expanded string T is of even parity. It is clear that Step 4 of

Algorithm 9.3, we have,8

W = T ⊕ A2 ⊕ A3 ⊕ . . .⊕ An−1, (9.1)

from which the following equation holds:10

T = W ⊕ A2 ⊕ A3 ⊕ . . .⊕ An−1 (9.2)

Further more, since all the Ais are of even parity, W is also of12

even parity. The W is written as,

W = A1 ⊕ An, (9.3)14
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by using Steps 5, 6, and 7, in the same way as what we have

done in the case of Algorithm 9.1. Substituting equation (9.3) 2

in equation (9.2), we get,

T = A1 ⊕ A2 ⊕ A3 ⊕ . . .⊕ An (9.4) 4

Finally, the shares, Sis, are POB-values corresponding to the

POB-numbers Ais. In order to get the secret K, rth bit of T is 6

dropped out.

Example 9.2 8

For a (5, 5) threshold scheme, secret K = 10110110 is taken.

Randomly assign five 0s and four 1s to 3 rows {A2, A3, A4}. 10

Therefore,

A2 = 101100010, 12

A3 = 010101001, and

A4 = 110010100. 14

Let the random number r =
⌈

V (A2)+1
14

⌉
=
⌈

102
14

⌉
= 8.

The expanded string T as per step 3, of Algorithm 9.3 is 16

T = 101101110

Step 4. Computes W = 100110001, 18

by Step 5., A1 = 1**01***0, and

by step 6., A1 becomes = 110010100 20
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By Step 7, A5 = 010100101

2

The shares are the indices: 113, 101, 48, 113, 46. All the 5

shares are listed below:4

S1 = 1110001,

S2 = 1100101,6

S3 = 0110000,

S4 = 1110001, and8

S5 = 0101110.

Recovery: Compute T = A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕ A5, and get10

101101110. Deleting the 8th bit, we get secret as K = 10110110.

9.4 Security Analysis12

In the construction under the POB(9,4) number system there

are a total of 126 shares corresponding to one byte of secret. The14

probability of a correct guess of a share is 1
126

per byte of secret.

This would mean that for a secret of m-bytes, the probability of16

correct guess of a share will be as low as
(

1
126

)m
.
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Chapter 9 Secret Sharing Scheme

9.5 Concluding remarks

We have seen that, a 9 bit POB-number could be represented by 2

a 7 bit binary number. By taking the benefit of this, we have

proposed a secret sharing scheme. The algorithms for generating 4

the shares and recovery of the secret are discussed. The proposed

scheme is effective, where we have a gain of one bit for every 8 6

bits of information. The full potential of the newly introduced

POB-number system is yet to be explored. 8
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Conclusions2

We have given the theoretical background of Secret Sharing

Schemes and the historical development of the subject. The4

evolution of the various schemes are accounted in the initial

chapters. We have included a few examples to improve the6

readability of the thesis. We have tried to maintain the rigor

of the treatment of the subject.8

The limitations and disadvantages of the various forms secret

sharing schemes are brought out. Several new schemes for both10

dealing and combining are included in the thesis. We have

introduced a new number system, called, POB number system.12

Representation using POB number system has been presented.

Algorithms for finding the POB number and POB value are given.14

We have also proved that the representation using POB number

system is unique and is more efficient. Being a new system, there16
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Chapter 10 Secret Sharing Scheme

is much scope for further development in this area.

Our research findings are well appreciated by the research 2

community in Computer Science. Appendix. 3 contains the list

of publications of some of our research findings in this area. 4

We have improved many of the existing schemes and intro-

duced a few new schemes. The introduction of POB number 6

system and using it for some very efficient uniform secret sharing

scheme is the most significant achievement of this research work. 8

All the new schemes we have introduced have the potential for

a lot of research activities in future. We propose to continue this 10

work and explore the possibilities of using POB number system

in other areas also. 12
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APPENDIX 1

The Distribution of keys2

Let us return to the example we considered in section 1.3. We

denote the scientists by the letters: a, b, . . . , k. As per our4

scheme, any 6 of the 11 scientists together should be able to

open the cabinet using the keys in their possession. The scheme6

envisages the use of at least one key from each of the six scientists.

There are in all 462 different locks and keys. The keys are8

numbered from 0 to 461. For each lock there must be exactly

six keys as no five from among the 11 scientists could be able10

to open a particular lock. The allotment of each key to the

scientists are denoted by 1s against their names in the column.12

For example key no.3 will be available with scientists - e, f, g, i, j

and k. In other words, any permutation of six 1s and five 0s14

denote allotment of a specific key. Every such permutation can

be considered as a unique 11 digit binary number having a specific16

decimal value. We have chosen to assign the key numbers in the

ascending order of its decimal value. For example, key no.0 has18

63 as decimal value, where as key no.35 has 343 as its value.
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Appendix 1 Secret Sharing Scheme

An algorithm for allocating the 462 keys is given in Table 10.1.

2

It may be noted that the numeric value corresponding to the

distribution of keys of a specific lock can be easily computed as 4

follows:

The key no. can be computed from the corresponding binary 6

number in the table using the following formula:

keyno. =
10∑

j=0

bj

(
j
pj

)
8

where

pj =

j∑
i=0

bi, 10

and b10b9 . . . b0 is the binary number. For example, the key no.

corresponding to the binary number 12

10110011010 =

(
10
6

)
+

(
8
5

)
+

(
7
4

)
+

(
4
3

)
+

(
3
2

)
+

(
1
1

)
= 210 + 56 + 35 + 4 + 3 + 1 14

= 309.

It may be noted that the table consists of all binary numbers of 16

length 11 and having precisely 6 1s, arranged in the ascending

order of its decimal value. 18
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Table 10.1: The distribution of keys of various locks to
the scientists.

