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INTRODUCTION



INTRODUCTION

Neuroscience research is essential for understanding the biological basis
of ethanol-related brain alterations and for identifying the molecular targets for
therapeutic compounds that can alter ethanol's actions in the brain and body.
Many different biological systems in the brain are influenced by ethanol and
result in brain adaptations that form the underpinnings of ethanol addiction. Brain
is the major target for the actions of ethanol and it can affect the brain and
behaviour in a variety of ways, multiple factors can influence these effects. The
neurotoxicity of ethanol determines, modulates or modifies the brain functions
during the course of ethanol treatment. Ethanol stimulates the release of
B-endorphins, responsible for euphoria and anesthesia, accounting for some of
the intoxicating effects of ethanol. Ethanol can cause physical addiction directly
through its effects on many receptor sites in the postsynaptic membranes of
neurons. Changes in the brain include depletion and interference in neurons and
chemical messengers involved in signalling that result in a dependence on
ethanol. Brain neurotransmitters through their receptors or hormonal pathway

play an important role in governing the cellular activities.

Consumption of ethanol interferes differentially with transmission
processes in the central nervous system (CNS), affecting many of the
neurotransmitter systems. Ethanol acts at many sites - including the reticular
formation, spinal cord, cerebellum, cerebral cortex and on many neurotransmitter
systems. The effects of ethanol on the brain result mainly from its action on the

postsynaptic receptor sites for various neurotransmitters. Brain serotonin and



dopamine along with other neurotransmitters play an important role in the brain
process underlying ethanol addiction. Development of addiction appears to be

with abnormal neurotransmitter systems.

Serotonin  (5-HT) and dopamine (DA) are the two major
neurotransmitters involved in ethanol addiction. Ethanol alters neuronal cell
membranes as well as their ion channels, enzymes and receptors. Ethanol also
binds directly to the receptors causing the prolonged stimulating or inhibiting
impulse, depending on which area of the brain it is present. Ethanol not only
affects the neurotransmitters individually, but also influences the interactions of
these neurotransmitters, opening of the chloride ion channels and the greater
uptake of chloride ions by the post-synaptic cell. Ethanol addiction leads to
morphological and functional degeneration of rat peripheral sympathetic nervous
system. S-HT does not act alone within the brain. Instead, serotonergic neurons
are parts of larger circuits of interconnected neurons that transmit information
within and among brain regions. Many neurons within these circuits release
neurotransmitters other than serotonin. The exact effect of ethanol on these
neurotransmitters is still under study. Some of the 5-HT mediated neuronal
responses to ethanol may arise from interactions between serotonin and other
neurotransmitters. Serotonin can alter dopaminergic neuronal activity through
5-HT, receptors by its interaction with the dopaminergic system. Systemic
administration of ethanol increases the firing rate of mesolimbic dopamine
neurons. Ethanol appears to facilitate dopamine release by increasing opioidergic
activity and dopaminergic neurons by inhibition of GABAergic

neurotransmission via opioid receptors in the ventral tegmental area (VTA).



Mesolimbic dopamine release induced by ethanol consumption indicates that

ethanol-related stimuli are important.

Both short and long-term ethanol exposure also affect the serotonin
receptors that convert the chemical signal produced by serotonin into functional
changes in the signal-receiving cell. Neuronal dopamine receptors are widely
distributed in the central and the peripheral nervous system at different levels.
Serotonin seems to be involved in ethanol's acute reinforcing effects. The exact
mechanisms that may be involved still need to be clarified. Depending on the
dose, ethanol stimulates locomotor activity and produces an increase in dopamine
levels in the nucleus accumbens. Brain peptide corticotropin releasing factor
(CRF) with ethanol appears to influence neurotransmission in the amygdala, by
increasing the transmission of gamma amino butyric acid (GABA). Ethanol not
only affects the neurotransmitters individually, but also influences the
interactions of these neurotransmitters when working together as 5-HT may
interact with neurons that secrete GABA. If ethanol is present, the ethanol
influenced 5-HT may affect the actions of GABA neurons in areas involving
behavioural output such as the hippocampal formation, where cognitive decisions
are made. Similarly, ethanol influenced 5-HT stimulates dopamine production

and thus more extreme behavioural outputs.

Postsynaptic receptor sites for various neurotransmitters are affected by
the acute effects of ethanol. They exert their function through receptors present in
both neuronal and non neuronal cell surface that trigger second messenger
signalling pathways. Chronic ethanol consumption has been associated with an

increased dopamine turnover rate and decreased dopamine uptake. Genetic



variability in the 5-HT,, receptor is involved in the development of ethanol
dependence. Another series of studies suggest that ethanol-induced reward is
independent of the activation of DA D, receptors mediated through 5-HT, and
5-HT, receptors. Ethanol increases the amount of dopamine acting on receptors
and enhances the normal feeling of pleasure associated with the dopaminergic
system. Chronic ethanol treatment may decrease serotonergic neurotransmission
in selective brain regions. Ethanol has several actions on the central nervous
system believed to be mediated by non-specific physicochemical effects on the
membrane or by actions through specific receptors. Ethanol has a variety of
effects on neuroendocrine function and there is a great deal of interest in
investigating the effects of ethanol on the hypothalamic—pituitary—adrenal (HPA)
axis. Ethanol administration activates the HPA axis. Acetaldehyde formed during

ethanol metabolism in brain is able to activate the HPA axis at a central level.

Brain plays an important regulatory role in hepatic functions. The liver is
richly innervated and signalling occurs between the liver and brain (Kerfoot er
al., 2006). Liver dysfunction is associated with more extensive brain dysfunction
in liver cirrhosis patients (Tarter et @/, 1993). Brain monoamines and aldehyde
dehydrogenase (ALDH) level together plays a decisive role in the ethanol
addiction. The liver plays a primary role in body homeostasis. It regulates levels
of circulating nutrients, excretes waste products into the bile, reduces circulating
ammonia through production of urea, produces important serum proteins and
produces bile acids required in digestion of lipids and acts as the primary site of
metabolic defense. The ethanol induced neurotransmitters mediate changes in
intracellular communications not only within the central nervous system but also
in the peripheral tissues. The ethanol metabolism in the rat l(iver is functionally

controlled directly by sympathetic nerves. With long-term use, adolescent rats



have shown massive neuronal loss in their cerebellum, basal forebrain and
neocortex. Strong ethanol preferences are associated with reduced serotonergic
functions either directly or indirectly by increasing dopamine neurotransmission
particularly in the ventral striatum. Serotonergic system appears to be involved in
ethanol consumption and reinforcement by activating dopaminergic reward
system. Acetaldehyde produced from ethanol is metabolized quickly to acetate by
liver ALDH. Biogenic aldehydes, the metabolic intermediate of ethanol,
interfere in some way with the oxidative metabolism of the brain. Chronic
ethanol exposure has been shown to cause degenerative changes in several areas
of the brain, including cerebral cortex, hippocampus, cerebellum, brainstem and
also in the peripheral nervous system. Acute ethanol intoxication may cause

changes in hepatic enzymes (Hegyi ef al., 2003).

Most of the acetaldehyde produced from ethanol is metabolized quickly
to acetate by liver ALDH, the principal enzyme involved in serotonin and
dopamine metabolism. The 5-hydroxyindole-3-acetaldehyde (5-HIAL), 3, 4-
dihydroxyphenylacetaldehyde (DOPAL) are produced by the first step of
metabolism of serotonin and dopamine respectively. Both DOPAL and 5-HIAL
are excellent substrates for ALDH. Differences in acetaldehyde elimination may
contribute to ethanol preference. Accumulation of acetaldehyde in blood
following ethanol ingestion, due to a lower activity of ALDH, is believed to play

a preventive role against ethanol addiction.

This study focuses on the effect of ethanol treatment and its functional
correlation with dopaminergic and serotonergic system with regard to its

suitability as a model of human ethanol consumption. The work that is presented



here is an attempt to understand the role of dopamine, serotonin acting through
DA D, and 5-HT,, receptors in the functional regulation of ALDH in ethanol
treated rats. Neurobiological mechanisms that are responsible for ethanol
addiction and the role of ALDH have been given special emphasis with
dopamine and serotonin receptor subtype specificity. Also, the brain activity is
studied using electroencephalogram confirming the neurotransmitters functional

regulation and ethanol treatment.



OBJECTIVES OF THE PRESENT STUDY

1. To create the animal model for ethanol consumption by ethanol treatment
and study the rate of ethanol consumption.

2. To study the kinetic parameters of aldehyde dehydrogenase in brain regions

of control and ethanol treated rats.

3. To study the kinetic parameters of aldehyde dehydrogenase in liver and
plasma of control and ethanol treated rats.

4. To study the changes in DA, 5-HT, HVA and 5-HIAA content in liver and
various rat brain regions — corpus striatum (CS), cerebral cortex (CC),
brainstem (BS) and hypothalamus (HYPO) of control and ethanol treated rats
using High Performance Liquid Chromatography.

5. To study the DA D, and 5-HT,a receptor alterations in liver and different
brain regions like cerebral cortex, brainstem, hypothalamus, corpus striatum
and cerebellum of control and ethanol treated rats.

6. To study the gene expression of DA D, and 5-HT,x receptors, their
functional role on ALDH regulation in control and ethanol treated rats.

7. To study the impact of dopaminergic and serotonergic system in functional
regulation on the kinetic parameters of aldehyde dehydrogenase.

8. To perform neurophysiologic analysis of the electrical activity of the brain

using electroencephalogram (EEG) in ethanol treated rats.
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REVIEW OF LITERATURE

Drug and ethanol seeking behaviour has become a great global problem
affecting millions of inhabitants with a cost to society in the billions. The
etiology of ethanol dependence is a complex interaction of psychosocial and
biologic factors (Konishi ef al., 2004). The central nervous system (CNS) plays
an important role in the peripheral regulation. Neurotransmitters mediate rapid
intracellular communications not only within the central nervous system but also
in the peripheral tissues. They exert their function through receptors present in
both neuronal and non neuronal cell surface that trigger second messenger
signalling pathways (Julius ez al., 1989). Central nervous system believed to be
mediated by non-specific physicochemical effects on the membrane or by actions
through specific receptors (Deitrich ef al, 1989; Eckardt er al, 1998).
Determining the specific neurotransmitters and receptor subtypes that may be
involved in the development and effects of ethanol abuse is the first step in
developing medications to treat ethanol addiction (Hunt, 1993; Deitrich & Erwin,
1996).

Central Nervous System and Ethanol

The etiology of ethanol dependence is a complex interaction of
psychosocial and biologic factors (Konishi er al., 2004). The effects of ethanol on
the brain result mainly from its action on the postsynaptic receptor sites for
various neurotransmitters. Heavy ethanol consumption has both immediate and
long-term detrimental effects on the brain and neuropsychological functioning
(Delin & Lee, 1992; Evert & Oscar-Berman, 1995). Ethanol interferes with

communication between nerve cells and all other cells, suppressing the activities



of excitatory nerve pathways and increasing the activities of inhibitory nerve
pathways. Central nervous system has a crucial role in ethanol addiction, several
actions believed to be mediated by non-specific physicochemical effects on the
membrane or by actions through specific receptors (Deitrich e al., 1989; Eckardt
et al., 1998). Chronic and excessive consumption of ethanol in humans and
animals has been shown to cause cellular damages in many body organs,
including neurons and glial cells in the central nervous system (Miller, 1992;
Hunt, 1993; Luo & Miller, 1998). Biogenic amines have been implicated in the
regulation of aggression (Kravitz, 2000) and memory (Hasselmo, 1995). Brain
serotonin (5-HT) modulates the neural and behavioural effects of ethanol in a
manner that remains poorly understood (Daws et al, 2006). Ethanol-induced
changes in thyroid function may contribute to the development of mood disorders
(Liappas et al., 2006). Ethanol ingestion for short as well as long time has been
shown to induce significant changes in neurotransmitter systems (Imperato & Di
Chiara, 1986; Samson & Harris, 1992), among these DA and 5-HT have received
special attention because of their putative role in the motivational effects of
ethanol (Cloninger, 1987; Sellers er al., 1992, Wallis ef al., 1993). Changes in
central DA neurotransmission are implicated in processes as diverse as muscle
rigidity, hormonal regulation, thought disorder and cocaine addiction. Peripheral
DA mediate changes in blood flow, glomerular filtration rate, sodium excretion
and catecholamine release. In the adolescent brain, drinking cessation can
partially ameliorate the ethanol-induced morphological changes on neurons and
astrocytes but cannot fully return it to the basal state (Evrard ef al,, 2006). DA
itself has a regulatory effect on the synthesis of post-synaptic receptors.
Schizophrenia causes an increased DA D, receptor synthesis due to dopaminergic

blockade by neuroleptics. In Parkinson's disease DA deficiency causes an



increase in DA D, receptors. The nicotinic acetylcholine receptor (nAChR) is the
prototype for a superfamily of ligand gated ion channels (Corringer et al., 2000)
that includes inhibitory [glycine (Gly), GABA,, and GABA receptors] as well as
excitatory receptors (nAChRs and 5-HT; receptors). These receptors have a
pentameric structure, whereby the five subunits are arranged in a quasisymmetric
distribution around a central pore (Unwin ef al., 1988). Each subunit presents a
large extracellular amino-terminal domain, folsess binding sites for ethanol
(Crews et al., 1996). GABA, the major inhibitory neurotransmitter of the CNS is
affected by even short-term exposure to ethanol and increases GABAergic
function. Long-term ethanol exposure is associated with reduced GABA-
benzodiazepine receptor (GBzR) levels and function (Lingford-Hughes et al.,
2002). Ethanol enhances the activity of GABA, but reduces the excitatory effects
of glutamate. These actions are the main reason that ethanol is often thought of as
a depressant. GABA, receptor is involved in ethanol’s acute and chronic effects
(Mehta & Ticku, 1999; Buck & Finn, 2000, Cagett et al., 2003). Baclofen,
agonist of GABA activates another type of GABA receptor (GABAg), has
recently been shown in a preliminary study to be effective in inducing abstinence
from ethanol and reducing ethanol craving and consumption (Addolorato et al.,
2002). Serotonin and dopamine are the major neurotransmitters involved in
ethanol addiction in vivo (Tank, 1981). Serotonin produced and released from
neurons that originate within discrete regions, or nuclei, in the brain (Cooper &
Bloom, 1991). Along with other neurotransmitters, serotonin plays an important
role in the brain process underlying ethanol abuse (David, 1999). Alterations in
monoamines are observed in the striatum after chronic ethanol administration
(Vasconcelos et al., 2004). DA is a neurotransmitter that has been implicated in

various central neuronal degenerative disorders like Parkinson's disease and

10



behavioural diseases like Schizophrenia. DA is synthesised from tyrosine, stored
in vesicles in axon terminals and released when the neuron is depolarised. DA
interacts with specific membrane receptors to produce its effects. These effects
are terminated by re-uptake of DA into the presynaptic neuron by a DA
transporter or by metabolic inactivation by monoamine oxidase B (MAO-B) or
catechol-O-methyltransferase (COMT). DA plays an important role both
centrally and peripherally. Nonetheless, the mesolimbic DA system has been
shown to play a role in the rewarding effects of ethanol. The recent identification
of five DA receptor subtypes provides a basis for understanding DA's central and
peripheral actions. Stimulation of the DA D, receptor gives rise to increased
production of cAMP. DA D, receptors inhibit cAMP production, but activate the
inositol phosphate second messenger system. Impaimment of central DA
neurotransmission causes muscle rigidity, hormonal regulation, thought disorder
and cocaine addiction. Ethanol enhanced 5-HT;, receptor function, but had no
effect on mouse 5-HTsp receptor mediated currents (Hayrapetyan et al., 2005).
Ethanol administration activates the HPA axis (Ellis, 1966, Rivier ez al., 1984,
Rivier & Vale, 1988; Thiagarajan ef al., 1989; Rivier, 1996; Rivier & Lee, 1996;
Ogilvie et al., 1997). Acetaldehyde formed in brain is able to activate the HPA
axis at a central level (Hiroshi er al, 2001). Aldehyde dehydrogenase, the
primary enzyme responsible for acetaldehyde metabolism, is highly correlated
with voluntary ethanol consumption in several strains of rats and mice (Amir,
1977). Brain ALDH plays an important role in the biosynthesis of biogenic
amines (Tipton ef al, 1977), which may be one of the important factors in
modifying ethanol-induced behaviour (Roberta ez al., 2001). Ethanol is found to

cause several biochemical changes in the NA, such as increased levels of tyrosine



hydroxylase, NMDA RI and Glutamate RI receptor subunits and decreased
levels of subunit a1 of the GABA 4 receptor complex (Ortiz et al., 1995).

Dopamine

Dopamine (DA) exerts its functions mediated through various receptors
and these actions are terminated to prevent continuous stimulation of the
receptors.  This inactivation is brought about by reuptake mechanisms and
metabolism of DA. Reuptake of DA is accomplished by a high affinity carrier
present in the membrane, the DA transporter (DAT). DA containing neurons
arise mainly from DA cell bodies in the substantia nigra and ventral tegmental
area in mid-brain region (Carlsson, 1993; Lookingland et al., 1995; Creese et al.,
1997; Tarazi et al., 1996, 2001). Dopaminergic system is organized into four
major subsystems (i) the nigrostriatal system involving neurons projecting from
the substantia nigra - the major DA system in the brain as it accounts for about
70% of the total DA in the brain, and its degeneration makes a major contribution
to the pathophysiology of Parkinson’s disease; (ii) the mesolimbic system that
originates in the midbrain tegmentum and projects to the nucleus accumbens
septi and lateral septal nuclei of the basal forebrain as well as the amygdala,
hippocampus and the entorhinal cortex, all of which are considered components
of the limbic system and so are of particular interest for the patho-physiology of
idiopathic psychiatric disorders; (iii) mesocortical pathway arising from the
arcuate and other nuclei of the hypothalamus the mesocortical system, which also
arises from neuronal cell bodies in the tegmentum which project their axons to
- the cerebral cortex, particularly the medial prefrontal regions; (iv) the
| tuberinfundibular pathway, which is a neuroendocrinological and ending in the

median eminence of the inferior hypothalamus. DA released in this system



exerts regulatory effects in the anterior pituitary and inhibits the release of
prolactin. DA is involved in the control of both motor and emotional behaviour.
Despite the large number of crucial functions it performs, this chemical
messenger is found in a relatively small number of brain cells. In fact, while
there are a total of 10 billion cells in the cerebral cortex alone, there are only one
million dopaminergic cells in the entire brain. The DA transporter recycles
extracellular DA by actively pumping it back into the nerve terminal. The DA
content which is about 70 to  80% in the striatal synaptic cleft is inactivated by
this process. Drugs, such as cocaine, are able to block the action of the DA
transporter, thereby sustaining the presence of DA in the synaptic cleft and its
action on DA receptors. Part of the DA is inactivated by conversion to inactive
compounds by metabolic enzymes, which are present both intra- and
extraneuronally. Monoamine oxidase (MAO), aldehyde dehydrogenase and
COMT are responsible for the metabolism of DA. DA after reuptake may
intraneuronally be deaminated by MAO to give 3, 4-dihydroxyphenyl
acetaldehyde (DOPAL), which subsequently is converted to 3, 4-
dihydroxyphenylacetic acid (DOPAC) by ALDH. DOPAC is then methylated by
COMT to give homovanillic acid (HVA).

DA receptors

DA mediates its actions via membrane receptor proteins. DA receptors
are found on postsynaptic neurons in brain regions that are DA-enriched. In
addition, they reside presynaptically on DA neuronal cell bodies and dendrites in
the midbrain as well as on their terminals in the forebrain, DA receptors belong
to a family of large peptides that are coupled to G-proteins which are modified by

attached carbohydrate, lipid-ester or phosphate groups. The topologies of the



five DA receptors are predicted to be the same as all the other G-protein-coupled
receptors. They are characterized by having seven hydrophobic transmembrane-
spanning regions. The third intracytoplasmic loop is functionally critical and
interacts with G-proteins and other effector molecules to mediate the
physiological and neurochemical effects (Carlsson, 1993; Tarazi et al, 1996;
Creese ef. al., 1997). In their putative transmembrane domains, the DA D, and
Ds receptors are 79% identical to each other, while they are only 40-45%
identical to the DA D,, D3, and D4 receptors. Conversely, the DA D5, D, and Dy
receptors are between 75% and 51% identical to each other. They contain seven
putative membrane-spanning helices which would form a narrow dihedral
hydrophobic cleft surrounded by three extracellular and three intracellular loops.
The receptor polypeptides are probably further anchored to the membranes
through palmitoylation of a conserved Cys residue found in their carboxy tails,
347 in DA Dy, the C-terminus in DA D, like receptors. The DA receptors are
glycosylated in their N-terminal domains. DA D, like subtypes has potential

glycosylation sites in their first extra cytoplasmic loop.

