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Chapter 0

Introduction

This thesis is concemed with two aspects—one, study of closure spaces

with reference to H -closedness and two, study of fuzzy closure spaces with

reference to convexity.

0.1 Closure spaces

E. (Iech introduced the concept of Cech closure space. (In this thesis we

denote (Iech closure space as closure space for convenience). éech closure

spaces, is a generalisation of the concept of topological spaces. Eduard

éech, J. Novak, R. Fric and many others have earlier studied this concept

and many topological concepts were extended to the (Iech closure spaces.

The concept of a topological space is generally introduced in terms

of the axioms for the open sets. However alternate methods to describe a

topology in the set X are often used in terms of neighbourhood systems,
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the family of closed sets, the closure operator, the interior operator etc. Of

these, the closure operator was axiomatised by Kuratowski and he associ­

ated a topology from a closure space by taking closed sets as sets A such

that cl A = A, where cl A becomes the topological closure of a subset A

of X. In (Iech’s approch the condition ccA = c'A among Kuratowski ax­

ioms need not hold for every subset A of X (Here Cf/l denotes the éech

closure of A in X); when this condition is also true, c is called a topo­

logical closure operator. (Iech closure space is also called A-space by C.

Calude-M. Malitza [C;M]. For them a éech space is obtained by removing

r:(A U B) = (tA U r:#B and introducing A C B => (:A C r:B into the ax­

ioms of an A-space. However considering universal acceptability we call

the former (Iech closure spaces and the latter monotone spaces.

The ideas about the concepts of a continuous mapping and of a set en­

dowed with continuous operations (compositions) play a fundamental role

in general mathematical analysis. Analogous to the notion of the conti­

nuity, we consider the morphisms throughout this thesis. Cech described

continuity in closure spaces by means of neighbourhoods, nets etc. Koutnik

studied the convergence on non Hausdorff closure space [KO-1]. He stud­

ied more about sequential convergence structure in [KO-2, KO-3]. Mashour

and Ghanim in 1982 defined [M;G-l] C’-alniost continuous as a function

f : X —> Y, where X and Y are closure spaces and is said to be a C-almost

continuous if for each 1' € X and each V C Y with f (:1?) E VO, there is
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U C X such that :1: € U “ and f(U) C ((::(U))°. They also studied some

results related to this concept. D. R. Andrew and E. K. Whittlesy [A;W]

and James Chew [CHE] studied about closure continuity.

Separation axioms in closure spaces have different implications than

the corresponding axioms in topological spaces. According to Cech, a clo­

sure space is said to be separated [CE] if any two distinct points are sepa­

rated by distinct neighbourhoods. Separation properties in closure spaces

have been studied by various authors. D. N. Roth and J. W. Carlson stud­

ied [R;C] a number of separation properties in closure spaces. They showed

that Cech closure operator on a finite set can be represented by a zero-one

reflexive matrix. A number of separation properties were studied for finite

spaces and characterised in terms of the matrix that represents the closure

operator. Separation properties that carry over to the underlying topology

were also studied. W. J. Thron studied [T] some separation properties in clo­

sure spaces. He delined a space as regular if .1; §Z  (A is any subset of

X) implies that there exist D. E C X, D Fl E = Q5 such that ;1: Q1 <;(X —- D),

A O <:(X — E ) : </>. K. C. Chattopadhyay and W. J. Thron studied [CH;T]

some separation properties of extensions and obtained some results on the

above. In [S] T. A. Sunitha studied higher separation properties in closure

spaces.

For topological spaces compactness can be expressed in a number of

different ways. However for closure spaces some of these statements are

3



not equivalent. Cech defined [CE] the term compactness for a closure space

(X , c) if every proper filter of sets on X has a cluster point in X. He de­

scribed the fundamental properties of compact closure spaces. He noted

that for a closure space (X , c) to be compact it is necessary and sufficient

that every interior cover "V (an analogue of an open cover in topological

space) of (X , c) has a finite subcovcr. Chattopadhyay [CH] defined a com­

pact space as a closure space (X . c) if and only if [G(T(:r) ~_ :1" G X l is cover

of S2(X). He denoted by Si2(X), a set of ultrafilters on X, by ff a grill on

X the 9%“ : ["71 : 02/ G §2(X), 0?! C €¢]. W. J. Thron mentioned [T] types

of compactness. According to him a closure space (X , c) is called linkage

(F-linkage) compact if every linked (F-linked) grill on X converges. A

grill £4 is called linked grill ifA, B G G‘ :> c'(A) fir_;r(B) : qr), F-linked grill

if A1, Ag - - - sin E G i fi[c(AA.)] : qb. Some weak forms of compactness

like almost (E-compactness were introduced and some of its properties were

studied by A. S. Mashour and M. N. Ghanim [M;G-I]. Compactness and

linkage compactness were defined by K. C. Chattopadhyay [CH].

Cech defined [CE] and developed some properties of connected spaces

According to him a subset A of a closure space X is said to be connected in

X if A is not the union of two non-empty semi-separated subsets of X, that

is A : A1LJ /l-2, ((1/l1 F1 A2) U (A1 Fl (ff/12) : Q’) implies A1 : cf) or A2 : (X).

The concept of connectedness which was defined by Cech in closure spaces

precisely coincides with connectedness in the associated topological spaces.

4



K. C. Chattopadhyay and W. J. Thron [CH;T] were the first persons,

who studied the general extension theory of G0 closure spaces. They studied

some special closure operators and considered the case when an extension

is topological and also compact. The underlying structure of each nearness

space is topological space. The underlying structure of each semi nearness

space is a Cech closure space. D. N. Roth and J. W. Carlson showed {R;C]

that finitely generated éech closure spaces are a natural generalisation of

finite (Iech closure spaces. K. C. Chattopadhyay developed [CH] an ex­

tension theory of arbitrary closure spaces which are in general supposed to

satisfy no separation axioms. He introduced the concept of regular exten­

sions of closure spaces and satisfied this concept in detail.

Though much work has been done in topological spaces and in Cech

spaces, there are still many problems not attempted. ln the first part of this

thesis we have made an attempt in this direction.

0.2 Fuzzy closure spaces

The basic concept of a fuzzy set was introduced by L. A. Zadeh in 1965 [Z].

It has become important with application in almost all areas of Mathemat­

ics, of which one is closure space. A fuzzy set ‘.4’ in a set X is characterised

by a membership function rm from X to the unit interval [0, l]. Fuzzy set

theory is a generalisation of abstract set theory. If A is an ordinary subset of
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X, its characteristic function is a special case of a fuzzy set. Zadeh took the

closed unit interval  1] as the membership set. J. A. Goguen [G] consid­

ered different ordered structures for the membership set. He considered a

fuzzy subset as a generalized characteristic function. Thus the ordinary set

theory is a special case of the fuzzy set theory where the membership set is

{[1, 1}. Goguen suggested that a complete and distributive lattice would be

a minimum structure for the membership set.

The theory of fuzzy sets deals with subsets A of a set X, where the

transition between full membership and non-membership is gradual. The

grade of membership ‘one’ is assigned to those objects that fully and com­

pletely belong to A, while zero is assigned to objects that do not belong to

A at all. The more an object X belongs to A, the closer to one is its grade

of membership ;1._.1(;r:). The fuzzy set A’ defined by p._41(;r) : 1 — ;t,1(.-1.?)

is called the complement of the fuzzy set /1. Several mathematicians have

applied the theory of fuzzy sets to various branches of pure mathematics

also, resulting in the development of new areas like, fuzzy topology, fuzzy

groups, fuzzy closure space etc.

It was C. L. Chang [C] who defined fuzzy topology for the first time

in 1968. According to Chang, a family T if fuzzy sets in X is called a fuzzy

topology for X, if

(i) <15, X e T

(ii)ifA,B € TthenAfiB E T

6



(iii) if A, G '1' for eachi € 1, then U/4,1 G T.

Then the pair (X. T) is called a fuzzy topological space or fts in short.

The elements of T are called open sets and their complements are called

closed sets.

In 1976 R. Lowen [LO-1] has given another definition for a fuzzy

topology by taking the set of constant function instead of Q5 and X in axiom

(i) of Chang’s definition.

The theory of closure space is based on the set operation of union,

intersection and complementation. Fuzzy sets do have the same kind of

operations. T. P. Johnson [I] and many others studied fuzzy closure spaces.

Fuzzy closure space is a generalization of fuzzy topological space. C. L.

Chang [Ci] was the first to define a fuzzy topology. Since then an extensive

study of fuzzy topological spaces has been carried out by many researchers.

Many mathematicians, while developing fuzzy topology have used different

lattice structures for the membership set. R. Lowen [LO-1] modified the

definition of fuzzy topology given by C. L. Chang and obtained a fuzzy

version of Tychonoff theorem, but he lost the concept that fuzzy topology

generalizes topology.

In this thesis we are following Chang’s definition rather than Lowen’s

definition. For other details of fuzzy topological spaces like product and

quotient spaces, we refer to C. K. Wong [WO-1].

In the second part of this thesis we have made an attempt to study
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some problems in fuzzy closure spaces.

0.3 H -closedness

An extension of a topological space X is a space that contains X as a dense

subspace. The construction of extensions are of various sorts—compactifica­

tions, real compactifications, H -closed extensions—has long been a major

area of study in general topology. The most common method of construct­

ing an extension of a space is to let the “new points” of the extension be

ultrafilters on certain lattices associated with the space. Examples of such

lattices are the lattice of open sets, the lattice of zero-sets and the lattice of

clopen sets.

A less well-known construction in general topology is the “absolute”

of a space. Associated with each Hausdorff space X is an extremely dis­

connected zero-dimensional Hausdorff space EX, called the Iliadis abso­

lute of X, and a perfect, irreducible, 9-continuous surjection from EX onto

X. A detailed discussion of the importance of the absolute in the study

of topology and its applications were studied by Jack R. Porter and Grant

Woods [P;W]. What concerns us here is that in most constructions of the

absolute the points of EX are certain ultrafilters on lattices associated with

X. Thus extensions and absolutes, allthough conceptually very different,

are constructed using similar tools.

8



One of the reason for studying extensions is the possibility of shifting

a problem concerning a space X to a problem concerning an extension Y

of X where Y is a “nicer” space than X and the “shifted” problem can be

solved. Thus an important goal in extension theory is to generate “nice”

extensions of a fixed space X. H -closed extensions are one of the nice

extensions. We are not attempting extension theory in this thesis, we were

motivated and study H -closedness and related ideas because of this.

Here we study H —closedness in closure spaces. It is well known that

a topological space (X ._ T) is H -closed if X is closed in every Hausdorff

space containing X as a subspace. (In fact, “H -closed” is an abbrevation

for “Hausdorff-closed”-closed in Hausdorff space).

In [P;W] characterisation of H -closed spaces is available in the fol­

lowing manner.

For a space (X. T), the following are equivalent:

(1) X is H -closed

(2) for every open cover of X, there is a finite subfamily whose union is

dense in X.

(3) every open filter on X has nonvoid adherence and

(4) every open ultrafilter on X converges.

In this thesis we apply the above characterisation to closure space.

9



Absolutely closedness or H -closedness was first introduced in I929

by Alexandroff and Urysohn. Here we study some properties of H -closedness

in closure spaces. Also we prove some properties of H -closedness in mono­

tone spaces.

0.4 Fuzzy convexity spaces

The study of convex sets is a branch of geometry, analysis and linear algebra

that has numerous connections with other areas of mathematics. Though

convex sets are defined in various settings, the most useful definition is

based on a notion of betweenness. When X is a space in which such a

notion is defined, a subset C of X is called convex provided that for any

two points .1; and y of C, C‘ includes all the points between :1: and y. For

example in a linear space, a set C is said to be convex if /\.-*1: + (1 — /\)'y G C,

for every 1:, y 6 C and A G [0, 1].

The theory of convexity can be sorted into two kinds. One deals with

concrete convexity and the other that deals with abstract convexity. In con­

crete situations it was considered by R. T. Rockfellar [ROC], Kelly [K],

Weiss [WE], S. R. Lay [L] and many others. In abstract convexity theory a

convexity space was introduced by F. W. Levi in 1951 [LE]. He defined a

convexity space as a pair (X ,2”) consisting of a set X and a family Z of

subsets of X called convex sets satisfying the condition,

10



(i) ¢, X e .2’

(ii) If A; € ,2”, for each '15 G I, then Q A; E .2”.

The convexity space introduc€e1d by Levi was further developed by

many authors like D. C. Kay and E. W. Womble [K;W], R. E. Jamison­

Waldner [J;W], G. Sierksma [S], M. Van de Vel [V] etc. In addition to the

above conditions (i) and (ii) if UA; E .2” whenever A_,; G If and A,-’s are

totally ordered by inclusion, then (X , .2” ) is called an aligned space which

was introduced by R. E. J amison-Waldner [J ;W].

In abstract situations the notion of a topological convexity structure

has been introduced by R. E. Jamison-Waldner in 1974. A triple (X , Z , T)

consisting of a set X, a topology 7' and convexity ,2” on X is called a topo­

logical convexity structure, provided the topology T is compatible with the

convexity .2”. Now a topology "r is compatible with a convexity Q2”, if all

polytopes of .2” are closed in (X , T). R. E. Jameson-Waldner [J ;W] also

introduced the concept of local convexity.

The notion of convexity can be generalized to fuzzy subsets of a set

X. L. A. Zadeh introduced the concept of a convex fuzzy set in 1965. A

fuzzy subset ‘A’ of X is convex if and only if for every .:zf1. 151?; E X and

A e [(1.1]

;t,1()\;1r| + (1 —— )\):r-3) Z n1i11{;t_4(;1:|),;t‘4(:1f2)}

or equivalently a fuzzy set A is convex if and only if the ordinary set
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Ad = {;1: G X|;i.A(z) Z d} is convex for each d > U and d € [0,1].

In concrete situations the concept of a convex fuzzy set was initiated

by M. D. Weiss [WE], A. K. Katsaras and D. B. Liu [K;L], R. Lowen [LO­

2]. M. D. Weiss [WE] considered a convex fuzzy set in a vector space over

real or complex numbers in I975.

In I977 Katsaras and D. B. Liu [K;L] applied the concept of a fuzzy

set to the elementary theory of vector spaces and topological vector spaces.

They have also considered convex fuzzy sets. In 1980, R. Lowen applied

the theory of fuzzy sets to some elementary known results of convex sets.

For the definition of convex fuzzy sets in vector spaces we refer to A. K.

Katsaras and D. B. Liu |K;L].

M. V. Rosa [ROS- l] attempted to develop a fuzzy convexity theory in

topological spaces. So in this thesis we attempt to develop fuzzy convexity

theory in closure spaces.

0.5 Summary of the thesis

Chapter-1

This chapter is a study of H -closedness in closure and monotone spaces.

Here we have four sections. In section l, we introduce c-denseness, (:­

adherence and r_:H-closedness in closure spaces and study some of their

properties, which are analogous to the corresponding notions in topological
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space. Here we prove results like ‘If a closure space (X , <2) is <::H-closed

then it is H -closed in associated topological space’, but converse of this

result is not true. And we prove the converse by means of an example.