Sl. Scientists Binary Sl. Scientists Binary
No. a b c d e f g h i j k value No. a b c d e f g h i j k value
0 0 0 0 0 0 1 1 1 1 1 1 63 33 0 0 1 0 0 1 1 1 1 1 0 318
1 0 0 0 0 1 0 1 1 1 1 1 95 34 0 0 1 0 1 0 0 1 1 1 1 335
2 0 0 0 0 1 1 0 1 1 1 1 111 35 0 0 1 0 1 0 1 0 1 1 1 343
3 0 0 0 0 1 1 1 0 1 1 1 119 36 0 0 1 0 1 0 1 1 0 1 1 347
4 0 0 0 0 1 1 1 1 0 1 1 123 37 0 0 1 0 1 0 1 1 1 0 1 349
5 0 0 0 0 1 1 1 1 1 0 1 125 38 0 0 1 0 1 0 1 1 1 1 0 350
6 0 0 0 0 1 1 1 1 1 1 0 126 39 0 0 1 0 1 1 0 0 1 1 1 359
7 0 0 0 1 0 0 1 1 1 1 1 159 40 0 0 1 0 1 1 0 1 0 1 1 363
8 0 0 0 1 0 1 0 1 1 1 1 175 41 0 0 1 0 1 1 0 1 1 0 1 365
9 0 0 0 1 0 1 1 0 1 1 1 183 42 0 0 1 0 1 1 0 1 1 1 0 366
10 0 0 0 1 0 1 1 1 0 1 1 187 43 0 0 1 0 1 1 1 0 0 1 1 371
11 0 0 0 1 0 1 1 1 1 0 1 189 44 0 0 1 0 1 1 1 0 1 0 1 373
12 0 0 0 1 0 1 1 1 1 1 0 190 45 0 0 1 0 1 1 1 0 1 1 0 374
13 0 0 0 1 1 0 0 1 1 1 1 207 46 0 0 1 0 1 1 1 1 0 0 1 377
14 0 0 0 1 1 0 1 0 1 1 1 215 47 0 0 1 0 1 1 1 1 0 1 0 378
15 0 0 0 1 1 0 1 1 0 1 1 219 48 0 0 1 0 1 1 1 1 1 0 0 380
16 0 0 0 1 1 0 1 1 1 0 1 221 49 0 0 1 1 0 0 0 1 1 1 1 399
17 0 0 0 1 1 0 1 1 1 1 0 222 50 0 0 1 1 0 0 1 0 1 1 1 407
18 0 0 0 1 1 1 0 0 1 1 1 231 51 0 0 1 1 0 0 1 1 0 1 1 411
19 0 0 0 1 1 1 0 1 0 1 1 235 52 0 0 1 1 0 0 1 1 1 0 1 413
20 0 0 0 1 1 1 0 1 1 0 1 237 53 0 0 1 1 0 0 1 1 1 1 0 414
21 0 0 0 1 1 1 0 1 1 1 0 238 54 0 0 1 1 0 1 0 0 1 1 1 423
22 0 0 0 1 1 1 1 0 0 1 1 243 55 0 0 1 1 0 1 0 1 0 1 1 427
23 0 0 0 1 1 1 1 0 1 0 1 245 56 0 0 1 1 0 1 0 1 1 0 1 429
24 0 0 0 1 1 1 1 0 1 1 0 246 57 0 0 1 1 0 1 0 1 1 1 0 430
25 0 0 0 1 1 1 1 1 0 0 1 249 58 0 0 1 1 0 1 1 0 0 1 1 435
26 0 0 0 1 1 1 1 1 0 1 0 250 59 0 0 1 1 0 1 1 0 1 0 1 437
27 0 0 0 1 1 1 1 1 1 0 0 252 60 0 0 1 1 0 1 1 0 1 1 0 438
28 0 0 1 0 0 0 1 1 1 1 1 287 61 0 0 1 1 0 1 1 1 0 0 1 441
29 0 0 1 0 0 1 0 1 1 1 1 303 62 0 0 1 1 0 1 1 1 0 1 0 442
30 0 0 1 0 0 1 1 0 1 1 1 311 63 0 0 1 1 0 1 1 1 1 0 0 444
31 0 0 1 0 0 1 1 1 0 1 1 315 64 0 0 1 1 1 0 0 0 1 1 1 455
32 0 0 1 0 0 1 1 1 1 0 1 317 65 0 0 1 1 1 0 0 1 0 1 1 459
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Table 10.1 Continues
Sl. Scientists Binary Sl. Scientists Binary
No. a b c d e f g h i j k value No. a b c d e f g h i j k value
66 0 0 1 1 1 0 0 1 1 0 1 461 99 0 1 0 0 1 1 1 0 0 1 1 627
67 0 0 1 1 1 0 0 1 1 1 0 462 100 0 1 0 0 1 1 1 0 1 0 1 629
68 0 0 1 1 1 0 1 0 0 1 1 467 101 0 1 0 0 1 1 1 0 1 1 0 630
69 0 0 1 1 1 0 1 0 1 0 1 469 102 0 1 0 0 1 1 1 1 0 0 1 633
70 0 0 1 1 1 0 1 0 1 1 0 470 103 0 1 0 0 1 1 1 1 0 1 0 634
71 0 0 1 1 1 0 1 1 0 0 1 473 104 0 1 0 0 1 1 1 1 1 0 0 636
72 0 0 1 1 1 0 1 1 0 1 0 474 105 0 1 0 1 0 0 0 1 1 1 1 655
73 0 0 1 1 1 0 1 1 1 0 0 476 106 0 1 0 1 0 0 1 0 1 1 1 663
74 0 0 1 1 1 1 0 0 0 1 1 483 107 0 1 0 1 0 0 1 1 0 1 1 667
75 0 0 1 1 1 1 0 0 1 0 1 485 108 0 1 0 1 0 0 1 1 1 0 1 669
76 0 0 1 1 1 1 0 0 1 1 0 486 109 0 1 0 1 0 0 1 1 1 1 0 670
77 0 0 1 1 1 1 0 1 0 0 1 489 110 0 1 0 1 0 1 0 0 1 1 1 679
78 0 0 1 1 1 1 0 1 0 1 0 490 111 0 1 0 1 0 1 0 1 0 1 1 683
79 0 0 1 1 1 1 0 1 1 0 0 492 112 0 1 0 1 0 1 0 1 1 0 1 685
80 0 0 1 1 1 1 1 0 0 0 1 497 113 0 1 0 1 0 1 0 1 1 1 0 686
81 0 0 1 1 1 1 1 0 0 1 0 498 114 0 1 0 1 0 1 1 0 0 1 1 691
82 0 0 1 1 1 1 1 0 1 0 0 500 115 0 1 0 1 0 1 1 0 1 0 1 693
83 0 0 1 1 1 1 1 1 0 0 0 504 116 0 1 0 1 0 1 1 0 1 1 0 694
84 0 1 0 0 0 0 1 1 1 1 1 543 117 0 1 0 1 0 1 1 1 0 0 1 697
85 0 1 0 0 0 1 0 1 1 1 1 559 118 0 1 0 1 0 1 1 1 0 1 0 698
86 0 1 0 0 0 1 1 0 1 1 1 567 119 0 1 0 1 0 1 1 1 1 0 0 700
87 0 1 0 0 0 1 1 1 0 1 1 571 120 0 1 0 1 1 0 0 0 1 1 1 711
88 0 1 0 0 0 1 1 1 1 0 1 573 121 0 1 0 1 1 0 0 1 0 1 1 715
89 0 1 0 0 0 1 1 1 1 1 0 574 122 0 1 0 1 1 0 0 1 1 0 1 717
90 0 1 0 0 1 0 0 1 1 1 1 591 123 0 1 0 1 1 0 0 1 1 1 0 718
91 0 1 0 0 1 0 1 0 1 1 1 599 124 0 1 0 1 1 0 1 0 0 1 1 723
92 0 1 0 0 1 0 1 1 0 1 1 603 125 0 1 0 1 1 0 1 0 1 0 1 725
93 0 1 0 0 1 0 1 1 1 0 1 605 126 0 1 0 1 1 0 1 0 1 1 0 726
