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Abstract

We present a novel approach to computing the orientation moments and rheological

properties of a dilute suspension of spheroids in a simple shear flow at arbitrary Peclct

number based on a generalised Langevin equation method. This method differs from

the diffusion equation method which is commonly used to model similar systems in that

the actual equations of motion for the orientations of the individual particles are used

in the computations, instead of a solution of the diffusion equation of the system. It

also differs from the method of 'Brownian dynamics simulations' in that the equations

used for the simulations are deterministic differential equations even in the presence of

noise, and not stochastic differential equations as in Brownian dynamics simulations.

One advantage of the present approach over the Fokker-Planck equation formalism is

that it employs a common strategy that can be applied across a wide range of shear and

diffusion parameters. Also, since deterministic differential equations are easier to sim­

ulate than stochastic differential equations, the Langevin equation method presented in

this work is more efficient and less computationally intensive than Brownian dynamics

simulations.

We derive the Langevin equations governing the orientations of the particles in the

suspension and evolve a procedure for obtaining the equation of motion for any orien­

tation moment. A computational technique is described for simulating the orientation

moments dynamically from a set of time-averaged Langevin equations, which can be

used to obtain the moments when the governing equations are harder to solve analyti­

cally. The results obtained using this method are in good agreement with those available

in the literature.

The above computational method is also used to investigate the effect of rotational

Brownian motion on the rheology of the suspension under the action of an external force



field. The force field is assumed to be either constant or periodic. In the case of con-
I

stant external fields earlier results in the literature are reproduced, while for the case of

periodic forcing certain parametric regimes corresponding to weak Brownian diffusion

are identified where the rheological parameters evolve chaotically and settle onto a low

dimensional attractor. The response of the system to variations in the magnitude and

orientation of the force field and strength of diffusion is also analyzed through numer­

ical experiments. It is also demonstrated that the aperiodic behaviour exhibited by the

system could not have been picked up by the diffusion equation approach as presently

used in the literature.

The main contributions of this work include the preparation of the basic framework

for applying the Langevin method to standard flow problems, quantification of rotary

Brownian effects by using the new method, the paired-moment scheme for computing

the moments and its use in solving an otherwise intractable problem especially in the

limit of small Brownian motion where the problem becomes singular, and a demonstra­

tion of how systems governed by a Fokker-Planck equation can be explored for possible

chaotic behaviour.
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CHAPTER 1

Introduction

1.1 Overview

In this work we study the orientation dynamics and rheological properties of orientable

particles suspended in a simple shear flow using a novel computational technique based

on an extension of the traditional Langevin equation formalism. The particles are as­

sumed to possess a dipole moment in which case an external force field can influence

their orientation behaviour. The study will be limited to dilute suspensions only, imply­

ing that particle-particle interactions are neglected. The thrust of the analysis will be in

the use of the Langevin method for including the effects of rotational Brownian motion._------------'"
in both the dynamics and the rheology of the suspension and exploring how Brownian

diffusion affects the orientational as well as viscometric properties of the suspension.

Suspensions are two phase systems consisting of discrete solid particles distributed

in a continuous fluid medium. Common examples of this include industrial slurries,

cements, ceramics, paints, printing inks, drilling muds and many processed foods. Of

particular importance to our study are suspensions of orientable particles, in which the

orientations of the particles are as important a factor affecting the bulk suspension prop­

erties as their nature and spatial distribution. There are many areas in engineering,

industry and natural phenomena that benefit from the study of such systems. Physi-

1



1.1 Overview 2

cat properties of heterogeneous media like composites, metal alloys, polymer solutions,
t

electro-rheological fluids etc. are greatly influenced by the properties of the constituent

materials and their internal distribution. The analysis of these systems from seemingly

disparate fields can be greatly simplified by studying them in a general framework of

suspensions of (possibly) dipolar particles in a shearing motion subject to an external

force field, and this study has led to a unified understanding of a wide range of phenom-- ----
ena, In turn, the results obtained from such analyses have been useful in developing new

suspensions with desired properties, new products and devices making use of the un­

derstanding gained by such analyses, new methods to characterise suspensions etc.(eg.

magnetofluidization (Buevich et al., 1984), magnetostriction of ferromagnetic particle

suspensions (Ignatenko et al., 1984), characterisation of magnetorheological suspen­

sions (Cebers, 1993), bio-convection set-up by swimming of certain micro-organisms

(pedley and Kessler, 1990; Almog and Frankel, 1998)).

A complete knowledge of the rheology of the suspensions is desirable in the man­

ufacturing of suspensions of industrial importance. Determiningthe rheological prop­

erties through experiments is prone to many artefacts and instrumental errors which are

difficult to remove, particularly when the particle size is small. Numerical simulation

r-------_is the preferred proced~ in this case since errors caused by the deficiency of mea-.
surement techniques or unavoidable defects in the material or flow conditions can be-eliminated in simulations. Also, simulations offer enough flexibility to mimic approx-------
imately any experimental set up by adding desired effects or removing unwanted ones ....
Experiments using conventional rheometers cannot often unravel the source of the many

types of complex behaviour observed in suspensions. Hence the emphasis in our study

is on devising appropriate tools for simulating the rheological properties efficiently, in

the presence of Brownian motion and additional effects due 0 she
..s

If the particles are dipolar, an external force field tha interact wi the dipole mo-

ments of the particles imparts an additional rotational torque besides the torque due
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to shear. Further, if the particle size is comparatively small, U1C effects of Brownian,
rotations set in that tend to disorient the particles in a random manner. The interplay

between these forces can become quite complicated, particularly in parameter regimes

where the magnitudes of these forces are comparable. If the external force is periodic,

the dynamics and the rheology can sometimes exhibit complex behaviour. Ramamohan

etal.have studied extensively suspensions of periodically driven dipolar spheroids in the

limit of negligible or zero Brownian motion and demonstrated the existence of paramet­

rie regimes where both the rotational dynamics and the intrinsic suspension properties

evolve chaotically (Ramamohan et al., 1994; Kumar et al., 1995; Kumar and Ramamo­

han, 1995; Kumar etal., 1996). A new type of class-I intermittency route to chaos has

also been shown to exist in the system they studied (Kumar and Rarnamohan, 1997),

thus providing an example of a physically realizable system showing a non-hysteretic

form of class-I intermittency. Further, a new and easy to implement chaos control al­

gorithm was developed, which leads to a very efficient scheme for separating particles

(Kumar and Ramamohan, 1998), and to a technique of controlling chaotic rheological

parameters, so that they can be made to oscillate in a desired periodic orbit (Kumar,

1997). The micro-particle suspension they studied is also one of the few examples of

a physically realizable system showing spatio-temporal chaos and non-trivial collective

behaviour (Radhakrishnan et al., 1999). The system is therefore important, both from a

theoretical as well as a practical point of view. In this work we shall extend the applica­

bility of the results of Ramamohan et al. to a wider class of suspensions by incorporating

the effects of Brownian diffusion into the study.

The role of Brownian motion is prominent in many real suspensions. Experimental

studies conducted on various systems also point to the importance of Brownian motion;

theoretical predictions made in .the absence of Brownian diffusion are largely unsup­

"p0rted by experimental results. Previous studies on Brownian particles in suspensions

have been mostly based on the diffusion equation approachj:!!::-~.hich the orientation dis­

tribution of the particles is described in terms of an eqUaBdiffuSion equation) for
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the spatio-temporal evolution of a~Pfopriate density function for orientations, called

the orientation distribution func~·~DF). Due to the difficulty of solving the diffusion

equation,various numerical tech~es have been used to approximate the solution, each

of which may be valid for only a small range of the parameters corresponding to shear,

diffusion or external fields. Further, as observed by Kumar and Rarnarnohan (1995), the

diffusion equation approach used by Strand (1989) and Strand and Kim (1992), based

on the~pansion of the ODF into series of spherical harmonics, is g~nerally invalid in

regimes where the system exhibits chaotic behaviour. Hence we use in this work an al­

temate strategy, a generalised Langevin equation method, based on the work of Coffey

etal. (1996) on non-linear systems with noise. In this approach the focus is on the equa­

tions for the orientations of the individual particles in the suspension rather than on the

statisticaldistribution of the orientations. These equations, called Langevinequations,

are stochastic differential equations containing a noise term arising from the random

fluctuations in the orientations due to Brownian effects.

The success of the Langevin method depends largely on determining the exact form:

of the noise term and this may be achieved by comparing an ensemble of the Langevin

equations with the diffusion equation of the system. In our problem this is done by

specializing to the case of non-dipolar particles free of external forcing, and requiring

that the Langevin equations and the diffusion equation give rise to the same dynami-

cal relations for spherical harmonics. This noise term can then be used in the general _

case involving dipolar particles under external forcing by applying the principle of su- .r <:'.; C- . .' \

rosition which ~valid since the diffusion equation~n the ODE The dire~t ~'~i.... J)
simulation of the Langevin equations, as done in Brownian dynamics simulations, is

generally difficult and prone to errors due to the presence of the noise term with sta-
Ai _.

~tica1ly determined properties. Instead, in our method, proper time averaging of the

Langevinequations leads to deterministic equations for the evolution of orientation aver­

ages which do not contain terms of the orientation distribution function. This dispenses
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with the need to solve the diffusion equation and hence the diffusion equation can be
--------_~_-_~ __~ - -----------. -----_~ ----- --

completely bypassed. The moment equations are generally hard to solve analytically,

but are suitable for simulation with minor modifications. We present a brute-force com­

putational technique for generating the moments dynamically in appropriately chosen

pairs. This scheme turns out to be faster and more efficient than oth~nown compuE-­

tional methods and provides a unified framework for analysing the system for all ranges----------of the shear and Brownian parameters and for more general systems. In the case of

non-dipolar orientable particles and dipolar particles under a constant, time independent

external field, we reproduce certain results already known in the literature.

In the presence of an oscillatory force field, th~ Langevin method is the ideal tool to
r i

extend the analyses made by Ramamohan etal. to a more general setting that includes
1\

the diffusive effects of Brownian motion. In this case we demonstrate the interesting

result that the rheological parameters may evolve chaotically even in the presence of a

Brownian force, though the effects of diffusion apparently need to be relatively weak

for this to occur. The chaotic attractor in this case is, however, low-dimensional, so the

analysed through phase space plots. These analyses pertain toof the exte

system behaviour can be described using a few independent variables. As the magnitude

of the diffusion term increases, the attractor gradually becomes a limit cycle through the

quasi-periodic route. Similar behaviour is observed when the magnitude of the force

field changes; the system reverts to regular behaviour as the strength of the force field

is increased. Results for many different orientations of the external field are presented

~Q~complexityof the system behaviour for variations in the intensity

the region of re atively weak Brownian motion where the problem !2~C;Q!P.~ingulcu: in

the limit and is rendered intractable by other methods. The suitability of this method--- --"--
for analysing complex system responses is brought out by showing that the diffusion

- - plO?
equation method of Strand and Kim (1992) would not have picked up the behaviour we

have observed in these range of parameters.
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Organization of the thesis

6

The thesis consists of 7 chapters.

The first chapter contains introductions to the various topics covered in this thesis.

A review of the literature in suspension rheology is included with emphasis on the areas

particularly relevant to us. The Langevin equation approach presented in this work

builds upon some recent developments in the theory of stochastic processes, hence an

introduction to this subject is given. The fluctuations in the time seIies generated by the

methods developed in this work are further analysed using tools of nonlinear dynamics

and chaos theory. Hence an introduction to chaos theory is also included in this chapter.

The basic equation for the orientation dynamics of spheroids suspended in a simple

shear flow is obtained for the zero diffusion case in Chapter 2 based on the analysis of

Strand and Kim (1992). The different approaches to modeling the effects of Brownian

rotation are discussed. An overview of the generalised Langevin equation method along

with its merits is also described in this chapter.

The contribution from Brownian diffusion on the orientational motion of the particle

is considered in Chapter 3. The Langevin equation governing the particle orientation

is derived by modifying the equation obtained in Chapter 2 for the deterministic case

using a novel theory for nonlinear systems with noise presented by Coffey et al. (1996).

A method for computing the orientation moments using the Langevin equations is

described in Chapter 4. A few of the orientation moments thus computed are compared

with the results from other methods which show remarkable agreement.

Chapter 5 generalises the results of the previous chapters to the case of dipolar sus­

pensions subject to an external force field. The apparent viscosity is computed for sev­

eral orientations of the force field and various strengths of the external field and com­

pared with known results.

Chapter 6 analyses the dynamics of the rheology in oscillating external force fields.

The presence of chaos is demonstrated for a set of parameters corresponding to weak
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diffusion. The variations in the topological properties of the attractor of the system in,
response 10 changes in the strengths of the force field and degree of diffusion are also

presented in this chapter.

Conclusions and future work are the contents of Chapler 7.

We have also inclU<Ief two appendices in which the source code of thePr~ used

in the computati9ns~endix A) and the list of notations used in this the~endix

B) are listed. L

The list of publications which resulted from the work presented in the thesis is at­

tached at the end of the thesis.

1.2 Introduction to suspension rheology

A systematic theoretical study of suspensions of particles in fluids can be considered

to have started with the seminal work of Einstein on Brownian motion (Einstein, 1906,

1911). Brownian motion is the irregular and random fluctuations of tiny particles sus­

pended in a fluid, first noticed by the botanist Robert Brown while observing a suspen­

sion of pollen grains in water. Further experiments conducted by Brown confirmed that

these fluctuations were not caused by the presence of any organic molecules, and this

opened up the possibility of a physical explanation for the phenomenon. Einstein based

his analysis of Brownian motion on the kinetic theory of fluids and conjectured that

it was caused by the bombardment of the suspending particles by the fluid molecules

which are always in a state of incessant motion, according to kinetic theory. Starting

from these assumptions and using concepts from probability theory he proceeded to

calculate the effective viscosity of the suspension. Einstein's theory laid the foundations

for stochastic modeling and analysis of random processes and also served as a maiden

support for kinetic theory.
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1.2.1 Dilute suspension of ellipsoids

8

There are a number of practical situations where suspensions of a more general nature

than those studied by Einstein have to be considered. This warrants considering ad­

ditional effects that can influence both the dynamics of individual particles and bulk

suspension properties. For example, if the suspending medium is sheared, the result­

ing flow field influences both the local orientations of the particles and their relative

positions in the medium. Hydrodynamic interactions among particles, caused by the

disturbance that the presence of each particle produces on its neighbours, is another

factor that becomes important in concentrated solutions with larger volume fraction of

particles. Interactions are, however, neglected in sufficiently dilute suspensions which

are characterised by the limit nl3 « 1 where n is the number of particles per unit

volume and 1 is the linear dimension of the particles. If the particles have electric or

magnetic charges, as in ferromagnetic particles immersed in a ferrofluid, an external

electric or magnetic field can affect the local microstructure. The shape of the parti­

cles is also important; for example, non-spheres have definite orientation effects unlike

spheres, and long fibres usually behave differently from ellipsoids. There are quite a

number of studies in the literature incorporating one or more of these factors, but most

of the theoretical work is in dilute suspensions in Newtonian fluids. Newtonian fluids

havefairly simple flow equations and are characterised by a linear relationship between

shear stress and rate of strain.

The starting point of most of these investigations is the classic work of Jeffery (1922)

that describes the creeping motion of rigid, non-Brownian spheroids in an incompress­

ible, Newtonian fluid subjected to a simple shear with flow field given by v = tyi where

jis the shear rate, y the y-coordinate and i the unit vector in the x-direction. The rotation

of an ellipsoidal particle can be described by a pair of equations for the evolution with

timeof the polar angle ()and azimuthal angle </J of a unit vector u placed along the axis
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of symmetry of the particle (Jeffery, 1922; Leal and Hinch, 1971):
\

(1.1)

dO Y(? - 1)
dt = 4 .r2 + 1 sin 20 sin 2~

d~ Y? 2 .2
dt = r2 + 1( cos r/J + SIn r/J)

Above, r is ratio of the the polar to equatorial radii of the ellipsoid, called the aspect

ratio. The solutions 0 and ~ of the above equations are given by

Cr
tan 0 = --;:===========

~r2 cos? ~ + sin2 r/J

tan r/J = r tan( y 1 + k)
r+r

The constant C is called the orbit constant which, as well as the constant k, depends

on the initial orientation of the spheroid. Several conclusions can be drawn from the

above equations immediately. Each spheroid rotates about the z-axis with a period

(2n:/y)(r + 1/r) and its end describes a symmetric ellipse in orientation space(called

the Jeffery Orbit). The Jeffery orbit of a given spheroid is completely determined by

its initial orientation and its future life is confined to that orbit alone. Thus in the ab-

sence of diffusion and interactions, the long term particle configuration depends solely

on the initial orientations and never attains a steady state. This means that the effective

viscosity and the stress in a suspension of many such particles will vary periodically

in a manner dictated by the initial conditions of the particles. Jeffery's equations are

not restricted to spheroids alone; in fact, as shown by Bretherton (1962), the motion of

any axi-symmetric particle is governed by the same equations with the aspect ratio r

replaced by an effective aspect aspect ratio re for the axi-symmetric particle.

Experimental studies have also been taken up by a number of investigators in fiber

suspensions of varied concentrations both to observe the orientation distributions and

to measure various rheological properties (Anczurowski and Mason, 1967; Folgar and

Tucker, 1984; Stover et al., 1992). A typical experimental setup for the study of ori-

entations consists of a Couette device to generate a nearly simple shear flow in which
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a large number of identical opaque particles are immersed, whose projections on to
I

the flow-vorticity plane can be studied from photographs. Anczurowski and Mason

(1961) observed cylindrical fibres with an aspect ratio r = 18.4 for concentration lev­

els nl3 =0.016, 0.066 and 0.266 and measured the distribution fee) of orbit constants

in each case. Folgar and Tucker (1984) and Stover et al. (1992) report experiments on

semi-dilute suspensions in which C-distributions and <P-distributions were measured.

A summary of these experiments and the inferences thereof can be found in Zimsak

etal: (1994). The principal fact emerging from these observations is that while at small

concentrations the particles follow Jeffery orbits, at higher concentrations they rapidly

forget the initial conditions and settle down to steady distributions, unlike predicted by

Jeffery. The cause of this phenomenon of fading memory exhibited by real suspen­

sions has been attributed to many factors such as particle interactions, polydispersity,

non-uniformity of the flow field and Brownian diffusion which were all neglected in

Jeffery's analysis (Hur, 1987). For example, Leal and Hinch (1971) showed that the

action of even very weak Brownian rotation can yield in the long time limit an equilib­

rium distribution for the orientation of the particles that does not depend on the initial

orientation state of the suspension. This implies that rotary Brownian motion, even if

weak, has significant effects, in that it causes oscillations to die out in the long run.

1.2.2 Rotary Brownian diffusion

The effect of Brownian rotation is important in suspensions of orientable particles of

comparatively smaller size. If interactions and other body forces are not present, the

configuration of the suspension microstructure is determined by a competition between

rotational fluxes due to the imposed flow and rotary Brownian motion, the former tend­

ing to orient the particles in preferred directions and the latter tending to disorient them

in a random fashion. The relative importance of these fluxes is expressed in terms of

thedimensionless quantity Pe = '5'/Dr where D, is the rotary diffusivity of the particle.
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In the presence of random orientational effects due to Brownian.motion.theorientaticn
I

vector can be considered a time dependent stochastic variable, with a probability density

t/J(u, t) of orientations, called the orientation distribution function(ODF). The collective

variation with time of all the particles in the suspension is usually expressed as an evolu­

tion equation for t/J. This is basically a convection-diffusion equation, variously referred

to as the diffusion equation or the Fokker-Planck equation, and has the general form

01/1 0 .- + - . (ul/l) = O.ot ou (1.2)

The diffusion equation is related to the dynamics of individual particles through the

equation of motion for u, which is a modified form of the Jeffery equations (1.1), with a

general form given by;

u =feu, E, n, kj ) - D,V(1og 1/1).

The random effects due to Brownian motion is accounted for by the last term, while the

deterministic effects are lumped together in the first term on the right which depends

on the rate of strain tensor E, the vorticity tensor n and on other micro-mechanical

parameters k; contributed by external forces, electric or magnetic charges on the particles

etc.

The theories for the macroscopic parameters of microstructured fluids relate the state

of stress at a material point in the flow to the distribution function 1/1, through various

orientation moments of the distribution function. The orientation moment <feu»~ of a

function feu) is evaluated thus:

(f(u» = f f(u)l/Idu

where the integration is over the entire orientation space. The principal difficulty with

this method is that we need to compute the distribution function 1/1 at each material

point in the suspension for which the diffusion equation (1.2) must be solved. This is a

non-trivial task since solving the diffusion equation in its full generality is difficult; in
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particular, there exist no analytical solutions for the diffusion equation in simple shear
i

flow. Most of the analyses, therefore, use some numerical scheme to approximate the

ODFfor certain ranges of flow and microstructure and under appropriate boundary con­

ditions (Hinch and Leal, 1972, 1976; Strand and Kim, 1992; Kumar and Ramamohan,

1995;Chen and Koch, 1996; Chen and Jiang, 1999).

There are also a few techniques that do not require solving the diffusion equation to

compute the rheological parameters. One method is to obtain the evolution equations

for the moments directly from the diffusion equation by suitable averaging, and then

attempt to solve these equations instead of the diffusion equation. In a general flow

problem, this often leads to a closure problem; for example, the evolution equation for

the second moment (uu) involves the fourth moment (uuuu), and that of the fourth

moment involves the sixth moment and so on. This difficulty is circumvented by using

approximations to the moments, called closure approximations, at some level of the

higher order moment hierarchy. The closure approximations can be avoided in a few

models (Lipscomb, 1986; Lipscomb et al., 1988; Szeri and Lin, 1996), but for the vast

majority of practical problems these approximations remain relevant and continue to

evokeinterest in the literature (Advani and Tucker, 1987, 1990; Cintra and Tucker, 1995;

Han and Im, 1999). Useful reviews of the closure problem can be found in Barthes­

Bieseland Acrivos (1973), Tucker (1991), Szeri and Leal (1992) and Advani and Tucker

(1987, 1990). A second method to compute moments is due to Szeri and Leal (1992,

1994) and uses a doubly Lagrangian representation of the distribution function which

leads to significant simplifications of the Brownian diffusion terms and the subsequent

momentcalculation.

In this work we develop yet another method for computing the moments without

havingto solve the full Fokker-Planck equation. This is based on a generalised Langevin

equationmethod presented by Coffey et al. (1996) for non-linear systems with noise, and

expresses the evolution of moments in terms of suitable time averages of the orientation
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vectors over a set of sharp starting values. This formalism allows for an easy computa-
I

tional procedure for generating the moments dynamically by simulating a set of tracer

orientational vectors.

