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ABSTRACT 

 

New mathematical methods to analytically investigate linear acoustic radiation 

and scattering from cylindrical bodies and transducer arrays are presented. Three 

problems of interest involving cylinders in an infinite fluid are studied. In all the three 

problems, the Helmholtz equation is used to model propagation through the fluid and the 

beam patterns of arrays of transducers are studied. 

In the first problem, a method is presented to determine the omni-directional and 

directional far-field pressures radiated by a cylindrical transducer array in an infinite 

rigid cylindrical baffle. The solution to the Helmholtz equation and the displacement 

continuity condition at the interface between the array and the surrounding water are 

used to determine the pressure. The displacement of the surface of each transducer is in 

the direction of the normal to the array and is assumed to be uniform. Expressions are 

derived for the pressure radiated by a sector of the array vibrating in-phase, the entire 

array vibrating in-phase, and a sector of the array phase-shaded to simulate radiation 

from a rectangular piston. It is shown that the uniform displacement required for 

generating a source level of 220 dB ref. µPa @ 1m that is omni directional in the 

azimuthal plane is in the order of 1 micron for typical arrays. Numerical results are 

presented to show that there is only a small difference between the on-axis pressures 

radiated by phased cylindrical arrays and planar arrays. The problem is of interest 

because cylindrical arrays of projectors are often used to search for underwater objects. 

In the second problem, the errors, when using data-independent, classical, energy 

and split beam correlation methods, in finding the direction of arrival (DOA) of a plane 

acoustic wave, caused by the presence of a solid circular elastic cylindrical stiffener near 

a linear array of hydrophones, are investigated. Scattering from the effectively infinite 

cylinder is modeled using the exact axisymmetric equations of motion and the total 

pressures at the hydrophone locations are computed. The effect of the radius of the 

cylinder, a, the distance between the cylinder and the array, b, the number of 

hydrophones in the array, 2H, and the angle of incidence of the wave, α, on the error in 

finding the DOA are illustrated using numerical results. For an array that is about 30 

times the wavelength and for small angles of incidence (α<10), the error in finding the 

DOA using the energy method is less than that using the split beam correlation method 

with beam steered to α; and in some cases, the error increases when b increases; and the 
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errors in finding the DOA using the energy method and the split beam correlation 

method with beam steered to α vary approximately as 4/7a . The problem is of interest 

because elastic stiffeners – in nearly acoustically transparent sonar domes that are used to 

protect arrays of transducers – scatter waves that are incident on it and cause an error in 

the estimated direction of arrival of the wave. 

In the third problem, a high-frequency ray-acoustics method is presented and 

used to determine the interior pressure field when a plane wave is normally incident on a 

fluid cylinder embedded in another infinite fluid. The pressure field is determined by 

using geometrical and physical acoustics. The interior pressure is expressed as the sum 

of the pressures due to all rays that pass through a point. Numerical results are presented 

for ka = 20 to 100 where k is the acoustic wavenumber of the exterior fluid and a is the 

radius of the cylinder. The results are in good agreement with those obtained using field 

theory. The directional responses, to the plane wave, of sectors of a circular array of 

uniformly distributed hydrophones in the embedded cylinder are then computed. The 

sectors are used to simulate linear arrays with uniformly distributed normals by using 

delays. The directional responses are compared with the output from an array in an 

infinite homogenous fluid. These outputs are of interest as they are used to determine the 

direction of arrival of the plane wave. Numerical results are presented for a circular array 

with 32 hydrophones and 12 hydrophones in each sector. The problem is of interest 

because arrays of hydrophones are housed inside sonar domes and acoustic plane waves 

from distant sources are scattered by the dome filled with fresh water and cause 

deterioration in the performance of the array.  
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and θ = 180o from ka = 20 to 100 when g=h=1.1. Red solid line: Field theory 

with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays 

4-33 a) Real part and b) imaginary part of internal pressure field at the point r=0 and 

θ = 0o from ka = 20 to 100 when g=h=1.1. Red solid line: Field theory with 250 

terms. Blue dots: Ray theory with n = 0 and 1 rays. 

4-34 a) Real part and b) imaginary part of internal pressure field at the point r=3a/4 



      

xvii 

 

and θ = 0o from ka = 20 to 100 when g=h=1.1. Red solid line: Field theory with 

250 terms. Blue dots: Ray theory with n = 0 and 1 rays. 

4-35 a) Real part and b) imaginary part of internal pressure field at the point r=a/2 

and θ = 180o from ka = 20 to 100 when g=h=0.9. Red solid line: Field theory 

with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. 

4-36 a) Real part and b) imaginary part of internal pressure field at the point r=0 and 

θ = 0o from ka = 20 to 100 when g=h=0.9. Red solid line: Field theory with 250 

terms. Blue dots: Ray theory with n = 0 and 1 rays. 

4-37 a) Real part and b) imaginary part of internal pressure field at the point r=3a/4 

and θ = 0o from ka = 20 to 100 when g=h=0.9. Red solid line: Field theory with 

250 terms. Blue dots: Ray theory with n = 0 and 1 rays. 

4-38 Directional response of 12 out of 32 hydrophones in the circular array for 

frequency of a) 5 kHz and b) 20 kHz when g= h=0.9. Red solid line: Presence of 

embedded cylinder. Blue dots: Absence of embedded cylinder. 

4-39 Directional response of 12 out of 32 hydrophones in the circular array for 

frequency of a) 5 kHz and b) 20 kHz when g= h=1.1 Red solid line: Presence of 

embedded cylinder. Blue dots: Absence of embedded cylinder. 
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Chapter 1 

INTRODUCTION 
1.  

 

1.1 ACOUSTIC RADIATION, SCATTERING, AND TRANSDUCER ARRAYS 

Acoustics is the interdisciplinary science of mechanical waves in solids, liquids, 

and gases, associated with fluctuations in the density of the medium (Morse and Ingard, 

1968). The word acoustics is derived from the Greek word ἀκουστός  (akoustos) which 

means audible or heard but the field of acoustics has grown to include infrasound, 

audible sound, and ultrasound, and phenomena such as generation, radiation, scattering, 

transmission, and attenuation of waves (Beyer, 1999). When the molecules of a fluid or 

solid are displaced from their normal positions and compressed or rarefied, an internal 

restoring force arises. This elastic restoring force coupled with the inertia of the system 

enables matter to participate in oscillatory vibrations or waves and thereby generate and 

transmit acoustic waves (Kinsler et al., 1982). The science of acoustics has a wide range 

of defense applications such as detection, localization, classification, tracking, parameter 

estimation, weapon guidance, countermeasures, and communications. It also has 

commercial applications such as navigation aids, fish location, bottom mapping, seismic 

prospecting, and acoustic oceanography.  

 Acoustic waves are generated in solid and fluid bodies by the forced vibration of 

a boundary, by time varying body forces, and by thermal effects (Morse and Ingard, 

1968). The waves – in the form of density fluctuations – always travel away from the 

source and this is known as radiation. Spherical waves are radiated when the source is 

small and the body is effectively unbounded because the observation time is short in 

comparison to the time taken for the wave to travel to a boundary. The intensity of the 

disturbance varies inversely with square of distance from the source. Cylindrical waves 

are radiated when the lateral dimensions of the body are much greater than its uniform 

thickness and the fluctuation is observed long after the disturbance has reached the 

reflecting plane boundaries. The intensity in cylindrical waves varies inversely with 

distance from the source. Plane waves are generated in long thin rods excited uniformly 

at the ends and by pistons acting on fluid cylinders. The disturbance, in the absence of 

dissipative forces, does not decay with distance from the source.  

When an acoustic wave encounters an obstacle, new waves traveling in all 
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directions are generated. The difference between the actual wave and the wave in the 

absence of the obstacle is known as the scattered wave and the process is known as 

scattering (Morse and Ingard, 1968). When the source of the wave is very far away from 

a small obstacle, the curvature of the part of the wavefront that actually strikes the 

scatterer is insignificant and the wave can be considered to be plane.  Some energy is 

scattered back in the direction it came from. The energy scattered in the forward 

direction – the direction in which the incident wave is traveling – is, however, often more 

than the backscattered energy.  

Electroacoustic transducers convert electrical energy to acoustical energy and 

vice versa (Stansfield, 1990). In underwater applications, transducers that generate 

acoustic waves are known as projectors or radiators; and those that are used to sense 

acoustic waves are known as hydrophones. In air applications, they are known as 

loudspeakers and microphones, respectively. Several different types of projectors are 

used at their resonance frequency to radiate underwater acoustic waves and their size is 

inversely proportional to the frequency. In contrast, hydrophones are usually used over a 

wide frequency band and are usually smaller than the wavelength in water at the highest 

frequency.  

Arrays of projectors are used in sonar systems to increase the source level and 

make it possible for the wave to travel a longer distance before the intensity reduces to an 

insignificant level. Arrays of hydrophones are used to increase the signal to noise ratio 

and improve the probability of detection and accuracy of localization (Waite, 1992). 

In this thesis, acoustic radiation from a cylindrical array and the effect of acoustic 

scattering from elastic and fluid cylinders on the performance of arrays of hydrophones 

are investigated. The problems that are analyzed are briefly stated in the next section. 

1.2 STATEMENTS OF THE PROBLEMS 

Three problems of interest involving cylinders in an infinite fluid are studied. 

New mathematical methods to analytically investigate linear acoustic radiation and 

scattering from cylinders and transducer arrays are presented.  In all the three problems, 

the Helmholtz equation is used to model propagation through the fluid and the beam 

patterns of arrays of transducers are studied. 

In the first problem, acoustic radiation from a cylindrical array of projectors is 

studied. The displacement on the surface of the array is specified. Analytical expressions 

for the radiated pressure and the far-field radiated beam pattern are of interest for three 
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cases: radiation from the entire array, in-phase radiation from a sector of the array, and 

phased radiation from a sector.  

In the second problem, a plane wave is incident on a linear array of hydrophones. 

An infinite elastic cylinder is in the neighborhood of the array and the total pressure at 

the hydrophone locations is the sum of the pressures due to the incident wave and the 

scattered waves emanating from the cylinder. It is of interest to determine the direction 

of arrival of the plane wave. The error caused by the presence of the cylinder is of 

interest. Two data-independent signal processing methods are used in the study. 

In the third problem, a fluid cylinder is embedded in another infinite fluid. A high 

frequency plane wave is incident on the fluid cylinder. A circular array of hydrophones is 

inside the embedded cylinder. The effect of the differences in the properties of the fluids 

on the beam pattern of a sector of the array is of interest. The interior pressure field is 

determined using ray theory. 

A brief history of acoustics, starting from ancient acoustics but with more 

emphasis on recent developments is presented in the next section. 

1.3 HISTORY OF ACOUSTICS 

The history of acoustics is presented in literature from various viewpoints. Brief 

accounts are presented in several books (Beyer,1999; Graff, 1975; Pierce, 1989; Love, 

1927; Soedel, 1993; Raichel, 2000). Whewell (1858) presents a view of the progress of 

acoustics, from ancient times, as a theoretical science and highlights discoveries of 

general principles that reduce many facts to one theory. The development of acoustics in 

ancient China (Chen, 1996) and underwater Russia (Godin and Palmer, 2008) is 

presented in books. There is apparently no well-researched book on the history of Indian 

acoustics but ancient texts and archeological evidence indicate a rich heritage. A brief 

note on musical acoustics in ancient India is presented by the Nobel Laureate Raman 

(1922) in which he rues the lack of material available for writing their history. The Bible 

names Jubal as the father of all who play stringed instruments such as the harp and the 

flute and states that four thousand Levites were appointed by King David (c. 1000 BC) to 

praise God with musical instruments. 

Short accounts of BC and early Indian acoustics, acoustics from the 17th to 19th 

centuries, acoustics in the 20th and 21st centuries are presented in the following sub-

sections. 
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1.3.1 BC and Early Indian Acoustics 

Aristotle (384 – 322 BC) was perhaps the first to understand the generation and 

radiation of acoustic waves. In his treatise “On Sound and Hearing,” he wrote that sound 

takes place when bodies strike the air … the air being contracted and expanded … is 

carried forwards … and that which is contiguous … is carried onwards … very far away 

… . Admirers of antiquity see in this passage an exact account of the production and 

propagation of sound while others, such as Sir Francis Bacon (1561 – 1626), consider it 

only a vague notion and verbal generalization (Whewell, 1858). Bacon, in his work 

entitled, “The history and first inquisition of sound and hearing,” (Montagu, 1834) wrote, 

“The collision or thrusting of air which they will have to be the cause of sound, neither 

denotes the form nor the latent process of sound, but is a term of ignorance and of 

superficial contemplation.”Devey (1902), who edited the works of Bacon, reckons that 

Bacon held Aristotle’s work in low esteem and was referring to it in this statement. 

Along with Aristotle, other BC acousticians who made eminently noteworthy 

contributions are Pythagoras (570 - 497 BC) who is well known to every student of 

mathematics, the Greek philosopher Chrysippus (240 BC), and the Roman architect-

engineer Vitruvius (25 BC). The first major scientific discovery by Pythagoras was in the 

area of acoustics. Egyptian papyrus was introduced to Greece around 650 BC but there 

are no original sources regarding his work partly because the esoteric practices of the 

Pythagoreans (Eli Maor, 2007). It is widely believed that Pythagoras (and his successors) 

established an inverse relationship between the length of a string and its resonance 

frequency, explained that the frequency of vibration of the string is equal to the 

frequency of vibration of the surrounding air, and determined the ratios of lengths of 

strings which when plucked together create harmonious sounds. Vitruvius explained that 

“voice proceeds in breadth but also successively ascends in height” (Whewell, 1858); 

indicating that sound, in a 3D space, travels in outwardly spreading spherical waves.   

Chrysippus observed that water waves move away from a source but do not transport 

matter over large distances and was of the view that sound exhibits analogous behavior 

(Pierce, 1989). He also was of the view that the air motion generated by vibrating body 

sounding a single musical note is vibratory and of the same frequency as the body – a 

view not shared by Gassendi who was a contemporary of Galileo (17th century) and 

Marsenne.  

Accounts of developments in acoustics made before recorded history are based 
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on mythology. In the 27th century BC, according to Chinese mythology, Ling-Lun, a 

minister of the Yellow Emperor Huangundi was commissioned to establish a standard 

pitch for music. He cut a bamboo stem between the nodes to make his fundamental note 

(approximately 410 Hz), resulting in the “Huang – zhong pipe.”  It is interesting to note 

that the A above the middle C in a piano has a frequency of exactly 440 Hz. An analysis 

of the dimensions of the pipe which was approximately 10 cm long was presented 

recently (Xia et al., 2006). Ling-Lun is also credited with a series of twelve standard 

pitch-pipes and bronze bells.  

In India, as in other countries, there was an interest in ancient times in the 

acoustics of music and speech. The foundation of research in phonetics was first laid in 

India by the eminent Sanskrit grammarian Panini who experts say lived at some time 

between the 4th and 7th centuries BC. It has been claimed that very little was added, 

until recently, to Astadhyayi (meaning eight chapters) a treatise attributed to Panini 

(Vasu, 1891) that was written to lay down the rules for grammar and the correct 

enunciation of Vedic hymns and other Sanskrit texts. The Natya Shastra written during 

period between 200 BC and 200 AD is a treatise that covers theatre, dance, and music 

and gives details of the music and instruments of that period (Tarlekar, 1991). 

1.3.2 Acoustics from the 17th to 19th Centuries 

The governing equations; and initial and boundary conditions for the acoustics of 

fluids and solids, were developed during this period. Earlier, concepts and some results 

were established. However, the development of mathematical equations that are 

presently used had to wait for the development of differential and integral calculus.  

Mersenne, Hooke, and Newton (17th century); Chaldni, Bernoulli and Euler (18th 

century); and Sophie Germain, Lord Rayleigh and Helmholtz (19th century) are a few 

famous acousticians of this period. Many of these acousticians actually did their major 

work in other fields – Young (19th century) in optics, Helmholtz in medicine, physiology, 

and electricity; Rayleigh in many fields, including gases, electricity, and optics. 

 In 1636, Marin Mersenne, a French natural philosopher often referred as the 

‘father of acoustics’ presented the first correct published account on vibration of strings. 

Mersenne observed in his Harmonie Universelle that the frequency of vibration is 

inversely proportional to the length of the string and directly proportional to the square 

root of the cross sectional area. In 1700, Sauveur calculated the resonance frequency of a 

stretched string and he suggested the term acoustics for the science of sound.  
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1.3.2.1 Acoustics of Fluids 

The mathematical theory of sound propagation began with Issac Newton (1642-

1727) whose Principia (1686) included a mechanical interpretation of sound as being 

pressure pulses transmitted through neighboring fluid particles. He also investigated the 

speed of water waves and speed of sound in air. He summed up his analysis saying that, 

if the Earth’s atmosphere were considered homogeneous, it would have certain height; 

and the velocity of sound in air is equal to the velocity acquired by a heavy body when it 

falls through one half this height. This is equivalent to stating that the speed of sound is 

equal to the square root of the ratio of atmospheric pressure to the density. Newton’s 

estimate for speed of sound is found to be only approximate, because he, in essence, 

assumed that acoustic vibration is an isothermal process. However, it was not until 1816 

that Laplace explained that the process is adiabatic and derived the correct expression for 

the speed of sound in air (Whewell, 1858). 

Efforts were also made to experimentally determine the speed of sound in water. 

John Candon measured the elasticity of water and Chaldni used this to determine the 

speed of sound in a number of liquids with accuracy similar to that obtained for water. 

The value of speed of sound in fresh water obtained by Chaldni is 1494 m/s. Chladni, 

using Newton’s method, determined the speed in a number of gases such as oxygen and 

carbon dioxide that come close to currently accepted values. 

In 1826 Colladon measured directly the speed of sound in waters of Lake 

Geneva. A bell was lowered into the water from one boat and Colladon, in another boat 

about 10 miles away, listened with an underwater listening tube. The time between a 

flash of light caused by an explosive connected to a mechanism that struck the bell and 

the underwater sound reaching Colladon was used to fairly accurately measure the speed 

of sound. His value of 1435 m/s at 8 deg C in fresh water is nearly equal to the value of 

1439 m/s accepted at present  (Beyer, 1999). 

1.3.2.2 Acoustics of Elastic Solids 

In 1678, Robert Hooke formulated the famous law of proportionality of stress and 

strain for elastic bodies which bears his name. This law forms the basis of the 

mathematical theory of elasticity. Bernoulli, Euler, Lagrange, Coulomb, and Young 

analyzed Hooke’s law and Newton’s expression for force and derived theoretical 

equations for strings, beams, thin rods, and curved bars. The principle of superposition of 

modes was first noted in 1747 by Bernoulli and proved by Euler in 1753.  