DA receptor classification

DA receptors are divided into two families on the presence or absence of
ability of DA to stimulate adenylyl cyclase and produce the second-messenger
molecule cyclic-AMP (cAMP) (Calne, 1979; Schwartz ef al., 1992; Civelli ef al.,
1993; Jaclzson et al., 1994; Ogawa, 1995; Strange, 1996). This classtfication is
based on similarities in structure, pharmacology, function and distribution. DA

D like receptors are characterized initially as mediating the stimulation of cAMP
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production. DA D, like receptors inhibit the production of cAMP. This
pharmacological characterization is based on the ability of some DA agents to
block adenylyl cyclase activity to inhibit the release of prolactin in vivo and
in vitro in a cAMP-independent fashion (Seeman, 1980). Applications of recent
technical advances in molecular genetics have greatly facilitated the isolation and
characterization of novel DA receptors, DA D,, Dy and Ds, with different
anatomical localization from traditional DA D, or DA D, receptors. Based upon
their pharmacological profiles, including their effects on different signal
transduction cascades, these receptors are currently divided into two families: the
DA D,-like family which includes DA D, and Ds receptors. The DA D,.like
family includes DA D,, D; and D, receptors (Shen ez al., 1993).

DA D,-like family

The DA D,-like receptors are characterized by a short third loop as in
many receptors coupled to Gs protein (Civelli et al., 1993). They are classified
into DA D, and Ds. The DA D,-like receptors have short third intracellular loops
and long carboxy terminal tails. The DA D, receptor is the most abundant DA
receptor in the central nervous system. In the DA D and DA D;s receptors third
intracellular loop and the carboxy terminus are similar in size but divergent in
their sequence. The small cytoplasmic loops | and 2 are highly conserved so that
any difference in the biology of these receptors can be probably related to the
third cytoplasmic loop and the carboxy terminal tail (Gingrich e al., 1993;
Dowd, 1993). The external loop between transmembrane domain (TM) TM4 and
TMS5 is considerably different in the two receptor subtypes, being shorter
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(27 amino acids) in the D, receptor than in the Ds receptor (41 amino acids). The

amino acid sequence of this loop is divergent in the DA Ds receptor (Marc er al.,
1998).

DA D, receptor

DA D, receptors are found at high levels in the typical DA regions of
brain such as the neostriatum, substantia nigra, nucleus accumbens and olfactory
tubercles. DA D, receptor seems to mediate important actions of DA to control
movement, cognitive function and cardiovascular function. The DA D, receptors
show characteristic ability to stimulate adenylyl cyclase and generate inositol I,
4, 5-trisphosphate (IP;) and diacylglycerol via the activation of phospholipase C
(Sibley et al., 1990; Monsma er al., 1990). DA D receptors are highly expressed
in basal ganglia followed by cerebral cortex, hypothalamus and thalamus. DA D,
receptors mRNA is colocalized in striatal neurons of the basal ganglia with
mRNA for DA receptor phospho protein (DARPP-32; KD) which is a DA and
cyclic-AMP-regulated phosphoprotein. DA receptor phosphoprotein contributes
to the actions of D; receptor (Hemmings & Greengard, 1986; Greengard et al.,
1987).

DA Ds receptors

The gene encoding the human DA Ds protein is located at the short arm
of chromoso’me 4, the same region where the Huntington disease gene has been
located (Gusella, 1989). The DA Ds receptor gene is intronless and encodes a
protein that extends for 477 amino acids (George et al.,, 1991). This protein has
an overall 50% homology with DA D, receptor and 80% if only the seven

transmembrane segments are considered. Two DA Ds receptor pseudogenes
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having 154 amino acids have been identified with 90% homology (Gusella,
1989). These pseudogenes, however, contain stop codons in their coding regions
that prevent them from expressing functional receptors. The functions of these
pseudogenes, which appear so far to be specific to humans, are not yet known
(Allen et al., 1991). DA Ds receptors, like DA D, receptors, appear to interact
with G-proteins and can stimulate adenyly! cyclase, with relatively high affinity
for DA and DA D,-selective agonists (George er al, 1991). DA Ds receptor
mRNA expression is unique and limited to the hippocampus and parafascicular
nucleus of the thalamus (Civelli er al, 1992). It is involved in the thalamic

processing of painful stimuli (Basbaum et al., 1979).
DA D;-like family

The dopamine D, receptor is one of at least five physiologically distinct
dopamine receptors (D), D, D3, D4 and Ds) found on the synaptic membranes of
neurons in the brain (Sibley & Monsma, 1990). DA D,-like receptors are
characterized by a long extracellular amino terminus which has several
glycosylation sites and a shorter carboxy terminal tail with putative
phosphorylation sites. DA D,-like receptors belong to the G-protein coupled
receptors and have 400 amino acid residues. The function of sugar moieties is
unclear (Marc et al, 1998; Sibley, 1999). The unique feature of DA D,-like
receptors family is that they posses a bigger third cytoplasmic (intracellular) loop
in common, which is thought to be the site where the G-protein couples (Marc
et al, 1998). It is generally believed that the membrane enclosed part of the
amino-acid chain of G-protein coupled receptors is folded into seven a-helices.
The transmembrane helices consist primarily of hydrophobic amino-acid

residues. Between the different DA receptors, the third loop also displays the



greatest variability in amino-acid sequence. This may have consequences for
their respective second messenger systems. The DA D,-like receptors are
coupled to Gi-protein and inhibit the formation of cyclic AMP. The DA D,

receptors tertiary structure is stabilized by two cysteine disulphide bridges.

DA D, receptors

The DA D, receptor gene encodes a protein that extends for 415 amino
acids. Similar to other G-protein coupled receptors, the DA D, receptor has
seven transmembrane segments, but in contrast to DA D,-like receptors, the third
cytoplasmic domain is long and the carboxy terminus is short. The gene encoding
this DA D, receptor was found to reside on q22-q23 of human chromosome 11
(Makam et al.,, 1989). The DA D, receptor was the first receptor to be cloned
(Chrisre et al., 1988). The DA D, receptors are involved in several signal
transduction cascades, including inhibition of cAMP production (Vallar &
Meldolesi, 1989), inhibition of phosphoinositide tummover (Epelbaum et al.,
1986) activation of potassium channels and potentiation of arachidonic acid
release (Axelrod et al., 1991). The DA D, receptors are highly expressed in basal
ganglia, nucleus accumbens septi and ventral tegmental area (Schwartz et al.,
1991). The DA D, receptor exists as two alternatively spliced isoforms differing
in the insertion of a stretch of 29 amino acids in the third intracellular loop and
are designated as DA Dys and DA D, (Seeburg et al., 1989; Marc ef al., 1998).
DA D, receptor isoforms (DA D, and DA Dsg) vary within each species by the
presence or absence of a 29-amino acid sequence in the third cytoplasmic domain
of the DA D, receptor peptide chain. Both variants share the same distribution
pattern; with the shorter form less abundantly transcribed in addition they appear

to differ in their mode of regulation (Marc et al., 1998). Because this loop seems



to play a central role in receptor coupling, the existence of a splicing mechanism
at this level could imply functional diversity. However, in spite of the efforts of
several groups, no obvious differences have emerged so far between the two
DA D, receptor isoforms. The two isoforms derived from the same gene by
alternative RNA splicing which occurs during the maturation of the DA D,
receptor pre-mRNA (Schwartz ef al., 1989). Pharmacologically, both isoforms
exhibit nearly similar profiles in terms of their affinities to different DA D,-
selective agents, and inhibit adenylyl cyclase activity. However, these isoforms
display an opposite regulatory effect (Sibley ef al., 1994). These isoforms have
the same pharmacological profile, even though a marginal difference in the
affinity of some substituted response to DA treatment is reported: DA induces
the up-regulation of DA Dy isoform of DA D, receptors (Castro & Strange,
1993). When expressed in host cell lines, both isoforms inhibited adenylyl
cyclase (Marc et al., 1998; Sibley, 1999). However, the DA D,g receptor isoform
displayed higher affinity than the DA D, in this effect (Seeburg er al., 1989;
Marc et al., 1998). The isoforms of DA D, mediate a phosphatidylinositol-linked
mobilization of intracellular calcium in mouse Ltk [-] fibroblasts. Protein kinase
C (PKCQC), however, differentially modulates DA D,s and DA D, -activated
transmembrane signalling in this system with a selective inhibitory effect on the

DA Djs-mediated response.
DA Dj; receptors

The gene encoding this receptor resides on chromosome 3 (Giros ef al.,
1990). DA D; mRNA occurs in longer and shorter spliced forms generated from
the same gene (Schwartz et al.,, 1991). DA D; receptor gene contains five introns

and encodes a 446 amino acid protein (Schwartz ez al,, 1990). The DA D;
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receptors bear close structural and pharmacological similarities to the DA D,
receptors. Distribution of DA D, receptor mRNA are distributed and expressed
mainly in subcortical limbic regions including islands of Calleja, nucleus
accumbens septi and olfactory tubercle, with low levels of expression in the basal
ganglia (Marc ef al.,, 1998). D; receptor mRNA has also been found in neurons
of the cerebellum, which may regulate eye-movements (Levesque et al., 1992).
The structural similarity with DA D, receptor raises the possibility that DA D,
receptor may also inhibit adenylyl cyclase activity in its normal cellular setting.
More recent studies reported that DA Ds; receptors might mediate positive
regulatory influences of DA on production of the peptide neurotensin (Levesque
et al., 1995; Marc et al.,, 1998). The status of the DA D, molecular entity as a
functional receptor remains uncertain since it neither couples to G-proteins nor
consistently transduces an effector mechanism (Schwartz et al., 1990; Sokoloff

et al., 1992; Marc et al., 1998).
DA D, receptors

The gene encoding the human DA Dy protein is located at the tip of the
short arm of chromosome 11 (Civelli ef al., 1992; Marc et al.,, 1998). DA D,
receptor gene has been localized in brain regions like hippocampus and frontal
cortex using specific histoprobes (Civelli et al., 1994). DA D, receptor gene
contains four introns and encodes a 387 amino acid protein (Van et al.,, 1991).
The overall homology of the DA D, receptor to the DA D, and D; receptors is
about 41% and 39% respectively, but this homology increases to 56% for both
receptors when only the transmembrane spanning segments are considered. In
humans, DA D, receptor occurs in several genomic polymorphic variants that

contain two to eleven repeats of a 48 base pair segment that is expressed in the
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third cytoplasmic domain (Marc et al., 1998). These are called the DA D, alleles,
which are represented as DA Dy,, Dy4 and Dy; These may contribute to the
pathophysiology of certain neuropsychiatric disorders (Jackson & Westlind,
1994). The stimulation of DA Dy receptor inhibits adenylyl cyclase activity and

release arachidonic acid in brain neurons (Huff ez al., 1994; Marc et al., 1998).

Effect of ethanol on brain DA receptors

Since the first report by Blum et al.,, (1990) suggesting an association of
DA D, receptor gene and ethanol addiction, the possible role of DA D, receptor
locus in the etiology of ethanol addiction has been the focus of considerable
attention (Noble, 2000). The brain of ethanol addicts seems to contain
abnormalities that reduce the effectiveness of the dopaminergic system. Chronic
ethanol consumption has been associated with an increased DA turnover rate and
decreased DA uptake (Mash et al., 1996). Striatal dopamine deficit is correlated
with ethanol craving. Dopaminergic D, receptor mechanisms are involved in the
biology of ethanol dependence in man (Hietala er al, 1994). Human genetic
studies suggest that an association exists between ethanol addiction and both the
DA D, receptor and the DA transporter. This is supported by brain imaging
studies that have reported alterations in both DA D, receptor and DA transporter
densities in the brain of ethanol addicts (Repo et al., 1999). Reward-related
impulsiveness may constitute a risk factor for ethanol dependence and that this
core temperament could be partly mediated by the DA D, gene (Limosin et al.,

2003). Continuous chronic or repeated deprivations increase binding sites of D,
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and D, receptors in specific regions of the extended amygdala (EA) with greater

sensitivity in the anterior regions (Sari et al., 2006).

DA receptor gene expression and ethanol

The genes encoding DA receptor subtypes have received considerable
attention for the past several years as a potential candidate that may affect
susceptibility to addictive disorder, including ethanol addiction (Lee er al., 2002).
The genomic organizations of the DA receptors demonstrate that they are derived
from the divergence of two gene families that mainly differ in the absence or the
presence of introns in their coding sequences. DA D;-like receptors genes do not
contain introns in their coding regions, a characteristic shared with most
G protein-coupled receptors. The genes encoding the DA D,-like receptors are
interrupted by introns (Marc ef al., 1998). Furthermore, most of the introns in the
DA D,-like receptor genes are located in similar positions. The DA D, receptor
gene contains seven introns that are spliced out during mRNA transcription
(Fischer er al., 1989). ALDH genes are involved in dopamine metabolism and
they interact with the DA D, receptor genes in alcohol dependence (Huang ez af.,
2004). The constitutive expression of D, receptor short isoform also reduced the
tumor cell growth rate (Sarkar et af.,, 2005). Dopamine acts through G-protein-
coupled D, receptors to affect the amount of intracellular cyclic AMP (Hayes
et al., 1992). The DA D, receptor gene, which lacks any introns, encodes a
protein that extends for 446 amino acids (Caron ef al., 1991). In humans DA D,
receptor gene has been localized to chromosome 5 (Kennedy er al., 1990).

Dopamine receptor genes responsive to alcohol exposure encode proteins which
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are involved in growth hormone (GH) release and its expression is altered by
chronic alcohol intake (Gerhard ef al., 2006). DA D, receptors activation inhibits
norepinephrine gene expression and release in the arcuate nucleus and peripheral
nerves (Carey et al., 1983; Pelletier ef al,, 1991). D, receptor gene Al allele
shows a significantly higher prevalence in ethanol users compared with nonusers

(Comings et al., 1994; Noble, 1996).
Serotonin

Serotonin (5-HT) is widely distributed in both the animal and the plant
kingdoms and is found in such diverse locations as tunicates, molluscs,
arthropods, fruits, nuts and venoms (Erspamer, 1996). The enormous range of
this single brain chemical system may reflect the vast distribution of its fibers in
brain, from a small group of large multipolar neurons. Serotonin is synthesized
and released from neurons that originate within discrete regions, or nuclei, in the
brain (Cooper & Bloom, 1991). 5-HT may be tied to the evolution of life itself,
particularly through the role of tryptophan, its precursor molecule. Tryptophan is
an indole-based, essential amino acid, which is unique in its light absorbing
properties. [n plants, tryptophan-based compounds capture light energy for use
in metabolism of glucose, the generation of oxygen and reduced cofactors.
Tryptophan, oxygen and reduced cofactors combine to form 5-HT. 5-HT-like
molecules direct the growth of light-capturing structures towards the source of
light. In plants, tryptophan produces receptor proteins which harness light and
thus produce biologically important molecules (Josefsson & Rask, 1997).
Chlorophyll, for example, captures light because it contains tryptophan, and then
generates ATP, reduced cofactors (NADH), and oxygen. This entire process is

blocked if tryptophan is substituted with another amino acid (Mogi et al., 1989).
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Serotonin has effects on other neurotransmitter systems. Ascending serotonergic
systems from the median and dorsal raphe innervate areas of the brain rich in DA
neurons, where they regulate the firing rate and release of DA. Liu ef al., (1992)
have shown that serotonin, through regional effects on either raphe glia or
mesencephalic glia, will promote nerve growth factors affecting maturity of
serotonergic neurons. 5-HT is an endogenous amine involved in diverse biologic
processes within the central and peripheral nervous system and the
cardiovascular and gastrointestinal and respiratory systems (Hindle, 1994). 1t is
reported that there is a hypothalamic serotonergic receptor functional regulation
mediated through  5-HTyc receptor during pancreatic regeneration (Mohanan
et al., 2005 a, b). Jackson & Paulose (1999) reported a decrease in brain 5-HT
content during diabetes. 5-HT has been implicated more in behaviour,
physiological mechanisms, and disease processes than any other brain
neurotransmitter. This diversity of actions is made possible because of the
existence of specific 5-HT cell surface receptor subtypes and their coupling to
distinct intracellular messenger systems or ion channels (Hoyer et al.. 1994).
Serotonin through 5-HT, receptor caused a dose-dependent increase in DNA
synthesis in primary cultures of rat hepatocytes (Sudha & Paulose, 1997). The
synthesis and degradation of 5-HT is a very active process and it has been
estimated that the total body pool of 5-HT is replaced every 24 hours. The
synthesis of 5-HT occurs primarily by enzymatic hydroxylation of the benzene
ring of tryptophan to form S-hydroxytryptophan (5-HTP) and then through
decarboxylation of the terminal carbon group of 5-HTP to form 5-HT. Once
inside the cells, 5-HT is degraded by monoamine oxidase to form an aldehyde,
which is then hydrolysed by ALDH to form S-HIAA, the principal metabolite

excreted in urine. The neurons form a collection of clustered cells termed the
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raphe nuclei, located on the exact midline of the brainstem. Serotonergic fibers
interact in complex ways with a variety of cell types-neurons, glial cells,
endothelial cells, ependymal cells and others by binding to at least 14 distinct
receptor proteins. Furthermore, 5-HT neurons are one of the first brainstem
neurons to emerge during early development of the brain and spinal cord present
by the sixth week of gestation in humans. In rats, S-HT neurons in the brainstem
raphe are among the first neurons to differentiate in the brain and play a key role
in regulating neurogenesis (Kligman & Marshak, 1985). The 5-HT neurons are
the first neuronal system to innervate the primordial cortical plate. During
development, 5-HT fibers arrive at the cortical plate during the peak period of
mitosis and maturation (Dori ef ¢/, 1996). Lauder & Krebs (1978) reported that
para-chlorophenylalanine (PCPA), a S-HT synthesis inhibitor, retarded neuronal
maturation. Since then, many other workers have shown a role for 5-HT in

neuronal differentiation (Marois & Croll, 1992; Rodriguez, 1994).
5-HT receptor classification

5-HT receptors can be classified into seven classes from 5-HT, to 5-HT,

based upon their pharmacological profiles, cDNA-deduced primary sequences
and signal transduction mechanisms of receptors (Bradley et al., 1986; Zifa &
Filtion, 1992; Peroutka, 1993). All 5-HT receptors belong to the superfamily of
G-protein coupled receptors containing a seven transmembrane domain structure

except 5-HT3 receptor, which forms a ligand-gated ion channel.
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5-HT, Receptor

Five 5-HT receptor subtypes have been recognised, 5-HT , 5-HT _,

1A’
S-HTID, S-HTlE and S'HTn:- All are seven transmembrane, G-protein coupled
receptors encoded by intronless genes, of between 365 and 422 amino acids with

an overall sequence homology of 40%. 5-HT , receptor subtype which is located

on human chromosome 5qll is widely distributed in the CNS, particularly
hippocampus (Hoyer ef al., 1994). The 5-HT  receptor is located on human
chromosome 6q13 and is concentrated in the basal ganglia, striatum and frontal
cortex. The receptor is negatively coupled to adenylyl cyclase. The 5-HT
receptor has 63% overall structural homology to 5-HT, | receptor and 77% amino
acid sequence homology in the seven transmebrane domains. The receptor is

located on human gene 1p36.3-p34.3 and is negatively linked to adenylyl

cyclase. The 5-HT _ receptor was first characterized in man as a *H] 5-HT

binding site in the presence of S5-carboxyamidotryptamine (5-CT) to block
binding to the 5-HT , and 5-HT j receptors. It is reported that the brain 5-HT

through 5-HT,A receptor has a functional role in the pancreatic regeneration
through the sympathetic regulation (Mohanan et al., 2005). Human brain binding
studies have reported that 5-HT _ receptors are concentrated in the caudate
putamen with lower levels in the amygdala, frontal cortex and globus pallidus
(Hoyer et al., 1994). This is consistent with the observed distribution of 5-HT .
mRNA (Hoyer et al, 1994). The receptor has been mapped to human

chromosome 6q14-ql5, is negatively linked to adenylyl cyclase and consists of a

365 amino acid protein with seven transmembrane domains. 5-HT  receptor

subtype is closely related to the S-HT, _ receptor with 70% sequence homology
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across the 7 transmembrane domains. mRNA coding for the receptor is
concentrated in the dorsal raphe, hippocampus and cortex of the rat and also in

the striatum, thalamus and hypothalamus of the mouse (Hoyer ¢f al., 1994).

5-HT, Receptor

The 5-HT, receptor family consists of three subtypes namely 5-HT, ,
5-HT,, and 5-HT, . All three are single protein molecules of 458-471 amino
acids with an overall homology of approximately 50% rising to between 70-80%
in the seven transmembrane domains. 5-HT,, receptor previously termed as
SHT, receptor is located on human chromosome 13ql4-g21 and is widely
distributed in peripheral tissues. [t mediates contractile responses of vascular,
urinary, gastrointestinal and uterine smooth muscie preparations, platelet
aggregation and increased capillary permeability in both rodent and human tissue
(Hoyer ef al, 1994). 5-HT,. was previously termed as 5-HT . before its
structural similarity to the 5-HT, family members was recognized. All three are
thought to be linked to the phosphoinositol hydrolysis signal transduction system
via the o subunit of Gq protein. It is reported the involvement of serotonin, S,
receptors in the DNA synthesis of primary culture of rat hepatocytes
(Balasubramanian & Paulose, 1998). In human pulmonary artery endothelial

cells, 5-HT . receptor stimulation causes intracellular calcium release via a

mechanism independent of phosphatidylinositol hydrolysis (Hagan ef al., 1995).