1.2.3 The material functions

For a fluid in shearing motion the stress is defined as the force per unit area and is con­

sidered distributed continuously throughout the continuous medium. It is represented by

a second order tensor having, in general, nine components representing the nine com­

binations of the three force components acting on three surface components at a given

point. In simple shear, the stress tensor o depends only on the shear rate l' and the

viscosity 1]s of the fluid;

The stress tensor in this case is symmetric. The components (Txx, U yy and CTzz are the

normal stresses and are usually considered in pairwise differences, Tl = (J'xx - (J'zz>

T2 = 0")), - U zz, to eliminate the dependence on the pressure p, and the quantities ri and

T2 are called normal stress differences and have value zero in the case of simple shear.

In the presence of particles under the action of an external field the stress tensor may no

longer be symmetric, except for dilute suspensions of spheres in which case the average

suspension behaviour is commonly measured in terms of the intrinsic viscosity

[] 1
. CTxy -1]s1'

17 = lID .
cIl-.O «1>1]sY

Einstein estimated that [1]] =2.5 for a dilute suspension of spheres. For suspensions of

force-free orientable particles U xy and CTyx are identical but TJ and T2 may be different

and non-zero. More generally, in the case of dilute suspensions of dipolar particles,

0"xy and (J"yx may also be different from each other and hence four different viscometric
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functions are required to characterise the bulk properties in simple shear, viz.,
I

14

• (J"xy - TJsY
[17] - lim ----...;..--

. I - GHQ et>TJsY ,

[ } }' (J"XX-eTU
T] = tm "

cIl->Q <1>17s'Y

[ } 1
. (J"yx-TJsY

TJ2 = tm "
$->Q et>17sY
. (J"yy - eTII

[T2] =lim .'
$->Q et>17s'Y

Normal stresses for incompressible fluids are generally very small at equilibrium and

bear a quadratic dependence on shear rate. The second normal stress difference is usu­

ally found to be negative and is about one tenth of the first in magnitude. However, a

departure from this behavior has been observed for suspensions of dipolar particles un­

der periodic external forcing(Kumar and Ramamohan, 1995). Brenner (1974) gives an

extensive tabulation of the viscometric functions for the dilute suspension of ellipsoids

of several aspect ratios. At small shear rates the suspension is nearly Newtonian with

a modified viscosity which depends mainly on the shape of the particles. For smaller

shear rates in which Brownian motion is nonetheless dominant, [TJ] depends linearly on

Pe.

1.2.4 External Forcing

If the particles in a suspension are dipolar, i.e, have' electric or magnetic charges on

them, the presence of an external electric or magnetic field can influence the local fluid

structure. While suspensions in the absence of external forcing have been extensively

studied, only a relatively few investigations are available for the case of dipolar particles

and most of the later analyses are restricted to the limit of weak shear. The earliest of

thesestudies were of Hall and Busenberg (1969) and Brenner (1970), concerning dilute

suspensions of dipolar non-Brownian spheres. Brenner and Weissman (1972) extended

thesestudies incorporating Brownian diffusion effects, and obtained results mainly for

particles that are spheres or near-spheres. Further extensions analysing the effects of var­

iousrelative strengths of shear, diffusion and external force on the particle dynamics and

rheology are available (Jansons, 1983; Pcdley and Kessler, 1990; Saluefia et al., 1994;
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Smith and Bruce, 1979), but most of these apply to the limit of weak shear. Strand
I

and Kim (1992) considered dilute dipolar suspensions for a wider range of shear and

diffusion parameters, and analysed the rheology for various orientations of the external

force. They used an expansion of the ODF into a series of surface spherical harmon­

ics and applied the Galerkin method to an appropriately truncated form of the series.

The numerical scheme, however, fails due to poor convergence of the series in regimes

where the ODF has steep gradients, and is not valid in regimes where the ODF may

have subharmonic periodicity or when the underlying dynamics is chaotic (Kumar and

Ramamohan, 1995). Almog and Frankel (1998) furnished analytical results for moder­

ate values of Pe, the analysis being limited to the case of weak rotary diffusion. The

generalised Langevin method which we develop in this work, unlike previous studies, is

not limited to any range of diffusion or advection.

Oscillatory dynamics of rheological averages may result from oscillatory shear or

external fields. Oscillations resulting from time dependent shear fields have been stud­

ied by many (Leal and Hinch, 1972; Bird etal., 1971, 1987), though oscillatory force

fields have been considered only by a few investigators including Strand (1989) and Ra­

mamohan et at.. Strand (1989) followed the diffusion equation approach, but this is not

general enough to study complex system responses like chaotic behaviour, as discussed

by Kumar and Ramamohan (1995). The possibility of chaotic behaviour in the orienta­

tion dynamics and rheology was demonstrated by Ramamohan et al. in a series of papers

(Ramamohan etal., 1994; Kumar et al., 1995; Kumar and Ramamohan, 1995; Kumar

eial., 1996). This opened up a new range of possibilities like novel routes to chaos (Ku­

mar and Ramamohan, 1997), computer controlled intelligent rheology (Kumar, 1997),

efficient particle separation in suspensions (Kumar et al., 1995) and an option to use

dipolar particle suspensions as a paradigm for studying spatio-temporal chaos (Rad­

hakrishnan et al., 1999). This work is a generalisation of the studies by Ramamohan

etat. to the case of systems in which Brownian motion is important.
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1.3 Introduction to stochastic processes
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Roughly speaking, a dynamical system whose behavior exhibits fluctuations due to the

influence of some random force in the system is called a stochastic system. The pro­

cess defining the system, called a stochastic process, may be modeled by a collection

of time-dependent random variables. One of the most important examples of stochas­

tic processes is the Brownian motion of tiny particles suspended in a fluid. There are

numerous natural phenomena that lend themselves to stochastic modeling, a comprehen­

sive description of which may be found in van Kampen (1981), Chandrasekhar (1943)

and Coffey etat. (1996).

1.3.1 The theories of Brownian motion

A systematic study of stochastic processes began with the fundamental work of Einstein

on Brownian motion (Einstein, 1906, 1926), the observed erratic motion of tiny particles

suspended in a fluid. Einstein's analysis of Brownian motion is based on the assumption

that although the exact position of any particle at any instant may be indeterminate due

to the random nature of Brownian fluctuations, the shift in particle positions might obey

some frequency rule, so it can be analysed using tools of probability theory. Using

a series of arguments combining physical intuition with mathematical theory, Einstein

arrived at a partial differential equation for the spatio-ternporal variation of the density

function I(x, t) for the number of particles per unit volume at position x and time t;

This equation is known as the diffusion equation and the constant D is the diffusion

coefficient. The constant D was obtained using the kinetic theory of fluids, according

to which the molecules in the fluid are always in an agitated state executing random

motion, and the Brownian motion, according to Einstein, is the result of these molecules

colliding with the suspension particles. Thus at equilibrium the Maxwell-Boltzmann
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(1.3)

in the pioneering work of Einstein.

dislributionof particles must set in. Th!s. together withs8w for the viscous drag

on a spherical particle of radius r, gives (Einstein, 1926)

D=~
6lfryrv

The validity of this expression was verified experimentally by Penin (Nelson, 1967).

Many topics related to stochastic processes, such as the Chapman-Kolmogorov equa­

tion, the Fokker-Planck equation, the Kramers-Moyal expansion etc. all have their root

//)
Some time after Einstein presented his wprk~8), Langevin presented an alternate

approach, quite different from Einstein's an~according to him, "infinitely simpler".

According to him the force acting on a Brownian particle of mass m can be resolved into

two parts: (i) a regular part, which is the viscous drag on the particle, given by -6lfTJrv

where r is the radius of the spherical particle and v its speed and (ii) a fluctuating part

I'(r) resulting from the random collisions of the particles by the fluid molecules (Lemons

and Gythiel, 1997). This gives an unusual differential equation for the position x of the

particle containing a random function,

d2x dx
m- = -6lfTJrv- + ret).

dt2 dl
(1.4)

The properties of the fluctuating part I'(r) were specified in terms of an ensemble of such

particles:

(a) T(r) is independent of the position x of the particle, so the ensemble average of the

quantity f(t)x over a large number of particles is zero; (I'(rjx) = O.

(b) F(r) varies extremely rapidly compared to the variation in x and is positive and

negative with equal probability, so (F(r) =O.

Using these properties and results from statistical mechanics, Langevin derived the the

same expression, eq. (1.3), for the diffusion coefficient which Einstein obtained through

other means.
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Eq. (lA) is an example of a stochastic differential equation, a differential equation
I

containing a noise term, with properties determined only in terms of moments of en-

sembles.

1.3.2 Stochastic processes-general theory

A Stochastic process is a random variable g whose density function is parametrised in

time. Thus for two instances t1 and t2,gUI) and {(t2) are in general two different random

variables. Hence the stochastic process gmay be thought of as a family {{et) : t E T} of

random variables with time t belonging to an index set T. The random variable {et) can

also be a multivariate process, {et) = {{1(t),6(t), .. .gnU)}, where the components git)

are themselves random variables.

A stochastic process get) is, in fact, a function of two arguments, {get, w); t E T, W E

nI, where n is the sample space. For a fixed t, g(w) is a family of random variables,

called an ensemble, and for a fixed ea, x(t) is a function of time and is called a sample.

For a given division tl < ti < ... < tn of T, the stochastic process {et) is completely

determined by an infinite sequence P = PI, P2 , ••• of conditional probability density

functions. The first of these is P = PI (x, tlxI. t1), which is such that the probability of

finding {et) between x and x + dx given that {(tl) = Xl for any t1 ::;; t, is PI (X, tlxl' tl) dx.

= Prob{{(t) E [X, X + dx) given that g(tj) = x., j = 1 to n}.

Anyjoint probability pertaining to the random process get) can be evaluated in terms of

one or more of the above conditional probabilities. Thus, for example, if g(to) = xo, the

joint probability that get}) will be within dx) of X1 and then, at a later time tz. {(t2) will

be within dx2 of X2 is given, according to the multiplication mic for probabilities, by
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(1.6)

The requirement that an infinite number of conditional probabilities be specified to de­
I

termine a stochastic process at a given set of instances can be simplified significantly

for a class of processes known as Markovian.

A stochastic process is said to be Markovian if each function P" coincides with PI

according to

This means that the conditional probability P" depends only on the most recent observa­

tion x" at t; and is independent of the past history of the process prior to t.: This is often

referred to as the " memorylessness " of the Markov process. Thus a Markov process is

completely determined by the transition probabilities P(x, tlxl> tl) = PI (x, tlx], tl)' The

transition probabilities themselves satisfy the Chapntan-Kolmogorav equation,

P(X3' t3lx], tl) = f P(X3, t31x2, (2)P(X2,tzlxj, tl) dx,

for t3 > tz > tl (van Kampen, 1981; Gardiner, 1985; Gillcspie, 1996a,b). The Chapman­

Kolmogorov relation, in principle, computes the transition probabilities P(x, tlx}, tt> for

any t > ti but, this being an integral equation, is in practice difficult to solve. How­

ever, for a Markov process that is continuous in time, i.e. for which the density function

P(x, t) is a continuous function of the parameter t, a partial differential equation can be

derived for the transition probabilities under some simplifying assumptions. This equa­

tion, called the Fokker-Planck equation, is the time evolution equation for the transition

probability p(x,tlxo, to), given {(to) = Xo and has the general form(van Kampen, 1981;

Gardiner, 1985; Gillespie, 1996b)

() a 1 {)2
()tP(x, tlxo, to) = - a)A(x, t)P(x, tlxo, to)] + 2axZ [D(x, t)P(x, tlxo, to)] (1.5)

where the coefficients A(x, t) and D(x, t) can be computed from the change in x and its

mean square over small time I1t thus:

. 1
A(x, t) = hm -(xCt + M) - x(t) I{(t) = x),

61-ol1t

D(x, t) = lim ~«x(t + M) - x(t)i I{Ct) = x).
AHO I1t
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If the process has evolved a long time after the initial transience we may replace P(x, tlxo, to)
I

in the above by P(x, t).

The Fokker-Planck equation serves as an approximate description for any Markov

process ~ whose individual jumps are small. It is easier to set up since it requires only

the knowledge of the functions A(x, t) and D(x, t) which in any stochastic process can

be determined with a minimum detailed knowledge about the underlying mechanisms

thanksto the expressions (1.6). For this reason most of the stochastic systems in physical

applications are studied through an appropriate Fokker-Planck equation. The literature

on the Fokker-Planck equation is vast and its applications diverse (see Risken, 1984)

If P(x, r) is a solution of the Fokker-Planck equation the moments of any function h

withrespect to the random process ~(t) can be obtained as (h(x» = I h(x)P(x, t)dx.

Even though the Fokker-Planck equation is easier to set up and more convenient

than the Chapman-Kolrnogorov function, it is still difficult to solve in its full generality

for the vast majority of physical systems for which it has been set up. For some simple

cases, it can nevertheless be rigorously solved as, for example, when A = 0 and D = 1

in (1.5). The solution of the corresponding Fokker-Planck equation

is called the Wiener Process. It can be shown that the Wiener process is a Gaussian

process with statistically independent increments having a sharp initial distribution that

spreads in time and non-differentiable sample paths(Gardiner, 1985). The Wiener pro­

cess is fundamental to the study of diffusion processes.

1.3.3 Stochastic differential equations

Astochastic differential equation is a differential equation whose coefficients are random

numbers or random functions of the independent variable, such that the ensemble of

solutions to the equation constitute a stochastic process. The most important examples
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of stochastic differential equations are the Langevin equations given by,

~ = A(§, t) + B(§, t)r(f)
dt

21

(1.7)

where A and B are quantities depending on the physics of the process and T(r) is a

normal random process (Gaussian) with mean zero and and autocorrelation proportional

to a delta function;

(f(t» = 0

(f(t)f(t/» = D 6(t - t/)

The Langevin equation generally represents a stochastic process that is continuous in

time and is Markovian. The average properties of r signify the nature of the noise as an

external force; it is irregular taking positive and negative values with equal probability

and its effects are practically instantaneous and temporally uncorrelated. The Gaussian

nature of r serves to determine the hierarchy of moments of T(rj-all odd moments are

zero and all even moments are expressed in terms of the second moment. A T(r) defined

in this way is called Gaussian white noise(van Kampen, 1981).

If the term B multiplying f(t) is a constant, the Langevin equation (1.7) is said to

possess additive noise and if B depends on § the noise is said to be multiplicative. If

the noise is additive and A is linear, the stochastic system which the Langevin equation

represents is linear and is non-linear otherwise.

For linear systems, the Langevin equations furnish an alternate description of the

system completely equivalent to the Fokker-Planck equation representation. More pre­

cisely, the Langevin equation

with Gaussian white noise T(r) represents the same Markov process as the Fokker­

Planckequationrvan Kampen, 1981)

ap a Da2p

at = -«ox (xP) + "2 ox2
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Non-linear systems with multiplicative noise, however, need to be treated with much
I

more care. Such equations suffer from an interpretation problem, arising from the pres-

ence of multiplicative noise. To see this, we first note that the existence of a stochastic

differential equation such as (1.7) with Gaussian white noise, is itself questionable on

strict mathematical grounds. Thus, for example, if a solution g of equation (1.7) is to

exist, the right side must be integrable which requires that f B(g, t)r(t)dt exist and, in

particular, for B = 1 the integral u(t) =Jr(t) exist. If u(t) is to be continuous as or­

dinary integrals are, it turns out that u(t) is a Wiener process(Gardiner, 1985) and is as

such not differentiable. This then means that the Langevin equation (1.7) does not exist.

However, as demonstrated by Doob (1953, 1954), a more consistent interpretation can

be given using the integral equation corresponding to (1.7), viz.,

get) - g(O) = Lt A [g(s), s]ds + Lt B[g(s), s]f(s)ds (1.8)

provided we designate the integral of F(r) as a Wiener process Wet) and replace r(t)dt

in the above by the differential of Wet) (Gardiner, 1985),

dW(t) :::: Wet + dr) - Wet) = f(t)dt.

The second integral in eq. (1.8) then becomes

Lt B[g(s) , s]f(s)ds =J: B[g(s), s]dW(s).

In the above dW is the differential of a random process and this causes some interpre­

tation problems for the last integral. This stochastic integral is defined as the (mean

square) limit of partial sums thus

(1.9)

where to ~ t1 ~ ... ~. tn-I ~ t is a partition of the interval [0, t] and Tj is an arbitrary

point with tH ~ Tj ~ t.. This limit, however, depends on the choice of the intermediate

pointTj(Gardiner, 1985) and consequently, for each such choice, we get a different value



1.3 Introduction to stochastic processes 23

for the integral in (1.9). In particular, the integral in cq, (1.9) with li = ti-I is called the
\

lto stochastic integral and with r, = (ti-l + tj)/2 it is called the Stratonovicb stochastic

integral. The Stratonovich integrals behave like ordinary Riemann-Stieltjes integrals

while Ita integrals follow different integration rules, the so called Ita calculus.

The different interpretations to the Langevin equation (1.7) in the non-linear case

lead to different Fokker-Planck equations also, unlike in the linear case. For example,

the non-linear Langevin equation

(1.10)

interpreted as a Stratanovich integral, is equivalent to the Fokker-Planck equation/van

Kampen, 1981)

llP II D D 112 2
III =- llx[A(x) + "2B(x)B' (x)]P +"2 llx2 [B(x)] P

Interpreted as an Ita integral, (1.10) is equivalent to(van Kampen, 1981)

llP II D 112 2

at = - llxA(x)P + "2 llx2 [B(x)] P

The Ito calculus is commonly chosen on certain mathematical grounds since rather gen-

eral results of probability,theory can be applied. On the other hand, since white noise

is an idealisation of physical noise with short autocorrelation time, the Stratenovich cal­

culus is usually preferred in physical applications since the corresponding results are..
generally identical to those obtained from systems with finite autocorrelation time, in

the limit of zero correlation time (Risken, 1984)

Coffey et al. (1996) have recently presented an extension of the traditional Langevin

equation method to non-linear systems with noise. This method is based on the interpre­

tation of the Langevin equation (1.7) as an integral equation in the sense of Stratonovich,

which leads to a useful result that the time-averaged Langevin equation can be expressed

as an equation of motion for the sharp starting values. This leads to deterministic dif­

ferential equations governing the evolution of the various moments of the stochastic
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variable describing the system. This is the approach we adapt in this work to study a
\ -

standard problem in suspension rheology. A brief description of the Coffey et al.method

is given in section 3.2.2

1.4 Introduction to Chaos theory

Chaos theory has emerged as one of the most important breakthroughs of this century.

Roughly, chaos is the complex behaviour exhibited by some deterministic non-linear

systems commonly perceived as simple and well-behaved. An exposure of what is to­

day called chaos was initially made by the meteorologist Lorenz (1963) who found that

the solution of a set of three coupled ordinary differential equations exhibited irregular

and aperiodic fluctuations that never settled down to equilibrium or to a periodic state.

Moreover, if he started his simulations from two slightly different initial conditions, the

resulting behaviours would soon become different. Yet when the solutions were plotted
,

in three dimensions the resulting set had a definite structure. By a careful analysis of

this set through computer simulations, Lorenz was able to demonstrate that it was, in

fact, an infinite complex of surfaces, an example of what is called a fractal today. Other

milestones in the development of chaos theory include the analysis of turbulence in flu­

ids by Ruelle and Takens (1971), the studies by Henon (1976) and Rossler (I 976) of the

"stretching and folding" mechanism behind chaotic dynamics, the work of May (1976)

on the complicated dynamics in some simple population models and the discovery by

Feigenbaum (1978) of the universal scaling properties in one-dimensional maps.

1.4.1 Dynamical systems

A system that changes with time is called a dynamical system. A dynamical system is

mathematically described by a state vector x, which determines the state of the system

at any instant, and a function f(x) that provides the rule to determine the state of the

system at the next instant given the current state. Systems which change continuously
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with time are usually described by a differential equation of the form
I

dx
.t = dt = lex) (x, E lR")
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(1.11)

and systems that change its state at discrete instances of time are expressed in tenns of

an iterated map

X II +! =!(xII ) , (n =1,2",,), (1.12)

where XII E Rn denotes the state of the system at the n-th instant. Here Rn is called

the state space or phase space of the system. These equations then describe the future

states of the system completely once an initial condition is prescribed. Since we will be

mainly concerned with systems governed by differential equations our discussion will

be mostly around continuous systems.

The traditional method of analysing such systems was by solving equations (1.11)

or (1.12) for a given initial condition to express the state x(t) or x; in terms of certain

known functions. However, this is almost always impossible given the complicated

form the function! takes in most physical problems. The famous three-body problem,

for example, was proved to defy any analytical solution in the sense of obtaining explicit

formulas for the motion o~ the three bodies. It was Poincare who changed this point of

view in the late 1800s and demonstrated that although analytical solutions may not be

obtained, useful insights into the long term behaviour of such systems can be derived

using powerful geometrical approach. This approach of treating dynamical systems

gained recognition since then and was further reinforced by Van der Pol, Andronov,

Littlewood, Levinson, Smale, Lorenz etc. A good account of these developments as well

as an introduction to the subject can be found in Guckenheimer and Holmes (1983), Ott

(1993), Strogatz (1994), Alligood et al. (1997) and Lakshmanan and Rajasekhar (2€

Depending on whether or not the right hand side of the equations (1.11) or (1.12)

contains the time variable t explicitly, the system is called non-autonomous or au­

tonomous respectively. An n-dimensional non-autonomous system can be written as
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an (n + l)-dimensional autonomous system by introducing a new variable Xn+l = t, so
\

that Xn+l = 1, and rewriting the system equation in terms of y = (x, xn+l)(Alligood etal.,

1997). A broad division of the subject of dynamical systems would be into linear and

nonlinear systems. The essential difference between them is that a linear system can

be analysed by decomposing it into smaller parts, studying each component separately

and then recombining (the principle of superposition), while a nonlinear system can­

not be analysed in this manner. Most physical systems are by nature nonlinear and the

geometric approach initiated by Poincare is the ideal way to study such systems.