      

7 

 

In 1802, Ernest F.F. Chladni published Die Akustik with about 60% of the book 

dealing with experimental structural acoustics. He is famous for the vibration patterns 

that he studied by sprinkling fine sand on vibrating plates and analyzing the nodal lines 

to which the sand converged.  

In 1808 the French Institut (Academy of Sciences) offered a prize for the 

development of a mathematical theory of elastic vibration that was consistent with the 

experimental results of Chaldni. The prize of a medal of one kilogram gold was offered 

by Emperor Napoleon. The first deadline was set in 1811 but had to be extended to 1813 

and again to 1815. Lagrange, Biot, Laplace, and Legendre were to be the judges and 

were not allowed to compete. Most mathematicians did not attempt to solve the problem 

because Lagrange had said that the mathematical methods were inadequate to solve it. 

Sophie Germain, however spent a lot of time attempting to derive a theory of elasticity 

collaborating with Navier and Poisson. After several attempts Sophie Germain won the 

prize in 1815 and her work was published in 1821.  She derived the fourth order 

differential equation that governs the vibration of plates (Meleshko, 2003). 

Navier was first to investigate the general equations of equilibrium and vibration 

of elastic solids in 1821.He used neither stress nor strain as done in continuum 

mechanics. Instead he used Newton’s concept of corpuscular or molecular theory in 

which all matter is composed of discrete particles. However, he derived an expression for 

the component in any direction of all forces that act upon a displaced particle and the 

equation of motion in terms of displacement of the molecule (Bucciarelli and Dworsky, 

1980). Cauchy developed the dynamical equation of motion for a solid in 1822. He used 

stress-strain relations to eliminate stress from the equation of dynamic equilibrium, and 

arrived at equations in terms of displacements. Poisson investigated the propagation of 

waves through an elastic solid and found two types of waves:  longitudinal and 

transverse. He also developed an approximate theory for vibration of rods and solved the 

problem of radial vibrations of a sphere in 1828.  

In 1876 Pochhammer obtained the frequency equation for the propagation of 

waves in rods according to the exact equations of elasticity. Chree carried out similar 

studies and obtained the same results in 1889. Pochammer expressed solutions of the 

equations in cylindrical coordinates in terms of Bessel functions and his method 

successfully employed to spheres and cylinders.  
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1.3.3 Acoustics in the 20th and 21st Centuries 

The firm establishment of theoretical acoustics (Skudrzyk, 1971; Morse and 

Ingard, 1968; Pierce, 1989) and the development of analytical (Crighton et al., 1992)  

and numerical methods in the 20th and 21st centuries to solve the governing equations 

and initial and boundary conditions developed in the earlier centuries resulted in a rapid 

increase in our understanding and use of acoustics. Concurrently, design and 

development of underwater electroacoustic transducers (Sherman and Butler, 2007; 

Stansfield, 1990) electronic instruments, and methods to analyze acoustic signals 

(Nielsen, 1991; Burdic, 1984) were developed and used to experimentally verify the 

theoretical models and discover new phenomena. 

Heavy fluid-structure interaction, the subject of part of this thesis, was hardly 

studied in earlier centuries but is presented in 20th century books by Junger and Feit 

(1972), Fahy (1985), and others. The development of computers and software packages 

that make use of finite and boundary element methods [ATILA, PAFEC] has led to a 

much deeper understanding of acoustic phenomena and the design and development of 

acoustical systems. 

1.4 MOTIVATION FOR RESEARCH 

Arrays of underwater electroacoustic transducers are used in the generation and 

reception of acoustic waves. Projectors arrays are used to increase the source level and 

hydrophone arrays are used to detect very faint signals that would otherwise be 

submerged in noise as well as to determine the direction of arrival of the waves.  

 The pressure field of individual transducers used as radiators is influenced by the 

characteristics of the transducer itself, fluid-structure interaction, the shape and size of 

the array, and the behavior of nearby transducers. It is difficult to determine by 

conducting experiments the relative significance of these various influences. Therefore, 

the radiation characteristics of arrays are studied in an effort to improve our 

understanding of why measured pressure fields are not equal to pressure fields computed 

after neglecting the above influences.  

Hydrophones, used in receiver arrays, are individually tested in homogeneous 

water under free-field conditions but are actually used in heterogeneous environments 

with elastic structures that scatter the acoustic field. The performance of the arrays 

depends on the environment and the characteristics of the individual hydrophones. 

However, it is not easy to measure the deterioration in the performance of the arrays due 



      

9 

 

to various parts of the real environment. Therefore, the effect of the parts is analytically 

studied one at a time. 

Very significant progress in the study of fluid-structure interaction and array 

analysis has taken place in the last few decades. However, these subjects are often 

studied by investigators interested in the physics of acoustics and mathematics of signal 

processing, respectively. In this thesis, both the subjects are studied as the performance 

of transducer arrays in real environments is of interest.  

1.5 ORGANIZATION OF THE THESIS  

The introduction to the thesis and an overview of acoustics through the ages is 

presented in Chapter 1.  A few acoustical terms used in the thesis are introduced, the 

problems studied are briefly stated, the motivation for the thesis is described, and the 

organization of the thesis is presented.  

In Chapter 2 a method is presented to determine the pressure radiated by a 

radiation from a cylindrical array of transducers with infinite rigid cylindrical baffles. 

Analysis of omni-directional and directional radiation that appears to emanate from a 

plane whose normal is along the axis of the cylinder is presented.  

In Chapter 3 the effect of scattering from a nearby elastic cylinder on the error in 

determining the direction of arrival of a plane wave is studied. The exact governing 

equations are used both for the cylinder and the fluid. The energy and cross-correlation 

methods are used to find the direction of arrival. 

In Chapter 4 the effect of scattering of a plane wave by a fluid cylinder embedded 

in another infinite fluid on the performance of a phased circular array of hydrophones is 

studied. Ray theory is used to determine the interior pressure field when a plane acoustic 

wave is normally incident on an infinite fluid cylinder embedded in another fluid of 

infinite extent and the pressure field is then used to determine the directional response of 

a phased circular array.  

Finally, in Chapter 5, the major conclusions are summarized and indications are 

presented regarding the research that might be done in the future to build upon the results 

of the present thesis. 
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Chapter 2 

ACOUSTIC RADIATION FROM CYLINDRICAL TRANSDUCER ARRAYS 
2.  

 

2.1 INTRODUCTION 

Cylindrical arrays of underwater electroacoustic transducers (Stansfield, 1990) 

can be used to radiate acoustic pressure that is omnidirectional in the azimuthal plane or 

appears to emanate from a planar array. They are often used in sonar systems because the 

directivity pattern does not change when the beam is steered in the azimuthal direction. 

In this chapter, an analytical method is presented to determine the omnidirectional far-

field pressure radiated by a full array of pistons and the directional far-field pressure 

radiated by a sector of the array. 

Methods used to study acoustic radiation from underwater structures can be 

extended to study arrays. Analytical methods have been used to study forced vibrations 

of fluid-loaded cylindrical shells. In the first step, the displacement on the surface is 

specified and used to determine the self and mutual radiation impedances (Stepanishen, 

1978; Ebenezer and Stepanishen, 1991). In the second step, the force on the structure is 

specified and the non-uniform displacement of the fluid-loaded structure is determined 

by using the radiation impedances which embody all the effects of the fluid (Stepanishen, 

1982; Stepanishen and Ebenezer, 1991). Then, in the third step, the displacement is used 

to determine the far-field pressure (Sherman, 1968). 

The three-step approach can be extended, as follows, to develop an analytical 

model of a cylindrical array of transducers. The transducers are electrically driven by 

applying voltage. The displacement on the face of each transducer is approximately 

uniform because the face of the transducer is small with respect to a wavelength in water 

but depends, unless controlled, on the location of the transducer in the array. Therefore, 

in the first step, the self and mutual radiation impedances of pistons in an infinite rigid 

cylindrical baffle (Greenspom and Sherman, 1964; Yokoyama et al., 2004) are 

determined. In the second step, the displacements of the radiating faces of the fluid-

loaded transducers in response to the electrical excitation are determined by using the 

radiation impedances that embody all the effects of the surrounding water. The far-field 

radiated pressure due to the non-uniform displacement is of final interest and is 

determined in the third step. 
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Alternatively, numerical methods can be used to simultaneously solve the 

governing equations in the water and the transducers but these are not without 

difficulties. Lam (1992) analyzed an array of Tonpilz transducers. Benthien (1990) 

presented model and experimental results for a linear array of three flextensional 

transducers. He showed that the centre transducer will “take in” power at some 

frequencies – where the radiation resistance is negative. 

It is not necessary to model the transducer if it is assumed that the displacement 

of each transducer is known. This assumption was made by Laird and Cohen (1952) who 

studied radiation from one piston source in an infinite rigid cylindrical baffle, Rolleigh et 

al. (1977) who compared the theoretical vertical beam pattern radiated by a cylindrical 

array with experimental results and suggested a method to suppress vertical side-lobes, 

and by Ebenezer (1998) who studied directional radiation from a sparse array of piston 

transducers used for underwater communication and obtained good agreement with 

experimental results. This assumption can be dropped if the displacement of each piston 

is calculated using steps one and two described above. 

In this chapter, a method is presented to determine the pressure radiated by a 

cylindrical array of piston transducers with uniform displacement on the face of each 

transducer. It is assumed that the array is in an infinite, rigid, cylindrical baffle. In the 

present analysis, all the pistons in the same column or stave vibrate in-phase but the more 

general case of each piston vibrating with a different displacement can also be analyzed 

using the same method. First, an analysis of the pressure radiated by adjacent staves 

vibrating in-phase is presented primarily to introduce various definitions, sign 

conventions, and assumptions used later in the phased-array analysis. This analysis was 

first presented by Laird and Cohen (1952) and used by Rolleigh et al. (1977). Then, the 

effect of phase shading on the maximum pressure and the beam width are presented. 

Phase shading is used in directional transmission (George and Paulraj, 1985) to increase 

the on-axis pressure The method of stationary phase is used to determine the far field 

pressure and numerical results are presented to illustrate the applications. 

2.2 RADIATION FROM A CYLINDRICAL ARRAY 

Consider a cylindrical array of electroacoustic piston transducers as shown in Fig. 

2-1. The radius of the array is a. There are M transducers in the circumferential direction 

and each subtends an angle M/2π  at the centre. The height of the array is 2L and there 

are N transducers in the vertical direction. It is assumed that the array is in an infinite, 
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rigid, cylindrical baffle. The density and speed of sound in the surrounding water are ρ  

and c, respectively. 

 

2.2.1 In-phase radiation from transducers 

Consider first the case where J≤M adjacent staves vibrate uniformly with the 

same displacement and in-phase. Each stave consists of N transducers in the vertical 

direction.  

The surface of the rigid baffle does not vibrate even though the vibration of the 

transducers causes acoustic waves in the surrounding water. Therefore, the radial 

component of displacement on the surface of the cylinder is expressed in the cylindrical 

co-ordinates (r,φ, z) shown in Fig. 2-2 as 
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is the angular frequency is suppressed in all the equations for convenience. The radial  

 

 

 

 

 

 

 

 

Fig. 2-1. Schematic of a cylindrical array of transducers. Each square on the curved 

surface of the cylinder represents the radiating face of one transducer. The radius 

and length of the array are a and 2L, respectively. There are M transducers in the 

circumferential direction.  M/2πψ =  is the angle subtended by each stave at the 

centre. Each stave has N transducers in the vertical direction. It is assumed that the 

array is in an infinite, rigid, cylindrical baffle that is not shown. 
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component of displacement on the surface of the transducers and the baffle is equal to 

the radial component of displacement in the water at r = a for all z. This continuity 

condition is used to determine coefficients in the solution to the Helmholtz wave 

equation that governs acoustic waves in fluids. The continuity condition can be satisfied 

at a large but finite number of points with various values of z on r = a. Alternatively, it 

can be satisfied in wavenumber – frequency space. The radial component of 

displacement is discontinuous at Lz =  because only the transducers vibrate and the 

baffle is rigid. Therefore, the second approach is used here. 

A spatial Fourier transform pair is defined as: 
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where zk  is the wavenumber. Then, transforming Eq. (2-1) in the axial direction and 

expanding it using Fourier series in the φ  direction yields 
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where 

 

Fig. 2-2. The cylindrical coordinate system (r,φ, z) and the spherical coordinate 

system ( )ϕθ ,,R  used in the analysis. 
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The solution to the Helmholtz wave equation, in cylindrical coordinates, is 

expressed in wavenumber – frequency space as 
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where P denotes pressure, ( ) 5.022
zkk −=β , ck /ω=  is the angular wave number, ( ).)(i

nH  

is the nth order Hankel function of the ith kind, and (.)nK  is the nth order modified 

Bessel function of the second kind. It is noted that the solution satisfies the Sommerfield 

radiation condition (Junger and Feit, 1972). 

The radial displacement on the surface of the array is equal to the radial 

displacement in the water. It, therefore, follows that 
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r
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ρω

φ  (2-5) 

where the convention that extensional pressure is positive is used. Substituting Eqs. (2-3) 

and (2-4) in Eq. (2-5) yields  
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The pressure is then determined by substituting Eq. (2-6) in Eq. (2-4a) and evaluating the 

inverse Fourier transform: 
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where prime denotes derivative with respect to the argument.  

( )zrP ,,φ should be an even function of z when U is an even function of z.  This is 

seen to be the case when ( )zkrP ,,
^

φ  is an even function of zk . Therefore, it is assumed 

that β is real and positive when kkz < . It then follows from Eqs. (2-7) and (2-4) that   
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The pressure in the far-field is of primary interest. Using the large argument 

approximation for )( rKn η and )()1( rH n β yields 
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(2-9) 

In the far field, r is very large and the first and third integrals in Eq. (2-9) are neglected 

because they contain exponentially decaying terms. The expression for pressure then 

reduces to  
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and is evaluated by using the method of stationary phase. The primary contribution to the 

integral comes from 
22 zr

kzk z
+

=  and the approximation made by neglecting the first 

and third integrals in Eq. (2-9) is, therefore, justified. Finally, the pressure in the far field 

is expressed as 
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The pressure in the direction of the normal to the axis of the cylinder (z=0) is of primary 

interest. In this direction, the above expression reduces to (Laird and Cohen, 1952) 

 ( ) )cos(
)(

2
0,,

)'1(

2/

0

0 φ
π
ωρ

φ
π

n
kaH

eae
r

UcLj
zrP

n

jn

n
n

jkr
−∞

=
∑== . (2-12) 

Consider now the special case where all the transducer staves are vibrating in 

phase; i.e. J=M and φ0=π. This corresponds to omni-directional radiation in the 

azimuthal plane from the array. Substituting 0=na  for n = 1, 2, …. for this case and 

0=ϕ  in Eq. (2-12) to determine the pressure in the direction of the normal to the surface 

of cylinder yields  
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When ka is small, Eq. (2-13) reduces to  
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where 0
2

0 UA ω−=  is the acceleration on the surface and S  is the surface area of the 

radiator. The expressions for far-field pressure on the axis of circular and rectangular 

pistons: 

 
R
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and spheres 
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jkR

π
ρϕπ

4
),2/,( 0= . (2-14c) 

are similar. aLS π4=  in Eq. (2-14a) and 24 bπ  in Eq. (2-14c) where b is the radius of the 

sphere. It is noted that the radiated pressure, at low frequencies, is independent of 

frequency and proportional to the uniform acceleration and surface area. 

When ka is large, as is usually the case in arrays, Eq. (2-13) reduces to 

 ( ) jkro e
r

ULacjzrP
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)1(0,0, ωρ
π

φ +=== . (2-15) 

Eq. (2-15) shows that there is a 20log(23/2) = 9 dB increase per octave in the radiated 

pressure when the displacement on the surface of the cylinder is independent of 

frequency. However, in transducers, the displacement on the surface will increase when 
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the frequency is less than the resonance frequency of the transducer and decrease after 

reaching a maximum. Therefore, Eq. (2-15) shows that the bandwidth of the transducer is 

increased in the upper sideband by the increase in the radiation efficiency of the 

cylindrical array.  

2.2.2 Phased radiation from transducers in a sector 

Consider now the case where the amplitude and phase of vibration of each stave 

is independently controlled but the displacement is uniform on the surface of each stave. 

This is done to simulate radiation from a rectangular array or generate a beam pattern 

with a desired shape in the azimuthal direction. 

When J staves vibrate, the displacement on the surface of the cylinder is  
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is the displacement of the mth stave,  Am is complex and is used to control the amplitude 

and phase, φm is the centre of the mth stave, and M/0 πφ = . 

Expanding the displacement in a Fourier series in the φ-direction and using the 

Fourier transform in Eq. 2- (2) yields 
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The appropriate form of the solution to the Helmholtz wave equation, in 

cylindrical coordinates and wavenumber space is 
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The coefficients Pn and Qn are determined by using the displacement continuity 

condition at the interface between the cylinder and water in Eq. (2-5). Then, using Eq. 

(2-2) to determine the inverse Fourier transform of Eq. (2-18) yields 
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Now consider the case there the phase of each stave is controlled to simulate 

radiation from a rectangular array. A top-view of the radiating sector of the cylindrical 

array is shown in Fig. 2-3 where the axis of the array passes through O.   The J radiating 

staves are in the arc AB. Angle AOB is MJ /2π . The centre of the radiating sector is C 

and angle AOC = MJc /πφ = . Let D be the centre of the mth stave. Then, angle AOD =  

 

Fig. 2-3. Top-view of the radiating sector of a cylindrical array. The transducers in 

the arc ACB radiate. Each stave is delayed by an appropriate amount to simulate 

radiation from the chord AB. The delay applied to the mth stave with centre at D is 

ED. An additional delay OF is applied to all the staves. Therefore, the total delay is 

)cos( cma φφ − . 
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Mmm /)5.0(2 −= πφ . 

In order to simulate radiation from a rectangular array whose width is equal to the 

chord AB and height is 2L, a phase delay that corresponds to the distance ED is applied 

to the mth stave. For convenience, an additional delay that corresponds to the distance 

OF is applied to all the J staves. Therefore, the total delay applied to the mth stave 

corresponds to ED+ OF = dm = )cos( cma φφ −  and mjkd
m eUA 0= .    

Again, assuming that that β is real and positive when kkz < , and using the far 

field approximation yields 
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Neglecting the first and third integrals in Eq. (2-20), using the method of 

stationary phase, and observing that the primary contribution to the second integral in 

Eq. (2-20) comes from 
22 zr
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=  yields 
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(2-21a) 

In the direction of the normal to the axis of the cylinder (z=0) and the pressure is 

expressed as 
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It is noted that the phased radiation only approximately simulates radiation from a 

rectangular piston because the vibration of each stave is in the radial direction and not in 

the direction along OC in Fig. 2-3. 