The 5-HT,_ receptor located on chromosome 2¢36-2q37.1 mediates contraction

of the rat stomach fundus and endothelium dependent relaxation of the rat and cat

jugular veins and possibly of the pig pulmonary artery, via nitric oxide release
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(Choi & Maroteaux., 1996). 5-HT, . receptor mRNA has been detected
throughout the mouse, rat and guinea pig colon and small intestine. 5-HT, .

specific antibodies have shown the presence of the receptor protein in the choroid
plexus, in higher density and at a lower density in the cerebral cortex,
hippocampus, striatum, and substantia nigra of rat and a similar distribution in
man. The receptor has been mapped to human chromosome Xq24. No splice
variants have been reported but the receptor is capable of post translational
modification whereby adenosine residues can be represented as guanosine in the

second loop to yield 4 variants.

5-HT, Receptor

Unlike other 5-HT receptors, 5-HT, receptor subunits form a pentameric

cation channel that is selectively permeable to Na*, K* and Ca’" ions causing

depolarisation. The 5-HT, receptor is a member of a superfamily of ligand-gated

ion channels, which includes the muscle and neuronal nAChR, the gly and
GABA, receptor (Unwin, 1993; Karlin & Akabas, 1995; Ortells & Lunt, 1995).
The 5-HT, receptor binding site is widely distributed both centrally and

peripherally and has been detected in a number of neuronally derived cells. The
highest densities are found in the area postrema, nucleus tractus solitarius,
substantia gelatinosa and nuclei of the lower brainstem. It is also found in higher
brain areas such as the cortex, hippocampus, amygdala and medial habenula, but
at lower densities. Like the other members of the gene superfamily, the

5-HT, receptor exhibits a large degree of sequence similarity and thus

presumably structural homology with the AChR (Maricq et al., 1991).
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5-HT, Receptor

The receptor is functionally coupled to the G protein. Receptor binding

studies have established that the 5-HT, receptor is highly concentrated in areas of

the rat brain associated with DA function such as the striatum, basal ganglia and
nucleus accumbens. These receptors are also located on GABAergic or
cholinergic interneurons and/or on GABAergic projections to the subtstatia nigra
(Patel er al., 1995).

5-HT, Receptor

5-HT receptors have thus been classified as 5-HT,, and 5-HT_, and

their mRNAs have been located in man (Grailhe er al, 1994). Two 5-HT
receptors identified from rat cDNA and cloned were found to have 88% overall
sequence homology, yet were not closely related to any other 5-HT receptor

family (Erlander et al., 1993). In cells expressing the cloned rat 5-HT,  site, the

receptor was negatively linked to adenylyl cyclase and may act as terminal

autoreceptors in the mouse frontal cortex (Wisden et al., 1993).

5-HT, Receptor

Rat and human S-HT(’ mRNA is located in the striatum, amygdala,

nucleus accumbens, hippocampus, cortex and olfactory tubercle, but has not been

found in peripheral organs studied (Kohen er al., 1996). Like the 5-HT receptor,
the 5-HT, receptor has been cloned from rat cDNA based on its homology to

previously cloned G protein coupled receptors. The rat receptor consists of 438

amino acids with seven transmembrane domains and is positively coupled to
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adenylyl cyclase via the Gs G protein. The human gene has been cloned and has
89% sequence homology with its rat equivalent and is coupled to adenylyl
cyclase (Kohen et al., 1996).

5-HT, Receptor

5-HT, receptor has been cloned from rat, mouse, guinea pig and human

cDNA and is located on human chromosome 10g23.3-q24.4. Despite a high
degree of interspecies homology (95%) the receptor has low homology (<40%)

with other 5-HT receptor subtypes.
Effect of ethanol on brain S-HT receptors

The serotonergic system, because of very diffuse projections throughout
the central nervous system, has been implicated in numerous functions including
nociception, analgesia, and autonomic regulation (Jolas & Aghajanian, 1997).
5-HT systems contribute to the discriminative properties of ethanot in animals
and humans. Ethanol facilitates that activity of 5-HTs, 5-HT,¢, 5-HTj; receptors,
and it shares discriminative stimulus properties with drugs acting at these sites
(Grant et al., 1995 & 1997). Serotoninergic system appears to be involved in
ethanol consumption and reinforcement by activating dopaminergic system
(Koob & Weiss 1992). Levels of brain 5-HT receptor are inversely related to
ethanol consumption (Pandey et al., 1992; LeMarquand et al., 1994; Himei et al.,
2000). The m-chloropheﬁylpiperazine (m-CPP) is a serotonin agonist which has
been reported to elicit craving for ethanol (Benkelfat et al., 1991; Krystal ef al.,
1994). Ethanol is a positive modulator at the 5-HT; receptor, which has been
implicated in ethanol drinking, anxiety and aggression (McKenzie ef al., 2005;

Hayrapetyan et al, 2005) but 5-HT,p receptor plays little role in the
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pathophysiology of ethanol addiction (Bavanisha et al., 2005). Acute ethanol
exposure enhances the electrical signals generated by the 5-HT; receptor. When
activated by serotonin binding, the 5-HT; receptor rapidly increases neuron
activity by generating electrical signals (Lovinger & Peoples, 1993; Lovinger &
Zhou, 1994). Chronic ethanol treatment may decrease serotonergic
neurotransmission in selective brain regions. Serotonin receptor polymorphism

reflects the pathogenesis of ethanol addiction (Yoshihara ef al., 2000).
S-HT receptor gene expression and ethanol

Ethanol and drugs of abuse indirectly induce the expression of a number
of genes, which, in the context of protein synthesis, activate several biochemical
pathways in brain neurons (German et al., 1999). A common insertion-deletion
polymorphism in the promoter region for the serotonin transporter gene alters
in vitro gene transcription, (Lesch et al., 1996) in vitro transporter availability
(Stoltenberg er al., 2002) and in vivo serotonin transporter density (Heinz ef al.,
2001). There have been several associations of this polymorphism to behaviours
and traits that relate to excessive alcohol intake and serotonin transporter gene
promoter variation have been associated with alcohol consumption in human and

animal populations (Christina et al., 2004). 5-HT _ receptor mRNA is found in

the rat brain, predominantly in the caudate putamen, nucleus accumbens,
hippocampus, cortex, dorsal raphe and locus coeruleus (Hoyer er al., 1994).
Genetic variability in the 5-HT,a receptor is involved in the development of
ethanol dependence (Nakamura er al,, 1999). The human 5-HTs receptor,
encoded by the 5-HT ) gene, is a presynaptic serotonin autoreceptor that plays a
role in regulating serotonin synthesis and release. 5S-HT 4 receptor is associated

with alcohol dependence (Sun et al., 2002). Hofmann et al., (2002) reported that
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prenatal ethanol exposure alters 5-HT,;, and 5-HT,s receptor function in
adulthood. 5-HTg receptor mutant mice demonstrated reduced responses to the

sedative effects of ethanol (Bonasera et al., 2006)
Brain neurotransmitters and ethanol

Brain is the major target for the actions of ethanol, and heavy ethanol
consumption has long been associated with the brain damage. Brain
neurotransmitters through their receptors play an important role in governing the
cellular activities. The acute and chronic ethanol ingestion has been shown to
induce significant changes in neurotransmitter systems (Nevo & Hamon, 1995).
Ethanol can pass through cell walls and is distributed throughout the water
content of tissues and cells. In its circulation through the body and reaches the
brain. Multiple neurotransmitter systems play a role in mediating the behavioural
effects of ethanol that have been linked to its abuse and dependence (Koob &
Weiss, 1992). At the neurochemical level, the moderate consumption of ethanol
selectively affects the function of GABA, glutamatergic, serotonergic,
dopaminergic, cholinergic, and opioid neuronal systems. Ethanol can affect these
systems directly, and/or the interactions between and among these systems

become important in the expression of ethanol's actions (Eckardt er al., 1998).

DA and 5-HT

Ethanol is similar to other abused substances in that it increases nucleus
accumbens (NAcc) DA release, Furthermore, innate differences in central
dopaminergic neurotransmission have been linked to high levels of ethanol
drinking in selectively bred rodent lines (Li, 2000). Alterations of DA activity

within the Etended Amygdala (EA) after chronic exposure to ethanol or
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substances of abuse are considered a major mechanism for the development of
ethanol addiction (Sari ef al., 2006). Neuronal DA receptors are widely
distributed in the central (Kebabian ef al, 1979) and the peripheral nervous
system at different levels. On the other hand, DA and S5-HT interact
antagonistically in the dorsal striatum to control motor activity. Serotonin is one
of the major neurotransmitter involved in ethano! addiction in vivo (Tank et al.,
1981). Along with other neurotransmitters serotonin play an important role in the
brain process underlying ethanol abuse (David, 1999). 5-HT, agonists, as well as
serotonin reuptake inhibitors, have been found to substitute for ethanol in drug
discrimination tests (Signs & Schechter, 1988; Maurel et al, 1997). 5-HT,
activity is probably responsible for the nausea with excessive ethanol
consumption (Wilde & Markham 1996). It is also likely to partially account for
increased dopamine release as antagonists have been shown to block ethanol
induced dopamine release (Carboni ef al., 1989; Badawy et al., 1995). Serotonin
can alter dopaminergic signal transmission in several ways. For example, by
interacting with the 5-HT, receptor, serotonin stimulates the activity of
dopaminergic neurons in a brain region called the VTA, thereby enhancing an
ethanol-induced increase in the activity of these neurons (Brodie et al., 1995).
Serotonin also interacts with dopaminergic signal transmission through the 5-HT;
receptor, which helps control dopamine release in the areas reached by VTA
neurons, most notably the nucleus accumbens. Serotonin release in these brain
regions can stimulate dopamine release, presumably by activating 5-HT;
receptors located on the endings of dopaminergic neurons (Grant, 1995). 5-HT
depletion resulted in increased ethanol consumption in animals and humans

(Melchior & Tabakoff, 1986; Higley et al, 1996; Jankowska et al, 1994).
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Dopamine's precise role in the development of ethanol addiction remains unclear

(Rassnick et al., 1993; Di Chiara, 1995).
Acetylcholine

Acetylcholine is the neurotransmitter of the parasympathetic system.
Acetylcholine, acting on presynaptic nAChRs, modulates the release of
neurotransmitters in the brain (Centeno ef al., 2006). Cholinergic receptors are
classified as ionotropic nicotinic receptor and metabotropic muscarinic receptor.
Muscarinic receptors are classified as M;, M; Mj;, My and M;. They are
G-protein coupled receptors.  They are characterized by having seven
hydrophobic transmembrane-spanning regions that interacts with G-proteins and
other effector molecules to mediate the physiological and neurochemical effects.
Ethanol enhances the activity of alphadbeta2 neuronal nicotinic acetylcholine
receptor and support the possibility that a polymorphism of the nicotinic
acetylcholine receptor alphad subunit gene (CHRNA4) modulates enhancement
of nicotinic receptor function by ethanol (Kim et al., 2004). Increased muscarinic
M, and M; receptor activity at the time of pancreatic regeneration is reported to
facilitate insulin secretion and beta cell proliferation (Renuka ef al., 2005). The
striatum receives converging glutamatergic input from cortex and thalamus as
well as dopaminergic input from the substantia nigra. Integration of these
extrinsic inputs is modulated by the intrinsic actions of acetylcholine (ACh).
Striatal ACh is supplied by large-sized cholinergic interneurons the functions of
which are still not well characterized (Kawaguchi, 1993). At the cellular level,
both striatal ACh and DA are potent neuromodulators that can affect activity-
dependent changes in synaptic efficacy and may contribute to motor or habit

leaming (Wickens et al., 1996; Calabresi et al., 1992, 2000; Tang et al.,, 2001).
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The stimulatory, rewarding, and DA enhancing effects of ethanol involve central
nAChR, especially those Jocated in the ventral tegmental area (VTA) (Jerlhag
et al, 2006). AChRs are expressed at high levels in striatum. Muscarinic
acetylcholine receptors are expressed both presynaptically and postsynaptically in
striatum, and one of their actions is to decrease glutamatergic synaptic
transmission (Malenka & Kocsis, 1988; Hersch er al, 1994). nAChRs are
expressed on dopaminergic terminals in the dorsal striatum (Clarke & Pert,
1985). Acute activation of these receptors stimulates DA release from striatal
synaptosomes and in striatal slice preparations (Giorguieft et al, 1976; Kulak
et al., 1997; Wonnacott ef al., 2000). The cholinergic system is yet another target
for the actions of ethanol (Narahashi ef al,, 1999) and has been found to act as a
co-agonist with acetylcholine at the nAChRs, as well as to potentiate the effect of
nicotine at this receptor, both of which ultimately results in an increase in

mesolimbic dopamine (Soderpalm et al., 2000).
Epinephrine and Norepinephrine

The sensitivity of noradrenergic systems to ethanol effects varies among
brain regions (Tabakoff & Hoffman, 1996). Ethanol consumption increases
central and peripheral levels of epinephrine (EP1) and norepinephrine (NE),
which contributes to the stimulatory affects of ethanol, particularly in the
ascending arm of the blood ethanol curve (Pohorecky, 1982), brain levels of
norepinephrine have been shown to increase up to three-fold (Wang ez al., 1993).
[t is reported a significant increase in the NE content in the brainstem during
diabetes (Jackson et al., 1997, 1999). The locus coeruleus (LC) contains the cell
bodies for the brain dorsal noradrenergic system (Grzanna & Molliver, 1980). LC

basal activity and activation are reduced by ethanol, an action that may contribute
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to sedative effects of ethanol (Aston-Jones ef al, 1982; Shefner & TabakofT,
1985). These elevations occur primarily due to increased release and decreased
clearance, rather than increases in synthesis (Howes ef al., 1986). A consequence
of this is eventual depletion of epinephrine and norepinephrine in the adrenals
after 4 days of ethanol intoxication (Adams & Hirst, 1984). This decrease
contributes to the CNS depression that occurs with prolonged drinking. Changes
in the levels of DA, 5-HT, NE, and their metabolites in several regions of the
rodent brain, many of them involved ethanol treatment for a short period of time
and withdrawal (Yan, 1999; Yoshimoto ef al, 2000). Ethanol activates the
norepinephrine system in the limbic circuitry through an intercellular cascade
that includes serotonin, opioid peptides and dopamine. Ethanol may also act
directly through the production of neuroamines that interact with opioid receptors
or with dopaminergic systems (Alvaksinen et al., 1984; Blum & Kozlowski,
1990). Central alphal-adrenergic receptors have a functional role in the
pancreatic regeneration mediated through the sympathetic pathway (Ani et al,
2006). Ethanol has a variety of effects on neuroendocrine function and there is a
great deal of interest in investigating the effects of ethanol on the HPA axis
(Rivier et al, 1984). The by-products of ethanol metabolism include
acetaldehyde, which may have an inhibitory effect on the adrenergic receptors.
Increased cyclic adenosine monophosphate in neurons with long term ethanol
exposure may increase norepinephrine receptor sensitivity and norepinephrine
turnover (Keltner et al, 1998). a-Adrenergic stimulation attenuates ethanol
intoxication, whereas -adrenergic blockade enhances intoxication (Alkana et al.,

1976 & 1977).
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Gamma aminobutyric acid and glutamate

GABA system - the body's primary inhibitory pathway (Meldrum, 1982),
ethanol potentiates GABA's activity (Suzdak er al., 1986) acting through GABA,
receptors. It likely has a biphasic effect on behaviour, with lower doses inhibiting
inhibitory GABA interneurons on dopamine receptors in the VT'A thus causing
dopamine induced stimulation and euphoria, and higher doses producing
widespread inhibition of CNS activity, thus overriding the stimulant effects
(Kalivas et al,1990; Grobin et al., 1998). This is likely one of the major
mechanisms through which it produces its sedative-hypnotic and anxiolytic
actions. One of the most powerful actions of ethanol is to reduce the overall level
of brain activity by a combination of effects on two key neurotransmitters,
GABA and glutamate. Ethanol reduces the excitatory effects of glutamate. The
n-Methyl-d-Aspartate (NMDA) receptor is one of three types of glutamate
receptors - the body's primary excitatory neurotransmitter. It is named for
NMDA, its synthetic, high-affinity ligand (Woodward, 2000), ethanol has been
found to block the action of this receptor (Dildy & Leslie, 1989). The likely
mechanism is by preventing glutamate’s removal of a magnesium ion which
blocks calcium influx into the cell (Collingridge & Bliss, 1995). This decreases
the excitation of the cell, which, along with increased inhibition via GABA,
results in the sedative-depressant effects of ethanol, particularly at higher doses.
Chronic consumption of ethanol gradually makes the NMDA receptors

hypersensitive to glutamate while desensitizing the GABAergic receptors.
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Liver and ethanol

Ethanol effects on the human body and its health, the liver plays a
particular important role (Yue et al., 2006) and the hepatic enzymatic systems
involved in ethanol metabolism are ADH, ALDH and microsomal P4502E1
(CYP2ELl) (Gemma et al., 2006). Acute ethanol intoxication may cause the
changes of hepatic enzymes (Rakonczay er al, 2003; Yue, 2006). The
intragastric administration of ethanol induced some morphological disturbances
in the liver (Zimatkin er al., 1997). Ethanol metabolism causes oxidative stress
(Rakonczay et al., 2003) and lipid peroxidation not only in liver but also in extra-
hepatic tissues. Ethanol administration has been shown to cause oxidative
degradation and depletion of hepatic mitochondrial DNA (mtDNA) (Abdellah et
al., 2001). Chronic ethanol-induced decrease in the NAD dependant glycerol 3-
phosphate dehydrogenase reaction was due to a decreased rate of NADH
reoxidation in the liver (Manfred e al., 1998). In the rat liver, both mitochondrial
and cytosolic ALDH are functional (Klyosov ef al., 1996). Acetaldehyde, the first
metabolite of ethanol, is produced in the liver following the first step of ethanol
metabolism and is ten times more toxic than ethanol (Brien & Loomis, 1983).
Acetaldehyde appears to mediate some of the behavioural & central neurotoxic

effects of ethanol (Hunt, 1996).
Aldehyde dehydrogenase and ethanol

Mutations in ALDH genes cause inborn errors of metabolism such as the
Sjogren-Larsson syndrome, type IT hyperprolinaemia and gamma-hydroxybutyric
aciduria and are likely to contribute to several complex diseases, including cancer

and Alzheimer's disease. The ALDH gene products appear to be multifunctional
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proteins, possessing both catalytic and non-catalytic properties (Vasiliou &
Nebert, 2005). The aldehyde dehydrogenase, the primary enzyme responsible for
acetaldehyde metabolism, is highly correlated with voluntary ethanol
consumption in several strains of rats and mice (Schlesinger et al, 1966;
Sheppard et al., 1968; Amir, 1978; Socaransky et al.. 1984). Also, this enzyme
has been reported in mitochondria, microsomes and cytosol of rat liver (Tottmar
et al., 1973). In some oriental populations with a lowered genetic activity of
ALDH, high blood concentrations of acetaldehyde are produced following
ethanol ingestion (Enomoto et al, 1991). As acetaldehyde is a highly toxic
metabolite, it can cause adverse symptoms in susceptible individuals, including
nausea, headache and palpitations (Enomoto et al.. 1991). These individuals
consume less ethanol than people who have normal activity of ALDH (Higuchi
et al., 1992) and interestingly accumulation of acetaldehyde in blood following
ethanol ingestion, due to a lower activity of ALDH, is believed to play a
protective role against ethanol addiction (Harada et /., 1982). Although there are
several reports that ethanol preference may correlate with ALDH activity more in
the brain than in the liver (Amir, 1978; Socaransky ef al., 1984), this mechanism
is still relatively unknown (Minori ez al.. 2002). As acetaldehyde itself has many
pharmacological actions (Brien & Loomis, 1983), it may act on the central
nervous system (Kinoshita er al, 2001). Diadzin (Radix puerariae) an
antidipsotropic agent could disturb an as-yet-undefined physiological pathway
catalyzed by ALDH and alter the concentrations of some endogenous substrate(s)
that regulate ethanol drinking behaviour. Rat liver mitochondrial preparations
contained no detectable amounts of endogenous 5-HT, DA or any of their known
metabolites (Wing, 1998). It is reported that oral treatment with the ALDH

inhibitor disulfiram decreased ethanol preference (He er al., 1997). Early interest
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in biogenic aldehydes, the metabolic intermediate of ethanol, interferes in some
way with the oxidative metabolism of the brain. Epidemiological studies also
have associated low MAOQO and/or high ALDH activities with high ethanol
consumption (von Knorring, 1985), where differences in acetaldehyde
elimination may contribute to ethanol preference. Brain plays an important
regulatory role in hepatic functions (Lautt, 1983). The liver is richly innervated
(Rogers & Hermann, 1983). Acetaldehyde produced from ethanol is metabolized
quickly to acetate by ALDH. Brain monoamines and ALDH level together plays
a decisive role in the ethanol addiction and ethanol addiction. 5-HT and its
metabolic intermediates differentially regulate ethanol drinking. Serotoninergic
system appears to be involved in ethanol consumption and reinforcement by
activating dopaminergic reward system (Weiss, 1992). With long-term use,
adolescent rats have shown massive neuronal loss in their cerebellum, basal
forebrain, and neocortex (Spear, 2002). Endogenous DA plays a modulatory role
on sympathetic nerve terminals through these receptors. ALDH genes involved in
dopamine metabolism and ALDH genes interact with the DA D, receptor gene
and there is association between the DA D, receptor gene and alcohol
dependence (Huang es ol., 2004). Strong ethanol preferences are associated with
reduced serotonergic functions either directly or indirectly by increasing DA
neurotransmission particularly in the ventral striatum (Koob, 1992). By speeding
up the metabolism of ethanol to a toxic intermediate, acetaldehyde, or slowing
-down the conversion of acetaldehyde to acetate, genetic variants in the enzymes
ADH or ALDH raise the level of acetaldehyde after drinking, causing symptoms
that include flushing, nausea, and rapid heartbeat. The genes for these enzymes
-and the alleles, or gene variants that alter ethanol metabolism have been

~.identified (Makimoto, 1998; Li, 2000). Ethanol metabolism is impaired by a
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nonfunctional form of the enzyme aldehyde dehydrogenase (Wall & Ehlers,
1995) and consumption of even small amounts of ethanol may be severe (Goedde
et al., 1992). Cyanamide (CY), a potent ALDH inhibitor in the liver, as well as in
the brain (Hellstrom & Tottmar, 1982). The brain inhibition may alter the
metabolism of biogenic amines by promoting the formation of condensation
products or by increasing the levels of biogenic aldehydes. Extracellular
concentration of both DA and S5-HT significantly decreased in the nucleus

accumbens after acute intraperitoneal injection of acetaldehyde to rats (Ward ef
al., 1997).

