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Abstract

Identification and Control of Non-linear dynamical systems are challenging
problems to the control engineers. The topic is equally relevant in
communication, weather prediction, bio medical systems and even in social
systems, where nonlinearity is an integral part of the system behavior. Most
of the real world systems are nonlinear in nature and wide applications are
there for nonlinear system identification/modeling. The basic approach in
analyzing the nonlinear systems is to build a model from known behavior
manifest in the form of system output. The problem of modeling boils down
to computing a suitably parameterized model, representing the process. The
parameters of the model are adjusted to optimize a performance function,
based on error between the given process output and identified
process/model output. While the linear system identification is well
established with many classical approaches, most of those methods cannot

be directly applied for nonlinear system identification.



The problem becomes more complex if the system is completely unknown
but only the output time series is available. Blind recognition problem is the
direct consequence of such a situation. The thesis concentrates on such
problems. Capability of Artificial Neural Networks to approximate many
nonlinear input-output maps makes it predominantly suitable for building a
function for the identification of nonlinear systems, where only the time
series is available. The literature is rich with a variety of algorithms to train
the Neural Network model. A comprehensive study of the computation of the
model parameters, using the different algorithms and the comparison among
them to choose the best technique is still a demanding requirement from
practical system designers, which is not available in a concise form in the

literature.

The thesis is thus an attempt to develop and evaluate some of the well known
algorithms and propose some new techniques, in the context of Blind
recognition of nonlinear systems. It also attempts to establish the relative
merits and demerits of the different approaches. Comprehensiveness is

vi



achieved in utilizing the benefits of well known evaluation techniques from
statistics. The study concludes by providing the results of implementation of
the currently available and modified versions and newly introduced
techniques for nonlinear blind system modeling followed by a comparison of

their performance.

It is expected that, such comprehensive study and the comparison process
can be of great relevance in many fields including chemical, electrical,
biological, financial and weather data analysis. Further the results reported
would be of immense help for practical system designers and analysts in
selecting the most appropriate method based on the goodness of the model

for the particular context.
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Development and Evaluation of Blind Identification Techniques for Nonlinear Systems

Chapter 1

INTRODUCTION

Chapter 1 introduces the basic concepts of nonlinear system identification/modeling, the
current status of the issue, motivation for the current work, objectives and methodologies
adopted organization and outline of the thesis etc.
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Development and Evaluation of Blind Identification Techniques for Nonlinear Systems

1.1 System Identification

Identification and Control of Non-linear dynamical systems are challenging
problems to the control engineers. The problem of system identification and
modeling consists of computing a suitably parameterized model,
representing a process [1, 2, 3]. The parameters of the model are adjusted to
optimize a performance function, based on error between the given process
output and identified process/model output. Most of the real world systems
are nonlinear in nature and wide applications are there for nonlinear system
identification/modeling. The linear system identification field is well
established with many classical approaches whereas most of those methods
cannot be applied for nonlinear system identification [4, 5]. The problem
becomes more complex if the system is completely unknown but only the
output time series is available. The thesis concentrates on such problems.
Capability of Artificial Neural Networks to approximate all linear and
nonlinear input-output maps makes it predominantly suitable for the
identification of nonlinear systems, where only the time series is available [7-
13]. Different algorithms are available to train the Neural Network model. A
comprehensive study of the models using different algorithms and the

comparison among them to choose the best technique is not yet available in
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Chapter 1 Introduction

any of the published books or technical papers. This thesis is an attempt to
develop and implement few of the well known and newly proposed
algorithms, in the context of stochastic (where only time series is known)
modeling of nonlinear systems, and to make a comparison to establish the
relative merits and demerits. When the output time series alone is available,

the process is also termed blind identification/modeling [33-36].

Two basic types of modeling problems arise. In the first type, one can
associate with each physical phenomenon, a small number of measurable
causes (inputs) and a small number of measurable effects (outputs). The
outputs and the inputs can generally be related through a set of
mathematical equations, in most cases nonlinear partial differential
equations. The determination of these equations is the problem of modeling
in such cases. These can be obtained either by writing a set of equilibrium
equations based on mass and energy balance and other physical laws, or one
may use the black box approach which may consists of determining the
equations from the past records of the inputs and outputs. Modeling
problems of this type appear quite often in engineering practice. Some
typical problems are modeling of (i) a stirred - tank chemical reactor, (ii) a
multi machine electrical power system, (iii) a synchronous orbit
communications satellite and (iv) the control mechanism of a nuclear power

reactor [62-64]. In each of these examples one can easily identify certain

Division of Electronics, SOE, CUSAT Page 1.2



Development and Evaluation of Blind Identification Techniques for Nonlinear Systems

input and output quantities, and then obtain mathematical model relating

them.

Another type of modeling problem arises in those situations where although
it is possible to identify a certain quantity as a definite measurable output or
effect, the causes are not so well defined. Some typical examples are (i) the
annual population of a country, (ii) the annual rainfall in a certain country,
(iii) the average annual flow of a river, and (iv) the daily value of a certain
stock in the stock market. In all these cases, one have a sequence of outputs,
which will be called a time series, but the inputs or causes are numerous and
not quite known in addition to often being unobservable. The models in such
cases are called stochastic models, due to a certain amount of uncertainty

which is unavoidable [32, 33].
1.1.1 System description

A system can be described by one of the following.

e A transfer function

e Alinear differential equation with constant coefficient that relates the
input and output of the system.

¢ Animpulse response.

e A set of state equations.

By knowing the input of the system, one can determine the response of the

system. But in many cases one may not be having the system description .The
Division of Electronics, SOE, CUSAT Page 1.3



Chapter 1 Introduction

system transfer function, impulse response, differential equation; state

equation etc has to be derived from a sample of input and output [13-14].

Another type of modeling problem arise in those situation where one can
identify a certain quantity as a definite measurable output or effect, the
causes are not well defined. This is called time series modeling, where
inputs or causes are numerous and not quite known in addition to often
being unobservable. This type of modeling is also called stochastic modeling.
System identification is concerned with the determination of the system
models from records of system operation. The problem can be represented

diagrammatically as below.

o(t) l Disturbance v(t)

+

Input x(t) Unk z(t) + y(t)
nknown System

Output

Fig.1.1. A general system configuration

where x(t) is the known input vector of dimension ‘m’

z(t) is the output vector of dimension ‘p’

o(t) is the input disturbance vector

Division of Electronics, SOE, CUSAT Page 1.4



Development and Evaluation of Blind Identification Techniques for Nonlinear Systems

v(t) is the measured output vector of dimension ‘p’

Thus the problem of system identification is the determination of the system

model from records of x(t) and y(t).
1.1.2 System identification using neural networks

For linear systems System identification and control are well developed.
For non-linear systems the theory is not well defined significantly.
Properties such as controllability, observability and stability are well defined

for linear system model, but it is not straight forward in the case of non-

linear systems.

Input bias Px L
x activation
function
Xa @ N, @) Tk
xn summing
junction

syhaptic weights

Fig.1.2. Nonlinear model of a neuron

Artificial Neural networks are a powerful tool for many complex applications
such as function approximation, optimization, nonlinear system
identification and pattern recognition. This is because of its attributes like

massive parallelism, adaptability, robustness and the inherent capability to
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handle nonlinear system. It can extract information from heavy noisy

corrupted signals. Fig. 1.2 shows the model of a nonlinear neuron. System

identification can be either state space model or input-output model.
1.1.3 The Input-Output modeling

An I/0 model can be expressed as y(t) = g(g(t, 9)) + e(t), where,0 is the vector

containing adjustable parameters which in the case of neural network are
known as weights, g is the function realized by neural network and ¢ is the
regression vector. Depends on the choice of regression vector different

model structures emerge.

Using the same regressors as for the linear models, a corresponding family of
nonlinear models was obtained which are named NARX, NARMAX as in
equations 1.1 and 1.2 below. Different model structures in each model family

can be obtained by making a different assumption about noise.
NARX, ¢(t, 0) =[y(t 1), y(t = 2),....y(t = n),u(t —=1),....u(t —m)[’ (1.1)
NARMAX¢(t,6’)=[y(t—1), ..... y(t—n),u(t-1),...u(t—m),e(t-12),... e(t—k)]T (1.2)

Where y(t) is the output, u(t),the input and e(t) is the error. For the
implementation of the above system, Feed forward neural networks can be

used [19-21].
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1.1.4 State Space modeling

Suppose that the given plant is described by state space model.
x(n+1) = f(x(n),u(n)) (1.3)

y(n) =h(x(n)) (1.4)
where f(.) and h(.) are vector valued nonlinear functions both of which are
unknown. x(n) and y(n) are the models estimate of the plant state and output
at time step n. For the implementation of the above state space equations,
recurrent neural networks are used .i.e. a single RNN is used to model both
process nonlinearity ‘f and measurement function ‘g’. Also the model
incorporates the past residual in the regression [12, 79-82]. This structure is
called Neural network State Space Innovation Function(NNSSIF).State space
analysis characterizes dynamics of a system in terms of attractors, geometric

description of recurrent trajectories and Lyapunov exponents [130].
1.2. Current status

Many researchers have addressed the problem for dynamic nonlinear black
box modeling. Different approaches can be used for solving the problem.
Among them Artificial Neural Networks is a powerful tool. The system
identification then goes down to estimation of the model parameters. Neural
network is best suited where unknown dynamics can be constructively

approximated. During the past few years, several authors have suggested
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neural network implementation for nonlinear dynamical black box modeling
[19, 20, 78]. When the mathematical model of the process cannot be derived
with an analytical method, the only way for modeling is by deriving the
model function using the relationship between input and output of the
process. In modeling, a neural network that emulates the behavior of the
plant is trained based on the known nonlinear models [9, 11, 14]. Thus
dynamical system information is stored in the neural network function.
During modeling simulations, the input-output behavior of the neural

network is compared to that of the nonlinear plant under study.

Neural network Black Box modeling can be performed using non linear Feed
Forward (FF) and Recurrent structures. Recurrent Neural Networks (RNN)
is fundamentally different from the feed forward architecture, in the sense
that they not only operate in the input space but also in the internal state
space. Because of the dynamical structure exhibited by them, these networks
have been successfully applied to system characterization problems [19, 80,
82].

The classical approach of training neural network is by using the Back
Propagation algorithm. Back propagation was created by generalizing the
Windrow-Hoff learning rule to multiplayer networks [61] and has been
widely used to train neural networks in many applications. Standard back

propagation is a gradient descent algorithm. However the convergence could
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be slow and appropriate learning parameters need to be chosen; their tuning

is not trivial.

Since the development of well-known Kalman filter (KF) [92, 93, 94], the
method of linear stochastic state estimation has been widely studied in the
literature and applied to many problems in tracking. The Kalman Filter has
been extended to the nonlinear systems, which linearises the nonlinear
function around the point of interest. The resultant filter is called Extended
Kalman Filtering (EKF), which can be implemented in estimating the
network parameters in both FF and RNN. The estimation algorithm
converges faster than the back propagation algorithms [95, 96]. Also the
predictor - corrector approach helps to reduce the computational
requirements. Many alternative approaches have been proposed for realizing
the Kalman estimation like Decoupled EKF and Unscented Kalman Filter
[101]. Computational complexity is quite low when the Decoupled EKF [112]

is used.

Expectation Maximization Algorithm (EM) is a method to calculate the initial
states and covariance avoiding the difficulty in setting proper values for these
by trial and error [113]. Maximum Likelihood Estimation (MLE) is a well
established procedure for statistical estimation. In this procedure first
formulate a log likelihood function and then optimize it with respect to the

parameter vector of the probabilistic model under consideration [114-117].

Division of Electronics, SOE, CUSAT Page 1.9



Chapter 1 Introduction

In classical approaches the search for the optimal approximation model is
carried out within a parameterized identification family such as Moving
average(MA), Auto Regressive(AR) and their combination (ARMA) or ARMAX
(X for exogenous) [21, 68] and it is chosen to optimize a given cost
function(e.g. Mean square error). Because of its simplicity linear models does
not always approximate a nonlinear system throughout its working
environment. Therefore to improve approximation accuracy various
solutions have been envisaged which generally encompass system
linearization around the working environment. Obviously, difficulties
increases when the system is completely unknown, is considered to be the

black box models.

In fact, the nonlinear parametric family obtainable with neural structures
extends the linear ones by nonlinear models, among them are NAR, NARX,
NARMAX subfamilies. Neural networks of the multi layer feed forward and
recurrent types are employed for system identification. There are different
structures and several algorithms for training neural networks for achieving
global minima and the selection of these depends upon the problem one have
to analyze. There is a wide gap between applications of these methods in real
time and simulation. Issues such as stability, processor speed, learning time,
type of algorithm etc arise when it comes to real time implementations.

Adaptive designs of neural network are capable of optimization over time
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under conditions of noises and uncertainty.

A large number of literatures and published papers are available for the
different techniques of system identification discussed so far. But a
cumulative study of all the techniques together and comparative analysis is
yet to come. Here in this Thesis, few important techniques are implemented
and compared for system identification especially for stochastic modeling of

nonlinear systems.

Recently several new approaches to recursive nonlinear filtering have
appeared in literature. Particle filters (PF) are suboptimal filters belonging to
this category of methods. They perform Sequential Monte Carlo (SMC)
estimation based on point mass (or “particle”) representation of probability
densities [131-137]. The SMC ideas in the form of sequential importance
sampling had been introduced in statistic back in the 1950s. Although these
ideas continued to be explored sporadically during the 1960s and 1970s,
they were largely overlooked and ignored. Most likely the reason for this
was the modest computational power available at that time. In addition, all
these early implementations were based on plain sequential importance
sampling, which as we shall describe later, degenerates over time. The major
contribution to the development of the SMC method was the inclusion of the
re-sampling step, which, coupled with the faster computers, made the

particle filters useful in practice for the first time. Since then research
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activity in the field has dramatically increased, resulting in many
improvements of particle filters and their numerous applications especially

for nonlinear system modeling [77].

1.3 Motivation

The problem of system modeling and identification has attracted
considerable attention during the past few years mostly because of a large
number of applications in diverse fields like chemical processes, biomedical
systems, transportation, ecology, electric power systems, hydrology,
aeronautics and astronautics. An accurate on-line estimate of critical system
states and parameters are needed in a variety of engineering applications
like in automatic control, signal processing, echo cancellation, SONAR, fault
detection, tracking etc. They are used in many commercial products such as
modems, image processing, speech recognition, front end signal processors

and biomedical instrumentation [62-65].

The amazing challenges in statistical estimation along with an opportunity to
learn different techniques in solving the well known problem motivated to
take up the study of system identification technique. The rich literature
available on the subject offered an opportunity to dig out solutions in
situations that are difficult. Since a comprehensive study of the well known

techniques and the comparison of their performance is necessary to choose
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an efficient technique for particular applications. It is attempted to develop
some new approaches and their evaluations based on various criterions for
blind identification of nonlinear systems. It is expected that, such
comprehensive study and the comparison process can be of great relevance
in many fields including control, chemical, electrical, biological, financial and
weather data analysis. More specifically the aim of the thesis is to:

» Implement various identification/ modeling techniques for nonlinear
systems.

» Develop and suggest certain new approaches for the blind
identification of nonlinear system and improve some of the currently
available techniques.

» Provide a comprehensive evaluation report of these methods based

on a number of evaluation criterion/performance measures.

1.4 Objectives and the methodologies

The system identification process using neural network can be represented
by the block diagram shown in Fig 1.3. The objective is to implement the
following algorithms for nonlinear system identification and compare the
performance of the models in order to evaluate the relative merits and
demerits of the algorithms.

e Back Propagation (gradient - descent)
e Radial Basis Function networks (gradient - descent)
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Extended Kalman Filter with Expectation Maximization.

Decoupled Extended Kalman Filter

Maximum Likelihood Estimation
Gauss Newton
Conjugate Gradient

Identification with particle filter approach

State space modeling

Given below in Fig. 1.3 is an illustration of system identification.

Training Data (ontinear Plant)

Input Desired output
target
Network errar
in out
Weight Obj ective
changes Function

Training Algorithm
(optimization method)

[

Fig.1.3 Block diagram of system identification using neural network

The state space modeling is done to extract the dynamics of the system which

is very helpful in the error detection and control of the plant or process. The

model behavior and performance are evaluated in terms of Mean Square

Error and also in terms of two well known methods (i) Lyapunov exponents
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(for stability check) and (ii) Cramer Rao Lower Bound (CRLB) (for efficiency
check). The statistical parameter estimation insists that the estimate should

be well within the CRLB [121-124].

= il
~ : layer
vt Feed
. farward
Irput ¥ ufn-2) : Cutput
. Meural
MNetwark i)

-(MLFFN)

MLFFN

Fig 1.4 NARX modeling for system identification

NARX model is well suited for Input-Output modeling of stochastic nonlinear
systems [39]. So in this work, NARX model is chosen as the system model in
which the model structure is a Multi Layer Feed Forward Neural Network
(MLFFN) as shown in Fig. 1.4 for all the nonlinear systems (using different
algorithms).

Many nonlinear systems are modeled using each of the algorithms. Four
entirely different systems are selected in order to check the consistency in

performance of the algorithms. If the model performs equally well for all the
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four systems it is assumed to perform well for any other nonlinear systems.

The selected nonlinear systems are.

y=sin (t?+t) (1.5)
Real world systems: Ambient noise in the sea
Acoustic source ‘A’
Acoustic source ‘B’

1.5. Organization of the thesis

An introductory review of the available literature is given in chapter?2.
Chapter 3 introduces the Neural Network approach using Back Propagation
algorithm to estimate the parameters. Due to the local minima problem of
BPA, an alternate approach based on Kalman Estimation is explored in
chapter 4. Though Kalman Estimation is found good for estimation, the
optimality depends on the apriori statistics of states and covariance. To
eliminate this problem, the method based on Expectation Maximization is
used which is also discussed in chapter 4. The stochastic method based on
Maximum Likelihood Estimation is often described as a very standard
approach in parameter estimation. Chapter 5 discusses about MLE. In
chapter 6 a novel approach for the identification problem with nonlinear
filtering method, namely particle filter, has been presented. In order to make
the study of system identification problem comprehensive, the state space

modeling approach has also been taken up to assess the dynamic behavior of
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the systems as discussed in chapter 7. The efficacy of the model is
demonstrated by plotting the phase plane plots for the systems identified.
The Lyapunov exponents are calculated for the models in order to evaluate
the convergence nature of the systems which is also included in chapter 7.
Since the recommended procedure in the statistical parameter estimation
insists that the estimate should be well within the CRLB, it is evaluated in
chapter 8 for all the systems modeled in previous chapters. Chapter 9
includes the comparison of performance of different approaches along with
their relative merits of implementation and it also summarizes the thesis

with discussions, conclusion and the scope for future work.
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Chapter 2

BACKGROUND LITERATURE REVIEW

Chapter 2 provides a detailed review of literature on the topic of interest. It explores the
state of the art situation in the field of research as well as the topics which provided
motivation for the developments of outcomes of the thesis.
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2.1 Introduction

This chapter sets the scene for the upcoming sections of the thesis. It
basically is an assessment of the present state-of-the-art of the wide area of
nonlinear system modeling/identification, blind system identification and

system analysis and design techniques.