Also we prove results like ‘A closure space (X , c) is H -closed if and only if

every open cover 7/ of (X ,_ c) has a finite subfamily whose union is c:-dense

in X .’; If ‘A closure space (X , c) is cH-closed then every open cover "V of

(X , c) has a finite subfamily whose union is dense in X’ etc. In section 2,

we discuss the inheritance by subsets of properties like H -closed and cH­

closed. In this section we prove results like ‘If (X, <2) be 0H-closed and

U Q X be open. Then (rZ( U) is H -closed’; ‘If (X , c) be (:H-closed and

U Q X be open. Then cU is cH-closed’ etc.

In section 3, we introduce 77?.--d6-I]S6l'l€SS, rm-adherence and mH-clos­

edness in monotone space and study some of their properties. This section

is similar to section l in which closure space is replaced with monotone

space. In section 4, we discuss the inheritance by subsets of properties like

H -closed and ‘m..H-closed. This section is similar to those done in closure

spaces.

Chapter-2

In this chapter we study the implicational relationships between various

types of morphisms between closure spaces and between monotone spaces

with respect to associated topological spaces. Here we have four sections.

I3



In section l, we discuss the continuity of functions between clo­

sure spaces, which is analogous to the (2'—continuity of functions between

topological spaces given in [P;W]. Here we define (:6-continuous, 6'0’­

continuous and 090’-continuous. And by means of this definition we prove

results like ‘If f is 6c’-continuous at .I,'[] then f is 6-continuous at .10’; If f is

c9c'-continuous at 1'0 then f is (:6-continuous at .130’ etc. Section 2 is similar

to section 1 in which closure spaces is replaced with monotone spaces.

In section 3 we discuss the mapping between closure spaces with

respect to asociated topological spaces and prove some results by means

of these mappings. Here we also find the relations between continuity and

different types of morphisms. Like ‘a mapping f : (X, <2) -—> (Y, 0’) be a

cl-cl’ morphism, then it is <_:-cl’ morphism’. But the converse is not true,

which is proved with the help of an example. Section 4 is similar to section

3 in which closure spaces is replaced with monotone spaces.

Chapter-3

In this chapter we study some properties of closure spaces and product clo­

sure spaces. Here we have two sections. In section 1 we find some proper­

ties of mapping into product closure spaces with respect to associated topo­

logical spaces. The properties are proved using the result proved in [CE]

namely, ‘a mapping f of a space X into the product space X 1; l_lX,, is

continuous ‘if and only if the mapping vra o f is continuous for each ii’ and

14



the conditions c-c’ morphism implies c-cl’ morphism and cl-cl’ implies ct-cl’

morphism from chapter two. Also we find some separation properties in

product closure spaces.

In section 2 we discuss some separation properties involving zero

sets, like ‘a c:-Hausdorff space X is c:-completely regular if and only if the

family Z1(X) = {Z1(f) : f G C:1(X)} is a base for the closed sets in the

associated topology of X.

Chapter-4

This chapter is a study of fuzzy closure spaces (fcs). Here we introduce

denseness in fuzzy closure spaces and also introduce the concept of various

types of mappings between fuzzy closure spaces and prove some results

based on these. And the chapter consists of two sections.

In section l we introduce denseness in fuzzy closure spaces known

as fuzzy c-denseness and prove some results in fuzzy closure spaces using

denseness property. Here we prove results like ‘a fuzzy subset ‘A’ of a fuzzy

closure spaces (X. c) is r:-dense in X if and only if for every nonempty open

subset B of X, A H B 75 gt). In section 2 we discuss mapping between fuzzy

closure spaces (fcs) with respect to associated fuzzy topological spaces (fts)

and prove some results. Here we define fuzzy c:-c’ morphism, fuzzy c:Z—r;:’

morphism fuzzy (J:-cl’ morphism, fuzzy cl-cl’ morphism where f be mapping

from a closure space (X. (2) to closure space (Y, c’) and cl, cl’ be closure
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operators in the respective associated fuzzy topological spaces. Here we

prove results like ‘If f is fuzzy cl-¢:’ morphism from a fuzzy closure spaces

(X , c) to fuzzy closure spaces (Y, c’) then f is fuzzy cl-cl’ morphism.’

Chapter-5

In this chapter we define fuzzy closure fuzzy convexity spaces. And we

prove some properties of fuzzy closure fuzzy convexity spaces. Here we

have three sections. In section 1 we consider a fuzzy closure together with

a fuzzy convexity on the same underlying set and introduce fuzzy closure

fuzzy convexity spaces. Also we introduce the subspace and product of

fuzzy closure fuzzy convexity spaces.

In section 2 we study locally fuzzy closure fuzzy convexity spaces.

Here we prove results like ‘any subspace of a locally (fc) (f c0)s is a locally

( fc)( f c0)s.’ In section 3 we introduce the separation axioms in fuzzy clo­

sure fuzzy convexity spaces. Here we define F CN S0, F CNS 1, FCNS2,

Pseudo FCNS3, FCNS3, semi FCNS4, FCNS4 where FCNS stands

for ‘Fuzzy closure neighbourhood separation’ and prove results like, a nonempty

product is F C NS,-y, if each factor is F CNS.-y for every ii : O. 1, 2 and sup­

porting examples for FCNSQ :> FCNS1 :> FC1\-"S|-, and FC']\/'S_q :>

Pseudo F C NS3.
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Chapter-6

In this chapter we introduce fuzzy closured convexity space and find the

relationship between fuzzy topological convexity spaces and fuzzy closured

convexity spaces. Also we find the relationship between fuzzy closure fuzzy

convexity spaces and fuzzy topological fuzzy convexity spaces. Here we

have two sections.

ln section 1 we define fuzzy closured convexity space and some of its

properties. Here we prove the result ‘A fuzzy topological convexity space

(X ._ If , T) is fuzzy closured convexity space (X , D2” ,  Here T is the asso­

ciated fuzzy topology of the fuzzy closure space (X ._ cr)’. With the help of

an example we prove the fact that (fc)(_fc0)s is not an fr: — (30.8. Also we

find the relationship between fuzzy topological convexity spaces and fuzzy

closured convexity spaces. In section 2 we find the relationship between

fuzzy topological fuzzy convexity spaces and fuzzy closure fuzzy convex­

ity spaces. Here we prove the related results like, ‘any subspace of a FNS¢

space is F N5} and hence FCN5} for all ti = 0, 1, 2 ’.

0.6 Preliminary definitions and results used in the thesis

For details refer [P;W, CE, C, ROS-1, SJ].

Definition 0.6.1. A topological space (X. '7') is H -closed if X is closed in

every Hausdorff space containing X as a subspace.
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Definition 0.6.2. A function c from a power set of X to itself is called a

closure operation for X, provided that the following conditions are satisfied.

(i) ¢¢ = Q5

(ii) A C c:A for every A C X

(iii) c(A U B) = 0.4 U r:B for every A, B C X.

A structure (X, c) where X is a set and c: is a closure operation for X

will be called closure space or Cech space. Let us consider the following

conditions.

(iv) A C B :> cA C (TB for every A, B C X

(v) for every family  ; of subsets of X,

Lt(U .43") I U (J(A,f).£6! 'i€1

(vi) c(cA) I (:A for every A Q X.

The structure (X , (.2) where rt has the properties (i), (ii) and (iv) is

called a monotone space [C;M]. A éech space which satisfies the condition

(vi) is called Kuratowski (topological) space [C;M]. A éech space (Kura—

towski) space is total if the condition (v) holds [C;M].

Definition 0.6.3. A subset A of a closure space (X , c) will be called closed

if c/l I A and open if its complement is closed, that is, if (:(X\/4) I

X \A. And the set of open sets of (X , 0) is said to constitute the associated

topology of the closure space.
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Definition 0.6.4. An interior operator Into on X is a function from the power

set of X to itself such that for each A C X, lnt(,A = X \c(X \A). The set

IntcA is called the interior of A in (X , c). Also A is called a neighbourhood

of :1: if tr: G Int,;A; A is an open neighbourhood if A is also open that is if

lntCA I

Definition 0.6.5. Let (X , c) be a closure space and Y C X. The closure c’

on Y is defined as tr’ A = Y F) (:A for every A C Y. The closure space (Y, 0')

is called a subspace of (X c).

Definition 0.6.6. Let Y be a subspace of a closure space X.

(a) If A is closed (open) in X then Y F) A is closed (open) in Y

(b) If Y is closed (open) in X and A is closed (open) in Y then A is closed

(open) in X.

Definition 0.6.7. Let X be a set and m be a monotone operator on X and

take the collection cu : (:0. is a closure operator coarser than m z'.e., -mA Q

caA for all A Q X Then the associated closure operator c is defined by

cA = ()caA for all A Q X.

Result 0.6.8. For each monotone operator there is a uniquely associated

closure operator.

Definition 0.6.9. A neighbourhood of a subset A of a monotone space is

any subset U of X such that A Q X\m(X\U By a neighbourhood of a

point rt" of X we mean a neighbourhood of the one point set
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Definition 0.6.10. Let (X ._ m) be a monotone space and Y Q X. The mono­

tone operator -my on Y is defined as my/A = Yfim( A) for all A Q Y. Then

m’ is called the relativisation of -m to Y and the space (Y, my) is called the

subspace of (X , m).

Definition 0.6.11. Let (X , c) and (Y, c’) be two closure spaces and cl, cl’ be

the Kuratowski closure operations in the respective associated topologies.

Amap f : X —> Y is said to be a,

(i) (3 — c’ morphism if f(cA) Q c:'f(A) for all A Q X

(ii) c — ct’ morphism if f(c:A) Q cl’f(A) for all A Q X

(iii) cl — cl’ morphism or continuous map if f (cl A) Q cZ’f for all

A Q X.

Definition 0.6.12. Let (X , -m.) and (Y,em’) be two monotone spaces and

cl,cl’ be the Kuratowski closure operations in the respective associated

topologies. A map f : X —> Y is said to be a

(i) m — -mt.’ morphism if f (mA) Q ~m..’f for all A Q X

(ii) m — cl’ morphism if f(m/1) Q c:l’f(/1) for all A Q X

(iii) cl — cl’ morphism or a continuous map if f(c:Z A) Q cl’ f (A) for all

A Q X.

Definition 0.6.13. Let {(X,1. ca) : (1 G A} be a family of closure spaces, X

be the product of the family {X Q} that is, X : HXfl_ of underlying sets, "rra

be the projection of X onto X G for each (1., then the product closure t: is the
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coarest closure on the product of underlying sets such that all the projections

are continuous.

Definition 0.6.14. A closure space (X , c) is said to be Hausdorff if for any

two distinct points, there exist neighbourhoods U of ;r and V of y such that

UfiV:¢

Definition 0.6.15. A closure space (X , (2) is said to be completely regular,

if for every point :1: and a closed set A not containing zr, there exist a rt — cl

morphism f : X —~> [0. 1] such that f(:r:) : 0 and _f(-y) = 1 for all -y G A.

Definition 0.6.16. (i) C(X) = {f : X —> R / _f is continuous from (X, t)

to R with usual topology, here ‘t’ is any topology on X

(ii) C*(X) = {f G C(X)lf is bounded}.

(iii) For f G C(X),  = {:Jt1'G  I O} Zero set off and Z(X) =

{Z<r>|r e 0(X)}­

Definition 0.6.17. Let A and B be fuzzy sets in a set X. Then

(i) A : B <=> ,u,4(:1r) _ ;r;;(:r:) for all .1? G X

(ii) A Q B /;> ;t_4(:rf) § p.B(.:r:) for all :1: G X

(iii) C = A LJ B <-;> ,u.@(:r) = r1t1ax{;r_4(.'r), p.5(;r)} for all .1? G X

(iv) D : A Fl B ¢> [.L]')(.'.I.°_) : rnir1{;r_.r(:r:), ;u3(;r:)} for all :1." G X

(v) E = A’ <:> ,u;;(."r') _ 1 — ;1.,1(;r.") for all 1r G X.

For any family {/Al.-},-E; of fuzzy sets in X, we define intersection
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F),-e;A¢ and the union Uf€]Ai respectively by,

um‘. (1%) : inf  and l.f,UA_(-_ :1? _ sup ,u.A‘. for all :1‘ G X.tel 161 1'6 iel
The symbol q/> will be used to denote the empty set such that

u¢(a;) = (J for all 1: G X. For X, we have by definition ,uX(;1:) : 1 for all

as G X.

Definition 0.6.18. Let f be a mapping from a set X to a set Y. If A is a

fuzzy set in X, then the fuzzy set f(/l) in Y is defined by,

SUl)1:€)""(y) #A(17) if f“1(3/) 74 <9
/4/(.»1)(3/) I 0 if f_l(;l/) = ¢

where f'1(y) == {rs E  - g}.
If B is a fuzzy set in Y, then the fuzzy set f'l (B) in X is defined by

My-1(B)(1»') Itmff-'15)»

Definition 0.6.19. A fuzzy topology is a family T of fuzzy sets in X which

satisfies the following conditions,

(i) gb, X E T

(ii)IfA,B e T, then An B e T

(iii) If A,-s G T for each 1' € I, then U.,¢E ,/1,1 6 T.

The pair (X, T) is called a fuzzy topological space (or fts in short).

Every member of T is called a T-open fuzzy set (or simply an open fuzzy

set). A fuzzy set is T-closed (or simply closed) iff its complement is T­
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open.

As in general topology, the indiscrete fuzzy topology contains c/> and

X while the discrete fuzzy topology contains all fuzzy sets.

Definition 0.6.20. A fuzzy point P in X is a fuzzy set with membership

function

A fOI' LL‘ = l.l,'[)
HePlfL'l I

U otherwise.

where 0 < A § 1. P is said to have support 11:0 and value /\ and we write

P = l130,\~

Two fuzzy points are said to be distinct if their supports are distinct,

when A I 1, P is called a fuzzy singleton.

Definition 0.6.21. A (Tech fuzzy closure operator on a set X is a function

from I X to IX satisfying the following three axioms.

(i) CQ5 I Q‘)

(ii) A Q c(A) for all fuzzy subsets A of X

(iii) c(A U B) _ c(A) U c(B) for all fuzzy subsets A and B of X.

Here ( X . (1) is called a fuzzy closure space (or fcs in short). If r1:((:A) =

c(A) for all fuzzy subsets A of X then fuzzy closure space (X, c) is said to

be a fuzzy topological space.

Definition 0.6.22. A fuzzy subset A in fuzzy closure space (X , 0) is said

to be fuzzy closed if (TA : A and fuzzy open if its complement is fuzzy
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closed.

Definition 0.6.23. A fuzzy closure operator c: on X is said to be coarser

than another fuzzy closure operator <:’ on the same set X if c'(/1) Q Q-(A)

for each fuzzy subset A of X.