Attractor

The simplest of all possible solutions of the system (1.11) or (1.12) are fixed points

and periodic solutions. A fixed point of the system is a solution satisfying r = 0 and

corresponds to an equilibrium state of the system. A solution xCt) of eq. (l.11) such that

X(I + T) = x(t) for some period T of time is called a periodic solution and corresponds

to a closed curve in the phase space. A discrete system, eq. (1.12), is periodic if XII

repeatedly takes on a finite set of values in a specific order for all values of n. An

isolated periodic solution is also called a limit cycle. In the geometric approach we

consider many solutions of (1.11) at once, not just a single solution, and try to discover

patterns in the solutions. A solution ofeq. (1.11) can be thought of as tracing out a curve

in the phase space passing through that point as t --+ 00, called a trajectoryor an orbit.

The collection of all trajectories starting from an open connected set of initial conditions

is usually called aflow.

Physical systems may be classified as either conservative or non-conservative. In

Don-conservative systems the volume of any subset of the phase space spanned by

the flow contracts as the system evolves forward in time. Such systems with phase

spacecontraction are commonly characterised by the presence of attractors. An attrac­

tor(repeller) is a specific subset A of the phase space which is reached asymptotically as

1-+ oo(t --+ -(0) by the flow of the system over an open set B of initial conditions; the
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set B is then called the basin of attraction. See Guckenheimer and Holmes (1983) for
I

the subtleties involved in defining an attractor.

The possible attractors for a linear system are fixed points or closed curves in the

space space (Nayfeh and Balachandran, 1995; Glendinning, 1994). Similarly, the fa-

mous Poincare-Bendixson theorem asserts that bounded two-dimensional flows. even

when non-linear, can have only fixed points and limit cycles as attractors (Strogatz,

1994; Alligood et al., 1997)

In higher dimensions. however, the attractors of non-linear systems can take on many

intricate structures and may exhibit quite unusual dynamics. The simplest of them all,

besides fixed points and limit cycles, are k-periodic quasi-periodic solutions which result

from k incommensurate frequencies active in the systems, i.e.• k frequencies fl. 12, ... !k

such that

L ntf; =0 ===} n, =0 ( n, integers).

The k-period quasi-periodic solutions lead to an attractor which is a k-torus. A 2-torus in

a 3-dimensional space resembles a doughnut. All these attractors correspond to regular

motion. while aperiodic or chaotic dynamics may lead to much more complex attractors,

the so called strange attractors.

1.4.2 Chaos and its implications

A striking feature of some dynamical systems is that the trajectories on the attractor may

exhibit sensitive dependence on initial conditions. This means that trajectories starting

from neighbouring initial conditions may separate from each other at an exponential

rate. evolving independently of each other and in an apparently uncorrelated manner

after a sufficiently long period of time, and yet remain confined to a bounded subset of

the phase space. While exponential divergence of orbits in a flow is possible even in

linear systems (eg. X = x), the possible convergence of such a flow to a bounded region

of the phase space is a feature unique to nonlinear systems.



1.4 Introduction to Chaos theory 28

Chaos is the bounded aperiodic behaviour in a deterministic system that shaws.sen-
\

sitive dependence on initial conditions.

There are many subtleties in the definition of chaos and there is as yet no universally

accepted definition except perhaps for one-dimensional maps (Devaney, 1989; Banks

etal., 1992; Touhey, 1997). Given above is a working definition that identifies chaos

from its features. "Deterministic" means that the apparent complexity in the system

is not due to any stochastic effects such as noise. By "aperiodic long term behaviour"

it is meant that there are trajectories which do not settle down to a fixed point or a

periodic or quasi-periodic state. The term chaos is reminiscent of the intricate dynamics

experienced by the trajectories on the attractor; the exponential divergence stretches the

flow as it evolves in time, which is then folded back to remain confined to a finite region

of the phase space. The attractor is the result of these sequences of stretching and folding

repeated indefinitely. Thus while the dynamics on the attractor may be quite complex,

the attractor as a whole maintains some definite structure.

The attractors for a linear system are fixed points and limit cycles (Alligood et al.,

1997;Strogatz, 1994; Glendinning, 1994) and hence there is no possibility of chaos. The

Poincare-Bendixson theorem rules out chaos in two-dimensional (autonomous) flows.

Thus a necessary condition for continuous nonlinear autonomous systems to be chaotic

is that they must be at least 3-dimensional and for non-autonomous systems they must

be at least 2-dimensional. As for discrete systems, chaos is known to exist even in one­

dimensional non-invertible maps (eg. the logistic map (Alligood et al., 1997; Strogatz,

1994» and two-dimensional invertible maps (eg. the Henon map (Henon, 1976». This

means that even simple non-linear systems with very few degrees of freedom can be

chaotic. A good example is the logistic map given by

X/I+l = rx,,(l - x,,), 0 ~ x" ~ 1 (n = 1,2",,), (1.13)

which is known to be chaotic for certain ranges of values of r. Fig. 1.1 (a) shows the

attractorof the logistic map for various values of r. For smaller values of r the attractor is
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a fixed point and as r is increased the attractors also change to periodic orbits of different
I

periods and finally at r > 3.57, the system becomes chaotic and the set of points visited

by the attractor becomes a dense subset of the set [0, I]. Similarly the Lorenz system

defined by

x;::; if(y - x)

y;::; rx - y - xz (1.14)

z;::; xy - bz

where if, r, b > °are the parameters, is another example of a simple system which is

chaotic for rr = 10, b =8/3 and r =28 (Lorenz, 1963). Fig. 1.1 (b) shows the attractor

of the system for these values of the parameters.

The development of chaos theory has important theoretical as well as philosophical

implications. With the recognition of the possibility of chaos, the difference between

stochastic systems and complex deterministic systems has blurred. Earlier, an observed

complexity in the response of a system used to be dubbed as either due to the presence

of some external noise or due to the system having many degrees of freedom. With

the advent of chaos theory it has become clear that even simple systems with very few

degrees of freedom can be chaotic and hence exhibit behaviour reminiscent of stochastic

processes.

Chaotic systems, even though deterministic, are unpredictable beyond a reasonable

period of time due to the sensitivity of the system to initial conditions. This is due to the

fact that no instrument can in practice measure the initial data with infinite precision,

and any error in the initial condition, however small, will be amplified by the system

by many orders of magnitude due to the exponential divergence of trajectories. Hence

the state of the system as predicted based on the erroneous initial condition will be

far from, and may have absolutely no correlation with, the actual state of the system

after sufficiently long time. For example, one reason the various mathematical models

of weather are unable to make accurate predictions beyond a period of a few days is

currently attributed to a possible chaos in the system.
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Figure 1.1: (a) The bifurcation diagram for the logistic map; (b) The strange attractor
of the Lorenz system
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1.4.3 Detecting and characterising chaos
\
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In general it is hard to establish the existence of chaos analytically, particularly for

continuous systems defined by differential equations. Instead, one tries to identify in the

system various characteristics of chaotic dynamics using tools such as Poincare section,

power spectrum, Lyapunov exponents etc. with the help of computer simulations, These

tools cater to the geometric approach mentioned earlier, and can be applied to non-linear

systems in general, not just to chaotic systems.

Poincare map

The Poincare map is a classical device for analysing dynamical systems. The basic idea

behind this technique, introduced by Poincare, is to replace the flow of an n-dimensional

continuous time system by an n-1 dimensional discrete time system. Let L be an (n-1)

dimensional surface in the phase space transverse to the flow of the system (1.11). If

L is properly chosen a given trajectory in the flow will cross the surface repeatedly as

t -t 00. Let Yk and Yk+l be the points on L where the trajectory crosses it the k-th and

(k + l)-tb time. Since the point Yk+l can in principle be obtained by solving the system

(1.11) with Yk as initial condition, Yk+l is uniquely determined by Yk and this defines a

map

Yk+l = P(Yk)' (k = 1, 2,···)

which is the Poincare map. In a non-autonomous system the function f is usually pe­

riodic in time with some period T and a Poincare map is obtained by recording the

snapshots of the trajectory at regular ti~e intervals of length T. A periodic orbit may

cross the surface a finite number of times before closing on itself and hence the Poincare

map will contain utmost a finite number of points in this case. For a quasi-periodic so­

lution, the discrete points in the Poincare map usually fall on a closed curve in L. A

Poincare section with a continuum of points may be an indication of chaos.
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A construction analogous to the Poincare section was used by Lorenz (1963) to
\

reduce a three dimensional continuous system to a one dimensional discrete system. If

nI,,(t) denote the n-th maximum of the function z(t) in the solution of the Lorenz system

eq. (1.14), the plot of m.: 1 versus m« falls nearly on a curve. A good deal of information

about the Lorenz attractor can be extracted from the dynamics of the map defined by this

curve (Lorenz, 1963~ Strogatz, 1994). A similar technique has been used in analysing

the Rossler system (Rossler, 1976).

Power spectrum

The time evolution of a dynamical system is represented by the time variation x(t) of

its dynamical variables. If x(t) is periodic, under certain conditions (Arfken and Weber,

1995), it can be represented as a superposition of oscillations whose frequencies are

integer multiples of a basic frequency (Fourier theorem). When! is not periodic it can

be represented in terms of oscillations with a continuum frequencies and this is called

theFourier transform of x(t), given by

1 [ .a(w) = 2 !(t)eIW1 dt.
1r -00

Thereal-valued function pew) = la(w)j2 is called the power of the signal x(t). The entire

range of pew) for various values of w is called the power spectrum and is commonly

exhibited as a plot of P(w) versus eo. The spectrum of a periodic function will contain

onlydiscrete spikes corresponding to the basic frequency and its integral multiples, and

that of a quasi-periodic function will also contain numerous spikes, but not necessarily

spaced at integral multiples of any particular frequency (Schuster, 1988~ Nayfeh and

Balachandran, 1995).

The power spectrum of any dynamical variable of a chaotic system will be broad­

band and continuous. The spectrum of random motions such as noise may also have

a continuous broadband character, but chaotic motion can be distinguished from noise

using tools such as dimension estimates and Lyapunov exponents.
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Lyapunov exponents
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Lyapunov exponents are dynamical invariants of an attractor which measure the average

rate of divergence or convergence of neighbouring trajectories on the attractor in various

directions. Let Xo be any point on the basin of attraction and consider an infinitesimal

sphere of perturbed initial conditions. This sphere distorts into an ellipsoid as the system

evolves in time (Alligood et al., 1997). Let €k(t), k = 1,2,··· , n denote the length of the

k-th principal axis of the ellipsoid. In general we can write €k(l) = €k(O)eAk l where the AkS

may be positive zero or negative, and are called the Lyapunov exponents. The existence

of at least one positive Lyapunov exponent is the most striking signature of chaos in

the system. In such a system the growth of the separation o(t) between two neighbour

trajectories will be eventually dominated by the maximum Lyapunov exponent ~l, so that

1I0(t)I= lIo(O)lIeAt and hence

A = lim ! In 1l0(t)1I
HO" t 110(0)11

In practice one computes A by plotting Ino(t) versus t, which should fall nearly on a

straight line, the slope of which then gives an estimate of A. The Lyapunov exponent

of a discrete system can be described along similar lines with slight modifications (AI­

ligood etal., 1997). Analytic computation of Lyapunov exponents is generally difficult

and many algorithms have been proposed for computing them numerically for known

dynamical systems which, when combined with the technique of attractor reconstruc­

tion, can be used to extract Lyapunov exponents from time series (Wolf et al., 1985;

Eckmann et al., 1986; Bryant etal., 1990; Parlitz, 1992; Kantz, 1994).

Attractor dimension

The flow of a dissipative system should eventually fall on a manifold and occupy zero

volume in the n-dimensional phase space, and if the system is chaotic, exponential diver­

gence causes repeated stretching and folding within the attractor (Henon, 1976; Rossler,
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1976). This usually gives the attraetor a self-similar structure, so repeatedly zooming in
\

on any part of the attractor reveals the same structure but at a finer scale. Self-similar

objects are commonly characterised by a fractional dimension, but this requires a gen­

eralisation of the Euclidean definition of dimension. Sets with fractional dimension are

calledjmctals and if the fractal is also the attractor of a dissipative system it is called a

strange attractor. Fractals need not always arise as attractors of chaotic systems, they

may be generated using purely mathematical constructions also, ego the Cantor set and

von Koch curve (Strogatz, 1994).

The box-countingicapacity) dimension is the simplest extension of the Euclidean

concept of dimension that applies to fraetals and strange attractors as well. Let S be a

subset of JRI! and N(E) be the minimum number of n-dimensional cubes of side € needed

to cover S. The dimension d of the set is found to scale like a power law, N(E) ex: «<.
even for fractals for which, however, d may not be an integer. The limiting value of d as

f -+ 0 is the box counting or capacity dimension:

d = lim lnN(€), if the limit exists.
~->O In(I/E)

According to this definition a line and plane have capacity dimensions 1 and 2 respec­

tively. The capacity dimension of the Cantor set is In 2/ In 3 (Strogatz, 1994).

The capacity dimension does not take care of a possible inhomogeneity of the attrac­

tor, it treats the dense and rare parts of the attractor equally. Grassberger and Procaccia

(1983) introduced a more efficient approach which has now become the standard. This

begins by defining the correlation sum C(€) as the probability that a pair of points cho­

sen randomly on the attractor is separated by a distance less than E. The correlation

dimension, denoted by D2, is empirically found to scale as C(E) oc €lh and hence is

defined as
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Any given trajectory in a chaotic attractor comes arbitrarily close to any point on the
I

attractor arbitrarily often if it is observed for sufficiently long time. Hence in practice

one records a single trajectory of finite length L on the attractor at N equally spaced

discrete times Xi and approximates C(€) by

where Sex) = 1 for x > 0 and Sex) = 0 for x ~ 0 (Kantz and Schreiber, 1997). In

the limit L, N ~ 00, C(N, s) ~ C(E). The correlation dimension estimated by Grass­

berger and Procaccia (1983) for the Lorenz attractor is 2.05 ± 0.01. A marked advantage

of the correlation dimension is the comparative ease with which it can be computed,

particularly for time series data.

Routes to chaos

The onset of chaos in a system can be viewed as a transition from a periodic or equi­

librium state through a series of qualitative changes in the dynamics as one or other

control parameter is varied. A qualitative change in the dynamics as a system parame­

ter is changed is called a bifurcation. For example, fig. 1.1 (a) shows that the attractor

of the logistic map undergoes a series of period doubling bifurcations before entering

the chaotic state. This is an example of a period doubling route to chaos. The Rossler

system and the Lorenz system are other examples of systems showing period doubling

route to chaos for certain ranges of parameters (Sparrow, 1982~ Olsen and Degn, 1985).

The B-Z reaction (cf sec. 1.4.4) also takes this route to chaos (Simoyi et al., 1982~

Roux etal., 1983).

The bifurcation points aI, a2, ... in the logistic map exhibit a striking limiting be­

haviour. If p = (an - an-I)/(an+1 - an), then liffin-,""Pn = 6 where 6 = 4.66920. This

was discovered by Feigenbaum (1978, 1979) who found that this number is universal

in that all unimodal maps undergoing period-doubling route to chaos have this limiting
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property giving the same value for 6. A fuller discussion of this quantitative universality
I

can be found in Feigenbaurn (1980) and Schuster (1988).

Asecond route to chaos, the quasi-periodic route, is usually associated with Hopfbi­

furcations which involve the generation of a limit cycle from a fixed point with a change

in parameter. Landau (1944) suggested that the chaotic state associated with turbulence

in liquids is approached through an infinite sequence of Hopf bifurcations. A modifi­

cation of this model suggested by Newhouse etal. (1978) shows that after three Hopf

bifurcations regular motion becomes highly unstable in favour of motion on a strange

attractor. The later theory is also supported by some experimental results (Nayfeh and

Balachandran, 1995).

The third widely known route to chaos is intermittency which is the occurrence of

fluctuations that alternate randomly between long periods of nearly regular behaviour

and short irregular bursts. The frequency and density of chaotic bursts increase with the

control parameter, presenting a continuous route from regular to chaotic behaviour. A

detailed study of the theory of intermittency can be found in Pomeau and Manneville

(1980).

1.4.4 Experimental study of chaos

Chaotic behaviour occurs in a great number of engineering, experimental and natural

systems. Hao (1990) presents a detailed list of the experimental study ofchaos in various

areas of applied and natural sciences.

Following the works of Belousov and Zhabotinsky, it has been known for a long

time that certain chemical reactions, now known as B-Z reactions, exhibit oscillations

before reaching equilibrium (Field and Burger, 1985). Roux etal. (1983) demonstrated

that a properly "driven" B-Z reaction, in which reactants are constantly pumped in to

compensate for the loss due to reaction, may exhibit chaos for certain ranges of the

control parameter which in this case was the rate of input of reactants.
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The Rayleigh-Benard convection is also widely known for the presence of chaos
\

in the movement of convection rolls in a fluid confined between thermally conducting

plates and heated up in a controlled manner, when the temperature difference in the

system crosses a threshold value (Libchaber et al., 1982).

The Chua circuit (Chua et al., 1986; Madan, 1993) is a nonlinear electronic system

exhibiting a rich variety of bifurcations and chaos. This is also the first physical system

where theoretical results agree well with computer simulations and experiments.

Lasers provide a typical class of potentially chaotic nonlinear oscillator systems

(Weiss and Kische, 1984; Weiss and Brock, 1986). Chaos in optical systems has been

reviewed by Harrison and Biswas (1986).

Examples of non-autonomous systems showing chaotic fluctuations can be found

among forced non-linear oscillators. For example, the driven double-well oscillator is a

well studied system showing a rich variety of dynamics (Moon and Holmes, 1979).

Some of the reviews of observed chaos in other areas include Lauterbom and Parlitz

.(1988)(acoustic chaos), Beasley and Huberman (1982) and Pederson (1988) (Chaos in

Josephson junctions), Schaffer (1985) (chaos in ecology), Olsen and Degn (1985) (chaos

in biological systems)

1.4.5 Attractor reconstruction

There are many occasions when we are limited to making a sequence of measurements

of one or more observables, while the exact dynamics of the system which cause the

observables to vary may not be known or too difficult to determine. For example, the

population of different species in a given ecosystem, the air temperature and pressure

at specified geographical locations, or the density of traffic at several positions on a

motorway are dynamic observables which can be measured without being certain about

the underlying dynamics. In such cases one can reconstruct the unknown system from a

sequence of measurements of just a single observable, using a technique known as delay
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reconstruction ofthe attractor, first suggested by Packard et at. (1980) and successfully,
used by many others. The embedding theorems of Takens (1981), and its extensions

(Sauer et al., 1991; Sauer and Yorke, 1993) elucidate the mathematical theory behind

delay reconstruction. Roughly, the embedding theorems assert that for deterministic

systems, the dynamics of the n-dimcnsional state vector x(t) can be recaptured from

the dynamics of the delay vectors of a single scalar function of x, yet) = h(x(t», under

rather general conditions. The mapping

<I>(x(t» = (y(t), y(t + T), .. -y(t + (m - l)r),

which maps x to an m-dimensional delay vector with delay T, is an embedding when

m ~ 2n+1. This means that most of the significant characteristics of the original system,

both dynamical and geometrical, are carried over to the reconstructed phase space in a

one-to-one manner(Kantz and Schreiber, 1997; Ottetal., 1994). In particular, properties

such as the fractal dimension, Lyapunov exponents and entropies are preserved under

the reconstruction map <I> and can be computed from the mirror dynamical flow in the

reconstructed space. There exist further generalizations which serve to reduce the bound

on the embedding dimension, and in many cases the smallest integer greater than the

correlation dimension is enough to fully embed the attractor(Sauer et al., 1991; Sauer

and Yorke, 1993).

The success of delay reconstruction depends on choosing the embedding dimension

mand the delay T suitably. There are are many subtleties involved in this which will be

discussed in greater detail in Chapter 6.



CHAPTER 2

The Basic equations

In this chapter we introduce the problem studied in this work and present the basic as­

sumptions made of the system to build an appropriate mathematical model. The basic

equations governing the dynamics of the system are derived for a simple special case

which will be extended to more general systems in subsequent chapters. These exten­

sions arouse several theoretical as well as practical questions as to the suitability of

the various methods used to model such systems. These points are discussed and an

overview of the novel approach which we adopt to analyse the system is also given in

this chapter.

We propose to extend the theoretical studies of Ramamohan et al. on the dynamics

and rheology of dilute suspensions of dipolar particles in a simple shear flow by in­

corporating the additional effects of rotary Brownian motion which were neglected in

their work. They had identified certain parametric regimes where both the orientation

dynamics and the bulk orientation averages exhibited chaotic fluctuations (Ramamohan

etal., 1994; Kumar and Ramamohan, 1995; Kumar et al., 1995). It was noted (Kumar

and Ramamohan, 1995) that the diffusion equation approaches commonly used to solve

similar problems were inadequate to capture a possible chaos in the system. Hence in

generalising their analysis to suspensions of smaller particles in which Brownian motion

is significant, we require that the resulting model should be general enough to pick up

39
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possible chaos in the modified system also and suitable for investigating the effects of
I

Brownian diffusion on chaos in the system. The generalised Langevin equation method

which- we use in this work is suitable in this respect and ~veral merits over the

traditional diffusion equation method as discussed in se1l~.5 )

The traditional method for studying Brownianeffcc~h the modifications to

the orientation distribution function obtained as a solution of a modified diffusion equa­

tion. We shall, in subsequent sections, outline this approach and discuss the difficulties

associated with it. The Langevin approach we follow in this work, allows for a di­

rect simulation of the various orientation moments without having to solve the diffusion

equation.

2.1 The assumptions of the model

We shall model a suspension of Brownian spheroids in a fluid medium subjected to a

simple shear flow, using a generalised Langevin equation method advocated by Coffey

etal. (1996). No restriction is made about the strength of either the flow field ,or of

the diffusion and the results we present are, in principle, true for an arbitrary range

of Peeler number (Pe). We develop a technique for computing the various orientation

moments of the suspension and then extend it to the case of driven systems in which

an external force influences the particle dynamics and the rheology. The external force

considered can be constant or periodic in time and it is assumed that the suspending

fluid is unaffected by the action of this field on the particles. The following are some of

the further assumptions made, in order to make the problem tractable to mathematical

analysis.

The suspending medium is an infinite incompressible isothermal Newtonian fluid.

The particles are identical, rigid, neutrally buoyant spheroids which are sufficiently

small, so the boundaries of the physical apparatus holding the fluid do not significantly-------------- ------------------,
affect the rheology of the bulk of the suspension.
'=- --. --~--
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While considering external forces, like electric or magnetic fields, it is assumed that

the particles are dipolar, ic, have electric or magnetic charges on them. In such cases the

particle dipole moment is considered collinear with its physical symmetry axis.