94 0 1 0 0 1 0 1 1 1 1 0 606 127 0 1 0 1 1 0 1 1 0 0 1 729
95 0 1 0 0 1 1 0 0 1 1 1 615 128 0 1 0 1 1 0 1 1 0 1 0 730
96 0 1 0 0 1 1 0 1 0 1 1 619 129 0 1 0 1 1 0 1 1 1 0 0 732
97 0 1 0 0 1 1 0 1 1 0 1 621 130 0 1 0 1 1 1 0 0 0 1 1 739
98 0 1 0 0 1 1 0 1 1 1 0 622 131 0 1 0 1 1 1 0 0 1 0 1 741
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Table 10.1 Continues
Sl. Scientists Binary Sl. Scientists Binary
No. a b c d e f g h i j k value No. a b c d e f g h i j k value
132 0 1 0 1 1 1 0 0 1 1 0 742 165 0 1 1 0 1 1 0 0 0 1 1 867
133 0 1 0 1 1 1 0 1 0 0 1 745 166 0 1 1 0 1 1 0 0 1 0 1 869
134 0 1 0 1 1 1 0 1 0 1 0 746 167 0 1 1 0 1 1 0 0 1 1 0 870
135 0 1 0 1 1 1 0 1 1 0 0 748 168 0 1 1 0 1 1 0 1 0 0 1 873
136 0 1 0 1 1 1 1 0 0 0 1 753 169 0 1 1 0 1 1 0 1 0 1 0 874
137 0 1 0 1 1 1 1 0 0 1 0 754 170 0 1 1 0 1 1 0 1 1 0 0 876
138 0 1 0 1 1 1 1 0 1 0 0 756 171 0 1 1 0 1 1 1 0 0 0 1 881
139 0 1 0 1 1 1 1 1 0 0 0 760 172 0 1 1 0 1 1 1 0 0 1 0 882
140 0 1 1 0 0 0 0 1 1 1 1 783 173 0 1 1 0 1 1 1 0 1 0 0 884
141 0 1 1 0 0 0 1 0 1 1 1 791 174 0 1 1 0 1 1 1 1 0 0 0 888
142 0 1 1 0 0 0 1 1 0 1 1 795 175 0 1 1 1 0 0 0 0 1 1 1 903
143 0 1 1 0 0 0 1 1 1 0 1 797 176 0 1 1 1 0 0 0 1 0 1 1 907
144 0 1 1 0 0 0 1 1 1 1 0 798 177 0 1 1 1 0 0 0 1 1 0 1 909
145 0 1 1 0 0 1 0 0 1 1 1 807 178 0 1 1 1 0 0 0 1 1 1 0 910
146 0 1 1 0 0 1 0 1 0 1 1 811 179 0 1 1 1 0 0 1 0 0 1 1 915
147 0 1 1 0 0 1 0 1 1 0 1 813 180 0 1 1 1 0 0 1 0 1 0 1 917
148 0 1 1 0 0 1 0 1 1 1 0 814 181 0 1 1 1 0 0 1 0 1 1 0 918
149 0 1 1 0 0 1 1 0 0 1 1 819 182 0 1 1 1 0 0 1 1 0 0 1 921
150 0 1 1 0 0 1 1 0 1 0 1 821 183 0 1 1 1 0 0 1 1 0 1 0 922
151 0 1 1 0 0 1 1 0 1 1 0 822 184 0 1 1 1 0 0 1 1 1 0 0 924
152 0 1 1 0 0 1 1 1 0 0 1 825 185 0 1 1 1 0 1 0 0 0 1 1 931
153 0 1 1 0 0 1 1 1 0 1 0 826 186 0 1 1 1 0 1 0 0 1 0 1 933
154 0 1 1 0 0 1 1 1 1 0 0 828 187 0 1 1 1 0 1 0 0 1 1 0 934
155 0 1 1 0 1 0 0 0 1 1 1 839 188 0 1 1 1 0 1 0 1 0 0 1 937
156 0 1 1 0 1 0 0 1 0 1 1 843 189 0 1 1 1 0 1 0 1 0 1 0 938
157 0 1 1 0 1 0 0 1 1 0 1 845 190 0 1 1 1 0 1 0 1 1 0 0 940
158 0 1 1 0 1 0 0 1 1 1 0 846 191 0 1 1 1 0 1 1 0 0 0 1 945
159 0 1 1 0 1 0 1 0 0 1 1 851 192 0 1 1 1 0 1 1 0 0 1 0 946
160 0 1 1 0 1 0 1 0 1 0 1 853 193 0 1 1 1 0 1 1 0 1 0 0 948
161 0 1 1 0 1 0 1 0 1 1 0 854 194 0 1 1 1 0 1 1 1 0 0 0 952
162 0 1 1 0 1 0 1 1 0 0 1 857 195 0 1 1 1 1 0 0 0 0 1 1 963
163 0 1 1 0 1 0 1 1 0 1 0 858 196 0 1 1 1 1 0 0 0 1 0 1 965
164 0 1 1 0 1 0 1 1 1 0 0 860 197 0 1 1 1 1 0 0 0 1 1 0 966
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Table 10.1 Continues
Sl. Scientists Binary Sl. Scientists Binary
No. a b c d e f g h i j k value No. a b c d e f g h i j k value
199 0 1 1 1 1 0 0 1 0 1 0 970 231 1 0 0 1 0 0 0 1 1 1 1 1167
198 0 1 1 1 1 0 0 1 0 0 1 969 232 1 0 0 1 0 0 1 0 1 1 1 1175
200 0 1 1 1 1 0 0 1 1 0 0 972 233 1 0 0 1 0 0 1 1 0 1 1 1179
201 0 1 1 1 1 0 1 0 0 0 1 977 234 1 0 0 1 0 0 1 1 1 0 1 1181
202 0 1 1 1 1 0 1 0 0 1 0 978 235 1 0 0 1 0 0 1 1 1 1 0 1182
203 0 1 1 1 1 0 1 0 1 0 0 980 236 1 0 0 1 0 1 0 0 1 1 1 1191
204 0 1 1 1 1 0 1 1 0 0 0 984 237 1 0 0 1 0 1 0 1 0 1 1 1195
205 0 1 1 1 1 1 0 0 0 0 1 993 238 1 0 0 1 0 1 0 1 1 0 1 1197
206 0 1 1 1 1 1 0 0 0 1 0 994 239 1 0 0 1 0 1 0 1 1 1 0 1198
207 0 1 1 1 1 1 0 0 1 0 0 996 240 1 0 0 1 0 1 1 0 0 1 1 1203
208 0 1 1 1 1 1 0 1 0 0 0 1000 241 1 0 0 1 0 1 1 0 1 0 1 1205
209 0 1 1 1 1 1 1 0 0 0 0 1008 242 1 0 0 1 0 1 1 0 1 1 0 1206
210 1 0 0 0 0 0 1 1 1 1 1 1055 243 1 0 0 1 0 1 1 1 0 0 1 1209
211 1 0 0 0 0 1 0 1 1 1 1 1071 244 1 0 0 1 0 1 1 1 0 1 0 1210
212 1 0 0 0 0 1 1 0 1 1 1 1079 245 1 0 0 1 0 1 1 1 1 0 0 1212
213 1 0 0 0 0 1 1 1 0 1 1 1083 246 1 0 0 1 1 0 0 0 1 1 1 1223
214 1 0 0 0 0 1 1 1 1 0 1 1085 247 1 0 0 1 1 0 0 1 0 1 1 1227
215 1 0 0 0 0 1 1 1 1 1 0 1086 248 1 0 0 1 1 0 0 1 1 0 1 1229
216 1 0 0 0 1 0 0 1 1 1 1 1103 249 1 0 0 1 1 0 0 1 1 1 0 1230