Definition 0.6.24. If (X. c) be a fcs then we denote the associated fuzzy

topology on X by 6 = {A’ |<;(A) : A where A is a fuzzy subset of X

members of 5 are the open sets of fcs (X , 0) and their complements are the

closed sets.

Definition 0.6.25. A fuzzy subset ‘A’ in a fts (X. 6) is said to be fuzzy

dense ifA -- X, where A - fi{B|B Q A and B is closed in (X.6)}.

Definition 0.6.26. Let X be any set. A fuzzy alignment on X is a family

.2” of fuzzy sets in X which satisfies the following conditions,

(i) ¢,X € if

(ii) If A; E if for eachi 6 I then We-[A1 E =2”

(iii) If A. G =2” for each I E I and if Ajs are totally ordered by inclusion

then u,»E,A,1 e :2”.

The pair (X. .2”) is called a fuzzy aligned space or a fuzzy convexity

space or fco s in short. Every member of .2” is called a convex fuzzy set.

Definition 0.6.27. From axioms (i) and (ii) in definition 0.6.26 we have that

for any subset S of X there is a smallest convex fuzzy set If (S) which
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contains S and is called the convex hull of the fuzzy set S.

Thatis..2”(S) : n{K e ..2”lS Q K}

Definition 0.6.28. Let (X , Z ) be a fcos. A collection $5 of fuzzy subsets of

X generates .2” if 55’ Q If and Z is the smallest fuzzy alignment containing

‘K.

Definition 0.6.29. Let (X , O2” ) be an f cos and [ll a crisp subset of X. Then

a fuzzy alignment on M is given by Z1; : {L O Mil. E  Then the pair

(M, Z11) is a fuzzy subspace of (X,

Note 0.6.30. The convex hull operator on M is given by .,2”M(S) I .Z (S) O

M for fuzzy subset S of M.

Definition 0.6.31. Let  X . J31) and (Y, $2) be two fuzzy convexity spaces

and let f : X —> Y. Then f is said to be

(i) a fuzzy convexity preserving function (PCP function) if for each con­

vex fuzzy set K in Y, f_' (K) is a convex fuzzy set in X

(ii) a fuzzy convex to convex function (FCC function) if for each convex

fuzzy set K in X, _f(K) is a convex fuzzy set in Y.

Definition 0.6.32. Let (X0, .,‘Z§,.),,.-_ 1 be a family of fuzzy convexity spaces.

Let X = HOE; X .6, be the product space and let rr,,_: X —> X“ be the projec­

tion map. Then X can be equipped with the fuzzy alignment ,2” generated

by the convex fuzzy sets of the form {vr(j1((g‘(,)|CO G $0.; Oz E I Then
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Z is called the product fuzzy alignment for X and (X , ,2” ) is called the

product fuzzy convexity space.
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Chapter 1

H -Closedness in Closure and Monotone

Spaces

Introduction

In this chapter we introduce the concept of H -closedness in closure and

monotone spaces and investigate its properties. Also we study the relations

to the H -closedness of the associated topological space.

Absolutely closedness or H —closedness was introduced in .1929 by

Alexandroff and Urysohn (for the definition and details, see [P;W]). E. (Tech

defined closure spaces (cf. [CE]) and T. A. Sunitha [S] discussed relations

between closure spaces and the associated topological spaces. In [C;M],

C. Calude and M. Malitza defined a different notion of (Iech spaces which

are now called monotone spaces and in [S], T. A. Sunitha discussed rela­

tions between monotone spaces, associated closure spaces and associated
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topological spaces. These motivated the study of H -closedness in closure

and monotone spaces.

In section 1.1, we introduce denseness, adherence and H -closedness

in closure spaces and call them respectively c-denseness, 0-adherence and

cH—closedness analogous to the corresponding notions in topological spaces

Here we study some of their properties; also we obtain relations between

these properties and similar properties in the associated topological spaces.

In section 1.2, we discuss the inheritance in closure spaces, by subsets

of properties like H -closed and c:H-closed. Section 1.3 and section 1.4 are

similar to section 1.1 and section 1.2 respectively in which closure space is

replaced with monotone space. Here we also find the relationship between

monotone space, associated closure space and the associated topological

space with respect to the properties like H—closed and r:H-closed.

1.1 c-denseness, <2-adherence and cH-closedness

In this section we introduce the concept of denseness, adherence and H­

closedness in closure space and they are called r:-denseness, c-adherence

and 0H-closedness respectively. Also we study some of their properties

Definition 1.1.1. A set ‘A’ in a closure space (X . c) is said to be (2-dense in

X if CA = X.
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Result 1.1.2. If cA = X then clA = Xfor any A Q X; that is, a set

A Q X is c-dense in X implies A is dense in X.

Definition 1.1.3. Let (X , c) be a closure space, J be a filter on X then

the set F1{cF : F E J} is called the ts:-adherence of J and is denoted by

a°(J

Note 1.1.4. a"(J) Q a(J), the adherence of J where a(J) = fi{clF :

F € J } where cl F is the closure of F in the associated topological space.

Definition 1.1.5. A closure space (X, c) is said to be cH-closed if every

open filter on X has non-void c—adherence.

Note 1.1.6. The above definition is analogous to the characterisation of H­

closedness as given in [P;W], namely a topological space (X , T) is H -closed

if and only if every open filter on X has a nonempty adherence. We say that

(X, c) is H -closed if (X , T) is H -closed where -T is the associated topology

for (2.

Proposition 1.1.7. If a closure space (X , c) is cH-closed, then it is H­

closed (by this we mean that the associated topological space is H -closed ).

Proof We know that [P;W] a topological space (X, T) is H -closed if and

only if every open filter has non-void adherence, that is, if and only if for

any open filler J, fi{cl F : F €  gé <,b. Given (X, c) is cH-closed. So if

J is any open filler then fi{cF : F G J} 74 gt). So fi{clF : F G J} 75 Q5

since cF Q cl F. Hence (X, c) is H -closed. D
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Proposition 1.1.8. A closure space (X , cz) is H -closed if and only  every

open cover 7/ of (X , c) has a finite subfamily whose union is c-dense in X.

Proof We know that [P;W], a topological space (X , T) is H -closed, if and

only if every open cover 7/ of (X , T) has a finite subfamily whose union

is dense in X. Let 7/ be an open cover of X such that for each finite set

A Q 7/, X 94 c(UA). Let J = {U : U open and U Q X\c:(UA) for some

finite set A Q 7/ Clearly J is nonempty and J is an open filter on X

and a(J) I fi{cl U : U E J}

Q fi{cl (X\(:(LJ/1)) : A Q 7/ is finite}

Q fi{Cl(X\(i:V) : V G 7/}

QX\U(7/) zqosince U(7/) :X.

Thus (X, c) is not H-closed.

Conversely, (t-(161186 implies dense. Hence (X ._ c) is H -closed. D

Proposition 1.1.9. If a closure space (X , rr) is c:H-closed then every open

cover 7/ of (X , 0) has a finite subfamily whose union is dense in X.

Proof. (fH-ClOS6(l implies H -closed (by proposition 1.1.7) and by the propo­

sition 1.1.8 we have the result. 1:1
Note 1.1.10. H -closed does not imply cH-closed.

Eg:- Let X : N, the set of natural numbers define (:A = A U (A — 1) for
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A Q N where A-1 = {:1:— 1|:1: G A} and 1-1 = (J is not considered. Then

{N, {2, 3, 4, . .   4, 5, . .  . .  is an open filter base for the associated

topology. Then (X , <:) is H -closed and not r;H-closed. Thus converse of the

proposition 1.1.9 is not true.

Proposition 1.1.11. If a closure space (X , <_:) is <'H-closed then every open

cover 7/ of (X , <3) has a finite subfamily whose union is c-dense in X.

Proof eH-closed implies H -closed and by proposition 1.1.8 we have theresult. l:l
Note 1.1.12. Converse of the above proposition is not true in general, since

H -closed does not imply <i:H-closed by note 1.1.10.

1.2 Inheritance of properties in cH-closed spaces

In this section, we discuss the inheritance by subsets of properties like H —

closed and (.'fH-CiOSCd.

Proposition 1.2.1. Let (X ._ 0) be c:H-closed and U Q X be open. Then

cl (U) is <1-H-closed.

Proof. Let U be open in (X . ct) and J be an open filter on cl (U) = A. Then

{F O U : F G J} is an open filter base on X. Let G ==  Q X : W

is open in X and W Q F F1 U for some F G J Then G is an open

filter on X. Given (X, (ff) is cH—closed. So qb 75 0.§((G') Q Fl{cX(F O U) :
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F E  I |’l{c:,1(FfiU) 1F E  Q fi{e,;(F) : F E  I
Thus cl(U) is eH-closed. Cl
Corollary 1.2.2. Let (X , c) be crH -closed and U Q X be open. Then cl (U)

is H -closed.

Proof By Proposition 1.2.11 cl U is r_;:H-closed. But by 1.1.7 cH—closed

implies H -closed. Thus the corollary. U
Remark 1.2.3. Let (X , c) be H -closed and U Q X be open. Then cl (U)

need not be cH-closed.

Proposition 1.2.4. Let (X , c) be 0H-closed and U Q X be open. Then c:U

is <:H -closed.

Proof Proof is exactly similar to that of Proposition l.2.l with cl (U) re­placed with (:(U ). D
Proposition 1.2.5. Let (X _, (1) be eU—cl0sed and U Q X be open. Then

c(U) is H-closed.

Proof By proposition 1.2.4, (;:(U) is cl]-closed. And we know cH—closed

implies H -closed. Hence the result. CI
Remark 1.2.6. Let (X , <2) be H -closed and U Q X be open. Then <i:U need

not be c.-H-closed.

Proposition 1.2.7. If ( Y, ca’ ) is a ct’ H-closed subspace of a Hausdorfi closure

s ace X , c where cz’ _ r: restricted to Y, then Y is closed in X , <1 .P
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Proof Given (Y, <1’) is <::’ H —closed implies (Y, tr’) is H -closed. Thus Y isclosed in X. El
1.3 m-denseness, m-adherence and mH-closedness

In this section we introduce the concept of denseness, adherence and closed­

ness in monotone space and they are called m—d6nS6n€SS, m-adherence and

mH-closedness respectively. Also we investigate their properties and rela­

tionship between them and the same in the associated closure space and the

associated topological space.

Definition 1.3.1. A set A in a monotone space (X. m) is said to be m—d€11s6

in X i1°'m.A 1+-* X.

Remark 1.3.2. [S] If (X ,m) is a monotone space and cl is the closure

operation in the associated topological space. Then cl § -m, that is, cl A Q

mAforallA Q X.

Result 1.3.3. If mA = X then clA : X where A Q X, that is, a set

A Q X is m-dense in X implies A is dense in X.

Proof Trivial using remark 1.3.2. Cl
Definition 1.3.4. Let (X , -m) be a monotone space, J be a filter on X,

then the set fi{mF : F € f } called ‘ITI.-8dl'l6I‘CI"lCC of J and is denoted by

a1i:(j)_
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Note 1.3.5. Clearly aj’”(.¢) Q  Where a(.7) = O{c1 F : F G .7} is

the adherence of f in the associated topology.

Definition 1.3.6. A monotone space (X , m) is said to be mH-closed if ev­

ery filter on X of open sets in the associated topology has non void in­

adherence.

Note 1.3.7. The above definition is motivated by the characterisation of H­

closedness given in [P;W], namely a topological space (X, T) is H -closed

if and only if every open filter on X has a nonempty adherence and the

definition of H -closedness in closure spaces given in section 1.1. Here we

say that ( X , TN) is c:H-closed if it is H -closed in the associated closure space

that is (L1H-closed in (X , (7) where 0 is the associated closure operator, and

we say (X. m) is H -closed if it is H -closed in the associated topology.

Proposition 1.3.8. If a monotone space (X , -in) is mH-closed then it is CH­

closed and H-closed.

Proof Given (X , 77?.) is mH-closed. So if f is any open filter then fi{rmF :

F E .57} 74 ¢. Thus fi{cF : F 6 f} 75 g5. Hence (X,"m) is c::H-closed.

Also we have r:H—closed implies H -closed. Thus we have the proposition.

El

Proposition 1.3.9. A monotone space (X , m) is H -closed if and only

every open cover "V of (X , m.) has a finite subfamily where union is im­

dense in X.
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Proof We know that (cf. [P;W]), a topological space (X , T) is H -closed

if and only if every open cover 7/ of (X _, T) has a finite subfamily whose

union is dense in X. Here given that (X . in) is H -closed. That is, (X , t)

is H -closed where t is the associated topology of (X ,-m). We have to

prove that every open cover ‘V of (X , -m) has a finite subfamily whose

union is m-dense in X. For that we assume the contrary. Let "V be an

open cover of X, such that for each finite set A Q "V, X 74 m(UA). Let

.7 : {U : U is nonempty and open and U Q X\m(U/1) for some finite

set A Q ‘V Clearly J is an open filter on X and adherence of J, that

is, 0(1) : Fl{clU : u G f} Q F“|{cl(X\'m(UA)): A Q '1/is finite}

Q fi{cl (X\m-V) : V E 7/} Q X\ U 7/ : rb since UV : X. Thus (X, m)is not H -closed. l]
Converse follows from the fact that ’!TI.-(l6IlS€ implies dense and by the

characterisation of H -closedness in topological space.

Proposition 1.3.10. If a monotone space (X , m) is mH-closed then every

open cover ”// of (X , m) has a finite subfamily where union is 'm-dense in

X and hence e—dense and dense in X.

Proof We know that mH-closed implies H -closed and by the proposition

1.3.9 we have the result. D
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1.4 Inheritance of properties in mH-closed spaces

In this section we discuss the inheritance by subsets of properties H -closed,

cH-closed and mH-closed.

Proposition 1.4.1. Let (X, m) be 'mH-closed and U Q X be open then.

cl (U) is mH -closed and hence (_fH-ClOS€d and H -closed.

Proof We have to prove cl U is mH-closed, that is, to prove o"*(.i) 76 c/>

with respect to cl U, where f is an open filter on cl U. Let U be open in

(X,m) and f be an open filter on clU I A. Then {F O U : F G J4} is an

open filter base on X. Let G : {W Q X : l/V is open in X and W Q F NU

for some F € f Then G is an open filter on X. Given (X , m.) is mH­

closed. S0 Q5 75 (zf{5(G) Q fi{mX(F O U) : F €  : fi{m__,1(F O U) :

F € J} Q fim._,1(F) 1 F E J7} : o.,,,,(.,¢'). Hence the proposition. I1

Proposition 1.4.2. Let (X , m) be s'mH-closed and U Q X be open then <;U

is mH-closed and hence cH-closed and H -closed.

Proof Proof is exactly similar to that of proposition 1.4.1 with cl U replacedwith cU. II]
Proposition 1.4.3. If (Y, my) is a "m.yH-closed subspace of a Hausdorfl

monotone space (X , tn), then Y is closed in (X , m).