The volume fraction <D of the particles is so small that hydrodynamic interaction

among particles or between a particle and the flow boundary may be neglected. Hydro­

dynamic interaction is a long range phenomenon in which the flow field experienced by

a particle is affected by the velocity disturbance of other particles. Our assumption here

is that the solution is dilute, which mathematically corresponds to the limit n[3 « 1

where n is the number of particles per unit volume and l is the linear dimension of the

particles.

The flow is considered sufficiently sl~ that the the effects of inertial and external

body forces are negligible compared to the viscous force. This means that, in the mathe­

matical formulation of the problem, the Reynolds number, defined as the ratio of inertial

forces to viscous forces, is very small and nearly zero.

2.2 The dynamics of force-free particles

In this section we derive the basic equation of motion for the orientation of a represen­

tative particle in the suspension, neglecting for now the effects of Brownian motion and

external force fields. This equation can be later modified to include the contribution of

Brownian and external forces by superimposing on it suitable terms corresponding to

these factors.

Consider a single particle from a dilute suspension of identical, rigid, neutrally buoy­

ant spheroids in an infinite incompressible Newtonian fluid. A spheroid has aspect ratio

r = alb where a and b are respectively the polar and equatorial radii. Since for a dilute

suspension the bulk properties are generally determined by the orientations of the par-
. - -----

tides alone we neglect any translatory motion of the particle by choosing a co-ordinate..... __...JI.-system that moves along with it. The origin of the co-ordinate system is placed at the
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y v = tyi

y X

(a) (b)
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Figure 2.1: (a) A Schematic of the co-ordinate system and the orientation vector. (b)
The profile of the flow.

centre of mass of the spheroid. The orientation of the spheroid is then represented

by a unit vector u placed along the major axis of the spheroid. Fig. 2.1(a) shows a

schematic of this set up where the direction of u is specified by the polar co-ordinates

(B,4J), B(D ::; e ::; iT) and 4J(D ::; 4J ::; 21l") being the polar and azimuthal angles determined

bythe vector u. The Cartesian co-ordinates of u are then given by the relations,

UI = sin Bcos tP

U2 = sin esin tP

U3=COSO.

of a unit vector they also satisfy

(2.1)

The suspending fluid medium is subjected to a simple shear flow with a flow field given

by,

v = i'yi = (ty,O,D) (2.2)
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wherey is the shear rate, y is ,Wdinateand i is the unit vector in the X-direction

(Fig. 2.1(b». The time rateo;~ particle orientation can be expressed as

U =W x u, * (2.3)

",,-1'where w is the angnlar velocity of the protide, an express*,hiCh may be obtained

l through an angular momentum balance ~Ofle{Str1..:..d and Kim, 1992) as follows.

Without Brownian motion, the rotational torque on the particle is mainly due to hydro­

dynamic forces, and the conservation of angular momentum requires that

Thyd = 0, (2.4)

where Thyd is the hydrodynamic torque which may be expressed as (Hinch and Leal,

1972),

Thyd ={. (n - w) - C{· [u x (E· u)]. (2.5)

Above{is the hydrodynamic resistance tensor and C is a shape factor for axi-syrnmetric

particles defined by,

which takes value -1 for disks, 0 for spheres and +1 for long fibres (slender rods). The

first term in (2.5) signifies the part of the torque caused by the interplay between the

particle rotation and the local fluid motion, while the second term corresponds to the

torque due to the shearing motion of the imposed flow. The strength of the flow field

interferes Thyd, eq. (2.5), through the rate of deformation tensor E and the vorticity

vector n defined thus:
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In simple shear, (2.2), E and n can be represented in tenus of the shear rate thus,
\

E Ye' . 'r\= - I} + }l)
2,

Yn = (0,0, -"2)

44

(2.6)

The hydrodynamic resistance tensor { can be decomposed into components parallel and

perpendicular to the particle symmetry axis (Kim and Lawrence, 1987),

where 6 is the unit tensor. This when substituted into (2.5) eliminates tenus involving..
{II and reduces it to,

---'

Thyd = {.L[(n - w) - C[u x (E . u)]].

Hence (2.4) gives,

w = n + C [u x (E . u)] , (2.7)

which, when substituted into (2.3) gives the final expression for the rate of rotation of

the spheroid,

it = n x u + C[u x (E· u)] x u:

The Cartesian form of the above equation may be obtained by using (2.6);

Ul = yCU2(l - ui) + ~ (1 - C) U2,

U2 = -yCUIU~ - t. Cl - C) u},
2

2.3 The diffusion equation approach

(2.8)

(2.9)

Eq. (2.8) describes the orientation dynamics of a single particle in simple shear flow in

thecomplete absence of Brownian motion, namely, the random fluctuations experienced
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by the orientation of the particle due to collision by the numerous fluid molecules sur-
I

rounding it. We now discuss how the effects of Brownian motion can be accounted for in

the system. Brownian motion has significant effects if the particle size is comparatively

smaller, typically of the order of 10- 50Jlm. It affects the local dynamics of the particles

by imparting additional rotational torques and influences the bulk properties by modi­

fying the orientation distribution function. Experimental studies conducted on various

flows also point to the necessity of taking Brownian effects into account (Anczurowski

and Mason, 1967; Folgar and Tucker, 1984; Stover etal., 1992). For example, the rota- ~l.,b<­

tion of force-free particles in shear flows predicted by Jefferey should in principle lead ~
-- . ---- . e~lJ
to osci~tlons in _the _~~!~p~erties(cf sec. 1.2.1), while act~rITSS1iOwed cc.._....

that they tended to attain steady values in the long time limit. Leal and Hinch (1971)

showed that one reason for this could be Brownian diffusion, since even very we~

Brownian motion can kill oscillations in the dynamics and hence in the rheology. In the

absence of any forcing on the particles, either due to the flow field or from an external

force field, the Brownian forces tend to drive the particles to a uniform distribution. The

additional torques due to the flow field or external force, which tend to align particles

in preferred directions, compete with this disorienting effects of Brownian motion and

make the particle dynamics depend on the various forces in a complicated manner.

Brownian motion imparts rapid and random fluctuations to the particle orientation,

the extent of which probably varies wit~ also. The particle orientation may there-

"- - ....-fore be considered a stochastic process,the sample space of which is the unit sphere that

represents the set of all possible directions for the vectors u. There are ~rallY two

different, but equivalent, methB studying a stochastic system like thi (C~ sec. 1.3).

The first is the Diffusion equa on(F kker-Planck equation) formalism, in w ich the sys­

tem is studied through a parti erential equation governing the time-space variation

of an appropriate density function for the stochastic variable. In the second method,

the Langevin equation formalism, the system is modelled through a set of stochastic
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differential equations, called Langevin equations, governing the time dynamics of the

stochastic variables.

Due to its random nature, a complete description of Brownian motion can only be

made in terms of orientations of an ensembles of particles. The Fokker-Planck equation

(diffusion equation) approach does this by describing the orientation state at a point in

the space by a probability density function I/t(u, t), called the orientation distribution

function (ODF), which is defined as the probability of finding a particle within the solid

-
I/t(u) = I/t(-u).

----- -

r I/t(u)du = r1f r I/t(B,t/» sin8dBdt/> =1,
Js J8=0 J4J=0

the integration being over the surface S of the unit sphere. The third condition is a

continuity equation, describing the change in I/t with time when the particles change

orientations;

(2.10)

which is referred to as the Fokker-Planck equation or Diffusion equation (Strand and

Kim, 1992). This is basically a convection-diffusion equation, in which Brownian rota­

tion is the diffusion process that tends to smooth out the distribution towards isotropy.

D; is the diffusion coefficient, called rotary diffusivity, defined by

wheretJ. represents the rotational resistance in the direction perpendicular to the particle

symmetry axis, ke is the Boltzmann constant and T is the absolute temperature.
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In a dilute system, with the correlation among the orientations of neighbouring par-
I

ticles negligible, the OOP is assumed to be a complete description of the orientation

state.

The above equation, eq. (2.10), usually appears in scaled form, either with the shear

rate or the diffusion coefficient Dv, to express it in terms of the dimensionless quantity

Pe,called Peclet number, defined by

moment (B(u» is BCu) averaged over an ensemble of orientations u, weighted by 1/1,

(B(u» =LB(u)l/Idu. (2.11)

Above, 1/1 can be obtained by solving the diffusion equation eq. (2.10) at steady state

where il is given by eq. (2.8). A major impedance to the success of this approach is the

fact that the diffusion equation is usually very difficult to solve in its fully generality,

except for some comparatively simpler cases like steady uniaxial and planar extensional

flows, for which there exist rigorous solutions of the diffusion equation (Brenner, 1974;

Brenner and Condiff, 1974). What is done in practice is to attempt various numerical

schemes, guided by physical intuition, to approximate the solution for various ranges

of shear and diffusion parameters. Thus, for example, if diffusion is weak compared to

shear, the particles tend to spend most of the time along the flow direction and diffusion
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can be neglected except in a small region of the orientation space near the flow direc-
\

tion (Hinch and Leal, 1972). Hinch and Leal (1972) used a regular perturbation method

arourid 1/Pe to approximate the ODP in this regime (Pe~ » r). On the other hand, if

the Brownian diffusion is stronger (Pe « 1), the weak flow disturbs the uniform orien­

tation distribution caused by the randomizing effect of diffusion only slightly; hence a

regular perturbation about Pe may be used to approximate the ODP (Hinch and Leal,

1976). When the flow strength is in between these extremes, the perturbation methods

fail. Chen and Koch (1996) developed a spherical harmonic method to determine the

orientation distribution function of fibers of large aspect ratio in this intermediate regime

where diffusion and advection are comparable. This involves expanding the steady state

orientation distribution function into a double series of spherical harmonics and substi­

tuting a suitably truncated form of this series into the diffusion equation for the system,

leaving a set of linear equations in the expansion coefficients. The number of terms in

the truncated series and hence the number of linear equations to be solved generally

increases with increasing Pe to achieve a given accuracy. Hence the procedure becomes

computationally formidable for larger values of Pe, but the technique can be success­

fully applied for Pe upto 1000 (Chen and Jiang, 1999). Chen and Jiang (1999) present

another approach, in which the diffusion equation of the system is numerically solved

for the steady state ODP using a finite difference scheme with a pair of boundary con­

ditions. This method is applicable when the flow is moderate (Pe upto 1000), but even

for small Pe, the numerical scheme requires a large number of mesh points to achieve

a given accuracy and so the computation time is longer even in the weak flow regime.

For very large Pe they suggest another method in which the diffusion equation is nu­

merically solved for the time evolution of the ODP with a given initial state until steady

state is reached. This is particularly useful for Pe > 1000 where spherical harmonics_.
methods become computationally difficult.
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2.4 An outline of the new approach
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It is clear from the above discussion that the numerical schemes currently used for solv­

ing the diffusion equation vary as the flow and Brownian parameters are changed. In this

work, we present an alternate approach to computing the orientation moments without

having to solve the diffusion equation. This method is based on a generalized Langevin

equation approach presented recently by Coffey et al. (1996) for non-linear systems with

noise, and provides a unified strategy for modeling such systems placing little restriction

on the Peeler number of the flow. Each Langevin equation is an equation of motion for

the orientation of a single particle depicting the irregular part of the motion due to Brow­

nian effects in terms of a suitable random noise term whose properties are determined

only on the average. An ensemble of these equations must be identical to the governing

diffusion equation of the entire system. For the system we study, the Langevin equa­

tion would be obtained by superposing on eq. (2.8) for the regular part of the motion in

the complete absence of Brownian diffusion, suitable terms for the random fluctuations

arising from Brownian effect and hence will have the general form,

it = n x u + C[u x (E· u)] x u + g(u, I', t).

I' is a white noise vector which takes care of the random fluctuations due to the ad­

ditional Brownian effect. The components C of r are Gaussian random variables, the

conditions on which are known only on the average, usually determined by demand­

ing that an ensemble of these Langevin equations be mathematically equivalent to the

corresponding Fokker-Planck equation of the system. Generally, it turns out that C are

delta-correlated random variables with zero mean. The exact form of the function g in

the above Langevin equation is presently unknown and will be determined in Chapter 3

by comparing the moments of spherical harmonics as obtained from the diffusion equa­

tion and an ensemble of the Langevin equations. We note that the spherical harmonics

form a complete set of eigen functions for the expansion of any orientation average into
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initial condition, it is possible

_...- ..•...----------....-..-

an infinite series. Accordingly, we first \derive a differential recurrencefor~

moments of surface spherical harmonics starting frormthediffusro~

and then reproduce it from the Langevin equation method with a presumed noise term

for the Langevin equations as suggested by some heuristic arguments (sec. 3.2.3). The

exact agreement between the two formulae then justifies the form of noise we started

with. We then obtain the exact equation ofmotionfor any desired orientation average

using a modification of a novel idea of Coffey etat. (l996)(Chapter 4). These moment

equations being ordinary differential equations are easier to handle than the original

Langevin equations which are stochastic differential equations. These equations are

easily solved in the zero shear limit giving the familiar result that the orientations tend

to a uniform distribution at equilibrium due to the randomization effect caused by the

Brownian diffusion. In other cases, we transform each pair of moment equations into

a pair of coupled ODEs and a set of such equations is simulated over a finite number

of initial conditions until the properties of the solutions are invariant in time. The de­

sired moments can be easily obtained from these solutions and the results are in good

agreement with previously known ones, when obtained for some special cases.

The basic idea behind the Coffey etal. (1996) treatment of non-linear systems with

noise is that by interpreting a Langevin equ~t.H·~t9:tst a stochastic variable as an inte­

gral equation in the Stratanovich sense

to express suitable time averages of the s oc astic variable in terms of a determinis­

tic equation of motion for the sharp values. From an ensemble of these time averaged

Langevinequations it is possible to determine the dynamics of the various moments in

terms of deterministic ordinary differential equations, without having to solve the diffu­

sion equation. For the system we consider, the bulk suspension properties are related to

orientation averages over the particles aligned along

most realistic model for such a suspension may be a set of Langevin equations start­

ing off from sharp initial conditions in a time-averaged sense over an appropriate white
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noise term. Thus this system is an ideal one for applying the Coffey etal. approach. The

technique presented here can be easily generalized and applied to other similar systems

with noise.

2.5 A comparison of the different methods

As we have seen, most of the methods for solving the diffusion equation involve expand­

ing the ODF into a series of orthogonal basis functions and then numerically solving for

the coefficients. The method is suited for systems in which the variations in the den-
~~I.

sity function over the orientation space are smooth. If the density has steep gradients
+' --

many more terms in the expansion will have to be retained and solving for the coef­

ficients then becomes computationally intensive. Furthermore this technique of eigen

function expansion is difficult to apply to systems for which the governing equations are

complicated.

As an alternative to the Fokker-Planck equation approach, the Langevin model with

Brownian dynamics simulations has been proposed by some authors (Hua and Schieber,

1995). This method deals directly with stochastic differential equations, the Langevin

equations of motion for the suspension elements. However, this requires a large number

of equations to be tracked in order to obtain statistically accurate results, and therefore

takes large computational time and effort.

In contrast to the aforementioned treatment of stochastic systems, the method pre­

sented in this work has several advantages. First, it directly describes the time evolu­

tion of the random variables rather than the probability function underlying the process.

Second, the need to construct the Fokker-Planck equation from the Langevin equation is

dispensed with, nonetheless the averages generated are identical to those obtained from

the Fokker-Planck equation. Further, in actual experiments one measures only time av­

erages over small time intervals and not instantaneous values and so the description of

the evolution of time averages by a deterministic equation in the new method appears to
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be more suitable for comparison with experiments. It is also advantageous over the usual

Langevin treatment in that the time averages of the stochastic variable can be expressed

in terms of ordinary differential equations for a set of sharp starting values, the trajec­

tories of which can be more accurately simulated numerically than those of stoehastic

differential equations as in Brownian dynamics simulations,

From the point of view of the problem we study, the new method provides a unified

strategy that can be applied over a wider range of Pe than is possible by other methods. It

can be easily generalized to more complex systems like suspensions of charged particles

or suspensions of dipolar particles with external forcing. Also it offers a considerable

saving of computational time, as we shall see in subsequent chapters when we compare

our methods with existing ones. The Langevin method, together with a paired moment

scheme for computing the orientation moments developed in subsequent chapters, will

be found suitable in certain regions such as the limit of weak Brownian motion where

the regular methods fail due to singularity problems.

Kumar and Ramamohan (1995) demonstrated that the presence of chaos or subhar­

monic frequencies in the orientation dynamics or the rheology of the suspension might

not be identifiable in the diffusion equation method used by Strand (1989) or similar

methods. The Langevin equation method is the ideal tool in such situations as we shall

elucidate in later chapters.



CHAPTER 3

The Langevin approach

In the last chapter we observed that the Langevin equations governing the orientation

dynamics of the spheroids in the suspension system we study has the general [mm,

u =n x a + e[a x (E· a)] x a + gtu, I', t). (3.1)

with an undetermined form for the noise term g. In this chapter we determine the form

of this noise term, by requiring that the ensemble of equations (3.1) becomes identical

to the diffusion equation eq. (2.10), Chapter 2 for the system. This is done by expanding

the distribution function 1/1 into an infinite series of surface spherical harmonics. This
,

set of Langevin equations will then be used to generate the equations for the dynamics

of the desired orientation averages. The following section is a review of the definition

and properties of the spherical harmonics which will be put to use in the subsequent

sections. The rest of the chapter is devoted to fixing the form of the stochastic term

in the Langevin equation, by exploiting the equivalence between the diffusion equation

and the system of Langevin equations.

3.1 The spherical Harmonics

The spherical harmonics are an infinite class of functions defined over the surface of the

unit sphere, ~ith () the polar angle and <P the azimuthal angle, defined thus (Arfken and

53
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Weber, 1995):

54

-n s m 5 n.

Above, the normalization constants Ns:« are given by

(2n + l)(n - m)!

41l"(n +m)!

The P': are associated Legendre functions defined for non-negative m by

(3.2)

-"--_..---- . "'--...

where Pn(x) is the Legendre po~mial,~~~__~:..~~vdm by

P-m(x) = (-lr en - m)! ~(x)
n (n + m)! n

The Yn,m therefore satisfy the relation Yn,m = (-1)mr:,_m where * denotes the complex

conjugate. An important property of the spherical harmonics is that they form a com­

plete set in the space of all square integrable functions defined over the surface of the

unit sphere. This means that

(i) the spherical harmonics form an orthononnal set, pairwise satisfying the orthogo­

nality relation (Arfken and Weber, 1995),

t' l'br Yq,p Y:,m sin 8d8dif> = 6qn s.:
Jo:::o ;:::0

(ii) any function f(8, if» in the above space can be expanded in a uniformly convergent

double series of spherical harmonics (Arfken and Weber, 1995)

00 n

f(8, if» = LL an,mYn,m'
n=O m=-n

(3.3)

The last equation allows for expressing the orientation moment (f(8, if») in terms of the

moments of the spherical harmonics thus,

00 n

(f(8,</J» = 2: ~ an,m(Y",m)'
n=O m=-n

(3.4)
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Theoretically, this means that the dynamical variations of the moment (f(8, t/J», as the

distribution function I/J changes due to change in particle orientations. can be completely

determined from the dynamics of the moments of the spherical harmonics.

We now proceed to determine the undetermined function g in eq. (3~1) by requiring

that the diffusion equation and an ensemble of the Langevin equations (3.1), generate

the same set of orientation averages. Equi ntly, since any orientation average can be

expanded in terms of spherical harmo lCS(Cj. eq. (3.4», we may require that both the

methods give rise to the same evolutios.eqeations for moments of spherical harmonics

and use this as a matching condition for obtaining the noise term. Towards this end,

we derive a set of differential recurrence relations for the evolution of the moments

of surface spherical harmonics for the system governed by the Fokker-Planck equation

(2.10) and compare them in section 3.2.3 with a similar set of equations to be obtained

from the set of Langevin equations (3.1) for the same system with a presumed value for

the unknown function g.