N.K Sinha et al. [1] provides a basic concept of modeling and identification of
dynamic systems from the records of input output data. This provides a

detailed theory of the process of identification to start with.

Daniel Grapue [2] also provides the basic theories on modeling of systems.
They start with linear system analysis using conventional methods like
transfer function, linear differential equation with constant coefficient that
relates the input and output of the system, impulse response and a set of

state equations etc.

By knowing the input of the system, we can determine the response of the
system. But in many cases we may not be having the system description .The
system transfer function, impulse response, differential equation; state
equation etc has to be derived in this case [13-14]. However, nonlinear

systems require a different approach, mentioned in the section to follow.
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2.2 Nonlinear system identification using neural networks

Identification and Control of Non-linear dynamical systems are challenging
problems to the control engineers. The problem of system identification and
modeling consists of computing a suitably parameterized model,
representing a process [1, 2, 3]. The parameters of the model are adjusted to
optimize a performance function, based on error between the given process

output and identified process/model output.

Artificial Neural networks are a powerful tool for many complex applications
such as function approximation, optimization, nonlinear system
identification and pattern recognition. This is because of its attributes like
massive parallelism, adaptability, robustness and the inherent capability to
handle nonlinear system. It can extract information from heavy noisy
corrupted signals. System identification can be either state space model or

input-output model.

S. Chen, S.A Billings [4] provides an outlook into the capabilities of neural
networks for modeling non linear systems. The paper presents an approach
to system identification of input/output mappings of non-linear stochastic
systems in accordance to an information-theoretic criterion. At that, a

parameterized description of the system under study is utilized combined
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with a corresponding technique of estimation of the mutual information (in
the Shannon sense), leading, finally, to a problem of the finite dimensional
optimization. Solving the latter is based on applying ideas of papers on using

neural networks within problems of optimization of continuous functions.

Kumpati .S. Narendra and Kannan Parthasarathy [6-8, 11-13] have done a
major contribution to the identification problem. They provide the use of
feed forward type of neural networks in modeling of nonlinear systems and
an extensive study of the learning approaches. On-line identification
algorithm via dynamical neural networks with different time-scales followed
by controller design is proposed for the dynamic systems with nonlinearity
and uncertainty in these papers. The main contribution of the papers is that
the analysis of the modeling error and disturbance. Simulations are given to
demonstrate the effectiveness of the theoretical results. They also provide a

general performance assessment in the mean square error sense (MSE).

Hava T Siegelman [19], Wen-Xiao Zhao, Han-Fu Chen, Wei Xing Zheng [20],
Jinglu Hu, Kousuke Kumamaru and Katsuhiro Inoue [21] provides the
modeling with recursive approach to identification for systems like ARMAX,
nonlinear ARX, and others. They propose various learning strategies too for

these methods. An I/O model can be expressed asy(t)=g(4(t,0)) +e(t),

where,0 is the vector containing adjustable parameters which in the case of
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neural network are known as weights, g is the function realized by neural
network and ¢ is the regression vector. Depending on the choice of
regression vector, different model structures emerge. Using the same
regressors as for the linear models, a corresponding family of nonlinear
models was obtained which are named NARX, NARMAX, etc. Different model
structures in each model family can be obtained by making a different
assumption about noise. Their study help us to model the next output sample
as a function of current and past input and output samples in a recursive
fashion. Fa-Long Luo and Rolf Unbehauen [15] give an extensive theory of

these approaches.

K. Hornik, M. Stinchcombe [25], Jiancheng Liu Xuping [65] etc in their works
proposes the application of multi layer networks in identification. A Multi
Layer Perceptron (MLP) network can approximate an arbitrary nonlinear
map and is completely determined by the network parameters such as the
connection weights and thresholds. This suggest that the MLP networks can
be used to construct the nonlinear maps related to the system identification
operator say F[.] where F[x(n)] is the network output and th e aim is to
minimize the norm of the error vector F[x(n)]-Y(n) with Y(n) as the actual
system output. They provides the details of modeling single input single

output (SISO) as well as multiple input multiple output (MIMO) systems.
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S. Chen, S.A Billings, C.F.N Cowan and P.M Grant [65], C. Wiegand, C. Hedayat,
W. John, Lj. Radi’c-Weissenfeld and U. Hilleringmann [70], Thomas F. Junge
and Heinz Unbehauen [71] et al. introduces the use of radial basis function
(RBF) networks in modeling applications. They propose a recursive
identification technique for nonlinear discrete-time multivariable dynamical
systems. Extending an early result to multivariable systems the technique
approaches a nonlinear system identification problem in two stages: One is
to build up recursively a RBF neural net model structure including the size of
the neural net and the parameters in the RBF neurons; the other is to design
a stable recursive weight updating algorithm to obtain the weights of the net

in an efficient way.

Simon Haykin [90] and Fa-Long Luo and Rolf Unbehauen [15] in their books
give the complete theory of RBF networks and various strategies for its

training.

Nenad Todorovic, Petr Klan et al. [77] provides a general evaluation and
state-of-the-art technique about dynamical nonlinear system modeling using
neural networks.

S.Amari, A.Cichocki, and H.Yang [79], Chao-Chee Ku and Kwang Y. Lee [80],
Han-Fu Chen [81] provides the use of recurrent neural networks (RNN) in
nonlinear control and modeling. The basic concepts of conbined state and

parameter estimation also appear in these references.
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2.3 Nonlinear system identification -the Kalman approaches

The Kalman Filter is one of the most widely used methods for estimation and
tracking due to its simplicity, optimality, tractability and robustness [91-94]. The
Kalman filter gives a linear, unbiased and minimum error variance recursive
algorithm to optimally estimate the unknown state of a dynamic system from noisy
data taken at discrete real-time. To apply the discrete Kalman filter, the system
under study should be represented by a set of linear, finite dimensional state space

equation.

If the model turns out to be non-linear, a linearization procedure is usually
performed in deriving the filter equations. i.e. the system is linearised about a
trajectory that is continuously updated with the state estimates resulting from the

measurements. The new filter obtained is called Extended Kalman Filter (EKF).

Yaakov Bar-Shalaom and Xiao-Rong Li et al. [91] introduces the principles of
estimation and tracking. The basic concept of nonlinear filters leading to
approaches like Kalman filtering is mentioned in this. Simon Haykin [97]

provides the comprehensive theory in this.
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M.S. Grewal and A.P Andrews [93], A.V. Balakrishnan [94] et al. gives the
theory of Kalman filtering which could be later used in RNN training

algorithms with Kalman approach.

R.N.Lobbia, S.C.Stubberud, and M.W.Owen, [95], Y. Linguni, H. Sakai, H.
Tokumaru [96] gives the extended Kalman filter theory (EKF). They
provide the merits and improvements from the simple Kalman algorithm

when dealing with nonlinear system analysis problems.

Y. Linguni, H. Sakai, H. Tokumaru [96], Simon Haykin [97] et al. provides a
detailed discussion on various real time learning algorithms for multilayered
neural network based on the Extended Kalman Filter. These algorithms and
their modified versions are used for the nonlinear system identification
problem in this thesis. [100-107] also provide a list of application of EKF

and some of its variations in control applications.

Ben James, Brian D.O, Anderson, and Robert. C. Williamson [99],
Radhakrishnan.K,  Unnikrishnan.A, and Balakrishnan KG [100],
A.P.Dempster,N.M.Laird, and D.B.Rubin [116] et al. provide the concepts of
EKF with Expectation Maximization approaches for performance

improvement.

Joost H. de Vlieger and Robert H.]. Gmelig Meyling [115], K.Abed Meraimand,
E.Moulines [117], M.GhoshandC.L.Weber [118], Yonina C. Eldar [123] et al. in
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various papers introduce and demonstrate the theory for EKF with Maximum
Likelihood Estimation, as an improvement to the EKF. Later in the thesis,
MLE estimation using Gauss-Newton and Conjugate Gradient methods are

developed.
2.4 State space modeling using recurrent neural networks

The state of a dynamical system is formally defined as a set of quantities that
summarizes all the information about the past behavior of the system that is
needed to uniquely describe its future behavior, except for the purely
external effects arising from the applied input. In many control problem the
objective is to feedback the states of the system in order to modify its
behavior. Hence it is necessary to estimate the states of the system from the
measurements which are contaminated with noise. The problem of combined
parameter and state estimation is a nonlinear estimation problem by

augmenting the state vector with the parameter vector.

Gordon, N.J,, D.J. Salmond and A.F.M. Smith [126], Christophe Andrieu Arnaud
Doucet Dpts Vladislav B. Tadi’c [127], Radu Dogaru, A.T. Murgan, S. Ortmann,
M. Glesne [128] provide some basic concepts of state space analysis,

which could be extended for the current problem. [133-139] provide the
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possibilities of state space estimation using various nonlinear filtering

methods including particle filter.

Dmitry Malyuk 'l, Georgy Boyarintsev [131]. give the concept of
Lyapunov exponents. The same is utilized here to study the system dynamics
and were able to provide an assessment of the system behavior on whether it

is chaotic or not.

2.5 Evaluation of the model performance in the MSE and
CRLB senses

Once the various models have been developed, it is possible to have a test on
its goodness/efficiency in some senses. The Mean Square Error (MSE) and
the Cramer Rao Lower Bound (CRLB) for the various estimators can very
well be used for this comparison. According to it, the mean square error
corresponding to the estimator of a parameter cannot be smaller than a
certain quantity related to the likelihood function. If an estimator’s variance

is equal to the CRLB, then such estimator is called efficient. [5].

Shuhi Li [101] introduces a very basic mode of comparison of back
propagation and Extended Kalman filter in Pattern and Batch forms for
training Neural Networks. From these basic approaches, mathematically

efficient methods can further be developed.
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Er-Wei Bai [119] gives the MSE concept, which is extended for the modeling

problem in this thesis.

Zhiping Lin, Qiyue Zou, E. Sally Ward, and Raimund ]. Ober [112], Yonina C.
Eldar[123], R. Niu, P. Willet and Y. Bar Shalom [124], ].H. Taylor [125] et al.
provide the computational algorithms for the CRLB and suggest its suitability

as a figure of merit for performance evaluation.
2.6 Nonlinear system modeling using Particle Filter

Recently several new approaches to recursive nonlinear filtering have
appeared in literature. Particle filters (PF) are suboptimal filters belonging to
this category of methods. They perform sequential Monte Carlo (SMC)
estimation based on point mass (or “particle”) representation of probability
densities [143-144]. The major contribution to the development of the SMC
method was the inclusion of the re-sampling step, which, coupled with ever
faster computers, made the particle filters useful in practice for the first time.
Since then research activity in the field has dramatically increased, resulting
in many improvements of particle filters and their numerous applications
[136-140].

R. van der Merwe, J. F. G. de Freitas, A. Doucet, and E. A. Wan [132], et al.
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introduced the basic technical paper on unscented particle filter.

Doucet, A., N. Gordon and V. Krishnamurthy [133], describe particle filters for

state estimation which could be extended to the current problem as well.

Jansson, R. Karlsson and Nordlund P-] [134], M.S Arulampalm,
B.Ristic,N.Gordon and T.Mansell [135], TIAN-Zengshan, LUO Lei [139]
Yaakov Bar-Shalom and Xiao_Rong Li [145] discusses the application of
particle filters in tracking problems. They also provide the basic equations

for the filter implementation.

V. Kadirkamanathant, M. H. Jawaxdt, S. G. Fabri and M. Kadirkamanathan
[136], Marcos del Toro Peral, Fernando Gomez Bravo Alberto Martinho Vale
[137], TIAN-Zengshan, LUO Lei [138], Jayesh H. Kotecha and Petar M. Djuri C
[139], Z. Zhu and H. Leung [140] discuss the suitability of particle filters in

state space analysis, neural network training, dynamical model selection.

Bergman, N [142], Doucet, A., de Freitas, N. and Gordon, N [143], Nordlund,
P.J [144], Yaakov Bar-Shalom and Xiao_Rong Li [145] provide the
computational theory including Sequential Monte Carlo Methods which is
further developed and refined for the modeling/identification problem in the

thesis.

Chuan Li, Yun Bai, Xianming Zhang, Hongjun Xia and Jing Chen [146],
Katsumi Konishi, Hiroaki Kato [147], Cao Wen-Mmgl Lu Feil Faig Hao' [148],
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Gustavo Camps-Valls, Manel Martinez-Ramén, José Luis Rojo-Alvarez,
Member, IEEE, and Jordi Mufioz-Mari [150], Byung-hwa Lee, Sang-un Kim,
Jin-wook Seok and Sangchul Won [152], Ali, M. Ashfaq and Chr. Schmid [153],
Xiaodong Wang, Weifeng Liang, Xiushan Cai, Ganyun Lv, Changjiang Zhang
and Haoran Zhangetal.[154] suggest some new approaches in system
identification using vector machines, RLLM networks, DBF networks, various

nonlinear programming approaches etc.

With this background and recent developments, the thesis has implemented
various identification/ modeling techniques for nonlinear systems. It also developed
and suggested certain new approaches for the blind identification of nonlinear
system and improvements in some of the currently available techniques and
provided a comprehensive evaluation report of these methods based on a number of

evaluation criterion/performance measures.

It is expected that the outcome of this will enable the development as well as
evaluation of models/ parameter identification methods for various classes of
nonlinear systems from control engineering to financial data analysis and

forecasting.
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Chapter 3

NONLINEAR SYSTEM MODELING USING
NEURAL NETWORKS

Chapter 3 discusses the use of neural network models like SLP, MLP and RBF in blind
identification of nonlinear systems with SISO and MIMO cases. Results of the modeling using
the well known Back Propagation algorithm are presented. The chapter also introduces the
RNN for modeling the combined state and parameter estimation.
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3.1 Introduction

The function approximation capability of artificial neural networks can be
very effective in designing efficient system identification models and
controllers for non-linear systems [4, 6, 8, 9]. The recent emergence of the
neural network paradigm as a powerful tool for learning complex input-
output mappings has stimulated many studies in using models based on
neural network for identification of dynamical systems with unknown non
linearity. For neural based identification, there are two main issues that
stand out: one is the choice of the model architecture to be adopted for

system identification, and the other is the choice of the learning algorithm.

It is well known that a wide class of discrete-time non-linear systems can be
represented by the non-linear auto regressive moving average with
exogenous inputs (NARMAX) model [21, 68]. The NARMAX model provides a
description of the system in terms of a non-linear functional expansion of
lagged inputs, outputs, and prediction errors. As given in section 1.1.3, the

parameterized form gives,

y(t+1) = g(y(t—1),...y(t —n), x(t —1),....x(t—m),e(t -1),....e(t —k),4)" (3.1)
where, y(t), x(t) and e(t) are the output, input and the exogenous noise

components. ¢ is the parameter set viz. the weights.
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The mathematical function describing the exact physical behavior of a real-
world system can be very complex and its exact form is usually unknown. So
in practice, the modeling of a real world system must be based on a chosen
model of known functions. A desirable property for this model set is the
capability of approximating a system to a prescribed accuracy.
Mathematically, it also requires that the set be dense in the space of
continuous functions. Polynomial functions offer one obvious choice having
the above property. On the other hand, since the derivation of the NARMAX
model was independent of the form of the non-linear function, other
choices of functional approximation also stand as eligible candidates to be
investigated within this framework. Neural networks thus form an obvious
alternative, since they can be viewed just as another class of functional
representations [19-21]. When used for blind recognition, the model avoids

the input sequence x(k) given in equation 3.1.

yE+1) = gyt -2),...y(t —n), (t = 1),...et —k),¢)’ (3.2)
where, y(t),) and e(t) are the output and the exogenous noise components.

@ 1is the parameter set viz. the weights. Here again g(.).

3.2 Nonlinear data sets (Systems) used for analysis

To study the performance of the learning algorithms in evolving the most

stable parameterized model relies on typical data sets generated from
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systems which are representative of the real world situations. Many
nonlinear systems are modeled using each of the algorithms. Four entirely
different systems are selected in order to check the consistency in
performance of the algorithms. If the model performs equally well for all the
four systems it should perform well for any of the real world nonlinear

systems. The selected nonlinear systems are,

y=sin (t2+t)
Real world systems: Ambient noise in the sea
Acoustic source ‘A’
Acoustic source ‘B’

Which are described and plotted in Fig 3.1.
Data set-1, sin( }{+}{

AN

n 300 400 B0l
samples

Fig 3.1 Plots of the four nonlinear data sets used for modeling
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Data set-2 Record of ambient noise in the sea

| | 1 |
1l s00 1000 1500 2000 2500

Data set-3 Record of Acoustic source-'4)
2 T T T T T T T T T
1 L .
|:| -
Ak _
-2

| | | | | | 1 | |
a o0 Zoo 300 400 S00  BOO YO0 800 SO0 1000

Data set-4 record of Acoustic source-B'
2 T T T T T T T T T

1 | 1 | | | | | |
a 00 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Data set -1 is generated from a well known mathematical equation viz. sin
(t+t?), with no noise components present in it. Data set -2 consists of data
from the ambient noise recorded from sea. The ambient noise represents a
typical nonlinear process to be used in the demonstration of the algorithm.
The data sets 3 and 4 are from two acoustic sources, which also fall into the

category of non linear systems.
3.3 System Identification Using SLP Networks

As the first step in understanding the function approximation capability of
the neural network systems, a Single Layer Perceptron network with a
prescribed nonlinearity, is trained with the lagged output data of the system
to be modeled. In the SLP structure, illustrated in Fig 1.4 and reproduced as
Fig 3.2 for convenience, there is only one layer of neurons with the activation
function and a single output neuron Fig. 3.2 b which provides the output
sample at an instant, as a function of a number of past output and noise fed to
the network [16, 17, 22, 24]. The activation functions used for the analysis
are log sigmoid and tan sigmoid with delta rule as the learning method. In the
case of nonlinear blind identification the lagged inputs in Eqn. 3.1 are
replaced with lagged noise vector. l.e. lagged outputs and noise components

alone will be presented to the network input.