Nervous system and hepatic functions

The autonomic nervous system influences many of the functions of the
body, including those of cardiovascular system, kidneys, liver, pancreas,
gastrointestinal tract and glands (Berthoud & Neuhuber, 2000). Brain plays an
important regulatory role in hepatic functions (Lautt, 1983), signalling occurs
between the liver and brain (Kerfoot ef al., 2006). Normal brain functioning
depends on several aspects of normal liver functioning; the liver supplies certain
nutrients to the brain that the brain itself cannot produce. The liver also cleanses
the blood of substances that could damage brain cells (i.e., neurotoxins). Liver
dysfunction is associated with more extensive brain dysfunction in liver cirrhosis
patients (Tarter ef al., 1993). The autonomic nervous system directly innervates
the hepatic parenchyma and has a role in metabolic control (Jungermann, &
Stumpel, 1999). The autonomic nervous system plays a significant role in liver
physiology and pathology (Stoyanova & Gulubova, 1998). After receiving
information from afferent nerves, the hypothalamus sends signals to peripheral

organs, including the liver, to keep homeostasis (Uyama et al., 2004). The liver
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has innervations of nerves from the central nervous system. In the liver, the
autonomic nervous system plays an important role (Stoyanova & Gulubova,
2000). The degree of liver dysfunction was associated with increasing severity of
autonomic dysfunction (Frokjaer et al, 2006). Increased brain GABAergic
neurotransmission is reported to regulate hepatic cell proliferation through the
sympathetic stimulation (Bijju er al, 2002). Hypothalamus controls liver
functions by neural and neuroendocrine connections. The hypothalamus consists
of three major areas: lateral, medial, and periventricular. Each area has some
nuclei. There are two important nuclei and one area in the hypothalamus that
send out the neural autonomic information to the peripheral organs. In addition to
direct neural connections, the hypothalamus can affect metabolic functions by
neuroendocrine connections: the hypothalamus-pancreas axis, the hypothalamus-
adrenal axis, and the hypothalamus-pituitary axis (Uyama er al., 2004). Central
nervous system modulates liver functions through the autonomic nervous system
(Takayoshi, 2002). Miyajima ez al., (2001) & Pozzi et al., (2001) reported that
patients with liver cirrhosis have parasympathetic hypofunction and sympathetic
hyperfunction. The hepatic parenchyma has been shown to have parasympathetic
and sympathetic innervations (Nobin e al, 1978; Carobi & Magni et al., 1981,
Rogers & Hermann, 1983). A selective 5-HT, receptor agonist, 1-(2, 5-di-

methoxy-4-iodophenyl)-2-aminopropane (DOI) (Glennon, 1987) produced a
tremendous increase in sympathetic nerve discharge (McCall er al, 1987).
Enhanced GABAg receptor was reported in neoplastic rat liver and hepatocyte
cultures (Biju es al, 2002). Sympathetic nervous system inhibition increases
hepatic progenitors (Oben ef al., 2003). Mobilisation of 5-HT in intestine and its
accumulation in liver and spleen tissues were observed at the initial periods after

partial hepatectomy (Kulinskii e/ al., 1983). One subset of central nervous system
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5-HT receptors (5-HT, ) can inhibit sympathetic nerve discharge while a second
subset of receptors (5-HT,) can increase sympathetic nervous discharge (McCall

& Harris, 1988). Hypothalamic GABA receptor subtypes was suggested to
regulate hepatic cell proliferation (Biju ez al., 2001). The central vagal
connection with adrenergic and serotonergic innervations reaches the liver
through the brainstem. The oxidation of fatty acids is the main energy source for
the liver. Together with ethanol, isolated liver cells have a decreased oxidation of
fatty acids. This is caused by the increased NADH: NAD" ratio which can result
in a decreased activity of the enzymes responsible for the -oxidation (Forsell,
1981). The activity of the citric acid cycle decreases if the level of the cofactor
NAD' is too low. In that case, hydrogen equivalents from ethanol are used by the
mitochondria instead of from the oxidation of fatty acids. This decrease of fatty
acid oxidation may cause accumulation of fatty acids in the liver (Swanson &
Sawchenko, 1980). These reports underlined the role of substantia nigra in
modulating the outflow of both sympathetic and parasympathetic signals that
ultimately reach the liver. Thyrotropin-releasing hormone (TRH) acts in the
medulla, in particular in the left dorsal vagal complex. to induce stimulation of
hepatic blood flow and hepatic proliferation, and protect against experimental
liver injury through vagal and cholinergic pathways and neuropeptides such as
beta-endorphin and bombesin in the brain modulate hepatic proliferation and bile
secretion (Yoneda et ¢/, 2001). TRH acts in the brain to increase hepatic cAMP
through vagal-cholinergic and prostaglandin-dependent pathways, suggesting
that central TRH modulates hepatic functions through cAMP-mediated signalling
pathways (Yoneda et al, 2005). Hepatic encephalopathy is characterized by
disturbances of motor and cognitive functions involving the basal ganglia

(Sergeeva et al, 2005). CRF acts in the brain to decrease hepatic surface
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perfusion and elevate portal pressure through central CRF, receptor and

sympathetic-noradrenergic pathways (Yoneda er al., 2005).
Nervous System and ALDH

Rats consumed intoxicating quantities of ethanol when it was substituted
for water (Lester, 1961; Senter & Sinclair, 1967; Everett & King, 1970; Falk
etal, 1972; Freed, 1972; Meisch & Thompson, 1972; Ogata et al., 1972; Samson
& Falk, 1974;). ALDH is responsible not only for the metabolism of exogenous
ethanol, but also for the oxidation of biogenic aldehydes in the central nervous
system and in the periphery (Mostofa et al,, 2003). It is known that a number of
aldehydes occur in brain tissue (Blaschko er al, 1937, Pugh & Quastel, 1937)
first presented evidence that aldehydes arise in brain tissue by the oxidative
deamination of monoamines. Brain ALDH plays an important role in the
biosynthesis of biogénic amines (Tipton ez al., 1977), which may be one of the
important factors in modifying ethanol-induced behaviour. Three types of nerve
endings are reported with in the liver. They are the sympathetic, parasympathetic
and peptidergic nerves. The neurotransmitters found in these nerves are
catecholamines, serotonin, acetylcholine, vasoactive intestinal polypeptides and
cholecystokinin respectively. The nerve fibres enter the liver in association with
the vascular supply. The peptidergic nerves are present in both the exocrine and
endocrine tissues of this gland and there is considerable interspecies variability as
to which part receives a greater proportion of these fibres. The nerve terminals
end approximately 20-30nm from the endocrine cells thus implying that
neurotransmitters affect several cells by diffusing through the extracellular space.
The substantia nigra is one autonomic area in the central nervous system which

plays an important role in controlling structure and activity of liver. Adaptation
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in the ethanol metabolizing enzymes, explicitly of those enzymes responsible for
the metabolism of ethanol’s primary metabolite acetaldehyde is the critical factor
on inclination towards ethanol preference (Ewing et al., 1974; Mizoi et al., 1979;
Zeiner et al., 1979). Aldehyde dehydrogenase polymorphism results in change of
effects of acetate and acetate-generated adenosine on the central nervous system
and other organs during chronic ethanol consumption (Matsumoto, 1996).
Hypothalamic origin of hypothyrodism and hypertension mediated through
sympathetic stimulation was reported in pyridoxine deficient rats (Dakshinamurti
et al., 1986; Paulose et al., 1988). The hypothalamic paraventricular nucleus has
direct connections with the dorsal vagal complex mutation in the human fatty
aldehyde dehydrogenase has been linked to a fetal neurological disorder called
Sjogren-Larsson syndrome, and a change in ALDH activity has been observed in
a number of tumors, including those of the liver, colon and breast. In short,
ALDH is a vital enzyme involved with numerous processes of animal and plant
health, most interestingly ALDH is involved in both biogenic amine metabolism
(Berger & Weiner, 1977) and oxidation of biogenic aldehydes (Mostofa et al.,
2003).

Ethanol perfusion and ALDH

The liver perfusion model has a great advantage over isolated and
cultured hepatocytes techniques, as the hepatic architecture, polarity and the
integrity of the cytoskeleton is maintained (Shattuck er al., 1993; Vom et al,
1995). Perfused liver appears to be a useful system for studies of enzymes like
ADH - independent oxidation of alcohol (Cronholm ef al, 1992). Desmoulin

et al., (1987) reported that the perfusion of the liver with 70 mM ethanol not
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change the adenine nucleotide levels, while the Pi content is decreased by 10%.
More than 80% of ethanol was taken into the isolated rat liver and recovered as
free acetate in the perfusate (Yamashita e al, 2001). The activity of ALDH in
hepatic mitochondria was decreased by approximately 75% in carbon
tetrachloride-intoxicated rat liver perfusion system (Yuki, ef al., 1984). Glucose
production decreased as a result of infusion of an amino acid mixture (Ali ef al.,
2000). It is reported that the ATP level significantly decreased at the beginning of
the ethanol perfusion (Marie et al, 2004). Infusion of amino acid solutions
caused an increase in glucose concentration was also found in the rat liver.
Hepatic glucose release increased with increased amino acid uptake (Freetly et
al, 1999). Liver infusion of glutamine or alanine alone increases glucose
production by approximately 400% (Ali er al.. 2006). Ethanol perfusion induces
an increase in the in situ mitochondrial ATP/O ratio in the whole liver (Marie ef
al., 2002). The secretion of apoprotein B (ApoB) from the perfused liver was
inhibited by noradrenaline or ATP (Yamauchi ¢f al., 1998). A study on hepatic
respiration and glycolysis in perfused rat livers showed ethanol decreased the rate
of lactate and pyruvate production reflecting an inhibition of glycolysis
irrespective of whether glycogen or added glucose was the substrate (Thurman &
Scholz, 1977). Acetaldehyde metabolism during ethanol oxidation has been
studied in perfused rat livers and observed ethanol metabolism was regulated by

both the ethanol and acetaldehyde oxidation rates (Eriksson, 1977).
Ethanol mediated electrophysiological changes

Ethanol ingestion has an effect on the CNS. The electroencephalogram
(EEG) reading is a measure of spontaneous electrical activity in the brain

(Tabakoff & Hoffman, 1988; Devor & Cloninger, 1989). Ethanol use impairs the
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performance of a variety of frontal lobe-mediated tasks, like those that require
planning, decision making, and impulse control (Weissenborn & Duka 2003;
Burian et al, 2003). but the underlying mechanisms are not known. Reports
suggest that baseline blood flow to the frontal lobes increases during acute
ethanol intoxication (Volkow et al.,, 1988; Tiihonen et al. 1994), metabolism in
the frontal lobes decreases (Wang et al.,, 2000) and ethanol reduces the amount of
activity that occurs when the frontal Jobes are exposed to pulses from a strong
magnetic field (Kahkonen er al. 2003). The evidence suggests that acute
intoxication alters the normal functioning of the frontal lobe. EEG patterns have
been shown to be different in ethanol addicts and controls. Monozygotic twins
have been shown to have almost identical EEG responses to ethanol (Tabakoff &
Hoffman, 1988). Subjects at high risk for ethanol addiction can be differentiated
from controls on the basis of their EEG alpha activity (Pollock er al., 1983).
Ethanol addicted subjects had greater increases of slow alpha activity and greater
decreases of fast alpha activity after ethanol intake than controls. The high risk
subjects also showed greater decreases in mean alpha frequency after ethanol
intake. Neurophysiological measures, such as decreased P300 amplitude and
altered EEG alpha activity, have been associated with increased ethanol addiction
risk. The differences observed suggest that increased cortical P1 amplitude and
altered cortical EEG activity in the 8-50 Hz frequency range may be
neurophysiological risk factors associated with high ethanol consumption in
mice (Slawecki, 2003). Kahkonen et al, (2003) reported that ethanol-induced

differences were most pronounced at anterior electrodes.

In the present study control and ethanol treated rats were used to study
the functional correlation of dopamine and serotonin through DA D, & 5-HT;,

receptor subtypes on ALDH activity. Real-Time PCR studies were carried out to
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confirm the DA D, & 5-HT,4 receptor binding parameters. Perfusion studies
were done to analyse the effect of dopamine, serotonin and glucose on ALDH
activity. Also, the brain activity in ethanol treated rats was studied using

electroencephalogram to asses the functional difference in this animal model.

48



MATERIALS AND METHODS



MATERIALS AND METHODS
BIOCHEMICALS AND THEIR SOURCES

Biochemicals used in the present study were purchased from Sigma
Chemical Co., St. Louis, U.S.A. All other reagents were of analytical grade
purchased locally. Ethyl alcohol used for this study was purchased from Hayman
Ltd. England. HPLC solvents were of HPLC grade obtained from MERCK,
India.

Important chemicals used for the present study
i) Biochemicals: (Sigma Chemical Co., USA.)

5-Hydroxytryptamine  (5-HT), (#)norepinephrine, sodium octyl
sulphonate, ethylenediamine tetra acetic acid (EDTA), (x)epinephrine, dopamine,
homovanillic acid (HVA), NAD', propionaldehyde, 5-hydroxytryptophan,
S-hydroxy indole acetic acid (5-HIAA), ethylene glycol bis (B-aminoethy| ether)-
EGTA, ascorbic acid, pargyline, Tris buffer, caicium chloride, acetonitirle
(HPLC grade), Tris HCI, perchloric acid, sodium dihydrogen phosphate,

disodium hydrogen phosphate, sucrose.

ii) Radiochemicals.

[PH] YM-09151-2 (cis-N-(1-benzyl-2-methylpyrrolidine-3-yl)-5-chloro-
2-methoxy-4-methyl aminobenzamide (Sp.activity 85Ci/mmol) NEN Life
Science Products, Inc. Boston, USA, [*H](x)2, 3-dimethoxyphenyl-1-[2-(4-
piperidine)-methanol] ([PHJMDL100 907 (Sp.activity 82.0Ci/mmol) was

purchased from Amersham Biosciences, UK.
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iii) Molecular biology chemicals

Random hexamers, Tag DNA polymerase, human placental RNAse
inhibitor, dNTPs were purchased from Bangalore Genei Pvt. Ltd., India.
MuMLYV was obtained from Amersham Life Science, UK. TRI-reagent kit was
purchased from Sigma Chemical Co., USA. PCR primers used in this study was
synthesised by Sigma Chemical Co., USA, Genemed Synthesis [nc., San
Fransisco, USA. Real-Time PCR SyBr Green mix was purchased from Takara,

Japan.
Animals

Adult Wistar rats of 180 to 200g body weight were purchased from
Amrita Institute of Medical Sciences, Cochin and used for all experiments. All
animals were housed in separate cages under 12 hours light and 12 hours dark

periods and controlled temperature with free access to water/ethanol and food.
Ethanol treatment to animals

Ethanol treated rats were given free access of ethanol 15% and control

rats were given water ad libitum, for 15 days .
Sacrifice and tissue preparation

The rats were sacrificed by decapitation on the 15" day of the
experiment. The brain dissection was carried out on a chilled glass plate into
brainstem, cerebral cortex, corpus striatum, cerebellum and hypothalamus

according to the procedure of Glowinski & Iversen (1966). The tissues were

¢ .
stored at =70 C for various experiments.
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Kinetic studies of aldehyde dehydrogenase in control and ethanol treated

rats

Aldehyde dehydrogenase activity was assayed in brain regions and liver
homogenates by the modified procedure of Gill er al., (1996). ALDH activity was
measured using a Shimadzu UV 1201 Spectrophotometer at 25°C at 340 nm. 1 ml
of assay mixture contained 0.1 M sodium pyrophosphate buffer pH 8.4, 1.0mM
EDTA, and 5.0mM dithiothreitol, 1.0mM NAD’, 10mM pyrazole.
Propionaldehyde concentration varied with same NAD" concentration. One Unit
of activity is defined as lumole NADH formed /minute. The results were

expressed as Units/mg protein.

HPLC quantification of DA and S-HT in liver and various brain regions of

control and ethanol treated rats

Brain DA and S5-HT, their respective metabolites were estimated by
HPLC connected with an electrochemical detector (Paulose et al., 1988). The
tissues from liver and brain regions were homogenized in 0. 4 N perchloric acid.
The homogenate was centrifuged at 5000 x g for 10 minutes at 4°C (Heraeus
Refrigerated Centrifuge, Japan) and the clear supernatant was filtered through
0.22um HPLC grade filters and used for HPLC analysis in Shimadzu HPLC
system with electrochemical detector fitted with C-18-CLS-ODS reverse phase
column. Mobile phase was 75SmM sodium dihydrogen orthophosphate buffer pH
3.25 containing ImM sodium octyl sulphonate, SOmM EDTA and 7%
acetonitrile, filtered through 0.22uM filter delivered at a flow rate of 1.0
mi/minute. Quantification was by electrochemical detection, using a glass carbon

electrode set at + 0.80 V. The peaks were identified by relative retention time
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compared with standards and concentrations were determined using a Shimadzu

integrator interfaced with the detector.

Dopamine D, receptor binding studies using [’H] YM-09151-2 in cerebral

cortex and brainstem of control and ethanol treated rats.

Dopamine D, receptor binding assay was done according to the modified
procedure of Unis et al., (1997) & Madras et al., (1988). The dissected cerebral
cortex and brainstem were weighed and homogenized in 10 volumes of ice cold
50mM Tris-HCI buffer pH.7.4, along with ImM EDTA, SmM MgCl,, 1.5 mM
CaCly, 120mM NaCl, SmM KCI. The homogenate was centrifuged at 48,000xg
for 30 min. The pellet was washed and recentrifuged with 50 volumes of the
buffer at 48,000xg for 30 min. This was suspended in appropriate volume of the

buffer containing the above mentioned composition.

Binding assays were done using different concentrations i.e., 0.25nM-
2.0nM of [*H] YM-09151-2 in 50mM Tris-HCI buffer, along with ImM EDTA,
SmM MgCl, 1.5 mM CacCl,, 120mM NaCl, SmM KCI with 10uM pargyline and
0.1% ascorbic acid in a total incubation volume of 250l containing 200-300ug
of protein. Specific binding was determined using 5.0 pM unlabelled sulpiride.
Competition studies were carried out with 0.25nM [’H] YM-09151-2 in each
tube with unlabelled sulpiride concentrations varying from 10? - 10™ M. Tubes
were incubated at 25°C for 1 hr and filtered rapidly through GF/B filters
(Whatman). The filters were washed quickly by three successive washing with
5.0ml of ice cold SO0mM Tris buffer, pH 7.4. Bound radioactivity was counted

with cocktail-T in a Wallac 1409 liquid scintillation counter.
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Dopamine D, receptor binding studies using ’H| YM-09151-2 in corpus

striatum, cerebellum and hypothalamus of control and ethanol treated rats.