3.2 The dynamics of the spherical harmonics

3.2.1 From the diffusion equation

We note- that eq. (2.9) gives the regular part of the evolution equation for the orientation

of a single particle in the complete absence of Brownian diffusion, while the the effect

of diffusion is taken care of by the diffusive term on the right side of eq. (2.10). The

transformations eqs. (2.1) can be used to express eq. (2.9) in their spherical co-ordinates

counter parts,

iJ =ye sin 8 cos 8 sin t/J cos t/J,

. C. 2 (1- C)t/J = -1' SIn t/J - l' -2- .
(3.5)

We can use the above expressions in (2.10) to write it in spherical co-ordinates thus:

al/J - l' al/J -- + yCf>.(I/J) - - (l - C) -;- = D, A(I/J).at 2 ut/J
(3.6)
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The.Q and A appearing in the above equation are linear operators defined by
I

- sin ~ cos ~ a(. ) a ( . )n(I/!) =. I/! sirr' 0cos 0 - - I/! sm2 ifJ ,
sin 0 oe oifJ

- 1 0 (. ol/!) 1 o21/!A(I/!) = -- smO- + ---.-
sin 0 00 00 sin2 ooifJ2
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(3.7)

We may now expand I/! into a double series of spherical harmonics (et eq. (3.3», as­

suming that I/!(O,~, t) satisfies the boundary conditions I/! 18=1r.~=br = I/! 18=O,~=0

co n

I/! = LL an,m(t)Yn,m.
n=O m=-n

(3.8)

Since I/! is to be real the expansion coefficients an,m satisfy an,-m = (_l)ma~.m' Again,

since I/! is a probability density function it must satisfy the normalization condition,

r1r Lbr

I/!(O,~, t) sin ()dOd~ = 1.
Jo=o ~=o

This constrains the first term in the expansion for I/! to satisfy ao,oYo,o = 1/(41f) due to

orthogonality of the spherical harmonics, eq. (3.2). In polar co-ordinates, the expression

(2.11) for the moment (B(O,~» becomes

(B«(},~» = L:01: B«(},~)I/! sin(}d8d~

Fixing m ~ 0 and multiplying (3.6) through by Y:,m and integrating over the unit sphere

we get

[ Lbr ~I/! ¥;,m sinedO d~ + it C [ Lbr

n(I/!)¥;,m sin 0dOd~
8=0 FO ut 8=0 ~=O

_ it ( 1
- C)[ r ol/! sine¥;.m dO difJ
2 8=0 J~=o oifJ

= o, t" ibr

A(I/!)Y:,m sin(}dOd~ (3.9)J9=O ifI=O
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(3.10)

The first term on the left side of (3.9) is evidently ~ (Y: m). To evaluate the second term
\ dt·

on the left we first note that

l:oL:O(t/t)Y:,m sin OdOd</J

1"12" sin </J cos </J 8
= . 0 .::l0 (t/t sin

2 0 cos 0) Y:,m sin 0dO d</J
o~o rP~o sm u

1
" L2Jt 8- -;- (I/t sin

2 </J) sin eY:,m de d</J
o~o ;=0 u4J

= - r" r sin 4J cos </J ~e (Y:.m) t/t sin2 e cos ede d4J
Jo=o J;=o u

+ r L
2Jt

sin e: (r:,m) t/t sin
2 </J de d</J

Jo=o ~=o u</J

In the foregoing expressions the last step follows by integrating the first term of the

previous step by parts with respect to e and the second term with respect to </J. Now

using the relations

:0 (Y:,m)sin2e
cose =:e (Y;,m sin

2e
cos e) - :0 (sin

2e
cos e) Y:,m

~ (r:,m) sin
2 </J == :4J (r:,m sin

2 </J) - Y:,m sin(24J)
(3.11)

in (3.10) and simplifying we get

r L
2Jt

D.(t/t)Y:.ms~neded</J =- r" t" n(r:,m)t/t sin eded</J
Jo=o ;=0 Jo=o J~~o 2Tr (3.12)

-~ r L Y:,m sirr' e sin(2</J) t/t de d</J.
Jo=o ~=o

The effects of non P;:(cos e) and p;:(sin e) have been evaluated previously (Bird et al.,

1987) (here and in what follows we have abbreviated P';:(cos e) by pr;: etc.):

m+2 n+2

n(?: sin(m4J») == L: L: a:.t Pi cos(j</», m~ 0
j=m-2 k=n-2

m+2 n+2

nC?'; cos(m</») == - L: L: c: p~ sin(j</J), m > 0
j=m-2 k=n-2
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The constants a:.t are the Bird-Warner coefficients (Bird etal., 1987). Hence it follows,
that

m+2 71+2

n(Y" ) = '" '" bm,j Y· .n,m L..J L..J n,k k,J
j=m-2 k=n-2

(3.13)

(3.15)

where we have written b:.t = -i (Nn,m/Nk,j)a:'t. This can now be used in (3.12) to

complete the evaluation for the second term on the left of (3.9):

rC [a.L !2(I/t)Y:,M sjnede~
m+2 71+2. 3

=-yC I Lb:t(r;,j)-2:yC (sin2 e sin(2lP) Y:,m) (3,14)
j=m-2k=n-2

The integral in the third term on the left of (3.9) can be integrated by parts with respect

to tj> and the boundary conditions for 1/1 applied to show that

-rC ;C)[J:: sjner.",de~= -rC ;C)im (r.",)

To evaluate the right side of (3.9) we use the known effects of A on real spherical har-

monies (Bird et al., 1987);

A (JY; cos(mlP» = -n(n + 1)JY; sin(mtj»

A (JY; sin(nup» = -n(n + 1)JY; cos(nup).

Henee using the linearity of A we have A(Y,;,m) = -n(n + l)Y:,m and then invoking the

eigen function expansion of 1/1,

(

00 q ) 00 q

A(l/I) = A ~~q aq,p Yq,p = ~p~q(-q)(q + l)aq,p Yq,p.
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This result together with the orthogonality relation for the the spherical harmonics, (3.2),
I

and term by term integration yields

In a similar fashion, using the orthogonality relation (3.2) and the expansion for l/J, we

can prove that the expansion coefficients an.mare related to Y:,m by an,m = (Y:,m)' The

final expression for the right side of (3.9), therefore, becomes

o, r r A(l/J) sin 8 Y:,m dO diP = Drn(n + l)(Y:,m)'
Jo=o J4I=o

(3.16)

Putting together (3.14), (3.15) and (3.16) in (3.9) we get the following differential re-

currence relation for (Y:,m)

m+2 n+2 3
1t (Y:,m) = ye I I b:t (Y;,j) + 2YC (sin

2
8 sin(2iP) Y:,m)

j=m-;2k=n-2

+ ye; C)im (Y:,m) - Drn(n + 1) (Y:,m)
(3.17)

The above recurrence relation has been derived on the assumption that m is non-negative.

If m is negative -m is positive and the Bird-Warner coefficients a-mk .i are defined. We will
n,

then get a similar recurrence relation by complex conjugation using Yn,m =(-1)'" Y:,-m with

appropriate modifications.

Special cases

In the absence of shear (Le, y = 0) eq. (3.17) reduces to

~(Y:m) = -Drn(n+ l){Y:m)'dt ' ,
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which has solution

.(Y:,m) = ke-Drn(n+l) (k some constant).
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For n > 0, (Y;,m) ~ 0 as n ~ 0, while for n = 0, (Y~,o) = Go,o = 11 V4n by normalisa­

tion. A similar result holds when the particles are spheres (i.e, C = 0). In this case the

recurrence relation becomes

where Cl = ym(l - C/2) and C2 = Drn(n + 1). In terms of real spherical harmonics this

can be written as a linear system,

:/P; cosnu/» =Cl(P; sinnU/J) -C2(P; cosmfjJ)

:/P; sinnu/» = -Cl(P; cosmfjJ) - C2(P; sinmfjJ).

The coefficient matrix of the system has eigen values Aj = -C2 ± icz. Since Re(Aj ) < 0

for n > 0, (Y~m> ~ 0 in this case, while for n = 0, (Y~,o) = 1/ Y4n as before. Thus in

the absence of shear or when the particles are spheres we get if! = 11...j4;i in the long

time limit, which corresponds to uniform particle distribution. This is the familiar result

that in these cases the randomization effect due to Brownian motion leads to a uniform

distribution of the suspension at equilibrium.

3.2.2 The Coffey etal. method

Before deriving the differential recurrence relations for the spherical harmonics by the

Langevin equation approach, we give a brief mathematical description of the Coffey

etal. (1996) approach which we will use in the coming sections. Let ~ = (gl, g2, ...gn)

be an n-dirnensional stochastic variable whose components satisfy a set of Langevin

equations with multiplicative noise terms,

(3.18)
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where f j are Gaussian random variables with zero mean and auto-correlation functions
t

proportional to the 0 function:

(3.19)

where oij is the Kronecker delta, o(t) is the Dirac delta function and D is the spectral

density. We start with interpreting (3.18) as an integral equation (in the Stratonovich

sense) for the values of ~ at a later time t + ot,

(3.20)

where Xj(t) is the sharp starting values for ~i(t) at the instant t. Let Xi (without the time

argument) denote the time average of ~i(t) starting from the sharp value Xi(t), calculated

by the Stratonovich rule. Then the time averages can be expressed as a deterministic

equation of motion for the set of sharp starting values x(Coffey et al., 1996),

. I' [~i(t + Ot) - Xi(t)]
Xj = lm~----~

01_0 Ot

=hj(x) + D gtiX, t)a
o

(gij(x, t»),
XI<

(3.21)

where 1 ~ i ~ n, 1 ~ i.k ~ m. In the above we have used Einstein's summation
I

convention so that the second term on the right represents a sum over j and k. Similarly

it can also be proved that for any well behaved function hex) (Coffey et al., 1996),

(3.22)

where again the summation over j and k is understood.

3.2.3 From the Langevin equation

To obtain the exact form of the noise term g in the Langevin equation (3.1), we heuristi-
..4 ~

cally suppose that the rotary Brownian motion causes the angular velocity of the particle

'--------
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to change and we incorporate this effect by superposing on the equation (2.7) for eo a
I

white noise vector term:

tu = g + C[u x (E· u)] + I'(r)

where the Cartesian components C(l) of F satisfy (3.19) with D = Dr. A justification for

this form of the noise will be available only l=at.___-=hen we reproduce from the system

e dynamics for the moments of

y the Fokker-Planck equation. The

expression for it, eq. (2.8), then changes into

il = g x u + C [u x (E . u)] x u + I' x u. (3.23)

(3.24)

When converted into spherical co-ordinates the equation becomes (c! eq. (3.5»

iJ = ye sin 0cos 0 sin (,6 cos 4> - sin </>r I (r) + cos </>[2(r)

it> = -yC sin2</> - YC;C) -cotOcos </>[1 (t)

- sin{,6cotO[2(r) + [3(t)

These equations are now in the form (3.18) with hI and h2 corresponding to the deter­

ministic parts of iJ and it> in (3.24) respectively and with

g21 = -cotOcos{,6

gI2 = cos</>

g22 = - cote sin </>

To obtain the differential recurrence relations for the spherical harmonics r; m for m ~ 0,

note first that

(3.25)

Writing 11 =aY;,m/ao, 12 = aY;,m/a</>, 01 = () and (}2 = {,6 and applying the results of

(3.21) in (3.24) and of (3.22) in (3.25) we get the equation of motion for the sharp values

Y~m as

(3.26)
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where the last term represents a sum over j and k. We first write out the deterministic
I

part of (3.26) using (3.24)

11 h, + h h2= l' C [:0 (Y:,m) sin 0 cos 0 sin (,b cos (,b - :</J (Y:.m) sirr' (,bI
-1'e; C) :(,b (r:,m). (3.27)

Now multiply the first of the relations in (3.11) by (y C sin 4J cos 4J) / sin 0 and the second

by l' C and subtract to get

l'C [ :0 (Y:,m) sin0cos esin (,b cos </J - :(,b (Y:,m) sin
2

</J1
. [ sin q> cos q> a (. . 2 ) a ( . 2 )I

= 'Y C sin 0 ae Yn,m sin 0 cos 0 - aq> r:,m sin </J

[
Y; m sin q> cos 4J a I

+ l'C Y:.m sin(2q» - ' sin 0 ao (sin
2

0 cos 0)

=l'Cn(r:,m) + ~1'C sin2
0 sin(2</J) Y:,m' (3.28)

Substituting (3.28) in (3.27) and using eq. (3.13) we get the following form for the

deterministic part of (3.26)

m+2 n+2 3
fi hI + 12 h2 = se L L b:,t n, + 2YCsin

2 0sin(2q» Y:,m
l=m-2 k=n-2

( I - C). y.+y -2- t m n,m

Now the noise part of (3.26) simplifies as follows:

ao,gkj aO
k

(fi gIj + h g2j)

a a
= Dr[gll oe(fI gll + hg21) + gI2 oo(f! g12 + 12g22)

o 0
+ g13 00(/1 g13 + hgu) + g21 o4J (fI gll + 12g21)

o 0 ]+ g22 aq> (f! gI2 + h g22) + g23 aq> (/1 g13 + h g23) .

= Dr[:;2(Y:,m) + 2 s:n20(2 :;2 (Y:,m) + sin (20) :0 (r:,m))]

(3.29)
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= -Dr n(n+ 1) Y:,m'

In the above we have used the fact that JP: satisfies

1 d (. dJP: ) [ m
2 1-- smO- + n(n+ 1)- -- P:! =0

sin 0 dO dO sin20 n

Putting together (3.29) and (3.30) in (3.26) we get
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(3.30)

(3.31)

d m+2 11+2 . 3
- Y· =' C ~ ~ bm,lyt . + -yC sin2 0 sin(2A.) Y·dt n.m Y ~ ~ n,k k.l 2 Y n,m

j=m-2k=n-2

+ y (1 ; C) i mY:,m - o,n(n+ I)Y:,m'

Taking now a second average over the probability density of the sharp values (0, ifJ) we

finally get

d m+2 11+2 3
dt (Y:,m) =r C L: L: b:t (Y;,j) + 2yC(sin

2
0 sin(2ifJ) Y:.m)

j=m-2k=II-2

+rC ;C)im{r:,m)-Drn(n+ 1) (Y:.m ) .

(3.32)

which is in in the same form as (3.17) which was obtained through the diffusion equa­

tion. The extension to negative m is obvious as before. This demonstrates that an ensem­

ble of equations (3.31) for the sharp Y;,m has the same dynamics as the moments (1':,m>

as determined by the Fokker-Planck equation. Further, the equivalence between the

two formulae justifies the form of the noise term we started with and demonstrates that

Langevin equations (3.23), in ensemble, furnish an alternate but equivalent representa­

tion of the system governed by the Fokker-Planck equation (2.10). It also shows that

in the Brownian regime we can use the time averaged Langevin equations to generate

averages using the new method.-
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Note that the recurrence relation (3.32) for the moments are deterministic equations

unlike the governing equations (3.23) for the orientations of individual spheroids, which

are stochastic differential equations. This means that the current method expresses the

dynamics of the moments in terms of deterministic equations. This is a major advantage

from the computational point of view, since deterministic equations are far more suitable

for simulations than stochastic ones as we demonstrate in the subsequent chapters.



CHAPTER 4

Computation of moments

Having developed the Langevin equation for the evolution of the orientation behaviour

of the spheroids in the suspension system under study, we now proceed to apply the

Coffey et al. (1996) method of time-averaging the Langevin equations, to determine the

equations for the temporal evolution of the various moments. In fact the moments are

completely determined by the recurrence relations (3.32), but since the equations are

difficult to solve, we now apply the same technique to generate the moment equations

directly. It turns out that although these moments are governed by deterministic ordinary

differential equations, which in itself is a significant advantage, they are nonetheless

difficult to solve analytically. However, the methods of the previous chapters allow us

to develop a computational technique to simulate the averages in pairs with comparative

ease. Several advantages of this approach over existing computing methods are also

discussed in this chapter.

4.1 The dynamics of the moments

In this section we describe how the equations governing the time evolution of the ori­

entation moments can be developed based on the methods of the previous chapter. We

shall study the dynamics of the three orientation moments (u~) = (cos? (9), (UIU2) =

66
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(sin2 e sin tP cos tP), and (uiu~) == (sin" e sinz tP cos? tP) for a wide range of parameters us-
\

ing the new method and compare our results with those of Chen and Jiang (1999) and

Chen and Koch (1996)

Each term in eq. (3.23) has dimension (1/time) and may be scaled with respect to

Dr. The scaled form of the Langevin equation, in Cartesian co-ordinates is as follows.

. 2 (1 - c)
Ut == Pe C U2(1 - u1) + Pe -2- Uz + rz(t) U3 - r 3(t) U2

(
1 - C)£1,2 = -PeC Ul u~ - Pe -2- U\ + r 3( t ) Ut - r t (t) U3

£1,3 == -PeCU1UZU3+rt(t)uz-rz(t)u\.

where Pe = YID, is the Peclet number introduced earlier. Note that in the scaled form

the T, satisfy (3.19) with D == 1. When converted into spherical co-ordinates these

equations become,

iJ = Pee sin ecos (}sintPcos tP - sin tPr\ (r) + cos tPr2(t)

. (1 - C)tP=-PeCsin2tP-Pe -2- -cotecOStPrl(t)

- sintPcoterz(t) + r 3(t)

(4.1)

The above equations may now be time-averaged using eq. (3.22) to express them as

an equation of motion for the sharp starting values. We retain the same notation of

the random variables e, tP for their sharp values at t. Following a procedure similar to

that leading to eq. (3.26) we obtain for any orientation moment (B(e, tP», the following

expression for the sharp valuesB«(}, tP):

(4.2)

where fi. == oB/ae, h == oB/atP, (}I == (} and fh = </> and hI and ha are the deterministic

parts in (4.1). A set of these equations averaged over the density of the sharp values has

the same evolution dynamics as (B«(}, tP» and hence yields the equation of motion for

the moment. We thus get the governing equations for the time evolution of the moments
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d ( 2) d ( 2dt U3 = - dt cos e)

= (:e)C(Sin22BSin2cp> - 2(3<cos2 B) -1),

:/UIU2) =:t(Sin
2BSin</JCOS</»

= 2CPe<sin2 Bcos2 Bsin2 </>cos2 <p) - CPe(sin2 Osin2 t/J cos 2t/J)

-pee; C)(sin2 Bcos 2</» - 3(sin20sin2</J),

~(U2U2) = ~(sin4 0 sin2 t/J cos2 </J)
dt 12 dt

= 4CPe<sin4 Ocos20sin3 <pcos3 </J)

- 2CPe(sin4 Bsirr' </> cos </J cos 2</»

- Pee ; C)<sin4 Bsin2 </J cos 2</J)

+ 2<sin2 B) - 20(sin4 0sirr' t/J cos2 </J).
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(4.3)

Theabovesystem,as wellas similarones we mightget for other moments,are generally

hard to solve, either individually (because the equation may not be expressible in terms

of the moment alone) or a set of them simultaneously (because the system may not be

closed). For example, for Pe '* 0 the above system of equations is not closed, but for.
Pe = O(Le., in the absence of shear), they have a simpleform, namely,

d
dt (u~) = -2(3(u~) - 1),

d 3
dt (UIU2) :: -'2(U1U2),

:t(uiu~) :: 2 - 2(u;) - 20(uiu;).

Solving them we get the following results in the zero shear limit.
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where the k, are constants depending on the initial conditions. In the limit t ~ 00,

\

the solutions approach, as expected, the values of the moments when the orientation

distribution is uniform (1/1 = 1/41l) An advantage of the equations (4.3) for the moments

is that they are ordinary differential equations unlike the original Langevin equations for

the orientations.

4.2 The computation of moments

We now discuss a computational technique for approximating the solutions of the mo­

ment equations in the general case. We note that in general the evolution of the moments

is governed by two variables (J and ifJ and not by the moment itself. This necessitates con­

sidering two moment equations simultaneously for generating the averages. Our com­

putational procedure is based onthe fact that the dynamics of any moment (B(O, ifJ» can

be captured by simulating an ensemble of equations (4.2) for the sharp values B«(J, 4;).

Equivalently, we may set up the equations of motion for the tracer variables 0 and tP and

compute the averages dynamically by iterating a set of such equations.

To find the equations for the dynamics of the variables 0 and ifJ, we proceed as fol­

lows. For the sharp values B1(0, tP) and B2(B, ifJ) of any two desired orientation averages,

we may write from (4.2)

(4.4)

where .f; are the partial derivatives of Bland f/ those of B2• We can solve the above

system for oand (P assuming that the coefficient determinant I:i. = I1 I~ - I{h is not zero,

iJ = hI + ~ k~gkj a~k (fl glj +h g2j) - hgkj ~k (f{ gIj + I; g2j)]

(P = h2 - ~ [/;gkj a~k (fl glj + h g2j) - Ilgkj a~k (f; s., + I; g2j)].

(4.5)
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This gives a system of two coupled ODE's and an ensemble of such systems for the
\

sharp values 0 and f/J collectively determine the pair of averages B, and B2• Thus for

each pair of moments for which I:i is non-zero, we consider an ensemble of systems

of coupled ODE's of the type (4.5) for the tracer variables (0, f/J) over a set of sharp

initial conditions and follow their trajectories to compute the temporal evolution of the

moments.

and define n2 squares in the Of/J space [0, Jr] x [0,2JT] by the discrete points (0;, f/J;), with

orientation space, with ~h initi~nditi0l.l!:Presenting a large number of random

variables starting from that point. Accordingly we fix a positive integer n, say n =10,

0; = cos-I [(2i /n) - 1] }.
1= 0, 1, ... .n.

f/Ji =2n/n

To actually carry out the calculations, we first fix a set of finite but large number of liJr>1~a/
_ ,~(.p'r'

sharp initial conditions for the random variables (0, f/J) distributed uniformly over the . (,1j-L)
i-/1

p1)
0-

cJ-
. \

Lt

?

Each square [Bi,Oi+tl x [f/Jj,cPj+tl in the Of/J space now corresponds to a region or bin

of area [B;,Oi+tl x [cPj, cPj+d sin 0 on the surface of the unit sphere. For a given pair

of moments B. (B, f/J) and B2(0, cP), we then start off with n2 copies of the associated

equations (4.5), each one with a different initial condition, the (i, J)th one taking the

initial value (OiO. f/>jO) where,

OiO = (Oi + Oi+I)/2 }..
I, J = 0, 1, ... .n

f/JjO = (OJ + OJ+I)/2

This corresponds to a set of tracer orientations directed approximately along the centres

of the above bins and distributed almost uniformly in the orientation space (fig. 4.1). It

may be noted that these initial conditions need not correspond to an initial orientation

state of the actual particles in the suspension, but merely to ~~ ~f initial starting values

for an ensemble of the sharp variables 0 and f/J evolving accoi ding to eq. (4.5) which
i

together determine the moments (B1(0,f/J» and (B2~,f/J».

(
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Figure4.1: The discretization of the ()</I space.

The sharp values ((), </I) may themselves be considered a random variable with density

l/t((), </I, t) with sharp peaks at the sites of the vectors ((), </I) at any instant. This gives the

following estimate for the moment (B I ((), </I» at that instant t,

(4.6)

and a similar estimate for the moment (B 2 (() , </I». The values (()it, </lit) of the vectors

(()i, </ID at the various time instances t are obtained by numerically integrating the n2

equations (4.5) simultaneously. At the end of each iteration of the numerical integra,

tion, the numbers B j ( (), </I), B2(() , </I) are calculated using the iterated values of each of

(()f, </I j) and summed up according to formula (4.6) to obtain an estimate for the moments

for the time instance of that iteration. These computations are repeated for successive

time steps using, at each step, the values (()i' </I) obtained from numerical integration,

and continued until the values of the moments stabilize. This procedure generates a

numerical approximation to the dynamics of the moments BI and B2•
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Moments Partial derivatives

{
/ l =- sin 28

h =0

{
/ l = - sin 8cos 8 sin(2fP)

12 =sin2 ecos(2fP)

{
/ l = 4 sirr' 8cos 8 sin2fP cos? if>

. h = sin" 8 sin(2if» cos(2if»

Noise terms

sin2 8 sin(2if»

2 sin2 e
-20 sin" if> cos' fP sin2 e

Table 4.1: The functions for generating moments

4.3 Results and discussion

We applied the computational technique of the previous section to the moments in pairs

of (u~) and (uiu~), (UIU2) and (u~) and (ui) and (U1U2) for various values of Pe, keeping

the number of initial conditions at n2 = 100. We used the integrator odeint of Press

etal. (1986) with a tolerance of 0.001% to integrate equations (4.5). This integrator

features adaptive step-size control, so the step-size of the integration is automatically

adjusted to achieve an accuracy to within the tolerance specified. Note that the coef­

ficient determinant 11 does not vanish for the pairs of moments we have chosen. The

simulations may run into trouble if any of the subsequent iterations approach a singular­

ity of (4.5), but our computations did not lead to any such problems. Table 4.1 gives the

partial derivatives and the time-averaged noise terms for the the above sets of functions.