The pressure (Junger and Feit, 1972) in the far-field of a rectangular piston, 

vibrating with uniform displacement U0, in an infinite rigid baffle is also evaluated using  
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Fig. 2-4. Spherical coordinate system ( )ϕθ ,,R  for radiation from a rectangular 

piston of sides 2Lx and 2Ly. (Junger and Feit, 1972). 0=θ  along the axis of the 

piston. 

 

the method of stationary phase. It is expressed, in spherical coordinates ),,( ϕθR  shown in 

Fig. 2-4, as 
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where 2Lx is the width and 2Ly is the height of the rectangular piston. The pressure along 

the axis of the piston is determined by using  0=θ  and reduces to Eq. (2-14b). The 

pressures radiated by the phased sector and the rectangular piston are compared in the 

next section. 

2.3 NUMERICAL RESULTS AND DISCUSSIONS 

Numerical results are presented for arrays A (Morris, 1984) and B. Details of the 

arrays are presented in Table 2-I. The radii of the arrays are chosen to illustrate the effect 

of the normalised operating frequency on the radiated patterns. The speed of sound in 

water is c =1500 m/s and the density of water is  ρ = 1000 kg/m3. After checking for 

convergence, all numerical results obtained using Eq. (2-21b) have been computed by 

replacing the infinite sum by the sum of the first 25 terms. 
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Table I. Characteristics of arrays 

 

Array Radius 

a(m) 

Length 

2L(m) 

No. of 

staves 

Operating frequency 

(kHz) 

Normalised operating 

frequency ka 

A  0.365 0.635 30 10.5 16.1 

B 0.4775 1 32 9, 7.5, 6  18, 15, 12 

 

The stationary phase method is used to evaluate the integrals. The function 

),,,( zn kzr φΓ  in Eq. (2-10b) is shown in Fig. 2-5 to illustrate the rapid oscillations except 

near the stationary phase point: 0=zk . The oscillations justify the assumption that the 

integral can be evaluated if the behaviour of the function near the stationary phase point 

is known.  

 

 

Fig. 2-5. The integrand nΓ , in Eq. (2-10b), that is integrated using the method of 

stationary phase. It is shown for array A, f = 10.5 kHz, n = 0, r = 200 m, 0=z , and  

0=ϕ  to illustrate the rapid oscillations except near the stationary phase point: 

0=zk . 
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First, consider array A. The required source level (SL) of the array is specified to 

be 220 dB re µPa @ 1 m in the omni-directional mode. It follows from Eq. (2-13) that 

the amplitude of displacement, U0,  is 0.996 µm. It is useful to note that the hydrostatic 

pressure due to a 10 m water column is about 105 Pa which is the acoustic pressure 

corresponding to 220 dB re µPa. 

Consider, next, the case where only 9 of the 30 staves vibrate with the 

displacement required to generate 220 dB in the omni-directional mode. The staves in the 

sector vibrate in-phase and the radiation is directional. It follows from Eq. (2-12) that the 

source level on the axis of the sector is 221.4 dB. The directivity pattern for this case is 

shown in Fig. 2-6a. The maximum does not occur on the axis of the sector but at ± 30 

deg. When the number of staves is increased to 11, the maxima occur at 0 deg and at ± 

40 deg and the SL increases slightly to 221.5 dB as shown in Fig. 2-6b.  

Consider, next, the case of phased radiation from 9 of the 30 staves in array A. 

The delays are chosen to simulate radiation from a rectangular piston. The displacement 

amplitude is again 0.996 µm. The radiated pressure in the azimuthal plane is computed 

using Eq. (2-21b) and shown in Fig. 2-7 using a blue solid line. For comparison, the 

pressure radiated by a corresponding rectangular piston is computed using Eq. (2-22) and 

shown in Fig. 2-7 using a red dashed line. The piston is mounted in an infinite rigid 

baffle and vibrates with the same displacement. The length, 0.635 m, of the rectangular  

 

 
 

Fig. 2-6. Directivity patterns, in dB due to in-phase vibration of (a) nine and (b) 

eleven staves out of 30 staves in array A at 10.5 kHz. 
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piston is equal to the length of the cylinder. Its width, 0.591 m, is equal to the length of 

the chord, AB, in Fig. 2-3.  It is seen that the on-axis radiated pressure is 228.5 dB for the 

cylindrical sector and is a little more than the 228.2 dB radiated by the rectangular 

piston. The 3 dB beamwidths of the cylindrical sector and the piston are 12.15 deg and 

 

Fig. 2-7. Pressure  radiated at 10.5 kHz by phased radiation of nine staves in array A 

(blue solid line) and a corresponding rectangular piston (red dashed line). 

 

Fig. 2-8. Pressure radiated at 10.5 kHz by phased radiation of 11 staves in array A 

(blue solid line) and a corresponding rectangular piston (red dashed line). 
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12.3 deg, respectively.   The main lobe of the cylindrical sector is a little wider and the 

side lobes are a little less than that of the piston. The piston does not radiate any energy 

behind the baffle but the sector radiates some energy in all directions. 

Phased radiation by 11 staves in array A is shown in Fig. 2-8. The pressure on the 

axis is 229.8 dB and a little more than that radiated by 9 staves. The beamwidth 

decreases to 10.5 deg. The on-axis pressure and beamwidth for the corresponding piston 

are 229.3 dB and 10.9 deg, respectively. 

Consider, next, radiation from array B. When the source level (SL) of the array is 

220 dB re µPa @ 1 m in the omni-directional mode, it follows from Eq. (2-13) that the 

amplitudes of displacement, U0,  are 0.697 µm,  0.916 µm , and 1.281 µm at 9 kHz, 

7.5kHz, and 6 kHz respectively. Consider, next, the case where only 11 of the 32 staves 

vibrate with the displacement required to generate 220 dB in the omni-directional mode. 

The staves in the sector vibrate in-phase and the radiation is directional. It follows from 

Eq. (2-12) that the source levels on the axis of the sector are 221.6 dB, 221.9 dB and 

221.3 dB at 9 kHz, 7.5 kHz, and 6 kHz, respectively. The directivity patterns for these 

cases are shown in Figs. 2-9. When the radiation is at 9 kHz, the maximum occurs on the 

axis of the sector and also at ± 40 deg. When the radiation is at 7.5 kHz, the maximum 

occurs at ± 28 deg. When the radiation is at 6 kHz, the maximum does not occur on the 

axis of the sector but at ± 18 deg. 

Consider, next, the phase radiation from array B at 9 kHz.  The displacement 

amplitude required for generating omni-directional SL of 220 dB re µPa @ 1m is 0.697 

µm. The on-axis pressure when 11 of the 32 staves vibrate in phase with this amplitude is 

221.6 dB. The pressure due to phased radiation from 11 of the 32 staves designed to 

simulate radiation from a piston are shown in Fig. 2-10. The on-axis pressure is 229.8 

dB. It is seen that the difference between the omni and phased radiation is 9.8 dB. The 

on-axis pressure radiated by the corresponding rectangular piston is 229.5 dB and is only 

a little lower than that radiated by the phased sector. 
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Fig. 2-9. Directivity patterns, in dB, due to in-phase vibration of 11 staves out of 32 

staves in array B at a) 9 kHz, b) 7.5 kHz, and c) 6 kHz. 
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.  

Fig. 2-10. Pressure radiated at 9 kHz by phased radiation of 11 staves in array B 

(blue solid line) and a corresponding rectangular piston (red dashed line). 

 

Fig. 2-11. Pressure radiated at 7.5 kHz by phased radiation of 11 staves in array B 

(blue solid line) and a corresponding rectangular piston (red dashed line). 
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Consider, next, radiation from array B at 7.5 kHz.  The displacements required 

for generating omni-directional pressure of 220 dB re μPa @ 1 m is 0.916 µm. The on-

axis pressure when 11 of the 32 staves vibrate in phase with this amplitude is 221.9 dB. 

The pressure due to phased radiation from 11 of the 32 staves designed to simulate 

radiation from a piston are shown in Fig. 2-11. The on-axis pressure is 229.4 dB and is 

nearly the same as the corresponding pressure for array B. The on-axis pressure radiated 

by the corresponding rectangular piston is 228.7 dB and is only a little lower than that 

radiated by the phased sector. 

Consider, finally, radiation from array B at 6 kHz. The displacement amplitude 

required for generating omni-directional pressure of 220 dB is 1.281 µm. The on-axis 

pressure when 11 of the 32 staves vibrate in phase with this amplitude is 221.3 dB. The 

pressure due to phased radiation from 11 of the 32 staves designed to simulate radiation 

from a piston is shown in Fig. 2-12. The on-axis pressure is 228.7 dB. The on-axis 

pressure radiated by the corresponding rectangular piston is 227.7 dB and is lower than 

that radiated by the phased sector.  

 

 

 

Fig. 2-12. Pressure radiated at 6 kHz by phased radiation of 11 staves in array B 

(blue solid line) and a corresponding rectangular piston (red dashed line). 
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Table 2-II. Displacements and on-axis pressures for the arrays 

 

 

The displacements required to generate omni-directional pressure of 220 dB are 

summarized in Table 2-II. The on-axis pressures due to phased radiation with the same 

displacements are also shown. It is seen from the results for array B that the required 

displacement is higher at lower frequencies.   As noted earlier, the on-axis pressure for 

the sector is only a little greater than that for the corresponding rectangular piston. This is 

due to the larger radiating area of the sector. 

 

2.4 CONCLUSIONS 

A method is presented to determine the omni-directional and directional far-field 

pressures radiated by cylindrical arrays of transducers. The transducers vibrate in the 

direction of the normal to the array surface and the effect of this is included in the model. 

Numerical results are presented for the array described by Morris (1984) operating at 

10.5 kHz and another array operating at 9, 7.5, and 6 kHz. 

Numerical results are used to show that the displacement on the surface of the 

array required to generate 220 dB re µPa @ 1m in the omni-directional mode is of the 

order of 1 micron. Therefore, great care should be taken to ensure that there is no gap 

Array A B B B 

Frequency (kHz) 10.5 9 7.5 6 

Displacement (μm) 
corresponding to 220 
dB omni pressure in 
azimuth. 

0.996 0.697 0.916 1.281 

On-axis pressure due to 
phased radiation from 
sector (dB) with same 
displacement. 11 staves 
are excited. 

229.8 229.8 229.4 228.7 

On-axis pressure due to 
radiation into half-space 
from corresponding 
rectangular piston with 
same displacement 
(dB). 

229.3 229.5 228.7 227.7 
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between the components used to assemble transducers. Stansfield (1990) recommends 

the use of rigid adhesives at all joints. 

The pressure generated by in-phase radiation of transducers in a sector is also 

analyzed. Numerical results show that the on-axis source level is about 221 dB when 

about one third of the array is radiating and the displacement is equal to that required to 

generate 220 dB in the omni directional mode. The maximum, in this case, does not 

always occur on the axis because the radiating surface is curved. This is in contrast to 

radiation from a planar piston radiator of any shape where the maximum always occurs 

on the normal to the plane because all points on the radiator are equidistant from a point 

at infinity and on the normal. 

Phased radiation of the type used in directional transmissions is also analyzed. 

The amplitude of the displacement remains the same and the phase is controlled to 

approximately simulate radiation from a rectangular piston. The displacement is along 

the normal to the curved surface. The assumption that the radiator is in an infinite 

cylindrical baffle is used and it is, therefore, not necessary to assume that the power is 

radiated into a half-space. However, it is seen from Table 2-II that there is no significant 

difference between the on-axis pressure radiated by a cylindrical sector in an infinite 

cylindrical baffle and a rectangular piston in an infinite rigid planar baffle. This is also 

seen in Figs. 2-7, 2-8, 2-10 to 2-12 where the beam-width is nearly the same for the two 

cases and the pressure radiated in the rear sector is very small. The on-axis pressure 

radiated by the sector is a little greater than that radiated by the piston because of the 

slightly larger radiating area. 
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Chapter 3 

ERROR IN FINDING DIRECTION OF ARRIVAL USING A LINEAR ARRAY 

DUE TO SCATTERING FROM AN ELASTIC CYLINDER 
3.  

 

3.1 INTRODUCTION 

Sonar domes, with stiffeners, house acoustic transducer arrays that are used to 

determine the direction of arrival of nearly plane acoustic waves generated by distant 

sources. Scattering of the waves, by the stiffener, disturbs the pressure field and causes a 

difference between the actual and measured directions of arrival. The errors, when using 

energy and split beam correlation methods, in finding the direction of arrival (DOA), 

caused by the presence of a stiffener in the form of a circular elastic cylinder near a 

linear array of hydrophones, are investigated.  

Characterization of arrays of hydrophones is done in free-field conditions with no 

boundaries or scatterers in the neighborhood of the array. However, arrays are installed 

inside a sonar dome that is often constructed using thin plates and stiffeners. Acoustic 

plane waves from distant sources are partly reflected by the thin plates. The transmitted 

waves are scattered by the stiffeners and reach the hydrophones. In some cases, the 

frequency of interest is such that the cross-section of the stiffener is comparable to the 

wavelength in water and the length of the stiffener is several times the wavelength. The 

presence of the effectively infinite cylinder causes significant changes in the magnitudes 

and phases of the pressures at the locations of the hydrophones in the array (Mathew et 

al., 2010). 

Scattering from various types of cylinders is studied. Morse and Ingard (1968) 

present the scattered pressure, displacement, and intensity fields when a plane wave is 

normally incident on a rigid infinite cylinder. Junger and Feit (1972) present the pressure 

field when a plane wave is normally incident on rigid finite and rigid infinite cylinders. 

Skudrzyk (1971) presents the pressure scattered from rigid and fluid cylinders. Faran 

(1951) presents the calculated and measured directivity of the pressure field scattered by 

an infinite elastic cylinder. Akay et al. (1993) present the scattering from fluid-filled 

concentric elastic cylindrical shells using exact equations of elasticity and modified 

Donnell’s shell theory. The method of separation of variables and a Fourier series 

expansion in the circumferential direction are used in all the above investigations.  
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Scattering from cylindrical objects is studied when detection or imaging is of 

interest. Schock et al. (2001) present a sonar system with a linear array of projectors and 

a planar array of hydrophones that generates images of cylindrical pipes, cables, and 

ordnance buried below the seabed.  Teutsch and Kellermann  (2006) present modal array 

signal processing algorithms to find multiple acoustic sources using circular microphone 

arrays mounted on cylindrical baffles. They present the effect of the baffles on detection 

and localization. 

Forward scattering is of interest when the target is passing between the source 

and the receiver but the scenario has been likened to looking into the sun because the 

pressure in the incident wave is higher than that in the scattered wave unless the target 

resonates. Recently, interest in the use of forward scattering for detection has revived, 

leading to measurements in tanks, marine environments, and theoretical calculations.  

 Ding (1997) presents experimental results obtained in a tank with objects 

between a 38 kHz source and a hydrophone. The transducers are 7.69 m apart. 

Measurements, done using long bursts, with and without a target to determine the 

scattered pressure, are in agreement with theoretical results.  Bucaro et al. (2009) also 

present experimental results obtained by doing measurements in a tank using a 

cylindrical object of length 18 in and diameter 5 in as the target and a broad band pulse. 

The scattered pressures obtained by doing measurements with and without the target are 

in good agreement with theoretical results. The perpendicular distance between the 

source and the receiver line array is 4.7 m. They also propose a method that is useful for 

measurements in marine environments and does not require measurements with and 

without a target. Bucaro et al. (2011) later conducted experiments with a spherical shell 

of diameter 60 cm lying on the bottom of the Gulf of Mexico, used a wavenumber filter 

to remove the incident wave, and validated the method. Sabra et al. (2010) 

experimentally demonstrate using the 10 – 20 kHz band that a cylinder of length 2 m and 

diameter 36 cm towed across the line joining a vertical source array and a vertical 

receiver array can be detected even in the presence of noise. They use principal 

component analysis of the forward scattered field. The distance between the arrays is 160 

m and the distance between the cylinder and the receiver array is 110 m. 

Han et al. (2009) propose an algorithm for bearing and range estimation of a 

cylinder fully buried under the seabed. They consider the reflection and transmission of 

an acoustic wave at the water-sediment interface. They use one source, an array of 

hydrophones, and a multiple signal classification (MUSIC) method.  Horiki and Newman 
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(2006) present a method to determine the direction of arrival of multiple electromagnetic 

signals after using an iterative method to remove the effects of nearby scatterers and 

mutual coupling between receivers.  

In this chapter, the error in finding the direction of arrival of a plane wave due to 

scattering from a nearby infinite elastic cylinder is investigated. The cylinder is modeled 

using exact governing equations. Two classical signal processing methods are used in the 

study. In one method to determine the direction of arrival of the wave, often called 

energy method (Knight et al., 1981; Waite, 1998), the array is virtually steered to various 

directions. When the wave-front is parallel to the virtual array, the outputs from all the 

hydrophones are in phase. When the wave is incident at an angle, the outputs are not in 

phase. Therefore, the sum of the outputs in the former case is greater than in the latter. It 

is concluded that the wave is arriving from a particular direction when the sum of the 

outputs of the hydrophones, when the array is steered to that direction, is greater than 

that when the array is steered to other directions. In another method, known as split beam 

correlation method (Knight et al., 1981; Waite, 1998) the array is split into two half-

arrays. The outputs from the hydrophones in each half-array are summed. The outputs 

from the half-arrays are then cross correlated. The time at which the split beam 

correlation is maximum is used to determine the direction of arrival. Numerical results 

are presented to illustrate the error in determining the direction of arrival because of the 

cylinder. 

3.2 ACOUSTIC SCATTERING 

Consider a linear array of uniformly spaced 2H point hydrophones on the x axis 

of a (x, y, z) Cartesian coordinate system as shown in Fig. 3-1. The distance between 

adjacent hydrophones is d. The coordinates of the hth hydrophone are [xh, 0, 0],  h = 1, 2, 

… 2H where xh = (-2H+2h-1)d/2. 

An infinite elastic isotropic circular cylinder of radius a is located in front of the 

array as shown in Fig. 3-1. The axis of the cylinder is parallel to the z axis. The centre of 

the cylinder is at (0, b, 0) where the perpendicular distance between the array and the 

axis of the cylinder is b.  A plane acoustic harmonic wave is traveling at an angle α to the 

y axis as shown in Fig. 3-1. It is scattered by the cylinder and the resulting wave is not 

plane at the array. It is of interest to determine the direction of arrival, α, of the plane  
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Fig. 3-1. A plane wave incident at an angle α on a linear array with 2H hydrophones. 

An elastic circular cylinder is in front of the array. 
 

wave in the presence of the cylinder.  

It is convenient to define another Cartesian coordinate system (X, Y, Z) with 

origin at the centre of the cylinder, i.e., at   (0, b, 0)  in the (x, y, z) coordinate system. 