Dopamine D, receptor binding assay was done according to the modified
procedure of Madras et al., (1988) & Green er al., (1990). The dissected brain
tissues corpus striatum, hypothalamus, and cerebellum were weighed,
homogenised in 10 volumes of ice cold 0.32M sucrose in a Potter-Elvejhem
homogeniser. The homogenate was centrifuged at 900xg for 10 min and the
supernatant was again centrifuged at 17,000xg for Thr. The pellet was washed
twice and centrifuged at 17,000xg for lhr with 50 volumes of S0mM Tris HCI,
pH 7.5 and the final pellet was resuspended in a minimum volume of 50mM
Tris HCI, pH 7.7 containing 4mM CaCl,.

Binding assays were done using different concentrations i.e., 0.25nM -
2.50M of [*H]YM-09151-2 in 50mM Tris Buffer, pH 7.7 containing 4mM CaCl,,
0.2% ascorbate and 10uM pargyline in a total incubation volume of 125ul.
containing 100-150pg of protein. Specific binding was determined using 50puM
unlabelled sulpiride. Competition studies were carried out with 1.0nM *H] YM-

09151-2 in each tube with unlabelled sulpiride concentrations varying from 10 ™
-10° M.

Tubes were incubated at 25°C for 1 hr and filtered rapidly through GF/B
filters (Whatman). The filters were washed quickly by three successive washing
with 3.0m! of ice cold SOmM Tris buffer, pH 7.7. Bound radioactivity was

counted with cocktail-T in a Wallac 1409 liquid scintillation counter.
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5-HT,s Receptor binding studies using ["H| MDL 100907 radioligand in

brain regions of control and ethanol treated rats.

5-HT,a Receptor binding assay was done according to the modified
procedure of Green ef al., (1990). The brain regions were homogenised in 10
volumes of ice cold 0.32M sucrose in a Potter-Elvejhem homogeniser. The
homogenate was centrifuged at 900xg for 10 min and the supernatant was again
centrifuged at 17,000xg for Thour. The pellet was resuspended in 50 volumes of
50 mM Tris HCI, pH 7.5 and recentrifuged at 17,000xg for another Thour. The
final peliet was resuspended in a minimum volume of S0mM Tris HCI, pH 7.7

containing 4mM CaCl,.

Binding assays were done using different concentrations i.e., 0.5nM-
3.0nM of [*H] MDL 100907 in 50mM Tris Buffer, pH 7.7 containing 4mM
CaCl,, 0.2% ascorbate and 10pM pargyline in a total incubation volume of
125pl containing 125-200pug of protein. Specific binding was determined using
100uM unlabelled ketanserin. Competition studies were carried out with 0.5 nM
[*H] MDL 100907 in each tube with unlabelled ketanserin concentrations varying
from 107°-10" M. Tubes were incubated at 37 °C for 30 min. and filtered rapidly
through GF/B filters (Whatman). The filters were washed quickly by three
successive washing with 3.0ml of ice cold SOmM Tris buffer, pH 7.7. Bound
radioactivity was counted with cocktail-T in a Wallac 1409 liquid scintillation

counter.
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5-HT;, Receptor binding studies using [’H] MDL 100907 radioligand in liver

of control and ethanol treated rats.

5-HT,a Receptor binding assay was done according to the modified
procedure of Green et al., (1990). The liver was homogenised in 10 volumes of
ice cold 0.32M sucrose in polytron homogeniser. The homogenate was
centrifuged at 900xg for 10 min and the supernatant was again centrifuged at
17,000 x g for Thour. The pellet was resuspended in 50 volumes of 50 mM Tris
HCI, pH 7.5 and recentrifuged at 17,000xg for another lhour. The washing step
was repeated for 3-4 times. The final pellet was resuspended in a minimum

volume of 50mM Tris HCI, pH 7.7 containing 4mM CaCl,.

Binding assays were done using different concentrations i.e., 0.5nM-
3.0nM of [’'H] MDL 100907 in 50mM Tris Buffer, pH 7.7 containing 4mM
CaCl,, 0.2% ascorbate and 10uM pargyline in a total incubation volume of 250l
containing 500-600ug of protein. Specific binding was determined using 100uM
unlabelled ketanserin. Competition studies were carried out with 1.0 nM [*H]
MDL 100907 in each tube with unlabelled ketanserin concentrations varying
from 1072-10" M. Tubes were incubated at 37 °C for 30 min. and filtered rapidly
through GF/B filters (Whatman). The filters were washed quickly by three
successive washing with 3.0ml of ice cold 50mM Tris buffer, pH 7.7. Bound
radioactivity was counted with cocktail-T in a Wallac 1409 liquid scintillation

counter.
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Protein Estimation

Protein concentrations were estimated according to Lowry ez al., (1951)

using bovine serum albumin as standard.
ANALYSIS OF THE RECEPTOR BINDING DATA
Receptor Binding Parameters Analysis

The receptor binding parameters were determined using Scatchard

analysis (Scatchard, 1949). The maximal binding (B_,) and equilibrium
dissociation constant (K,) were derived by linear regression analysis by plotting
the specific binding of the radioligand on x-axis and bound/free on y-axis using
Sigma plot computer software. This is called a Scatchard plot. The B, isa
measure of the total number of receptors present in the tissue and the K,
represents affinity of the receptors for the radioligand. The K is inversely related
to receptor affinity or the "strength” of binding. Competitive binding data were
analysed using non-linear regression curve-fitting procedure (GraphPad

PRISM ", San Diego, USA).
Displacement Curve analysis

The data of the competitive binding assays are represented graphically
with the - log of concentration of the competing drug on x-axis and percentage of
the radioligand bound on the y-axis. The steepness of the binding curve can be
quantified with a slope factor, often called a Hill slope. A one-site competitive
binding curve that follows the law of mass action has a slope of -1.0. If the curve

is more shallow, the slope factor will be a negative fraction (i.e., -0.85 or -0.60).
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The slope factor is negative because curve goes downhill. [f slope factor differs
significantly from 1.0, then the binding does not follow the law of mass action
with a single site, suggesting a two-site model of curve fitting. The concentration

of competitor that competes for half the specific binding was defined as EC, . [t
is same as IC_ . The affinity of the receptor for the competing drug is designated
as K and is defined as the concentration of the competing ligand that will bind to

half the binding sites at equilibrium in the absence of radioligand or other

competitors (Cheng & Prusoff, 1973).

EXPRESSION STUDIES OF DOPAMINE D;, S-HT;, RECEPTORS AND
ALDH IN DIFFERENT BRAIN REGIONS OF CONTROL AND
ETHANOL TREATED RATS

Reverse Transcription Polymerase Chain Reaction (RT-PCR)

RT-PCR was carried out using Titan™ one tube RT-PCR system (Roche
Diagnostics, Germany). cDNA synthesis was performed with MuMLV reverse
transcriptase enzyme. The PCR step was carried out with a high fidelity enzyme
blend consisting of Taq DNA Polymerase. Enzyme was stored in storage bufter
(20mM Tris HCI, 100mM KCl, 0.1mM EDTA, ImM Dithiothrietol (DTT), 0.5%
Tween-20 (v/v), 0.5% Nonidet P40 (v/v), 50% Glycerol (v/v): pH 7.5.

Preparation of RNA

RNA was isolated from brain regions of control and ethanol treated rats

using the Tri reagent kit from Sigma Chemical Co.,USA.
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Isolation of RNA

Tissue (25-50 mg) homogenates were made in 0.5 ml TRI Reagent and
was centrifuged at 12,000xg for 10 minutes at 4°C. The clear supernatant was
transferred to a fresh tube and it was allowed to stand at room temperature for 5
minutes. 100ul of chloroform was added to it, mixed vigorously for 15 seconds
and allowed to stand at room temperature for 15 minutes. The tubes were then
centrifuged at 12,000xg for 15 minutes at 4°C. Three distinct layers appear after
centrifugation. The bottom red organic layer contained protein, interphase
contained DNA and a colourless upper aqueous layer contained RNA. The upper
aqueous layer was transferred to a fresh tube and 250l of isopropanol was added
and the tubes were allowed to stand at room temperature for 10 minutes. The
tubes were centrifuged at 12,000xg for 10 min at 4°C. RNA precipitate forms a
pellet on the sides and bottom of the tube. The supernatants were removed and
the RNA pellet was washed with 500ul of 75% ethanol, vortexed and centrifuged
at 12,000xg for 5 min at 4°C. The pellets were semi dried and dissolved in
minimum volume of DEPC-treated water. 2 ul of RNA was made up to 1 mi and
absorbance was measured at 260nm and 280nm. For pure RNA preparation the
ratio of absorbance at 260/280 was > 1.7. The concentration of RNA was

calculated as one absorbanceyq = 42ug.
Primers

The following primers were used for dopamine D, 5-HT;4 receptors and

ALDH, B-actin mRNA expression studies.
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5’- GCCAAACCAGAGAAGAATGG -3’ Forward Primer

5’- GATGTGCGTATGAAGGAAGG-3’ Reverse Primer DA D,

5’-CAACTCCAGAGATGCTAACACTTCG- 3" Forward Primer

5>-GGGTTCTGGATGGCGACATAG -3’ Reverse Primer 5-HTs4
5-CCCTTCAACCTCACCATCC- 3’ Forward Primer

5’ -GCGGCCATAACAATCTTCC-3’ Reverse Primer ALDH
5’- CAACTTTACCTT GGC CACTACC -3 Forward Primer

5’- TACGACTGCAAACAC TCTACA CC -3° Reverse Primer | B-actin

RT-PCR of dopamine D;, 5-HT;, receptors, ALDH and B-actin

RT-PCR was carried out in a total reaction volume of 20ul reaction

mixture in 0.2ml tubes.

RT-PCR was performed in an Eppendorf Personal
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thermocycler. cDNA synthesis of 2mg RNA was performed in a reaction mixture
containing MuMLYV reverse transcriptase (40U/reaction), 2mM dithiothreitol, 4
units of human placental RNAse inhibitor, 0.5ug of random hexamer and
0.25mM dNTPs (dATP, dCTP, dGTP and dTTP). The tubes were then incubated
at 42°C for one hour. Then reverse transcriptase, MuMLYV, was inactivated by

heating at a temperature of 95°C.
Thermocycling profile for Real-Time PCR

For obtaining higher stringency conditions RT-PCR profile was adopted.
PCR was carried out in a 25ul volume reaction mixture in the specially designed
Real-Time PCR tubes provided by Takara, Japan, containing 2ul cDNA, 12.5pul
reaction mixture and 1pl of primer and 9.5ul DEPC water. The reaction mixture,
SyBr Premix EX Taq, of which the unit definition is one unit, is the amount of
the enzyme that will incorporate 10nmol. of dNTP into acid insoluble products in

30 minutes at 74°C with activated salmon sperm DNA as the template-primer.

Thermocycling profile used for dopamine D; receptor

95°C -- 30 seconds Initial denaturation
95°C -- 10 seconds Denaturation
56°C -- 30 seconds Annealing 45 cycles

72°C -- 30 seconds Extension
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Thermocycling profile used for 5-HT,, receptor

94°C -- 30 seconds [nitial denaturation

94°C -- 10 seconds Denaturation

58°C -- 30 seconds Annealing 45 cycles
72°C -- 30 seconds Extension

Thermocycling profile used for ALDH

94°C -- 30 seconds Initial denaturation
94°C -- 30 seconds Denaturation
60°C -- 30 seconds Annealing 45 cycles

72°C -- 30 seconds Extension

Thermocycling profile used for -actin

94°C -- 30 seconds Initial denaturation
94°C -- 30 seconds Denaturation
55°C -- 30 seconds Annealing 45 cycles

72°C -- 30 seconds Extension
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Analysis of Real -Time PCR product

The Crossing threshold (Ct) represents the comparative expression of the
mRNA of the gene of interest from the samples used. The Ct values are taken
from the graph directly in the software of the Real-Time PCR provided along
with (Cephied Smart Cycler Software v2.0) and selected for each control and
ethanol treated group. The lowest Ct value represents the higher expression of

the mRNA isolated from the samples of the control and ethanol treated groups.
Liver perfusion with PBS in experimental rats

One set of rat liver was Perfused with ice cold phosphate buffered saline
(PBS) for 10 min, PBS conta-;;i-r;S% ethanol for Smin, 5% ethanol + 4mM
glucose for Smin, 5% ethanol + 20mM glucose for Smin. Another set of rat liver
was Perfused with ice cold phosphate buffered saline (PBS) for 10 min, PBS
containing 5% ethanol for Smin, 5% ethanol + 10 M DA for Smin, 5% ethanol
+ 10 M 5-HT for Smin. After each perfusion a portion of the liver was cut and

used for ALDH enzyme analysis.

Electroencephalogram analysis in control and ethanol treated rats

Spontaneous electrical activity of brain regions of the control and ethanol
treated rats were carried with Neurocare™ Wingraph Digital EEG system. EEG
analysis was done by placing electrodes in right and left frontal, parietal,
occipital and temporal areas of the scalp of experimental rat and electrode placed
on the ear was considered as reference.Each electrode was placed 10-20 percent
away from the neighbouring electrode. The EEG recording datas were analysed

for the brain activity in different brain areas of ethanol treated and control rats.
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Statistics

Statistical evaluations were performed by Student’s t-test and ANOVA
using InStat (Ver.2.04) computer programme. Linear regression Scatchard plots
were made using SIGMA PLOT (Ver 2.03).
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RESULTS



RESULTS
Body weight and ethanol consumption of experimental rats

There was an increased consumption during the ethanol treatment. A
significant decrease in body weight (p<0.05) in ethanol treated rats were

observed compared to the control (Fig- 1,2 & Table - 1).

Kinetic parameters, V,,, and K, of aldehyde dehydrogenase in cerebral

cortex

The kinetic parameters, Vn., and K, were studied in enzyme
preparations of ALDH in cerebral cortex. The results showed that there is a
significant increase (p<0.05, P<0.001) in the V., and K, respectively in the

ethanol treated condition when compared to control (Fig - 3 & Table- 2).
Real-Time PCR analysis of ALDH

The Real-Time PCR analysis in the cerebral cortex showed a decrease in
Ct value of ethanol treated rats showing an increased expression in mRNA

synthesis compared to control rats (Fig - 4 & Table - 3).
Kinetic parameters, V., and K,, of aldehyde dehydrogenase in brainstem

The Kkinetic parameters, V. and K, were studied in enzyme preparation
of ALDH in brainstem. The results from enzyme preparations showed that there
is a significant decrease (p<0.001) in the K, in the ethanol treated rats when
compared to control. The V. did not show any significant change (Fig - 5 &
Table - 4).
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Kinetic parameters, V,,,, and K,, of aldehyde dehydrogenase in cerebellum

The kinetic parameters were studied in enzyme preparation of ALDH in
cerebellum. The results from enzyme preparations showed that there is a
significant decrease in V, (p<0.01) with an increase in K, (p<0.001) when

compared to control (Fig - 6 & Table - 5).
Kinetic parameters, V,,, and K, of aldehyde dehydrogenase in plasma

The ALDH activity in the plasma of ethanol treated rats showed a
significant increase (p<0.05) in V.. with a decrease in K, (p<0.01) when

compared to control. (Fig - 7 & Table - 6).

Kinetic parameters, Vo, and K, of aldehyde dehydrogenase in liver

The kinetic parameters, V., and K., were studied in enzyme preparation
of ALDH in liver. The results from enzyme preparations showed that there is a
significant increase (p<0.05) in the V,,, with a significant decrese in K, (p<0.01)

in the ethanol treated condition in liver when compared to control (Fig - 8 &
Table - 7).

Real-Time PCR analysis of ALDH

The Real-Time PCR analysis in the liver showed a decrease in Ct value
of ethanol treated rats showing an increased expression in mRNA synthesis

compared to control rats (Fig - 9 & Table - 8).
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Quantification of DA, 5-HT, and their metabolites by HPLC in the cerebral

cortex of experimental rats

There was a significant decrease in 5-HT and DA content (p<0.01) in the

cerebral cortex of ethanol treated rats. Turmnover of 5-HIAA/5-HT as well as

HVA/DA were significantly increased (;‘><0.00I, p<0.05) in ethanol treated rats

when compared to control (Table - 9).

Quantification of DA, 5-HT and their metabolites by HPLC in the brainstem

of experimental rats

5-HT content was significantly decreased (p<0.01) and DA content was
significantly decreased (p<0.05) in ethanol treated rats when compared to
control. Turmover of 5-HJAA/5-HT was significantly increased (p<0.001) and
. 2=
HVA/DA significantly increased (p<0.01) in ethanol treated rats when compared
to control (Table - 10).

Quantification of DA, 5-HT and their metabolites by HPLC in the

Hypothalamus of control and ethanol treated rats

5-HT content significantly increased (p<0.01) and DA content was
significantly decreased (p<0.01) in the hypothalamus of ethanol treated rats.
Turnover of 5-HIAA/5-HT was also significantly decreased (p<0.001) but the
HVA/DA was significantly increased (p<0.001) in ethanol treated rats compared
to control (Table - 11).
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Quantification of DA, S-HT and their metabolites by HPLC in the corpus

striatum of experimental rats

A significant decrease in 5-HT (p<0.01) and DA (p<0.001) contents were
observed in the corpus striatum of ethanol treated rats. Turnover of 5-HIAA/S-
HT and HVA/DA were significantly increased (p<0.01, p<0.001) in ethanol

treated rats when compared to control (Table - 12).

Quantification of DA, 5-HT and their metabolites by HPLC in the liver of

control and ethanol treated rats

A significant decrease in 5-HT and DA content (p<0.001) was observed
in the liver of ethanol treated rats when compared to control. The turnover of 5-
HIAA/5-HT and HVA/DA were significantly increased (p<0.001) in ethanol!

treated rats when compared to contro!l (Table - 13).

Altered brain DA D, receptor binding parameters in control and ethanol

treated rats.
Cerebral Cortex

Scatchard analysis of ['H] YM-09151-2 against sulpiride in cerebral
cortex of ethanol treated rats showed a significant decrease (p<0.001) in B
with a significant decrease in K4 (p<0.05) compared to control (Fig - 10 & Table
- 14).
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Displacement analysis of [’H] YM-09151-2 against sulpiride in cerebral

cortex of control and ethanol treated rats.

In displacement analysis different concentrations of unlabelled sulpiride
were used against ["H] YM-09151-2. DA D, receptor affinity increased during
ethanol treatment in cerebral cortex fitting the equation to a single-site model as
seen in control. This was confirmed by the Hill slope value which is (-0.89) in
ethanol treated group and in control (-0.93) near unity. The Log (ECsy) value in
ethanol treated group decreased with an increase in affinity ie, decrease in K;

value (Fig - 11 & Table - 15).
Real-Time PCR analysis of D, receptor

The increase Ct value in cerebral cortex of ethanol treated rats showing a
decreased expression in mRNA synthesis compared 1o control rats (Fig - i2 &

Table - 16).
Brainstem

The By of ['H} YM-09151-2 binding decreased (p<0.05) signiticantly
in ethanol treated rats compared to control and the K4 value also decreased

(p<0.05) significantly in ethanol treated group compared to control (Fig - 13 &
Table - 17).

Displacement analysis of [’H] YM-09151-2 against sulpiride in brainstem of

control and ethanol treated rats.

In displacement analysis the competitive curve fitted for one site model!

with Hill slope value in control (-0.96) and ethanol treated (-0.99) near to unity.
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The Log (ECso) value in ethanol treated group decreased with an increase in

affinity ie, decrease in K; value (Fig - 14 & Table - 18).
Hypothalamus

Scatchard analysis of [H] YM-09151-2 against sulpiride in
hypothalamus of ethanol treated rats showed a significant increase (p<0.001) in

Bax With out any significant change in K4 compared to control (Fig- 15 & Table-
19).

Displacement analysis of [’H| YM-09151-2 against sulpiride in

hypothalamus of control and ethanol treated rats.

In displacement analysis different concentrations of unlabelled
ketanserin were used against ["H] YM-09151-2 against sulpiride. DA D, receptor
affinity increased during ethanol treatment in cerebral cortex fitting the equation
to a single-site model as seen in control. This was confirmed by the Hill slope
value which is (-0.97) in ethanol treated group and in control (-0.95) near unity.
There was no change in the Log (ECs) values, But the K; value of ethanol treated
rats increased compared with control indicating a shift in affinity to low affinity

(Fig- 16 & Table - 20).

Real-Time PCR analysis of D, receptor

The decrease Ct value in hypothalamus of ethanol treated rats showing
an increased expression in mRNA synthesis compared to control rats (Fig- 17 &
Table - 21).
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Corpus striatum

The Buae of ['H] YM-09151-2 binding decreased significantly (p<0.05)
in ethanol treated rats. Ky value also decreased significantly (p<0.05) in ethanol

treated group compared to control (Fig -18 & Table - 22).

Displacement analysis of [H] YM-09151-2 against sulpiride in corpus

striatum of control and ethanol treated rats.

In displacement analysis the competitive curve fitted for one site model
with Hill slope value in control (-0.99) and ethanol treated (-0.99) near to unity.
There is not much change in log (ECsp) value in ethanol treated group with

increased affinity ie, decrease in K; value (Fig - 19 & Table - 23).