The computations were repeated changing the number of initial conditions fr~m

64 to 2500, but the results practically stabilised for n2 = 100 onwards and so n2 was----------
fixed at 100 in subsequent computations. Table 4.2 shows the variation of the moments

with the number of initial conditions for typical values of the parameters. With Pe =

0, the computations reproduced the theoretical values 1/3, 0 and 1/15 for (u~), (UIU2)
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Pe = 0.0 Pe = ~.O Pe = 100.0 Pe =500.0

n2
(u~) (Ut U2) (u~) (UI U2) (u~) (UI U2) (ui) (UI U2)

64 0.3333 0.0000 0.3293 0.0532 0.2376 0.1325 0.1763 0.0950

81 0.3333 0.0000 0.3280 0.0473 0.2082 0.1199 0.1537 0.0778

100 0.3333 0.0000 0.3288 0.0322 0.1730 0.0910 0.1285 0.0576

121 0.3333 0.0000 0.3283 0.0321 0.1721 0.0907 0.1294 0.0598

144 0.3333 0.0000 0.3285 0.0317 0.1728 0.0911 0.1277 0.0568
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Table 4.2: The steady state values of the moments for various initial conditions at dif­
ferent values of Pe.

and (uiu~) respectively. Also we had scaled time with respect to l/Dn which makes

the right side of (4.5) large for larger values of Pe. Hence to minimize the~

errors we changed the scaling to lh' for Pe > 10 while for Pe < 10 the earlier scaling

was retained. The results obtained for Pe between 0 and 1000 are plotted in fig.4.2.

These results are in good agreement with those obtained from other methods, namely the

spherical harmonics method of Chen and Koch (1996) and the finite difference method

of Chen and Jiang (1999) (compare fig. 3 of Chen and Jiang (1999». An advantage of

this method is the internalcheck it provides on the computations by way of making one

average common to each pair of averages. Thus in our simulations we paired (u~) with

both (UIU2) and (u~u~) and found that the results were consistent.

With a given number of initial conditions, the time taken by the simulations to set­

tle down to steady values depends both on the Peeler number and the pair of averages

chosen. Table 4.3 summarises the time data for our computations on a Pentium Ill, 500

MHz, 128 MB RAM PC, with 100 initial conditions for typical values of Pe. It seems
4 ......

----of various moments compared to the other methods (Chen and Jiang, 1999). For ex-

ample, the finite difference method of Chen and Jiang (1999) takes 50 minutes on the

SGI Onyx VTX computer, while the present method takes 32 min. in a comparatively
r--- ...---"
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Figure 4.2: Plot of the orientation moments vs. Peeler number. The symbols are the
results from the finite difference method and the spherical harmonics method.

Pe (u~) & (UIU2) (u~) &(uiu~)

0.0 1 s. 1 s.

1.0 2 s. 2 s.

10.0 4 s. 10 s.

50.0 7 s. 823 s.

100.0 10 s. 1920 s.

250.0 28 s. 2030 s.

500.0 86 s. 2800 s.

Table 4.3: Time t"~econdS) to compute the moments on a 5OOMHz, 128 RAM,
Pentium III PC fo~erent pairs at various Pe

less powerful computer. Another advantage of this approach is that it can be applied

for an arbitrary range of Peeler number, with only a possible change of scaling, unlike
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earlier methods which apply only to specific ranges of the parameters. This feature of
\

the Langevin method can be used to advantage in regions where the normal methods fail

due to changes in the fundamental character of the diffusion equation. An example is

the region of very small Brownian motion, where the problem becomes singular in the

limit and hence intractable using normal methods. The Langevin method is suitable in

such cases as we will illustrate in later chapters.



CHAPTER 5

Rheology and external forcing

In this chapter we shall study how the generalised Langevin equation can be used to

model the rheology of a suspension under the action of an external field. External forces

are usually the result of electric or magnetic fields acting on suspension particles which

are dipolar having electric or magnetic charges. Ferrofluids are an example, which con­

tain small single domain particles in a non-magnetic solvent. They have many indus­

trial applications such as rotary seals, inertia dampers, magnetic domain detection and

biomedical uses like concentration of drugs at body sites (Strand and Kim, 1992). If

brought under the influence of a magnetic field, the particles in a ferrofluid no longer

rotate freely with the fluid due to the action of the external field, and this introduces

additional stress. Similarly charged polymers in aqueous solutions can be modelled by

a long dipolar fibre. The macroscopic behaviour of such suspensions is substantially

affected by the orientational torques exerted by an external electric field which tends

to align the particle dipole axis along the field direction. As an example of natural

phenomena analogues to the above, Pedley and Kessler (1990) refer to certain bacteria

containing magnetic dipoles and various species of algae possessing an asymmetric in­

ternal mass distribution whose swimming directions are affected by gravity. All of these

orientational effects can be collectively modelled by the response of a permanent dipole

exposed to an external field.
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The effect of fluid microstructure on macroscopic behaviour is usually measured by
\

determining the stress tensor of the suspension. Wc shall determine the stress tensor in

a sheared suspension of spheroids under the action of hydrodynamic forces due to the

flow, Brownian rotations and an external force field on dipole moments of the particles

of the suspension. Most of the analyses of external fields interacting with particle dipole

moments are limited to the case of weak shear or of weak diffusion (Hall and Busenberg,

1969; Brenner, 1970; Brenner and Weissman, 1972; Jansons, 1983), except the work of

Strand and Kim (1992) who present results for a wide range of shear and Brownian pa-----rameters as well as external field strength. Since the measurable stress components such

as the first and second normal stress differences can be expressed in terms of orientation

moments, the methods of the previous chapter can be adapted to compute these bulk

properties for a wide range of parameters. We shall closely follow the work of Strand

and Kim (1992), and compare our results with theirs.

5.1 The effect of the external field on particle orienta­
tion

As mentioned previously, an external orientational torque on a particle can arise from

several sources;

• the interaction of an external magnetic field and the magnetic moment of a ferro­

magnetic particle,

• the response of an electric dipole induced on a charged particle to an an electric

field,

• the interaction of a gravitational field and a suspension particle possessing a grav­

itational dipole due to an asymmetric internal mass distribution.

In all the above cases the external field can be modelled as the cross product of the

particle dipole moment m and the uniform external field vector H;

Text =m x H
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The dipole moment m is assumed to be parallel to the particle symmetry axis so that we
\

can write

m a mu

where m is the magnitude of the dipole moment. The conservation of angular rnomen-

turn now gives (c! eq. (2.4»

Thyd + Texl = O.

From this we get the new expression for the angular velocity

w = .Q + C [u x (E . u)] + GI m x H

and the equation for the orientation becomes (cf. eq. (2.8»,

u=.Q x u + C[u x (E· u)] x u + GI m x H x u.

The effect of Brownian motion term eq. (3.23) can now be included by superposition,

giving

u = .Q x u + C[u x (E· u)] x u + (~I m x H x u + r x u, (5.1)

(5.2)

where the components of r satisfy eqs. (3.19). This is the full Langevin equation for

particle orientation, in the presence of constant external forcing and Brownian diffusion.

In Cartesian co-ordinates these equations become

(I-C)ill = 1'Cu2(1 - ui) + l' -2- U2

m - - --+ -[U3(U3ht - u1h3) - U2(Ul h2 - U2ht)] + [2(t)U3 - [3 (t)U2
(.1.

il2 = -1'C UI ui - Y(
1

; C) UI

m - - --+ -[Ul (UlhZ - U2hl) - U3(U2h3 - U3hZ)] + [3(t)UI - [I (t)U3
{l-

il3 = -1'CUI U2 U3

m - - --
+ -[U2(u2h3 - u3h2) - Uj(U3hj - u j h3)] - [3(t)Ul - [I (t)U3

{l.

where the hi denote the Cartesian components of H.
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The averaged bulk fluid stress in a suspension is the sum of the Newtonian stress is,

which is the stress of the solvent in the absence of any particles and the particle stress uP

contributed by the suspension particles alone (Batchelor, 1970; Hinch and Leal, 1972);

(5.3)

The Newtonian stress can be expressed in tenus of pressure p, the viscosity 17s of the

solvent and the rate of strain tensor E thus;

In the absence of force fields, the stress tensor of a Newtonian fluid is symmetric, but

in a suspension of dipolar particles the particle stress will be asymmetric in general and

can, in fact, be written as the sum of symmetric and antisymmetric parts;

The antisymmetric part of the stress depends on the external field strength and the vol­

ume concentration <1> of particles thus (Strand and Kim, 1992);

The term H1. is the projection ofH in the direction perpendicular to u, H1. = H·(o -uu)

and Do denotes the rotary diffusivity of a sphere of volume equal to that of the particle.

The symmetric part of the stress can be given in tenus of the second and fourth order

moments (Brenner, 1974; Hinch and Leal, 1972; Jansons, 1983);

US =211s<1> { 2AHE : (uuuu) + 2BH(E. (uu) + (uu) . E - ~OE: (UU»)

+ CHE + FHDr(uu) - ~o) - ~FHDr(;~)(B1.U + UBi)}'
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Combining the various expressions and substituting back in eq. (5.3) we get the follow-
\

ing for the dimensional stress in the suspension. Here AH, BH, CH and FH are functions

depending on the shape of the particles, general expressions for which are presented in

the next section.

U = -po + 217sE + 21]s<1> { 2AHE: (uuuu)

+ 2BH (E. (uu) + (uu)· E - ~OE: (UU») +

1
CHE + FHDr(uu) - 30)

m [(1-C) (1+C) ]}
+ 3DokBT 2 (uH1.) - 2 (H1.u)

5.3 The stress coefficients

(5.4)

(5.5)

The expressions for the various coefficients appearing in eq. (5.4) have been listed by

a number of authors and are presented here for spheroids. keeping the notations and

terminology as in Strand and Kim (1992) and Hinch and Leal (1972). These stress

coefficients depend on certain elliptic integrals, expressions for which are also given.

h 1 2
AH = -+--­

hJ1 h It
1 1

BH = ---
11 h
2

CH = -
/3

PH = 6(~ -1)
ilK3 + K1

The quantities I). 13• J), h, Kt and K3 are elliptic integrals which can be evaluated for

spheroids as follows.
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Coeff. r -+ 00 r = 1 + £(c -+ 0)

AH
,:z 395 2

4(1n(2r) - 3/2) 294£

31n(2r) - 11/2 15 895Bll
r2 28£ - 1175C

CH 2
5 5 235 2
---£+-£
2 7 294

FH
3?

9£
In(2r) - 1/2

Table5.1: The limiting values of the stress coefficients.

81

(r> 1)

The factor As has different forms based on whether the spheroids are prolate(r > 1) or

oblate (r < 1);

-2cosh-1(r) 1 [r_(?_1)1/2]
As = (r2 _ 1)1/2 = (r2 _ 1)1/2 In r _ (r2 _ 1)1/2 '

A = -2cos-
1(r)

(r < 1)
s (1 _ r2)1I2 '

For general spheroids the coefficients depend on the aspect ratio in a complicated man­

ner, but for some limiting cases such as spheres and long fibres, these expressions can be

considerably simplified. The limiting values of the coefficients for long fibres (r -+ (0)

and near spheres (r -+ 1) are enlisted in Table 5.1 (Strand and Kim, 1992). Fig. 5.1

shows a plot of the various stress coefficients for various values of r.
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Figure 5.1: The stress coefficients

5.4 Material functions for dilute suspension

The rheological properties of a suspension are usually expressed in terms of material

functions. such as the apparent viscosities and the first and second normal stress differ­

ences. For dilute suspensions these quantities involve the limit <1> -+ 0 and are therefore

called intrinsic properties. The expressions for these rheological properties for the case

of simple shear, defined below, can be obtained from eq. (5.4) by using eq. (2.6).

[ ] I. (eTxy -1]si')
1]1 = un .

e .....0 <1>1]s'Y

= 4AH(U~~) + 2BH(ur + U;) + CH

+ (32;;e)[C( (EkjUi)UIU2 ) + C;C) (ul)k2 - e~C) (u2)k l ] (5.6)

[] I, (eTY;,.: -1]si')
1]2 = Iffi •

e .....0 <1>1]s'Y

= 4AH(uiu~) + 2BH(ur +U;) + CH

+ (32;;e)[C( (Ekjuj)UIU2 ) + C;C) (u2)k j - C~C) (u\)k2] (5.7)
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(5.8)

(5.9)

constant Do. In the scaled form the Langevin equations for

above equatio

to clear the exp

In obtaining the above forms for the intrinsic properties from eq. (5.4) we have followed

the scaling of Strand and Kim (1992) to make comparisons easier, namely, time is scaled

with respect to 6Dr and force with respect to kT. The external force is assumed constant

s)...:t:bv=sea~dimensionless form of which is denoted by k in the

the orientation behaviour of the spheroids, eq. (5.2), after being converted to spherical

co-ordinates, take the following form

(5.10)

(5.11)

lJ = h, - sin~fl(t) + cos <Pf2(t)

;p = h2 - cotOcOS<Pfl(t) - sin <P cotOf2(t) + f 3 (t)

where h, and h2 are the deterministic parts given by (et eq. (4.1»

hi = (~)csinocososin<pcos<p

+ ~(kl cos Ocos~ + k2 cosOsin~ - k3 sin 0)

(pe) . 2 (Pe)(l-C)h2 = - 6" C sm <p - 6" -2-

+ !(-kI sin <p + k2 cos~)(-.l_) - cotOcos<pfl(r)6 SlnO

Note that the Gaussian random variables fj(t) now satisfy, after scaling, eq. (3.19) with

D = 1/6;

fj(t) =0,
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We now evaluate.the.intrinsic viscosity [1]] ::: [l1tl for a number of ranges of k.andPe. and
\

compare the results with those of Strand and Kim (1992) and of Brenner and Weissman

(1972). To compute the various orientation moments appearing on the right of (5.6),

we revert to the techniques developed in section 4.2. In the new scaling the equation

eq. (4.2) for the sharp value B(O, f/J) corresponding to any moment (B(O, f/J» modifies to

(5.12)

We note that the deterministic parts hI and b: in the foregoing equation are common to

all pairs of moments and are given by eq. (5.11), while the other terms vary with the

choice of moment. Table (5.2) lists the various moments required in the evaluation of

the intrinsic viscosity and the corresponding noise tenus appearing in eq. (5.12).

The computational technique, as described in section 4.2, requires considering the

moments in pairs and simulating an ensemble of the following associated equations

(notations as in eq. (4.5»

iJ =hI + :il [t;gkj a~k (fl gIj +h g2j) - f2gkj a~k (f{ gIj + f~ g2j)]

if> = h2 - 6~ [t{gkj a~k (fl glj + f2g2j) - flgkj a~k (f{ glj + f~ g2j)],

The choice of the pairs is made based on the symmetry in the noise terms (Table 5.2)

and the condition that 8. be not identically zero for the chosen pairs. The pairs chosen

in our simulations are also shown in Table 5.2. As in Jhe previous chapter, the number

of initial conditions were kept at n2 = 100 at which the results more or less stabilized.

Figure 5.2Show~ the intrinsic viscosity [1]1] verses the external field strength

k for a fixed shearfate P, ~,.l, and two different external field orientations. The azimuthal

direction f/> is hel~hile the polar directions are 450 and 900 • The results for three

different aspect ratios are shown, plorate spheroids with r = 1.6, oblate spheroids with

r = 0.4 and spheres. The calculations L~eatlY simplified for spheres for which

AH = BH = FH = 0, CH == 5/2 and Fe = 9/2 (see table 5.1). These results are
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Moments Noise terms

ti~) {2 sin2
() - 20 sin4

() sin2 f/J cos? f/J

(ui> 2(3cos?() - 1)

r ui> {2 - 6 sirr'{)cos2 4J
(u~> 2 - 6 sin2

() cos? 4J

r uiu,) {2 sin () sin 4J - 12sirr' () sin 4J cos"4J

(UIU~> 2 sin() cos 4J - 12sin"() cos 4J sin2 4J

rUIU2U3) {-6 cos () sin2
() sin 24J

(u~> -3(cos () + cos 3{))

rUI> {-2sin{)cos 4J

(U2> -2 sin () sin 4J

r
U1U2> {- 3 sin2

() sin 24J
(u;> -2(3 cos' () - 1)

t'~) esin' 11sin 2tp - 10sin4 11 sin' .p sin2tp

(UiU2> 3 sin2
() sin 24J - 10sin4

() cos?4J sin 24J

t iu,) {2 cos () - 12sin2
() cos? 4J cos()

(u3ui> 2 cosB- 12sin2
() sin2 4J cos ()

rui
>

{6 sinBcos 4J - 12sirr'{)cos3 4J

(u~> 6 sinBsin 4J - 12sirr' Bsirr' 4J
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Table S.2: The various moments in the expressions for the rheological parameters and
the correspondingnoise terms
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Figure 5.2: Plot of intrinsic viscosity [71tl for dipolar suspensions for various strengths
of the external field, for spheroids of aspect ratio r=O.4, 1.0 and 1.6. Results for k 11

(0,1,1) and k 11 (0,1,0) are shown. Compare with fig. 2 of Strand and Kim (1992)

in good agreement with those of Strand and Kim (1992) and Brenner and Weissman

(1972) (~e Fig. 2 in Strand and Kim (1992)) Foret~~ill~r~:- fields higher (~-;~
stabilizes rapidly to the values shown in the figure, but for smaller field strengths it takes

longer for the values to stabilise.
,

The effect of the Brownian and shear parameters on the intrinsic viscosity [71d are

plotted in Fig. 5.3 for spheroids of aspect ratio r=O.4, 1.0 and . at tw ifferent field

orientations keeping the strength of the external field cons comparison

with fig. 3 in Strand and Kim (1992) shows that the result

those obtained by the spherical harmonics method.
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Figure 5.3: Plot of intrinsic viscosity [1]1] for dipolar suspensions for various values
of Pe, for spheroids of aspect ratio r=O.4, 1.0 and 1.6. Results for k 11 (0. 1, 1) and
k 11 (0, 1,0) are shown. Compare with fig. 3 in Strand and Kim (1992).



CHAPTER 6

Periodic forcing and chaos

In this chapter we study the oscillatory dynamics of the bulk properties resulting from

a sinusoidally varying external force field using and extending the methods developed

in the previous chapters. Oscillatory dynamics caused by oscillatory shear flows has

been studied extensively for many polymer and particulate systems, but the effect of an

oscillatory force field has only rarely been considered. Leal and Hinch (1972) presented

solutions for the case ofgeneral time dependent flows valid for non-dipolar near spheres.

Bird etal. (1971) and Bird et al. (1987) obtained results for the rheological properties

for the case of dumbbells in time-dependent flows of specialised types. Strand (1989)

considered oscillatory fields in both shear and external fields and obtained results for

the stress response using the Galerkin method, but as we will demonstrate, there exist

parametric regimes where the approach used by Strand is fundamentally inappropriate.

We consider a sinusoidally varying force field acting on a suspension of dipolar

Brownian particles in a simple shear flow, so that the temporal oscillations are limited to

the force field alone. The significance of this problem was discussed earlier (et Chap­

ter 1) where we had observed that this system exhibited a rich variety of dynamics in the

absence of Brownian diffusion, which were theoretically interesting and had potential

technological applications. In particular, the orientation dynamics of the system exhibit

chaotic evolution for certain parametric regimes and presents a new class-I intermittency

88
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route to chaos (Ramamohan etal., 1994; Kumar etal., 1995; Kumar and Ramamohan,

1997). Further, the rheological parameters such as the apparent viscosities and normal

stress differences also evolve chaotically when the dynamics is chaotic (Kumar and Ra­

mamohan, 1995; Kumar et al., 1996). Chaos in the rheology can be controlled using

simple chaos control algorithms and this can be used to force desired rheological be­

haviour using carefully controlled parameters (Kumar, 1997). The system is also useful

as a paradigm for certain aspects of spatio-temporal chaos and non-trivial collective

behaviour (Radhakrishnan et al., 1999). All these investigations were limited to zero or

negligible Brownian motion. This chapter is devoted to exploring the effect of Brownian

rotation on the observed chaos in the system.

As noted earlier, the diffusion equation approach used by Strand and Kim (1992) and

Strand (1989) is inadequate to study such irregular behaviour in the system (Kumar and

Ramamohan, 1995) and it turns out that the Langevin equation method we developed in

the earlier chapters is an ideal tool to analyse possible complexities in the dynamics of

the system in the presence of noise. It is also the natural generalisation of the method of

Ramamohan etat.to systems with noise.

As mentioned earlier, the experimental feasibility of setting up a suspension system

under constant external forcing has been reported by many authors(Okagawa and Ma­

son, 1974; McTague, 1969; Sudou et al., 1983; Weser and Stierstadt, 1985) and periodic
.-- --

forcing should cause no additional problem.

6.1 The dynamics of periodically forced fibres

The analysis in this chapter will be restricted to the case of slender rods (fibres) which

correspond to the limit r ~ 00. This results in considerable reduction in the compu­

tations by way of simple expressions for the stress coefficients(see Table 5.1). Typical

second phase fibres in composites and polymeric solutions can be modelled as fibres to

an excellent approximation since their aspect ratio is generally greater than 50. Under a
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sinusoidally varying force field the Langevin equation (5.1) modifies to
I

u = n x u + C[u x (E . u)] x u + {~l m x H cos(wt) x U+ I' x u, (6.1)

where w is the frequency of the external driver. We choose a scaling that is appropriate

to explore the system behavior vis a vis change in the Brownian flux, so time is scaled

with respect to the shear rate (y) and force with y{J. and write k = mH/y(J.' In this

setting, the Langevin equation (6.1) takes the following form in spherical co-ordinates;

iJ = b, - sin if>r1(I) + cos if>r2(t),

(p = h2 - cotOcos if>r](t) - sin if> cotOr2(t) + r 3(t),

where hI and h2 are, as before, the deterministic parts given by

hi =C sin ecos esin if> cos if>

(6.2)

The simulation of the bulk properties6.2

+ (k] cos 0cos if> + k2 cos 0 sin if> - k3 sin 0) cos(wt),

. 2 (I-C)h2 = -Csm if> - -2-

+ (-k] sin if> + k2 cos if»(~(}) cos(wt).
sm

In the present scaling I'(r) satisfy (3.19) with D = Dr/y which we denote by Pe so that

Pe = 0 when Brownian motion is negligible.