The X axis is such that the incident plane wave is traveling along the +X axis. 

The pressure due to the plane wave of unit amplitude is expressed in the (X, Y, Z) 

coordinate system as,  

 )(
0)(ˆ)(ˆ tkXjtj

ii ePePtp ωωω −− ==       (3-1) 

where ^ denotes that the function is expressed in the (X, Y, Z) coordinate system, P0 is 

the amplitude of the wave, ck /ω= is the wavenumber, ω=2πf is the angular frequency, 

t is the time, f is the frequency, and c is the speed of sound in water. 

It is convenient to define a cylindrical coordinate system (r,θ, Z) with origin at the 

origin of the (X, Y, Z) coordinate system to analyze scattering and determine the pressure 

at the hydrophone locations. The Z axis is the same in both these coordinate systems. In 

the cylindrical coordinate system, Eq. (3-1) is expressed as 

 θω cos
0)( jkr

i ePP =  (3-2) 

where X = rcosθ and Y = rsinθ. The time dependence factor 
tje ω−

is suppressed for 

convenience here and in many other equations. 

Using a relationship among the exponential, the trigonometric, and the Bessel 

functions, Eq. (3-2) is expressed as (Morse and Ingard, 1968)   
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where (.)nJ  is the nth order Bessel function of the first kind.  

The infinite plane wave is traveling along the normal to the axis of the cylinder. 

Therefore, there is no displacement in the axial direction and there can be no dependence 

on z and this is a plane-strain case. The stress-strain relations of the cylinder are 

expressed as 
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where rrτ (ω), and θθτ (ω)  are the normal components of stress in the radial and 

tangential directions and θτ r (ω)  is the shear component of stress respectively. The 

components of strain have similar definitions. λ and µ are Lame’s constants and are 

defined as )21)(1/( σσσλ −+=Y  and )1(2/ σµ +=Y  where Y and σ are the Young’s 

modulus and Poisson ratio respectively. The strain-displacement relations are 
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where U(ω) and V(ω)  are the radial and tangential displacements of the cylinder, 

respectively. The equations of dynamic equilibrium are (Sokolnikoff, 1956) 
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where ρ1  is the density of the elastic cylinder. 

Substituting Eqs. (3-4) and (3-5) in Eq. (3-6) yields the following exact equations 

of motion: 
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where the argument ω is suppressed for convenience. The solution to these equations are 

expressed in the form (Faran, 1951) 
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where An, Bn are unknown coefficients to be determined and prime denotes the derivative 

with respect to the argument, 11 / ck ω=  and 22 / ck ω= , and [ ] 5.0
11 /)2( ρµλ +=c  and 

5.0
12 )/( ρµ=c  are the speeds of compressional and shear waves in the cylinder, 

respectively. Substituting Eqs. (3-5) and (3-8) in Eq. (3-4) yields the components of 

stress: 
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where '' denotes the second derivative with respect to the argument. The radial 

component of displacement in the incident wave, associated with the pressure in Eq. (3-

3), is expressed as 
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where ρ  is the density of water.  

The incident plane wave scatters in all directions. The scattered outgoing wave is 

a solution to the Helmholtz wave equation and must be symmetrical about θ=0. 

Therefore, the scattered pressure is expressed as (Faran, 1951) 
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where (.))1(
nH  is the Hankel function of the first kind of order n and the factors Cn  are 

coefficients to be determined. The radial component of displacement associated with this 

wave is 
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At the interface between the elastic cylinder and the surrounding water, the radial 

component of displacement and pressure in water are equal to the radial components of 

displacement and stress in the elastic cylinder respectively. Therefore,  

 )()()( ωτωω rrsi PP −=+    at    r=a,  (3-13a) 

and 

 )()()( ωωω UUU si =+       at    r=a. (3-13b) 

Further, at the surface of the elastic cylinder the tangential component of shear 

stress must vanish. Therefore,  

 0)( =ωτ θr               at    r=a. (3-13c) 

Substituting Eq. (3-3), (3-8) – (3-12) in the boundary condition Eqs. (3-13) yields  
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and 
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where [] T denotes the transpose of a matrix. Solving Eq. (3-15) for Cn and using it in Eq. 

(3-11) yields the scattered pressure and the total pressure )()()( ωωω si PPP += .  

For the special case of a rigid cylinder the displacement on the surface is zero. 

Therefore,          

 0)()( =+ ωω si UU         at  r=a. (3-16) 

Substituting Eqs. (3-10) and (3-12) in Eq.  (3-16) yields  
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and the scattered pressure is determined using Eq. (3-11). 

In the cylindrical coordinate system, the hth hydrophone is at (rh,θh, 0) where  

           
222

hh xbr +=  (3-18a) 

and  

             )/(tan 1 bxhh
−+= αθ  (3-18b) 

where 2/)122( dhHxh −+−=  is the location of the  hth hydrophone. Therefore, at the 

location of the hth hydrophone, the incident pressure, )(ωh
iP , is obtained using Eq. (3-

3) and expressed as  
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and the scattered pressure, )(ωh
sP , is obtained using Eq. (3-11) and expressed as  
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Then, they are used to determine the total pressure 

 )()()( ωωω h
s

h
i

h PPP +=  (3-19c) 

at the location of the hth hydrophone. 

3.3 ERROR IN FINDING DIRECTION OF ARRIVAL (DOA) 

The pressures at the hydrophone locations in the linear array are measured and 

used to compute the DOA of the incident plane wave.  The elastic cylinder in the 

neighborhood of the array disturbs the pressure field and causes a difference between the 

actual and computed directions of arrival. The errors in finding the DOA, when using 

two classical, data-independent, signal processing methods, called energy and split beam 

correlation methods, are investigated. 

In practice, errors are caused by ambient and self noise, errors in the positions of 

the hydrophones, non-identical hydrophones and electronic components, the curvature of 

the dome, and the presence of stiffeners. The total error should preferably be less than 
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0.3 degree and the error due to the curved dome including stiffeners should be less than 

0.1 degree. Here, the error due the presence of a stiffener alone is investigated. 

In practical applications, due to the presence of noise, it is possible to only 

estimate the direction of arrival. Further, in most cases, the exact location of the source 

of the acoustic waves and the correct direction of arrival are not known and it is, 

therefore, not possible to determine the error in finding or estimating the direction of 

arrival. Under some controlled conditions, the location of the source can be measured 

(with some error) using radar or other methods and the approximate error in finding the 

direction of arrival using acoustic methods can be determined. However, in most cases, 

this approximate error is the sum of the errors due to several factors mentioned earlier. In 

an acoustic tank, the angle between the normal to the array and the line joining the 

source to the centre of the array can be measured – but only by using very sophisticated 

and accurate equipment. Therefore, it is convenient to study the error due to one of the 

factors (stiffener) using theoretical models. 

3.3.1 Energy Method 

In the energy method (Knight et al., 1981; Waite, 1998), virtual hydrophones are created 

by using delays at the outputs of the hydrophones and a beam is formed by adding (or 

summing) the outputs from the virtual hydrophones. When a sinusoidal wave is incident 

on the array, the array voltage output, ),( tve β , is expressed as 

 
[ ]∑

=

∆−−=
H

h

tjh
e

hePMtv
2

1

)()(Re),( ωωβ
 (3-20a) 

where tjh eP ωω −)( is the pressure at the location of the hth hydrophone, 

 cxhh /sin β=∆   (3-20b) 

 

Fig. 3-2. A real linear array of hydrophones ( ) is steered to an angle β to form a 

virtual array ( ). A plane wave is traveling at an angle α to the real array. 

α 
β 
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is the delay for the hth hydrophone, )()( htjh eP ∆−− ωω  is pressure at the location of the hth 

virtual hydrophone and M is the receiving acoustic sensitivity of each hydrophone 

expressed in V/Pa. The array voltage output can be computed by using the pressures at 

the hydrophone locations in any convenient coordinate system and )(ωhP in Eq. (3-20a) 

can be replaced by either )(ˆ ωhP or )(~ ωhP  where ~ denotes that the function is 

expressed in the (x,y,z) coordinate system. The method is known as the energy method 

because neither phase nor time difference is used to determine the DOA; and, in practice, 

for each β, the square of the output from the array is integrated over time. 

When a plane wave is traveling at an angle β to the normal to the array, and there 

is no cylinder, the delays in Eq. (3-20b), in effect, simulate hydrophones on a linear array 

that is at an angle β to the real array, as shown in Fig. 3-2. Therefore, the pressures at the 

simulated-hydrophone locations are equal in magnitude and phase, and the summed 

output from the array is 2H times the output from each hydrophone. 

However, when a plane harmonic wave is incident at an angle α as shown in Fig. 

3-2, and there is no cylinder, and the delays in Eq. (3-20b) are used, the virtual 

hydrophones lie on a straight line that is at an angle to the wavefront. Therefore, the 

phases of pressures at the simulated-hydrophone locations are not equal, and the sum of 

the hydrophone outputs is less than 2H times the output from each hydrophone. 

Substituting, in Eq. (3-20a), the pressures at the hydrophone locations obtained by using 

the expression 

 )cossinexp()(~ ααω jkyjkxPi −−=  (3-21) 

for the incident pressure, yields  

 ]2/)sin(sinsin[
)]sin(sinsin[)cos(),(

βα
βαωβ

−
−

=
kd
HkdtMtve

. (3-22) 

Eq. (3-22), for the special case of 0=α , is presented in several textbooks. 

The array is virtually steered to various directions by gradually changing the 

value of β in Eq. (3-20b) and finding the value of β , eβ , at which the array output is 

maximum. In the absence of the cylinder, it is seen, from Eq. (3-22) as well as from 

earlier statements, that the amplitude of ),( tve β  has a local maximum when all the 

virtual hydrophones in the array lie on the same wavefront, or equivalently, when the 

array is steered to the direction from which the wave is coming, i.e., for αβ =e . When a 



      

40 

 

scatterer, for example an elastic cylinder, is in the neighbourhood of the array, and it is 

not possible to annul the effect of its presence, it is concluded that the plane wave is 

coming from the measured direction eβ . However, if the plane wave is actually coming 

from the α  direction then the error in finding the direction of arrival is αβ −e .  

3.3.2 Split Beam Correlation Method 

In the second method, known as split beam correlation method, the linear array is 

split into two half-arrays: the hydrophones 1, 2... H are in the first half array and the 

hydrophones H+1, H+2, … 2H are in the second half array. The array is steered in 

exactly the same way as done when using the energy method and the delay in Eq. (3-

20b) is used. Then, the outputs from the hydrophones in the two half arrays are summed 

separately to obtain ),(1 tv β  and ),(2 tv β , and their cross-correlation  

 ∫
∞

∞−
−=∗ dttvtvtvtv ),(),(),(),( 2121 τββββ

 (3-23) 

is computed where * denotes split beam correlation and τ is the correlation time. The 

cross-correlation has only one maximum, at 0ττ = , when the incident wave is aperiodic, 

and the direction of arrival of the plane wave is determined by using 0τ . 

When a sinusoidal wave is incident on the array, the outputs from the left-half 

and right-half arrays are expressed as 

 [ ]∑
=

∆−−=
H

h

tjh hePMtv
1

)(
1 )(Re),( ωωβ  (3-24a) 

and    

 [ ]∑
+=

∆−−=
H

Hh

tjh hePMtv
2

1

)(
2 )(Re),( ωωβ , (3-24b) 

respectively, where  ),(),(),( 21 tvtvtv e βββ =+ . In general, the outputs from the two 

half arrays are expressed in the form 

 

[ ])(cos),( 111 τωβ −= tAtv  (3-25a) 

and 

 [ ])(cos),( 222 τωβ −= tAtv . (3-25b) 

When a plane harmonic wave is incident at an angle α as shown in Fig. 3-2, and 

there is no cylinder, substituting in Eq. (3-24) the plane-wave pressures at the 
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hydrophone locations obtained by using Eq. (3-21), yields   

 

[ ]
]2/)sin(sinsin[
]2/)sin(sinsin[2/)sin(sincos),(1 βα

βαβαωβ
−
−

−−=
kd

HkdkHdtMtv
 (3-26a) 

and  

 
[ ]

]2/)sin(sinsin[
]2/)sin(sinsin[2/)sin(sincos),(2 βα

βα
βαωβ

−
−

−+=
kd

HkdkHdtMtv
. (3-26b) 

Then, comparing Eqs. (3-25) with Eqs. (3-26) yields )2/()sin(sin1 cHd βατ −=  and

)2/()sin(sin2 cHd βατ −−= . 

When a wave with period T is incident on the array, the infinite number of 

maxima that occur in the cross-correlation have the same period, T, and one maximum 

occurs at 

 ccHd //)sin(sin210 φβατττ ∆=−=−=  (3-27) 

where φ∆ is the phase difference between the outputs v1 and v2. If the split beams are 

steered to nearly the direction from which the wave is incident, then  αβ ≈  and 

2/0 T≤τ . In practice, the energy method is used to findα  and 0τ is determined by 

computing the cross-correlation or measuring the phase difference. Then, substituting the 

known value of β  and the computed value of 0τ in Eq. (3-27) yields the computed 

DOA: 

 [ ])sin()/(sin 0
1 βτα += − dHcc . (3-28) 

When there is no cylinder, αα =c  and there is no error in finding the DOA. 

When the cylinder is present, substituting the expressions for the pressures at the 

hydrophone locations in Eq. (3-19) in Eq. (3-24) yields the outputs from the half arrays 

that are used to determine 0τ . Then, substituting the values of 0τ and the value of β used 

to compute the delays, in Eq. (3-28) yields the computed DOA, cα . The error in finding 

the DOA is αα −c  

3.4 NUMERICAL RESULTS AND DISCUSSIONS 

In the first sub-section, the pressures scattered by rigid and elastic cylinders of 

various dimensions are computed and compared with those presented by Faran (1951). 
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Then, total pressures at hydrophone locations are presented. In the second sub-section, 

the errors in the DOA computed using two methods are presented.  

3.4.1 Scattered and Total Pressure 

The computed normalized scattered pressure patterns for rigid cylinders of 

various dimensions and values of ka are first shown. These are computed using Eq. (3-

11) and the coefficients Cn in Eq. (3-17).  The incident wave is coming from the direction 

θ=1800 and is indicated by an arrow in each figure. Results are shown for rigid cylinders 

of diameter 0.818 mm (ka = 1.7), 1.5875 mm (ka = 3.4) and 2.3495 mm (ka = 5) in Figs. 

3-3, 3-4, and 3-5 respectively when plane wave is incident approximately at 1 MHz . 

There is very good agreement with the values obtained by digitizing Figs. 5, 9 and 13 in 

Faran (1951).  

  

Fig. 3-3.  Amplitude of pressure scattered from a rigid cylinder with diameter 0.818 

mm (ka =1.7).  Solid line: present method; * from Fig. (5) in Faran (1951). 

  

 

 

 

 

 

 

Fig. 3-4. Amplitude of pressure scattered from a rigid cylinder with diameter 1.5875 

mm (ka =3.4).  Solid line: present method; * from Fig. (9) in Faran (1951).  

  0.2 
  0.4 
  0.6 
  0.8 

30 

210 

60 

240 

90 

270 

120 

300 

150 

330 

180 0 



      

43 

 

  0.2 
  0.4 
  0.6 
  0.8 

30 

210 

60 

240 

90 

270 

120 

300 

150 

330 

180 0 

 

The amplitudes of pressures scattered by various elastic cylinders, computed at 1 

MHz using Eq. (3-11) and the coefficients Cn in Eq. (3-14) are shown in Figs. 3-6 to 3-8 

using solid lines. Results obtained from Figs. 4, 7 and 12 of Faran (1951) are shown 

using asterisks. Results are shown in Fig. 3-6 for a steel cylinder with Young’s modulus,  

Y, equal to 200 GN/m2, Poisson’s ratio, σ equal to 0.28, ρ=7700 kg/m3, ka = 1.7, and k1a 

=0.45; and in Fig. 3-7 for a copper cylinder with Y = 119 GN/m2, σ = 1/3, ρ=8900 

kg/m3, ka =3.4, and k1a =1.08. The amplitude of scattered pressure from aluminum 

cylinder is shown in Fig 3-8 which corresponds to ka =5, Y= 70 GN/m2, k1a=1.17, σ=1/3, 

and ρ=2700 kg/m3 for aluminum. 

  

 

 

 

 

 

 

 

Fig. 3-5.  Amplitude of pressure scattered from a rigid cylinder with diameter 

2.3495 mm (ka =5).   Solid line: present method; * from Fig. (13) in Faran (1951). 

 

Fig. 3-6. Amplitude of pressure scattered at 1 MHz from a steel cylinder with 

diameter 0.813 mm. Solid line: present method; * from Fig. (4) in Faran (1951). 
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Numerical results are presented to illustrate quantitatively the error in finding the 

direction of arrival by using the energy and split beam correlation methods. Results are 

presented for a Titanium (Ti) cylinder of diameter 36 mm. The Young’s modulus, 

Poisson’s ratio, and density of Ti are 115 GN/m2, 0.3, and 4450 kg/m3, respectively. 

P0=1. The effects of number of hydrophones in the array, 2H; the distance between the 

array and the cylinder, b; and the frequency, f, of the incident wave on the scattered 

pressure and the error in the DOA are illustrated. Unless otherwise specified, the plane 

wave is incident on the array from broadside, i.e., 0=α .   

    

Fig. 3-7. Amplitude of pressure scattered at 1 MHz from a copper cylinder with 

diameter1.588 mm.  Solid line: present method; * from Fig. (7) in Faran (1951). 

  

Fig. 3-8. Amplitude of pressure scattered from an aluminum cylinder with diameter 

2.349 cm at 1 MHz. Solid line – computed using present method; * from Fig. (12) in 

Faran (1951). 
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Fig. 3-9. (a) Magnitude of pressure backscattered for different frequencies. b = 0.5 

m (red solid line) and 1m (blue dashed line) (b) directivity pattern of pressure 

scattered from a titanium cylinder at 43 kHz. 

 

  The magnitude of the pressure scattered from the Ti cylinder is shown in Fig. 3-

9. In Fig. 3-9a, the pressure scattered along the θ =180 deg direction, computed using Eq. 

(3-11) and the solution to Eq. (3-14), is shown at distances of b = 0.5 m and 1 m using a 

red solid line and a blue dashed line, respectively. This pressure is often called the back 

scattered pressure. There are local maxima in the back scattered pressure at 11, 27, and 

43 kHz. The directivity of the scattered pressure at 43 kHz is shown in Fig. 3-9b. It is 

seen that there is strong angular dependence indicating that hydrophones in an array will 

experience considerably different pressures. 