Division of Electronics, SOE, CUSAT Page 3.5



Chapter 3 Nonlinear system modeling using neural networks

oft) —f
So N\
_A : y(t)
:40_’ A » Single node, |y,
A single layer
— o A » Perceptron
c Q3 I
a A g ! /'
—r)— A
—o— A
_A |
(a) Structure of SLP (b) SLP for modeling the time series of Equation 3.2

Fig. 3.2 Single layer perceptron in modeling time series
3.3.1 Delta Rule for weight update in SLP

The performance of the network with various numbers of neurons in the
layer were analyzed and compared. The model performance with 5, 10, 15
and 20 neurons were observed and the optimal structure is taken as the one
which has given the least mean square error (MSE). It is observed that the
SLP with 15 neurons and tan sigmoid activation function has given the least
MSE and further increase in the number of neurons does not give any
obvious improvements in the MSE. The delta learning rule is used here for

updating the network weights, which is described below.
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The delta rule is derived to minimize the error in the output of the

perceptron through gradient descent. The error for a perceptron

with J outputs can be measured as,

E=Y -y’ (33)
where ¢ is the desired or target JValue and y; is the value generated by the
model described in Eq. 3.2. In this case, it is desired to move through "weight
space” of the neuron (the space of all possible values of all of the neuron's
weights) in proportion to the gradient of the error function with respect to
each weight. In order to do that, the partial derivative of the error is
calculated with respect to each weight. For the 2h weight, this derivative is
only concerned with the jth neuron, and one can substitute the error formula

above while omitting the summation[90]:

1 :
ol =, -y,
E_M (3.4)

ow;; ow

ji ji
The final equation for the gradient is arrived as:

oE :
—=—(t;-y;) g (h)x (3.5)
aWji ] ] ]
As noted above, gradient descent tells that the change for each weight should

be proportional to the gradient. Choosing proportionality constant o and
eliminating the minus sign enables to move the weight in the negative

direction of the gradient to minimize error and gives the target equation for
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the j* neuron:  Aw, =a(t, - y,)g, (h)x, (3.6)
3.3.2 Single Input Single Output (SISO) System Modeling Using SLP
Network
1 ‘\ T T T
r1 II| 4 |
D5} ﬂllr ! {0 | |'| |
{ | i | j
Jm | |
0 . | . ] !
05} I. J ) A
1l A I | | h I |
4 LM ok oo W
0 100 200 300 400 500 600
The actual {red) and network produced (black) outputs of SLP
1 T T T T T
05t -
0
m
0
_D_E 1 1 1 1 1
0 100 200 300 400 500 600

samples
Fig.3.3 Actual and network output and the error vector (below) of the SLP network
A neural network with 15 neurons and tan sigmoid as the activation function
was chosen to take care of the system behavior. The results obtained with

nonlinear system, data set-1, y=sin(t+t?) are summarized in Fig.3.3 and 3.4.
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MSE for the SLP network
u.m T T

0.035

0.03

0.025

msel1s

002

0015

I]_D‘I 1 1 1 1

epoch
Fig.3.4 Norm of the error vector over the epochs in SLP network
The overall performances of the SLP network cannot be considered superior,
but is capable of system mapping to certain extend with satisfactory MSE
performance. It can be noticed that the overall MSE could come down to the
order of 0.0236. As SLP shows a divergent behavior as shown in Fig 3.4,
better structures with more approximation capabilities must be adopted for

consistent model performances. Such options are discussed in the following

sections.
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3.4 System Identification Using MLP Network

A Multi Layer Perceptron (MLP) network can approximate an arbitrary
nonlinear map and is completely determined by the network parameters
such as the connection weights and thresholds. This suggest that the MLP
networks can be used to construct the nonlinear maps related to the system
identification operator say F(.) where F(u(n)) is the network output and our
aim is to minimize the norm of the error vector F(u(n))-Y(n) with Y(n) as the
actual system output. Without loss of generality, the system represents the
following model: [8-10, 25, 28].

y(t+1) = g(y(t=1),....y(t —n),x(t =1),....x(t —m),et —1),...e(t—k),¢)" (3.7)
This is an NARMAX model. The MLP network constructing the system
mapping is presented in Fig. 3.5. A multiple input multiple output (MIMO)
system has also been trained using the same structure. In blind identification

the lagged inputs are avoided, keeping noise and output vectors retained.

- Tin+10)

EEE—

Uim)

———™

20 jLii]
_ Tin)
Xl SYSTEMTO BE
p|  DETEFED .

Fig. 3.5 MLP Neural network for nonlinear System Identification
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Multilayer perceptrons have been applied successfully to solve some difficult
and even linearly no-separable problems, by training them in a supervised
manner with a highly popular algorithm known as the error back-
propagation algorithm [90]. This algorithm is based on the error - correction
learning rule based on the gradient descent. As such it may be viewed as a
generalization of an equally popular adaptive filtering algorithm: the Least
Mean Square (LMS) algorithm. The development of the back - propagation
algorithm was a landmark in neural networks, in that it provides a

computationally efficient method for the training of multilayer perceptrons.
3.4.1 Back Propagation Algorithm

The back propagation is a gradient descent method for training the weights
w in a multilayer artificial neural network.. The neural network then builds
the functional map,
y=f(x,w) (3.8)

The back propagation process consists of two passes through the different
layers of the network, a forward pass and a backward pass. In the forward
pass, an input vector (lagged outputs and noise vectors) is applied to the
input node of the network and its effect propagates through the network,
layer by layer. Finally a set of output y(n) is produced as the actual response
of the network. During the forward pass the synaptic weights w of the

network are all fixed. During the backward pass, the synaptic weights are all
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adjusted in accordance with error correction rule [90]. Specifically, actual
response of the network is subtracted from the desired response to produce
an error signal. This error signal is then propagated backward through the
network, against the direction of synaptic connections - hence the name
“error back propagation”. According to Back propagation Algorithm, outer
layer weights are adjusted first and the hidden layer weights next;

considering the updated outer layer weights.

Actual response of the network is subtracted from a desired output to

produce an error signal defined as,

e(n)=y(n) - Jy(n) (3.9)

The instantaneous value of the error energy is defined as,
E(m) = (e(n)? (3.10)

The average squared error energy is obtained by summing E(n) over all n

and then normalizing with respect to the set size N, as shown by

Eav=%iE(n) (3.11)

Eqv represents the cost function as a measure of learning performance. The
objective of the learning process is to adjust the free parameters w of the
network to minimize Eq. It is a measure of how to choose the parameter

(synaptic weight) vector w of an adaptive filtering algorithm so that it
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behaves in an optimum manner. It is required to find an optimal solution w*

that satisfies the condition,

E(wW*) < E(w) (3.12)

The problem can be solved as an unconstrained optimization problem as:

“Minimize the cost function E(w) with respect to the weight vector w”.

The necessary condition for optimality is
VE(W*)=0 (3.13)

where V is the gradient operator.

Starting with an initial guess denoted by w(0), generate a sequence of weight
vectors w(1), w(2),... such that the cost function E(w) is reduced at each
iteration of the algorithm, as shown by,

E(w(n +1) < E(w(n)) (3.14)
where w(n) is the old value of weight vector and w(n+1) is its updated

value. The algorithm will eventually converge to the optimal solution w*.
Following the method of steepest descent, the successive adjustments
applied to the weight vector w are in the direction of steepest descent, that is
in a direction opposite to the gradient vector V E(w).

w(n +1) =w(n) + Aw(n)

AW(n) = —nVE (w) (3.15)

To update the hidden layer weight vector v;
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v(n +1) =v(n) + Av(n)

(3.16)
Av(n) =—pVE(v)

where 1 is the learning coefficient, a small positive number.

3.4.2 SISO System Modeling Using MLP Network

The weights in the neural network were adjusted at every instants of time
using static back propagation learning algorithm [7, 12, 16, 61]. The gradient
method employed a step size of 0.08.The chosen nonlinear systems were
modeled using the above described structure. The outputs of the plant, model
and the norm of the error vector over epochs are presented in Fig 3.6. The
technique shows somewhat good approximation capabilities, even though
the process is somewhat time consuming. Here the samples of the output
vector is derived, each of which is function of the past samples of the input
and output. This means an auto regressive moving average with exogenous
input (NARMAX) model. The activation function used is the bipolar sigmoidal

function.

y(t+1) = g(y(t-2),....y(t —10),u(t —1),....u(t —10), e(t —1),.....e(t —10),¢)" (3.17)
The results obtained for the data set-2, ambient noise in the sea is presented
below to demonstrate the SISO case. The norm of the error vector is plotted

and is observed to be decreasing in magnitude so that the desired output and

the network output becomes almost the same.
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The details of the analysis are presented in Fig. 3.6 and 3.7.

desired

actual

| | | | | 1 | | |
100 200 300 400 A00  BOO Y00 300 S00 1000
samples

Training: 500 samples
“alidation ; 500 samples

errar

_DE | | | | | 1 | | |
o 100 200 300 400 500 wOO YOO SO0 SO0 1000

samples

Fig. 3.6 Network and desired output (SISO-upper), the error over the samples (lower)

Fig 3.6 shows the capability of SLP in modeling nonlinear systems along with
the error vector over the samples.
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Fig. 3.7 The norm of the error vector over 500 samples (SISO) for different model sizes

To design a neural network model with lowest modeling error, the training
and validation has been conducted for different model length p. The hidden
layer neurons are having the activation function “bipolar sigmoid”, while the
output neuron has linear activation function. The number of neurons in

hidden layer and number of input nodes are varied (defining the parameter

Division of Electronics, SOE, CUSAT Page 3.16



Development and Evaluation of Blind Identification Techniques for Nonlinear Systems

p) to check the performance in terms of Mean Square Error to obtain optimal

network design.

From the above results it is seen that there is no much improvement in MSE
even if the length p is increased, beyond 14. But the model 1 with the
parameter p = 4 is having large amount of error. So model 2 therefore is
selected as the optimal one. For the following implementations Model 2 (14
input neurons and 15 hidden neurons) is used as the model and different
algorithms are used to train the model to investigate the comparative merits
and demerits. The overall MSE is coming down to a value of around 0.02198

with the training as shown in table 3.1 below.

Table 3.1 Comparison between models of different sizes

Model Number of Number of Mean Square
input neurons hidden neurons Error (MSE)
1 4 5 0.10267
2 14 15 0.02905
3 18 20 0.02912
4 20 30 0.02198

3.4.3 MIMO System Modeling Using MLP Network

The same model was used to identify and train the network for multiple
inputs multiple output cases [85]. The selected four nonlinear systems itself

were used here also for the analysis and parameter identification problem. In

Division of Electronics, SOE, CUSAT Page 3.17



Chapter 3 Nonlinear system modeling using neural networks

this case also the network is trained for 100 times using the same network
parameters as in the SISO case. When the termination criterion for the
training is selected as a very small value for the error norm (10 -15), then also
the training required was less than 100 epochs. The results for a general case
of two input two output system modeling with data set-2 viz. the ambient
noise in the sea and data set-3 viz. the acoustic source-A are given in Fig 3.8

to Fig 3.11.

-1 —desired actual

| | | | | | | | |
0 1000 2000 3000 4000 S000 OO0 7000 S000 9000 10000
samples

Training : 2000 samples
“alidation ; 8000 samples

_I:I5 | | | | | | | | |
a 1000 2000 3000 4000 5000 wO0O0 7000 3000 S000 10000

samples
Fig. 3.8 First output of the MIMO system (data set-2 ambient noise in the sea) and the error
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It has been observed that, as the number of samples used for training is
increased, there is a slight improvement in the MSE performance as
demonstrated in Fig 3.9 and table 3.2

0.0s . . . . . . . . .

1 epoch : 500 samples
Training : 4 epochs
“alidation ; 16 epochs

0.0v

0.05

0.05

[ak}
Z 0.04

0.03

0.0z

0.o1

|
a 2 4 A g 10 12 14 16 18 20

epoch

Fig. 3.9 Norm of the collective error vector for the output in Fig 3.8
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Table 3.2 MSE for different training and validation set size

Number of T:lrir:il;ifoif Mean Square
training Error (MSE)
samples samples
500 500 0.012
500 2000 0.0115
2000 8000 0.0038

network structure.

1

the data set-2 for

the same

— actual

0.6

|
s00

samples

1
1000

1400

0.4

0.2

errar

o
0.2

0.4

Training: 1000 samples

Yalidation : 500 samples

o

|
500

samples

1
1000

1500

Fig 3.10 Second output of the MIMO system (data set-3 acoustic source-A ) and the error
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As part of the validation, here also various numbers of training and
validation data size have been used and the MSE in each case is recorded. The

results obtained and the MSE are presented in Fig 3.11 and Table 3.3.

0.0 T T

0.045

0.04

0.035

0.03
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z 0.025

0.02

0.014

0.m

0.005

epoch

Fig. 3.11 Norm of the collective error vector for the output in Fig 3.10
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Table 3.3 MSE for different training and validation set size

Number of S:lr;il;i;oif Mean Square
training Error (MSE)
samples samples
1000 500 0.0175
1000 7000 0.0191
2500 2500 0.0085

3.5 System Identification using RBF network

Radial Basis Function (RBF) network is alternative of the MLP network for

performing a non linear mapping. As a result the RBF network can

immediately be employed to find the blind system identification operator

F[.]- This network consists of three layers (Fig 3.12) [70-76]. The input layer

has neurons with a linear function that simply feed the input signals to the

hidden layer. The input vector u(n) used here also is the zero-mean Gaussian

white noise with lagged output and error, as to have the modeling issue

described as,

Fig: 3.12 Structure of the RBF network
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The RBF network structure explained in Fig. 3.12 was used for the system
identification process. It was observed that RBF network also performs in a
satisfactory manner in this contest. For the determination of the output layer
weight two methods are tried and the results obtained are summarized

below.

3.5.1 RBF Network with Pseudo inverse Matrix Method
In this approach, the center vector is updated using the clustering
algorithm which is described below [15-16, 90].The training is carried out

in two phases for the RBF network.
(1) Training Phase-1

e Initialize the centre vectors (; s as a random subset of the input vector
space Xi
e One cluster center C;is updated every time an input vector X; is applied to
the network.
e The cluster nearest to X; has its position updated using
Ci(new) = Cj(old) + o[Xi-Cj(old)] (3.19)

where a is the learning rate parameter. It is taken as 0.025 in this problem.

e Notice that the cluster center C; is moved closer to X; because this

above equation minimizes the error vector (X;-C;).
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e After this adaptation, the output vector of the hidden layer is

calculated to be
hm=e,(x,-c)) (3.20)
for all the hidden layer neurons. Here a multivariate Gaussian function has
been selected as the activation function and the output of which is given by,

. 12
hj :exp["le;gjn J (321)

O

The output element of a hidden neuron, h; has a significant value if the
Euclidean distance is the minimum and thus at a time only one hidden
neuron output is significant.

(2) Training Phase-I1

If H represents the hidden layer output matrix / vector , d the desired o/p
vector, and W, the output layer weight vector, then it is possible to write W,
as,

W, = (HTH)-1 HT d (3.22)

Here the output layer weight is obtained in a single step and there is no
iterative process to obtain them. Even though the weight vector calculation is
very easy, the result was not very encouraging. The error is larger compared
to MLP network. The pseudo inverse technique is useful when the pseudo
inverse exists and the H matrix is not an exact square matrix to take its

inverse. The result corresponds to data set-1 is summarized in Fig 3.13and
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3.14. The network produced output is deviated from the desired or plant

output as error involved is larger.

1 f iy i I \ I
i (A
i \ : ' ‘
0.5¢ ‘ﬂ \‘ | ) —
(1 - | \
0 ‘ | \ | -
I I \ ‘
0.5 | | | L \’
A \ B!
_1 L L NS Vi L Y V
0 100 200 300 400 500 600
samples

0.5

0

S
@

-05¢ i

_l 1 L L 1 L

0 100 200 300 400 500 600
samples

Fig 3.13 Superposition of model and nonlinear system outputs for data set-1 (RBF)

Division of Electronics, SOE, CUSAT Page 3.25



Chapter 3 Nonlinear system modeling using neural networks
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M=E of FBF network
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Fig 3.14 Norm of the error vector for the output in Fig 3.13

3.5.2 RBF Network with supervised weight updating

In this approach the center vectors are updated using the same clustering
algorithm is used in the previous method The output weight matrix W, is
now obtained using the standard back propagation algorithm. This step is
required if the pseudo inverse mentioned in the previous section does not

exist. The results were more encouraging in this as the weights are also
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adapted with an intention to reduce overall error (Fig 3.15 and 3.16). The

steps involved in this method are,

% In the first phase update the center vectors using the clustering
algorithm of section 3.4.1 until all the (;s stabilize.
% In the second phase update the output layer weight vector W, using

the error back propagation algorithm.

2 T T
—— desired actual
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0 500 1000 1500 2000 2500
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Training:500 samples
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_05 1 1 1 1
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samples

Fig 3.15 Superposition of model and nonlinear system outputs for data set-2 (RBF)
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Fig. 3.16 Norm of the error vector for the output in Fig 3.15

It has been noticed that, with supervised weight updating the error has
reduced to better small values compared to the first approach. The overall
performance of RBF network is almost comparably to that of MLP networks
and not much superior on MSE performance. In both the cases, the
learning/training algorithm used is the error back propagation method.
These examples generally demonstrate the non linear mapping capability of

neural networks.

Division of Electronics, SOE, CUSAT Page 3.28



Development and Evaluation of Blind Identification Techniques for Nonlinear Systems

3.6 Conclusions

The chapter explored the capabilities of SLP, MLP and RBF neural network
structures for nonlinear system modeling for SISO as well as MIMO cases in
detail. Being a method on gradient descent, one has every reason to suspect
the optimality of the model defined by the parameter w (on account of
convergence to local minima). In the chapter to follow, therefore the problem
of estimating the system parameters i.e. w using some better approaches
including the Kalman estimation technique are addressed. Kalman
approaches for neural network training generally offers improvement over

the back propagation and its obvious demerits, to a great extend.