217 1 0 0 0 1 0 1 0 1 1 1 1111 250 1 0 0 1 1 0 1 0 0 1 1 1235
218 1 0 0 0 1 0 1 1 0 1 1 1115 251 1 0 0 1 1 0 1 0 1 0 1 1237
219 1 0 0 0 1 0 1 1 1 0 1 1117 252 1 0 0 1 1 0 1 0 1 1 0 1238
220 1 0 0 0 1 0 1 1 1 1 0 1118 253 1 0 0 1 1 0 1 1 0 0 1 1241
221 1 0 0 0 1 1 0 0 1 1 1 1127 254 1 0 0 1 1 0 1 1 0 1 0 1242
222 1 0 0 0 1 1 0 1 0 1 1 1131 255 1 0 0 1 1 0 1 1 1 0 0 1244
223 1 0 0 0 1 1 0 1 1 0 1 1133 256 1 0 0 1 1 1 0 0 0 1 1 1251
224 1 0 0 0 1 1 0 1 1 1 0 1134 257 1 0 0 1 1 1 0 0 1 0 1 1253
225 1 0 0 0 1 1 1 0 0 1 1 1139 258 1 0 0 1 1 1 0 0 1 1 0 1254
226 1 0 0 0 1 1 1 0 1 0 1 1141 259 1 0 0 1 1 1 0 1 0 0 1 1257
227 1 0 0 0 1 1 1 0 1 1 0 1142 260 1 0 0 1 1 1 0 1 0 1 0 1258
228 1 0 0 0 1 1 1 1 0 0 1 1145 261 1 0 0 1 1 1 0 1 1 0 0 1260
229 1 0 0 0 1 1 1 1 0 1 0 1146 262 1 0 0 1 1 1 1 0 0 0 1 1265
230 1 0 0 0 1 1 1 1 1 0 0 1148 263 1 0 0 1 1 1 1 0 0 1 0 1266
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Table 10.1 Continues
Sl. Scientists Binary Sl. Scientists Binary
No. a b c d e f g h i j k value No. a b c d e f g h i j k value
264 1 0 0 1 1 1 1 0 1 0 0 1268 297 1 0 1 0 1 1 1 0 0 0 1 1393
265 1 0 0 1 1 1 1 1 0 0 0 1272 298 1 0 1 0 1 1 1 0 0 1 0 1394
266 1 0 1 0 0 0 0 1 1 1 1 1295 299 1 0 1 0 1 1 1 0 1 0 0 1396
267 1 0 1 0 0 0 1 0 1 1 1 1303 300 1 0 1 0 1 1 1 1 0 0 0 1400
268 1 0 1 0 0 0 1 1 0 1 1 1307 301 1 0 1 1 0 0 0 0 1 1 1 1415
269 1 0 1 0 0 0 1 1 1 0 1 1309 302 1 0 1 1 0 0 0 1 0 1 1 1419
270 1 0 1 0 0 0 1 1 1 1 0 1310 303 1 0 1 1 0 0 0 1 1 0 1 1421
271 1 0 1 0 0 1 0 0 1 1 1 1319 304 1 0 1 1 0 0 0 1 1 1 0 1422
272 1 0 1 0 0 1 0 1 0 1 1 1323 305 1 0 1 1 0 0 1 0 0 1 1 1427
273 1 0 1 0 0 1 0 1 1 0 1 1325 306 1 0 1 1 0 0 1 0 1 0 1 1429
274 1 0 1 0 0 1 0 1 1 1 0 1326 307 1 0 1 1 0 0 1 0 1 1 0 1430
275 1 0 1 0 0 1 1 0 0 1 1 1331 308 1 0 1 1 0 0 1 1 0 0 1 1433
276 1 0 1 0 0 1 1 0 1 0 1 1333 309 1 0 1 1 0 0 1 1 0 1 0 1434
277 1 0 1 0 0 1 1 0 1 1 0 1334 310 1 0 1 1 0 0 1 1 1 0 0 1436
278 1 0 1 0 0 1 1 1 0 0 1 1337 311 1 0 1 1 0 1 0 0 0 1 1 1443
279 1 0 1 0 0 1 1 1 0 1 0 1338 312 1 0 1 1 0 1 0 0 1 0 1 1445
280 1 0 1 0 0 1 1 1 1 0 0 1340 313 1 0 1 1 0 1 0 0 1 1 0 1446
281 1 0 1 0 1 0 0 0 1 1 1 1351 314 1 0 1 1 0 1 0 1 0 0 1 1449
282 1 0 1 0 1 0 0 1 0 1 1 1355 315 1 0 1 1 0 1 0 1 0 1 0 1450
283 1 0 1 0 1 0 0 1 1 0 1 1357 316 1 0 1 1 0 1 0 1 1 0 0 1452
284 1 0 1 0 1 0 0 1 1 1 0 1358 317 1 0 1 1 0 1 1 0 0 0 1 1457
285 1 0 1 0 1 0 1 0 0 1 1 1363 318 1 0 1 1 0 1 1 0 0 1 0 1458
286 1 0 1 0 1 0 1 0 1 0 1 1365 319 1 0 1 1 0 1 1 0 1 0 0 1460
287 1 0 1 0 1 0 1 0 1 1 0 1366 320 1 0 1 1 0 1 1 1 0 0 0 1464
288 1 0 1 0 1 0 1 1 0 0 1 1369 321 1 0 1 1 1 0 0 0 0 1 1 1475
289 1 0 1 0 1 0 1 1 0 1 0 1370 322 1 0 1 1 1 0 0 0 1 0 1 1477
290 1 0 1 0 1 0 1 1 1 0 0 1372 323 1 0 1 1 1 0 0 0 1 1 0 1478
291 1 0 1 0 1 1 0 0 0 1 1 1379 324 1 0 1 1 1 0 0 1 0 0 1 1481
292 1 0 1 0 1 1 0 0 1 0 1 1381 325 1 0 1 1 1 0 0 1 0 1 0 1482
293 1 0 1 0 1 1 0 0 1 1 0 1382 326 1 0 1 1 1 0 0 1 1 0 0 1484
294 1 0 1 0 1 1 0 1 0 0 1 1385 327 1 0 1 1 1 0 1 0 0 0 1 1489
295 1 0 1 0 1 1 0 1 0 1 0 1386 328 1 0 1 1 1 0 1 0 0 1 0 1490
296 1 0 1 0 1 1 0 1 1 0 0 1388 329 1 0 1 1 1 0 1 0 1 0 0 1492
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Table 10.1 Continues
Sl. Scientists Binary Sl. Scientists Binary
No. a b c d e f g h i j k value No. a b c d e f g h i j k value
330 1 0 1 1 1 0 1 1 0 0 0 1496 363 1 1 0 0 1 1 0 0 1 1 0 1638
331 1 0 1 1 1 1 0 0 0 0 1 1505 364 1 1 0 0 1 1 0 1 0 0 1 1641
332 1 0 1 1 1 1 0 0 0 1 0 1506 365 1 1 0 0 1 1 0 1 0 1 0 1642
333 1 0 1 1 1 1 0 0 1 0 0 1508 366 1 1 0 0 1 1 0 1 1 0 0 1644
334 1 0 1 1 1 1 0 1 0 0 0 1512 367 1 1 0 0 1 1 1 0 0 0 1 1649
335 1 0 1 1 1 1 1 0 0 0 0 1520 368 1 1 0 0 1 1 1 0 0 1 0 1650
336 1 1 0 0 0 0 0 1 1 1 1 1551 369 1 1 0 0 1 1 1 0 1 0 0 1652
337 1 1 0 0 0 0 1 0 1 1 1 1559 370 1 1 0 0 1 1 1 1 0 0 0 1656
338 1 1 0 0 0 0 1 1 0 1 1 1563 371 1 1 0 1 0 0 0 0 1 1 1 1671