Real-Time PCR analysis of D, receptor

The increased Ct value in corpus striatum of ethanol treated rats showing
a decreased expression in mMRNA synthesis compared to control rats (Fig - 20 &
Table - 24).

Cerebellum

The Buay, of ['H] YM-09151-2 binding increased (p<0.001) significantly
in ethanol treated rats, with significant increase in K4 (p<0.01) compared to

control (Fig - 21 & Table - 25).
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Displacement analysis of [’H] YM-09151-2 against sulpiride in cerebellum of
control and ethanol treated rats.

In displacement analysis the competitive curve fitted for one site model
with Hill slope value in control (-0.95) and ethanol treated (-0.97) near to unity..
There was no change in the Log (ECs) values, But the K| value of ethanol treated
rats increased compared with control indicating a shift in affinity of the receptors
(Fig - 22 & Table - 26).

Real-Time PCR analysis of D, receptor

The decreased Ct value in cerebellum of ethanol treated rats showing an

increased expression in mRNA synthesis compared to control rats (Fig - 23&
Table - 27).

Altered brain 5-HT;, receptor binding parameters in control and ethanol

treated rats.
Cerebral Cortex

Scatchard analysis of [’H] MDL 100907 against ketanserin in cerebral
cortex of ethanol treated rats showed a significant decrease (p<0.001) in B

without any significant change in K4 compared to control (Fig - 24 & Table - 28).

Displacement analysis of ’H] MDL 100907 against ketanserin in cerebral

cortex of control and ethanol treated rats.

In displacement analysis of different concentrations of unlabelled
ketanserin were used against ['H] MDL 100907. S-HT,, receptor affinity

increased during ethanol treatment in cerebral cortex fitting the equation to a
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single-site model as seen in control. This was confirmed by the Hill slope value
which is (-0.98) in ethanol treated group and in control (-0. 91) near unity. The
Log (ECs) value in ethanol treated group increased with an increase in affinity

ie, decrease in K; value (Fig - 25 & Table - 29).
Real-Time PCR analysis of S-HT;4 receptor

The increasg Ct value in cerebral cortex of ethanol treated rats showing a
decreased expression in mRNA synthesis compared to control rats (Fig - 26 &
Table - 30).

Brainstem

Scatchard analysis of [’H] MDL 100907 against ketanserin in brainstem
of ethanol treated rats showed a significant increse (p<0.001) in Bg, with out

any significant change in K, compared to control (Fig - 27 & Table - 31).

Displacement analysis of [’H] MDL 100907 against ketanserin in brainstem
of control and ethanol treated rats.

The competition curve for unlabelled ketanserin inhibited specific ['H]
MDL 100907 binding fitted for one site model with Hill slope value in control
(-0.98) and ethanol treated(-0.99) near to unity. The K; of ethanol treated rats
decreased with out any change in log (ECs) value compared with control

indicating a shift in affinity to high affinity (Fig - 28 & Table - 32).
Hypothalamus

Scatchard analysis of [*H] MDL 100907 against ketanserin in

hypothalamus of ethanol treated rats showed a significant increase (p<0.001) in
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Bamax With significant increase in K4 (p<0.001) compared to contro! (Fig - 29 &
Table - 33).

Displacement analysis of 'H] MDL 100907 against ketanserin in

hypothalamus of control and ethanol treated rats.

In displacement analysis different concentrations of unlabelled
ketanserin were used against [’H] MDL 100907. 5-HT,s receptor affinity
decreased during ethanol addiction in cerebral cortex fitting the equation to a
single-site model as seen in control. This was confirmed by the Hill slope value
which (-0.98) in ethanol treated group was near unity and in control had a hill
slope value in umty (-0.99).The Log (ECs;) value in ethanol treated group
increased with a decrease in affinity (Fig - 30 & Table - 34).

Real-Time PCR analysis of S-HT;, receptor

The decrease Ct value in hypothalamus of ethanol treated rats showing
an increased expression in mRNA synthesis compared to control rats (Fig - 31 &

Table - 35).

Corpus Striatum

The Brax of [’H] MDL 100907 binding increased (p<0.001) significantly
in ethanol treated rats compared to control and the K, value also decreased

(p<0.01) significantly in ethanol treated group compared to contro! (Fig - 32 &
Table - 36).
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Displacement amalysis of [’H| MDL 100907 against ketanserin in corpus

striatum of control and ethanol treated rats.

In displacement analysis the competitive curve fitted for one site model
with Hill slope value in control (-0.99) and ethanol treated (-0.99) near to unity.
There was no change in the Log (ECsp) values, But the K; value of ethanol treated
rats increased compared with control indicating a shift in affinity (Fig - 33 &
Table - 37).

Real-Time PCR analysis of 5-HT;, receptor

The decrease Ct value in corpus striatum of ethanol treated rats showing
an increased expression in mRNA synthesis compared to control rats (Fig - 34 &
Table - 38).

Cerebellum

Scatchard analysis of ['H] MDL 100907 against ketanserin in cerebellum
of ethanol treated rats showed a significant decrease (p<0.01) in Bpn, with out

any significant change in K4 compared to control (Fig - 35 & Table - 39).

Displacement analysis of [’H] MDL 100907 against ketanserin in cerebellum

of control and ethanol treated rats.

In displacement analysis different concentrations of unlabelled
ketanserin were used against ['H] MDL 100907. Since ketanserin has a higher
potency than MDL 100907, S-HT,a receptor affinity decreased during ethanol
addiction in cerebral cortex fitting the equation to a single-site model as seen in

control. This was confirmed by the Hill slope value which (-0.96) in ethanol
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treated group was near unity and in control had a hill slope value in unity (-0.98).

The log (ECsp) value in ethanol treated group decreased with an increase in
affinity (Fig - 36 & Table - 40).

Real-Time PCR analysis of 5-HT;, receptor

The increase Ct value in cerebellum of ethanol treated rats showing a
decreased expression in mRNA synthesis compared to control rats (Fig - 37 &

Table - 41).
Liver

Scatchard analysis of [’H] MDL 100907 against ketanserin in liver of
ethanol treated rats showed a significant decrease (p<0.001) in B, with a

significant decrease in K4(p<0.05) compared to control (Fig - 38 & Table - 42).

Displacement analysis of |’H] MDL 100907 against ketanserin in liver of

control and ethanol treated rats.

In displacement analysis different concentrations of unlabelled
ketanserin were used against ['H] MDL 100907. 5-HT,a receptor affinity
decreased during ethanol treatment in cerebral cortex fitting the equation to a
single-site mode! as seen in contrMy the Hill slope value
which (-0.96) in ethanol treated group was near unity and in control had a hill
slope value in unity (-0.98).The log (ECsp) value in ethanol treated group
decreased with an increase in affinity (Fig - 39 & Table - 43).
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Real-Time PCR analysis of 5-HT,, receptor

The increased Ct value in liver of ethanol treated rats showing a
decreased expression in mRNA synthesis compared to control rats (Fig - 40 &

Table - 44).

Kinetic parameters of aldehyde dehydrogenase in perfused liver of rats

The V.. and K,, were studied in enzyme preparations of ALDH in
perfused liver of rats. The results from enzyme preparations showed that there is
a significant increase (p<0.001) in the V,,,, of the 5% ethanol perfused rat liver
when compared to control and decreased significantly (p<0.001) near to control
value in the liver of 5%ethanol + 4mM glucose and 5%ethanol + 20mM glucose
perfused rats. 5% ethanol +10™ M S5-HT perfused rat liver showed an increased
Viax (p<0.001) when compared to control with no significant change when
compared with the 5%ethanol perfused rat liver. V,,, decreased (p<0.001) near
to control in 5% ethanol +10* M DA perfused rat liver when compared to 5%
ethanol perfused liver. There was a decreased affinity (p<0.01) in 5% ethanol
perfused rats when compared to control and it reached near to control in the 5%
ethanol + 4mM glucose perfused rats. Both, 5% ethanol + 20mM glucose, 5%
ethanol + 10 M DA showed significant increase (p<0.001) in K,, compared to
control 5% ethanol +10™ M 5-HT perfused rat liver showed an increased affinity
(p<0.001) when compared to 5% ethanol treated rats (Fig 41- 44 & Table 45-
48).
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Electroencephalogram analysis in control and ethanol treated rats

EEG electrogram analysis showed that there is a significant change in the
brain activity in the frontal region compared to the control. The other regions
studied did not show any prominent change in brain activity in ethanol treated

rats compared to control (Fig 45 & 46).
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DISCUSSION



DISCUSSION

The etiology of ethanol addiction is a complex interaction of
psychosocial and biological factors. Ethanol freely diffuses across the blood-
brain barrier and creates generalized effect all over the brain. Multiple
neurotransmitter systems in various parts of brain alone as well as combined, play
a prominent role in mediating the behavioural effects of ethanol that have been
linked to its abuse and dependence (Koob, 1992). This undoubtedly reflects the
fact that ethanol produces many pharmacological effects within the brain and
body. ALDH is involved in biogenic amine metabolism (Berger & Weiner, 1977)
as well as in ethanol metabolism. Brain monoamines and ALDH together plays a

decisive role in ethanol addiction.

Ethanol is not stored in the body, but it is oxidized in preference over
other fuels. It is reported that ethanol to a diet reduces lipid oxidation whereas
oxidation of carbohydrate and protein are much less inhibited (Suter, 1992).
Chronic prenatal ethanol exposure decrease cerebral cortex weights and increase
locomotor activity (Abdollah er al., 1993; Catlin et af., 1993; Butters et al., 2000,
Craig, 2001). Ethanol-treatment resulted in increased foetal mortality and lipid
peroxidation and decreased body weight (Tanaka, 1985). Decreased food
consumption was observed after ethanol intake (Macho, 2003). In the present
study a decrease in body weight was observed in adult male rats during ethanol
treatment. Animal studies are consistent in reporting a decrease in the body
weight of rats receiving ethanol solutions as the only source of liquid (Aguiar,
2004). Difterent concentrations of ethanol as low as 5% (v/v), or as high as 40%
(v/v) are related to decreased body weight gain (Macieira, 1997). Similar results

have been reported for 20% (v/v) ethanol solution (Laure, 1990). Ethanol-
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induced energy intake has no clear correlation with body weight and it is reported
that ethanol energy has a low biological value (Pirola, 1976, Lands 1991; Lieber,
1991). The rate of ethanol consumption is gradually inclined upward and reached
a steady state and there is no correlation observed between the rate of ethanol

consumption and the body weight.

Ethanol induced aldehyde dehydrogenase activity disparity in liver, plasma

and brain regions.

Mechanism of ethanol craving has been related to the local level of brain
acetaldehyde occurring in ethanol consumption and depending on the activities of
the brain and liver ethanol and acetaldehyde-metabolizing systems (Bardina,
2003). There are several reports that ethanol preference may correlate with
ALDH activity more in the brain than in the liver (Amir, 1978; Socaransky ef al,
1984) and this mechanism 1is still unknown. Oxidative deamination of
monoamine neurotransmitters, catalyzed by the membrane-bound MAO
generates reactive aldehyde intermediates. Aldehyde dehydrogenase, the primary
enzyme responsible for acetaldehyde metabolism, is highly correlated with
voluntary ethanol consumption in several strains of rats and mice (Amir, 1977).
Both DOPAL and 5-HIAL are good substrates for ALDH (Ambroziak, 1991).
Brain ALDH plays an important role in the biosynthesis of biogenic amines
(Tipton et al., 1977). Our results showed that there is a significant increase in
kinetic parameters of ALDH in cerebral cortex and it is reported that ethanol
preference is related to ALDH activity in the cerebral cortex (Yamazaki, 1984).
The results from ALDH enzyme analysis of brainstem showed that there is a
significant decrease in the K, in brainstem without any change in V ... There is a

significant decrease in V.« with an increase in K, in cerebellum. Disulfiram, an
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ALDH inhibitor, treatment in the absence of ethanol, raises endogenous plasma
and red blood cell acetaldehyde concentrations, possibly due to diminished

catabolism of endogenously generated acetaldehyde (Eriksson, 1985; Rosman e!

al., 2000). It was observed that plasma ALDH level of ethanol treated rats !

increased significantly when compared to control which is suggested to be due to
the increased acetaldehyde level. The results from ALDH enzyme analysis
showed that there is a significant increase in the V,,, with a significant decrease
in K, in the ethanol treated condition in liver when compared to control. It has
been reported that colonic mucosal ALDH activities are relatively low compared
to liver (Koivisto & Salaspuro, 1996). As acetaldehyde itself has many
pharmacological actions (Brien & Loomis, 1983), it may act on the central
nervous system (Kinoshita er al, 2001), where differences in acetaldehyde
elimination may contribute to ethanol preference. Ethanol administration
activates the HPA axis (Rivier & Lee, 1996). Acetaldehyde formed in brain is
able to activate the HPA axis at a central level (Hiroshi ef al., 2001). Difference
in acetaldehyde level exerted stress on HPA axis is mediated via brainstem and
plays a role in peripheral system regulation. The expression pattern of aldehyde
dehydrogenase in the liver and cerebral cortex were in concordance with the
enzyme activity. DA and 5-HT induced variations in the ALDH activity plays an

important role in acetaldehyde metabolism.
Brain DA and HVA changes during ethanol treatment

Neurotransmitters can activate different subtypes of the same receptor,
producing different responses in different brain cells or in different parts of the
brain (Shepherd, 1994). Receptor activation causes a change in the receiving

neuron. These changes may consist of a transient increase or decrease in the
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neuron's responsiveness to further messages (Grant, 1994). Due to these changes,
activating mechanisms in the central nervous system prevail. The ability of
ethanol to diffuse throughout the water contained in the brain and body suggested
that there were probably multiple sites of ethanol action. Ethanol may produce
some of its effects by interfering with signal transduction (Alling, 1993; Davis,
1996). Repeated exposure to ethanol can produce long-lasting changes in
adolescent behaviour and brain function. Ethanol ingestion has been shown to
induce significant change in neurotransmitter systems (Imperato, 1986; Nevo,
1995). DA and 5-HT have received special attention because of their putative
role in the motivational effects of ethanol (Cloninger, 1986; Sellers, 1992;
Wallis, 1993). Administration of ethanol induces DA release (Imperato, 1986; Di
Chiara, 1985; O'Brien, 1995) in the caudate nucleus and nucleus accumbens of
freely moving rats. DA levels in the striatum remained almost unchanged
following chronic treatment with ethanol and acteldehyde (Myers et al.,, 1985;
Matsubara er al., 1987). Ethanol acts on the dopaminergic neurons, producing
lasting changes on the system. Altered central DA function has also been
implicated as influencing the propensity for ethanol consumption in humans, at
least in some populations (Cowen, 1999). Changes in turnover of
neurotransmitters in specific brain regions may reflect alterations in neuronal
activity resulting from varied aldehyde dehydrogenase activity. This undoubtedly
reflects the fact that ethanol produces many pharmacological effects within the
brain. Blocking the effects of DA reduces ethanol intake by animals (Koob,
1992).

DA content decreased significantly in the cerebellum of ethanol treated
rats with an increased HVA/DA tummover rate. With long-term use, adolescent

rats have shown massive neuronal loss in their cerebellum and basal forebrain
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(Spear, 2002). Prolonged ethanol exposure directs to neurotransmitters changes.
There is a significant decrease in DA content in the cerebral cortex of ethanol
treated rats with significantly increased turnover of HVA/DA. Recent studies in
animals have found that as little as 2—4 days of ethano! intoxication can lead to
neuronal loss in several brain areas including entorhinal cortex and hippocampal
dentate gyrus (Collins, 1998). DA content was significantly decreased in the
hypothalamus of ethanol treated rats. HVA/DA was significantly increased in
ethanol treated rats. It indicates the alterations of the biogenic amine contents in
different regions of the brain after chronic ethanol ingestion. DA content was
significantly increased in brainstem of ethanol treated rats with significantly
decreased HVA/DA turnover ratio in ethanol treated rats when compared to
control. There is a stimulated release of biogenic amines in some brain regions
and decrease in other regions due to the biphasic effect of ethanol. This has been
implicated in the alterations of aldehyde dehydrogenase kinetic parameters.
Vasconcelos ez al., (2004) reported that duration of ethanol treatment seems to be
important regarding changes in monoamine levels. Budygin e al, (2001)
reported that ethanol exerts a profound effect on DA neurons, resulting in the
suppression of DA neurotransmission in the striatum at high doses. DA content
decreased significantly in corpus striatum of ethanol treated rats with an
increased HV A/DA turnover rate. It is reported that striatal DA deficit correlated
with ethanol craving (Heinz, 2005). Microdialysis experiments in rodents
indicate that ethanol promotes DA release predominantly in the nucleus
accumbens, a phenomenon implicated in the reinforcing effect of the drug. In
humans, ethanol also promotes DA release, with a preferential effect on the
ventral striatum (Boileau, 2003). 1t was reported (Tuomainen, 2003) that the

application of ethanol to the nucleus accumbens temporarily increased DA levels
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in a dose-dependent manner. Rothblat et a/.,, (2001) demonstrated that DA and
DOPAC levels were significantly decreased in the striatum of rats chronically
receiving  ethanol.  Ethanol-induced  stimulation  of  dopaminergic
neurotransmission may encode the reinforcing properties of ethanol consumption
(Heinz, 2000). Acetaldehyde increases DA neuronal activity (Marzia, 2004). The
observed discrepancy in the metabolic rate of DA at different brain regions s due
to ethanol induced brain alterations in the ALDH system resulting in difference

in acetaldehyde elimination.
Brain 5-HT and 5-HIAA changes during ethanol treatment

Neurons connect with thousands of adjacent neurons. Berggren et al,
(2002) reported a negative correlation between prolonged and excessive ethanol
consumption and central serotonergic neurotransmission due to a toxic effect of
ethanol on 5-HT neurons. A significant decrease in 5-HT content was observed
in the corpus striatum of ethanol treated rats and the turnover of 5-HIAA/S-HT
significantly increased when compared to control. Striatal dopamine deficit is
correlated with ethanol craving (Heinz, 2005). Chronic ethanol treatment
decrease serotonergic neurotransmission in selective brain regions. Human
studies reported damage to entorhinal cortex (Ibanez, 1995) and significant
hippocampal shrinkage in ethanol addicts (Harding, 1997). It was observed a
significant decrease in 5-HT content in the cerebral cortex with a significant
increase in 5S-HIAA/S-HT turnover rate in ethanol treated rats when compared to
control. The decreased level of 5-HT observed was due to enhanced metabolic
rate of 5-HT by the activated ALDH enzyme. 5-HT and its metabolic
intermediates differentially regulate ethanol drinking behaviour (Wing, 1998).

Ethanol has a biphasic effect on 5-HT, first raising the levels and then lowering
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them (LeMarquand, 1994). Ethanol administration eventually results in depressed
5-HT levels, and thus the activity, due to increased peripheral metabolism of its
precursor, I-tryptophan (Badawy, 1995). 5-HT levels remained largely the same
in the nucleus accumbens following acute exposure to ethanol (Heidbreder & De,
1993). 5-HT content increased in hypothalamus with a decreased 5-HIAA/5-HT
turnover rate of ethanol treated rats compared to control. Reduced density of
5-HT transporter binding in the brain might reflect reductions in the density of
5-HT terminals that might contribute to reduced central 5-HT function (Tiihonen,
1997; Chen, 1991). Chronic ethanol administration altered the serotonergic
system in a time dependent manner (Uzbay er al,, 1998). 5-HT content was
significantly decreased in brainstem of ethanol treated rats when compared to
control. Turnover rate of S-HIAA/S-HT significantly increased in ethanol treated
rats when compared to control. These results indicate alterations of the biogenic
amine contents in brain regions after chronic ethanol ingestion. Stimulated
release of biogenic amines in some brain regions and decreased in other regions
is due to the biphasic effect of ethanol and has been implicated in the regulation
of aldehyde dehydrogenase kinetic parameters. Decrease in serotonergic activity
might be involved in the early phase of ethanol withdrawal (Syvalahti ez al.,
1988). The alterations of brain 5-HT function in the brainstem, hypothalamus,
corpus striatum, cerebral cortex play an important role in the sympathetic control
of ALDH enzyme regutation in liver. McBride (1995) has reported that levels of
brain 5-HT is lower in ethanol-preferring rats than in non-preferring ones. 5-HT
and its metabolite 5-HIAA changes at different brain regions are due to ethanol
induced brain alterations in ALDH system resulting in the difference in

acetaldehyde elimination.
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Liver DA, 5-HT and their metabolite changes during ethanol treatment.