Division of Electronics, SOE, CUSAT Page 3.29



Development and Evaluation of Blind Identification Techniques for Nonlinear Systems

Chapter 4

ESTIMATION OF NETWORK PARAMETERS
USING THE KALMAN FILTER APPROACH

Chapter 4 discusses the use of the Kalman filter to estimate the weights of the neural
network. It is demonstrated that the predictor-corrector approach of the Kalman filter
ensures an improvement in the MSE during training and the MSE remains within limit
during validation also. In order to alleviate the well known problem of initial assumptions in
the Kalman filter, the EKF with EM is investigated. A comparison of the performance of the
basic EKF and its variations in the MSE sense is provided at the end.
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4.1 Introduction

The Kalman Filter is one of the most widely used methods for estimation and
tracking due to its simplicity, optimality, tractability and robustness [91-94].
The Kalman filter gives a linear, unbiased and minimum error variance
recursive algorithm to optimally estimate the unknown state of a dynamic
system from noisy data taken at discrete real-time. To apply the discrete
Kalman filter, the system under study should be represented by a set of
linear, finite dimensional state space equation. The Kalman filter uses a
complete description of the probability distribution of its estimation error, in
determining the optimal filtering gains. This probability distribution may be
used in assessing its performance as a function of the design parameters of
an estimation system. The theory is formulated in terms of state space
concepts, providing efficient utilization of the information contained in the
input data. Estimation of the state is computed recursively, i.e. each update of
the state is computed from the previous estimate and the data currently

available, so only the previous estimate requires storage [94].
4.2 Extended Kalman Filter

Kalman filtering is a prediction-correction algorithm and is derived based on

the optimality criterion of least squares unbiased estimation of the state
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vector with the optimal weight, using all available data information. The
Kalman Filtering process has been designed to estimate the state vector in a
linear stochastic difference model [95-96]. However, some of the most
interesting and successful applications of Kalman Filters are non-linear, i.e,,
the process and measurement models are given by equations of the form,
X1 = F (X, U, @) (4.1)
z, =h(x,,v,) (4.2)
where f and h are non-linear functions on matrices, ux is a deterministic
forcing function (regard it as an input), and the random vectors @x and w
again represent the process and the measurement noise and satisfy the same
conditions as for the simple Kalman Filter. If the model turns out to be non-
linear, a linearization procedure is usually performed in deriving the filter
equations. i.e. the system is linearized about a trajectory that is continuously
updated with the state estimates resulting from the measurements. The new

filter (Fig. 4.1) obtained is called Extended Kalman Filter (EKF).

zk 4 LK L+ I“k“:
- +
h,(.) £ 1() fe— delay
X" k/k-1 X k-11k-1

Fig. 4.1 Block diagram of Extended Kalman Filter
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In order to be consistent with the linear model, the initial estimate x*0 =
E(x0), x" 10 = f (x*0). Expanding the functions f and h about x"kx+1, along
the Taylor series, one gets the following equations for the Extended Kalman

Filter (derived from the linear filter)[95-97].

Fork=1,2,............

Fi = [0 fic1 (xx1") /0 Xk-1] 5 Hk = [0 hk (Xxk-1”) / 0 Xx] (4.3)
State update Xijk-1 = f( Xk—1|k—1)+ Wy (4.4)
State co-variance Pt = Frer PreapetF e + Qs (4.5)
Gain computation Li=P,;; H', (H Py H  + RJ™ (4.6)
Co-variance update Py, =(I - L, H )Py (4.7)
State estimate X = Xq + Ly [2 = h(Xye1) | (4.8)

Enter prior estimate X"gu
And error covariance Py

Compute  Kalman gain

K= Poi HUH Prws Ho* RO

L = " Update estimate with measurement
N1k = Pk Sk !

- A e ~
P;+1rx = (I)x Pm (I)i + (Qk xf( - -Y,‘T{'.-";}T{'—l T K ('Zk h( .T]{, -""l](_l)'

Compute Error Covariance for updated estimate

Puk=(lrx_Kst;)P;m-1' T

X.ll.l'l] X.l.fl

Fig.4.2. Block schematic of Extended Kalman Filter Algorithm

Division of Electronics, SOE, CUSAT Page 4.3



Chapter 4 Estimation of network parameters-the Kalman approach

4.3 Formulation of the EKF algorithm for system
identification

The investigation of extended Kalman filter (EKF) as the basis for an RNN
training algorithm has shown very good results, in terms of number of
training data and the total training time [114]. The training algorithm based
on EKF requires only smaller training data than pure gradient descent
algorithm. [102]. Using the same information as the gradient descent
algorithm , the EKF algorithm with appropriate simplifications have
modest computational needs for training a FF and an RNN. The RNN
training can be viewed as a parameter estimation problem. The only problem
lies in the computation of derivative of network output with respect to
trainable weights. The training is formulated as a weighted least square
minimization problem, where the error vector is the difference between
functions of network output nodes and the desired values of these
functions. The desired vector at time k is given by d(k) = [di(k)........ dn(k)]T.
Let h(k) denote a vector of functions of the network’s output y(k). But
d(k) and h(k) are of length N.

Consider the pair of equation that serve as the basis for the derivation of the
EKF family of neural network training algorithm. A neural network behavior

can be described by the following nonlinear discrete time system.

w(k+1) = w(k) + w(k) (4.9)
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y(k) = h (w(k),u(k),v(k-1) ) + v(k) (4.10)

The first equation states that the state of the neural network is characterized
as a stationary process corrupted by process noise ‘w’, where the state of the
system is given by network weight parameter ‘w’. The second equation which
is the measurement equation represents the network’s desired response
vector ‘y’ as a nonlinear function of the input vector ‘u’, the weight parameter
vector ‘w’. The measurement is characterized as a zero mean, white noise
with covariance given by E[v(n)v(n)T] = R(n). Similarly process noise is
characterized as zero-mean , white noise with covariance given by

E(w(n) w(n)")=Q(n) [90].

The training problem using Kalman filter theory is described as finding the
minimum mean squared estimate of the state w using all observed data. The

solution is given by the following recursion.

System dynamics matrix Fk=I [identity matrix] (4.11)
Measurement matrix ~ H, = % lw = wigjk-1 (4.12)
A= [Re+ H Py H ] (4.13)

Ly = Py H," A, (4.14)

Wik = Wiier + L (K) - Y (k) (4.15)

Witk = Wigie # @i Prgre = Prjie = Lic Hi Prggeg + Qg (4.16)

The vector Wy represents the estimate of the state (i.e. weighs) of the system
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at arbitrary time step k. The estimate is a function of Kalman gain matrix Kx
and the error vector ex = yx - Jx, where yi is the target vector and yx is the
network’s output vector. The Kalman gain matrix is a function of the
appropriate error covariance matrix Px , a matrix of derivative of network’s
output with respect to all the weight parameter Hx and a scaling matrix Sk.
The scaling matrix Sk is a function of measurement noise and covariance
matrix Ry, as well as the matrices Hx and Px. The error covariance matrix
evolves recursively with the weight vector estimate and this matrix encodes
second derivative information about the training problem and is seen to be

augmented by the covariance matrix of the process noise Qx.

The training process has higher computational and storage cost as compared
to the conventional back propagation. However the algorithm converges very
fast. In Kalman algorithm, the update procedure for weight vectors depends
on all the information available from the start up to the current training

sample.

4.4 Performance analysis of models with EKF

The same nonlinear systems as used in BPA and RLS are modeled using EKF.
For all these systems the model size and structure used is same, to make the
comparison of performance easy. I.e. MLFFN with one hidden layer, 14 input

neurons and 15 hidden neurons. The activation function used in hidden
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neurons is “bipolar sigmoid” and output neuron is linear. The results

obtained with EKF modeling is presented in the following sub sections.

4.4.1 Nonlinear system with outputy = sin (t2 + t)

The overlapping of the actual and model outputs along with the error vector
over the samples is presented in Fig 4.3. The MSE appears in Fig 4.4. Table
4.1 gives the MSE obtained for the same model with different training and

validation data sizes.

2 T T T T T T T T
desired actual
1 -
1]
Ak 4
_2 | | | | | | | |
1] 100 200 300 400 500 /00 70 500 500
I:IE T T T T T T T T
Training:B00 samples
04k Yalidation : 300 samples i
5 02} i
ek}
o
_Dz | | | | | | | |
o 100 200 300 400 500 g0 7aa g00 800

samples
Fig. 4.3 Superposition of model output and desired output
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¥ 10
? T T T T T T T
g 1 epoch: 100 samples |
Training : B epochs
“alidation ; 3 epochs
5 L .
4 - -
[ah}
o
£
3 - -
2 - -
1 L .
|:| L 1 t |
1 2 3 4 5 B 7 g g

epoch
Fig 4.4 The MSE Vs data samples

Table 4.1 MSE for different training and validation set size

Mean Square
Training Samples Validation Samples
Error
300 300 4.5611x10+
600 300 9.185x10-5
1000 1000 4.2984x10+
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4.4.2 Selection of P(0/-1) and R

Initial value of state covariance P(0|-1) and measurement noise covariance
Rk has a role in the accuracy of the model. So the Mean square error for the
model at different values of P(0|-1) and Rxare evaluated. From the results it
is seen that for minimum error P(0|-1) should be high (from 1 to 10,000) and
the value of Rk should be small. So the value of Ry is chosen as 0.01 and

P(0]-1) as 100 in the modeling of above system.

I:II:IB 1 1 1 1 1 1 1

0.07

Rk =0.01
Training : 500 samples

0.06 Validation : 500 samples .

MSe npst

0.04

0.03

0.02

0.01

I:I 1 1 i 1 | |
1 2 3 4 ) b 7 g 3

10000 qgog 100 10 1ppey 01 001 0001 0.0001
Fig. 4.5 Mean Square Error Vs P(0|-1)
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I:II:IB T T T T T T T

0.0s
F0~17 =100
Training : 500 samples

o7 “alidation ; 500 samples

M=E 0.05
0.05
0.04
0.03
0.02

0.0

I:I 1 | I I r——————"T7T

1 2 3 4 5 B 7 5 E
10000 1000 100 1g 1 0.1 ool 0001 0.0007

Fig 4.6 The Mean Square Error Vs Ry

Fig 4.5 and 4.6 show the dependency of EKF algorithm on the initial values of
state covariance P(0|-1) and measurement noise covariance Ry on the overall
performance of the same. This in fact is the major challenge in the training
process and mechanisms to minimize such dependencies should be identified

to improve the techniques.
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4.4.3 Ambient noise in the sea

The overlapping of the actual and model outputs along with the error vector
over the samples is presented for the second data set in Fig 4.7. The MSE
appears in Fig 4.8. Table 4.2 gives the MSE obtained for the same model with

different training and validation data sizes.

0.5F -
|:| n
D5F
a1l —— desired |
— actual
-1.5

| | | | | | | 1 |
EIED 1000 2000 3000 4000 A000 BOOO 7OOO  S000  S000 10000

Training: 2000 samples
Yalidation ; 8000 samples 7

0.4

Brrar

0.4

| | | | | | | 1 |
a 1000 2000 3000 4000 &000 EOOO 7OOO 8000 S000 10000

Fig. 4.7 Superposition of model output and desired output, error vector

Division of Electronics, SOE, CUSAT Page 4.11



Chapter 4 Estimation of network parameters-the Kalman approach

e
[y ]
T

1 epoch : 500 samples
Training: 4 epochs
4r Yalidation : 16 epochs 7

L
m
T

=1
r-d
m
T

=
[y ]
T

1
10 12 14 16 18 20
epoch
Fig 4.8 MSE Vs data samples

=
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=
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Table 4.2 MSE for different training and validation set size ( Ambient Noise)

Training Samples Validation Samples Mean Square Error
500 500 1.5x10-3
500 2000 2.2x103
2000 8000 5.9013x104
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4.4.4 Acoustic source-'A'

For the third data set, the overlapping of the actual and model outputs along
with the error vector over the samples is presented in Fig 4.9. The MSE
appears in Fig 4.10. Table 4.3 gives the MSE obtained for the same model
with different training and validation data sizes.

3 T T
desired

actual

2 1 1
a &00 1000 14500
samples
1 T T
D AT
5 .
= -1F Training : 1000 samples T
Yalidation : 500 samples
2t 4
-3 ] 1
a 500 1000 1500

samples

Fig.4.9 Superposition of model output and desired output, error vector
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0.35 . .

0.3

0.24

0.2

mse

0.15

0.1

0.05

1 epoch : 150 samples
Training : 1000 samples
Yalidation : 500 samples.

epoch
Fig 4.10 MSE Vs data samples

Table 4.3 MSE for different training and validation set size (Acoustic source-A)

Training Samples

Validation Samples

Mean Square Error

1000 500 0.0122
1000 7000 0.0139
2500 2500 0.0054
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It can be observed that if sufficiently large data set is used for training, the

overall MSE can be brought down to acceptable levels in the network models.

4.4.5 Acoustic source-'B'

For the third data set, the overlapping of the actual and model outputs along

with the error vector over the samples is presented in Fig 4.9. The MSE

appears in Fig 4.10. Table 4.3 gives the MSE obtained for the same model

with different training and validation data sizes.
2 T 1

— desired actual

1 | | | | | | 1
a 1m0 200 500 400 s00 kOO Y00 800
I:I. 2 T T T T T T T T

|
500

1000

errar

Training : 500 samples
Yalidation : 500 samples

0.4

_DE | | | | | 1 | |
1] 100 0 200 300 400 500 ®OO 700 800
samples

Fig.4.11 Superposition of model output and desired output, error vector

|
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I:II:I3 T T T T T T T T T

1 epoch : &0 samples
Training : 10 epochs
Yalidation : 10 epochs

0.025

0.0z

[ak}
z 0.015

0.m

0.0o05

a 2 4 ) g 10 12 14 16 18 20
epoch

Fig 4.12 MSE Vs data samples

Table 4.4 MSE for different training and validation set size (Acoustic source-B)

Training Samples Validation Samples | Mean Square Error
1000 500 0.0123
1000 7000 0.0141
2500 2500 0.0014
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While doing the implementations, it is noted that the initialization of P(0|-1)
is having an important role in convergence. The mean square error is
minimum when P(0|-1) is having values in the range 1 to 10,000 and MSE is
high if P(0|-1) is initialized with value less than 1. By conducting experiment

for different values of P(0|-1), the effect of this in Kalman Gain is evaluated

and plotted as in Fig 4.13.
260 . . . . . . . . .
P(D/-1) Kalman Gain Lk (norm of Lk) for different P{0/-1T)
— 10000
200+ —— 100 ]
— 1
narm Lk 0.01
150 0.0001
100 h I
50
|:| L.;—L;Lmuu“h_ e mbie i, SRR e VY U ANt Y ._d*m, e

0 &0 100 150 200 250 300 350 400 450 5o DA

Fig 4.13 Kalman Gain for different values of P(0|-1)
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Here the influence of initial value of state covariance P(0|-1) in Kalman gain
(norm of L) is analyzed. Kalman gain is high for higher values of P(0|-1) and
low for lower values. The updating of weights is not proper if the Kalman
gain is less. This also supports the result where the MSE is minimum for

higher values of P(0|-1).

4.5 EKF algorithm with Expectation Maximization

A well known limitation of Kalman estimators is the assumption of known a
priori statistics and initial states and covariance to describe the
measurement and process noise. In many applications, it is not
straightforward to choose the right noise covariance matrices. More over the
matrices of parameters governing the linear transformations in the
measurement and process equations are typically unknown. Unfortunately
the optimality of the Kalman Filter often hinges to the designer’s ability to
formulate these matrices a priori. To circumvent this limitation and ensure
optimality, it is important to design algorithms for estimating the noise co
variances and parameter matrices without leading to a degradation in the
performance of the Kalman estimator. Expectation Maximization (EM)
algorithm is a method to calculate the initial states and covariance avoiding

the difficulty in setting proper values for these by trial and error [107-108].
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4.5.1 EM Algorithm

A well known limitation of Kalman estimators is the assumption of known a
priori statistics and initial states and covariance to describe the
measurement and process noise [92]. In many applications, it is not
straightforward to choose the right noise covariance matrices. More over the
matrices of parameters governing the linear transformations in the
measurement and process equations are typically unknown. Unfortunately
the optimality of the Kalman Filter often hinges to the designer’s ability to
formulate these matrices a priori. To circumvent this limitation and ensure
optimality, it is important to design algorithms for estimating the noise
covariances and parameter matrices without leading to a degradation in the
performance of the Kalman estimator. An algorithm based on the Expectation
Maximization [108] is a proposed to calculate the initial states and
covariance, instead of trial and error approach. To outline the EM algorithm
to state space learning, the following nonlinear state space representation is
focused onto [102-103].
w,,, = Aw, +d, (4.17)

Y = 9(Wy, X, ) +Vy (4.18)
The EKF algorithm for training MLPs suffers from serious shortcomings,

namely choosing the initial states and covariance(y,[]), the noise covariance
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matrices R and Q and the state dynamics matrix A. EM algorithm shall be
employed to optimize initial values of @={ 1 [[,RQ, and A}[91].

After computing the forward estimates in EKF with N samples, the “Rauch-
Tung-Striebel smoother” is employed to perform the following backward

recursions [95]

Je1 = PietATP Ty (4.19)
Wi-1in = Wie1Jk-1(WikiN-AWie1) (4.20)
Proiv = Pk-1#Jk-1(Prin-Prik-1)) Tk-1 (4.21)

Pii-11n = PifTi-1#]k(Prs 1,k N-AP1 )] Ti-1 (4.22)

where K=Kalman gain, Gi=Jacobean of the measurement function g of

equation 4.18. The

backward recursion as above is initialized as given below: Wy = Wy,

PN/N=PN and PN,N.1|N=(I-KNGTN]APN.1. (4.23)

The backward recursion results in Wiy and Pin, which can be used to

compute @={ 1, [[,RQ, and A}, as given below:[91].

u=Win, I1=Pyn and (4.24)
1 N
R= 2R G+ (v~ x(@wy %) (4:25)
1
A=N"Q= N C-NV Y )p=w, =P, (4.26)
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N
where, r=> ww, +P, (4.27)
k=2
A= ZW W, + Py (4.28)
N
and y=2 W, wW, +P, (4.29)
k=2

The simulation results in Fig. 4.14 to 4.21 show the dramatic improvement in
the performance of the EKF estimation algorithm, using the Expectation
Maximization. The performance of EM is analyzed for the same four

nonlinear systems.