339 1 1 0 0 0 0 1 1 1 0 1 1565 372 1 1 0 1 0 0 0 1 0 1 1 1675
340 1 1 0 0 0 0 1 1 1 1 0 1566 373 1 1 0 1 0 0 0 1 1 0 1 1677
341 1 1 0 0 0 1 0 0 1 1 1 1575 374 1 1 0 1 0 0 0 1 1 1 0 1678
342 1 1 0 0 0 1 0 1 0 1 1 1579 375 1 1 0 1 0 0 1 0 0 1 1 1683
343 1 1 0 0 0 1 0 1 1 0 1 1581 376 1 1 0 1 0 0 1 0 1 0 1 1685
344 1 1 0 0 0 1 0 1 1 1 0 1582 377 1 1 0 1 0 0 1 0 1 1 0 1686
345 1 1 0 0 0 1 1 0 0 1 1 1587 378 1 1 0 1 0 0 1 1 0 0 1 1689
346 1 1 0 0 0 1 1 0 1 0 1 1589 379 1 1 0 1 0 0 1 1 0 1 0 1690
347 1 1 0 0 0 1 1 0 1 1 0 1590 380 1 1 0 1 0 0 1 1 1 0 0 1692
348 1 1 0 0 0 1 1 1 0 0 1 1593 381 1 1 0 1 0 1 0 0 0 1 1 1699
349 1 1 0 0 0 1 1 1 0 1 0 1594 382 1 1 0 1 0 1 0 0 1 0 1 1701
350 1 1 0 0 0 1 1 1 1 0 0 1596 383 1 1 0 1 0 1 0 0 1 1 0 1702
351 1 1 0 0 1 0 0 0 1 1 1 1607 384 1 1 0 1 0 1 0 1 0 0 1 1705
352 1 1 0 0 1 0 0 1 0 1 1 1611 385 1 1 0 1 0 1 0 1 0 1 0 1706
353 1 1 0 0 1 0 0 1 1 0 1 1613 386 1 1 0 1 0 1 0 1 1 0 0 1708
354 1 1 0 0 1 0 0 1 1 1 0 1614 387 1 1 0 1 0 1 1 0 0 0 1 1713
355 1 1 0 0 1 0 1 0 0 1 1 1619 388 1 1 0 1 0 1 1 0 0 1 0 1714
356 1 1 0 0 1 0 1 0 1 0 1 1621 389 1 1 0 1 0 1 1 0 1 0 0 1716
357 1 1 0 0 1 0 1 0 1 1 0 1622 390 1 1 0 1 0 1 1 1 0 0 0 1720
358 1 1 0 0 1 0 1 1 0 0 1 1625 391 1 1 0 1 1 0 0 0 0 1 1 1731
359 1 1 0 0 1 0 1 1 0 1 0 1626 392 1 1 0 1 1 0 0 0 1 0 1 1733
360 1 1 0 0 1 0 1 1 1 0 0 1628 393 1 1 0 1 1 0 0 0 1 1 0 1734
361 1 1 0 0 1 1 0 0 0 1 1 1635 394 1 1 0 1 1 0 0 1 0 0 1 1737
362 1 1 0 0 1 1 0 0 1 0 1 1637 395 1 1 0 1 1 0 0 1 0 1 0 1738
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Table 10.1 Continues
Sl. Scientists Binary Sl. Scientists Binary
No. a b c d e f g h i j k value No. a b c d e f g h i j k value
396 1 1 0 1 1 0 0 1 1 0 0 1740 429 1 1 1 0 1 0 0 1 0 0 1 1865
397 1 1 0 1 1 0 1 0 0 0 1 1745 430 1 1 1 0 1 0 0 1 0 1 0 1866
398 1 1 0 1 1 0 1 0 0 1 0 1746 431 1 1 1 0 1 0 0 1 1 0 0 1868
399 1 1 0 1 1 0 1 0 1 0 0 1748 432 1 1 1 0 1 0 1 0 0 0 1 1873
400 1 1 0 1 1 0 1 1 0 0 0 1752 433 1 1 1 0 1 0 1 0 0 1 0 1874
401 1 1 0 1 1 1 0 0 0 0 1 1761 434 1 1 1 0 1 0 1 0 1 0 0 1876
402 1 1 0 1 1 1 0 0 0 1 0 1762 435 1 1 1 0 1 0 1 1 0 0 0 1880
403 1 1 0 1 1 1 0 0 1 0 0 1764 436 1 1 1 0 1 1 0 0 0 0 1 1889
404 1 1 0 1 1 1 0 1 0 0 0 1768 437 1 1 1 0 1 1 0 0 0 1 0 1890
405 1 1 0 1 1 1 1 0 0 0 0 1776 438 1 1 1 0 1 1 0 0 1 0 0 1892
406 1 1 1 0 0 0 0 0 1 1 1 1799 439 1 1 1 0 1 1 0 1 0 0 0 1896
407 1 1 1 0 0 0 0 1 0 1 1 1803 440 1 1 1 0 1 1 1 0 0 0 0 1904
408 1 1 1 0 0 0 0 1 1 0 1 1805 441 1 1 1 1 0 0 0 0 0 1 1 1923
409 1 1 1 0 0 0 0 1 1 1 0 1806 442 1 1 1 1 0 0 0 0 1 0 1 1925
410 1 1 1 0 0 0 1 0 0 1 1 1811 443 1 1 1 1 0 0 0 0 1 1 0 1926
411 1 1 1 0 0 0 1 0 1 0 1 1813 444 1 1 1 1 0 0 0 1 0 0 1 1929
412 1 1 1 0 0 0 1 0 1 1 0 1814 445 1 1 1 1 0 0 0 1 0 1 0 1930
413 1 1 1 0 0 0 1 1 0 0 1 1817 446 1 1 1 1 0 0 0 1 1 0 0 1932
414 1 1 1 0 0 0 1 1 0 1 0 1818 447 1 1 1 1 0 0 1 0 0 0 1 1937
415 1 1 1 0 0 0 1 1 1 0 0 1820 448 1 1 1 1 0 0 1 0 0 1 0 1938
416 1 1 1 0 0 1 0 0 0 1 1 1827 449 1 1 1 1 0 0 1 0 1 0 0 1940
417 1 1 1 0 0 1 0 0 1 0 1 1829 450 1 1 1 1 0 0 1 1 0 0 0 1944
418 1 1 1 0 0 1 0 0 1 1 0 1830 451 1 1 1 1 0 1 0 0 0 0 1 1953
419 1 1 1 0 0 1 0 1 0 0 1 1833 452 1 1 1 1 0 1 0 0 0 1 0 1954
420 1 1 1 0 0 1 0 1 0 1 0 1834 453 1 1 1 1 0 1 0 0 1 0 0 1956
421 1 1 1 0 0 1 0 1 1 0 0 1836 454 1 1 1 1 0 1 0 1 0 0 0 1960
422 1 1 1 0 0 1 1 0 0 0 1 1841 455 1 1 1 1 0 1 1 0 0 0 0 1968
423 1 1 1 0 0 1 1 0 0 1 0 1842 456 1 1 1 1 1 0 0 0 0 0 1 1985
424 1 1 1 0 0 1 1 0 1 0 0 1844 457 1 1 1 1 1 0 0 0 0 1 0 1986
425 1 1 1 0 0 1 1 1 0 0 0 1848 458 1 1 1 1 1 0 0 0 1 0 0 1988
426 1 1 1 0 1 0 0 0 0 1 1 1859 459 1 1 1 1 1 0 0 1 0 0 0 1992
427 1 1 1 0 1 0 0 0 1 0 1 1861 460 1 1 1 1 1 0 1 0 0 0 0 2000
428 1 1 1 0 1 0 0 0 1 1 0 1862 461 1 1 1 1 1 1 0 0 0 0 0 2016
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The Extended Euclidean Algorithm 2