(6.3)

As in the case of constant external force field. the stress tensor in the suspension under

periodic forcing is in general non-Newtonian and gives rise to four different non-zero

viscometric functions in simple shear. The total stress tensor varies from eq. (5.4) only

by the periodic term cos(wt);

o = -p6 + 211sE + 211s<J> { 2AHE: (uuuu)

+ 2BH(E' (uu) + (uu)· E - ~8E: (UU») +

1
CHE + FHDr( (uu) - 3"6)

+ 3Dok:~ [ Cl ; C) (uHJ.) - Cl ~ C) (HJ.U)] cos(wt)}
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The expressions for the stress coefficients take particularly simple form in the case of fi-
~

bres and are given in Table 5.1. These expressions have the following limiting behaviour

which can be used to further simplify the equations for the rheological parameters.

lim AHBH = -4
3,

r~oo

(6.4)

Hence by additionally scaling each of the rheological parameters with BH and redefining

the rheological parameters by taking a second limit as r ~ 00, we get

To simulate these averages we use the methods of the previous chapters with appropriate

modifications to generate the moments in chosen pairs. In the new scaling the equation

for the dynamics of any moment (B(O, f/J» becomes(cj eq. (4.2»

d ~ 0
dt (B(O,4») = (/1 hI) + (12 h2) + Pe(glcj OOk (fI gIj + 12 g2j»
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The moment equations eq. (6.4) for any two moments (B I (B, if») and (B 2( () , if») are col-
I

lectively equivalent to the following simultaneous equations over a set of tracer orienta-

tions(cf eq. (4.5))

. Pe [, a 1:) I: a (I" 'IB = b, + A 12gkj aB
k

(/1 glj + J2 g2j - ngtj ae
t

v I glj + 12g2j)

(p =h2 - ~ [/{gtj a~k (/1 glj + f2 g2j) - 11gkj a~k (/{ glj + I{ g2)J.

The same pairing of moments as in the case of constant forcing can be used here also(see

Table 5.2). The time series for various rheological parameters were simulated using the

computational technique presented in sec. 4.2. The topological features of the plots

of the time series were found stabilised at the number of initial conditions n2 = 100

onwards, hence n2 was fixed at 100 in further computations as in the case of a constant

external field.

6.3 Analysis of the time series

We generated a time series for each of the bulk suspension parameters above over a

period of oo0סס1 dimensionless time units and deleted the first 20000 data points to

remove any transients. Fig. 6.1 shows a part of the time series corresponding to the

set of parameters k l = k3 = 0, k2 = 0.10, W = 1 and Pe = O.01(weak diffusion)

and it is clear from the figure that the apparent viscosity exhibits persistent temporal

fluctuations. A detailed study of these fluctuations using the tools of non-linear time

series analysis may reveal significant features of the dynamical system. A critical review

of the various topological and geometrical methods for analyzing non-linear data can be

found in Kantz and Schreiber (1997). We used the softwares TlSEAN (Hegger etal.,

1999) and Chaos Data Analyzer Professional Version 2.1 of the Academic Software

Library of the American Physical society for performing the tests on the time series.

Fig. 6.2 plots the frequency decomposition(cf sec. 1.4.3) of the shear stress, which

shows a broadband spectrum decaying exponentially with frequency. This is character-
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istic of both deterministic chaos and linear autocorrelated noise (Schuster, 1988; Tsonis,

1992) and suggests further analysis of the system. The first step in any such investiga­

tion is the characterization of the attractor, a bounded subset of the phase space to which

the system behavior eventually converges. This is usually done by reconstructing the

auractor of the system from the available time series, say yet), using delay reconstrue­

tion(cf sec. 1.4.5). Let yet) be the delay vector constructed from the time series yet)

such that

yet) =(y(t), yet + r), ... yet + (m - ljr),

where m is a positive integer and r > 0 is called the delay. According to the embed­

ding theorems of Takens (1981) and its extensions (Sauer etal., 1991; Sauer and Yorke,

1993), the dynamics of the original system can be recaptured from the flow defined

by the vector yet). (sec. 1.4.5). This means that most of the dynamical and geomet­

rical characteristics of the original unknown system are reflected in the reconstructed

flow in a one-to-one manner. In particular, the topological and geometrical invariants of

the system are preserved under the embedding and hence characteristics such as fractal

dimension, Lyapunov exponents and entropies can be computed from the flow in the

reconstructed space (Kantz and Schreiber, 1997; Ott etal., 1994).

Although the embedding theorems do not place any restriction on the choice of

the time delay, in practice, the choice of both time delay and embedding dimension is

important and may significantly affect the inferences derived from reconstruction, par­

ticularly when the data comes from experiment. Small delays lead to highly correlated

vectors yet), while large delays yield vectors with more or less uncorrelated compo­

nents resulting in data randomly distributed in the embedding space. A first guess of

the proper choice of the delay may be obtained from the autocorrelation function of the

sample data; the time at which the autocorrelation attains its first zero, or its first local

minimum, can be taken as the optimal delay (Kantz and Schreiber, 1997). For our time

series this value was around r = 15 and we obtained topologicalIy identical attractors for
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Figure 6.3: Fraction of false nearest neighbors as a function of the embedding dimen­
sion m for the [112] series.

other choices of delay around this value. As for the embedding dimension m, it should

be large enough for the attractor to fully unfold in the embedding space but choosing

too large an m may cause the various algorithms to underperform (Kantz and Schreiber,

1997). A commonly used method to estimate the optimal value of m is the false near­

est neighbor method (Kennel etal., 1993; Abarbanel, 1994) which is based on the idea

that a small value for m would not unfold the true geometry of the attractor and there

may be self-intersections leading to false neighbors. Fig. 6.3 plots the fraction of false

neighbors as a function of the embedding dimension m and yields m = 3 as an optimal

choice, since for m ~ 3 the fraction of false neighbours become very small. This means

that the behavior of the system can be eventually described by utmost 3 independent

co-ordinates. Fig. 6.4 shows the attractor reconstructed from the time series of [112] with

m =3 and T =15. We experimented with higher dimensions and various delays but in

all cases the attractor was found to be topologically identical to the one in the figure. We

note that there is a definite structure in the phase phase plot of the stress component.

A quantitative measure of the structure and self-similarity of the attractor is provided
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Figure 6.4: Three-dimensional embedding of the attractor of [172] reconstructed from
the time series with delay 15 and m = 3.

by various dimension estimates such as the box-counting dimension, the Hausdorff

dimension etc. The correlation dimension, introduced by Grassberger (1983), Grass­

berger and Procaccia (1983) and others, is the easiest to compute from a time series(cj

sec. 1.4.3). The correlation dimension is estimated from the correlation sum C(€, N),

which is defined as the fraction of all possible pairs of points in the attractor which are

closer than a given distance e in a given norm; (Kantz and Schreiber, 1997)

2 N N

C(€,m) = N(N _ 1) L: L: B(€ -lIXj - xjlD,
i=l j=i+l

where 0(x) = 1 if x > 0, B(x) = 0 if x ~ 0 and x(!) is the m-dimensional vector of

time-delay co-ordinates. The correlation dimension is then given by

D = lim olnC(€,m),
E-+O oln€

when m is sufficiently large. The scaling exponent InC(€, m)/ In e typically increases

with m and saturates to a final value for sufficiently large m which is then taken as an
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Figure 6.5: Plot of InCim. E)/ In E vs. E. The convergence of the curves for large m
indicates low dimensionality.

estimate for D. In practice, the values In C(€, m)/ In E are plotted against E for various m

and the value corresponding to a plateau in the curves is identified as an approximation

to D. In calculations, however, one has to be careful that the sum in Eq. (6.5) is not

biased by temporal correlations, that is, the spatial closeness of the points appearing

in Eq. (6.5) is not due to their being temporally close (Theiler, 1986). This is done

by excluding from Eq. (6.;5) the pairs of points which are closer in time by less than a

Theiler window, which is approximately equal to the product of the time lag between the

points and the embedding dimension (Theiler, 1986). In our calculations we used 50 as

a Theiler window. Fig. 6.5 plots the correlation sums CC€, m) obtained with these choice

of parameters, which shows a convergence of the curves for larger m, an indication of

low dimensionality of the attractor, and a plateau for the scaling exponent in the range

0.2 5 E 5 0.6, suggesting a dimension approximately equal to 2. Together with the

presence of definite structure in the attractor, this indicates that the apparent dimension

of the system, governed by a set of 100 pairs of simultaneous equations, is far less than

the number of degrees of freedom.

An interesting feature of some dynamical systems is their sensitive dependence on
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Figure 6.6: The functions SCe, m, lln) vs. M for various embedding dimensions. The
curves are approximately linear with an overall slope of 0.04.

initial conditions, meaning that trajectories which start from neighboring initial condi­

tions may diverge exponentially over time. An aperiodic bounded system having this

property is termed a chaotic system (c! sec. 1.4.2). The Lyapunov exponents (cf.

sec. 1.4.3) quantify the average rate of divergence or convergence of nearby orbits, and

the existence of a positive Lyapunov exponent is one of the most striking signatures of

chaos (Schuster, 1988; Ott, 1993). Lyapunov exponents describe the long term behavior

of nearby trajectories and are invariant under smooth transformations of the attractor,

hence they are preserved under delay reconstruction. We used the Kantz algorithm

(Kantz and Schreiber, 1997; Kantz, 1994) to estimate the maximum Lyapunov expo­

nent. This proceeds by computing the sum

for a point X no of the time series in the embedded space and over a neighborhood U(xno )

of X no with diameter e. If the plot of S (e, m,lln) against Sn is linear over small Sn and

for a reasonable range of e, and all have identical slope for sufficiently large values of
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the embedding dimension ": en that slope can be taken as an estimate of the maximum

Lyapunov exponent (Kantz and Schreiber, 1997). For our time series, Fig. 6.6 shows

that S (E, m, t1n) increases linearly with /).n and that the slope is roughly independent of

the embedding dimension m for large m. An approximate estimate for the maximum

Lyapunov exponent as obtained from the figure is 0.04. These observations indicate that

the dynamics of the stress component is (weakly) chaotic in the range of parameters

considered and that the system has a low dimensional chaotic attractor in this case.

The response of the system to variations in the strength of the force field, with the

field orientation kept unchanged, are plotted in Figs. 6.7(a) through (d). Shown in the

figures are the three-dimensional embedding of the attractors of the system for certain

increasing values of k2, viz., k2 =0.3,0.42,0.5 and 1.0 respectively. For other values

of k2 in the range we got attractors which are topologically identical to the ones in

the figures. This suggests that the system takes a quasi-periodic route to chaos as the

parameter k2 is decreased from 1.0 to 0.1.

The flow parameter y tends to drive the particle distribution to an anisotropic state,

which is either complemented or opposed by the interaction of the imposed force field,

and the interplay between these forces can lead to chaotic fluctuations, both in the dy­

namics and in the rheology, in the absence of diffusion (Kumar et al. , 1995; Kumar

and Ramamohan, 1995). The Brownian parameter D, has a smoothening effect on the

distribution and tends to drive the system to an isotropic equilibrium. It is, therefore,

interesting to observe that the bulk system response can be chaotic in the weak diffusion

regime also, as we have demonstrated above, and we expect the system to revert to regu­

lar behavior when diffusion gets stronger. This is illustrated by Figs. 6.8(a) through (c),

plotting the three-dimensional embeddings of the attractors corresponding to Pe = 0.0,

0.1 and 1.0. Pe "_ 06/ I~I I
We note that the chaotic behavior of the rheological parameters could not have been

picked up by many of the diffusion equation approaches that have been used to solve
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Figure 6.7: Three-dimensional embeddingof the attractors reconstructed from the time
series of [1]2] for Pe = 0.01, k1 = k3 = 0 and various values of k2; (a) k2 = 0.3, (b)
k2 =0.42, (c) k2 =0.5 and Cd) k2 = 1.0
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Figure 6.8: Three-dimensional embedding of the attractors reconstructed from the time
series of [172] for k2 = 0.1, k] = k3 = 0 and various values of Pe; (a) Pe = 0.0, (b)
Pe = 0.1 and Cc) Pe = 1.0



6.4 Other Orienuuions 102

similar problems in the literature, either due to the deficiency of the approximation,
schemes employed to solve the diffusion equation or possibly due to more fundamental

problems. Strand and Kim (1992), for example, used an expansion of the ODF into a

series of orthogonal functions and applied the Galerkin method to an appropriately trun­

cated series to express the rheological parameters in terms of the expansion coefficients.

Strand (1989) has applied this method to treat periodically forced systems of dipolar

particle suspensions. Their expansion for the ODF permits only the driving frequency

and higher harmonics of the shear and external field and is generally not valid in regimes

where the stress fluctuations may have subharmonic periodicity, such as the chaotic pa­

rameter regimes we have explored, where the range of the frequencies is a continuum.

Thus if we take the Poincare sections (ef. sec. 1.4.3) of the time series [172] versus [id,

i.e, snapshots of the attractor [172] x [id taken at regular time intervals corresponding

to the driving frequency, .the method of Strand should give only a single point, whereas

our method results in a continuum of points for the set of parameters considered above

(Fig. 6.9).

6.4 Other Orientations

Ir~
Fig. 6.1O(a) through (e)s~ results for [17d and [id when the external force is

oriented in the Z- direction. Note that [17d and [172] have identical values in this case.

Simulations were carried out for a set of values of Pe in the range 0 :5 Pe :5 1, typical

plots of which are shown in the figure. It can be seen that the stress components remain

in the regular regime for the values of Pe considered. The change in the magnitude of

Pe affects only the range of the values assumed by the stress coefficients and does not

cause any topological changes in the attractor of the system.

Chaotic behaviour, however, was observed for some other parametric regimes cor­

responding to a different orientation of the force field. The attractors for [172] and [id
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Figure 6.9: Poincare section of the attractor of [772] x lnl for Pe = 0.01, kz = 0.1,
k1 = k3 = 0

when external force is parallel to (1, 1,0) are shown in figs. 6.11 (a) through (d) for sev­

eral values of Pe. The plots indicate that [772] remains in the chaotic regime for a larger

range Pe than in the previous case, for moderate values of k3• Here again the system

comes back to regular behaviour when the effects of diffusion or of the external force

become stronger. Table 6.1 lists the Lyapunov exponents and correlation dimensions

for the attractors shown in the figure.

When the external force is parallel to (1, 1,0), both [772] and [rd exhibit chaos in the

[77z]

Pe Lyap. expo Corr. dim.

0.00 0.030 1.7

0.01 0.025 1.5

0.10 0.015 1.3

Table 6.1: The estimated Lyapunov exponents and approximate correlation dimensions
of the attractors in fig. 6.11
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Xl = X(t - T)

X2 = X(t - 2T)

X3 = x(t - 3T)

Figure 6.10: Three-dimensional embedding of the attractors reconstructed from the
time series of [77d and lnl for kl = k2 =0, k3 =1.0 and various values of Pe; (a) & (d)
Pe =0; (b) & (e) Pe =0.1; Cc) & (f) Pe =1.0
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[7/2] [Td

Pe Lyap. expo Corr. dim. Lyap. expo Corr. dim.

0.00 0.030 2.0 0.030 2.0

0.01 0.025 1.7 0.020 1.5

0.10 1.025 1.2 0.025 1.2
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Table6.2: The estimated Lyapunov exponents and approximate correlation dimensions
of the attractors in fig. 6.12

range 0 ~ Pe :s; 0.1 for k, =k2 =0.1 (figs. 6.12 (a) through (el), In both the cases chaos

appears as a broadening of the attractor as Pe is reduced. The range of the diffusion

strength for which chaos is observed is also larger as in the previous case. Table 6.2 lists

the geometric invariants of the attractors for various values of Pe.

In all the cases where chaos was observed, the system returns to regular behaviour

in favour of stronger orientational effects, either due to the external force or Brownian

rotation.

Another important point to note is that all the above results pertain to the region of

small Brownian motion where the solution of the Fokker-Planck equation becomes oth­

erwise intractable. In the limit of weak diffusion, the Fokker-Planck equation changes

from a second order partial differential equation to a first order partial differential equa­

tion, and the fundamental character of the equation changes from a diffusion equation

type to a Liouville type. In perturbation methods, this often leads to a breakdown of

the regular perturbation and requires a singular perturbation to be used. This usually

means sharp gradients in the solution which are difficult to handle in the normal way.

The Langevin equation method is more preferable in this case since, together with the

paired-moment scheme for generating moments, it works fine even when diffusion is

weak and is capable of capturing possible complex behaviours of the system which

methods based on singular perturbations may not be able to pick up.
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Figure 6.11: Three-dimensional embedding of the attractors reconstructed from the
time series of [1]2] and.jr.] for kl = 0,k2 = k3 = 0.1 and various values of Pe; (a) & (d)
Pe =O~ (b) & (e) Pe =0.01; Cc) & (f) Pe = 0.1
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Figure 6.12: Three-dimensional embedding of the attractors reconstructed from the
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CHAPTER 7

Conclusions

7.1 Summary

We have developed a novel theoretical framework, based on and extending the tradi­

tional Langevin equation approach, for modelling the dynamics. and calculating the bulk

properties of orientable particles dispersed in a simple shear flow subject to various ori­

entational effects. For computing the various moments, this method relies on the direct

equations of motion for the particles, in contrast to the familiar Fokker-Planck equation

route which involves finding the solution of an appropriate partial differential equation

for the statistical distribution of the orientations. It turns out that the Langevin approach

has many advantages over the Fokker-Planck equation method, both in efficiency and

scope.

In the presence of rotational Brownian motion, the microscopic equations for the

evolution of the particle orientation vectors are stochastic differential equations, each

containing a noise term. The nature and properties of the noise term were determined

by applying a novel theory for non-linear noisy systems, introduced recently by Coffey

et al. (l996). It was shown that an ensemble of these equations is collectively equivalent

to the governing Fokker-Planck (Diffusion) equation of the system. To show this, we

demonstrated that the averaging procedures of both the methods led to the same equation

108
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for the dynamics of the spherical harmonics.
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We have outlined a general procedure for deriving the exact equation for the evo-

lution of any orientation moment, as the particles change orientations due to various

orientational torques. These are ordinary differential equations even in the presence of

noise, with the additional advantage that they do not require the explicit computation

of the orientation distribution function. However, due to the closure problem, the mo­

ment equations are hard to solve directly. Hence we developed a way for simulating

the moments in suitable pairs using a brute force technique. For the simulations, we

used a large number of pairs of ordinary differential equations describing the motions

of a set of tracer orientation vectors in the orientation space, and computed the mo­

ments by suitably averaging the iterated solutions of the equations dynamically. Each

of these equation pairs was deduced from a suitably chosen moment pair by rewriting

the moment equations appropriately. To test the validity of the method as well as the

software, we generated the steady state values of a few moments for the case of force­

free fibres in simple shear and compared the results with those of Chen and Koch (1996)

and Chen and Jiang (1999) and found that the results were in perfect agreement. Sev­

eral advantages of the new method were discussed and demonstrated; in particular, it is

significantly faster than the above methods, about four times faster in computing simyle

orientation moments.
•. ------------

The method can be extended to more general systems subject to additional particle

orientation effects without any significant change in the basic strategy. We studied the

special case in which the particles had dipole moments interacting with an external force

field. Two different possibilities were considered for the force field; (i) the force field

does not vary with time and (ii) the force field varies sinusoidally with time. In each

case the Langevin equation was obtained by adding suitable terms corresponding to the

force field to the equation derived for force-free particles. For a constant force field, the

intrinsic viscosity of the system was calculated for several parameter values representing
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different field strengths and orientations, many particle aspect ratios and varying degrees
I

of diffusion. In all cases, the results were in good agreement with those of Brenner and

Weissman (1972) and Strand and Kim (1992). These simulations served to demonstrate

the validity of the general procedure to be followed while using the Langevin method in

standard flow problems.

When the external field is periodic the Langevin equations are non-autonomous and

the tracer orientation vectors are described by pairs of simultaneous non-autonomous

non-linear differential equations. This leads to the possibility of chaotic dynamics for

certain stress components in some parametric regimes, as revealed by a detailed and

careful analysis of the time series. Chaos was observed in situations were none of the

orientational effects were strong; in particular, the strength of diffusion and the force

field needed to be moderate for the onset of chaos.

7.2 Future work and applications

The results of this analysis have both fundamental and theoretical importance. Accurate

and efficient computation of rheological properties of suspensions is important both in

theoretical studies as well as practical applications. The diffusion equation approach has

been, by and large, the most widely used method for this purpose. Solving the diffusion

equation has been a major hurdle in this case and a common strategy that can be used to

approximate the solution in all parametric ranges is still elusive. The Langevin equation

approach presented in this work can serve as a viable alternative in this case for solving

flow problems. The method can, in principle, be used to model any suspension system

with noise, in which the microscopic equations governing the evolution of the system

are stochastic differential equations with multiplicative white noise and for which the

form of the noise term is explicitly known.

Our method has also pointed out the deficiency of the diffusion equation methods

currently in use, in that they cannot pick up possible subharmonics in the system or
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chaotic behaviour of the averages as demonstrated in this work. The important irnplica-
I

tion of this observation is that systems which arc in some sense governed by the Fokker-

Planck equation can show chaos in averages and hence this system could become an

important physically realisable system to determine the conditions under which chaos

in microscopic dynamics can result in chaos in macroscopic averages.

On the technological front, the new observations may lead to the development of new

methods to characterize magneto rheological suspensions by parameters like Lyapunov

exponents. The observed chaos in the system can be put to use by controlling chaos

using appropriate control of chaos algorithms and making the system behave as desired.

This opens up the possibility of computer controlled intelligent rheology. Reviews of

various chaos control algorithms and their applications to differenJ.-1~'h­

in Shinbrot (1993), Ditto et al. (1995), Ott and Spano (1995)

(1996) and a special algorithm that is particularly suited for l!QI~fi1f1

rheological parameters is described in Kumar (1997).

It is well known in the chaos literature that chaotic signals from two different sources

may be combined to produce a resultant non-chaotic signal. This points to the possibil­

ity of synchronizing chaos in the rheology of suspensions with chaotic signals from

other sources and killing the undesirable oscillations in the latter. For example, the ob­

served chaos in the dynamics of a rolling railway wheel set at higher velocity (Knudsen

et al., 1991; Knudsenetal., 1994) may be controlled in this manner by converting it into

mechanical signals and then synchronizing with chaotic response from a suspension

system.

There are many directions in which the present study can be extended, apart from en­

visaging it as a model for analysing other flow problems using the tools of the Langevin

method. Additional orientational effects can be considered, if such effects can be in-

eluded in the Langevin equation through superposition. An example is to extend this

study to suspensions of charged fibres (Chen and Koch, 1996) by modifying the Langevin
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equation and the expression for the stress tensor to take care of the additional factors.
\

The method may also be used to simplify the study of other similar systems, such as

systems of polymeric liquids in the presence of Brownian rotation. Kumar (1997) has

used a novel algorithm to control chaotic rheological parameters to make them oscillate

in desired periodic orbits. To explore the possibility of implementing this algorithm in

conjunction with the Langevin equation formalism, in the presence of diffusion, will be

an interesting problem.