Proof. Given (Y. 277.1") is mH-closed then (Y.7?1}-*) is H -closed. Thus Y is

closed in X, since X is given to be Hausdorff. Thus the proposition. E]
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1.5 Conclusion

In this chapter we defined denseness, adherence and H -closedness in clo­

sure and monotone spaces. Using these definitions we prove Kuratowski

closure of any open set in monotone space (or closure space) is H —closed in

monotone space (or closure space) and hence H-closed in associated topo­

logical space of (X, m).
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Chapter 2

Mappings between Closure and

Monotone Spaces

Introduction

In this chapter we study the implicational relationships between various

types of morphisms between closure spaces and between monotone spaces

with respect to associated topological spaces.

In [CE] E. éech defined closure spaces and continuity between clo­

sure spaces, in [C;M] C. Calude and M. Malitza defined a different notion

of éech spaces which are now called monotone spaces and in [P;W] is de­

fined 6-continuity of functions between topological space. These motivated

the study of continuity of functions between closure and monotone spaces.

In [S] T. A. Sunitha discussed morphisms from one closure space into an­

other, and this motivated the further study in mappings.
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In section 2.1 we discuss the continuity of functions between closure

spaces, this is analogous to the 6-continuity of functions between topologi­

cal spaces given in [P;W]. Section 2.2 is similar to section 2.1 in which clo­

sure spaces is replaced with monotone spaces. In section 2.3 we discuss the

mappings between closure spaces with respect to the associated topological

spaces and prove some results. Also we find relations between continuity

and different types of morphisms. Section 2.4 is similar to section 2.3 in

which closure spaces is replaced with monotone spaces.

2.1 Continuity of functions between closure spaces

Here we discuss the continuity of functions between closure spaces, which

is analogous to 0-continuity of functions between topological spaces given

in [P;W], namely (X, T) and (Y, T’) be topological spaces and f : X —> Y

be any map and let srg € X and f is 49-continuous at .120 if for each open

neighbourhood V of f there is an open neighbourhood U of :11; such

that f(clX U ) Q Cly (V). And the set of all 6-continuous functions from X

to Y is denoted by :9-(:(X, Y).

Definition 2.1.1. Let (X. <2), (Y, c’) be two closure spaces and f : X —> Y

be any map and let ;"r'U G X,

1. (i) f is 9-continuous at :11] if for each open neighbourhood V of f (5120)

there is an open neighbourhood U of mg such that f(clX U) Q cl;/(V).
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(ii) f is (:6-continuous at ./1:0 if for each open neighbourhood V of f

there is an open neighbourhood U of ;r0 such that f(cU) Q Ciy(V).

(iii) f is 60’-continuous at .170 if for each open neighbourhood V of f(;1:0)

there is an open neighbourhood U of 5:30 such that f (cl XU ) Q tr’ (V).

(iv) f is 060’-continuous at 1:0 if for each open neighbourhood V of f ($0)

there is an open neighbourhood U of 11:0 such that _f(cU) Q ct’ (V).

2. f is (9-continuous if f is 0-continuous at each point of X. Similarly (:6­

continuous, 90’-continuous and 06¢’-continuous.

Proposition 2.1.2. If  is ()c'-continuous at :1."-0 then f is 9-continuous at .170.

Proof We have given f is 00’-continuous at 1'0. So f [cl XU ] Q <:’(V). But

c’(V) Q cly(V). That is, f(ci,\-U) Q cl;/(V). Hence f is 6-continuous at

11:0, where U and V are neighbourhoods of 1170 and f(;r:0) respectively. U

Note 2.1.3. Converse of the above proposition is not true.

Proposition 2.1.4. If f is 060'-continuous at 3:0 then  is (:9-continuous at

ZIJQ.

Proof Given _f is (i:6ir":’-continuous at :r0. So for each open neighbourhood V

of _f(rr0) there is an open neighbourhood U of .150 such that _f(cU) Q (/(V).

But c:’( Q Ciy V. That is, f ((rU ) Q cl}/(V). Hence f is (.26-continuous at:r0. 1:!
Note 2.1.5. Converse of the above proposition is not true.
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Proposition 2.1.6. If f is 6’c:’-continuous at 1:0 then f is <26-continuous at

LEO.

Proof Given f is 190’-continuous at .170. So for each open neighbourhood

V of f ($0) there is an open neighbourhood U of .10 such that f(clXU) Q

c’(V). But c’(V) Q cl;/(V). That is, f(clXU) Q cl;/(V). Also crU Q clXU,

hence f((::U) Q f(clXU). Thus f(cU) Q cl;/(V), that is f is (:6-continuousat 1'0. l:|
Note 2.1.7. Converse of the above proposition is not true.

Proposition 2.1.8. If f is F)-continuous at .r0 then f is r‘-.9-continuous at ;r0.

Proof We have, for each open neighbourhood V of f(;1;0) there is an open

neighbourhood U of 1'0 such that f(clXU) Q cly( V ) by the definition of

9-continuity off at .10. Also r:(U) Q clx U, hence f (c1U) Q f(clX U Thus

we get f(r:U) Q cly(V), that is f is c()-continuous at ;z:0_ El

Note 2.1.9. Converse of the above proposition is not true.

Proposition 2.1.10. If f is t9c’-continuous at 1:0 then f is <;:6<_:’—c0ntinu0us at

1'0.

Proof Given f is 90’-continuous at .110. So for each open neighbourhood V

of f(;r0) there is an open neighbourhood U of .210 such that f [clx U] Q c’

Also cU Q CIXU, so f((:U) Q f(clXU). Hence we get f(cU) Q c’(V), that

is f is c0cr’-continuous at 1:0. Cl
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2.2 Continuity of functions between monotone spaces

In this section we discuss the continuity of functions between monotone

spaces, which is analogous to the 6-continuity of functions between topo­

logical spaces given in [P;W]. Here we also find the relationship between

continuity of functions between closure spaces and between monotone spaces

I
Definition 2.2.1. Let (X , m), (Y, m ) be two monotone spaces and _f : X —>

Y be any map and let 11:0 G X,

l. (i) f is 6-continuous at :11] if for each open neighbourhood V of f(./1:0)

there is an open neighbourhood U of 1:0 such that f (cl XU ) Q cly(V)

by [P;Wl

(ii) f is m0-continuous at 11:0 if for each open neighbourhood V of _f (;1".:O)

there is an open neighbourhood U of 51:0 such that f('m.U) Q cly-(V

(iii) f is Hm’-continuous at 1:0 if for each open neighbourhood V of _;"(:1;0)

there is an open neighbourhood U of 1,.-U such that f(clXU) Q ‘m.-'

(iv) f is mélm’-continuous at 1:0 if for each open neighbourhood V of

f there is an open neighbourhood U of 1'0 such that f(mU) Q

m’(V).

2. _f is 6—continuous if f is 6-continuous at each point of X. Similarly m0­

continuous, Gm’-continuous and m6-m.’-continuous.

Proposition 2.2.2. If f is 9m’-continuous at :50 then  is 6-continuous at

IIJU.
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Proof. Given f is Gm’-continuous at 1:0. So for each open neighbourhood

V of f(;:;0) there is an open neighbourhood U of :50 such that f(c1XU ) Q

m'(V). But 'm/(V) Q cly(V). Hence f(clXU) Q cl;/(V),that is  is (9­continuous at 11-]. U
Note 2.2.3. Converse of the above proposition is not true.

Proposition 2.2.4. If f is -m6-m’-continuous at :r:U then f is mt)-continuous

at TITO.

Proof Given f is méim’-continuous at .-1:0. So for each open neighbourhood

V of _f(1:@) there is an open neighbourhood U of ;r[] such that f (mU ) Q

Tn/(V). But -"rr/(V) Q clyV, that is, f(-m.U) Q c1y(V). Hence f is -mt/—continuous at 11;. U
Note 2.2.5. Converse of the above proposition is not true.

Proposition 2.2.6. If f is H-1'2":-’-c'()ntinzi0u.9 at 51:0 then  is 'm.6-continuous at

I0.

Proof We have, for each open neighbourhood V of f (1:0) there is an open

neighbourhood U of 1:0 such that f (cl X U ) Q m’ ( V) by the definition 9m’­

continuity of f at :1.-U. Also m( U) Q c1XU, hence f(mU) C f (cl XU ). Thus

_f(mU) Q -in’ Q cly(V), that is f is mf)-continuous at 1:0. III

Note 2.2.7. Converse of the above proposition is not true.

Proposition 2.2.8. If‘/' is :9-continuous at 51:0 then  is m-6-continuous at 1:0.
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Proof Given f is 6-continuous at 1:0. So f(c1XU) Q cly(V). But f(mU) Q

clX(V). Thus f(mU) Q cly(V), that is f is m6-continuous at .i1:0. Here U

and V are neighbourhoods of ;-1:0 and f(;ir0) respectively. D

Note 2.2.9. Converse of the above proposition is not true.

Proposition 2.2.10. If f is 6m’-continuous at 51:0 then f is m6"n"2.’-continuous

at :1;0.

Proof. We have, for each open neighbourhood V of f (3:0) there is an open

neighbourhood U of ;1;0 such that f(clXU) Q m/(V) by the definition of

Hm’-continuity of  at ;.rr@. Also -mU Q clXU, so f(mU) Q f(clXU).

Hence we get f(m.U) Q m’ That is _f is rn.0m’-continuous at 11:0. U

2.3 Mappings between closure spaces

In this section we discuss the mappings between closure spaces.

Definition 2.3.1. A map f : (X. c.:) —> (Y. c’) is said to be cl — c’ morphism

if f (cl A) Q cr’ f (A) for all A Q X. Here cl is the closure operator on the

associated topology of (X . o).

Result 2.3.2. Let f : (X , cr) —> (Y, 0’) be a cl - cl’ morphism. Then it is

c — cl’ morphism, that is, continuity implies c: — cl’ morphism.

Proof Given f is cl — cl’ morphism, that is, f(cl A) Q cl'f(A) for all A Q

X. But cA Q clA so _f(cA) Q f(clA). Hence we have f(cA) Q cl'_f(A),

that is f is a c — cl’ morphism. Hence the result. II]
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Note 2.3.3. Converse of the result 2.3.2 is not true in general

Eg:- Let X = N, the set of all natural numbers. For A Q N define

cA : A U (A —— 1) where A —-1 : {;r —  € A}. (When 1 G A and

2: : 1 we do not consider 5:: — 1). The corresponding associated topological

space (X, t) has closed sets {N, Q5, {1}, {1, 2}, {1, 2, 3}, - - - } and consider

Y = N U {iv} where -w is some element not in N. cA = A U (A — 1) with

the understanding that in - 1 = in and A — 1 :  — 1|;r € A and when

1 G A and .1: = 1 we do not consider :1: — 1}.

LL’ if .1; 75 1
Now define a map f : X —> Y as f(:z:) : . Clearly f

w 1f1*=1

is c — cl’ morphism but not cl — cl’ morphism. For, let A -= {$3, 10. 15, . .

f(A) =  10, 15. . .  c:A : {4,5.9, 10, . .  cl’f(A) = N; clA = N.

Thus f(cl A) Q cl'f(A) butf(r?A) Q cl'f(A).

Result 2.3.4. Let f : (X , <1) —> (Y. 1:’) be a cl — (.:’ morphism. Then it is

continuous, that is, it is a cl — cl’ morphism.

Proof Given f is cl—c’ morphism. That is f(cl A) Q c’f(/l) for all A Q X.

But c’f(A) Q cl’f(A). Hence we have f(clA) Q cl’f(A), that is f iscontinuous. U
Note 2.3.5. In above example (Note 2.3.3), let _q 1 X —> Y be g(;r) 1; for

all Then _q is cl — cl’ morphism but not cl —- c’ morphism. For if, /l : {3};

g(A) I {.3}; ri:l(A) I {1._2.3'}; (i:'_q(A) I {Z3}; g(Cl/l) I {1,‘Z,3}.
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Remark 2.3.6. Using result 2.3.2 and 2.3.4 we have if f : (X, c) -> (Y, c’)

be a cl — <1’ morphism then f is continuous and hence f is <;: — cl’ morphism.

Result 2.3.7. Let f 1 (X, c) —> (X , c’ ) and c’ §_ c then f is c-— cl’ morphism

if is cl-morphism.

Proof It is easy to see that if <1’ § <.: and f is cl-morphism then f is cl - cl’

morphism (See [S]). But by result (2.3.2), if f is cl ~— cl’ morphism then f

is c — cl’ morphism. Thus the result. Cl
Result 2.3.8. Let c, c’ be closure operators on X. Then c is finer than the

associated closure operation cl’ (and hence finer than c’) if and only if the

identity mapping from (X , c) onto (X, c’) is c — cl’ morphism.

Proof Suppose ct Z cl’, thatis, c(A) Q cl'(A) for all A Q X. Now f(eA) =

cA Q cl'(.-4) : cl'f(A) where f is identity map. That is f(cA) Q cl'_f(A).

Thus f is c -—— cl’ morphism.

Conversely, suppose f(r:/1) Q cl'f(A), that is, c/1 Q cl'(A) for all

A Q X, Where f is the identity map. Thus c Z cl’, that is, c is finer than the

associated closure operation cl’. D
Result 2.3.9. Let  : (X, c) —> (Y, cf’) he a c — cl’ morphism and

g : (Y, 0’) —> (Z , c” ) is continuous then their composite mapping

g 0 f : (X, c) -—->  c”) is c - cl” morphism.

Proof Given f is e—cl’ morphism, that is, _f(cA) Q cl’ f (A) for all A Q X.

To prove ‘q 0 f is c: — cl” morphism. For that, (g o f)(<::A) = g(f((:A)) Q
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/I
g(cl'f  Q cl g(f  since f is ct: — cl’ morphism and g is continuous.

Thus, (9 o f)(c:A) Q cl”_q(_f(A)). That is (_g 0 f) is C - cl” morphism. U

Remark 2.3.10. The conclusion in the above result is true if g is cl’ — cz”

morphism.

2.4 Mappings between monotone spaces

To each monotone space, we can associate uniquely a Cech closure space

and there by a topological space [S]. In this section we discuss the mappings

between monotone spaces.

Definition 2.4.1. Let (X. m) and (Y. m’) be two monotone spaces then a

map f : (X.m.) -—> (Y. m’) is said to be cl — m’ morphism if f(cl Q

m’ f (A) for all A Q X, where cl is the closure operator on the associated

topology of (X , m).

Result 2.4.2. Let f : (X ._ m) —+ (Y. m’) be a cl — cl’ morphism. Then it is

m — cl’ morphism, that is, continuity implies m — cl’ morphism.

Proof Proof is exactly similar to the proof of result 2.3.2 in which ‘c’ isreplaced with m. Cl
Result 2.4.3. Let  : (X, m) —> (Y. m’) be a cl — m’ morphism. Then it is

continuous, that is, it is cl — cl’ morphism.
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Proof. Proof is exactly similar to the proof of result 2.3.4 in which ‘cz’ isreplaced with m. U
Remark 2.4.4. Using result 2.4.2 and 2.4.3 we have if f : (X, m) —~>

(Y, m’) be a cl — m’ morphism then f is continuous and hence f is m — cl’

morphism.