4.6 Performance analysis of models using EKF withEM

The EM Algorithm is computationally intensive and it needs inversion of
matrices. When tried to implement for the same model structure as in EKF,
the covariance matrices become singular and inversion was not valid. So EM
is implemented for smaller model structure. Simple EKF and EKF with EM

are implemented and compared.

4.6.1Nonlinear system with output y = sin (2 + t)
Due to the requirement to invert of large matrices for large model sizes,
thesis chose to implement EM algorithm for smaller model structure, (6

inputs, and 5 hidden neurons) [9].
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EkF with EM Algarithm
2 T T T T T T T T T

desired

actual

1 1 1 1 1 1 1 1 1
] a0 200 300 400 S00  BOO FOO 8OO 900 1000
EkF alone.

2 T T

T
_ actual

(I I 1

S i i

_:2 | | | 1 | | | | 1
1l o0 200 300 400 s00  wOOD YO0 30O 500 1000

Fig.4.14 Superposition of model and desired output in the EKF and EKF with EM
algorithms
But the improvement in the performance of the order of 10-4 as shown in Fig
4.14 is quite impressive even with the reduced dimension. This itself shows

the improvement over simple EKF algorithm when EM is also incorporated.
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I:II:I3 T T T T T T T T
0075 — EKF with EM i
—— EKF alone
mse DU 1 epoch: 100 samples ]
Training : 500 samples
Yalidation 500 samples
0.015 +
0.01r
0.005 -
a

epoch

Fig 4.15 The MSE for EKF and EKF with EM algorithms

In the case of the first nonlinear system y=sin(t?+t), the average MSE is
4.13x10-* for EKF with EM and 0.0906 without EM as demonstrated in
figures 4.3 and 4.4.

Division of Electronics, SOE, CUSAT Page 4.23



Chapter 4 Estimation of network parameters-the Kalman approach

4.6.2Results of ambient noise in the sea

For the second data set, the overlapping of the actual and model outputs with

simple EKF and EKF with EM algorithms is presented in Fig 4.16. The MSE
appears in Fig 4.17.

1 EKF with EM Algarithrm

| | | 1 | | | | |
1l 100 200 300 400 500 wBOO YOO 500 500 1000

— desired

_2 | | | 1 | | | | |
1l 100 200 300 400 S00 OO YO0 300 500 1000

Fig.4.16 Superposition of model and desired output in the EKF and EKF with EM

algorithms
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I:II:II_'Ir T T T T T T T T
EKF
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1 epoch : 100 samples
mse Training : 500 samples
0.04 “alidation : 500 samples .
0.03 .
0.0z .
0.01 .
I:I 1 I I 1 I
) 5 7 a g 10
epoch

Fig 4.17 The MSE EKF and EKF with EM algorithms

For ambient noise in the sea, the MSE is 8.06x10-* for EKF with EM and
0.0045 without EM as shown in Fig.4.10, which shows the betterment in

performance to a good extend.
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4.6.3 Acoustic source-'A'

The overlapping of the actual and model outputs with simple EKF and EKF
with EM algorithms for the third data set is presented next in Fig 4.18. The
MSE in this case appears in Fig 4.19.

1 EKF with EM Algarithm

— actual

— desired

| 1 | | | | | | 1
a 100 200 300 400 500 wOO YOO SO0 500 1000

EKF
15 T T T T T T T T T

05k il ) -

0.5

| 1 | | | | | | 1
a 100 200 300 400 S00  wOOD YO0 300 500 1000

Fig.4.18 Superposition of model and desired output in the EKF and EKF with EM

algorithms
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I:II:IB T T T T T T T T
T EKF with EM
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0.06 | 1 epoch : 100 samples }
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oos | Yalidation : 800 samples ]

0.04

0.03

0.0z

0.01
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1 2 3 4 5 = 7 8 g 10
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Fig 4.19 The MSE for data set-3 with EKF and EKF with EM algorithms

For acoustic source- A, the average MSE that could be achieved is around 0.0065 for
EKF with EM and 0.0106 without EM. There is a very evident improvement with EM

as depicted in Fig 4.19.
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4.6.4 Acoustic source-'B'

The overlapping of the actual and model outputs with simple EKF and EKF

with EM algorithms for the fourth data set is presented next in Fig 4.20. The

MSE in this case appears in Fig 4.21.

5 | | | . | | | EII{F witr? Ehd
n — actual —— desired |
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|:| ]
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Fig.4.20 Superposition of model and desired output in the EKF and EKF with EM

algorithms
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1 epoch : 100 samples
mse Training : 500 samples

0ozl Yalidation : 500 samples i

0.014

0.m

0.005
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Fig 4.21 The MSE with EKF and EKF with EM algorithms

For acoustic source-B, the average MSE has come down to the range of
0.000174 for EKF with EM and 0.0014 without EM. A summary of the results
obtained for the two algorithms with the four data sets under consideration

is now consolidated in Table 4.5.
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4.6.5 Comparison between EKF based Methods for modeling

Table 4.5 Performance comparison of simple EKF and EKF with EM in the MSE sense

Mean Square Error (MSE) of
System
Simple EKF | EKF with EM
y=sin(t+t2) 0.0906 4.132x10+
Ambient noise 0.0045 8.06x10-4
Acoustic source ‘A’ 0.0054 0.0065
Acoustic source ‘B’ 0.0038 0.000174

From the above results it is seen that EKF algorithm converges faster and has
marginally good performance compared to the other algorithms. It is also
consistent for all the nonlinear systems modeled. The performance of EKF
can be increased further by EM algorithm. The algorithms in general give
good results and are computationally efficient and in problems where faster
convergence is required, as in adaptive filters and real world problems,

Kalman estimation has to be used.

4.7 Conclusion

This chapter discussed about Kalman Filter and implementation in the Feed
forward neural network. Four different nonlinear time series are modeled

using neural network and trained with Extended Kalman Filter algorithm. All
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the models converged with very small error. The performance of the models
is superior to that of back propagation algorithm. The performance is
consistent for the four different time series where different types of
nonlinearity involved, which indicates that the EKF algorithm is well suited
for nonlinear system identification in general. The dependence of mean
square error on initialization of states, process and measurement covariance
are also evaluated and the suitable values are found out by running the
simulations at different values (trial and error method). Expectation

Maximization technique is applied overcome this difficulty.

The results show that the performance of EKF is improved with EM
algorithm. But the computational cost is more. The EM algorithm constitutes
a good estimator of the noise covariance in stationary environments and,

hence, is well suited for the initialization of filtering techniques.

Different algorithms can be used to train the neural network model for
nonlinear system Identification. Such an algorithm ‘Maximum Likelihood

Estimation (MLE)’ is introduced in chapter 5.

The study of system identification is not comprehensive without phase plane
analysis. A mathematical model describing the dynamics of the system is the
state space model and can be implemented efficiently in a Recurrent Neural

Network. These concepts are well discussed in the chapters to follow.
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Chapter 5

NONLINEAR SYSTEM MODELING WITH
MAXIMUM LIKELYHOOD ESTIMATION

Chapter 5 introduces the Maximum Likelihood Estimation, a well established statistical tool,
of network parameters. The theory is extended for the training of ANN for nonlinear
modeling. Comparison of the performance is also made with the EKF methods developed in
chapter 4.
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5.1 Introduction

Many approaches are available to estimate the weights for training the
neural network model in nonlinear system identification. So far the Back
Propagation algorithm and Extended Kalman Filter algorithm have been
examined in details. Maximum likelihood is a well established procedure for
statistical estimation [99-100] and is implemented for modeling nonlinear
syatems and the performance is evaluated. In this procedure first formulate a
log likelihood function and then optimize it with respect to the parameter
vector of the probabilistic model under consideration [116-119]. The same

four nonlinear systems are used for modeling.
5.2 Maximum Likelihood Estimation

The term “maximum likelihood estimate” with the desired asymptotic
properties usually refers to a log of the likelihood equation that globally
maximizes the likelihood function L(x) [90-91]. In other words the ML
estimate xpy is that value of the parameter vector x for which the conditional

probability density function P(z/x) is maximum[115].
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The maximum likelihood estimate xmi of the target parameters x from N
independent measurements is the mode of the conditional probability
density function (likelihood function):

)

p(3)-— glﬁ[e( ) 51

(r)?

In the log likelihood function, log(P(z/x) ) = - %2 ( rk?), rx is the residual,
rk = (dx - zx) / ok ok is the standard deviation, dx-desired value and
zx - estimated value. Maximizing log likelihood function log(P(z|x)) is

equivalent to minimizing the negative log likelihood function L(z, x).

Switching over to the parameter w in place of X, and by using the negative
log-likelihood function L(z, w), the ML problem is reformulated as a

nonlinear least square problem:

Minimize(L(x, z))whereL(x,z) = ZN: r (5.2)

N | —

The ML estimate must satisfy the following optimality condition:

Ax L(z, wur) = J(wmi)T R(wmi) =0 (5.3)
R(w) is given by R(w)=[ri(w).......rn(w)]T (5.4)
where ry = (dk - Zx )/Gk,

and J(w) the N x n Jacobian matrix, and J(w)T = Ay r(w)T (5.5)
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The operator Ay is defined as, 4w = [ g/6w: ¢/dw: ...... g/own]T  (5.6)
One could employ many optimization methods to find the ML Estimate [12].

Two well known optimization techniques chosen are:
1. Gauss-Newton method [90]
2. Conjugate-Gradient method [90]

5.3 System modeling using Gauss-Newton Method

A feed forward neural network model similar to earlier cases is designed for
the identification of the same nonlinear systems and trained using Gauss -
Newton method. The Gauss-Newton method is applicable to a cost function

that is expressed as the sum of error squares.

E(w) =) -1 (5.7)

N1
=5
The error signal r(k) is a function of adjustable parameter vector w. Given an
operating point w(n), one could linearise the dependence of r(k) on w by
writing,

r (kw) = r(kw(n)) + [Or(k)/OW]Tw=wm) (W - w(n)), k=1,2,..n (5.8)

Equivalently, by using matrix notation one may write

ri(kw) = r(k, w(n)) + J(n)" (w-w(n)) (5.9)
The updated parameter vector w(n+1) is then defined by
w(n+1) = arg minw) { % ri(kw)? } (5.10)

Division of Electronics, SOE, CUSAT Page 5.3



Chapter 5 Nonlinear system modeling with maximum likelihood estimation

The squared Euclidean norm of ri(n,w) is,
Y% ri(nw)? =1/2 r(n)? +r(n)"J(n) (w-w(n)) + % (w-w(n))"J(n)"](n) (w-w (n)) (5.11)
Hence differentiating this expression with respect to w and setting the result

equal to zero, it is possible to obtain,

J(M)" r(n)+J(n)"J(n) (w-w(n)) =0 (5.12)
Solving this equation for w,
w(n+1) =w(n) - [J(n)" J(n)]* J(n)" r(n) (5.13)

which describes the pure form of the Gauss-Newton method.

However, for the Gauss-Newton iteration to be computable, the matrix
product J(n)T]/(n) must be nonsingular. To guard against the possibility that
J(n) being rank deficient, the usual practice is to add the diagonal matrix 61
to the matrix J(n)7J(n). The parameter ¢ is a small positive constant chosen to
ensure that, J(n)7J/(n) + 6l is positive definite for all n. The update equation
accordingly becomes,

w(n+1) =w(n) - (J(n)" J(n)+ 8I)* J(n)" r(n) (5.14)

where J(n) is the Jacobian matrix equal to 4w r(n)
5.4 Performance Analysis of MLE (Gauss-Newton)

The same set of four nonlinear systems, as in Chapter 4 is modeled with MLE

also. The performance analysis is done by plotting the mean square error in
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each case. Among the many systems modeled, the outputs of two nonlinear
systems are presented in fig. 5.1 to fig.5.8. The results are further used to get

a conclusion on the model accuracy, its consistency and generalization

LU l H“l”?l IH |

| |
a 200 400 BOO 800 1000 1200 1400 1600 1300 2000
1 T T

capability.

5.4.1 Nonlinear system y = sin(tZ + t)

A AR

Training : 1000 samples
stk alidation : 1000 samples ”
051

- | | | | | | | 1 |
o 200 400 GO0 800 1000 1200 1400 1600 1800 2000
samples

Fig.5.1 Superposition of model and desired output with the MLE algorithm and the error

vector (data set-1)
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Fig 5.1 shows the overlapped network and the model output for easy
comparison of the performance. The second plot is the error vector over the
training as well as validation samples. The overall MSE is plotted in Fig 5.2

below.

I:I1B T T T T T T T T

0.16

0.14

012

0.1

mse

0.0

0.06

0.04

|:||:|2 1 1 1 1 1 1 1 1

epoch

Fig 5.2 MSE for the result described in Fig 5.1
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The overall MSE in this case is coming down to around 0.06356 only,
compared to 0.0906 in EKF for the same nonlinear system. At the same time,
the consistency of the model over a number of the systems is found to be
generally good. The results obtained with the remaining data sets are

described in the following figures.

5.4.2 Ambient Noise in the sea

1 T T

—— desired - a tlual

o
[y |
T

Ak I ]

| | | | | | | | |
a 1000 2000 3000 4000 5000 wO0OOF 7000 8000 S000 10000
1 T T T T T T T

Training : 2000 samples ; “alidation ; 8000 samples

| | | | | | 1 | 1
a 1000 2000 3000 4000 5000 8000 7000 3000 9000 10000
samples

Fig.5.3 Superposition of model and desired output with the MLE algorithm and the error

vector (data set-2)
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0.06
0.05

E 0.04
0.03

0.0z

0.o1

|:| 1 1 1 1 |
1 2 3 4 ] a] 7 g 3 10

epoch

Fig 5.4 MSE for the result described in Fig 5.3

The average MSE for the first nonlinear system y=sin(t+t?), is 0.0635 for MLE
(G-N) and 0.0906 in EKF as demonstrated in figures 5.1 and 5.2. The MSE for
ambient noise in the sea is 0.0083 for MLE and 0.0045 for EKF algorithm.
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5.4.3 Acoustic source- ‘A’

desired attus

o
[y |
T

=
[y ]
T

| | 1 | | | |
a 1000 2000 3000 4000 5000 (OO0 7000 8000
samples

1 T T T T T T T
Training : 1000 samples “alidation 7000 samples

0.5

Brrar
=

0.5

| | 1 | | | |
a 1000 2000 3000 4000 5000 (OO0 7000 8000
samples

Fig.5.5 Superposition of model and desired output with the MLE algorithm and the error
vector (data set-3)
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0.018

0.016
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0.014
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Fig 5.6 MSE for the result described in Fig 5.5

The overall MSE for the acoustic source-A is around 0.0118
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5.4.4 Acoustic source- ‘B’

0 ] ) ey } .
D i 1|
0 ’ | ! [ | i I|'I
DA 1|I ! I f I S
b desired actual .
| | | | 1
5800 G000 Ba00 7000 7500
samples
I:IE 1 1 1 1 1
0.4 Training : 500 samples, Validation ; 10000 samples .
= 02§ .
E 0 | i
0.2 .
-0.4 1 ] ] |
a 2000 4000 =N 8000 10000 12000
samples

Fig.5.7 Superposition of model and desired output with the MLE algorithm and the error
vector (data set-4)

In Fig 5.8, the MSE corresponding to this result is presented. It can be noticed
that the MSE is coming down to around 0.005.
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0.015
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Fig 5.8 MSE for the result described in Fig 5.7

The overall MSE for the acoustic source-B is around 0.005.
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5.5 System Identification using Conjugate - Gradient method

The conjugate gradient method belongs to a class of second order

optimization methods known collectively as Conjugate direction methods
[90].

Let Eq(w) denote the cost function averaged over the training sample. Using
Taylor series,

it is possible to expand E.(w) about the current point w(n) on the
error surface,

considering the second order terms.

Ea(w(n)+A w(n)) = Eav ((w(n)) + g(n)" A w(n)
+1/2 Aw(n)T H(n) A w(n) + third and higher order terms (5.15)
g(n) = Ew(w) / W |w=wm) (5.16)
and H(n) is the local Hessian matrix defined by

H(n) = 0?2 Eqy (W) / OW? |w=wm) (5.17)
For the Minimization of equation (4.42), third and higher order terms are
neglected, differentiate w.r.t 4 w(n) and equate to zero, to obtain
Aw(n) =H(n)1g(n) (5.18)
However the computation of H(n) at every point w(n) is difficult. On the

other hand, the unconstrained minimization of the quadratic error
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function E, can be done using a set of A-conjugate vectors (S0,51,52.......5(w-

1)) is defined by

STASj=0fori#j (5.19)
The update equation is given by
w(n+1) =w(n) + {(n) S(n) n=0,1,2......W-1 (5.20)
where w(0) is an arbitrary starting vector and {(n) is a scalar defined by
Eq (w(n)+{(n) S(n) ) = min Eq (w(n) +{S(n)) (5.21)
where (is obtained from a one dimensional minimization problem.
{(n)=-SM)TA€n)/S(n)TAS(n): n=0,1,.....W-1 (5.22)
where €(n) is the error vector w(n) - w* (5.23)

But for the conjugate direction method to work, it requires the availability of
a set of A conjugate vectors (S(0), S(1) ... .... S(W-1)), and the final position w*,

which is not available. So the following procedure is adopted

It is a special form of conjugate direction method. Here the successive
direction vectors are generated as A-conjugate versions of the successive
gradient vectors of the quadratic function E.y as the method progresses.
Except for n=0, the set of direction vectors {S(n)} is not specified beforehand
but rather it is determined in a sequential manner at successive steps of the
method.

Define residual as the steepest descent direction:

r(n) =g(n) - H(n) Aw(n) (5.24)

Division of Electronics, SOE, CUSAT Page 5.14



Development and Evaluation of Blind Identification Techniques for Nonlinear Systems

Then to proceed S(n) is taken as a linear combination of r(n) and S(n-1) as
shown by,

S(n) =r(n) + f(n) S(n-1), n=1,2,....w-1. (5.25)
where f(n) is a scaling factor.
Similar to gradient direction method,

p(n) =-S(n-1)TAr(n) / S(n-1)T A S(n-1) (5.26)
Using equations for S(n) and pB(n) it is possible to define vectors S(0),
S(1),.......5(n-1). But equations need knowledge of matrix A. So it is required
to evaluate (n) without explicit knowledge of A.
The formula defining f(n),

B(n) =r(n)" (r(n) - r(n-1))/r(n-1)"r(n-1) (5.27)

This is known as Polak-Rebiere formula. A summary of the algorithm is now
presented next [90-92]
Initialization
Unless prior knowledge on the weight vector w is available, choose the initial
value w(0) as random.
Computation
1. For w(0), compute the gradient vector g(0).
2. SetS(0)=r(0)=-g(0)
3. Attime step n, use a line search to find {(n) that minimizes Eq({)

sufficiently, representing the cost function E,, expressed as a function of {
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for fixed values of w and S.