ApPENDIX A

Program listing

The source code(GNU FORTRAN 77) of the programme we developed to simulate the

stress components for the case of suspensions of fibres under periodic forcing is given

below. This can be easily modified to compute the stress components for the case of

spheres under constant external force. Subroutine odeint is adapted from Press et al.

(1986).

Program s"tress
c implici"t double precisionCa-h,o-z)

pararne"ter(in"t=lltnop=l~~,nav=l~)

charac1:er*2 i~l

dimension y(2),ave(nav,2),aa(in"t),bbCin1:),y2(nav,2,nop)
common /areal/akl,ak2,ak3,pe,cc,re

common /pa"th/krnax,koun"t.dxsav.xp(2~~),ypC2,2~~)

common /coeff/ah.bh,ch,fh,cf,cm,cp
common /avepass/iave
common /pforce/pkl.pk2,pk3
open(uni1:=11,file="pc.dat")

ak=1. ~
re=l~~~.~ !par"ticle aspect ratio

pe=~.l

c components of force field
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akl =ak
ak2 =ak
ak3 =~.~

re2l=(re*re-l.~)

cc=l.~ !shape factor=1 for fibres
akc=1
pi=3.l41592653589793
cm = (1.~-cc)/2.~

cp = (1.~+cc)/2.~

c stress coefficients for fibres(scaled)
ah=3.~

bh=~.~

ch=~.~

fh=18.~

cf=6.~

nvar=2
eps =~.~~~~1 !tolerance for step-size control
kmax=2
dx2=1~~.~*hl*akc

dxsav=dx2/2~.~

hhh=2.~*pi/l~~.~ !input step-size
hl=hhh
hmin=hl/2~~.~

xxl=~.~

xx2=xxl+hhh

c assigning initial conditions -- 1~~ in number
c the three dimensional array y2 contains
C the polar and azimuthal angles

thy=2.~/(float(int-l))

ph=2.~*pi/(float(int-l))

do i=l,int-l
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xpp=-l.~+float(i-l)*thy

aa(i)=acos(xpp)
enddo
aa(int)=acos(I.~)

do j=l.int
bb(j)=float(j-l)*ph
enddo
iint=int-l
do iave=l,nav
do .ie l , iint

do j=I, iint
y2(iave,l,j+(i-l)*iint)=(aa(i)+aa(i+l))*.5
y2(iave.2,j+(i-l)*iint)=(bb(j)+bb(j+l))*.5
enddo
enddo
enddo

do 51 j=l,5~~(\)~

c periodic forcing
wt=w*xx2
wt=mod(wt,2.(\)*pi)
pkl=akl*cos(wt)
pk2=ak2*cos(wt)
pk3=ak3*cos(wt)
do 61 iave=1,nav

c if((iave.eq.8))goto 61

do 71 i3=l,nop

y(1)=y2(iave.l.i3)
y(2)=y2(iave,2,i3)
HH="OK"

call odeint(i~l,y,nvar,xxl,xx2,eps,hl,hmin,nok,nbad)

call ynorm(y,nvar)
y2(iave.l,i3)=y(1)
y2(iave.2,i3)=y(2)
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71 continue

61 continue
call avefun(y2,ave)
call stress(ave,etal,eta2,taul,tau2)

xxl=xx2
xx2=xxl+hhh

write(11,'Ci7,4(lx,f12.5))')j,etal,eta2,taul,tau2
51 continue
l~~~ close(ll)

stop
end

c computing the orientation moments
subroutine avefun(y2,ave)

c implicit double precision(a-h,o-z)
common /areal/akl,ak2,ak3,pe,cc,re
parameter(nop=4,nav=1~)

dimension y2(nav,2,nop),ave(nav,2)

dimension sums(1~,2)

do 1~ iav=l,nav !*iav corresponds to iave in main()*
do i=1,2
ave(iav,i)=~.~

sums(iav,i)=~.~
"·i

enddo
1~ continue

do 23 iav=l,nav
do 2~ i3=l,nop

qx=sin(y2(iav,l,i3))*cos(y2(iav,2,i3))
qy=sin(y2(iav,1,i3))*sin(y2(iav,2,i3))
qz=cos(y2(iav,l,i3))
sums(l,l)=qz*qz
sums(1,2)=qx*qx*qy*qy
sums(3 ,l)=qx
sums(3,2)=qy

sums(4,1)=qx*qx
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sums(4,2)=qy*qy
sums(S,l)=qx*q~*qy

sums(S,2)=qx*qy*qy
sums(7,l)=qz*qz*qz
sums(7,2)=qx*qy*qz

sums(8,l)=qx*qy
sums(8,Z)=qx*qy*qz
sums(9,1)=qx*qx*qz
sums(9,2)=qz*qy*qy

sums(lQ,l)=qx**3
sums(lQ,2)=qy**3

ave(iav,l)=ave(iav,l)+sums(iav,l)
ave(iav,Z)=ave(iav,2)+sums(iav,Z)

2Q continue

23 continue
c here

do 3Q iav=l,nav
do i=l,2

ave(iav,i)=ave(iav,i)/float(nop)
enddo

3(9 continue

return
end

c computing the stress components
subroutine stress(ave,etal,eta2,taul,tau2)
parameter (nav=lQ)

c implicit double precision(a-h,o-z)
dimension ave(nav,Z)
common /areal/akl,ak2,ak3,pe,cc,re
common /coeff/ah,bh,ch,fh,cf,cm,cp
common /pforce/pkl,pkZ,pk3
sl=pkl*ave(S,1)+pkZ*ave(S,2)+pk3*ave(7,2)
s2=pkl*ave(lQ,l)+pk2*ave(S,l)+pk3*ave(9,l)

c s2=«sig_kiui)ul-2>
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s3=pkl*ave(5,2)+pk2*ave(1~,2)+pk3*ave(9,2)

c s3=«sig_kiui)u2 A2>

s4=ave(9,l)+ave(9,2)+ave(7,l)
c s4=<u3>

s5=pkl*ave(3,1)+pk2*ave(3,2)+pk3*s4
c s5=<sig_kiui>

s6=s5-s2-s3
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c

c

*

*

*
*

*
*

s6=«sig_kiui)u3 A2>

s7=ave(2,1)-ave(6,2)-aveC6,l)
s7=<ulu2 ur2>

etal = 4.~*ah*ave(l,2)+2.~*bh*(ave(4,1)+ave(4,2))+ch

+(cf/cc)*Ccc*sl+pk2*cm*ave(3,1)-pkl*cp*aveC3,2))
+fh*ave(2,1)

eta2 = 4.~*ah*aveCl,2)+2.~*bh*(ave(4,l)+ave(4,2))+ch

+(cf/cc)*(cc*sl+pkl*cm*ave(3,2)-pk2*cp*ave(3,l))
+fh*ave(2, 1)

taul = 4.~*ah*CaveC6,2)-s7)+4.~*bh*ave(2,l)

+cf*(s2-s6+pk3*s4-pkl*ave(3,l))
+fh*(ave(4,1)-ave(2,2))

tau2 = 4.~*ah*(ave(6,1)-s7)+4.~*bh*ave(2,1)

+cf*(s3-s6+pk3*s4-pk2*ave(3,2))
+fh*(ave(4,2)-ave(2,2))

return
end

subroutine derivs(x,y,yprime)
c implicit double precision(a-h,o-z)

c user defined routine called by ode integrator

dimension y(2),yprime(2)
common /areal/akl,ak2,ak3,pe,cc,re
common /avepass/iave
common /pforce/pkl,pk2,pk3
pi=3.l41592653589793
ql=y(l)
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q2=y(2)
q12=2.~*ql

q24=4.~*q2

pe2=pe/Z.~

st=sin(ql)

ct=cos(ql)
sp=sin(q2)
cp=cos(q2)
c2t=cos(q12)
c4p=cos(q24)
sf=l.~

ahl=(pkl*ct*cp+pk2*ct*sp-pk3*st) !** force terms**

ah2=(1.~/st)*(-pkl*sp+pk2*cp)

rhl=sf*cc*st*ct*sp*cp+ahl

rhZ=-sf*cc*sp*sp-(1.~-cc)/2.~+ahZ

c noise part specific to each pair of moments chosen
if(iave.eq.l)then !generates <ul A2 uZ A2> and <u3-Z>

fl=4.~*(st**3)*ct*sp*sp*cp*cp

f2=(st**4)*cos(2.~*q2)*sin(2.~*qZ)

u=Z.~*st*st-Z~.~*(st**4)*sp*sp*cp*cp

gl=-2.~*st*ct

g2=~.~

v=-2.~*(3.~*ct*ct-l.~)

endif
ifCiave.eq.2)then !generates <ul u2> and <u3A2>

fl=2.~*st*ct*sp*cp

f2=st*st*cos(2.~*qZ)

u=-3.~*st*st*sin(2.~*q2)

gl=-2.~*st*ct

g2=~.~

v=-2.~*(3.~*ct*ct-l.~)

endif
ifCiave.eq.3)then !*generates <ul> and <u2>*

fl=ct*cp
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!generates <u3 A3> and <ulu2u3>

!generates <ul A2> and <uZ-Z>
!**cross checked with <u3 A2>**

f2=-st*sp
u=-2.&*st*cp
gl=ct.*sp
g2=st.*cp
v=-2.&*st*sp

endif
if(iave.eq.4)then

fl=2.&*st*ct*cp*cp
f2=-2.~*sp*cp*st*st

u=2.&-6.~*st*st*cp*cp

gl=2.~*st*ct*sp*sp

g2=2.~*sp*cp*st*st

v=2.~-6.~*st*st*sp*sp

endif
if(iave.eq.S)then !generates <ul A2 u2> and <ul u2A2>

fl=3.~*st*st*ct*cp*cp*sp

f2=(st.**3)*(cp*cp*cp-2.&*sp*sp*cp)
u=2.&*st*sp-l2.~*(st**3)*sp*cp*cp

gl=3.~*st*st*ct*cp*sp*sp

g2=(st**3)*(2.&*sp*cp*cp_sp*sp*sp)

v=2.&*st*cp-l2.&*(st**3)*cp*sp*sp

endif
if(iave.eq.6)then !generates <ul u2A3> and <ul A3 u2>
fl=4.&*(st**3)*ct*(sp**3)*cp
f2=(st**4)*sp*sp*(3.~*(cp**2)-(sp**2))

u=3.~*st*st*sin(2.&*q2)-1&.&*(st**4)*(sp**2)*sin(2.&*q2)

gl=4.&*(st**3)*ct*(cp**3)*sp
g2=(st**4)*cp*cp*(cp**2-3.~*(sp**2))

v=3.&*st*st*sin(2.&*q2)-1~.&*(st**4)*(cp**2)*sinC2.&*q2)

endif
ifCiave.eq.7)then

fl=-3.&*st*ct*ct
f2=&.&
u=-3.~*(ct+cos(3.~*ql))

gl=st*(2.~*ct*ct-st*st)*sp*cp
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g2=st*st*ct*(cos(2.~*q2))

v=-6.&*ct*st*st*sin(2~~*q2)

endi£

i£(iave.eq.8)then !generates <ulu2> and <ulu2u3>
£l=1.&*st*ct*sin(2.~*q2)

£2=1.&*st*st*cos(2.~*q2)

u=-3.~*st*st*sin(2.~*q2)

gl=st*(2.~*ct*ct-st*st)*sp*cp

g2=st*st*ct*(cos(2.&*q2))

v=-6.&*ct*st*st*sin(2.&*q2)

endi£
i£(iave.eq.9)then !generates <ul~2 u3> and <u3 u2-2>

£l=cp*cp*(2.&*st*ct*ct-st*st*st)

£2=-2.~*sp*cp*st*st*ct

u=2.&*ct-12.&*st*st*cp*cp*ct

gl=st*sp*sp*(2.&*ct*ct-st*st)

g2=2.&*st*st*ct*sp*cp

v=2.&*ct-12.&*st*st*ct*sp*sp

endi£
i£(iave.eq.l&)then !generates <ul~3> and <u2~3>

£l=3.&*(st**2)*ct*(cp**3)
£2=-3.&*sp*(cp**2)*(st**3)
u=6.&*st*cp-12.&*(st**3)*(cp**3)

gl=3.&*(st**2)*ct*(sp**3)

g2=3.&*(sp**2)*cp*Cst**3)

v=6.&*st*sp-12.&*(st**3)*(sp**3)

endi£

ratl=s£*pe*(g2*u-£2*v)/dr

rat2=s£*pe*(gl*u-£l*v)/dr
yprime(l)=rhl+ratl

yprime(2)=rh2-rat2
37 return

end

c
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subroutine odeint(i~1,ystart,nvar,xl,x2,eps,h1,hmin,

nok,nbad)
c implicit double precision(a-h,o-z)
c runge kutta driver with adaptive stepsize control.
c Integrate the nvar starting values ystart from xl to x2
c with accuracy eps, storing intermediate results in the
c common block /path/. hI should be set as a guessed first
c stepsize. hmin as the minimum allowed stepsize
c (can be zero). On output nok and nbad are the num.
c of good and bad (but retried and fixed)steps taken,
c and ystart is dpreplaced by values at the end of the
c integration interval.
c derivs is the user supplied subroutine while rkqc is the
c name of the stepper routine to be used. path contains its
c own information about how often an intermediate value is
c to be stored.

external derivs
external rkqc
character*2 i~1

parameter(maxstp=1&&&~~&,nmax=2,two=2.~,zero=&.&,

tiny=1.e-3~)

common /path/kmax,kount,dxsav,xp(2&~),yp(2,2~~)

c user storage-intermediate results. Preset dxsav and kmax
dimension ystart(nvar),yscal(nmax),y(nmax),dydx(nmax)
x=xl
h=sign(hl,x2-x1)
nok=&
nbad=~

kount=~

do 11 i=l,nvar
y(i)=ystart(i)

11 continue
if(kmax.gt.~) xsav=x-dxsav*two

c assures storage of first step
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do 16 nstp=l,maxstp ~

c take at most maxstp steps
call derivs(x,y,dydx)

do 12 i=l, nvar

c scaling used to monitor accuracy. This general purpose
c choice can be modified if need be

yscal(i)=abs(y(i))+abs(h*dydx(i))+tiny
12 continue

if(kmax.gt.~) then
if(abs(x-xsav).gt.abs(dxsav)) then
if(kount.lt.kmax-l) then
kount=kount+l
xp(kount) =X
do 13 i=l,nvar
yp(i,kount)=y(i)

13 continue
xsav=x
endif
endif
endif
if((x+h-x2)*(x+h-xl).gt.zero) h=x2-x

c if step can overshoot end, cut down stepsize

call rkqc(i~l,y,dydx,nvar,x,h,eps,yscal,hdid,hnext)

if(hdid.eq.h) then
nok=nok+l
else
nbad=nbad+l
endif
if((x-x2)*(x2-x1).ge.zero) then

c Are we done?
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do 14 i=l,nvar
ystartCi)=y(i)

14 continue
if(kmax.ne.~) then
kount=kount+l

c Save final step
xp(kount) =x
do 15 i=l,nvar
yp(i,kount)=y(i)

15 continue
endif
return

c normal exit

endif
ifCabs(hnext).lt.hmin) i~l="Nl"

h=hnext
16 continue

i~1="N2"

return
end
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subroutine rkqc(i~l,y,dydx,n,x,htry,eps,yscal,hdid,hnext)

c implicit double precision(a-h,o-z)
c

c Fifth order runge-kutta step with monitoring of local
c truncation error to ensure accuracy and adjust stepsize.
c Input are the dependent variable vector y of length n and
c its derivative dydx at the starting value of the
c independent variable x. Also input are the stepsize to be
c attemptedhtry, the required accuracy eps, and the vector
c yscal against which the error is scaled. On output, y and
c x are replaced by their new values, hdid is the stepsize
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c which was actually accomplished, and hnext is the
c estimated next stepsize.1 derivs is the user supplied
c subroutine that computes the right hand side derivatives.

character*2 i~l

parameter (nmax=2,pgrow=-~.2,pshrink=-~.25,fcor=1.~/15.~,

one=1.~,safety=~.9,errcon=6.e-~4)

c the value errcon equals C4/safety)**Cl/pgrow)

external derivs
c common /areal/akl,ak2,ak3,pe,cc,re

dimension y(n),dydxCn),yscal(n),ytemp(nmax),ysav(nmax),
dysav(nmax)
xsav=x

C save initial values

do 11 i=l,n
ysav(i)=y(i)

dysav(i)=dydxCi)
11 continue

h=htry
c

c set stepsize. to the initial trial value
c

1 hh=~.5*h

call rk4(ysav,dysav,n,xsav,hh,ytemp)
x=xsav+hh
call derivs(x,ytemp,dydx)
call rk4(ytemp,dydx,n,x,hh,y)
x=xsav+h
if(x:eq.xsav) i~l="N~n

call rk4(ysav,dysav,n,xsav,h,ytemp)

c take the large step
errmax=~.~
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c evaluate accuracy
do 12 i=1,n
ytemp(i)=y(i)-ytemp(i)
errmax=max(errmax,abs(ytemp(i)/yscal(i)))

12 continue
c ytemp now contains the error estimate

errmax=errmax/eps
if(errmax.gt.one) then
h=safety*h*(errmax**pshrink)

c truncation error too large, reduce stepsize

go to 1

else
c step succeeded. compute size of next step

hdid=h
if(errmax.gt.errcon) then
hnext=safety*h*(errmax**pgrow)
else
hnext=4.&*h
endif
endif
do 13 i=l,n

c mop up fifth order truncation error
y(i)=y(i) +ytemp(i) *fcor

13 continue
return
end
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subroutine rk4(y,dydx,n,x,h,yout)
c implicit double precision(a-h,o-z)
c

c given values for n variables y and their derivatives
c dydx known at x, use the fourth order runge kutta method
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c to advance the solution over an interval h and return
c the -increment.ed ..varf.ables as yout , which need not be a
c dist.inct array from y. The user supplies the subroutine
c derivs(x,Y,dydx) which returns derivatives dydx at x.
c

external derivs
parameter (nmax=2)

c Set to the maximum number of functions

c common /areal/akl,ak2,ak3,pe,cc,re
dimension y(n) ,dydx(n) ,yout(n) ,yt(nmax) ,dyt(nmax) ,
dym(nmax)

hh=6l.5*h
h6=h/6.6l

xh=x+hh
do 11 i=I,n
yt(i)=y(i)+hh*dydxCi)

11 continue

call derivs(xh,yt.,dyt)

do 12 i=I,n
yt(i)=y(i)+ hh*dyt(i)

12 continue
call derivs(xh,yt,dym)

do 13 i=I,n
ytCi)=y(i)+h*dym(i)
dym(i) =dym(i) +dyt (i)

13 cont.inue
call derivs(x+h,yt,dyt)

do 14 i=l,n
yout(i)=y(i)+h6*(dydxCi)+dyt(i)+2.(i)*dym(i)

14 continue

return
end

c
c subroutine that normalizes the orientation vector
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subroutine ynorm(u,m)
c implicit double precisibn(a-h,o-z)

dimension u(m)
pi=3.141592653589793
u(l)=mod(u(l) ,pi)

u(2)=mod(u(2),2.~*pi)

return

end
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Notes on notation

The various notations used in the thesis are collected here for immediate reference.

In general the font attributes of a letter or symbol represent the nature of the physical

quantity it denotes according to the following conventions;

lightface italic: scalar (eg. s)'
boldface italic: vector (eg. u)

boldface Greek: second order tensor (eg. er)
boldface sans sarif: tensor of arbitrary order (eg. E)

a

b

c

polar radius of a spheroid in the suspension

Bird-Warner coefficients

coefficients in the expansion of I/t in terms of spherical har­
monics (eq. (3.8»

coefficient in the expression for the stress tensor (see
eqns. (5.4) and (5.5»

equitorial radius of a spheroid in the suspension

coefficient in the expression for the stress tensor (see
eqns. (5.4) and (5.5»

= (,-2 - 1)/(,-2 + 1), a shape factor for the particle

coefficient in the expression for the stress tensor (see
eqns. (5.4) and (5.5»

129
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C(€", m)

D

Do

E

FH

H

H.L

i

j

k

m

m

p

Pe

P,.(x)

r

T

u

time series analysis: correlation sum
,

time series analysis: correlation dimension

rotary diffusivity of a sphere of volume equal to that of the
particle

diffusion coefficient

rate of deformation tensor

coefficient in the expression for the stress tensor (see
eqns. (5.4) and (5.5))

deterministic parts of the Langevins equation of the system
(see eqs. (5.11) and (6.2))

external force field vector

projection of H in the direction perpendicular to u

unit vector along the X-direction

unit vector along the Y-direction

the scaled dimensionless form of the external force

Cartesian components of k

Boltzmann constant

particle dipole moment

time series analysis: embedding dimension of the attractor

pressure

Peclet number (= t /Dr )

Legendre polynomial of degree n

associated Legendre function

aspect ratio of the particle

absolute temperature

hydrodynamic torque on the particle

torque on the particle due to the external field

unit vector indicationg the orientation of the particle

Cartesian components of u
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v

t
r

T/s

8

A.Cl/!)

T

f/J
(J)

l/!(u, t)

w

w

undisturbed velocity profile of the flow
I

spherical harmonics and complex conjugate (see sec. 3.1)

shear rate

Gaussian white noise vector

Cartesian components of I'

unit tensor

Kronecker delta (= 1 if i = j and 0 ifi ;/; j)

hydrodynamic resistance tensor

component of (parallel to the particle axis

component of ( perpendicular to the particle axis

the apparent viscosities

viscosity of the solvent

polar angle in spherical co-ordinates

linear operator in the definition of diffusion equation (see
eq. (3.7))

the averaged bulk fluid stress tensor

anti-symmetric part of the stress

stress contributed by the suspension particcles alone

symmetric part of the stress

time series analysis: delay in attractor reconstruction

the first normal stress difference

the second normal stress difference

stress of the solvent in the absence of particles

azimuthal angle in sperical co-ordinates

the volume fraction of the particles in the fluid

particle orientation distribution function

frequency of the external force driver

angular velocity of the particle

vorticity vector
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o.(l/!) linear operator in the definition of diffusion equation (sec
eq. (3.7))
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