Note 2.4.5. Let "m.’ be a monotone operator on a set X and f : (X, 'm.) —>

(X, m) be a mapping then “mi — m morphism need not imply m — cl mor­

phism or cl — m morphism or cl — cl morphism and vice versa.

Eg:- Let X I {(1, b. 0} and -m be defined on X such that m{a._} I {(1.};

m{b} I {b,e}; "m.{c#} I {cf}, m{a., b} I m{b,(;r} I m{0., cf} I mX I X;

mo I Q5. Then m is a monotone operator. Then the associated closure

operator ‘c’ is defined by 0.4 I ficf:,,./i for all .4 Q X where en. is a closure

operator coarser than m, that is, 112.4 Q (ta./él for all A Q X. Thus, cg‘) I (/9;

c{a} I {r1,b}; (r{b} I {(7. 0}; c{c} I {(1, cz}; ri:{0., b} I r:{b. {2} I r:{(r., 0} I

cX I X.

Now let f be a map from ( X , m.) into (X, m) defined in such a way

that f(a) I b, f(b) I c, f(c) I ct. Clearly f is c — c: morphism, c - cl

morphism, m — cl morphism cl — cl morphism but not -m — m morphism or

cl — m morphism or cl — ct morphism.

Result 2.4.6. Let "m. m’ be two monotone Operalors 0n X. Then m is finer

than the associated closure operator cl’ and hence finer than m’ and only
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if the identity mapping (X _._ m) onto (X, m’) is m — cl’ morphism.

Proof Proof is exactly similar to the proof of result 2.3.8 in which ‘c’ isreplaced with m. U
Result 2.4.7. Let  : (X ._ -in) —> (Y, m’) be a m — cl’ morphism and

g : (Y, m’) —> (Z, m”) is continuous then their composite mapping

g 0 : (X, m) —> (Z, in”) is m — cl” morphism.

Proof Given f is ‘NI. — cl’ morphism, that is, _f'('rn..~l) Q cl’ for all

A Q X. To prove __q o f is m — cl” morphism. For that, (9 o f)(m/1) :

g(f(mA)) q(cl'f(/4)) Q cl”q(f(A)), since f is TH ~ cl’ morphism and _qC ¢. >. '.
is continuous. Thus, (g o f)(m/l) Q cl”(_q 0 _f)(A), that is, _q o f is m. — cl”morphism. El
Remark 2.4.8. The above result is true if g is cl’ — m” morphism.

2.5 Conclusion

In this chapter we introduced the concept of 6-continuity of functions be­

tween closure spaces and between monotone spaces. Here we also men­

tioned morphisms between closure spaces (or between monotone spaces).
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Chapter 3

Properties of Product Closure Spaces

Introduction

In this chapter we study some properties of closure spaces and product clo­

sure spaces. Also we discuss some separation properties.

In [CE] E. (Iech defined closure spaces, product of closure spaces

and their associated topological spaces. In [S] T. A. Sunitha discussed

morphisms between closure spaces and some separation properties in clo­

sure spaces. These motivated the study of the properties of product closure

spaces.

In section 3.1 we find some properties of mappings into product clo­

sure spaces with respect to associated topological spaces [S]. The properties

are proved using the result proved in [CE] namely, ‘a mapping f of a space

X into the product-space X = HXO is continuous if and only if the mapping

art, o f is continuous for each 0.’. Also we find some separation properties in

product closure spaces.
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In section 3.2 we discuss some separation properties involving zero

sets. In this section we say a closure space (X , c) is c-completely regular

if it is completely regular in closure space, <_:-Hausdorff if it is Hausdorff in

closure space. Also (X, c) is completely regular if it is completely regular

in the associated topological space. Similarly (X , c) is Hausdorff if it is

Hausdorff in the associated topological space.

3.1 Some properties in product closure spaces

In this section we find some properties of product closure spaces. For this

we use properties of mapping between product closure spaces with respect

to associated topological spaces.

Remark 3.1.1. It is known from [CE] that a mapping f of a closure space

with closure operator c into the product closure space with closure operator

c’ is c -— 0’ morphism if and only if the mapping Tr“ o f is c - c’ morphism

for each re, (in our terminology).

Note 3.1.2. Using the above remark and the following conditions,

(i) c — 0’ morphism :> c — cl’ morphism (Trivial using definitions)

(ii) continuity :> c — cl’ morphism (Result 2.3.2)

(where f : (X, c) —> (Y, 0') and cl , cl’ are closure operators on associated

topological space of (X . c), (Y, c’) respectively) we have the following re­

sults.
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Result 3.1.3. (i) A mapping f of a closure space with closure operator

c into the product closure space with closure operator c’ is c — cl’

morphism if the mapping tra o f is (: - c’ morphism for each a where

na is the projection function.

(ii) If f is c — c’ morphism then the mapping trap o f is c —- cl’ morphism for

each a.

(iii) If the mapping nae f is continuous for each a. then f is c-cl’ morphism.

(iv) If f is continuous then the mapping rra o  is c — cl’ morphism for each

0..

Remark 3.1.4. It is known that [W] an arbitrary product space is completely

regular if and only if each factor space is completely regular and we know

completely regular implies c-completely regular [S]. Hence we have the

following results.

Result 3.1.5. An arbitrary product space is c-completely regular if each

factor space is completely regular

Proof Given each factor space is completely regular and by remark (3.1 .4)

we have, the arbitrary product space is completely regular. Also by [S]

completely regular implies c-completely regular. Thus arbitrary product

space is c-completely regular. U
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Result 3.1.6. An arbitrary product space is completely regular then each

factor space is c~completely regular.

Proof Given arbitrary product space is completely regular, so by remark

(3.l.4) we have each factor space is completely regular. By [S] completely

regular implies c-completely regular. Thus each factor space is c-completelyregular. U
Result 3.1.7. Every subspace of a c-Hausdorfi‘ space is c-Hausdo23fj‘I

Proof Let A be a subspace of a c—Hausdorff space (X, (.7). Let .1: and y

be two distinct points of A. Since (X , c) is c-Hausdorff by [S] there exist

disjoint neighbourhoods U and V containing .1? and y respectively. Then

U O A and V FT A are disjoint neighbourhoods of :1: and y in A. Thus A isc-Hausdorff. Cl
Remark 3.1.8. It is known that [W] a non—empty product space is Hausdorff

if and only if each factor space is Hausdorff and we know Hausdorff implies

c—Hausdorff [S]. Hence we have the following results.

Result 3.1.9. A non-empty product space is c-Hausdorff if each factor space

is Hausclorjjf

Proof Given each factor space is Hausdorff and by above remark (3.l.8)

we have, product space is Hausdorff. Also by [S] Hausdorff implies (:­

Hausdorff. Thus product space is c-Hausdorff. U
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Result 3.1.10. If a non-empty product space is Hausdorfi‘ then each factor

space is c-Hausdorff

Proof Given product space is Hausdorff and by remark (3.1.8) we have

each factor space is Hausdorff. Also by [S] Hausdorff implies c-Hausdorff.

Hence each factor space is c—Hausdorff. U

Remark 3.1.11. It is known that [W] a non-empty product space is regular

if and only if each factor space is regular and we know regular implies (:­

regular [S]. Hence we have the following results.

Result 3.1.12. (1') A non-empty product space is ct-regular if each factor

space is regular

(ii) If a non-empty product space is regular then each factor space is c­

regular

Proof Proof is trivial using remark 3.1.11. [:1

3.2 Some separation properties in closure spaces

In this section we discuss some separation properties involving zero set.

Notation 3.2.1. We denote C1(X) : {f : X —> Rlf is c — cl morphism

where c is the closure operator on X and cl is the Kuratowski closure op­

erator on R} and the zero set of X is denoted by Z1(X) I {Z1(f) : f 6

Ci(X)} and Zlif) I {~11 E X\.t'(=I1) = 0}­
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Theorem 3.2.2. A c-Hausdorjj‘ space X is rj:-completely regular ifand only

ifthefamily Z1(X) I  I  G C1  is a basefor the closed sets in

the associated topology of X.

Proof Suppose X is c-completely regular. Then whenever F is closed set

and .1: G F’ there exist f G C1(X) such that f(:c) = 1 and f(F) :

Then Z1(f) QFand:1:§ZZ1(f).Thus Z1(X)isabase. El

Conversely, suppose Z1 (X) is a base. So if F is closed set and .r G F ’

then there exist g G C1(X) such that Z1(g) Q F and :1; Q’ Z1(_q). Let -it ­

g(;i;), then '1' 7i O and let f : g'r_1 G C1(X) and _f(.t) 1, f(F) I {O}so

that Hausdorff space X is completely regular. But by [S] completely regular

implies (tr-completely regular. Hence the theorem.

Remark 3.2.3. lt is known that [CHA] ‘A Hausdorff space X is completely

regular if and only if {Z lf G C'*(X)} forms a base for the closed set.

Also continuity implies cf — cl’ morphism by 2.3.2.

Remark 3.2.4. A Hausdorff space X is completely regular then Z; (X) :

{Z 1( f ) : f G C1(X )} is a base for the closed sets in the associated topol­

ogy.

Proof. Trivial using remark (3.2.2). El
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3.3 Conclusion

In this chapter we found some properties in product closure space using

morphisms. Also we find some properties of complete regularity in closure

space.
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Chapter 4

Fuzzy Closure Spaces

Introduction

Fuzzy topology was introduced by C. L. Chang (1968) éech closure space

(or simply a closure space if there is no closure for confusion) is a gener­

alisation of the concept of topological space. In 1985 A. S. Mashour and

M. H. Ghanim [M;G-1] defined cech fuzzy closure spaces. In chapter 1

we defined denseness in closure spaces and some of their properties and

this motivated the study of denseness in fuzzy closure space. In [S], T. A.

Sunitha introduced mappings between closure spaces and in chapter 2 we

found relationship of mappings between closure spaces with respect to asso­

ciated topological spaces. These motivated the study of mappings between

fuzzy closure spaces (or fcs in short).

In this chapter we introduce denseness in fuzzy closure space and also

introduce the concept of various types of mappings between fuzzy closure
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spaces and prove some results based on these.

In section 4.1, we introduce denseness in fuzzy closure space known

as fuzzy <:-denseness and prove some results in fuzzy closure space using

denseness property.

In section 4.2, we introduce mappings between fuzzy closure spaces

with respect to associated fuzzy topological spaces and prove some results.

4.1 Denseness in fuzzy closure spaces

In this section we discuss denseness in fuzzy closure space which we call

fuzzy c-denseness and also find some of its properties. Also we discuss

fuzzy adherence, fuzzy <2-adherence, fuzzy H -closed and fuzzy cH-closed

in fuzzy closure spaces.

Definition 4.1.1. A fuzzy set  in a fcs (X, c) is said to be fuzzy c-dense

if cA I X.

Result 4.1.2. Fuzzy c-dense in fuzzy closure space implies fuzzy denseness

in associatedfuzzy topological space (orfis in short).

Proof Let A be fuzzy c-dense in fcs (X , c) then <;:A : X. But Z Q <_:A,

therefore A Q X. Thus we get A : X. Hence fuzzy (U:-dense implies fuzzy

dense in associated fts. CI
Result 4.1.3. Afuzzy subset ‘A’ of a fcs (X , c) isfuzzy r:-dense in X and

only zffor every non-empty open subset B of X, A Q B 56 <1).
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Proof Suppose A is fuzzy <1:-dense in fcs (X, c) and B is a non-empty open

subset of X. If A O B : (() then A Q X\B, hence (.:A Q c(X\B) : X\B.

But <:A : X, that is, X Q X\B not possible. So A O B 75 qb.

Conversely, assume that A meets every non-empty open subset of X.

This is possible only when cA : X. Thus the result. D

Definition 4.1.4. [Y;M] Let (X, 6) be fts. .7 be a fuzzy filter on X, then the

set fi{ F : F E J } is called the adherence of fuzzy filter J and is denoted

by a.(f

Definition 4.1.5. Let (X , 0) be a fcs. f be a fuzzy filter on X, then the set

fi{cF : F E .7 } is called the 0-adherence of fuzzy filter .7 and is denoted

by (z."'(j"

Definition 4.1.6. A fts (X, 6) is said to be fuzzy H -closed if adherence of

every open filter on X is non-void.

Definition 4.1.7. A fcs (X, c) is said to be fuzzy cH-closed if c-adherence

of every open fuzzy filter on X is non-void.

Result 4.1.8. Ifa fcs (X, c) is fuzzy CH -closed then it is fuzzy H -closed.

Proof Given fcs (X, (1) is fuzzy (;H-closed, that is, fi{cF : F 6 f} 55 Q5.

But F Q 0F implies fi{F 1 F E  yé ¢5. Hence (X, c) is fuzzy Hclosed. CI
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Result 4.1.9. Let Y be a subspace of a fcs (X , c) and ifF is closed (open) in

X then X}, Q F is closed (open) in Y (where X}. is the characteristic function

on Y).

Proof. Given F is closed. To prove X}; O F is closed. F is closed implies

cF = F. To prove ('(XY O F) : XY O F. By definition of fcs, we have

XV O F Q c(XY O F But X), is the characteristic function so we get

XV O F Q c()<,, O F). Hence the result. U

4.2 Mappings between fuzzy closure spaces

In this section we discuss mappings between fuzzy closure spaces and prove

some results.

Definition 4.2.1. Let (X ,0), (Y. c’) be fcs and cl, cl’ be closure operator

in the respective associated fuzzy topological space (or fts in short), then a

map f : X —+ Y is said to be,

(i) fuzzy rr — r.:’ morphism if _f((rA) Q c’ f (A) for all fuzzy subsets A of X

(ii) fuzzy cl — c’ morphism if f (Z) Q ct’ f( A) for all fuzzy subsets A of X

(iii) fuzzy c — cl’ morphism if f(c:/l) C f (A) for all fuzzy subsets A of X

(iv) fuzzy cl — cl’ morphism or fuzzy continuous if f Q f (A) for all

fuzzy subsets /l of X.

Result 4.2.2. Let X be a set, (2 and c’ denote fuzzy closure operators on X.

If is fuzzy rt: -— rt morphism and ct’ is coarser closure operator on X, then
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f is fuzzy c: — c’ morphism.

Proof Given f is fuzzy c — c moiphism, that is, f(<::A) Q cf for all

fuzzy subset A of X. But cf(A) Q (:'f(A) since c’ is coarser than (_:. Thus

‘f’ is fuzzy c — (.:' morphism. U
Remark 4.2.3. In result 4.2.2, if f is fuzzy e -— ¢:’ molphism and r: is coarser

than c’ then f is fuzzy c - c: morphism.

Result 4.2.4. If f is fuzzy cl -— 0' morphism from afcs (X, 0) to fcs (Y, c’)

then f is fuzzy continuous.