Suppose a and b are positive integers and d be their greatest

common divisor. We know that the g.c.d can be written as a 4

linear combination of the numbers. S, there exists integers x and

y, such that, 6

ax+ by = d (10.1)

It may be noted that, except in some trivial cases, x and y will be 8

of opposite signs. If x and y satisfies equation (10.1), so is (x+qb)

and (y−qa), for any integer q. So, one can always find integers x 10

any y, with x > 0 and y < 0, which satisfies the equation (10.1).

The Extended Euclidean Algorithm will calculate d, and also 12

two integers x and y, such that ax+by = d at the same time. This

explains why the resulting procedure is known as the Extended 14

Euclidean Algorithm. The version of the algorithm we present

here is the creation of D. E. Knuth, author of the famous book 16

The Art of Computer Programming. The Algorithm can be found

in volume 2 of the series; (see Knuth [40]. section 4.5.2, algorithm 18

X.)
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Algorithm 10.1 (Extended Euclidean Algorithm)

Input : Two positive integers a and b.2

Output: Three integers d, x, and y such that equation (10.1) holds

good.4

Step 1. Initialize x = 0, y = 1

c = a, d = b

Step 2. Repeat

r = c (mod d)

q = (c− r)/d
if (r = 0) GO TO Step 3.

t = x

x = y − x ∗ q
y = t

c = d

d = r

Step 3. y = (d− a ∗ x)/b

Step 4. The numbers x and y satisfies

ax+ by = d = G.C.D(a, b)

If G.C.D(a, b) = 1, then ax+by = d becomes ax ≡ 1 (mod b)

and by ≡ 1 (mod a). So, a−1 ≡ x (mod b), as well as b−1 ≡ y6

(mod a). We can use the above algorithm to find out the inverse,

whenever it exists.8

Example 10.1

Let us find the inverse of 655 (mod 1234), 655−1 (mod 1234)10
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The following table shows the values of the variables r, q, and

x at 3rd line in each iteration of Step 2. 2

Step 3 evaluates y = 341, which is the inverse of 655 (mod 1234).