In Fig. 3-10, the scattered pressure, computed using the solution to Eq. (3-14), 

and Eq. (3-19b), are shown for b = 0.5 m and 1 m using a red solid line and a blue 

dashed line, respectively. In Fig. 3-10a, the magnitude of scattered pressure is shown at 

the centre of the 1 m array as a function of frequency. The magnitude of scattered 

pressure increases as frequency increases and reaches a peak at about 47 kHz.  It 

decreases when the distance, b, to the array increases.   In Fig. 3-10b, the magnitude of 

scattered pressure is plotted along a 1 m array with uniform spacing, at f = 37 kHz. The 

frequency corresponds to normalized frequencies of ka = 2.8 and k1a = 0.71. The 

maximum in the magnitude of scattered pressure occurs at the centre of the array – the 

point on the array that is closest to the cylinder. 

In Fig. 3-11, the magnitude and phase of total pressure, computed using the 

solution to Eq. (3-14) and Eq. (3-19),  are shown at f = 37 kHz along a 1 m array for b =  
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0.5 m and 1 m, using solid and blue dashed lines, respectively. For b = 0.5 m, the 

magnitude of the pressure varies by about ±21%and the phase varies by about ±13 deg. 

Even when the distance to the cylinder is doubled, i.e., b = 1 m, the corresponding 

changes are quite large and about ±15% and ±10 deg. This is not very surprising because 

the magnitude of the scattered pressure varies as 5.0−r . The large variations indicate that 

the error in finding the direction of arrival (DOA) is to be studied. If there were no 

cylinder, the magnitude would be one and the phase would be exactly the same at all 

points on the array. 

  

Fig. 3-10.  Magnitude of scattered pressure (a) at the centre of the 1 m array (b) 

along a 1 m array for f = 37 kHz. b= 0.5 m (red solid line) and 1 m (blue dashed 

line). 

  

Fig.  3-11. (a) Magnitude and (b) Phase of total pressure along a 1 m array. b = 0.5 

m (red solid line) and b = 1 m (blue dashed line).  
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In Fig. 3-12, the magnitude and phase of total pressure, computed using the 

solution to Eq. (3-14) and Eq. (3-19),  are shown at f = 37 kHz along a 1 m array for b = 

0.5 m and 1 m, using solid and blue dashed lines, respectively when the angle between 

the incident wave and the normal to the array is 1o, i.e., 1=α .  For b = 0.5 m, the 

magnitude of the pressure varies by about ±21.5% and the phase varies by about ±13 deg 

and for, b = 1 m, the corresponding changes are about ±16% and ±9 deg respectively. 

Similar results are presented in Fig. 3-13 for 3=α . 

 

  

Fig.  3-13. (a) Magnitude and (b) Phase of total pressure along a 1 m array. b = 0.5 

m (red solid line) and b = 1 m (blue dashed line). 𝛼𝛼 =3 deg. 
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Fig. 3-12. (a) Magnitude and (b) Phase of total pressure along a 1 m array. b = 0.5 m 

(red solid line) and b = 1 m (blue dashed line). 𝛼𝛼=1 deg. 
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In Fig. 3-14, the magnitude and phase of total pressure, computed using the 

solution to Eq. (3-14) and Eq. (3-19),  are shown at f = 37 kHz along a 1 m array for b = 

0.5 m and 1 m, using solid and blue dashed lines, respectively when the angle between 

the incident wave and the normal to the array is 15o, i.e., 15=α deg.  For b = 0.5 m, the 

magnitude of the pressure varies by about ±23.5%and the phase varies by about ±13 deg 

and for, b = 1 m, the corresponding changes are about ±16.5% and ±9 deg respectively. It 

is observed that the variation in magnitude and phase of the pressure is more in the left 

half array than the right half array. 

  

Fig.  3-14. (a) Magnitude and (b) Phase of total pressure along a 1 m array. b = 0.5 

m (red solid line) and b = 1 m (blue dashed line). 𝛼𝛼 =15 deg. 

  

Fig.  3-15. (a) Magnitude and (b) Phase of total pressure along a 1 m array. b = 0.5 

m (red solid line) and b = 1 m (blue dashed line). 𝛼𝛼 =30 deg. 
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In Fig. 3-15, the magnitude and phase of total pressure, computed using the solution to  

Eq. (3-14) and Eq. (3-19),  are shown at f = 37 kHz along a 1 m array for b = 0.5 m and 1 

m, using solid and blue dashed lines, respectively when the incident wave is incident at 

an angle 30o on the array, i.e., 30=α deg.  Here also the deviation in magnitude and 

phase of the pressure is more in the left half array than the right half array. 

In Fig. 3-16, the magnitude and phase of total pressure, computed using the 

solution to Eq. (3-14) and Eq. (3-19),  are shown at f = 37 kHz along a 1 m array for b 

=0.5 m and 1 m, using solid and blue dashed lines, respectively when the plane wave is 

incident at an angle 45o on the array, i.e., 45=α deg.  Here also the deviation in 

magnitude and phase of the pressure is more in the left half array than the right half 

array.  

  

Fig.  3-16. (a) Magnitude and (b) Phase of total pressure along a 1 m array. b = 0.5 

m (red solid line) and b = 1 m (blue dashed line). 𝛼𝛼 =45 deg. 

  

Fig.  3-17. (a) Magnitude and (b) Phase of total pressure along a 1 m array. b = 0.5 

m (red solid line) and b = 1 m (blue dashed line). 𝛼𝛼 =60 deg. 
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In Fig. 3-17, the magnitude and phase of total pressure, computed using the 

solution to Eq. (3-14) and Eq. (3-19), are shown at f = 37 kHz along a 1 m array for b = 

0.5 m and 1 m, using solid and blue dashed lines, respectively when the plane wave is 

incident at an angle 60o on the array, i.e., 60=α deg.  Here also the deviation in 

magnitude and phase of the pressure is more in the left half array than the right half 

array. 

3.4.2 Error in DOA 

Numerical results are now presented for the error in finding direction of arrival 

using an array with 60 identical hydrophones. The hydrophones are spaced λ/2 apart (≈20 

mm) where λ is the wavelength in water of a 37 kHz wave. The length of the array is ≈ 

1.2 m. The angle of incidence is varied in steps of 0.1 deg and the beam is steered in 

steps of 0.001 deg. The error in finding the direction of arrival, due to the presence of a 

Titanium cylinder of diameter 36 mm, is shown in Fig. 3-18  for b = 0.5 m, 1 m, and 1.5 

m using solid, dashed, and dash-dot lines, respectively. This corresponds to normalized 

frequencies of kb ≈  77.5, 155, 232.5 when b=0.5m, 1m, 1.5m respectively. The errors 

obtained using the energy method (Sec. 3.1), the split beam correlation method (Sec. 3.2) 

with beam steered to broadside (β=0), and the split beam correlation method with beam 

steered to α are shown in Figs. 3-18a, 3-18b and 3-18c, respectively.  

When α  = 0 deg, the error is zero because of symmetry. It is seen from the data 

presented in 3-18a that, for some small values of α , (α <10), the error is often greater 

when b = 1.5 m than it is when b = 0.5 or 1 m. This is not surprising because of two 

characteristics of the pressure field – seen in Fig. 3-11 to 3-17 – when the array is further 

from the cylinder. One, the region near x = 0, in which the total pressure is lower than the 

incident pressure, is wider. Two, the oscillations along the length of the array are fewer. 

These characteristics will result in less-nearly-perfect cancellation of the scattered 

pressure when the outputs from the hydrophones are summed. However, when the array 

is very very far away from the cylinder, the scattered pressure is negligible and the error 

in finding the DOA tends to zero. The maximum errors, in Fig. 3-18a, are about 0.057 

deg, 0.036 deg, and 0.031 deg for  b=0.5 m, 1 m, and 1.5 m, respectively. It is also seen 

from Fig. 3-18a and 3-18b that the error, when the spit beam correlation method with 

beam steered to broadside is used, varies very rapidly with α  and is, for some values of 
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Fig. 3-18. Error in DOA computed using (a) energy method (b) split beam correlation 

method with beam steered to broadside ( 0=β ) and (c) split beam correlation method 

with beam steering for αβ = .  b =0.5 m (green dashed line), 1m (red solid line) and 

1.5m (blue dash dot line). 
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α , more than 100 times the error when the energy method is used. In practice, the error 

cannot be determined because the correct DOA is not known. However, the error in 

finding the DOA can be significantly reduced, in some cases, by averaging the DOA 

over β . The error, when the split beam correlation method with beam steered to α, is 

shown in Fig 3-18c for αβ = . The error is much less than that in Fig. 3-18b for the case 

of beam steered to broadside but, for most values of α , greater than that obtained by 

using the energy method and shown in Fig. 3-18a. Therefore, it is concluded that there is 

no significant advantage in using the split beam correlation method with beam steered to 

α to find the DOA.  However, this is to be reviewed when noise is present (Carter, 1981). 

The errors in the DOA when using the split beam correlation method with beam 

steered to neighborhood of α are shown in Figs. 3-19a and 3-19b for α  = 1 deg and 3 

deg, respectively. They are shown for b = 0.5 m, 1 m, and 1.5 m. It is seen that the error 

does not always decrease when b increases. On the contrary, it is seen from Fig. 3-19b 

that the error increases when αβ < and b increases. This is not surprising in view of the  

earlier observations based on Figs. 3-11 to 3-17. The split beam correlation method is 

often used for tracking after detection using the energy method. However, here it is seen 

from Fig. 3-18a and 3-19a that the error when using the energy method is much less than 

that when using the split beam correlation method with beam steered to α.  

  

Fig. 3-19. Error in DOA due to cross correlation method with beam steered to 

neighborhood of  α as a function of steering angles when a plane wave is incident at 

(a) 1o and (b) at 3o.  b =0.5 m (green dashed line), 1m (red solid line) and 1.5m (blue 

dash dot line). 
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 The errors in finding the DOA using the energy method and the cross correlation  

method with beam steered to α, due to the presence of a 24 mm diameter (a = 12 mm) 

Titanium cylinder are shown in Figs. 3-20a and 3-20b, respectively. It is seen by 

comparing the errors in Figs. 3-20a and 3-20b with the errors in Figs. 3-18a and 3-18c, 

respectively, for a = 18 mm, that the error in finding the DOA using either method varies 

approximately as 4/7a for all the values of α and b considered here. 

  

Fig. 3-20.  Error in DOA computed using (a) energy method and (b) split beam 

correlation method (with beam steered to α ).  b =0.5 m (green dashed line), 1m (red 

solid line) and 1.5m (blue dash dot line). 24 mm diameter cylinder is in front of the 

array. 

  

Fig. 3-21.  Error in DOA computed using (a) energy method and (b) split beam 

correlation method (with beam steered to α ).  b =0.5 m (green dashed line), 1m (red 

solid line) and 1.5m (blue dash dot line). 12 mm diameter cylinder is in front of the 

array. 
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Fig. 3-22. Error in finding DOA when using the energy method. (a)  α  = 1 deg (b) 
α = 3 deg. b =0.5 m (red dots), 1 m (green diamonds) and 1.5m (blue squares). 

 

The errors in finding the DOA using the energy method and the cross correlation 

method with beam steered to α, due to the presence of a 12 mm diameter (a = 6mm) 

Titanium cylinder are shown in Figs. 3-21a and 3-21b, respectively. Errors calculated for 

a = 6 mm shown in Fig. 3-21 are also in agreement with the approximation made in the 

Fig. 3-20. For all the cases considered, the error when using the split beam correlation 

method with beam steered to α, is greater than the error when using the energy method 

for small values of α , (α <10), and lesser for large values of α . 

Finally, the error in finding the DOA by the energy method due to the presence of 

the cylinder is shown in Fig. 3-22 as a function of number of hydrophones in the array 

the for b= 0.5 m, b=1.0 m and b= 1.5 m. The linear array has hydrophones that are 

spaced uniformly at λ/2 when a plane wave is incident at a frequency of f = 37 kHz. The 

errors, for α  = 1 deg and 3 deg are shown using red dots, green diamonds and blue 

squares, respectively. In both cases, the error initially increases when H increases and 

initially decreases when b increases. When H is increased further, the error oscillates 

about zero.  

  

3.5 CONCLUSIONS 

The errors in finding the direction of arrival of a plane wave due to scattering 

from a nearby infinite elastic cylinder computed using the energy method and the split 

beam correlation method are investigated. The effect of the elastic cylinder in front of the 
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array on the pressures at the hydrophone locations when a plane wave is incident is 

investigated first. The magnitude and phase of the pressure has large variations along the 

1m array. The error in estimating the direction of arrival of the acoustic wave depends on 

this variation and the method used to process the signal. 

The error when using the split beam correlation method without beam steering is, 

in some cases, about 100 times the error when using the energy method and changes very 

rapidly for some angles of incidence. The error due to the cross correlation method with 

beam steered to α is less than that with beam steered to broadside ( 0=β )  

For small angles of incidence (α <10), the error in finding the DOA using the 

energy method is less than that using the cross correlation method with beam steered to 

α. In most cases, for small angles of incidence, the error in finding the DOA does not 

decrease when the distance between the cylinder and the array increases. In all the cases, 

the error initially increases when the number of hydrophones in the array increases. 

When the number of hydrophones is greater than 20 (and the length of the array is 

greater than 10 times the wavelength) the error oscillates about zero when the number of 

hydrophones is increased. The error in finding the DOA using the energy method and the 

split beam correlation method with beam steered to α, varies approximately as 4/7a . 

Considering only the effect of the stiffener, it is better, overall, to use the energy method 

than the split beam correlation method with beam steered to α.  
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Chapter 4 

DIRECTIONAL RESPONSE OF A CIRCULAR ARRAY IN AN EMBEDDED 

FLUID CYLINDER 

 
4.  

4.1 INTRODUCTION 

Arrays of hydrophones are housed within sonar domes to protect them and to 

prevent the flow of water directly over them (Waite, 2002). The arrays are used to detect 

acoustic waves radiated by distant sources and determine the direction of arrival of the 

nearly plane waves. The thickness of the dome is invariably much less than the radius of 

curvature of the dome and often much less than the wavelength in water at the frequency 

of interest (Warren, 1988). However, the curvature of the dome gives rise to convergence 

or divergence of the acoustic waves that are incident on it. In this chapter, a quantitative 

understanding of how well ray theory can be used to determine the directional response 

of a hydrophone array in a sonar dome is studied by using the theory to analyze a 

canonical problem.  Specifically, ray theory is used to determine the interior pressure 

field when a plane acoustic wave is normally incident on an infinite fluid cylinder 

embedded in another fluid of infinite extent as shown in Fig. 4-1. The pressure field is 

then used to determine the directional response of a phased circular array. 

Methods based on ray theory are suitable for acoustic analysis of sonar domes. 

Acoustic and hydrodynamic considerations are used to design the shape of the sonar 

dome (Loeser, 1981). The dome is usually doubly curved and has absorbing internal 

structures. Further, the normalized frequency ka, where k is the acoustic wavenumber in 

the water and a is the radius of curvature of the dome, is usually much greater than one. 

Therefore, the interior pressure field cannot be easily determined using analytical or 

numerical methods. Moreover, the surface of the dome and the internal structures are 

designed such that only one or at most a few rays – called eigenrays – in an incident 

plane wave pass through any point within the dome. Therefore, ray theory is used in the 

present analysis. 

Domes used in ships are filled with fresh water and pressurized using an 

overhead tank. The speed of sound in fresh water is less than that in sea water. However, 

the speeds of both types of stress waves in the dome are often greater than that in sea 

water. Therefore, on entry into the interior water, the rays may converge or diverge. In 
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this chapter, the effect of this spreading is studied using interior fluids with sound speed 

greater than, and less than, that in the exterior fluid. The approach can be extended to 

include the effect of the dome material. 

 The pressure field inside the cylinder is determined using ray theory and the 

results are quantitatively validated by comparing them with those obtained using the 

method of separation of variables and series solutions. The latter method is used to study 

scattering from rigid cylinders and spheres (Morse and Ingard, 1968;  Junger and Feit, 

1972), fluid spheres (Anderson, 1950; Foote, 2007), fluid cylinders (Skudrzyk, 1971; 

Alemer et al., 1986), solid elastic cylinders and spheres (Faran Jr., 1951) fluid-filled, 

concentric, elastic cylinders (Akay et al., 1993) , and absorbing cylinders (Mitri et al., 

2004). Results are often presented as a function of ka where k is the acoustic 

wavenumber of the exterior fluid and a is the radius of the scatterer. At low frequencies, 

the method is very convenient but the primary limitation of the method is that it cannot 

be applied to several other geometries of interest. Further, at high frequencies, where ka 

is much greater than one, a very large number of terms is required for the series solution 

to converge. However, high frequencies and other geometries are of interest in many 

practical applications. ka is approximately 20 when the frequency is 5 kHz and the radius 

of the scatterer is 1 m as well as when the frequency is 1 MHz and the radius of the 

scatterer is 5 mm. Further, the method of separation of variables cannot be easily used to 

analyze domes because of the shape of the dome and the presence of internal surfaces. 

Other methods are used even at low frequencies when the geometry does not 

permit use of the method of separation of variables. However, these methods are often 

validated by comparing the results obtained for cylinders or spheres with those obtained 

using the method of separation of variables. Boag et al. (1988) use fictitious filament 

sources to study the scattered cross section of fluid cylinders with arbitrary cross section. 

The number of sources required for convergence increases when the frequency or radius 

increases. Numerical results are presented for a circular cylinder with ka up to 

approximately 10. Chandra and Thompson (1992) also study a plane wave incident on an 

embedded fluid cylinder. The densities of the inner and outer fluids are the same but the 

speeds of sound in them are different. They use Pade approximants to improve the 

convergence of the Neumann series that is used to solve an integral equation. They 

present accurate numerical results for the interior and exterior pressure fields at ka = 2. 

 It is known that, in general, ray theory is accurate at very high frequencies.  

However, at frequencies that are not very high and in cases where there are several 
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eigenrays or caustics in the neighbourhood, it is to be determined – as done in this 

chapter – whether the use of ray theory yields results that are sufficiently accurate by 

comparing the results with those obtained using some other method that is known to be 

accurate at low frequencies. The comparison is best done for a canonical problem that 

can be solved by using both methods. 

Ray theory is used by Clay and Medwin (1977) who present a method that yields 

exact results at all frequencies when applied to reflection and transmission of a plane 

wave obliquely incident on a multi-layered fluid with planar interfaces. In this method, 

the total pressure is expressed as a sum of pressures due to rays that are partially 

reflected and partially transmitted at each interface. Marston and Langley (1983) use ray 

theory to study acoustic backscattering from a fluid sphere. They present results for ka = 

100 and 1000 and compare them with those obtained using the method of separation of 

variables and series solutions.  Marston (1992, 1997) has extensively used geometrical 

acoustics and physical acoustics (Bowman et al., 1969) to study a variety of problems. 