Proof Given f is fuzzy cl — c’ morphism. Hence for any fuzzy subset A of

X, we have f(A) Q c'f(/~l). But by definition c’(_f(A)) Q  Thus ‘f’

is fuzzy continuous. [:1
Result 4.2.5. If  is fuzzy ct — 0' morphism from ofbs (X , (1) to fcs (Y, (3')

then f is fuzzy ct — cl’ morphism.

Proof Given f is fuzzy c — c’ morphism. Hence for any fuzzy subset A of

X, we have _f((i:A) Q c’f(A). But by definition (:’(f(A)) C  Thus

f(cA) Q f(A). Hence the result. D
Result 4.2.6.  f is fuzzy Cl — 0’ morphism from afcs (X , 0) to (Y, 0’) then

f is fuzzy (1 — cl’ morphism.

Proof Given f is fuzzy cl — c’ morphism. Hence for any fuzzy subset A

of X, we have _f(Z) Q c’_f(.-4). But c’(f(/1)) Q f(/l) and f(cA) Q f(Z).Hence f(<-../l) Q  U
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Result 4.2.7. If f is fuzzy continuous from a fcs (X , c) to (Y. <3’) then  is

fuzzy t: -— cl’ morphism.

Proof Given f is fuzzy continuous. Hence for any fuzzy subset A of X, we

have f(cA) Q r_:’f(A). But r:'(f(A)) Q cl'f(/1). Hence we get, _f(r=.A) Q

cl'f(A). Thus the result. U
Result 4.2.8. Let (X,<:), (l/,0’) and (Z,r..:”) be three fes. If  : X —+ Y

is fuzzy ct -— cl’ morphism and g : Y —> Z be fuzzy continuous then their

composite

_q o f : X ——> Z isfuzzy c: — cl” morphism.

Proof To prove g o f is fuzzy ct -— cl” morphism. Given f is fuzzy c: - cl’

morphism, that is _f(crA) Q cl'f (A) for all fuzzy subset A of X.

NOW» (9 O f)(<i1/4) = .<1(f(<Y*/4)) Q {/(°1’f'(/-1)) Q ¢1”.q(.f(A))- Since £1 is

fuzzy continuous. Thus (g 0 _f)(cJ:A) Q c1”g(f(A)), that is (g o f) is fuzzye — cl” morphism. D
Remark 4.2.9. The above conclusion is true also when g is fuzzy cl’ - 0”

morphism.

4.3 Conclusion

In this chapter we introduced fuzzy H -closedness in fuzzy topological spaces

and fuzzy H -closedness in fuzzy closure spaces. Also we discussed map­

pings between fuzzy closure spaces.
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Chapter 5

Fuzzy Closure Fuzzy Convexity Spaces

Introduction

In this chapter we introduce the notion of fuzzy closure fuzzy convexity

spaces or ( f 0) ( fr:o)s in short. And we prove some properties of ( fa) (fc:0)s.

In [CE] E. Eech defined closure space, in [S] T. A. Sunitha discussed map­

pings between closure spaces and in [ROS-1] M. V. Rosa introduced Fuzzy

topology fuzzy convexity spaces. These motivated the study of fuzzy clo­

sure fuzzy convexity spaces and their properties.

The study of convex sets is a branch of geometry, analysis and lin­

ear algebra that has numerous connections with other areas of mathematics.

The theory of convexity can be sorted into two kinds. One deals with con­

crete convexity and the other that deals with abstract convexity. Here we

deal with abstract convexity. In abstract convexity theory a convexity space

was introduced by F. W. Levi in 1951 [LE]. The convexity space introduced
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by Levi was further developed by many authors like D. C. Kay and E. W.

Womble [K;W], R. E. Jamison-Waldner [J;W], G. Sierksma [SI] and M.

Van de Vel [V]. The notion of a topological convexity structure and aligned

space has been introduced by R. E. Jamison-Waldner [J ;W] in 1974. He

also introduced the concept of local convexity. L. A. Zadeh introduced the

concept of a convex fuzzy set in 1965. In fl 980, R. Lowen applied the theory

of fuzzy sets to some elementary known results of convex sets.

In section 5.1 we consider a fuzzy closure together with a fuzzy con­

vexity on the same underlying set and introduce fuzzy closure fuzzy convex­

ity spaces or in short (_fc)(f(:0)s. Also we introduce the notions of subspace

and products of an ( f c)( f c:0).s.

In section 5.2 we study fuzzy local convexity. Here also we study

subspaces and products of such spaces.

In section 5.3 we introduce the separation axioms in fuzzy closure

fuzzy convexity spaces. The separation involves closed convex fuzzy neigh­

bourhoods. Here we study concepts F CNS0, F CN S1, F CN S2, pseudo

FCNS3, F CNS3, semi F C'NS4, F CNS4 spaces where F CN S stands

for ‘Fuzzy closure neighbourhood separation’.

64



5.1 Fuzzy closure fuzzy convexity spaces

In this section we define fuzzy closure fuzzy convexity spaces and some of

its properties.

Definition 5.1.1. A triple (X, if, <2) consisting of a set X, a fuzzy alignment

X, and a fuzzy closure ‘c’ is called a fuzzy closure fuzzy convexity space

or  in short.
Eg:- X : {(1, h, d} and c be a fuzzy closure operator defined on X such that

+ 1/2 if0 < .el(;fr;)§1/2

r¢(/WI.) — % 0 1fA(;1:) = 0

\

where ‘A’ is a fuzzy subset of X.

Now choose fuzzy alignment .2” : {c/>, X, B} where B is the set,

0.“--+0

Bib-————>l

d—>1.

Then (X, Q2”, (2) is (fcr)(_;"(:0)s.

Definition 5.1.2. Let ‘ay’ be a fuzzy point in an (fc)(fc0).s (X, 0?, cr), then

a fuzzy subset U of X is called a fuzzy c-neighbourhood of (L), if a), E

X\(_'.(X\U).
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Definition 5.1.3. Let (X ,2,” ,_ <2) be a (fc)(fco)s. Let Y be an ordinary

subset of X. Then a fuzzy closure cy on Y is defined as cy(A) = Y H cA

for all A where A is any fuzzy subset on X and a fuzzy convexity space

on Y is given by .,2”y = {Y Q L|L G .3 Then the corresponding triple

(M, Zy, cy) is a subspace of (X, ff, cf).

Definition 5.1.4. Let (X , c) be a fuzzy closure space (or fcs in short). Then a

collection 7/ of fuzzy subsets of X is a local base of the fuzzy c-neighbourhood

system of a fuzzy subset A of X (or a fuzzy point oi in X) iff each V G "V

is a c-neighbourhood of A (or of at) and every fuzzy c—neighbourhood of A

(or of as‘) contains a V E 7/.

Result 5.1.5. If 6/! (at) is a local base at a fuzzy point a,\ then the following

assertions are true.

(il 07/(“Al 5'5 6'5

(ii)for each U G ”//(at), rt.,\ E U

(iii)for each U| and U2 in 0//(my) there exista U in ‘%(a;() with U C UJWUQ.

Proof Using the definition of fuzzy c-neighbourhood of a fuzzy point, theresult is trivial. U
Result 5.1.6. For each fuzzy point at of a fuzzy closure space (X. c), let

?/ (as) be a collection of fuzzy subsets of X satiqying the three conditions

mentioned in (51.5). Then there exists exactly one fuzzy closure operation

c for X such that, for each ti)‘ in X, ‘Pl (a,\) is a local base at a,\ in (X , c).
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Here c is defined by cA = sup a,\ such that U G ‘Z! (a,\), U O A 76 a5 where

A is a fuzzy subset of X.

Proof If as. G X and U € 0% (fly) then U is a fuzzy neighbourhood of

a ,\. For, otherwise U is not a fuzzy c-neighbourhood of the point a,\ that

is a,\ G c(X\U) so for each V E %(a.y), V Q (X\U) 75 gt) not possible

when V = U. Next we have to prove that every fuzzy c-neighbourhood W

of a,\ contains U € W (rot); otherwise, U — W : U O (X\l/V) 75 gt) for all

U G 07/ (as) then as E c(X\W) that is, I-/1' is not a neighbourhood of 1:.Hence the result. El
Theorem 5.1.7. A fuzzy point a,\ in fuzzy closure space (X , c) belongs to

the closure of a fuzzy set A in X ifi each fuzzy c-neighbourhood of aiy in X

intersect A.

Proof If a fuzzy c-neighbourhood U of (L,\ does not meet A then

a,\ E X\c(A) that is, (is. Q’ c(A). Conversely if as, Q c(A) then X\A is a

fuzzy c-neighbourhood of as which does not meet A. Thus the theorem. III

Corollary 5.1.8. If 0?! is a local base at a fuzzy point 0.), in a fuzzy closure

space  c) then (1. A E (:(A) ifi‘ A is afuzzy subset of X and each U 6 ?/

intersects A.

Proof If (.I.)t € c(/l) then by above theorem 5.1.7 each fuzzy c-neighbourhood

of as. and hence each member of % will intersect A. Conversely if each
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member of 02/ intersect A then each fuzzy c—neighbourhood of as meet A.

So by above theorem as G c(A). U
Proposition 5.1.9. Let cl and C2 be two fuzzy closure operators for a set

X. In order that (:1 should be coarser than (.72 it is necessary and sajjicienr

that for each as G X every fuzzy c1-neighbourhood of as be a fuzzy C2­

neighbourhood of as.

Proof Given cl is coarser than Cg and if as G X\c1(X\U) where U is the

fuzzypneighbourhood of as then as G X\c2(X\U Hence every fuzzy

cl-neighbourhood of as is fuzzy cg-neighbourhood of as. Conversely, sup­

pose each as G X every fuzzy cl-neighbourhood of as be a fuzzy (12­

neighbourhood of as. Then by theorem 5.1.7 as G cgA then as G c1A

for each A Q X that is, ct,/l Q C2/-l for all fuzzy subset A of X. Thus cl iscoarser than cg. U
Corollary 5.1.10. Let c| and C2 be two fuzzy closure operators for a set X.

For each as in X let 02/ (as) and "I/(a s) be local bases at a fuzzy point as

in (X , cl) and (X, (:2) respectively. Then (:1 is coarser than C2 if and only

if for each as G X every element of ?/ (as) contains an element of “X/( a s).

In particular cl : c-2 ififor each as G X every U G % (as) contains a

V G 7/(as) and every V G "//(as) contains a U G %(as).

Proof Trivial by theorem 5.1.9. III
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Theorem 5.1.11. For each fuzzy point ay of a fuzzy closure space (X, c),

let 02/ (as) be a collection of subsets satisfying the three c-neighbourhood

condition given in 5.1.5, then there exist exactly one fuzzy closure operation

cfor X such thatfor each ay in X 0% ((Z,\) is a local base at ay in (X, c).

Proof By Corollary 5.1.8 we can define the closure operator ‘c’ in the fol­

lowing way,

cA = sup o.,\ such that for all U G 4?/(a,\) and U fl A 75

where A is a fuzzy subset of X. (*)

Now by the corollary 5.1.10 there exist at most one fuzzy closure

operator c with local base 07/ (o.,\). Since by 5.1.6 ?/ ((1),) forms a local base

at (I.,\ of X. Thus for proving the theorem we have to prove c is a fuzzy

closure operator. For, cg) :: Q3 by (*) hence first axiom satisfied. Also

r.:A Q A for all fuzzy subset A of X by second c-neighbourhood condition.

Thus second condition is also satisfied. Next we have to prove only the

third axiom that is, c:(A U B) = cA U eB where A and B are fuzzy subsets

of X. Let 0.; E c(A U B) that is, ax § c(rnaXA(:c),  that is, ay §

c(A(.r)) or rt)‘ § (:(B(:1?)) that is, a,\ § 1nax(C'(/l)(:1:),C(B(:r;))) that is,

as 6 C(A) U C(13). Thus rf:(A U B) Q (:(A) U c(B).

For converse inclusion we retrace the above steps. Thus 3"‘ axiom

is also satisfied. Hence there exist exactly one fuzzy closure operator with
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62/ ((1,\) as local base. U
5.2 Locally fuzzy closure fuzzy convexity spaces

In this section we study locally fuzzy closure fuzzy convexity spaces and

some of its properties.

Definition 5.2.1. A (_fc)(_fc0)s (X , .2” _, c) is said to be locally fuzzy closure

fuzzy convex at a fuzzy point (L). if for every fuzzy c-neighbourhood U of

0.). there is some convex fuzzy c-neighbourhood C of a A which is contained

in U.

(X , E , c) is locally fuzzy closure fuzzy convex if it is locally fuzzy closure

fuzzy convex at each of its fuzzy points.

Definition 5.2.2. Let (X , (:1) and (Y, (:2) be two fuzzy closure spaces. A

function f : X —> Y is said to be fuzzy open if whenever A is open fuzzy

subset of X, _f(A) is open fuzzy subset of Y.

Proposition 5.2.3. An FCC [ROC], f-open f-morphism (mappings be­

tween fuzzy closure spaces given in chapter 4) image of locally ( fc) (fco)s

is a  (fc0)s.

Proof Let f : (X,..‘Z1,c:1) —> (Y,..2’§.c2) be a FCC, _f—open fuzzy mor­

phism onto map. Let ax be a fuzzy point in Y. Then we can find a point ‘b’

in X such that f(b) = 0.. Then clearly _f(b;t) I ax. Let U be a fuzzy
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neighbourhood of a.,\ in Y then f"l(U) is a fuzzy neighbourhood of b,\

in X. Since X is locally (_fc)(fco)s there exist an .201 — convex fuzzy

c-neighbourhood C [A fuzzy c-neighbourhood C which is a member of

aligned space (X , Z1) is called L1-convex fuzzy neighbourhood] of by in X

such that l))\ G C Q f_1(U)  f(b>\) 6  Q U that is, oi €  Q U

since f is an FCC, open onto map, f(C) is an L2-convex fuzzy neighbour­

hood of ax in Y. Hence Y is a locally (fc)(fco)s. El

Proposition 5.2.4. Any subspace of a locally (fc)(fc:o)s is a locally

(fco)s.

Proof Let (X, ,2”, tr) be alocally  Let M Q X and (M. ..2”M, (W)

be the corresponding subspace of (X , ff .  Let oi be a fuzzy point in ll-I

and let U be a fuzzy c-neighbourhood of a.,\ in ll-I that is, a-A G X \(:(X \U )

also (:.mU : ill F1 r:V for some fuzzy subset V of X. Since X is locally

(fr:)(_f(:0).s, there exist a convex fuzzy rj:-neighbourhood W" of o.,\ such that

a-A G W Q (JV. Then oi E cW O M Q V O M. Now cl-V Fl ll/I is a

convex fuzzy c-neighbourhood of oi in (ll-/I, ..2”M, 0M) and so ll-=1 is locally(fc)(fco)s. [1
Definition 5.2.5. Let (X, .2”, c) be a (fc)(fco)s and ll/I a fuzzy subset of

X. Then define, ...2”_.i.; :: {L Fl MIL G .3} and cM/l : inf(ll-I O c:V) such

that V D A where V is a fuzzy subset of X and A is fuzzy subset of [W

then we can say that (M, $1.1, (_Z_q.[) is a fuzzy closure fuzzy convexity fuzzy
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subspace of (X, ,2”, c) in the following sense.