Table 10.2: Illustration of Extended Euclidean Algorithm

Iteration Remainders Quotients
Number (r) (q) (x)

1 579 1 0
2 76 1 1
3 47 7 -1
4 29 1 8
5 18 1 -9
6 11 1 17
7 7 1 -26
8 4 1 43
9 3 1 -69

10 1 1 112
11 0 3 -181

4
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1. Uniform Secret Sharing Schemes for (2, n) Threshold
Using Visual Cryptography:
International Journal of Information Processing,
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2. International Conference held at I.I.T., Kanpur. The paper is available
in the web-site of the conference at pages: 33 to 37. The URL is
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Accepted Papers:
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SYNOPSIS of the Ph. D. thesis

Submitted by
A. Sreekumar, Research Scholar (Part-time),

Department of Computer Applications,
Cochin University of Science and Technology,

Under the guidance of
Professor, Dr. S. Babusundar

Topic: CRYPTOGRAPHY

Title: Secret Sharing Schemes using Visual Cryptography

1. Introduction

Handling secret has been an issue of prominence from the

time human beings started to live together. Important things and

messages have been always there to be preserved and protected

from possible misuse or loss. Some time secret is thought to

be secure in a single hand and at other times it is thought to

be secure when shared in many hands. Some of the formulae

of vital combinations of medicinal plants or roots or leaves, in
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Ayurveda were known to a single person in a family. When he

becomes old enough, he would rather share the secret formula

to a chosen person from the family, or from among his disciples.

There were times when the person with the secret dies before he

could share the secret. Probably, similar incidents might have

made the genius of those era to think of sharing the secrets with

more than one person so that in the event of death of the present

custodian, there will be at least one other person who knows the

secret.

Secret sharing in other forms were prevailing in the past, for

other reasons also. Secrets were divided into number of pieces

and given to the same number of people. To ensure unity among

the participating people, the head of the family would share the

information with respect to wealth among his children and insist

that after his death, they all should join together to inherit the

wealth.

To test the valor of the youth of a nation, a king, would hide

treasure in some place in his kingdom and information about it

would be placed in pieces at different places of varying grades

of difficulty to reach. Only the brave and the intelligent would

reach the treasure.

Military and defense secrets have been the subject matter for

secret sharing in the past as well as in the modern days. Secret

sharing is a very hot area of research in Computer Science in
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the recent past. Digital media has replaced almost all forms of

communication and information preservation and processing. Se-

curity in digital media has been a matter of serious concern. This

has resulted in the development of encryption and cryptography.

Uniform secret sharing schemes form a part of this large study.

1.1 Definition: A Secret sharing scheme is a method of dividing

a secret information into two or more pieces, with or without

modifications, and retrieving the information by combining all or

predefined sub collection of pieces.

The pieces of information are called shares and the process

responsible for the division is called dealer. A predefined sub

collection of shares which contains the whole secret in some form

is called an allowed coalition. The process responsible for the

recovery of the secret information from an allowed coalition is

called a combiner.

A share contains, logically, a part of the information, but

will be of no use. Thus no single share is of any threat to the

confidentiality of the secret information. It is also envisaged

that after the dealer process is over, the original information can

be destroyed forever. This would mean that even the person

responsible for the dealer process will not be a threat, thereafter.

The secret information is recovered from any allowed coalition

using the recovery process called combiner. The combiner would

be able to recover the secret information, only if, all shares in
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the allowed coalition is present and not with any fewer number

of shares. Thus, in an allowed coalition, each member share is

equally important such that without anyone of them, the secret

information cannot be accessed.

Allowed coalition is also referred in the literature by other

names too, such as, authentic collection, qualified collection

or authorized set. We, in our work, preferred to call the sub

collection of shares as allowed coalition.

Secret Sharing is an important tool in Security and Cryptog-

raphy. In many cases there is a single master key that provides

the access to important secret information. Therefore, it would

be desirable to keep the master key in a safe place to avoid

accidental and malicious exposure. This scheme is unreliable: if

master key is lost or destroyed, then all information accessed by

the master key is no longer available. A possible solution would

be that of storing copies of the key in different safe places or giving

copies to trusted people. In such a case the system becomes

more vulnerable to security breaches or betrayal [53], [30]. A

better solution would be, breaking the master key into pieces

in such a way that only the concurrence of certain predefined

trusted people can recover it. This has proven to be an important

tool in management of cryptographic keys and multi-party secure

protocols (see for example [33]).

As a solution to this problem, Blakley [9] and Shamir [53]

introduced (k, n) threshold schemes. A (k, n) threshold scheme
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allows a secret to be shared among n participants, in such a way

that, any k of them can recover the secret, but k − 1, or fewer,

have absolutely no information on the secret.

Ito, Saito, and Nishizeki [36] described a more general method

of secret sharing. An access structure is a specification of all

subsets of participants who can recover the secret and it is said

to be monotone if any set which contains a subset that can

recover the secret, can itself recover the secret. Ito, Saito, and

Nishizeki gave a methodology to realize secret sharing schemes

for arbitrary monotone access structures. Subsequently, Benaloh

and Leichter [5] gave a simpler and more efficient way to realize

such schemes.

An important issue in the implementation of secret sharing

scheme is the size of the shares distributed to the participants,

since the security of a system degrades as the amount of the

information that must be kept secret increases. So the size of the

shares given to the participants is a key point in the design of

secret sharing schemes. Therefore, one of the main parameters

in secret sharing is, the average information rate ρ, of the

scheme, which is defined as the ratio between the average length

(in bits) of the shares given to the participants and the length

of the secret. Unfortunately, in all secret sharing schemes the

size of the shares cannot be less than the size of the secret,

and so the information rate cannot be less than one. Moreover,

there are access structures, for which, any corresponding secret
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sharing scheme must give to some participant a share of size

strictly bigger than the secret size. Secret sharing schemes with

information rate equal to one are called ideal. A secret sharing

scheme is called efficient if the total length of the n shares is

polynomial in n.