Aldehydes in the metabolic pathways of ethanol, DA and 5-HT are
substrates for ALDH. Acetaldehyde is the initial metabolite of ethanol, which is
produced in the liver following ethanol administration. Aldehyde dehydrogenase
oxidizes a broad class of aldehydes to their carboxylic acids (Lindahi, 1992),
involved in biogenic amine metabolism (Berger and Weiner, 1977). Ethanol
intake significantly changes the liver cytosolic redox potential by increasing the
NADH/NAD" ratio (Smith, 1959). Although the ethanol feeding did not
influence the stomach ADH and ALDH activity levels, these enzymes in the liver
were affected (Wei, 1988). Decreased DA and 5-HT content in liver with an
increased HVA/DA and 5-HIAA/5-HT turnover rate observed in ethanol treated
rats compared to control. Over activity has been supposed to contribute to the
morphological and functional degeneration of rat peripheral sympathetic nervous
system. It has been observed that in patients in the preliminary stage of addiction
show only functional disturbances in the liver: the increase of ethanol
dehydrogenase activity with evidences for the induction of its synthesis
(Kharchenko, 2001). Most of the acetaldehyde produced from ethanol is
metabolized quickly to acetate by liver ALDH and hence acetaldehyde
concentration in blood following ethanol administration is very low (Eriksson,
1973; Eckardt et al, 1998). Our results suggest that decreased DA and 5-HT
Jevel and increased turnover rate of metabolites may be due to the ethanol

induced neurotransmitter mediated changes on aldehyde dehydrogenase.
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DA D; receptor alteration in brain regions

Determining the specific neurotransmitters and receptor subtypes that
may be involved in the development of the effects of ethanol addiction is the first
step in developing medications to treat ethanol addiction (Hunt, 1993; Deitrich,
1996). Neuronal DA receptors are widely distributed in the central and the
peripheral nervous systems at different levels. DA D, receptor-selective agonist,
quinpirole, increases renal sympathetic firing (Szabo, 1992). Compared to normal
rats, the alcohol-preferring rats have a reduced supply of DA in the nucleus
accumbens and a lower density of DA D, receptors in certain areas of the limbic
system (Russell et al., 1988; McBride et al. 1990; McBride et al. 1993). From
our analysis we observed a decreased receptor activity in cerebral cortex,
brainstem and corpus striatum in ethano! treated rats with an increased affinity.
This is a mechanism to compensate the decreased DA D, status. The brain
reduces the number of DA binding sites on neurons to protect itself from a
persistent oversupply of the neurotransmitter. Jan et al, (1994) suggests that
severely ethanol-dependent subjects with reduced DA D, receptor function. It is
reported that striatal DA D2 receptor density is decreased in ethanol-dependent
patients (Tithonen, 1997; Volkow, 1996). Serotonergic neurotransmitter
pathways have all been shown to interact at various points along the mesolimbic
dopaminergic pathway to modulate its activity (Denise & Sellers, 2001).
Increased YM-09151-2 binding to DA D, receptor was observed in cerebellum
and hypothalamus of ethanol treated rats compared to control. Increased density
of DA D, receptors may be a predictor of vulnerability to relapse in ethanol-
dependent patients (Guardia, 2000). Repeated deprivations increase binding sites
of DA D, and DA D, receptors in specific regions of the extended amygdala

(Sari et al, 2006). The functional alterations in the DA D, receptor kinetics in
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different brain regions is due to ethanol induced central neurotransmitter system

changes occurring during ethanol treatment.
5-HT,4 receptor alteration in brain regions

Change in receptor function results from direct action of ethanol on the
receptor protein or molecules closely associated with the receptor in the ceil
membrane (Lovinger, 1993, 1994). Ethanol exposure inhibits the function of a
neurotransmitter receptor; the cells may attempt to compensate for continuous
inhibition by increasing the receptor numbers or by altering the molecular
makeup of receptors or cell membranes so that ethanol no longer inhibits receptor
function. The 5-HT, receptor appears to undergo such adaptive changes (Pandey,
1995). 5-HT>4 receptor kinetics showed a functional decrease in cerebral cortex,
cerebellum and liver of ethanol treated rats compared to control. There are
lowered levels of 5-HT,, binding sites in the cingulate cortex, the frontal cortex
and in the agranular insular cortex (Fedeli, 2002) in 7 days of high doses of
ethanol treated rats. It was suggested that this decrease in 5-HT,4 receptor
density represented a down regulation of the receptors due to an activation of
serotonergic transmission in these regions. Ethanol reduces the normal formation
and growth of 5-HT neurons in the midbrain. Furthermore, the projection of
5-HT fibers, in density as well as in distribution, is reduced in the major
trajectory bundle. This may affect the amount of 5-HT fibers available to the
forebrain (Youssef, 2001). 5-HT,4 receptor kinetics showed a functional increase
in corpus striatum, hypothalamus and brainstem. Altered regulation of brain
serotonergic mechanisms; changes in 5-HT,, receptor density and functioning
have been observed in ethanol abuse. Dense projections from the subgenual

cingulate cortex to the dorsal raphe (Freedman et al., 2000) raises the tantalizing
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possibility that the subgenual cortex plays some role in regulating overall
serotonergic activity (Ursula, 2004). Altered 5-HT function in fronto-cortical
areas could be linked to the genetic predisposition to high voluntary ethanol
intake (Ciccocioppo ef al., 1999). Preuss ef al., (2001) reported an association of
5-HT,4 promoter polymorphism and impulsive behaviour in ethanol dependents.
The serotonergic neurons that innervate neuroendocrine control regions in the
hypothalamic paraventricular nucleus send collaterals to other limbic brain
regions, notably the amygdala (Petrov ef al.,, 1994). Hence the alterations of the
serotonergic system mediated changes during ethanol treatment calls for special

attention,

Hepatic S-HT,, receptor alterations

Brain plays an important regulatory role in hepatic function (Lautt,
1983). The relationship between the functional status of the liver and that of the
brain has been known for centuries (Frerichs, 1860). The liver is richly
innervated (Rogers & Hermann, 1983). 5-HT facilitates central sympathetic
nerve activity (Kuhn et al,, 1980). Autonomic nervous system has an important
role in the process of hepatic cell proliferation (Tanaka ef al., 1987). The role of
5-HT in regulating cortisol secretion has long been recognized (Dinan, 1996), and
evidence suggests that cortisol secretion is regulated by central S-HT,anc
receptors (Rittenhouse, 1994). During acute stress, the HPA axis - modulate the
brain's response to stress - is activated, increasing the adrenocorticotropic
hormone (ACTH), which in tum increases cortisol, clearly indicating the
interaction between serotonergic system and HPA axis. During ethanol
intoxication and ethanol withdrawal, ACTH and cortisol are also increased. In

hepatic encephalopathy and other liver diseases, neurotransmission in the brain is
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reported to be altered (Basile er al, 1991; Jones, 1995; Butterworth, 1995).

5-HT,, agonists act centrally inhibiting sympathetic nerve discharge (McCall

et al., 1987). Hypothalamic and autonomic nervous regulation of carbohydrate
and amino acid metabolism was observed in the liver (Shimazu, 1981).
Brainstem has direct connection with liver through the vagus nerve (Tanaka ef
al., 1987) and plays a regulatory role in liver function. Ethanol induced
serotonergic activity alterations over ALDH enzyme leads to the increased
activity of ALDH enzyme. The 5-HT system itself is altered and the number of
receptor binding sites in liver is greatly reduced with an increase in affinity as a
compensatory mechanism. Decrease in 5-HT,s receptor protein level with
increased affinity is observed in our model which clearly establishes its
unambiguous role in ethanol mediated receptor changes and its regulatory aspects

during ethanol treatment.

Ethanol induced ALDH, DA D, and 5-HT,;, receptor gene expression

changes

Ethanol exposure affects multiple genes and various receptor-associated
signalling pathways which regulate the expression of a multitude of downstream
genes (Fan er al,, 2004). The human DA D, receptor gene is an important
candidate gene for ethanol addction and/or for the modification of its severity
(Blum et al., 1995; Noble, 2000; Finckh, 2001; Lu ef al., 2001). Neuroadaptive
changes in DA D, receptor levels occur following alcohol drinking and
withdrawal. The Real-Time PCR analysis of DA D, in the hypothalamus and

cerebellum of ethanol treated rats showed an increased expression in mRNA
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synthesis compared to control rats. There is evidence that over expression of
DA D, attenuates alcohol drinking (Thanos et al., 2004). A modification of gene
expression is the crucial component of risk that predisposes an individual towards
ethanol addiction. The Real-Time PCR analysis of DA D, in the cerebral cortex
and corpus striatum of ethanol treated rats showed a decreased expression in
mRNA synthesis compared to control rats. The DA D, receptor genes are
interacting with ALDH genes, there is association between the DA D, receptor
gene and alcohol dependence. Also ALDH genes are involved in dopamine
metabolism (Huang ef al., 2004). The Real-Time PCR analysis of ALDH in the
liver and cerebral cortex of ethanol treated rats showed an increased expression
in mRNA synthesis compared to control rats. Exposure to ethanol changes the
patterns of gene expression in such a manner that drinking session continued and
ultimately, addiction. The Real-Time PCR analysis of 5-HT»s in the liver,
cerebral cortex and cerebellum of ethanol treated rats showed a decreased
expression in mRNA synthesis compared to control rats. The diverged pattern of
gene expression that portrays the perturbed nervous system assumes a new set
point in the face of constant exposure to alcohol. The Real-Time PCR analysis of
5-HT,4 in the hypothalamus, corpus striatum of ethanol treated rats showed an
increased expression in mRNA synthesis compared to control rats. The
differential expression DA D. and 5-HT,, receptor genes suggests the
involvement of the dopaminergic and serotonergic receptor subtype alterations

during ethanol treatment in conferring functional regulation on ALDH activity.

—_—

Central, Peripheral DA, S-HT and Liver ALDH activity

Levels of ethanol consumption are correlated with brain and liver

aldehyde-oxidizing capacity (Amir, 1978; Socaransky, 1984). Alteration in the
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ethanol metabolizing enzymes, specifically those enzymes responsible for the
metabolism of ethanol’s primary metabolite acetaldehyde, is the critical factor in
the predisposition towards ethanol addiction (Haranda er al., 1983; Mizoi et al,,
1983). The high ethanol preferring rats showed significantly lower DA and 5-HT
release in the striatum and nucleus accumbens than low alcohol preferring rats
(Minori, 2002). It is reported that ALDH is involved in biogenic amine
metabolism (Berger & Weiner, 1977). Endogenous DA plays role in modulating
norepinephrine release by human sympathetic nerves in vivo (Massimo, 1999).
ALDH plays this role by regulating the levels of acetaldehyde in brain (Karen,
1987) and liver. Dopamine and serotonin content decreased in brain regions -
cerebral cortex and corpus striatum of ethanol treated rats with an increased
HVA/DA, 5-HIAA/5-HT turnover rate. Most ethanol elimination occurs by ADH
and ALDH systems via oxidation of ethanol to acetaldehyde and acetic acid
(Crabb, 1995). It has been observed that ethanol preferences in rats vary with the
levels of brain ALDH activity (Amir, 1977; Amit et al., 1980). Dopamine content
increased in brainstem with an increased HVA/DA turnover rate and serotonin
content decreased with an increased 5-HIAA/5-HT turnover rate in ethanol
treated rats compared to control. Brain ALDH activity was significantly higher in
rats preferring ethanol than in rats not preferring ethanol. With respect to
implications for a biological regulator of ethanol intake, the most exciting aspect
of cerebral ALDH is its apparent noninducible character in response to ethanol or
acetaldehyde exposure (Socaransky er al, 1984). Although the precise
mechanism by which ALDH regulates voluntary ethanol intake is yet to be
elucidated, these studies support the decrease in DA synthesis. The enhanced
clearance of synaptic DA may cause DA hypofunction during ethanol

dependence (Rothblat et al., 2001) which will eventually affect the ALDH
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kinetic function. Serotonin content increased in hypothalamus with a decreased
5-HIAA/5-HT tumover rate and dopamine content decreased with an increased
HVA/DA turmnover rate of ethanol treated rats compared to control. A significant
decrease in 5-HT and DA content was observed in the liver with significantly
increased turnover rate of 5-HIAA/5-HT and HVA/DA in ethanol treated rats
when compared to control. These results suggest that sympathetic nerves directly
involve in ethanol metabolism in the rat liver. Augmented kinetic rate of ALDH
is suggested to be due to the differential regulation of DA and 5-HT system
through sympathetic stimulation and peripheral control at the hepatic level. Thus,
brain and liver 5-HT and their metabolic rate, 5-HT,s receptor affinity shift
differentially regulates ALDH function during ethano! addiction. Monoamine
neurotransmitter system alterations induce the activation of ALDH in the liver

oxidation of acetaldehydes.

Dopaminergic and serotonergic regulation on kinetic parameters of

aldehyde dehydrogenase

The perfusion model technique could help in identifying
neurotransmitters acting as messengers in signal transfer and it is vital to identify
those contributing to ALDH regulation. Lower activity of ALDH, is believed to
play a preventive role against ethanol (EtOH) addiction (Goedde, 1982). Tae et
al, (2006) reported a time dependent decrease in plasma acetaldehyde
concentration without changing plasma ethanol concentrations observed when
rats are treated with Rosiglitazone - peroxisome proliferator-activated receptor

(PPAR)-Y agonist - mediated by receptor-dependent activation of the PPAR-¥-
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retinoid X receptor (RXR) complex. Thus, the expression of aldehyde
dehydrogenase could potentially be regulated by rosiglitazone by acting on
PPAR response elements (PPREs) in ALDH promoter site. Administration of
substances that increase the supply of  5-HT at the synapse or that directly
stimulate DA D, receptors reduce craving for ethanol (McBride ez al. 1993). DA
D, receptor agonists reduce the intake of ethanol among rats that prefer ethanol,
whereas DA D, receptor antagonist increases the drinking of ethanol in these
inbred animals (Dyr et al., 1993). Selective serotonin reuptake inhibitors (SSRIs)
have been reported to reduce drinking in animals and also in some heavy
drinking individuals (Liskow & Goodwin, 1987). Ethanol metabolism is
impaired by a nonfunctional form of the enzyme aldehyde dehydrogenase (Wall
& Ehlers, 1995). More than 80% of ethanol taken into the isolated rat liver
recovered as free acetate in the perfusate (Yamashita, 2001). Sympathetic-nerve
stimulation stimulates glycogenolysis in perfused liver (lwai & Jungermann,
1989). The DA induced decrease in liver ALDH enzyme level represents an
activation of the whole DA receptor-signalling cascade in the liver and the
functional changes of 5-HT mediated affinity shift in ALDH during EtOH
perfusion clearly shows the involvement of serotonergic and dopaminergic

system in ALDH regulation.

Ethanol mediated electrophysiological changes

Ethanol interferes with synaptic firing. Central effect of ethanol is mainly
based on their effect on GABAergic, glutamatergic and serotonergic transmission

(Pietrzak, 2005). A characteristic feature of the EEG recording after ethanol
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administration is a deceleration of the rhythms obtained from the cortex and an
increase in the amplitude (Klemm & Stevens, 1974; Perrin e al.,, 1974). Alpha
rhythm is more significant and it can be recorded in different parts of the brain.
Human study suggested that ethanol decreases alpha rhythm frequency and
increases its amplitude (Klemm ez al, 1976: Noldy & Carlen, 1990).
Acetaldehyde produces electrophysiological actions on VTA neurons in vivo,
similar to those produced by ethanol, and significantly participate in ethanol-
induced increment in DA neuronal activity (Marzia ef al., 2004). EEG studies in
the frontal region showed a prominent brain activity difference in the ethanol
treated rats. Ciccocioppo et al., (1999) reported that altered 5-HT function in
fronto-cortical areas could be linked to high voluntary ethanol intake. The EEG
findings suggested that ethanol induced changes made rats physiologically more
sensitive than control rats. Ethanol interferes with synaptic firing. Acetaldehyde
also have role in electrophysiological changes. Discrepancy in the acetaldehyde
metabolism is suggested to differentially stimulate electrophysiological indices.
Increased cortical P} amplitude and altered cortical EEG activity may be the
neurophysiological 'risk factors' associated with high ethanol consumption in
mice (Slawecki et al,, 2003). It is reported that reduced central 5-HT function
causes poor impulse control in ethanol addicts (Sander ez al., 1995; Nielsen ez al.,
1994), Kahkonen ¢t al., (2003) reported that ethanol-induced differences were
most pronounced at anterior electrodes. The prefrontal cortex has been linked to
impulse control because damage to this region of the brain can lead to loss of
inhibitions, which is prominent in ethanol addicts. The hyper activity at the
frontal cortical region observed during the EEG analysis supports the central

effects of ethanol especially at the frontal region.
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Thus the results suggests that DA and 5-HT through their DA D, and
5-HT;a receptor subtypes functionally regulate the ALDH activity in the brain
regions and liver tissue of ethanol treated rats. Real-Time PCR studies confirm
the DA D, & 5-HT,a receptor binding parameters. Perfusion studies data show
that dopamine, serotonin and glucose can regulate the ALDH activity in the liver
of rats. EEG studies in the frontal region showed a prominent brain activity
difference in the ethanol treated rats. DA and S-HT functional regulation of

ALDH has immense clinical significant in the management of ethanol addiction.

95



CONCLUSION

Neuronal dopamine and serotonin receptors are widely distributed in the
central and the peripheral nervous systems at different levels. Dopaminergic and
serotonergic systems have crucial role in aldehyde dehydrogenase regulation.
Stimulation of autonomic nervous system during ethanol treatment is suggested
to be an important factor in regulating the ALDH function. The ALDH enzyme
activity was increased in plasma, cerebral cortex, and liver but decreased in
cerebellum. The ALDH enzyme affinity was decreased in plasma, brainstem and
liver and increased in cerebral cortex and cerebellum. The difference in ALDH
activity in brain regions shows the functional regulation of ALDH by the
dopaminergic and serotonergic systems at the central level. There is also
peripheral level regulation in plasma and liver. Dopamine and serotonin content
decreased in liver and brain regions - cerebral cortex, corpus striatum of ethanol
treated rats with an increased HVA/DA, 5-HIAA/5-HT tumover rate. Dopamine
content decreased in brainstem with an increased HVA/DA turnover rate and
serotonin content decreased with an increased 5-HIAA/S-HT turnover rate in the
brainstem of ethanol treated rats compared to control. Serotonin content
increased in hypothalamus with a decreased 5-HIAA/5-HT turnover rate where
as dopamine content decreased in hypothalamus with an increased HVA/DA
turnover rate of ethanol treated rats compared to control. Dopamine, serotonin
and their metabolic intermediates differentially regulate ethanol craving.
Dopamine D, receptor binding parameters showed a functional increase in
cerebellum, hypothalamus, and a decrease in brainstem, cerebral cortex and
corpus striatum of ethanol treated rats compared to control. 5-HT,, receptor
binding parameters showed a functional increase in corpus striatum,

hypothalamus, brainstem and a decrease in cerebral cortex, cerebellum and liver

96



of ethanol treated rats compared to control. The alterations of DA D, and 5-HT;4
receptor function and gene expression in the cerebellum, hypothalamus, corpus
striatum, cerebral cortex play an important role in the sympathetic regulation of
ALDH enzyme in ethanol addiction. The differences between ethanol treated and
control rats in disposition of DA D, and 5-HT>4 receptors give a clear change in
the presynaptic monoamine synthesis and postsynaptic receptor availability
during ethanol treatment. The hyperactivity at the frontal cortical region is
observed during the EEG analysis support the central effects of ethanol
especially at the frontal region. The gene expression pattern of DA D, and
5-HT,4 receptors in the brain regions were in concordance with the receptor
alterations. The results from ethanol perfusion study in liver show the
dopaminergic and serotonergic functional regulation on ALDH. These alterations
in the DA D, and 5-HT,4 receptors of the brain are suggested to play a regulatory
role in the liver through sympathetic innervation. In addition, receptor binding
studies and Real-Time PCR analysis revealed that DA D,, 5-HT,, receptor
functional alterations observed during ethanol treatment clearly gives indication
to the ethanol induced gene expression changes, functional interaction between
DA D; and 5-HT,4 receptors and their role in ALDH regulation. Brain activity
studies using EEG showed a prominent difference in the frontal region of ethanol

treated rats.

Thus it is concluded that there is a serotonergic and dopaminergic
functional regulation of ALDH activity in the brain regions and liver of ethanol
treated rats. Gene expression studies of DA D, and 5-HT;, studies confirm these
observations. Perfusion studies using DA, 5-HT and glucose showed ALDH

regulatory function. Brain activity measeurement using EEG showed a prominent
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frontal brain wave difference. This will have immense clinical significance in the

management of ethanol addiction.
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)

2)

3)

4)

3)

6)

SUMMARY

Ethanol treated rats were used as a model system to study the
dopaminergic and serotonergic functional regulation on the aldehyde

dehydrogenase at the molecular level.

Ethanol induced aldehyde dehydrogenase activity was observed in liver,

plasma and the different brain regions when compared to control.

Dopamine and serotonin content decreased in liver and brain regions -

cerebral cortex, corpus striatum of ethanol treated rats with an increased

"HVA/DA, 5-HIAA/5-HT tumover rate.

Dopamine content increased in brainstem with an increased HVA/DA
turnover rate and serotonin content decreased in brainstem with an
increased 5-HIAA/5-HT turnover rate of ethanol treated rats compared to

control.