(i) d), ll--I € ...2”M

(ii) If Ai E .21.; for each i 6 I then F1/ll 6 .53,“

(iii) If A1 € 020M for each 11 E I and if A,-’s are totally ordered by inclusion

then U A.» 6 ...2”M.

Again,

(i) cimcfi : Q5 (ii) A Q (JMA (iii) cM(A U B) = (JM/l U (MB.

Note 5.2.6. Using the above definition and imitating the proof of proposi­

tion 5.2.4 we can show that any such subspace of a locally c)(fc0)s is a

locally  (foo) s.

Proposition 5.2.7. A non-empty product space H O G ]( X Q, Z0, ca) is locally

(fa) (fc0)s zfarzd only ifeachfacror is locally  (fc0)s.

Proof Suppose each X“ is locally (fc)(fc'0)s. Let as be a fuzzy point

in X I IIX(l and consider the basic fuzzy c—neighbourhood, 'rr;1'(U 1) O

1r(j2"'"(Ug) FT . . . (T rr(jn1(l],-,) of (1,/\ in X where rr,_, is the projection map from X

to X0. Now U,¢ is afuzzy c-neighbourhood of ((1/(El-DA in X02. forwi = 1, 2, . . xn.

and since each X ,,_1. is locally (fc)(fc0)s, so U,¢ contains a fuzzy convex c­

neighbourhood l"V,- of (an-1.))‘ i.e., (am),\ E W,¢ C U,-_. Then vra'_'l1(l"l/1) O

1rg21(I..-I____..2)fi. . .fi¢r;n1(l/l/’.,z) is a convex fuzzy c-neighbourhood of ai contained

in Tf(;1l (U1) . . .¢r;n1(U,,). Thus every fuzzy c-neighbourhood ay contains a

convex fuzzy c—neighbourhood and hence X is locally (fc)(fc0)s.
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Conversely let (0.0)) be a fuzzy point in X0, Then we can choose a

fuzzy point ax in X such that rr,,,.(a;) : (aQ.))(. Let Ua be a fuzzy <.:-neigh­

bourhood of (u.Q);( in Xa. Then ¢r;1(U(,) is a fuzzy t.--neighbourhood of a;(

in X. Since X is locally (ffc0)s there exist a convex fuzzy ci:-neigh­

bourhood W of 0.)‘ contained in Tr; 1 (U0). Since tr“ is FCC [ROC] erra(C)

is a convex fuzzy c-neighbourhood of (an); in Xa contained in Um. Hence

X0. is locally fuzzy convex. III
Definition 5.2.8. Let (X. c) be a fcs. A fuzzy subset U of X is a fuzzy

c-neighbourhood or simply ft:-neighbourhood (or c-neighbourhood in short)

of a subset A of X iff U is a fc:-neighbourhood of each point of A. A subset

U of X is f-open iff it is fr".-neighbourhood of all if its points or equivalently

it is a f-neighbourhood of each of itself.

Theorem 5.2.9. A mapping f of a fuzzy closure space (X . (:1) into another

one (Y, (:2) be fuzzy morphism at a point o.,\ in (:1 and only if the inverse im­

age f '1 (V) of each ft:-neighbourhood of f (a ,\) be a fuzzy e-neighbourhood

of a), or equivalently that for each f-neighbourhood V of  (a;() there exist

a fuzzy c-neighbourhood U of ax such that _f(U) Q V.

Proof If U : f'* (V), is not a fuzzy c:-neighbourhood of a,\ then by defini­

tion. at e <:1(X\U) and f(a,\) e ¢2(f(X\U)) C (:2(Y\V) that is, V is not

a fuzzy ts:-neighbourhood of f(aA) in (Y. (:2). Consequently if V is a fuzzy

c:-neighbourhood of f(aA) then f'1(V) is a fuzzy r;-neighbourhood of a A.
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Conversely, if (l,\ G X, A Q X and f(a;\) Q’ c2f(A) then V =

Y - f(A) is a fuzzy c-neighbourhood of _f(o.>.) and by hypothesis f"1(V)

is a fuzzy c-neighbourhood of (Ly. Thus f_1(V) O A = Q‘) => a,\ Q’ c(A). It

follows that as G c(A) implies f(0.A) 6 c2f(A). E]

Corollary 5.2.10. A mapping f of a fcs (X. (:1) into a space (Y, cg) is a

fuzzy morphism ifi‘ for each as in X, the inverse image of every fuzzy c­

neighbourhood of f (0. ,\) is a fuzzy c-neighbourhood of a,\ or equivalently,

every fuzzy c-neighbourhood of f ((1/\) contains the image of a fuzzy

c-neighbourhood of a,\.

Proof. Trivial using theorem 5.2.9. III
Result 5.2.11. If  is a fuzzy morphism of a fcs (X,c1) into fcs (Y, C2)

then the inverse image of each f-open (f-closed) subset of X is an f -open

(f-closed) subset of Y.

Proof If U is f -open in (X , cl) then U is a fc-neighbourhood of each of

its points and by above theorem f '1(U ) is a neighbourhood of each of its

points that is, f'1(U) is f-open. Similarly we can prove f-closed by takingits complement. U
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5.3 Separation axioms in fuzzy closure fuzzy convexity

spaces

In this section we study some separation axioms in fuzzy closure fuzzy

convexity spaces and some of their basic properties.

Definition 5.3.1. Let ( X . .2” _, c) be a fuzzy closure fuzzy convexity spaces.

Then (X, .2”. <2) is said to be,

(i) FC N S0 if for any two distinct fuzzy points there exists a closed convex

fuzzy r;-neighbourhood containing one and not containing the other.

(ii) FCNS1, if for any two distinct fuzzy points there exists a closed convex

fuzzy c-neighbourhood of each of them not containing the other.

(iii) F CN S2, if for any two distinct fuzzy points there exist a disjoint closed

convex fuzzy c-neighbourhood of each of them.

From the above definition it is clear that in (X , .2” , c) F CNS; :>

FCNS1 :> FCNS0.

Eg:~

(1) Let X = N, the set of natural numbers.

L : {<;'>, X } U  E X } and the fuzzy closure operator ‘c’ on X de­

fined by cA : A for all fuzzy subset A of X. Then (X, .2”, 0) is FCNS2.

(2) Let X I {(1, Z1. 0}.

_ 0- ——~> 1/2
L  {Q X. {rt}. , 0.1/2} and the fuzzy closure operator ‘c’ on Xb ~—> 1
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definedby,

a.———+O 0-——>U a—>1/2 a—~>1/2
C b—>l = b——>l ;Cf b—>1 I b—>1 ;

c—>1 c—>1 c—-—>1 c———>1
0—> (1—+1 (1,———> 0.—>1/2

/""—i%/”i'_"$~/"_—?/"*7

<3 r-~
L_______,/

/“:7
Q >-~L______/Li____/

L-i.-’//""i"$/""""_7/"' '\
<:­

P—‘\
[\I>L_____,/

/‘Z-"$

L}

C )——>1 = J—-> '1 —>O I b—>U ;
(——> (‘--——> c——>1 (:——>1

a.-—-+1 a——>1 a——>1/2 a_—>1/2

C b——>U = b——>0 §<3 b—>()) b—>O]§0--—>1 c-——>l (1-——>U 0-—>U

0,-—>l/2 a—>1/2

( b-_>1 J = [ I;-_>1 ;(:q‘>: (band in all othercases cA=X(c—>U c-——>J
where A is fuzzy subset of X. Then (X, ,2”, c) is FCNS0 but not FCNS1.

(3) Let X : {a,b,
a —> 1/2 a —>1/‘Z

L I-‘  X, {Q}? {b, C}, , ,@1/2, {b}, {<1} and the fuzzyb ——> 1 (7 ——> 1

closure operator ‘c’ on X defined by,

a_—>O a—>U a-—>1 a—>1
(ET b--——>1 Z b—>l LE1 b-—>0 I bi>U§

c:——+1 (<———>1 (f——-—>U c:——>U
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a,——>1/2 u,-—+1/2 a-—>1/2 a1———>1/2

( b——-+0 I b~—>O H3 b———>1 2 b——~>1)§c-—>1 c———>1 c——>O c——>O
a.—~>1 a->1 a.——>1/2 a.~——>1/2

(1 b—-—>1 = b——>1;(-7 b——>O I b——>O ;

(:——>[) (:——->0 c——>0 c——>0
—> a—-—>O a—>U a—->0

- Q“ Q

CD;___#_,/klZ‘?
/_____,$  Q"

‘I.

Q“/“-17 /"1'?
&___-ii'__/

&——____/ /""_—'?
/"'__i'$‘J‘J

C —-—>1 = ——>l Z6? ——>U Z b——>U§

c——>U <——>l ¢.:—~—>1 c——>1

a.——->1/2 a'—>1/2 a—>1 a——>1
P b-—+1 = b——>1 ;fi7T b——+() I b——>U§

c-—>1 cf:—->1 c——>1 cr——>1
cqfi : Q5 and 0A = X in all other cases where A is a fuzzy subset of X. Then

(X, Q2”, c) is FCNS1.

Proposition 5.3.2. Any subspace of an F C NS; space is F C N Si for every

2' : O, 1, 2.

Proof Let -if : 2 and (X , 2” , tr) be an F CNS; space and let (ii/1,.,2”M,cM)

be a subspace of (X ,5?’ . c). Let n,\, bu be two distinct fuzzy points in

M. Then CL)‘, (1,, can be considered as distinct fuzzy points in X and X is

F C N S2. Therefore there exist disjoint closed convex fuzzy c:-neighbourhood

U and V for a A and (1,, respectively. Then U O M and V H M are disjoint

closed convex fuzzy r:-neighbourhood of ax and by in (M ,.£”M,cM).
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$5,]. CM) lS   I 0,  El
Result 5.3.3. Let (Y, (2') be a subspace of a fcs (X , ct) then U Ft Y is closed

in (Y, <3’)  U is closed in (X, (.3).

Proof Let U is closed in (X, c). That is r:U = U, then (:’(U F1 Y) = Y F)

C(U O Y) Q Y F1 U. But (Y, <;’) is fcs, therefore <:'(U Q Y) D Y O U. Thus

c’(U F) Y) = U F) Y. Hence U O Y is closed in (Y, 0'). Cl

Proposition 5.3.4. A non-empty product is FC N S, If each factor is FCNS}

for every 2' : 0,1,2.

Proof Let ti = 2 and (X0, $0,, <:0)0.€; be a family of FCNS2 spaces. Let

(L,\, bj, be two distinct fuzzy points in X, where (X, .%,  - 1_[a€j(.X0,.Y0,

(:0). Then for some 0%, (0.0);( and (b0)0 are distinct fuzzy points in X0.

and each X0 is F CNS-3, then there exist disjoint closed convex fuzzy c­

neighbourhood U0 and l/0 in X0 for (a0) A and (b0) 0 respectively. Then U I

rrgl (U0) and V : rrg1(V0.) are disjoint closed convex fuzzy c—neighb0urh00d

in X of a,\ and b0 respectively. There fore (X, ff, <2) is FCNS2. SimilarlyI 0,1. I1
Definition 5.3.5. A (fc)(_fr:0)s (X, .2”, ct) is pseudo F CN S3 if for each

closed convex fuzzy set A in X and a fuzzy point 0.), (not in it) such that

the supports of fl)‘ and A are disjoint, then there exist a closed convex fuzzy

c-neighbourhood V of A such that 0.,\ Q V.
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Definition 5.3.6. A ( f cr) ( f c0).s (X, ff. c) is F CN S3 if for each closed con­

vex fuzzy set A in X and a fuzzy point ax (not in it) such that the supports

of (L,\ and A are disjoint, then there exist a disjoint closed convex fuzzy

c-neighbourhood V of a.,\ and V of A.

Note 5.3.7. From the above definition it is clear that FCNS3 :> Pseudo

F C N S3

Eg:­

l. Let X be any set. .2" : {gb, X} U {{;r:}l;1: G X} and the fuzzy closure

operator ‘c’ on X defined by ¢:(A) I A for all fuzzy subset A of X. Then

(X. ,2”, (J) is FCNS3.

2. Let X -I {a. (2. c}.1 .­

L- I { Q‘), X , {{1}} and the fuzzy closure operator ‘c’ on X defined by

a——>() 0.-——>(l a.——>l a———>1

c b—->1 I b~->1 ;c b-+0 I b-»0 ;<'r¢:¢and
(I2 —+ 1 c —~> 1 ct ——> U c —> O

cA : X in all other cases where A is a fuzzy subset of X. Then (X, Q2”, c)

is pseudo FCNS3 but not FCNS3.

Proposition 5.3.8. A non-empty product of F CNS3 spaces is an FC N S3

space.

Proof Let (X(,..Z,. (:0) be a family of FCNS3 spaces. Let (X. .2”, c) :

HQEI(.X(,.,. ..2”,,., ca). Let (1. ,\ be a fuzzy point in X and A a closed convex

fuzzy set in X such that the supports of 0.,\ and A are disjoint. Let TF0 be
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the projection from X to X0. Then we can take A as A : flag; ¢r;‘(Ua),

where Ua is a closed convex fuzzy set in X (1-'0 Now for some at, the supports

of (u.a.),\ and Ua are disjoint. Since X O, is F C N S3, there exist closed convex

fuzzy neighbourhoods V0, of (ad); and I-Va of U0. such that (ma); §Z IIVQ. and

Va. and U0 are disjoint. Then U I Tr; 1 (Va) and W : rr;l(Vf/Q.) are closed

convex fuzzy c-neighbourhoods of C1,)‘ and A in X respectively. Such that

(I-)\ §Z W and U and A are disjoint. El
Proposition 5.3.9. A non-empty product of pseudo F CNS3 spaces is a

pseudo F C N S3 space.

Proof Proof is exactly similar to proof of proposition 5.3.8. C!

Definition 5.3.10. A (_fc:)(_fcro).s, (X, .%, 0) is semi FCNS4 if for each pair

of disjoint closed convex fuzzy sets in X there is a closed convex fuzzy c­

neighbourhood U of one of the closed convex fuzzy set such that U and the

other are disjoint.

Definition 5.3.11. A (fc)(fco)s, (X, ff, c) is F ON S4 if for each pair of

disjoint closed convex fuzzy sets A and B in X there is a ct:-closed convex

fuzzy neighbourhoods U of A and V of B respectively, such that U and B

are disjoint and A and V are disjoint.

Note 5.3.12. From the above definition it is clear that F CNS4 => semi
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Eg:­

1. Let X be any set. L = {q5, X } U {{:1:}|;1: G X} and the fuzzy closure

operator ct on X defined by c(A) : A for all fuzzy subset A of X. Then

(X,.,2”,<:) is FCNS4.