2. Model of secret sharing

A common model of secret sharing has two phases. In the

initialization phase, a trusted entity - the dealer, divides the

secret information into shares and distributes the shares by secure

means. In the reconstruction phase one of the allowed coalition

submit their shares to a combiner, who reconstructs the secret. It

is assumed that the combiner is an algorithm which only performs

the task of reconstructing the secret. Various Secret Sharing

Schemes have been proposed since 1979. The following are some

of the known schemes:

1. Blakley’s scheme using projective spaces over finite fields

GF(q)

2. Simmons’ scheme in terms of affine spaces

3. Shamir’s scheme based on polynomial interpolation over

finite fields.

In most of the schemes, when a great number of participants are

involved, the scheme will become impractical. In the traditional
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Secret Sharing Schemes, a shared secret information cannot be

revealed without any cryptographic computations.

2.1 Visual Cryptography There are various connections be-

tween combinatorial structures and secret sharing. For example,

a (2, 3) threshold scheme can be implemented based on a small

Latin square. In 1994, Naor and Shamir invented a new type of

secret sharing scheme, called Visual Cryptography scheme [48].

In secret sharing schemes using Visual Cryptography, a shared

secret information (printed text, handwritten notes, pictures,

etc.) can be revealed without any cryptographic computations.

For example, in a (k, n) visual cryptography scheme, a dealer

encodes a secret into n shares and gives each participant a share,

where each share is a transparency. The secret is visible if any k

(or more) of participants stack their transparencies together, but

none can see the shared secret if fewer than k transparencies are

stacked together.

3. Problem specification

Secret sharing is one of the cryptographic techniques provid-

ing security measures to protect information. Due to difficulty

of finding a general solution, those problems have been studied

in several particular cases, and several sharing schemes have

been proposed. So this particular work focuses on a generalized

scheme, for at least some values of k, which works with any

number of participants.
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4. Objective and scope of this Research

Most of the business organizations need to protect data from

disclosure. As the world is more connected by computers, the

hackers, power abusers have also increased, and most organi-

zations are afraid to store data in a computer. So there is a

need of a method to distribute the data at several places and

destroy the original one. When a need of original data arises, it

could be reconstructed from the distributed shares. The primitive

objective of this research is to provide a solution to this problem.

5. Contribution of the Thesis

The research work provides a better mechanism for secure

storage of information. The thesis work proceeds into three

phases.

1. The first phase deals with studies and findings in the area

of secret sharing.

2. The second phase of the work relates to investigating new

structures suitable for specific applications.

3. The third phase deals with the mathematical proofs of the

new findings.

6. Design of the scheme

In this research work, we considered a special type of codes,

called Uniform Codes to propose sharing schemes. A string of 0s
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and 1s is called a uniform code, if the number of 1’s is either equal

to or one more than the number of 0’s. For example, 011010 and

1101001 are uniform codes where as 001 and 110110 are not. It

can be seen that, if the length of a binary string is w, then the

number of codes having length w, and having t 1’s is

(
w
t

)
.

For a given w, this number is maximum when t =
⌊

n
2

⌋
, the

integer part of n
2
. So the maximum number of codes with a given

length occurs when they are uniform. Four efficient threshold

schemes are proposed based on Modified Visual Cryptography

introduced in 2002. All the schemes are based on the uniform

codes. The first scheme proposed is an efficient (2, n) threshold

scheme. This scheme provides an efficient way to hide a secret

information in different shares, in which the size of the shares is

just in O(log2 n) times the original secret size, where n is the

number of participants. The second scheme is a (3, n) threshold

scheme in which the size of the shares is just in O(n) times the

original secret size, where n is the number of participants. The

third scheme is (n − 1, n) threshold scheme in which the size

of the share is in O(n/2). We have generalized the concept of

Uniform code by relaxing the constraints, and introduced a new

number system, called Permutation Ordered Number System (or

POB-Number system). The system has two parameters. We have

developed some algorithms for efficiently representing the usual

numbers in the new system, and vice-versa. Finally we found

that a certain class of binary strings can be decomposed in the
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class of balanced strings, and Uniform Codes. By using the POB-

Number system, we can represent Uniform codes and balanced

strings effectively. We exploit this property, and developed an

efficient sharing algorithm in which the size of the share is less

than the size of the secret. We have come across the following

finding: Let w be an even parity string and n1(w) denotes the

number of 1’s in a binary string w of length t. Then w can be

written as w = S1⊕S2⊕. . .⊕Sn,, where, Si is a Uniform Code, for

each i = 1, 2, . . . , n. Here ⊕ is the usual bitwise XOR operation.

We have developed all the algorithms and illustrated them with

appropriate examples. This scheme is very efficient, as the size

of the share is less than the size of the original secret, in which

we have a gain of 1/8.

7. Content of the thesis

The thesis is presented in 10 chapters. We have taken care

to provide a good account of the literature survey and the

theoretical background of the topic of study. All the details of

the development of the newly proposed algorithms and the proofs

of the claim are also included. Some of the algorithms have been

presented, either in full or in parts, in conferences and journals.

An account of these publications are also included.

The first chapter deals with the introduction. It contains the

sketch of the development and progress of the topic of study.

The Second chapter deals with history and literature survey.
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The Third chapter deals with the visual cryptography and its

examples.

The Fourth chapter deals with modified cryptography.

The next four chapters deal with the solutions proposed by

us, which is our contribution to this area of study. The findings

are presented in conferences and others are either published or

accepted for publication in journals. One of our research paper is

published in the International Journal of Information Processing,

Volume 2, Number 4, 2008 pp 82-87.

Another two papers are accepted for publication, and will be

published within one month. A fifth paper is communicated for

publication. The result is awaited. The details are included in

the thesis

As a good by-product of this research work, we have developed

a new number system. It is named as Permutation Oriented

Binary Number System (POB-number system). In an Inter-

national Conference at I.I.T., Kanpur, we have presented this

part of the research work. The paper was one among the eleven

selected papers out of a total of 40 research papers, submitted, in

the areas of Cryptography and Network Security. We are happy

to say that, our paper was ranked fourth among the 10 papers

presented there. The paper is available in the web-site of the

conference at pages: 33 to 37. The url is

http://www.security.iitk.ac.in/hack.in/2009/repository/proceedings hack.in.pdf
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The Ninth chapter deals with the most important result we have
achieved. We have developed an algorithm, in which the secret could
be shared among n participants with a single allowed coalition such
that the size of the share is less the size of the secret message. The
final chapter deals with the probable direction of future research work
in this area.
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