Stanton et al. (1993a, 1993b) use a model with only 2 rays to study backscattering from 

elongated objects such as cylinders and prolate spheroids with low acoustic contrast. 

They use a heuristic phase term, and compare results for ka up to 10 with the series 

solution.  

Another method that is used at high frequencies is based on the method of 

separation of variables and the Sommerfeld-Watson transformation. Brill and Uberall 

(1970) use this method to study the portion of a high-frequency plane wave that is 

transmitted through a fluid cylinder embedded in an infinite fluid. The transmitted wave 

is expressed as a sum of waves that are reflected 0, 1, 2, 3, … times within the cylinder – 

where there are n waves that are reflected n times within the cylinder. Numerical results 

are presented for ka = 100. Rumerman (1991) uses this method and the Kirchhoff thin 

shell theory to study scattering from an elastic cylindrical shell. He uses the residue 

theory and the Sommerfeld-Watson transformation to convert the expression for 

backscattered pressure from a modal sum to a contour integral. The integral is shown to 

have contributions from specular reflection, waves that circumnavigate the shell, and 

certain poles. Including all the contributions is shown to yield results that are in good 

agreement with those obtained using modal analysis for 1.5 <ka<20. 

A different high frequency method is used by Bruno et al. (2004) who study 

scattering from rigid bodies using a boundary integral formulation and present results for 

a cylinder with ka varying from one to 100,000. They express the surface pressure as the 



      

59 

 

product of a slowly varying amplitude and a highly oscillatory exponential. Then, they 

use a localized integration method that is related to the method of stationary phase.  They 

present results for scattering from a rigid cylinder with ka varying from 1 to 105. 

Other authors use, at high frequencies, the Kirchhoff approximation for an 

integral equation formulation or improvements based on it. Medwin and Clay (1998) 

provide details of a method to use the Kirchhoff approximation, convert the Kirchhoff 

integral equation to an integral expression, and determine the scattered pressure. 

Schneider (2003) summarizes the results for scattering from a submarine obtained by 

using several methods and briefly discusses the limitations of using the Kirchhoff 

approximation in the integral equation formulation.  

Junger (1982) presents a method to study scattering from a rigid body of 

revolution characterized by a radius that varies along the length of the body. He assumes 

that it scatters sound as though each circular element is a part of an infinite cylinder of 

the same radius. This is less restrictive than the Kirchhoff approximation in which it is 

assumed that scattering occurs as though each element is a part of an infinite plane. He 

presents results for a prolate spheroid that are in good agreement with those obtained 

using a T-matrix approach in the low frequency Rayleigh region as well as the mid 

frequency resonance region. In the high frequency Kirchhoff region, the results are in 

good agreement with those obtained using the Kirchhoff approximation. Ye et al. (1997) 

extend the method and apply it to scattering from fluid prolate spheroids.  

In another high frequency approach, the scattered pressure is expressed as a series 

with the terms containing negative integer powers of the wavenumber (Bowman et al., 

1969; Kravtsov and Orlov, 1993; Kaufman et al., 2002). The series is known variously 

as Debye series and Luneburg-Kline series. Retaining only the first term in this series 

and making an approximation yields eikonal and transport equations that can also be 

derived using geometrical acoustics (Kinsler et al., 1982). Other approximate solutions 

with fractional powers of the wavenumber are used in the geometric theory of diffraction 

and in the study of caustics. 

In this chapter, a high-frequency ray-acoustics method is presented and used to 

determine the interior pressure field when a plane wave is normally incident on a fluid 

cylinder embedded in another infinite fluid. The geometrical and physical acoustics 

(Bowman et al., 1969) approximations are used. Geometrical acoustics is used to 

determine the pressure when the rays diverge or converge. The physical acoustics or 

Kirchhoff approximation for scattering is also used: the reflection and transmission of 



      

60 

 

each ray when it meets a curved interface is assumed to occur as if it is from an infinite 

plane interface that is tangent to the interface (Medwin and Clay, 1998). The method is 

of interest because it can be extended to study the interior pressure field for other bodies 

with shapes that are not suitable for using the method of separation of variables.  It is 

shown using numerical results that the pressure field computed using this method is in 

good agreement with that computed using the method of separation of variables. The 

output from a sector of a circular array of hydrophones in the embedded cylinder is 

computed and compared with the output from an array in an infinite homogenous fluid. 

These outputs are of interest as they are used to determine the direction of arrival of the 

wave. The error in estimating the direction of arrival depends on the signal processing 

method also. 

4.2 DIRECTIONAL RESPONSE OF HYDROPHONE ARRAY  

Consider a high-frequency plane wave traveling along the positive x axis as 

shown in Fig. 4-1. It is incident on a fluid cylinder of radius a and infinite length 

embedded in an outer fluid. The axis of the cylinder lies on the z axis. Therefore, there is 

no variation in the pressure field along the axis of the cylinder and only the (x,y) 

Cartesian coordinates and (r,θ) polar coordinates are used. The densities of the inner and 

outer fluids are iρ  and oρ , respectively; and the speeds of sound in the fluids are ic  and

oc , respectively. Following convention, the density ratio 0/ ρρi  and sound-speed ratio 

0/ cci  are defined as g and h, respectively.  The non-dimensional frequency, ka, where k  

is the wavenumber in the exterior fluid is much greater than one. 

 

Fig. 4-1 Reflection and transmission of rays in an embedded fluid cylinder of radius 

a (solid line). A circular array of radius b inside the fluid cylinder is also shown 

(dotted line).  
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Consider next 2H equispaced point hydrophones. They are on the perimeter of a 

circle of radius b with centre at the origin where b<a. The outputs from 2J adjacent 

hydrophones in one sector are delayed and summed to simulate a linear array where J is 

typically approximately equal to H/3. 2H such linear arrays are simulated by using 2H 

sectors where, for example, hydrophones 1 to 2J form sector 1, hydrophones 2 to 2J+1 

form sector 2, and so on. The effect of the embedded fluid cylinder on the outputs from 

the simulated linear arrays is of interest.  

The outputs from the hydrophones depend on the pressure field inside the 

embedded cylinder. An expression for the interior pressure field is presented. It is 

derived here by using expressions for transmission and reflection coefficients, pressure 

variation due to divergence and convergence of rays inside a cylinder, and methods to 

trace rays and determine which rays will pass through a particular point of interest. The 

interior pressure field computed using ray theory is shown to be quite accurate even in 

the neighborhood of caustics. It is then used to determine the outputs from the simulated 

linear arrays. 

4.2.1 Incident ray in the outer fluid 

Consider a ray traveling in the outer fluid in a direction perpendicular to the axis of the 

cylinder and incident on the fluid cylinder as shown in Fig. 4-1. The incident and 

transmitted rays are at angles α  and β , respectively to the local normal to the surface of 

the cylinder where α  is specified and β  is determined by using Snell’s law. The 

pressure due to the transmitted ray is of interest.  
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Fig. 4-2. A ray traveling in the outer fluid is incident on the interface. The tangent to 

the interface is EF. The radius of the cylinder is a. The angle of incidence between 

the ray and the normal to the interface, GH, is α. The angle of transmission is β. 
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It is assumed that the physical acoustics or Kirchhoff approximation (Medwin 

and Clay, 1998) is valid and that the transmission coefficient is equal to that when a ray 

(or plane wave) is incident on a plane interface that separates the two fluids. The plane 

interface is tangential to the cylinder at the point of incidence. Therefore, consider a ray 

traveling along the X axis and incident on an inclined surface, EF, separating two semi-

infinite fluids as shown in Fig. 4-2. The normal to the surface, GH, passes through the 

origin. The distance, a, between the origin and the surface, along the normal, is equal to 

the radius of the cylinder. 

The pressure due the incident ray of unit amplitude is )exp(),,(0 xjkyxP oi −=α

where ω is the angular frequency and oo ck /ω= is the wave number in the outer fluid. 

The time factor, )exp( tjω+ , where t denotes time is suppressed for convenience. The 

pressure due to the transmitted ray, neglecting spreading effects that are included later, is 

expressed as  

 [ ])(exp)(),,( 000 tiiooit dkdkjTyxP −= αα .     (4-1a) 

Here, the overbar indicates that the pressure is due to a unit wave in the exterior 

fluid, the subscript 0 indicates that the ray has not been reflected at a concave interface, 

and  

 ( )βραραρα coscos/)cos2()( ooiiiioi cccT +=    (4-1b) 

is the transmission coefficient (Medwin and Clay, 1998) when a plane wave is obliquely 

incident on a plane interface that includes the origin and separates two semi-infinite 

fluids,  and β  are the angles that the incident and transmitted waves, respectively 

make with the normal to the interface, ii ck /ω=  is the wave number in the inner fluid, 

αcos0 ad i =  is the additional distance that the wave in Fig. 4-2 has to travel before the 

wavefront reaches the origin, and d0t is the distance between a field point ),(0 yxM and 

)(0 αB  where )sin,cos()(0 ααα aaB −=  is the point at which ray is incident on the fluid 

cylinder. This expression for 0tP can also be obtained by using wave theory (Mathew and 

Ebenezer, 2009) and )sin()sin()cos()cos(0 αβααβα −−+−+= ayaxd t . 

4.2.2 Incident ray in the inner fluid 

The ray that is transmitted into the embedded cylinder is reflected when it meets 

the interface at B1 as shown in Fig. 4-1.  The ray is traveling at an angle β  to the normal 

α
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as shown in Fig. 4-1 and explained in the next sub-section. The ray that is transmitted to 

the outer fluid travels to infinity and does not re-enter the cylinder. Only the reflected ray 

is of interest. 

It is again assumed that the Kirchhoff approximation is valid. Therefore, consider 

the wave of unit pressure amplitude in Fig. 4-3 that is incident on an inclined interface 

EF separating two semi-infinite fluids. The wave is traveling in a fluid of density iρ  and 

speed of sound ic . The normal to the interface, GH, forms an angle 1γ  with the x axis. 

As shown in Fig. 4-3, the ray is traveling at an angle β  to the normal and at an angle 

βγ −1  to the x axis and is expressed as 

{ })]sin()cos([exp),,( 111 βγβγα −+−−= yxjkyxP ii . 

The pressure due to the reflected ray, corresponding to the unit incident ray and 

neglecting spreading effects that are included later, is expressed as 

 [ ])(exp)(),,(ˆ
111 riiior ddjkRyxP −−= αα     (4-2a) 

where the hat over the pressure indicates that the pressure is due to a unit wave in the 

interior fluid, the subscript 1 indicates that the ray has been reflected once at a concave 

interface, and 

)coscos/()coscos()( αρβραρβρα iiooiiooio ccccR +−=    (4-2b) 

 is the reflection coefficient when a plane wave is obliquely incident on a plane interface 

that includes the origin and separates two semi-infinite fluids, β  and  are the angles α

 

 

Fig. 4-3. A ray traveling inside the fluid cylinder is incident on the interface. The 

tangent to the interface is EF. The angle of incidence between the ray and the 

normal to the interface, GH, is β. The angle of transmission is α. 
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that the incident and transmitted waves, respectively make with the normal to the 

interface,
 

βcos1 ad i =  is the additional distance that the wavefront in Fig. 4-3 has 

travelled after it has passed through the origin, and rd1 is the distance between a field 

point ),(1 yxM and  )sin,cos()( 111 γγα aaB = . This expression for 1r̂P can also be 

obtained by using wave theory (Mathew and Ebenezer, 2009) and 

)sin()sin()cos()cos( 11111 βγγβγγ +−++−= ayaxd r . 

The pressure due to the ray reflected once at a concave interface, corresponding 

to the unit ray traveling in the exterior fluid and incident on the fluid cylinder, neglecting 

only spreading effects that are included later, is expressed as 

( )]}cos3)sin()cos({cosexp[)()(

),,(/),,(),,(ˆ),,(

11

1011

ββγβγααα

αααα

ayxkakjRT

yxPyxPyxPyxP

ioiooi

itrr

−++++=

=
 (4-3) 

where, as shown later, αβγ −= 21 . 

In general, the pressure due to the ray reflected q times at a concave surface, 

(q≥1), corresponding to the unit ray traveling in the exterior fluid and incident on the 

fluid cylinder, neglecting spreading effects, is expressed as 

 [ ])(exp)(),,(ˆ
qrqiiiorq ddjkRyxP −−= αα     (4-4) 

where qid  is the additional distance that the wavefront has travelled after it has passed 

through the origin, and qrd is the distance between a field point ),( yxM q and  

)sin,cos()( qqq aaB γγα = . 

The pressure due to the ray reflected q times at a concave interface, 

corresponding to the unit ray traveling in the exterior fluid and incident on the fluid 

cylinder, neglecting only spreading effects, is expressed recursively as 

{ }( )[ ]ββγβγααα

αααα

cos)12()sin()cos(cosexp)()(

),,(/),,(),,(ˆ),,( )1(

akqyxkakjRT

yxPyxPyxPyxP

iqqio
q
iooi

iqqrrqrq

+−++++=

= −
  (4-5) 

where  { })]sin()cos([exp),,( βγβγα −+−−= qqiiq yxjkyxP  is the pressure in the unit 

incident ray and it is shown later that )]2([ βπαπγ −+−= qq .  

4.2.3 Ray tracing inside the fluid cylinder 

The path of each ray that enters the cylinder is of interest. Some rays will undergo 

total internal reflection in the exterior fluid. Each ray that enters the cylinder is reflected 
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and transmitted each time it encounters the interface between the two fluids. Of these, 

only the reflected ray is of interest because the transmitted ray travels to infinity and does 

not re-enter the cylinder.  

Consider a ray in the exterior fluid that is incident on the cylinder such that the 

angle between the ray and the normal to the surface of the cylinder at the point of 

incidence is α  as shown in Fig. 4-1. It is incident on the cylinder at the point 

)sin,cos()(0 ααα aaB −= in Cartesian coordinates. It is assumed that the surface of the 

cylinder is locally plane and the expressions derived in the earlier section are used. 

Therefore, the amplitude of pressure in the ray that is transmitted into the cylinder is oiT . 

The transmitted ray travels at an angle β  to the normal to the interface as shown 

in Figs. 4-1 and 4-2. Let O be the centre of the cross-section of the cylinder. The axis of 

the cylinder passes through it. Let 1B be the point at which the ray transmitted into the 

cylinder meets a concave interface for the first time. It is seen from Fig. 4-1 and the 

isosceles triangle 10OBB  that β=∠ OBB 10  and βπ 210 −=∠ OBB . A ray from 0B  to 1B  

is labeled as an n = 0 ray because it has only been transmitted at a convex interface but 

not reflected at a concave interface.  

The chords traversed by several traveling n = 0 rays that have just entered the 

cylinder are shown in Fig. 4-4a and in Fig. 4-4b for the cases when g=h= 1.1 and when 

g=h= 0.9 respectively.  Total internal reflection occurs when the angle of incidence is 

greater than the critical angle, )/(sin 1
ioc cc−=θ  that in this case is 65.38 deg for the case  

where g=h= 1.1 .The n=0 rays reaches everywhere inside the fluid cylinder  when h>1 

while there are regions inside the fluid cylinder where there are no n=0 rays when h<1. 

  

Fig. 4-4. n=0 rays inside the fluid cylinder: a) when g=h=1.1 and b) when g=h=0.9. 

(a) (b) 
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The chords traversed by n = 1 rays after one internal reflection at a concave 

interface are shown in Fig. 4-5a and Fig. 4-5b for the cases when g=h= 1.1 and when 

g=h= 0.9, respectively.   Only one n=1 ray reaches most parts of the cylinder. However, 

there is a region in which there are three n=1 rays. When an n = 1 ray meet the concave 

interface again an n = 2 ray is reflected, and so on.   

4.2.4 Divergence, Convergence, and Caustics 

The plane wave that is traveling along the x axis and incident on the fluid 

cylinder is considered to consist of an infinite number of parallel rays. Each ray, in the z 

= 0 plane, that is incident on the cylinder, is incident at a unique angle α. The paths of 

neighboring rays that are parallel in the exterior fluid are of interest. When ci > co, the 

rays diverge after entering the cylinder. However, if ci < co, the rays converge and some 

of them intersect within the cylinder, and then diverge. Irrespective of whether ci > co or 

ci < co, the rays that are traveling within the cylinder are reflected at the concave 

interface and then converge. Some of them intersect at a caustic (Kravtsov and Orlov, 

1993) within the cylinder whereas others intersect at an imaginary point outside the 

cylinder. After intersection, they diverge. The details are of interest. 

Consider a ray in the exterior fluid incident at an angle α  to the local normal to 

the surface as shown in Fig. 4-1. It meets the cylinder at )sin,cos()(0 ααα aaB −= and 

later at )]2sin(),2cos([)(1 αβαβα −−= aaB . Consider, next, an adjacent ray incident at 

an angle ααα d+=+ . It meets the cylinder at )(0
+αB  and )(1

+αB . The slopes of the 

chords )()( 10 αα BB  and )()( 10
++ αα BB  are )(0 αm and )(0

+αm , respectively. The chords 

meet, in (x,y) coordinates, at the focal point 

  

Fig. 4-5. n=1 rays inside the fluid cylinder: a) when g=h=1.1 and b) when g=h=0.9. 

(a) (b) 



      

67 

 

[ ]

( )[ ]






−

−−+−−






−

−+−−

=

+

++++

+

+++

+

)()(
)cos()cos()()()sin()()sin()(

,
)()(

)sin()sin()cos()()cos()(

)(

00

0000

00

00

0

αα
αααααααα

αα
αααααα

α

mm
mmmma

mm
mma

F . (4-7) 

The focal point of the fluid cylinder may be inside or outside of the fluid cylinder, 

depending on h and the incidence angle α. When h>1, the n=0 rays will diverges as 

shown in Fig. 4-4a and the chord of n=0 rays extended to meet the focal point on the left 

side of the fluid cylinder is shown in Fig. 4-6. When h< 1, the n=0 rays will converges as 

shown in Fig. 4-4b. For higher angle of incidence, the chord of n=0 rays intersect inside 

and for lower angle of incidence, the chord of n=0 rays extended and meet the focal point 

on the right side of the fluid cylinder. It is important to note that the rays incident at the 

angles α  and ααα d−=− intersect at a point )(0
−αF  that is not the same as )(0

+αF . 

The spreading factor of the rays, ),(0 yxS , at a point 0M  that lies between 

)(0 αB  and )(1 αB  is determined by using the principle of energy conservation. There is 

no variation in pressure along the axis of the cylinder and it is assumed that the variation 

of intensity along a ray is inversely proportional to the distance from a focal point. 