2. Let X = N, the set of natural numbers.

L : X U Y C IX [Y Q K and the fuzzy closure operator c on X is

defined by,

1——>14 ——>= f0rall."1:Z2;
I————>0 1“———>

Q -rs/' \/"' H‘\/”—?t/‘X5/'7/*5
r\;> »-A*—* \\ -Z‘ \\ \\CO IXD "y______,,/;___/;___,/y______/y__i__/L___,,/

r-> +—=c  2 §L_i____/;___,/L__,/y_____/y________/;_____./

1-——>U 1—>()

tr 2_~>1/4 : 2__>1/4 forall;L'Z3;
;r——+O ;z:———>U

l——+1/4 1——>1/4

<1? 2__>1/4 : -2_s1/4 forall:cZ3;
;z:———+(] :r—>O

*_> = _§ forallr1?Z2;1—~> r—>
_-> l——>‘2/3(: : for all :1? Z 2;;1:._s :1:—+1

1——+1/2 l——+1/2

<2 2__>1/4 : 2__.>1/4 forall:rZ3;
II,‘ ?-+ 1 IF ?> 1
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c(:1: —> U) I (:1: -—> U) for all :r; cqfi = <15 and in all other cases 0A : X where

A is a fuzzy subset of X.

l ——> O1 _-> 1/4 . _ _
and 2 __-> 1/4 are dlS_]O1I1I closed convex fuzzy

———> U
:1? ——-> U

_ 1 -——> 1/4 1 —-—> 1/2 _ _ _sets lll X. Also and are dlS_]OlI1( closed con­
:17 -—> U .1: ——> 0

vex fuzzy sets. And also there are no other disjoint closed convex fuzzy set

in X. Now

1 1//l l—+ 1/2C and
1: ——> U .1: ——> (J

]———>1/4 1+1/3 1——->1/4C C
1? ———> 0 zr ~—+ 0 .11? —> U

1——> 1/3
where is f-open in (X , (I).  X is semi FCNS4. But there is

:1: ——> U

1 ——> U

no closed convex fuzzy (_:-neighbourhood of (2 _-_> 1 /4) in X and henceU.'E———>

X is not 1*‘C.-=\/'S_t1.
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5.4 Conclusion

In this chapter, we have studied fuzzy closure, fuzzy convexity spaces and

locally fuzzy closure fuzzy convexity spaces. Also we defined separation

axioms in fuzzy closure fuzzy convexity spaces.
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Chapter 6

Relationship between ( f 25) ( f c0)s and

(fc) (f@<>)8

Introduction

In this chapter we wish to introduce fuzzy closured convexity space and

find the relationship between fuzzy topological convexity space and fuzzy

closured convexity spaces. Also we find the relationship between fuzzy

closure fuzzy convexity space and fuzzy topological fuzzy convexity space.

In [ROS-1], M. V. Rosa introduced fuzzy topology fuzzy convexity

spaces (or (ft)(_fc0)s in short) and in chapter 5 we introduced fuzzy clo­

sure fuzzy convexity space (or (fc) ( f c0)s in short). These motivated the

study of relationship between (_ft)( f c0)s and (fc)(fc0s). In this chap­

ter we define fuzzy closure convexity spaces (or fr: — cos in short) using

this definition and fuzzy topological convexity space defined by M. V. Rosa
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in [ROS-l] we find the relationship between ft —~ cos and fa — foo spaces.

In section 6.1 we define fuzzy closured convexity space and some of

its properties. Also we find the relationship between ft — (:05 and fr; — cos.

In section 6.2 we find the relationship between (_ft)(fco)s and (fc)

(_fco)s. Here we discuss the relationship between the notions of ( f t) ( f co)s

and (_fo)(fco)s. And also we compare their properties.

6.1 Fuzzy closured convexity spaces

In this section we define fuzzy closured convexity spaces which is analo­

gous to the definition given by M. V. Rosa in [ROS-1]: “Let X be a set with

a fuzzy topology T and a fuzzy convexity .2”. Then T is said to be compat­

ible with .Y if the fuzzy convex hulls of finite fuzzy sets are fuzzy closed

in (X. T). Then (X, .199, T) is called a fuzzy topological convexity space

(or f t-cos in short)” Also we find the relationship between the notions of

ft — cos and fc — cos and also compare their properties.

Definition 6.1.1. Let X be a set with a fuzzy closure (tr and a fuzzy convexity

.2”. Then ‘c’ is said to be compatible with .2” if the fuzzy convex hulls of

finite fuzzy sets are fuzzy closed in (X , 0). Then (X , If , c) is called a fuzzy

closured convexity spaces (or fo -— r'<0.s in short).
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Eg:­ f \
y a—>1 a—>0 a—>1/4

LerX={a.,b,d};..2”:<¢_X, b____>1_ 5-_>0_ b_-‘+1/4y>andtheI .' I i
I

L d—-+0 d—>1 d——+U)
0. —> O 0. ~—> U

fuzzy closure operator <1 on X is defined by <2 [b __> (J = (h __> Q] ;d —> 1 d —> 1

a~———>1/4 at———>1/4 a—>1 a-——>1

<1 {ow->1/4) = (2.-_>1/4);<' [b—>1) = {b—~>1);d—->0 d—>O d—>O d—>0
(1.————>l/2 @.—»1/2 (1,~*-->1/4 (l.——>1/4

@(b—>1/2] = (b—>1/2);P [b—+1/4] I (b—>1/4);d—>1 d—>1 d-—>1 0.l—+1
0. —> 1/2 ct —> 1/2

c: I; —> 1/2 I b _> 1/2 ; cg‘) 1- (/) and c/l : X in all other cases
d —> () (1. —> U

where A is fuzzy subset of X. Here (X,.2”, (7) is fc — cos.

Remark 6.1.2. From the definitions of fc: — cos and (fc)(fc0)s (given in

chapter 5) it is clear that fr: — (10.5 are (fc:)(fc0)s. But converse is not true

in general.

Eg:­

Let X : N, the set of natural numbers.
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L = X U {Y C IX|Y Q K } and the fuzzy closure operator c on X is

defined by,

1———>14 1——+1~l= for all :1: Z 2;
,r—-+ 1—~—>

. rs -rm
/"'_?"'$/"""—'>/""""$/""_"i"'%/"_'__'_$/"_'$If r—*

toE Q \ <3 \ ca Q \

to »- i +-~>-- \ -Q \ Q \ - Q \

——> 1——>()
(3 2__>14 I 2-_> forall;rZ3;

,__, __
1-——>l/4 1—->1/4

<: 2———>1/L1 : g_..,1/4 forall:rfZ3;
;r———>O :r——>U

1*” 2 I “i forall .1-32;r——> r-—>

rs .6 : __> for all :1: 2 2;
:r.'——>1 ;z.'—~—>

1—~—>1/2 1—~—>1/2

r: 2__>1/4 : §g___>1/4 forallaz-Z3;
;L'——>1 :r——>1

c(;1; —+ O) I (1; -—> 0) for all :11; cqb : <9 and in all other cases cA = X

where A is a fuzzy subset of X. Here (X , Z , (1) is an (f<f:)( f c0)s but not an

f cr - cos, since
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1 -—-> 1/2

2 __s 1 /Q is convex but not closed.

.17 ———> U

Proposition 6.1.3. Subspace of an fr: —— cos is an fcr —— cos.

Proof Let (X ,...‘Z ,0) be a fc — cos. Let (Y,.fZy, cy) be a subspace of

(X,..2",e) then (Y,.,2”y, (fy) is a (fc)(fco)s. Next we have to show that

it is an fa — cos. For that let ‘A’ be the fuzzy convex hull of a fuzzy set

generated by a finite fuzzy set with support {(11, a2, . . . ak} in Y. If L € .2”

be the fuzzy convex hull of {(11, 0.2, . . . oi} in X then A : Y Fl L since /-l is

a convex fuzzy set in Y. Since X is ft: — cos, L is fuzzy closed in X and

hence A : Y O L is fuzzy closed in Y. Thus (Y, ffy, Cy) is a f (If — cos. El

Remark 6.1.4. Let X be a set with a fuzzy topology T and a fuzzy convex—

ity J2”. Then T is said to be compatible with .3, if the fuzzy convex hulls

of finite fuzzy sets are fuzzy closed in (X, T Then (X ,2’ , T) is called

a fuzzy topological convexity space (or f I. — cos in short). This definition

is given by M. V. Rosa in [ROS-l]. Also by the definition of fuzzy clo­

sured convexity space (or fr: — cos) given in 6.1.1 we can conclude that

ft — cos :> f c — cos, if '1 ' is the associated fuzzy topology of the fuzzy

closure space ( X , c).

Proposition 6.1.5. Subspace ofan ft — cos is  — cos and hence ft: — cos

where (t having associaredfuzzy topology T.
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Proof In [ROS~l] M. V. Rosa proved that subspace of an ft—cos is f t—cos

and by remark 6.1.4 ft — cos implies ft: - cos. Hence the proposition. D

Proposition 6.1.6. Quotient of a ft — cos is f t — cos and hence fc — cos if

X isfinire.

Proof In [ROS-1] M. V. Rosa proved that Quotient of a ft — cos is f t ~ cos

and by remark 6.1.4 ft — cos implies fc — cos. Hence the proposition. U

6.2 Relationship between ( f t)( f co)s and (fc)(fco)s

Remark 6.2.1. A triple (X, ,2”, T) consisting of a set X , a fuzzy alignment

.2” and fuzzy topology T is called an (ft) ( f co)s. This definition is given by

M. V. Rosa in [ROS-1]. In this definition if ‘T’ is replacedby ‘c’, the fuzzy

closure operator then the triple (X, .2”.  is called a (fc)(_fco)s (given in

5.1.1). Here if T is the associated fuzzy topology of fuzzy closure space

(X . (2) then we can conclude that, (ft)(_fco)s implies (f c)(fco)s.

Remark 6.2.2. A fuzzy topological fuzzy convexity space (or (ffco)s)

(X,Z,T) is said to be

(i) F N S0, if for any two distinct fuzzy points there exist a closed convex

fuzzy neighbourhood containing one and not containing the other.

(ii) F N S1, if for any two distinct fuzzy points there exist a closed convex

fuzzy neighbourhood of each of them not containing the other.

(iii) FNS2, if for any two distinct fuzzy points there exist a disjoint closed
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convex fuzzy neighbourhood of each of them.

These definitions were given by M. V. Rosa in [ROS-1] and the analogous

definitions of FCNSQ, FCNS1 and FONS; given in chapter 5 (5.3.1)

where T is the associated fuzzy topology of the fuzzy closure space (X , c)

then we can conclude that,

(i) FNS0 :> FCNSO

(ii) FNS1 :> FCNS1

(iii) FNS2 :> FCNS;;.

Proposition 6.2.3. Any subspace of an F N S; space is F N Si and hence

FCNS.-for all '11 =1 0, 1, 2.

Proof In [ROS-1] M. V. Rosa proved that subspace of a F N Si space is

F N S, and by remark 6.2.2 we have the proposition. E]

Proposition 6.2.4. A non-empty product space is F N Si and hence F C N Si

zfeachfactor is FNS} for all z' I O, 1, 2.

Proof In [ROS-1] M. V. Rosa proved that a non-empty product is FN5}

if each factor is FNS; for all vi : 0. 1, 2 and by remark 6.2.2 we have theproposition. E]
Remark 6.2.5. A (ft)(fc0).s (X, .2”, T) is

(i) pseudo F N S3, if for each closed convex fuzzy set A in X and a fuzzy

point ai (not in it) such that the supports of ay and A are disjoint, then there

exist a closed convex fuzzy neighbourhood V of A such that a A Q V.
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(ii) Fi\/'S'3, if for each closed convex fuzzy set A in X and a fuzzy point as

(not in it) such that the supports of as and A are disjoint, then there exist a

disjoint closed convex fuzzy neighbourhood V of as and V of A.

These definitions were given by M. V. Rosa in [ROS-'1] and the analogous

definitions pseudo FCNS3, F CN S3 given in chapter 5 (5.3.5 and 5.3.6)

where T is the associated fuzzy topology of the fuzzy closure space (X , c)

then we can conclude that, pseudo F NS3 :> pseudo PC N S3 and FNS3 i

FCN S3

Proposition 6.2.6. (1) F uzzy closedfuzzy convex subspaces of F NS3 space

is F .-'\/"S3 and hence F C N S3.

(2) F uzzy closed fuzzy convex subspace of a pseudo FN S3 space is pseudo

F.-*'\/'.5';_; and hence pseudo FC-‘N S3.

(3) A non-empty product of F NS3 space is an F N S3 space and hence

F C’ N S3 space.

(4) A non-empty product of pseudo F N S3 space is a pseudo F N S3 space

and hence FCNS3 space.

(5) The quotient of an F NS;;, pseudo F N S3 space is F NS3, pseudo F N S3

respectively and hence FCNS3, pseudo F UN S3 respectively if the

quotient map is an F C(§7', F-closed and F-open map.

Proof First part of the proposition where proved by M. V. Rosa in [ROS-1]

and use the remark 6.2.5 we have the propositions. [:1
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Remark 6.2.7. A (ft)(fco)s (X, .2”, T) is

(i) semi F N S4, if for each pair of disjoint closed convex fuzzy sets in X

there is a closed convex fuzzy neighbourhood U of one of the closed convex

fuzzy set such that U and the other are disjoint.

(ii) semi F N S4, if for each pair of disjoint closed convex fuzzy sets A and

B in X there is a closed convex fuzzy neighbourhood U of A and V of B

respectively, such that U and B are disjoint and A and V are disjoint.

These definitions are given by M. V. Rosa in [ROS-1] and the analogous

definitions of semi F CN S4, F CNS4 given in chapter 5 (5.3.l0 and 5.3.11)

where T is the associated fuzzy topology of the fuzzy closure space (X , c).

Hence we can conclude that, semi F i-\/'5.-, :> semi FCNS4 and F.-"\/'S,1 :>

F C N S,-1.

Proposition 6.2.8. F uzzy closed fuzzy convex subspace of an F .-'\*"S_-1, semi

F N S4 space is F N S4, semi F NS.-1 respectively and hence F C N S4, semi

F C N S4 respectively.

Proof First part of the proposition where proved by M. V. Rosa in [ROS-1]

and use the remark 6.2.7 we have the proposition. U

Proposition 6.2.9. The quotient of an FNS4, semi F N S4 space is F N S4,

semi FNS4 respectively and hence FCNS4, semi F UN S4 respectively if

the quotient map is an F —closed, F CC and F-open map.

Proof In [ROS-1] M. V. Rosa proved that the quotient of an FN .511, semi
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F N S4 space is FNS4, semi FNS4 respectively. And by remark 6.2.7 we

have the proposition. U
6.3 Conclusion

In this chapter we defined fuzzy closured convexity spaces and obtained

relationship between fuzzy closured convexity spaces and fuzzy topological

convexity spaces and between fuzzy closure fuzzy convexity spaces and

fuzzy topological fuzzy convexity spaces.

Many of the problems investigated in this thesis are to the extent of

introducing different possible directions of study only, much more can be
done in each one of them.
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