Serotonin content increased in hypothalamus with a decreased
5-HIAA/5-HT tumover rate and dopamine content decreased in
hypothalamus with an increased HVA/DA turnover rate of ethanol

treated rats compared to control.

Dopamine D, receptor binding parameters showed a functional increase
in cerebellum, hypothalamus, and decrease in brainstem, cerebral cortex

and corpus striatum of ethanol treated rats compared to control.
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7)

8)

9)

10)

1)

5-HT;a receptor binding parameters showed a functional increase in
corpus striatum, hypothalamus, brainstem and decrease in cerebral

cortex, cerebellum and liver of ethano! treated rats compared to control.

Real-Time PCR analysis of DA D,, 5-HT,A receptor confirmed the

receptor data.

Real-Time PCR analysis of ALDH showed an increased expression in

liver and cerebral cortex of ethanol treated rats compared to control.

Dopaminergic and serotonergic functional regulation of kinetic
parameters of aldehyde dehydrogenase was observed in ethanol treated

rats compared to control.

A prominent brain activity difference was observed in the frontal cortical

region in ethanol treated rats compared to control by EEG analysis.

Thus it is observed that there is a functional regulation of dopamine and

serotonin through DA D, and 5-HT,, receptors in brain regions and liver on

ALDH activity. The data suggests the importance of brain neurotrasmitter

regulatory role on ALDH activity in ethanol tereated rats.
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Ethanol consumption of experimental rats
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Figure-2

Body weight of control and ethanol treated rats during
the period of experiment
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Table-1

Body weight of control and ethanol treated rats
during the period of experiment

Experimental status Wt (g)
Control 203+ 1.2
Ethanol treated 194 + 1.6*

Values are mean + S.E.M. of 4-6 separate experiments
*p<0.05 when compared with control



Figure-3

Kinetic parameters,V _ and K_, of

aldehyde dehydrogenase in cerebral cortex
of control and ethanol treated rats

—eo— Control
-0 Ethanol treated

Specific Activity (Laits/mg protein)

0 — T

0 100 200 300

Substrate concentration (uM)

Table-2

Kinetic parameters, V,,, and K,, of aldehyde dehydrogenase in the
cerebral cortex of control and ethanol treated rats

Experimental status V max K, (M)
(Units/mg protein)

Control 0.76 £0.03 25.00+ 0.05

Ethanol treated 1.00 £ 0.06* 40.00 £ 1.59%**

Values are mean + S.E.M. of 4-6 separate experiments
*p<0.05 when compared with control
***p<(0.001 when compared with control



Figure-4

Real -Time PCR amplification of the ALDH mRNA from the
cerebral cortex of control and ethanol treated rats

1 2
3 4
Table -3
No. Experimental status Ct value
1 Control 29.94
2 Ethanol treated 28.01

1. Graph representing the crossing threshold (Ct) of sample, 2. Melt curve of the sample
of the amplification obtained after the reaction, 3. Graph representing the crossing

threshold of the house keeping gene (B-actin), 4. Melt curve of the house keeping gene
obtained after the reaction.

Ct value represents the cycle number at which the fluorescence crosses the set threshold



Figure-5
Kinetic parameters, Vm“ and K _, of

aldehyde dehydrogenas in the brainstem

os of control and ethanol treated rats
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Table-4

Kinetic parameters, V., and K, of
aldehyde dehydrogenase in the brainstem of
control and ethanol treated rats

Experimental status V max Kn (uM)
(Units/mg protein)
Control 0.27+0.02 11.17£0.73
Ethanol treated 021 £0.03 5.75 £ 0.38%**

Values are mean + S.E.M. of 4-6 separate experiments
¥**p<0.001 when compared with control



Figure-6

Kinetic parameters,V___and K, of aldehyde

dehydrogenase in the cerebellum of control
and ethanol treated rats
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Table -5

Kinetic parameters, V,, and K, of
aldehyde dehydrogenase in the cerebellum of control
and ethanol treated rats

Experimental status V max Kn (uM)
(Units/mg protein)

Control 0.76 £ 0.02 11.66 +0.83

Ethanol treated 0.56 £ 0.01 ** 27.66 £ 1.76***

Values are mean + S.E.M. of 4-6 separate experiments
**p<0.01 when compared with control
**¥%p<0.001 when compared with control



Figure-7

Kinetic parameters,V__ and K_, of

aldehyde dehydrogenase in the plasma of control
and ethanol treated rats
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Table -6

Kinetic parameters, V,, and K, of aldehyde dehydrogenase
in the plasma of control and ethanol treated rats

Experimental V max K., (M)
status (Units/mg protein)

Control 0.18+0.0! 11.00+ 0.02
Ethanol treated 023+£0.01* 3.75+0.75%*

Values are mean + S_.E.M. of 4-6 separate experiments
*p<0.05 when compared with control
**p<0.01 when compared with control



Figure-8

Kinetic parameters,V__ and K ; of

aldehyde dehydrogenase in the liver of control
and ethanol treated rats
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Table-7

Kinetic parameters, V,,,, and K, of aldehyde dehydrogenase
in the liver of control and ethanol treated rats

Experimental status V ax Kan(pM)
(Units/mg protein)

Control 0.45%0.02 23.00x0.01

Ethanol treated 0.69+0.01* 10.42 £ 0.08**

Values are mean + S.E.M. of 4-6 separate experiments
*p<0.05 when compared with control
**p<0.01 when compared with control




Figure-9

Real -Time PCR amplification of the ALDH mRNA from the
liver of control and ethanol treated rats

1 2
3 4
Table - 8
No. Experimental status Ct value
1 Control 29.86
2 Ethanol treated 27.29

1.Graph representing the crossing threshold (Ct) of sample, 2. Melt curve of the sample
of the amplification obtained after the reaction, 3. Graph representing the crossing
threshold of the house keeping gene (B-actin), 4. Melt curve of the house keeping gene
obtained after the reaction.

Ct value represents the cycle number at which the fluorescence crosses the set threshold.
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Figure-10

Scatchard analysis of [3H| YM-09151-2 binding against sulpiride
in the cerebral cortex of control and ethanol treated rats.
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20 40 80
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Table -14

[PH]YM-09151-2 binding parameters in the cerebral cortex
of control and ethanol treated rats

Experimental status

Bpmax (fmoles/mg protein) K4 (nM)

Control

59.60 = 1.80

0.92 £0.22

Ethanol treated

26.50 £ 3.30 ***

0.69+0.18 *

Values are mean + SEM of 4-6 separate experiments.
*p<0.05 compared with control
***p<0.00 Icompared with control
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Figure-12

Real -Time PCR amplification of the D, receptor mRNA from the
cerebral cortex of control and ethanol treated rats

1 2
3 4
Table -16
No. Experimental status Ct value
1 Control 29.77
2 Ethanol treated 31.30

1.Graph representing the crossing threshold (Ct) of sample, 2. Melt curve of the sample
of the amplification obtained after the reaction, 3. Graph representing the crossing
threshold of the house keeping gene (B-actin), 4. Melt curve of the house keeping gene
obtained after the reaction.

Ct value represents the cycle number at which the fluorescence crosses the set threshold.



Figure-13

Scatchard analysis of [’H]YM-09151-2 binding against
sulpiride in the brainstem of control and

ethanol treated rats
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Table -17

[’H]YM-09151-2 binding parameters in the brainstem
of control and ethanol treated rats

Experimental status Bax (fmoles/mg protein) K4 (nM)
Control 32.16+2.19 0.50+0.15
Ethanol treated 17.50+£2.5* 0.28 £ 0 .06*

Values are mean = SEM of 4-6 separate experiments.
* p<0.05compared with control
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Figure-15

Scatchard analysis of [3H]YM-0915]-2 binding against
sulpiride in the hypothalamus of control and
~—__ . _ ethanol treated rats
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Table -19

PHIYM-09151-2 binding parameters in the hypothalamus
of control and ethanol treated rats

Experimental status Bax (fmoles/mg protein) K4 (nM)
Control 10.40+ 0.32 0.76 £ 0.01
Ethanol! treated 19.07 £ 0,43 **x* 0.79 £ 0.06

Values are mean = SEM of 4-6 separate experiments.
**¥*p<0.001 compared with control
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Figure-17

Real -Time PCR amplification of the D, receptor mRNA from the
hypothalamus of control and ethanol treated rats

1 2
3 4
Table-21
No. Experimental status Ct value
1 Control 29.41
2 Ethanol treated 28.39

1.Graph representing the crossing threshold (Ct) of sample, 2. Melt curve of the sample
of the amplification obtained after the reaction, 3. Graph representing the crossing

threshold of the house keeping gene (B-actin), 4. Melt curve of the house keeping gene
obtained after the reaction.

Ct value represents the cycle number at which the fluorescence crosses the set threshold



Figure-18

Scatchard analysis of |3H] YM-(09151-2 binding against
sulpiride in the corpus striatum of control and
ethanol treated rats.
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Table -22

[’H]YM-09151-2 binding parameters in the corpus striatum
of control and ethanol treated rats

Experimental status | B, (fmoles/mg protein) Ky (nM)
Control 238.33 £ 19.65 1.32+0.20
Ethanol treated 160.00 + 20.82 * 0.92 +0.09*

Values are mean + SEM of 4-6 separate experiments.
*p<0.05 compared with control
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Figure-20

Real -Time PCR amplification of the D, receptor mRNA from the
corpus striatum of control and ethanol treated rats

1 2
3 4
Table -24
No. Experimental status Ct value
1 Control 28.24
2 Ethanol treated 29.45

1.Graph representing the crossing threshold (Ct) of sample, 2. Melt curve of the sample
of the amplification obtained after the reaction, 3. Graph representing the crossing

threshold of the house keeping gene (B-actin), 4. Melt curve of the house keeping gene
obtained after the reaction.

Ct value represents the cycle number at which the fluorescence crosses the set threshold.



Figure-21

Scatchard analysis of [3H]YM-09151-2 binding against
sulpiride in the cerebellum of control and

ethanol treated rats

Bound/free
[3H|YM-09151-2 (fmoles/mg protein/nM)

® Control
G FEthanol treated

10 15

Bound (fmoles/mg protein)

Table -25

20

[*H|YM-09151-2 binding parameters in the cerebellum
of control and ethanol treated rats

Experimental status Binax (fmoles/mg protein) K4 (nM)
Control 8.00 + 0.01 1.97+0.74
Ethanol treated 13.50 +£ 0.83 *** 2.88 £0.46 **

Values are mean £ SEM of 4-6 separate experiments.
**p<0.01 compared with control
***p<0.001 compared with control
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Figure-23

Real -Time PCR amplification of the D, receptor mRNA from the
cerebellum of control and ethanol treated rats

1 2
3 4
Table - 27
No. Experimental status Ct value
1 Control 30.43
2 Ethanol treated 29.34

1.Graph representing the crossing threshold (Ct) of sample, 2. Melt curve of the sample
of the amplification obtained after the reaction, 3. Graph representing the crossing

threshold of the house keeping gene (B-actin), 4. Melt curve of the house keeping gene
obtained after the reaction.

Ct value represents the cycle number at which the fluorescence crosses the set threshold.



Figure-24

Scatchard analysis of [3H] MDL 100907 binding against
ketanserin in the cerebral cortex of control and

ethanol treated rats.
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Table - 28

250

[’H|MDL 100907 binding parameters in the cerebral cortex
of control and ethanol treated rats

Experimental status Bax (fmoles/mg protein) Kg (nM)
Control 238.50 £ 6.69 1.57+0.31
Ethanol treated 173.00 £ 5.18 *** 1.72+£0.58

Values are mean + SEM of 4-6 separate experiments.,
**¥p<0.001 compared with control
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Figure-26

Real -Time PCR amplification of the 5-HT,, receptor mRNA from the
cerebral cortex of control and ethanol treated rats

Table -30
No. Experimental status Ct value
1 Control 30.38
2 Ethanol treated 36.25

1.Graph representing the crossing threshold (Ct) of sample, 2. Melt curve of the sample
of the amplification obtained after the reaction, 3. Graph representing the crossing

threshold of the house keeping gene (B-actin), 4. Melt curve of the house keeping gene
obtained after the reaction.

Ct value represents the cycle number at which the fluorescence crosses the set threshold.



Figure-27

Scatchard analysis of [JH] MDL 100907 binding against
ketanserin in the brainstem of control and

25

ethanol treated rats
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Table -31

60

[’H]MDL 100907 binding parameters in the brainstem
of control and ethanol treated rats

Experimental status Bunax (fmoles/mg protein) Kg (nM)
Control 23.00£2.51 1.36+£0.10
Ethanol treated 45.67 + (0,33 **x* 1.85+ 0.07

Values are mean = SEM of 4-6 separate experiments.

***#p<(0.001 compared with control
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Figure-29

Scatchard analysis of [3 H] MDL 100907 binding against
ketanserin in the hypothalamus of control and
ethanol treated rats.
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Table -33

|°’HJMDL 100907 binding parameters in the hypothalamus
of control and ethanol treated rats

Experimental status Bunax (fmoles/mg protein) K4 (nM)
Control 1456+ 0.87 1.03 £0.03
Ethanol treated 27.06 + 0.81 *** 2.17 = 0.18%**

Values are mean = SEM of 4-6 separate experiments.
***p<0.001 compared with control
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Figure-31

Real -Time PCR amplification of the 5-HT;, receptor mRNA from the
hypothalamus of control and ethanol treated rats

1 2
3 4
Table- 35
No. Experimental status Ct value
1 Control 31.26
2 Ethanol treated 26.37

1.Graph representing the crossing threshold (Ct) of sample, 2. Melt curve of the sample
of the amplification obtained after the reaction, 3. Graph representing the crossing
threshold of the house keeping gene (B-actin), 4. Melt curve of the house keeping gene
obtained after the reaction.

Ct value represents the cycle number at which the fluorescence crosses the set threshold.



Figure-32

Scatchard analysis of [3H] MDL 100907 binding against
ketanserin in the corpus striatum of control and
ethanol treated rats.
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Table -36

[’H] MDL 100907 binding parameters in the corpus striatum
of control and ethanol treated rats

Experimental status Binax (fmoles/mg protein) K4 (nM)
Control 23.16£0.92 1.85+0.07
Ethanol treated 37.17+£0.17 *** 1.30 £ 0.10**

Values are mean = SEM of 4-6 separate experiments.
**p<0.01 compared with control
***p<0.001 compared with control
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Figure-34

Real-Time PCR amplification of the 5-HT:, receptor mRNA from the
corpus striatum of control and ethanol treated rats

1 2
3 4
Table- 38
No. Experimental status Ct value
1 Control 30.31
2 Ethanol treated 29.17

1.Graph representing the crossing threshold (Ct) of sample, 2. Melt curve of the sample
of the amplification obtained after the reaction, 3. Graph representing the crossing

threshold of the house keeping gene (B-actin), 4. Melt curve of the house keeping gene
obtained after the reaction.

Ct value represents the cycle number at which the fluorescence crosses the set threshold.



Figure-35

Scatchard analysis of |3H| MDL 100907 binding against
ketanserin in the cerebellum of control and

ethanol treated rats.
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Table -39

PH]MDL 100907 binding parameters in the cerebellum

of control and ethanol treated

rats

Experimental status B ux (fmoles/mg protein) K4 (nM)
Control 6.17£0.08 0.61 x0.02
Ethanol treated 4.03 £ 0.08** 0.52 £ 0.01

Values are mean + SEM of 4-6 separate experiments.
**¥p<0.01 compared with control
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Figure-37

Real-Time PCR amplification of the 5-HT;, receptor mRNA from the
cerebellum of control and ethanol treated rats

1

2
3 4
Table-41
No. Experimental status Ct value
| Control 30.55
2 Ethanol treated 33.84

1.Graph representing the crossing threshold (Ct) of sample, 2. Melt curve of the sample
of the amplification obtained after the reaction, 3. Graph representing the crossing
threshold of the house keeping gene (B-actin), 4. Melt curve of the house keeping gene
obtained after the reaction.

Ct value represents the cycle number at which the fluorescence crosses the set threshold.



Figure-38

Scatchard analysis of [3H] MDL 100907 binding against
ketanserin in the liver of control
and ethanol treated rats.

Bound/free
[PHIMDL 100907 (fmoles/mg protein/nM)

Bound (fmoles/mg protein)

Table — 42

[’H]MDL 100907 binding parameters in the liver
of control and ethanol treated rats

Experimental status Bumax (fmoles/mg protein) Kq (nM)
Control 21.00+0.99 42+058
Ethanol treated 0.43 £ (0.99*** 2.4+ 035%

Values are mean + SEM of 4-6 separate experiments.
*p<0.05 compared with control
***p<0.001 compared with control
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Figure-40

Real-Time PCR amplification of the 5-HT,, receptor mRNA from the liver
of control and ethanol treated rats

1 2
3 4
Table — 44
No. Experimental status Ct value
1 Control 30.85
2 Ethanol treated 37.31

1.Graph representing the crossing threshold (Ct) of sample, 2. Melt curve of the sample
of the amplification obtained after the reaction, 3. Graph representing the crossing

threshold of the house keeping gene (B-actin), 4. Melt curve of the house keeping gene
obtained after the reaction.

Ct value represents the cycle number at which the fluorescence crosses the set threshold.



Figure-41

ALDH enzyme activity in the perfused liver of experimental rats
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Control [PBS 5%E10H S%EOH + 10°M  S%EIOH + 10° M
perfused) perfused DA perfused 5-HT perfused

Values are mean = S.E.M. of 4-6 separate experiments
**+p<0.01 when compared with control
@@@p<0.001 when compared with 5% EtOH perfused

Table-45
ALDH enzyme activity in the perfused liver of experimental rats
Experimental status Vmax (Units/mg protein)
Control [PBS perfused] 0.34+0.01
5%EtOH perfused 0.52+£0.01%**
5%EtOH + 10* M DA perfused 0.34 £ 0.02 @@@
5%EtOH + 10* M 5-HT perfused 0.60 + 0.01***

Values are mean + S.E.M. of 4-6 separate experiments
***p<0.01 when compared with control
@@@p<0.001 when compared with 5% EtOH perfused



Figure-42

ALDH enzyme activity in the perfused liver of experimental rats
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Control [PBS S%EIOH  S%EtOH + 107 M S%EIOH + 107 M
perfused] perfused DA perfused 5-HT perfused

Values are mean *+ S.E.M. of 4-6 separate experiments
**p<0.001 when compared with control
@@p<0.01 when compared with 5% EtOH perfused

Table-46
ALDH enzyme activity in the perfused liver of experimental rats

Experimental status Kn (HM)
Control [PBS perfused] 5.88 £ 0.45
5%EtOH perfused 25.50 +0.50 **
5%EtOH + 10 M DA perfused 27.50 + 7.50 **
5%EtOH + 10 M 5-HT perfused 11.00 + 0. 09 @@

Values are mean + S.E.M. of 4-6 separate experiments
**p<0.001 when compared with control
@@p<0.01 when compared with 5% EtOH perfused




Figure-43

ALDH enzyme activity in the perfused liver of experimental rats
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Control [PBS S%EtOH perfused  3%[EtOH +4mM  So4F1OH + 20mM
perfused) Glucose perfused  Glugose perfused

Values are mean + S.E.M. of 4-6 separate experiments
***p<0.001 when compared with control
@@@ p<0.001 when compared with EtOH treated

Table-47

ALDH enzyme activity in the perfused liver of experimental rats

Experimental status V max (Units/mg protein)
Control [PBS perfused] 0.34 £ 0.01
5%EtOH perfused 0.52 + Q.01 ***
5%EtOH + 4mM Glucose 038+ 0.03 @@
5%EtOH + 20mM Glucose 0.33+£0.06 @@@

Values are mean = S.E.M. of 4-6 separate experiments
***p<0.001 when compared with control
@@@p<0.01 when compared with 5% EtOH perfused




Figure-44

ALDH enzyme activity in the perfused liver of experimental rats
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Control [PBS S%EIOH  S%E(OH + 4mM 5%E1Ot| + 20mM
perfused] perfused Glucose perfused Glucose perfused

Values are mean + S.E.M. of 4-6 separate experiments
**p<0.01, ***p<0.001 when compared with control
@ p<0.05 when compared with EtOH treated

Table-48
ALDH enzyme activity in the perfused liver of experimental rats
Experimental status Ky (M)
Control [PBS perfused] 5.88 £ 0.45
5%EtOH perfused 25.50 £ 0.50 **
5%EtOH + 4mM Glucose 1025+220 @
5%EtOH + 20mM Glucose 29.50 + 5.50 ***

Values are mean + S.E.M. of 4-6 separate experiments
*¥*#%p<0.001, **p<0.01 when compared with control
@p<0.001 when compared with 5% EtOH perfused




Figure-45
EEG of control rats

Figure-46
EEG of ethanol treated rats
P
F3-Frontal lobe - left F4-Frontal lobe - right
P3-Parietal lobe - left P4-Parietal lobe - right
0O1-Occipital lobe - left 02-Occipital lobe- right
T3-Temporal lobe- left T4-Temporal lobe- right

Al- Reference - left A2-Reference - right
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