),(0 yxS  is determined using the focal points )(0
+αF  and )(0

−αF , and expressed, in 

general, as an average value:  

[ ] [ ] 2/)(/)()()(/)()(),,(
5.0

0000

5.0

00000 



 += −−++ ααααααα FMFBFMFByxS . (4-8a) 

where the overbar denotes the distance between two points. However, there are two 

 

Fig. 4-6. Solid line:  n=0 rays. Dashed line: rays extended to meet the focal point. 
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exceptions. First, if the magnitude of either of the two terms used to determine the 

average spreading factor is greater than the other by more than 5%, then ),(0 yxS  is 

defined as the lesser of the two terms. This is because ),(0 yxS is infinity at a caustic and 

very large close to it. Second, if α is equal to the critical angle, the spreading factor is  

expressed as 

 [ ] 5.0

00000 )(/)()(),,( −−= αααα FMFByxS .    (4-8b) 

The two rays, after reflection at )(1 αB  and )(1
+αB , respectively, are labeled as n 

= 1 rays and meet the cylinder again at )(2 αB  and )(2
+αB , respectively. The chords 

)()( 21 αα BB  and )()( 21
++ αα BB intersect at a point )(1

+αF  that lies inside or outside the 

cylinder. In general, the n = q rays meet at 
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in (x,y) coordinates, where )]2(cos[)( βπαα −+= qcq , )]2(cos[)( +++ −+= βπαα qcq , 

)]2(sin[)( βπαα −+= qsq , )]2(sin[)( +++ −+= βπαα qsq  and 

)sin()sin( ++ = αβ io cc  respectively.  

For the n = 1 rays, the focal points lie inside the cylinder when h = 1.1and the loci 

of these points is a closed curve that is shown in Fig. 4-7. It is obtained by using Eq. (4-

9) when q=1.  

 

 

Fig. 4-7. The loci of focal points of n=1 rays. 
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The spreading factor at a point 1M  that lies between )(1 αB  and )(2 αB is ),(1 yxS . 

In general spreading factor at a point qM that lies between )(αqB  and )(1 α+qB is  

[ ] [ ] 2/)(/)()()(/)()(),,(
5.05.0







 += −−++ ααααααα qqqqqqqqq FMFBFMFByxS   (4-10)    

Alternative expressions to Eq. (4-10) are used for ),( yxSq , as done for ),(0 yxS , when 

either of the two terms used to determine the average spreading factor is greater than the 

other by more than 5%, or if α is equal to the critical angle.  

4.2.5 Pressure along a Ray 

For the n = 0 ray, the pressure at the point (x,y), including spreading effects, is 

expressed as 

 )],(exp[),,(),,(),,( 0000 yxjyxSyxPyxP t µααα =  (4-11) 

where ),,(0 αyxPt  is defined in Eq. (4-1), 0µ is 0 when 0M is between )(0 αB and 

)(0
+αF  and 2/π  when 0M  is between )(0

+αF and )(1 αB  (Bowman et al., 1969). 

Similarly, the pressure at 1M , including spreading effects, is 

)],(exp[),,()],(exp[),,(),,(),,( 1111011011 yxjyxSyxjyxSyxPyxP r µαµααα =  (4-12) 

where 1µ  is 0 when 1M is between )(1 αB and )(1
+αF  and 2/π  when 1M is between 

)(1
+αF and )(2 αB .  

In general, the pressure at a point qM  that lies between )(αqB  and )(1 α+qB , 

including spreading effects is expressed as 

∏
=

−−=
q

n
nnnnnnqqrqq yxjyxSyxjyxSyxPyxP

1
11 )],(exp[),,()],(exp[),,(),,(),,( µαµααα  

  (4-13)  

where qµ is 0 when qM is between )(αqB and )( +αqF  and 2/π  when qM is between 

)( +αqF and )(1 α+qB , and nµ  is 0 when )( +αnF is between )(αnB and )(1 α−nB  and 

2/π  when )( +αnF is not between )(αnB and )(1 α−nB .  

4.2.6 Interior Pressure Field 

In order to determine the total pressure at a point inside the cylinder, it is 

necessary to first find all the eigenrays – rays that pass through the point of interest.  

The n = 0 ray meets the interface between the exterior and interior fluids at the 
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points (a, π-α) and (a, 2β-α) in polar coordinates. The ray passes through the point (r, θ) 

if the point lies on the straight line that joins )(0 αB  and )(1 αB . Therefore, the angle α at 

which the n=0 ray should be incident on the cylinder in order for it to pass through (r, θ) 

is determined by solving 

 [ ] 0}2sin{}2sin{}sin{ =++−−−+ βαβθπαθ ar    (4-14) 

after using Snell’s law to eliminate β and by using numerical methods. It is noted that 

there is only one solution to the above equation when 0cci > . In general, L0 rays pass 

through the point and the angle of incidence of these rays when they are in the exterior 

fluid is 0,...3,2,1, Lll =α . 

Similarly, the n = q rays that passes through the field point are identified by 

solving 

[ ] 0)2sin(})1(2sin{})1(2sin{ =++++−−−++− βπαβθπαβθ aqqqqr  (4-15) 

find ql Ll ,...3,2,1, =α .The number of solutions, Lq, to the above equation depends on the 

location of the field point, the value of q, and the relationship between ic and oc .   

For example, when 1.1/ 0 =cci , only one n = 1 ray (dashed line) passes through 

the field point (0.3, 90o, 0) deg is shown in Fig. 4-8a while three n = 1 rays pass through 

the point (0.9,0o,0) and the solutions to Eq. (4-15) when q=1 at the point r=0.9 and θ=0 , 

are 6532.471 =α , 02 =α , and 6532.473 =α deg is shown in Fig. 4-8b. 

 

 

(a) (b) 

Fig. 4-8a. Rays passing through r = 0.3, 

θ = 90o. n = 0 (solid line) and n =1 

(dashed line). 

Fig. 4-8b. Three n = 1 rays passing 

through  r = 0.9, θ =0o. 
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After finding all the rays that pass through the point of interest, the complex 

pressure due to each of them is added to determine the total pressure, ),( yxP ,at the point. 

 ∑∑
==

=
qL

l
ln

N

n
yxPyxP

10
),,(),( α       (4-16) 

where ),,( ln yxP α is the pressure due to the lth ray and is obtained by using Eq. (4-13). 

The value of N is chosen to be large enough to ensure convergence of the series to a 

desired accuracy. When the acoustic contrast is small, it is sufficient to use a small value 

of N because the reflection coefficient is small.  

4.2.7 Field Theory 

Consider a plane wave of unit amplitude is incident on the fluid cylinder 

and it can be expressed in cylindrical coordinates (r,θ,z) in series form as 

              ∑
∞

=

−=
0

cos)()(
n

on
n

ni nrkJjP θε                (4-17a) 

where (.)nJ  is the nth order Bessel function of the first kind and Newmann coefficient  
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02
01
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nε
                            (4-17b) 

The radial component of displacement associated with incident wave is given by 
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                                                                  (4-18a) 

Where ∂  denotes the partial derivative. 
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where ′ denotes the derivative. 

When the incident wave meets the fluid cylinder it scatters and the scattered 

pressure is expressed in series form as 

∑
∞

=

=
0

2 cos)(
n

onns nrkHAP θ                 (4-19) 

where (.)2
nH  is the nth order Hankel function of the second kind, and An is the unknown 

coefficient of scattered pressure.  

The radial component of displacement associated with the scattered wave is given 

by 
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The interior pressure P at a point )0,,( θr of a fluid cylinder is expressed in series 

form as (Skudrzyk, 1971) 

 ( ) )cos(),(
0

θθ nrkJBrP in
n

n∑
∞

=

=      (4-21) 

where Bn is the unknown coefficient of interior pressure. 

The radial component of displacement associated with the transmitted interior 

wave is given by 

∑
∞

=

−
=

0

'
2 cos)(

n
inn

i

i
t nrkJB

k
u θ
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                                   (4-22) 

At the interface ar = , radial components of pressure and displacement in the 

outer fluid is equal to radial components of pressure and displacement in the outer fluid. 

Applying the continuity conditions at the interface, the coefficient Bn can be evaluated as 
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4.2.8 Directional Response 

Consider, next, 2H equispaced point hydrophones as shown in Fig. 4-1. 2H 

sectors, each with 2J adjacent hydrophones, are formed by grouping these hydrophones. 

The outputs from the hydrophones in a sector are delayed to simulate a linear array and 

summed, and the outputs from a few adjacent sectors that give high outputs are used to  

 

Fig. 4-9. Schematic sector of a circular array. The hydrophones are in the arc ACB. 

Each hydrophone is delayed by an appropriate amount to simulate a linear array 

from the chord AB.  
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determine the direction of arrival of the wave. In practical applications, the region r<b is  

occupied by a structure on which the array is mounted and the output from the sector that 

is directly illuminated by the wave is much more than that from the sector that is 

diametrically opposite it. 

In the minor arc AB, shown in Fig. 4-9, there are 2J adjacent hydrophones. They 

form one sector and are used to simulate a linear array on the chord AB. The angle 

between the normal to the linear array and the x axis is sΦ . The hth hydrophone is at the 

point Dh=(xh, yh) and the line hOD  makes an angle Hhh 2/)12( −=πφ , h= 1, 2, 3, ... 2H, 

with the x axis.  

A sector is used to simulate a linear array by applying a phase delay that 

corresponds to the distance hED , in Fig. 4-9, to the hydrophone at hD .  For convenience, 

an additional delay that corresponds to the distance OF is applied to all the 2J 

hydrophones in that sector. Therefore, the total delay applied to the hth hydrophone 

corresponds to )cos( shh bd Φ−= φ . The delayed and summed voltage output from the  

sth sector is expressed as 

 
∑

−+

=

−=
12

)exp(),(
sJ

sh
hihhs djkyxPMV

 (4-24) 

where M is the receiving acoustic sensitivity of each hydrophone expressed in V/Pa and 

),( hh yxP  is obtained by using Eq. (4-16).  

Directional response is defined here as the output from the sth sector when the 

wave is traveling along the x axis. For a particular array, it is dependent only on the angle 

between the normal to the sth sector and the direction in which the wave is traveling. 

When the interior and exterior fluids are the same (g = h = 1) and the incident 

wave is traveling along the x axis, the output from the (H-J+1)th sector is maximum 

because it is symmetric about the x axis. In general, when g = h = 1, the sector with the 

maximum output is the one with a normal most closely aligned with the direction in 

which the wave is traveling. Here, with the wave traveling along the x axis, the outputs 

from the sector whose centre lies on the negative x axis and the outputs from neighboring 

sectors are large. Numerical results are presented to quantitatively illustrate the effect of 

the embedded cylinder on the outputs from the linear arrays. 
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4.3 NUMERICAL RESULTS AND DISCUSSIONS 

Numerical results are presented for several cases to illustrate the agreement 

between the results obtained using the present method and field theory and to illustrate 

the effect of the properties of the embedded cylinder. Unless otherwise specified, oc  = 

1500 m/s, and oρ  = 1000 kg/m3. The radius of the cylinder is 1 m in all the cases. 

Several results are presented for frequencies of 5 kHz and 20 kHz and correspond to ka ≈ 

20.9 and 83.8, respectively.     The number of terms used to obtain the field theory results 

depends on the frequency and varies from 30 at 5 kHz to 250 at 20 kHz and the 

convergence of the results is tested in all cases. At even higher frequencies, the accuracy 

of the ray theory results increases but more terms are required when using field theory. 

Unless otherwise specified, all field theory results are shown using a solid line, ray 

theory results are shown using dots, and only the n = 0 and 1 rays are used. The effect of 

using an increasing number of terms in ray theory is illustrated in some figures. Ray 

theory results are shown using various symbols. 

In Figs. 4-10a and 4-10b, contour plots are presented of the magnitudes of the 

interior pressure field computed using ray theory and field theory, respectively to 

illustrate the overall good agreement. The frequency is 20 kHz. ic  = 1650 m/s and iρ  = 

1100 kg/m3; that is, g = 1.1 and h = 1.1.  Evanescent rays are generated when the angle 

of incidence is greater than the critical angle, )/(sin 1
ioc cc−=θ .  cθ  is 65.38 deg when 

g=h= 1.1. The incident wave is traveling along the positive x axis. Therefore, as 

expected, the figures are symmetric about the diameter containing θ =0.  It is seen from 

the Figs. that the agreement between the two methods is good at most points and that  

intricate patterns match well. However, on r = a, and θ  near 90 and 180 deg, it is seen 

from the field theory results that the pressure changes rapidly and the agreement is not as 

good as it is at other places. If g = h = 1, then the magnitude will be one everywhere in 

the cylinder. It is seen from the contour plots in Fig. 4-10 that the pressure patterns inside 

and outside the caustic curve in Fig. 4-7 is different. The difference is expected to be 

greater when the acoustic contrast between the inner and outer fluids is greater because 

more of the n = 0 ray will be reflected when the n = 0 rays are incident on the concave 

surface. 

The real and imaginary parts of the pressures for g = h = 1.1, at 20 kHz, on a few 

diameters, are also presented to illustrate the agreement between the results obtained  
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using the two methods. The real and imaginary parts of the pressures are shown in Figs. 

4-11a and 4-11b, respectively, on the diameter formed by the by the θ = 0 and 180 deg 

radii. Similarly, the pressures are shown in Figs. 4-12a and 4-12b, on the diameter 

formed by the by the θ = 30 and 210 deg radii; and in Figs. 4-13a and 4-13b on the 

diameter formed by the by the θ = 90 and 270 deg radii. In the figures, the position on the 

diameter is shown to vary from r/a = -1 to +1; where points on the θ =0, 30, and 90 deg 

deg radii are assumed to have non-positive values. The wavelength inside the cylinder, at 

20 kHz, is 82.5 mm and there are nearly 25 wavelengths in one diameter.  

It is seen from Figs. 4-11a and 4-11b, where the pressure on the θ =0 and 180 deg 

radii is shown, that nearly 25 deep spatial oscillations occur with the real and imaginary  

  

Fig. 4-10. Magnitude of interior pressure at 20 kHz when g=h=1.1 a) using Ray 

theory with n=0 and n =1 rays b) using Field theory with 250 terms. 

 
 

Fig. 4-11. a) Real part and b) imaginary part of interior pressure field on diameter 

formed by θ = 0o and 180 o radii at 20 kHz when g=h=1.1. Solid line: Field theory 

with 250 terms. Diamonds: Ray theory with n = 0 and 1 rays. 

(a) 

(a) (b) 

(b) 
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pressure varying from a little less than -1 to a little more than +1. This happens because 

the wavelength inside the cylinder, at 20 kHz, is 82.5 mm and there are approximately 25 

wavelengths in one diameter. If g = h = 1, then the oscillations will be uniform and 

exactly between -1 and +1. In these figures, a significant change in the pattern is seen 

near r/a = 0.48 – the point at which the focal point of the n = 1 ray lies on the θ =0 line. 

As r/a approaches 0.48 from below, the peaks in the absolute real pressure, in Fig. 4-10a, 

increase and then, after crossing r/a = 0.48, decrease suddenly. The peaks in the absolute 

imaginary pressure, in Fig. 4-11b, decrease and then increase suddenly. It is seen from 

Fig. 4-10 that the magnitude of the pressure on this diameter varies from about 0.2 to 1.3. 

Even though there is good agreement between the results obtained using the two methods 

at all points, the difference in the real pressure is a little greater near r/a = 0.48. 

In Fig. 4-12 the interior pressure field computed using ray theory and field theory 

on the diameter formed by θ  = 30 and 210 deg radii are presented. The agreement is 

good. The caustic point for the n = 1 ray lies on r/a ≈ 0.78 

when θ  = 30 deg and the difference between the ray and field theory results is a little 

more in its neighborhood.  

In Figs. 4-13a and 4-13b, the pressure is presented on the diameter formed by θ  = 

90 and 270 deg radii. The spatial oscillations corresponding to 20 kHz are seen as 

perturbations on a curve that slowly varies between +1 and -1. If g = h = 1, the real part 

of pressure will be +1 and the imaginary part will be zero because this diameter lies on x 

= 0 and the incident pressure is )exp( jkx− . Therefore, a hydrophone kept on this 

diameter in the embedded cylinder will sense a pressure that is considerably different 

  

Fig. 4-12. a) Real part and b) imaginary part of interior pressure field on diameter 

formed by θ = 30o and 210 o radii at 20 kHz when g=h=1.1. Solid line: Field 

theory with 250 terms. Diamonds: Ray theory with n = 0 and 1 rays. 

(b) (a) 
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from the free-field pressure that would have existed if the embedded cylinder had not 

been present.  The caustic point for the n = 1 ray lies on r/a ≈ 0.986 when θ  = 90 deg and 

the difference between the ray and field theory results is greater in its neighborhood. 

In Figs. 4-14a and 4-14b, contour plots are presented of the magnitudes of the 

interior pressure field computed using ray theory and field theory, respectively to 

illustrate the overall good agreement for a frequency of 5 kHz at which ka ≈ 20.  The real 

and imaginary parts of the pressures are shown in Figs. 4-15a and 4-15b, respectively, on 

the diameter formed by the by the θ = 0 and 180 deg radii. Similarly, the pressures are 

shown in Figs. 4-16a and 4-16b, on the diameter formed by the by the θ = 30 and 210 deg 

radii; and in Figs. 4-17a and 4-17b on the diameter formed by the by the θ = 90 and 270 

deg radii. Even though the value of ka is now one fourth of the earlier value, the  

  

Fig. 4-13.  a) Real part and b) imaginary part of interior pressure field on diameter 

formed by θ = 90o and 270 o radii at 20 kHz when g=h=1.1. Solid line: Field 

theory with 250 terms. Diamonds: Ray theory with n = 0 and 1 rays. 

  

Fig. 4-14. Magnitude of interior pressure at 5 kHz when g=h=1.1 a) using Ray 

theory with n=0 and n =1 rays b) using Field theory with 250 terms. 

(a) (b) 

(a) (b) 
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Fig. 4-15. a) Real part and b) imaginary part of interior pressure field on diameter 

formed by θ = 0o and 180 o radii at 5 kHz when g=h=1.1. Red solid line: Field theory 

with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. 

  

Fig. 4-16. a) Real part and b) imaginary part of interior pressure field on diameter 

formed by θ = 30o and 210 o radii at 5 kHz when g=h=1.1. Red solid line: Field 

theory with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. 

  

Fig. 4-17. a) Real part and b) imaginary part of interior pressure field on diameter 

formed by θ = 90o and 270 o radii at 5 kHz when g=h=1.1. Red solid line: Field 

theory with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. 

(a) 

(a) 

(b) 

(b) 

(a) (b) 
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Fig. 4-18. Magnitude of interior pressure at 20 kHz when g=h=0.9 a) using Field 

theory with 250 terms b) using Ray theory with n=0 and n =1 rays.  

  

Fig. 4-19. a) Real part and b) imaginary part of interior pressure field on diameter 

formed by θ = 0o and 180 o radii at 20 kHz when g=h=0.9. Red solid line: Field 

theory with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. 