4. Testto determine if the Euclidean norm of the residual r(n) has fallen

below a specified value, that is a small fraction of the initial value r(0).
5. Update the weight vector w(n+1) = w(n) + {(n) S(n).

6. For w(n+1), use back propagation to compute the updated gradient

vector g(n+1).
7. Setr(n+1l)=-g(n+1)

8. Use Polak-Ribiere method to calculate:

B(n+1) =max { [r(n+1)(r(n+1) -r(n) / r(n)Tr(n)],0}
9. Update the direction vector S(n+1)=r(n+1) + f(n+1) S(n)
10. Set n=n+1 and go back to step 3.

Stopping Criterion

Terminate the algorithm when the following condition is satisfied.

Ir(n)| <= €1r(0)

where € is a prescribed small number.

Division of Electronics, SOE, CUSAT Page 5.16



Development and Evaluation of Blind Identification Techniques for Nonlinear Systems
5.6 Performance analysis of MLE (Conjugate-Gradient)

The same nonlinear systems are modeled with MLE (Conjugate - gradient
algorithm). The results are further used to get a conclusion on the model

accuracy, its consistency and generalization capability.

5.6.1 Nonlinear system with outputy = sin (tz + t)

Ny

-+ U ““N i

| |
a 200 400 wOO B00 1000 1200 1400 1500 1800 2000

1 T T T T T T T T
Training : 1000 samples, Validation : 1000 samples

=

A

D '||

Brrar

=
m
T

| | | | 1 | | | |
a 200 400 BOO 80O 1000 1200 1400 1600 1800 2000
samples

Fig.5.9 Superposition of model and desired output with MLE-CG algorithm and the error

vector (data set-1)
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Fig 5.10 MSE for the result described in Fig 5.9

The error in MLE algorithm, MSE over the number of epochs is around
0.0825
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5.6.2 Ambient noise in the sea
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Fig.5.11Superposition of model and desired output with MLE-CG algorithm and the error

vector (data set-2)
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Fig 5.12 MSE for the result described in Fig 5.10

It can be observed that the validation error (MSE) is around 0.0122
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5.6.3 Acoustic source- ‘A’
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Fig.5.13 Superposition of model and desired output with MLE-CG algorithm and the error

vector (data set-3)
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Fig 5.14 MSE for the result described in Fig 5.13

It can be observed that the validation error (MSE) is around 0.0122
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5.6.4 Acoustic source- ‘B’
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Fig.5.15 Superposition of model and desired output with MLE-CG algorithm and the error

vector (data set-4)
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Fig 5.16 MSE for the result described in Fig 5.15

Fig 5.16 shows that the validation error (MSE) is around 0.0122

Thus all the systems have been modeled with Gauss-Newton and Conjugate

gradient methods. A detailed performance measure has been provided with
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the plots of mean square error (MSE) in each case. The error trajectory and
final values of MSE can be used for the performance assessment. A detailed
comparison of the EKF and its variances with the current method of MLE is

presented in the next section.

5.7 Comparison between the various MLE methods for
modeling

Table 5.1 Performance comparison of EKF, EKF with EM and MLE in the MSE sense

Mean Square Error (MSE)
System MLE
Simple EKF | EKF with EM | Gauss- Conjugate
Newton Gradient
y=sin(t+t?) 0.0906 4.132x104 0.0635 0.0825
Ambient noise 0.0045 8.06x10 0.0083 0.0122
Acoustic source ‘A’ 0.0054 0.0065 0.0118 0.0121
Acoustic source ‘B’ 0.0038 0.000174 0.0092 0.0102

Table 5.1 shows the performance comparison of EKF and MLE. The EKF
algorithm converges faster and has marginally good performance compared
to BP algorithm and MLE. It is also consistent for all the nonlinear systems
modeled. The performance of EKF can be again improved by EM algorithm as

shown in the table. The MLE algorithm also gives good results and
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computationally efficient but in problems where faster convergence is
required, as in adaptive filters and real world problems; Kalman Estimation

has to be used.

5.8 Conclusion

In an attempt to compare the performance of the EKF based algorithms for
estimating the network parameters, Maximum Likelihood Estimation (MLE)
for modeling nonlinear systems has been implemented and the performance
results are compared. The same Feed forward neural network is used as the
model structure. Four nonlinear systems are modeled using two different
techniques of implementing the MLE viz. the Gauss- Newton method and
Conjugate gradient methods. The results show good performance of the
estimation technique in respect of MSE. A comparison is also made among all
the different methods tried out viz. the EKF algorithm, the EKF algorithm
with EM, the Gauss-Newton method and the Conjugate gradient method. It is
seen that the performance of MLE is good but inferior to that of EKF in terms
of mean square error. It could be due to the variances in the choice of the
parameters like (3 in the Conjugate gradient descent algorithm. On the other
hand, the EKF algorithm and its variants seem to be performing very well

with minimum dependence on the choice of parameters.
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Chapter 6

NONLINEAR SYSTEM MODELING
USING PARTICLE FILTER

Chapter 6 introduces the application of Particle Filter as a new approach for nonlinear
system modeling/identification. The results of applying the concept to nonlinear modeling
and the state space analysis of the systems so modeled are also presented.
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6.1 Introduction

The system identification/modeling problem looks for a suitably
parameterized model, representing a given process. The parameters of the
model are adjusted to optimize a performance function based on error
between the given process output and identified process output. The
capability of the Artificial Neural Networks in modeling non linear systems
was demonstrated in the previous chapters, using the Extended Kalman
Filter, as an effective tool in the estimation of the weights of the neural
network. Nonlinear filtering process can be generally viewed as recursively
estimating, based on a set of noisy observations, at least the first two
moments of the state vector governed by a dynamic nonlinear non-Gaussian
state space model (DSS) [34]. A discrete time DSS consists of a stochastic
propagation (prediction or dynamics) equation which links the current state
vector to the prior state vector and a stochastic observation equation that
links the observation to the current state vector. However the capability of
EKF in  handling the non Gaussianity , resulting from the non linear
transformations was always a matter of concern for the research community.
Recent results reported on the Particle Filters (PF) [132-140] appear to be
offering an effective solution in alleviating the problems due to the non

Gaussianity. The present chapter therefore addresses the performance of
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modeling approach using the particle filters in the context of non linear

system identification.

Recently several new approaches to recursive nonlinear filtering have
appeared in literature. Particle filters are suboptimal filters belonging to this
category of methods. They perform sequential Monte Carlo (SMC) estimation
based on point mass (or “particle”) representation of probability densities
[143-144]. The SMC ideas in the form of sequential importance sampling had
been introduced in Statistics back in the 1950s. Although these ideas
continued to be explored sporadically during the 1960s and 1970s, they
were largely overlooked and ignored. The most likely reason for this was the
modest computational power available at the time. Since then research
activity in the field has dramatically increased, resulting in many
improvements of particle filters and their numerous applications [136-140].
In addition, all these early implementations were based on plain sequential
importance sampling, which as shall be described later, degenerates over
time. The major contribution to the improvement of the SMC method with
the inclusion of the re-sampling step, coupled with ever faster computers,

made the particle filters useful in nonlinear modeling for the first time.
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6.2 Nonlinear Estimation using Particle Filter

A nonlinear stochastic system can be defined by a stochastic discrete-time
state space transition (dynamic) equation [139]

X, =f (X _,, W ;) (6.1)
and the stochastic observation (measurement) process

y, =h (X.,V.) (6.2)

where at time t,, x, is the (usually hidden or not observable) system state
vector, wy, is the dynamic noise vector, y, is the real observation vector and v,
is the observation noise vector. The deterministic functions f, and h,link the

prior state to the current state and the current state to the observation

vector, respectively.

In a Bayesian context, the problem is to quantify the posterior density,
P(X, | Y,,) where the observations are specified by Y., ={V,, ¥,......Y, | - The
above nonlinear non-Gaussian state space model, Eq.6.1, specifies the
predictive conditional transition density, p(X,|X,;, Y., ), of the current state

given the previous state and all previous observations. Also observation
process equation, Ep.6.2, specifies the likelihood function of the current

observation given the current state, p(y,|x,). The prior

probability p(x, | V,, ;) is defined by Bayes’ rule as,
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PO | Vans) = [ POG Xy Yin ) POX Yo )Xy (6:3)
Here, the previous posterior density is identified as p(x,,|Y,,,). The
correction step generates the posterior probability density function from

p(Xn | yl:n) = Cp(yn | Xn) p(Xn | yl:n—l)’ (64)

where c is normalization constant. The filtering problem is to estimate, in a
recursive manner, the first two moments of x, given y;., For general

distribution p(x), this consists of the recursive estimation of the expected

value of any function of x, says(g(x))p(x), using Eq.6.3 and 6.4 together

requires calculation of integral of the form
(900), ., = [ 909 p()dx (6.5)

These integrals in many cases will be evaluated using some form of
integration approximations like the Monte Carlo method [143-144]. In cases

where p(X, |Y.,,) is multivariate and non standard or multimodal, it may be
difficult to generate the samples from p(x, | y,, ;). To overcome this difficulty
the principle of Importance Sampling is utilized. Suppose p(X,|Y,,,) is a
PDF from which it is difficult to draw samples. Also suppose that q(X, | ¥, ;)
is another PDF from which sample can be easily drawn (referred to as the

Importance Density) [22] [23]. One can now write, P(X, | Yy, 1)@d(X, | Yin1)
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, where the symbol = means that p(X, |Y,,,) is proportional to q(X, | Y,, ) at

every x,. [t becomes necessary to evaluate integrals of the type,

[ 90 1 %010 Vi Pt | Vs )X,y = [ 9(X,) X, )X,

=(9(x,))p(x,)
On defining,
W(Xn) _ p((Xn || y:l_'n)) and W(X(i) _ v'\:(xf]i))
a(Xn | Yin " S ()
X

<9(Xn)>p(xn) | V..., becomes, <g(xn)> PX, | Yyny) = ig(xﬁi))w(xf)),

i=1
where the Ns; samples { x,(V, i = 1...N; } are generated.

Using Eq.6.4 above, it is possible to re-cast w(x,) as,

Cp(yn | Xn) p(xn | yl:n—l)
q(Xy | Yins)

w(x,) =

~op(Y 1%,)[ PO 1 %1 Vi 1)K,
[a0 1% V) A0 | Vi),

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)
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W(X ) _ Cp(Xn | yn)J. p(xn | Xn—l' yl:n—l) p(xn—l | y:l.'n—l)an (611)
" [ a0 1%, 10 Yin A0 1 | Ve 10X, 5

When Monte Carlo samples are drawn from the importance density, this

leads to a recursive formulation for the importance weights.

Importance sampling is a general MC integration method that is now applied
to perform nonlinear filtering specified by the conceptual solution. The
resulting sequential importance sampling (SIS) algorithm is a Monte Carlo
method that forms the basis for most sequential MC filters developed over
the past decades; this sequential Monte Carlo approach is known variously as
bootstrap filtering, the condensation algorithm, particle filtering, interacting
particle approximation, and survival of the fittest. It is a technique for
implementing a recursive Bayesian filter by Monte Carlo simulations. The
key idea is to represent the required posterior density function by a set of
random samples with associated weights and to compute estimates based on
these examples and weights. As the number of samples becomes very large,
this Monte Carlo characterization becomes an equivalent representation to
the usual functional description of the posterior PDF, and the SIS filter

approaches the optimal Bayesian estimator [126, 142].
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6.3 The Particle Filter algorithm

In the case of sequential importance sampling, each iteration will have the
. o NG . .

random measure {Xﬁ'_)l | W }i=1 ,drawn fromq(X, , | Y, ,), but constituting

an approximation to p(X, , | ¥, ,)- The aim is to then find out a set of new

samples and weights to approximate p(x, | Y, ).

P(Ya [Xa0-1) POGs [ X300)  P(Xe )

W(i)
n - - -
q(Xrg;r)kl | Xr(1l—)1|n71) q(Xr(1l—)]Jn—1)

(6.12)

(i) p(yn | Xr(1;r)1—1) p(xr(l;r)l—l | Xr(ll—)]Jn—l) W(i)

n i i n— (613)
q (Xr(1|r)1—1 | Xr(1—)1|n—1) '

The boot strap approximation leads to the assumption that p = q, when
wn® = p(yn | x(, In-1) Wy.1, which also works as a SIS.

Assuming that p(ya |x(i)n|n-1) can be approximated by N(yn, f(x04|n-1) , the
SIS algorithms for modeling can be executed as shown in the block diagram
in Fig. 6.1below (f: the model (or measurement) function):
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Resample

Xgp (01d)
i w®
i Y
Xgp (NEW) v
(i)
w,” (new) :
v Weight update
State update w? =w® p(y,, x{0.)
— ) _
= —z (Xgin) Normalize weights w”
A
I:)n)|<r)1< = _z (Xr(1;r)1 )(Xrg;r)1 (Xn|n )(Xn|n )T
v Sample
A X;E;% N(Xn|n Pn>|(r)1() >
> w” (new)
Initialize
Xr(1;r)1 N(Xow POTS( )

Fig 6.1 Block diagram of Sequential Importance Sampling (SIS)
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6.4 Performance analysis using particle filter

The PF algorithm, with SIR version was applied to the neural network model
for the same systems used in EKF and the results are presented below. As has
been done in EKF, the plant & model outputs and the error vectors are

presented. It can be seen that the algorithm converges very fast.

6.4.1 Results of nonlinear system, y = sin (tZ + t)
2 T T T T T T T T
desired actua

| | | | | | | |
1l 100 200 300 400 a00 KO0 700 800 |00
|:|. E T T T T T T T T

0.4

Brrar
[
ra

T
1

_DZ | | | | | | | |
a 100 200 300 400 &00 B0 700 800 800

samples

Fig. 6.2 Output Vs data samples for data set-1
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¥ 10
? T T T T T T T
g 1 epoch: 100 samples |
Training : B epochs
“alidation ; 3 epochs
5 L .
4k 4
[ah}
o
£
3 - -
2 - -
1 L .
|:| 1 t |
1 5 B 7 g g
epoch

Fig 6.3 MSE Versus number of epochs (MSE =3.789x 10™)

It can be noticed that for the data set-1, sin (t+t2) the MSE on convergence is
less than 3.789x 10™ with a set of 300 training samples, 300 validation with

one epoch of 50 samples.
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6.4.2 Results of ambient noise in the sea

05f .
|:| n
stk
1L —— desired |
— actual
-1.5

| | | | | | | | |
0 1000 2000 3000 4000 5000 G000 7000 5000 S000 10000
samples

Brror

| | | | | | | | |
a 1000 2000 3000 4000 5000 BOOO 7000 8000 =000 10000
samples

Fig 6.4 Output Vs data samples for data set-2

Here also the performance of PF model is comparable with techniques like

EKF and the convergence is also noticed to be faster and excellent.
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D | | | | | 1 | |
1 2 3 4 5 B 7 epochB

Fig 6.5 MSE Versus number of epochs (MSE=5.321x 10™)

The mean square error obtained with the PF approach is within an

acceptable level and is comparable with the MSE performances obtained
with EKF. It could be notice that error is coming down to 3.789 x 10 which

may be contrasted with the MSE of 5.808x10-* obtained for the same model

while using the EKF. [n order to fully assess the capability of the particle

filter, the state space modeling is also carried out and the results so obtained
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are also been presented, in chapter 7 in detail.

6.5 Conclusions

A given higher order system can be analyzed by modeling it with minimum of
2 or 3 states. Here the systems are modeled with three states. Both the
system states Xk and the set of model parameters w for a dynamic system are

simultaneously estimated from the observed noisy signal yx only.

The approach of the particle filtering is found equally competent with EKF
giving almost comparable MSE performance in the RNN models for nonlinear

system study.

As an extension of the current work, performance of RNN training algorithms
with PF can be compared with variations of EKF such as, EKF with
Expectation Maximization, Maximum Likelihood estimation, Unscented
Kalman Filtering etc. It is also possible to compare modeling approaches in
terms of various measures including the Cramer Rao Lower Bound (CRLB),
The Lyapunov exponent’s method etc. This will finally enable to select the
most efficient and optimum RNN model and training scheme for a given
nonlinear data or system. Investigation is also possible to arrive at the
optimum number of states to be used for representing a given nonlinear

system, and the behavioral study using other available techniques.
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Chapter 7

STATE SPACE MODELING USING RECURRENT
NEURAL NETWORKS

Chapter 7 addresses the problem of state space modeling with RNN. The combined state and
parameter estimation is demonstrated here. The phase plots so developed give an insight on
the dynamics of the system under consideration. The Lyapunov exponent is also computed
for the systems as a measure of their chaotic behavior. As a practical application the analysis
of a set of arrhythmia data is also presented.
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7.1 Introduction

Recurrent Neural Networks (RNN) forms a wider class of neural networks, as
they allow feedback connection between neurons making them dynamic
systems. In order to proceed with the study of neuro dynamics, one needs a
mathematical model for describing the dynamics of the system. A model most
naturally suits for this purpose is the state space model and it can be
implemented efficiently in RNN. They are neural networks with one or more
feedbacks. Since this network has the feedback structure, it embodies short
term memory and has powerful representation capability for modeling many
complex nonlinear systems. Thus they are different from feed forward
architecture in the sense that they not only operate on an input space but
also on the internal state space. Implementing a feed forward network is just
a static mapping of the input vectors. In order to model a high dimensional
nonlinear dynamical system, it is essential to create a neural network which
is capable of storing internal state and thus implementing complex dynamics

[31,57, 79-91].

7.2 System identification using RNN

In a recurrent network, the state of the system can be encoded in the activity

pattern of the units and a wide variety of dynamical behavior can be
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programmed by the connection weights. A simple recurrent network has
activation feedback, in which a state layer is updated not only with the
external input of the network but also with the activation from the previous

forward propagation.

J xintl)

Y, (N+1)
* T, (N+D)

T; N+

inpat baver

Fig. 7.1 Single layer Recurrent Neural Network

In the neural network, there could be one or more hidden layers, whose
computation nodes are correspondingly called hidden neurons or hidden
units. The function of hidden neurons is to intervene between the external
input and network output in some useful manner. By adding one or more

hidden layers the network is enabled to extract higher order statistics.
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The major difference in applying parameter based EKF algorithm for the
training of weights in feed forward and RNN architecture lies in the
computation of ordered derivatives of network output with respect to weight
vector wk. Once the derivatives are computed, the same parameter based EKF
algorithm applies to either class of network architecture. The advantage of
RNN is that the system states can be obtained by the simulation of these

networks, which helps in construction of phase space [98-127].
7.3 Combined State and Parameter Estimation

The state of a dynamical system is formally defined as a set of quantities that
summarizes all the information about the past behavior of the system that is
needed to uniquely describe its future behavior, except for the purely external

effects arising from the applied input [90].

In many control problems, the objective is to feedback the states of the
system in order to modify its behavior. Hence it is necessary to estimate the
states of the system from the measurements, which are contaminated with

noise.

The problem of combined parameter and state estimation is treated as a
nonlinear estimation problem, by augmenting the state vector with the
parameter vector. Kalman filter based training algorithm for recurrent

neural network, has been found to be very efficient in modeling and
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estimation. But it is not taking into account the optimization of hidden state
variables of the recurrent network. Also their formulation requires Jacobean
evaluation of the entire network, adding to additional computational
complexity. A new algorithm is suggested which reduces computational
complexity of Jacobean evaluation by decoupling the gradients of each layer,

at the same time calculating the internal hidden states.
7.4 RNN Training using EKF Algorithm

In the modified Kalman algorithm the state and measurement equations are

described as follows.

Wiaa = Wy (7.1)
X = F (X, W, Uy ) (7.2)
Yie = (%, W) +v, (7.3)

Considering the parameter optimization as a state estimation, as
described above, allows us to use the extended Kalman filter to update the

weight estimates as well as the optimal hidden states[79-81].
The algorithm is formally explained as below:

The state of the systems is augmented to contain the n parameters w and m

states.
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X =[W1, Wy, ... Wp, X1 X2, ... Xm]T (7.4)

Initialize all the weights and states to small random values. Initialize state
covariance matrix P to diagonal with relatively small values. Let the
covariance matrix for measurement noise is R and that of process noise is Q.
As usual compute the output at each node of the recurrent network. Find the
Jacobean matrix with respect to the state of the process f{.) and output
h(.) equation at the current estimate of internal state and weights of the

RNN. These matrices are given by 4 and C.

0
el e/ 03
C=[a%w ....... . oh ax} (7.6)

The error e for the new training sample is evaluated, and the Kalman gain

matrix is computed using Eqn. (7.9)

e =Y —h(%., W, u,) (7.7)
P = APAT (7.8)
K=PR,.C’ (c:F%l(:T +R)™* (7.9)
Xy =Xy, +Ke (7.10)
Py =@1-KC)R,, +R (7.11)
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The estimates for the optimal weights and the internal state of the RNN given
by X are updated using the Kalman gain matrix and the current output error
(Egn. 7.10). The process is repeated with the subsequent training sample.
Incorporating the hidden state variable of the recurrent network into the
state vector of Kalman filter allows the decomposition of the network into
layers. Therefore Jacobian calculations can be carried out in each layer
independently from all other layers. The recursive nature of Kalman filter
process equation takes care of time recurrent nature of the gradients
eliminating the requirement to back propagate the gradient through time.
Therefore this new approach provides an unfolding of the recurrent network

in time as well as layers [121].
7.5 Performance analysis

Recurrent Neural Network (RNN) is used as the model structure and
algorithm used for the training is Extended Kalman Filter (EKF). The same
set of nonlinear systems modeled using feed forward network is used here
and the performance is analyzed in terms of mean square error. The
dynamics of the states of the systems also evaluated using recurrent
network. The state space analysis is done for the same four nonlinear

systems.
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7.5.1 Nonlinear system with output y = sin (2 + t)

The phase plots generally provide an insight into the dynamical behavior of
the system. They are extensively used in understanding the system behavior
including chaotic behaviors and stability characteristics. The capability of
the phase plot, generated out of the model built around the neural networks,
in presenting the evolutionary dynamics of the systems is also very well

brought out in this chapter.

2 T T T T T T T T
desired actual
1 -
a
Sk 4
_2 | | | | | | | |
. ED 100 200 300 400 A00 /00 700 800 800
Training:BO0 samples
04k Yalidation ; 300 samples -
S ol 1
ek}
a
_Dz | | | | | | | |
a 100 200 300 400 A00 /00 700 800 800

samples
Fig 7.2 Superposition of model output and the actual data (data set-1) and the error
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x 10
? 1 1 1 1 1 T 1
g 1 quch: 100 samples |
Training : B epochs
Yalidation : 3 epochs
5+ -
4| 4
ak]
L]
£
Sk -
2 - -
1 - -
1] . :
1 5 B 7 g 5
epoch

Fig 7.3 MSE Vs data samples

These results are actually taken from chapter-4, where the modeling with
EKF has been discussed in detail. With this in hand, the detailed phase plot

analysis is carried out and the result is presented in Fig 7.4.
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1.5

1]

0.5 -]
statel

-

stated

Fig 7.4 The phase plot corresponds to y = sin (tZ +t)

It can be seen that the system phase plot is constrained into the shape
described above and has not seemed to be highly fluctuating/chaotic system
in its behavior. Later in this chapter, the Lyapunov exponent approach is

further utilized to get better insight on the system dynamics.
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7.5.2 Ambient noise in the sea
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Fig.7.5 Superposition of model output and the actual data (data set-1)
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Fig.7.6 Phase plot corresponds to ambient noise in the sea
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7.5.3. Acoustic source- ‘A’

1 T T T T T T T T T

0.5 .

_1 | | | 1 | | | | |
n 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
samples

Fig.7.7 Superposition of model output and the actual data (data set-3)

Fig.7.8 Phase plot at different intervals showing the change in dynamics of the system
(7.8(a), 7.8 (b) and 7.8(c))
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7.5.4. Acoustic source- ‘B’
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Fig.7.9 Superposition of desired and model output (data set-4)
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Fig.7.10 Phase plot corresponds to data set-4
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7.6 State space analysis of particle filter based models

Phase plots for two of the nonlinear systems modeled using EKF and PF are
presented for the completion of the evaluation. It is observed that the system
dynamics could be well assessed from the phase plots as depicted in Fig 7.11

and Fig 7.12.

1.6

1]

0.5 -
statel

-

stated]

Fig 7.11 Phase plot for the system y= sin(t+t2] (PF model)

Division of Electronics, SOE, CUSAT Page 7.14



Development and Evaluation of Blind Identification Techniques for Nonlinear Systems

1.5

1]

Fig 7.12 Phase plot for ambient noise in the sea (PF model)

7.7 Analysis of the Arrhythmia data

A number of recordings from the standard data base and other available
sources were used for the model development and analysis with the

inspiration from the control system paradigm.

As a first step in the analysis processes, the RNN is trained for various EEG
recordings. The training is carried out in such a manner that the mean square
error (MSE) is reduced to a tolerable value with successive training epochs.

The output of a sufficiently trained network/model for one of the data is
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plotted along with the actual biosignal data and the MSE in Fig 7.13and Fig
7.14.

1 T T T T T
Hill ; alill ! !
0.5 il ||||. A ! || N | M
‘ B!l | |

0k
Qs The recorded biosignal{data) and the network

'1 . (STstem mndelljl produced Dlutput . —
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Fig.7.13 Super position of the model output along with the actual bio signal data
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Fig 7.14 MSE verses the number of epochs for the RNN (bio signal data)
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As a performance evaluation and validity test for the model, the mean square
error criterion is being considered. It has been observed that the Extended
Kalman filter (EKF) algorithm is an efficient approach for the training of RNN
in nonlinear system modeling problems. A plot of the MSE over 10 epochs for
the above data shows that the error has been reduced down to the order of

0.0056 during the training and validation.

The state space analysis is now carried out for the bio signal data and the
phase trajectories are also been presented. The phase plots of two different

data with somewhat similar medical interpretations are shown in Fig. 7.15.

The plot clearly shows an overlap which indicates a close similarity of the
two records (or outputs of two nonlinear systems, i.e. is the human body
with similar dynamic behaviors). They are almost indistinguishable from

each other because of their similarities in the dynamics.

In successive sections of this chapter bio signal data with slightly similar and
different medical interpretations. The phase plot analysis has also been
performed for all such data to demonstrate the suitability of the approach in
practical nonlinear system analysis. The study also gives an insight to the

system dynamics with phase plane plots.
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FPhase plots of two different EEG recordings with

similar medical intermpretations

-1

-1

Fig 7.15 Phase plot of two EEG data with similar medical interpretations

In the next stage of the analysis the RNN is trained with the EEG recording of
a normal person without any health disorders. Using this neural network
model, the phase trajectories of the normal EEG used in training/modeling
(blue color) and an EEG recording with an abnormality named supra

ventricular ectopy (red color) are plotted and compared (Fig.7.16). The
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phase trajectories are well distinguished from each other to indicate the

difference in dynamics/medical interpretations.

Phase plots of two EEG recordings
a with different medical interpretations

Fig 7.16 Phase plot of two EEG data with different medical interpretations

When the modeling is repeated with two different EEG data having minor

similarities and some major differences, the phase trajectories in Fig. 7.17 is
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obtained. The amount of overlapping could be interpreted as an indication of
the minor similarities, even when they are distinguishable because of the

major differences.

7. Phasze plots of two EEG recordings with some
similarities and mainly different medical interpretations

Fig 7.17 Phase plot of two EEG data with minor similar and mainly different medical
interpretations
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The extension of the modeling approach based on neural networks can thus
be successfully extended to combined estimation of state and parameter. By
constructing the phase space of the system using the model, the evolutionary
nature of the system can be studied. It is worthwhile to note that the entire
exercise was done only using the output of the system in a totally blind mode.
The phase plane generated using the model changes, in response to the
systems changes, demonstrates the success of the modeling approach based

on neural networks.
7.8 The Lyapunov Exponent

The Lyapunov exponents of a system are a set of invariant geometric
measures that describe the dynamical content of the system. In particular,
they serve as a measure of how easy it is to perform prediction on the system
under consideration. Lyapunov exponents quantify the average rate of
convergence or divergence of nearby trajectories in a global sense. A positive
exponent implies divergence, and a negative one implies convergence.
Consequently, a system with positive exponents has positive entropy in that
trajectories that are initially close together move apart over time. The more
positive the exponent, the faster they move apart. Similarly, for negative
exponents, the trajectories move together. A system with both positive and

negative Lyapunov exponents is said to be chaotic [131].
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Mathematically, Lyapunov exponent can be defined by,
lim
= In 7.10
S M /S 210

where, x; is the ith state of the system and f{x; ) is the output of the system.

[130]

As such, it can be seen that the Lyapunov exponents describe the average
rate of exponential change in the distance between trajectories in a set of
orthonormal directions within the embedding space. The number of

exponents is equal to the number of states of the system.

Positive Lyapunov exponents are responsible for the sensitivity of a chaotic
process to initial conditions. Negative Lyapunov exponents on the other hand
govern the decay of transients in the orbit. A zero Lyapunov exponent
signifies the fact that the underlying dynamics responsible for the generation
of chaos are describable by a coupled system of nonlinear differential
equations, that is, the chaotic process is a flow. A volume in d-dimensional
state space behaves as exp(L (A1 + A2 + A3 +...... Aq ), where L is the number of
time steps into the future. It follows therefore that for a dissipative process,
the sum of all Lyapunov exponents must be negative. This is a necessary
condition for a volume in state space to shrink as time progresses, which is a

requirement for physical realizability.
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The Lyapunov exponents calculated for the four nonlinear systems modeled

using the RNN state space model are summarized in Table 7.1.

Table 7.1 Lyapunov exponents of the systems

System Lyapunov Exponent
y=sin(t2+t) -5.8175,-3.0505, -5.24+3.14i

. . -3.6654, -3.6119, - 4.267+3.14i
Ambient noise

Nonlinear system ‘A’ -3.6654, -3.6119,-4.267+3.14i

Nonlinear system ‘B’ -1.8682,-6.53+3.14 1, -3.3792

From the results it is seen that the three nonlinear systems have all negative
real Lyapunov exponents. So all the systems converge and they are not

chaotic.
7.9 Conclusions

Extending the basic modeling approach discussed in earlier sections to RNNs,
the combined state and parameter estimation has been carried out for the
four nonlinear systems. For a given higher order system, analysis can be
done by modeling it with minimum of 2 or 3 states. The systems are modeled
with three states. Both the system states xx and the set of model parameters

w for the dynamic system are simultaneously estimated from the observed
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noisy output yx only. The Lyapunov exponents are calculated for the systems
modeled, and evaluated the nature of the evolutionary process. Through the
analysis of the model developed for bio-signals like EEG, it has been
demonstrated that the state space recurrent neural network models could be
better explored for the classification and characterization of the behavior of
the subject at different time instants. A sufficiently trained neural network
model can provide a better perspective on the dynamics of the biological
systems compared to the conventional time domain interpretations of the

recorded data.

The invariant quantities of the systems like Lyapunov exponents, which can
be taken as a tool for model validation, could be calculated for the systems
for better assessment of the suitability of the same for this type of

signal/system analysis.

Division of Electronics, SOE, CUSAT Page 7.24



Development and Evaluation of Blind Identification Techniques for Nonlinear Systems

Chapter 8

EVALUATION OF THE ANN BASED
NONLINEAR SYSTEM MODELS IN THE
CRLB SENSE

Chapter 8 discusses the evaluation of the systems modeled and analyzed with a variety of
techniques as developed in the previous chapters. The CRLB approach to measure the
goodness of the model has also been demonstrated. It also gives a comparative study of

model performances.
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8.1 Introduction

Objective of this chapter is to evaluate the performance of the algorithms
discussed in the previous chapters. While the performance in terms of the
Mean Square Error (MSE) was demonstrated in the respective chapters, the
Cramer Rao Lower Bound (CRLB) is also established for each of the

algorithms. [122-125].

The CRLB is calculated for all the cases using the Nonlinear Auto Regressive
with Exogenous input (NARX) model [4] for representing the system. Here

again the examples used are the four nonlinear sets of data available viz.

Data generated using y=sin(t?+t)
Ambient noise

Nonlinear Source-A

W Mo

Nonlinear Source-B

The amazing challenges in statistical estimation along with an opportunity to
learn different techniques in solving the well known problem motivated the
authors to compare the performance of these approaches. The model
behavior and performance are evaluated in terms of the Mean Square Error

(MSE) and the Cramer Rao Lower Bound (CRLB) [121].
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8.2 Comparison based on CRLB

The efficiency of an estimator can be checked by, establishing the Cramer
Rao Lower Bound for the various estimators. According to it, the mean
square error corresponding to the estimator of a parameter cannot be
smaller than a certain quantity related to the likelihood function. If an
estimator’s variance is equal to the CRLB, then such estimator is called

efficient. [5].

The Cramer Rao Lower Bound on the covariance matrix of the target
parameter estimate w is (assuming this estimate to be unbiased),

E(w-w")(w-w" )T > FIMI (8.1)
where FIM is the Fisher Information Matrix. Following [5], the FIM can be

written as,
r1 Sk ch(kw)/c h(kw)/ow | w=wr (8.2)
where h(.) is the modeling function and r the variance of the measurement
z(k) given by,
z(k) = h(w, x) (8.3)

This follows from the assumption that the measurement noises are white,
zero mean and with variance r. [122]. A necessary condition for an estimator
to be consistent in the mean square sense is that there must be an increasing

amount of information (in the sense of Fisher) about the parameter in the
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measurements. The Fisher information has to tend to infinity as k — o, then
the CRLB converges to zero as k — o and thus the variance in the estimate

can also converge to small values.

CRLB calculations are done for the models and thus checked the consistency
of the estimation methods. If the method satisfies CRLB, that is an acceptable
estimator. Model convergence is checked for 100 different values of
initializations of the parameter vector w (keeping mean and variance same)
and based on that CRLB is calculated. CRLB checking in effect involves
comparison of two matrices; the parameter covariance matrix and the
inverse of Fischer Information matrix. In view of the fact that these two
matrices are always diagonally dominant, the checking becomes easy by
comparing the diagonal elements of the matrices. The comparison is also
possible by subtracting one matrix from the other and checking the positive
semi definiteness of the resultant. (A-B is positive semi definite, if A>B)
[145]. In the illustrations given below, the blue color indicates the Inverse of

FIM, while the red color shows the covariance matrix.

8.2.1 Back Propagation Algorithm

In this section, the CRLB computations are carried out for the models
developed in the previous chapters which make use of BP algorithm and its

variations for training. This includes SLP, MLP and RBF type of network
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structures in general. One typical result for the general conclusion and

discussion is demonstrated in Fig 8.1.

2000 . . . .
——— Jiny (diagonal values of inv(d); where Jis the Fisher

1800

Inforrmation Matrix)

—— @ {diagonal walues of Z(w-w" ]} w- i
2 is less than Jinv ;. 50 CRLEB not sahsfed

1600

1400

1200

1000

800 .

B0 .

400 .

200 .

I:I 1 1 1 1
a a0 100 160 200 250

Fig 8.1 CRLB plot for the BPA trained network; here the variance (close to X axis) is much
lower than the inverse of the uncertainty matrix. £ (w-w” ) (w-w* )T > FIM!

From the simulation results given in Fig 8.1, it is seen that the BPA does not
satisfy CRLB. So BPA is not an efficient algorithm for system identification.

BPA is a gradient based algorithm so chances are there to settle in local

Division of Electronics, SOE, CUSAT Page 8.4



Development and Evaluation of Blind Identification Techniques for Nonlinear Systems

minima. The CRLB is calculated for the four nonlinear systems modeled
using BPA, over 100 independent runs and got the similar results.
8.2.2 EKF Algorithm

Here the CRLB computations are done for EKF, EKF with EM and the results

are presented in Fig 8.2 and 8.3.