 
 

Fig. 4-20. a) Real part and b) imaginary part of interior pressure field on diameter 

formed by θ = 30o and 210 o radii at 20 kHz when g=h=0.9. Red solid line: Field 

theory with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. 

(a) (b) 

(a) (b) 

(a) (b) 
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observations regarding the results at ka ≈ 80 are valid for this case also. The caustic 

points depend only on h and are independent of frequency. It is seen that observations 

regarding the agreement near the caustic points at 20 kHz are valid for 5 kHz also. 

In Figs. 4-18a and 4-18b, contour plots are presented of the magnitudes of the 

interior pressure field computed using ray theory and field theory, respectively to  

illustrate the overall good agreement when ic  = 1350 m/s and iρ  =900 kg/m3; that is g = 

0.9 and h = 0.9. It is seen from the figure that the magnitude of interior pressure is lower 

in the region where there is no n=0 ray. The real and imaginary parts of the pressures are 

shown in Figs. 4-19a and 4-19b, respectively, on the diameter formed by the by the θ = 0 

and 180 deg radii. The caustic point for the n = 1 ray lies on r/a ≈ 0.529, 0.9276 and 

0.934 when θ  = 0 deg and the difference between the ray and field theory results is a 

little more in its neighborhood. Similarly, the pressures are shown in Figs. 4-20a and 4-

20b, on the diameter formed by the by the θ = 30 and 210 deg radii and the caustic point 

for the n = 1 ray lies on r/a ≈ 0.7534, and 0.787 when θ  = 30 deg.  Similarly, the 

pressures are shown in Figs. 4-21a and 4-21b on the diameter formed by the by the θ = 90 

and 270 deg radii.  

In Figs. 4-22a and 4-22b, contour plots are presented of the magnitudes of the interior 

pressure field computed using ray theory and field theory, respectively to illustrate the 

overall good agreement for a frequency of 5 kHz at which ka ≈ 20. The real and 

imaginary parts of the pressures are shown in Figs. 4-23a and 4-23b, respectively, on the 

diameter formed by the by the θ = 0 and 180 deg radii. Similarly, the pressures are shown 

in Figs. 4-24a and 4-24b, on the diameter formed by the by the θ = 30 and 210 deg radii; 

and in Figs. 4-25a and 4-25b on the diameter formed by the by the θ = 90 and270 deg 

radii. Even though the value of ka is now one fourth of the earlier value, the observations 

regarding the results at ka ≈ 80 are valid for this case also.  

Next, results are presented for higher values of g and h at which the reflection 

coefficient for rays traveling inside the embedded cylinder are higher. For g = 2 and h = 

1.5, the n = 2 , 3, … rays can be expected to have a greater effect on the error than for the 

earlier case of low g and h. For a frequency of 20 kHz, real parts of the pressures on 

three diameters are shown in Figs. 4-26a, 4-27a, and 4-28a; and the imaginary parts are 

shown in Figs. 4-26b, 4-27b, and 4-28b. It is seen that including more rays yields better 

agreement between the two methods.   
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Fig. 4-22. Magnitude of interior pressure at 5 kHz when g=h=0.9 a) using Field 

theory with 250 terms b) using Ray theory with n=0 and n =1 rays.  

 

  

Fig. 4-21. a) Real part and b) imaginary part of interior pressure field on diameter 

formed by θ =90 o and 270 o radii at 20 kHz when g=h=0.9.  Red solid line: Field 

theory with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. 

  

Fig. 4-23. a) Real part and b) imaginary part of interior pressure field on diameter 

formed by θ = 0o and 180 o radii at 5 kHz when g=h=0.9. Red solid line: Field 

theory with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. 

(a) 

(a) 

(a) 

(b) 

(b) 

(b) 
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Fig. 4-24. a) Real part and b) imaginary part of interior pressure field on diameter 

formed by θ = 30o and 210 o radii at 5 kHz when g=h=0.9. Red solid line: Field 

theory with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. 

  

Fig. 4-25. a) Real part and b) imaginary part of interior pressure field on diameter 

formed by θ =90 o and 270 o radii at 5 kHz when g=h=0.9. Red solid line: Field 

theory with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. 

(a) 

(a) (b) 

(b) 
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Fig. 4-26. a) Real part and b) imaginary part of interior pressure field on diameter 

formed by θ = 0o and 180 o radii at 20 kHz when g=1.4 and h=1.4 Red solid line: 

Field theory with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. Green 

squares: Ray theory with n = 0, 1 and 2 rays. Yellow diamonds: Ray theory with n 

= 0, 1, 2 and 3 rays. 

 

 

 

 

  

Fig. 4-27. a) Real part and b) imaginary part of interior pressure field on diameter 

formed by θ = 30o and 210 o radii at 20 kHz when g=1.4 and h=1.4.  Red solid 

line: Field theory with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. 

Green squares: Ray theory with n = 0, 1 and 2 rays. Yellow diamonds: Ray theory 

with n = 0, 1, 2 and 3 rays. 

(a) 

(a) (b) 

(b) 
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The effect of increasing the number of rays is more pronounced at 5 kHz. This is 

seen in Figs. 4-29, 4-30, and 4-31 where the real and imaginary parts of the pressures are 

shown on three diameters.  

 

  

Fig. 4-28. a) Real part and b) imaginary part of interior pressure field on diameter 

formed by θ = 90o and 270 o radii at 20 kHz when g=1.4 and h=1.4.  Red solid line: 

Field theory with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. Green 

squares: Ray theory with n = 0, 1 and 2 rays. Yellow diamonds: Ray theory with n = 

0, 1, 2 and 3 rays. 

  

Fig. 4-29. a) Real part and b) imaginary part of interior pressure field on diameter 

formed by θ = 0o and 180 o radii at 5 kHz when g=1.4 and h=1.4. Solid line: Field 

theory with 250 terms. Diamonds: Ray theory with n= 0 and 1 rays. Squares: Ray 

theory with n= 0, 1 and 2 rays. Dots: Ray theory with n= 0, 1, 2 and 3 rays. 

(a) 

(a) 

(b) 

(b) 
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Fig. 4-30. a) Real part and b) imaginary part of interior pressure field on diameter 

formed by θ = 30o and 210 o radii at5 kHz when g=1.4 and h=1.4. Red solid line: 

Field theory with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. Green 

squares: Ray theory with n = 0, 1 and 2 rays. Yellow diamonds: Ray theory with n 

= 0, 1, 2 and 3 rays. 

 

The pressures, as a function of frequency, at three points on the plane of 

symmetry, are shown in Figs. 4-32 – 4-34 for g = h = 1.1.  The points are r=a/2 and θ  = 

180 deg; r=0 and θ  = 0 deg; and r=3a/4 and θ  = 0 deg. In the Figs., ka varies from 20 to 

100 and only the n = 0 and 1 rays are used. There is good agreement in all cases between 

results obtained using the ray and field theories.  

  

Fig. 4-31. a) Real part and b) imaginary part of interior pressure field on diameter 

formed by θ = 90o and 270 o radii at 5 kHz when g=h=1.4. Red solid line: Field 

theory with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. Green 

squares: Ray theory with n = 0, 1 and 2 rays. Yellow diamonds: Ray theory with n 

= 0, 1, 2 and 3 rays. 

(a) 

(a) (b) 

(b) 
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Fig. 4-32. a) Real part and b) imaginary part of internal pressure field at the point 

r=a/2 and θ = 180o from ka = 20 to 100 when g=h=1.1. Red solid line: Field 

theory with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. 

 

  

Fig. 4-33. a) Real part and b) imaginary part of internal pressure field at the point 

r=0 and θ = 0o from ka = 20 to 100 when g=h=1.1. Red solid line: Field theory 

with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. 

 

  

Fig. 4-34. a) Real part and b) imaginary part of internal pressure field at the point 

r=3a/4 and θ = 0o from ka = 20 to 100 when g=h=1.1 . Red solid line: Field theory 

with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. 

(b) 

(a) 

(a) 

(a) 

(b) 

(b) 
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The pressures, as a function of frequency, at three points on the plane of 

symmetry, are shown in Figs. 4-35 – 4-37 for g = h = 0.9.  The points are r=a/2 and θ  = 

180 deg; r=0 and θ  = 0 deg; and r=3a/4 and θ  = 0 deg. In the Figures, ka varies from 20 

to 100 and only the n = 0 and 1 rays are used. There is good agreement in all cases 

between results obtained using the ray and field theories.  

When the acoustic contrast increases, a higher value of N in Eq. (4-16) is required 

for convergence. The effect of increasing N on the interior pressure computed using ray 

theory is shown in Table I and the results are compared with those obtained using field 

theory. In field theory, 300 terms are used and the results have converged. The pressures 

are shown at r = 0.5 m and θ = 90, 120, 150, and 180 deg. at 20 kHz for g =  h = 1.4. It is 

  

Fig. 4-35. a) Real part and b) imaginary part of internal pressure field at the point 

r=a/2 and θ = 180o from ka = 20 to 100 when g=h=0.9. Red solid line: Field 

theory with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays.  

  

Fig. 4-36. a) Real part and b) imaginary part of internal pressure field at the point 

r=0 and θ = 0o from ka = 20 to 100 when g=h=0.9. Red solid line: Field theory 

with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. 

(a) 

(a) 

(b) 

(b) 
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seen from the Table 4-I that the ray theory results converge to those obtained using field 

theory when N is increased.  

 

Table 4-I. Magnitude of interior pressure at 20 kHz when g= h=1.4 at r=0.5 m. 

 

Angle 

(degree) 

Magnitude of Pressure 

Field 

theory  

Ray Theory 

N = 0 N = 1 N = 2 N = 3 

90 1.40 1.09 1.36 1.40 1.42 

120 1.39 1.15 1.40 1.42 1.41 

150 1.18 1.20 1.27 1.19 1.20 

180 1.59 1.21 1.34 1.60 1.60 

 

The outputs from a circular array with 2H=32 hydrophones and 2J=12 

hydrophones in each sector are shown in Figs. 4-38 and 4-39. The outputs, Vs, are 

computed using ray theory and Eq. (4-24) with M = 1, and are shown for s = 3 to 17 

because the normal to the linear array simulated using the 11th sector makes an angle of 

180 deg with the x axis. The angles that the normals to the simulated linear arrays make 

with the x axis of the coordinate system are shown on the abscissas of Figs. 4-38 and 4-

39. 

  

Fig. 4-37. a) Real part and b) imaginary part of internal pressure field at the point 

r=3a/4 and θ = 0o from ka = 20 to 100 when g=h=0.9 . Red solid line: Field theory 

with 250 terms. Blue dots: Ray theory with n = 0 and 1 rays. 

(a) (b) 
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Results are shown in Fig. 4-38 and 4-39 for g = h = 1.1 and for g = h = 0.9, 

respectively. Results are shown for 5 and 20 kHz. A red solid line and blue dots are used 

to show results for the cases where an embedded cylinder is present and absent 

(homogenous infinite fluid), respectively. When the fluid is homogenous, the output 

from the 11th sector is 12 because the pressure due to the plane wave of unit amplitude is 

in-phase at each of the 12 hydrophones that are in the simulated linear array. When the 

embedded cylinder is present, and g= h=1.1, the output from the 11th sector  is more than 

12 at 5 kHz and nearly equal to 12 at 20 kHz even though the rays diverge when they 

first enter the cylinder. For g= h=0.9, the rays converge when they first enter the cylinder 

  

Fig. 4-38. Directional response of 12 out of 32 hydrophones in the circular array 

for frequency of a) 5 kHz and b) 20 kHz when g= h=0.9. Red solid line: Presence 

of embedded cylinder. Blue dots: Absence of embedded cylinder. 

 
 

Fig. 4-39. Directional response of 12 out of 32 hydrophones in the circular array 

for frequency of a) 5 kHz and b) 20 kHz when g= h=1.1 Red solid line: Presence 

of embedded cylinder. Blue dots: Absence of embedded cylinder. 

(a) 

(a) 

(b) 

(b) 

(a) 
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but the output from the 11th sector is less than 12. The outputs from the other sectors 

when the array is in the embedded cylinder are more in some cases and less in others 

than the outputs in infinite homogenous fluid. This will give rise to some differences in 

the computed direction of arrival. At 20 kHz, it is seen from Fig. 4-38b that the outputs 

from the 7th and 15th sectors are large but not equal to that of the 11th sector.  Grating 

lobes do not occur even though the spacing between the hydrophones in the simulated 

linear array is more than the wavelength at this frequency because the spacing is non-

uniform. 

4.4 CONCLUSIONS 

A ray theory method is presented to determine the interior pressure field in a fluid 

cylinder embedded in an infinite fluid and excited by a plane wave. Geometrical and 

physical acoustics approximations are used. A caustic is formed at the point at which two 

converging rays intersect, and the pressure at that point, even though it is finite, cannot 

be determined by using these two rays. Therefore, another ray that is adjacent, but on the 

other side, is used to determine the pressure. When the point is not a caustic, the average 

pressure obtained by using rays adjacent on both sides is used. 

Numerical results, obtained using ray theory, are presented for various embedded 

cylinders.  Good agreement is obtained with results computed using a modal series 

solution approach. Some embedded cylinders have density and sound-speed higher than 

that in the surrounding infinite fluid and others have lower density and sound-speed. 

Representative contour plots of the interior pressure as well as the pressures on diameters 

of the cylinder and circles within the cylinder are presented. When the density and 

sound-speed contrasts are low, only two families of rays are used: those that have not 

been reflected even once when traveling inside the cylinder (n = 0) and those that have 

been reflected once (n = 1). When the density and sound-speed contrast is increased, 

using the n = 2 and 3 rays also, yields convergence of the pressure. The pressure is also 

presented for ka = 20 to 100 at a point on the plane of symmetry. 

The directional responses of linear arrays simulated using one circular array in 

the embedded cylinder are presented. It is seen from the numerical results that in some 

cases the output from the array is a little more than that due to a plane wave even when 

the rays diverge immediately after entering the cylinder. In other cases, it is a little less 

than that due to a plane wave even when the rays converge immediately after entering 

the cylinder.  
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The method presented here can be used to determine the interior pressure field in 

objects with more complex shapes such as sonar domes. The effect of interior structures 

with reflection coefficients that are frequency dependent can also be included. The 

response of arrays within the embedded object can then be determined and be used, if 

necessary, to prepare look-up tables to correct for errors in determining the direction of 

arrival of waves from distant sources. 
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Chapter 5 

CONCLUSIONS 

 
5.  

5.1 SUMMARY 

In this thesis, analytical methods are presented to determine acoustic radiation 

from cylindrical arrays and the effect of scattering from cylindrical bodies on the 

response of arrays of hydrophones. The significant conclusions that can be drawn from 

the present work are as follows: 

1. Analytical methods are presented to determine the directional and omni- 

directional radiation from cylindrical transducer arrays. Expressions are derived for 

pressure fields when the entire array is vibrating in-phase, a sector of the array is 

vibrating in-phase, and a sector of the array is phase-shaded to simulate radiation from a 

rectangular piston. Far-field pressure is computed in all cases and on-axis pressure 

radiated by a cylindrical sector in an infinite cylindrical baffle is compared with that 

radiated by a rectangular piston in an infinite rigid planar baffle. 

2. Analytical methods are presented to determine the effect of scattering from 

stiffeners that are used in domes on the error in finding the direction of arrival of plane 

waves from distant sources. The stiffener is modeled as an infinite elastic cylinder and 

the sum of the incident and scattered pressures is computed at hydrophone locations in a 

linear array. Two classical data-dependent signal processing methods are then used to 

determine the direction of the arrival. The error in finding the direction of arrival is 

illustrated for several special cases. It is shown that the error varies approximately as 

radius of the cylinder to the power of 7/4. 

 3. Analytical methods are presented to determine the effect of scattering from a 

fluid cylinder embedded in an infinite fluid on the output from a circular array within the 

embedded fluid cylinder. The interior pressure field is computed using ray theory and is 

shown to be in good agreement with that computed with the field theory. It is sufficient, 

when the acoustic contrast between the interior and exterior fluids is not strong, to use 

just a few rays to determine the interior pressure field. Directional responses, to plane 

waves, of sectors of the circular array of uniformly distributed hydrophones in the 

embedded cylinder are then computed and compared the results with the output from an 

array in an infinite homogenous fluid. 
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5.2 RELEVANCE AND APPLICATIONS 

The significant contributions that can be drawn from the present work are as 

follows: 

1. Acoustic radiation from cylindrical arrays is used when it is necessary to 

ensonify the entire surrounding volume. Exciting the entire array creates an omni-

directional pressure field in the azimuthal plane. However, when only part of the array is 

excited, after phase-shading, high pressure field is created in the direction of interest. 

Therefore, in some cases, instead of simultaneously radiating in all directions, a beam is 

formed in the direction of interest, and a little later, the beam is steered to an adjacent 

sector. The entire volume is thus ensonified sector-by-sector using higher fields. This is 

often done in practical sonar applications and the analysis is therefore of immense value. 

2. Analytical methods are presented to determine scattering from an elastic 

cylinder and its effect on the performance of a nearby linear array of hydrophones. 

Arrays are always housed within sonar domes. The domes are often strengthened using 

stiffeners as this permits the use of thinner metal plates that are more transparent. The 

distance that should be maintained between the dome and the array depends on several 

factors that include the effect of scattering on the ability to detect the source of the sound 

waves and determine the direction of their arrival. Therefore, the analysis has immense 

practical value. 

3. Sonar domes that house arrays of transducers are usually doubly curved 

because of hydrodynamic and structural considerations. They are also filled with fresh 

water whose acoustic characteristics are not the same as that of sea water. Further, the 

size of the dome is such that the normalized frequency is high. Because of the above, the 

pressure field inside the sonar dome cannot be easily computed using analytical or finite 

element methods. The high frequency ray method presented here is eminently suitable 

for sonar dome analysis including the effects of transmission through thin plates. 

5.3 FUTURE WORK 

Finally, some suggestions are made for further work. 

1. An analytical method is presented to study radiation from a cylindrical array of 

rectangular pistons with specified uniform displacement. This can be extended to study 

radiation from circular pistons as axisymmetric transducers are often used. Further, the 

electroacoustic transducers themselves can be modeled to study interaction between the 

transducers. 
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2. An analytical method is presented to study the effect of one stiffener near a 

linear array on the error in estimating the direction of arrival. The method can be used to 

study the effect of the dome and multiple stiffeners.  

3. A method based on ray theory is used to determine the interior pressure field in 

an embedded fluid cylinder. The method can be extended to determine the pressure field 

inside a three-dimensional sonar dome. The effect of interior structures with reflection 

coefficients that are frequency dependent can also be included. The interior pressure can 

then be used to determine the error in estimating the direction of arrival due to the shape 

of the dome and the materials used to manufacture the dome. 
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