I:II:II_'Ir 1 1 1 T
— [ (diagonal values of 2 w-w ) Jw—wt )
—linv (diagonal values of inv()); where J is the Fishet
.06 Infarmation hatrix)
0.05 .
0.04 .
£ LRV A .
¥
0.02 - .
0.01 .
(21 is greater than Jinv ; so CRLE satisfied.

Dmdwmh

a a0 100 150 200 250

Fig 8.2 CRLB results for EKF training algorithm (ambient noise).
E(w-w")(w-w" )T > FIM!?
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I:|35 T T T T T
—— 0 (diagonal values of 7w -w ) fw—w )
03k Jiny (diagonal values of inv(d); where Jis the |
' Fizher Information Matrix)
095 | 1 is greater than Jinv ; so CRELE satisfied. }
02r
015
a1k
a0sr
|:| | —— I I |
a ] 10 15 25 30 35

Fig 8.3 CRLB results for EKF with EM (ambient noise). E (w-w") (w-w”" )T > FIM

Here the both methods viz. the EKF and the EKF with EM primarily satisfy

CRLB, which indicates that the methods are very efficient. CRLB is checked

for the four nonlinear systems and is satisfied. From these illustrations, it is

obvious that the performance of EKF with EM is better than the EKEF,

considering the proximity of the co-variance (in red) to the FIM (in blue) in
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Fig 8.2 and 8.3. In terms of mean square error also EKF has superiority

among other algorithms implemented, as is evident from Table 4.5.
8.2.3 Maximum Likelihood Estimation

The CRLB computations pertaining to the statistical method of MLE with two
of its variations, viz. conjugate gradient and Gauss-Newton are presented

with conclusions on their performances.

e Jiny (diaganal values of inv()); where J is the' '
Fisher Infarmation Matrix)
007 F Q (diagonal values of
0.06 .
0.05 .
0.04 ¢ .
0.03 F -
0.02 - .
Clis greater than Jinv ; so CRLE satisfied.

0.01F .

I:I L L _//\\I L |

o 2 4 = a8 10 12 14

Fig 8.4 CRLB results for MLE (Conj-Gradient) (ambient noise). E (w-w") (w-w* ) T > FIM-
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[ is greater than Jinv; s0 CELE satisfied.
13 . .

— Jinw [diaguﬁal values Eufinv[.]]l; where J is the

15 Fizher Infarmation Matrix)

2 (diagonal values of

14

12

10

Fig 8.5 CRLB results for MLE (Gauss-Newton) (ambient Noise in the sea).
E(w-w")(w-w" )T > FIM!?

Maximum Likelihood Estimation (Both Conjugate Gradient and Gauss-
Newton methods) satisfies CRLB. This proves the efficiency of MLE for
system identification. Even if these two methods are also based on gradient

of cost function, the convergence of the model to local minimum is avoided.
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8.2.4 Particle filter estimation

The CRLB performance of the particle filter method is depicted in Fig 8.6

below. It could be recollected, from the analysis on MSE sense, in chapter 6,

that PF methods are superior in their performance on nonlinear modeling.

0.35

0.3

0.24

0.05

C1is greater than Jinv ; =0 CRLE satisfied.

—— @ (diagonal values of £ w-w" 1 w-u

Jiny (diagonal values of inv(J); where J is the
Fisher Infarmation Matrix)

1 —— ! I ! |

a 10 15 20 25 30 34

Fig 8.6 CRLB results for particle filter (ambient Noise in the sea).

E(w-w")(w-w" )T > FIM!?
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The PF method has been proved to satisfy the CRLB conditions as it satisfied
the MSE analysis. The computations have been done for all the nonlinear
systems and similar kind of results were obtained to confirm the quality of

PF approaches for nonlinear system modeling with neural networks.
8.3 Conclusions

The different estimation methods tried out have been checked according to
Cramer Rao Lower Bound and their relative efficiency is analyzed. From the
results it is seen that the Particle Filter, EKF algorithm and Maximum
Likelihood Estimation techniques are more efficient for nonlinear system
identification compared to Back Propagation Algorithm. The CRLB estimate
also brought out the supremacy of the EKF based estimation algorithm, with
the EM variant and the Particle filter approaches. It is hoped that the results
brought out in this chapter would be helpful for the system engineers to

choose proper approach for blind identification, of nonlinear systems.
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Chapter 9

SUMMARY, BENEFITS AND FUTURE
DIRECTIONS

Chapter 9 provides a collective summary of the results, contributions and major outcomes of
the work carried out in this thesis. It also suggests the possible future research in the area of

nonlinear system modeling/identification.
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9.1 Introduction

The thesis has presented the outcome of the exhaustive analysis of the
algorithms for modeling and identification of Non linear systems, and puts
forward a few new approaches in the modeling of non linear systems. The
modeling approach adopted is largely based on the NARX model, realized
using Neural Network with different nonlinear functions like sigmoid and tan
sigmoid. In the exhaustive evaluation of the performance of the algorithms,
the model resorts to the optimization algorithms for training the weights of
the neural networks to make the model behavior equivalent to that of actual
system [19-21]. The algorithms considered in the thesis are Back
Propagation (BPA), Extended Kalman Filter (EKF) for feed forward and
recurrent NN, Expectation Maximization (EM), Maximum Likelihood
Estimation (MLE), and Particle Filter (PF). Their performance is compared

both in the sense of MSE and CRLB.

The evaluation has been carried out using four data sets viz. (i) the one
generated from the nonlinear function sin(t?+t), data recorded from the
ambient noise in sea and two acoustic sources A and B. The diverse nature
of the non linear properties of the data generated along with the noise

content, across the non linear function from sin (t2+ t) to the ambient noise

Division of Electronics, SOE, CUSAT Page 9.1



Development and Evaluation of Blind Identification Techniques for Nonlinear Systems

and the acoustic sources, gave sufficient challenge in exhaustively evaluating

the algorithms.

9.2 Comparison between BPA, EKF, EKF with EM, MLE and the
Particle Filter Models
A comparison summary of the various methods for calculating the weights of
the neural network of the model, which are described in the previous
chapters, is presented here in the MSE sense. All the methods viz. back
propagation, EKF, EKF with EM, MLE algorithm with conjugate gradient and
Gauss-Newton approaches and the Particle filter based methods are
compared. The selected four nonlinear systems mentioned above were
modeled with all these methods during the analysis and the results are
demonstrated through Fig 9.1 to 9.4 and the same is summarized in Tables

9.1 to 9.5 below.

The MSE for the data set corresponding to all data set clearly shows that the
EKF with the EM and the Particle filter based approach performs best, both
during training and validation. The algorithms converge faster and do not
show any tendency to diverge during validation. It is interesting to note that
the relatively simpler version of the Particle filter implemented has resulted

in commendably good performance.
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I:I"'lEl T T T T T T
1 epoch: 100 samples
04l Training : BOO samples
’ “alidation : next 400 samples

0.35 mse 7]
—  EKF with EM 0.00041326

EkFifeed forward) 0.0025
025 MLE(Gauss-Mewtan) 0 0535
MLE(Conj-Gradient) 0.0825

EKF recurrent 0.0906

0.3

mse

0.2

0.0%80

——  PF 00002753

0.1
0.05
1 2 3 4 & B 7 a g 10
epoch

«———  Training ——— 4| «— Yalidation——»

Fig 9.1 MSE for the data sety = sin(t2 + t)

The results correspond to the first data set is shown in Fig 9.1. The BP
algorithm shows a slight divergence behavior, especially during the
validation period. It is also observed that as the number of training and
validation data samples (the data size) have some effect on the overall model

performance. This is summarized in Table 9.1.
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Table 9.1 Comparison of Performance with y=sin(t?+t)

No. of Training NO' O.f MSE
Validation
Samples Samples BPA EKF
300 300 0.0190 4.56x103
600 300 0.0118 9.18x10-5
1000 1000 0.0383 4.29x10
DD"I“' T T T T T T T T
1 epoch : 1000 samples
Training : 2000 samples
0.035 Yalidation : next 8000 samples ]
mse
0.03 — EKF with EM 0.000806
—  EKFifeed fonward) 0.0010
— EKF t 0.0045 |
MSE (recurrent) .
0.02 BFA 0.0058 ]
WMLE(Gauss-MNewtony 00083
0.015 ! —— MLE({Con-Gradient) 0122
' — FF 0.0005321
0.m
0.005
0 ] e vy 1 T |Ji&lh=—|____—
1 2 3 4 5 B 7 g a 10

Epoch

Fig 9.2 MSE for the data set ambient Noise in the sea
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Table 9.2 Comparison of Performance with acoustic source a

No. of Training NO' O.f MSE
Validation
Samples Samples BPA EKF
1000 500 0.0175 0.0122
1000 7000 0.0191 0.0139
2500 2500 0.0085 0.0054

In case of the second data set also EKF with EM and Particle Filter methods

shows better performances.
0.0s . .

1 epoch : 500 samples
Training : 2600 samples
“alidation © next 2600 samples

0.07

0.06 - - .
—  EKF with EM 0.00615
0.05 — EKF (feed farward) 0.0026
mee MLE(Gauss-Newton) 0.0118
0.04 — MLE(Conj-Gradient) 0.0121
EKF (recurrent) 0.0163
0.03 .
____ BPA 0.0214
- 0.0004821
0.02 PF
0.01
. . .
1 2 3 1 5 5 7 5 g 10
| € Training—————»| «——— validation——» |
epoch

Fig 9.3 MSE for the data set acoustic source ‘A’
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The non monotonic nature of the convergence for the EKF (recurrent), while
modeling the third data set appears to be because of the outliers in the
recorded data. This conclusion is made since the convergence is seen to be

remaining monotonic in the case of all other data sets, for all algorithms.

Table 9.3 Comparison of Performance with acoustic source b

No. of Training N_O' O_f MSE
Validation
Samples Samples BPA EKF
500 500 0.0054 2.9x10-5
500 1000 0.0042 2.13x10-5
2500 2500 0.0016 8.98x10-7

Here also there is an improvement on the MSE performances, as the data size
for training and validation is increased. The results corresponds to data set-4

is described next.

Table 9.4 Comparison of Performance with ambient noise in the sea

No. of Training NO' O.f MSE
Validation
Samples Samples BPA EKF
500 500 0.012 1.5x10-3
500 2000 0.0115 2.2x10-3
2000 8000 0.0038 5.9%x10-4
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Fig 9.4 MSE for the data set acoustic source ‘B’

Same number of samples is used for training and validation for each data set,
for each of the different algorithms, (to make the comparison relevant). For
y=sin(t?+t), First 600 samples are used for training and next 400 samples for
validation. For Ambient Noise, 2000 samples were used for training and

8000 samples for validation. The Acoustic source A, and B were modeled
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using 2500 samples for training and 8000 samples for validation. Table-9.5

below gives a total summary of the above results.

TABLE 9.5
COMPARISON SUMMARY

Mean Square Error (MSE) Validation

Nonlinear MLE
System Particle EKF-Feed EKF EKF with
Filter BPA forward Recurrent EM Gauss- | Conjugate
network network Newton || Gradient
y=sin(x2+x) || 3.789x 10 || 0.0980 2.8x1073 0.0906 4.132x10™* 0.0906 | 0.0906
Ambient
noise 5321x 10 || 0.0068 0.0010 0.0045 8.06x10™* 0.0045 | 0.0045
in the sea
Acoustic
4821x 10" | 0.0182 0.0086 0.0163 6.16x1073 0.0163 | 0.0163
source A
Acoustic
2.263x 10" || 0.0106 || 2.104x10* 0.0037 1.019x10™ 0.0037 | 0.0037
Source B

From the above results it is seen that EKF algorithm converges faster and has

marginally better performance compared to the other Algorithms. It is also

consistent for all the nonlinear systems modeled. The performance of EKF

can be again increased by EM algorithm as shown. The other algorithms also

give good results and computationally efficient but in problems where faster

convergence is required as in real world problems Kalman Estimation is

preferably better. The use of particle filtering algorithm for training of the
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neural network models could reduce the overall mean square error to

around 2.263x 104, which is acceptable and comparable with the
achievements in EKF. However, the computational cost in terms of memory
for particle filters will have to be weighed against the humble memory

requirements of other algorithms.

It is further suggested to evaluate the systems in the CRLB and other figure of
merit senses for a better conclusion on the model validity and goodness.
Chapter 8 addresses the CRLB technique and theory in detail. The results
obtained have successfully proved the merits of EKF and Particle filter

algorithms over the other methods.

9.3 Discussions and future directions

In summary, thesis has successfully demonstrated the development and
evaluation of the comparative performance of estimating the parameters of
a neural network used in the system identification function for non-linear
systems. The estimation of parameters (viz. the weight of the Neural
Network) has been carried out using an improved technique based on
BPA, EKF, EKF with EM, MLE, and Particle filter. The simulation results
demonstrated in previous chapters and summarized in Section 9.2 demonstrate
that Kalman estimation technique and Particle Filter approaches are efficient

tools for system identification and they can be implemented as a powerful
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algorithm for training Neural Networks. One of the main contributions is the
demonstration of the utilization of the EKF with EM for the computation of
the state space evolution. This effort supplemented by the usage of Particle
Filters has helped to minimize the modeling errors, apart from promising
stability in the model performance. However, the experience in deriving the
results brings out that one has to take some preliminary measures before
implementation for modeling in order to improve the accuracy of estimation.
This will helptoachieveimproved solution for identification problems.
These are explained below.
e The input-output data has to be scaled and transformed to reasonable
ranges
e Weight values are initialized to small random values drawn from a
zero mean uniform or normal distribution
e Appropriate error covariance matrix is initialized so that a priori
knowledge was used to initialize the weights
e The covariance matrix R of the measurement noise is set to a scaled

identity matrix with scaling factor of the order of unity or more

Arbitrary assumptions of the initial values and parameters for the update
equations in different algorithms may cause divergence, when error

covariance matrix computed by the filter becomes small compared to the
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actual error in the estimate. When this matrix becomes small, the gain matrix
becomes small and new measurements are given too little weight. The
number of arithmetic operation grows as the matrix dimension increases
because of model size, which causes large computational errors. Due to this
state covariance matrix looses symmetry, which causes numerical instability
and divergence. Decoupled EKF is recommended to be used to reduce the
computational complexity and to improve the performance of the filter. The
problem of improper assumptions of initial values in EKF can be alleviated by
using algorithm Expectation Maximization (EM). The thesis has effectively

demonstrated this aspect, which yielded very good results.

Unscented Kalman Filter (UKF) is another approach to incorporate non
Gaussianity due to nonlinear transformations, in terms of nonlinear
approximation of probability density function. The computational complexity
of UKF algorithm is order L3 (L is the number of parameters) where as the
complexity of EKF is order LZ. The UKF algorithm also necessitates the

computation of the matrix square root at each time step.

It is also proved that Maximum Likelihood Estimation is an efficient
estimation technique and well suited for implementations using artificial
neural network. A series of experiments has been conducted to study the

efficiency of Recurrent Networks for parameter and state estimation.

Identification of simulated szstem is comEared to results obtained using

Division of Electronics, SOE, CUSAT Page 9.11



Development and Evaluation of Blind Identification Techniques for Nonlinear Systems

Feed forward networks. The results show that the evolutionary nature of the
state is possible through Recurrent Neural Network. By constructing the
phase space of the system the evolutionary nature of the system can be
studied. When the system dynamics changes, the phase space geometry
changes, which is evidenced by the state trajectory. From this the invariant

quantities of the system like Lyapunov exponent can be found.

Cramer Rao Lower Bound is a universally accepted tool for defining the
efficiency of the estimator. The thesis has practically computed the CRLB for
the simulations done for the different algorithms and assessed their
performance. The CRLB estimate also brings out the supremacy of the EKF

algorithm, with EM and the Particle filter approaches.

Literature survey showed that many other approaches are there for this
problem. Among these some of the methods viz. System identification using
Neuro-Fuzzy Inference systems(ANFIS), system identification using Genetic
Algorithm, Implementation of Extended Kalman Filter Algorithm in Digital
Signal Processors, frequency domain approach for system identification,
Support vector machines and its variations, modeling and identification of
chaotic systems etc can be further explored with detailed study and analysis.

The major contributions of the thesis are discussed next.
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9.4 Contributions

In this thesis a comprehensive study of different approaches for nonlinear
system identification is done and their performance is compared by
implementation of different algorithms in a Neural Network NARX model.
The adaptive feature revealed by feed forward and recurrent neural network
as well as their ability to model nonlinear time varying process, provides a
surplus value to the model based predictive control. When applied correctly,
a neural or adaptive system may considerably outperform other methods.
While working in real time, these algorithms can be suitably coded in Digital
Signal Processor for improving computation time. The algorithms
implemented are recursive in which the weights are updated recursively,
immediately after the presentation of data; they are on-line mode of training.
Hence they can work in the continuous fashion in nonstationary
environment. [t is hoped that this thesis has lit a small candle in the emerging
world of blind nonlinear system identification. The significant contributions

of the thesis are given below:

1. A number of novel methods for blind identification of nonlinear
system are exhaustively evaluated, so as to help to select the right

method for a given application.
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2. The formulation of the modeling problems using different approaches
has been well established.

3. Training approaches of EKF, EKF with EM, MLE (both Gauss-Newton
and Conjugate gradient) and Particle filter methods are implemented
and compared.

4. Animprovement in the EKF algorithm has been shown with EM.

5. The statistical method of MLE has been applied for nonlinear system
identification problems.

6. The method of Particle Filtering (PF) for the use of nonlinear system
identification/modeling has been suggested and its novelty is
established.

7. Validation technique based on CRLB sense, along with the MSE sense
has been introduced.

8. State space analysis including phase plane plots and Lyapunov
exponent computations have been established for the proper
understanding of the system dynamics, which is of great relevance in
system study.

9. A comprehensive comparative study of various methods for nonlinear

system identification/modeling has been successfully performed.
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9.5 Conclusion

Beginning with the available methods for nonlinear blind system

identification, the development of certain new approaches have been
presented in the thesis. The suggestions for the improvement of some of the
existing approaches like EKF is also a benefit of the results presented. The
state space analysis, the Lyapunov exponents’ methods, validation in the
CRLB and MSE senses of the models etc can also be of appreciable use for
control and data analysis applications, including bio-signal processing. The
major contribution of Particle Filter method is a demonstration of the
application of the nonlinear filtering approaches in modeling/identification
problems. This enhancement tool can therefore be an efficient approach for

the analysis of nonlinear dynamics in general.
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