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Notations and symbols

H - Separable Hilbert space.

B(H) - Set of all bounded operators on H.

K(H) - Set of all compact operators on H.

σ(A) - Spectrum of the operator A.

σe(A) - Essential spectrum of the operator A.

‖A‖e - Essential norm.

A(x) - Analytic family of operators.

A(f) - Toeplitz operator with symbol f.

L(f) - Toeplitz-Laurent operator with symbol f.

An(f) - n× n Toeplitz matrix with symbol f.

v



Chapter 1

Introduction

Self-adjoint operators on Hilbert spaces have an extremely detailed theory

and are of great importance in modern analysis due to its immense appli-

cations (see [30, 59] and the references there reported). For instance, the

fundamental equations of quantum mechanics involve certain self-adjoint

and unitary operators. Interestingly, the Hamiltonian in quantum me-

chanics is an unbounded self-adjoint operator on a Hilbert space. The

study of spectrum and the related properties of these operators are in-

evitable and has numerous applications, most notably the mathematical

formulation of quantum mechanics. The interplay between the physical

phenomena in quantum mechanics and the spectra of the linear opera-

tors associated with it, is not surprising. Most of the physical phenomena

in quantum mechanics can be understood by knowing the spectra of the

corresponding linear operators. For example, the point spectrum of the

Hamiltonian corresponds to the energy levels of the bound states of the

system. The rest of the spectrum plays an important role in scattering

1



2 Chapter 1. Introduction

theory of the system. This interplay signifies the fundamental question

that, ’How to approximate spectra of linear operators on separable Hilbert

spaces?’. This question in operator theory goes back to Szegö [63] and has

received some attention since then.

Several attempts have been made to make use of the finite dimensional

theory in the computation of spectrum of bounded operators in an infinite

dimensional space through an asymptotic way. This approach found suc-

cess in getting good estimates in the case of some self-adjoint operators.

Significant efforts have been done by many mathematicians to build up a

general theory for the approximation of spectrum of bounded self-adjoint

operators on an infinite dimensional Hilbert space. To quote some of the

recent contributions in this direction are due to W.B Arveson [3], Albrecht

Böttcher et al.[19, 15], E.B Davies [34, 35], I. Gohberg et al.[37], Hagen.R

et al.[40], V.S Varadarajan and S.R.S Varadhan [69], A.Hansen [41, 42]

etc. The list is nevertheless incomplete.

This thesis discusses the linear algebraic approach used to study the

spectrum of a bounded self-adjoint operator A on a separable complex

Hilbert space H. The finite dimensional compressions An of A are con-

sidered here. The asymptotic values of spectrum of An are used to study

the nature of spectrum of A. The spectral gap prediction problem is ad-

dressed first. Also the holomorphic family of operators A(x) are considered

to study the linear algebraic techniques under this holomorphic perturba-

tion. The approximation techniques used in [19], are translated into the

case of a one parameter family of operators, in a uniform way. This is an

attempt to answer the question of stability in the spectral approximation

and spectral gap predictions under a holomorphic perturbation.
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The discrete version of Borg-type theorems and its several modifica-

tions are proved in this thesis. Borg theorem deals with the uniqueness

question of potentials associated with the Schrodinger operator. Histor-

ically this uniqueness theorem comes in the discipline of inverse spectral

theory and found its applications in many branches of science. Here we

use the block Toeplitz-Laurent operators to prove the discrete versions of

Borg-type theorems. The symbol corresponding to these block Toeplitz-

Laurent operators are used to compute the spectrum. It should be noted

that in many practical situations, the symbol function is not explicitly

known; only its Fourier coefficients are available. Also it is a difficult

task to recapture the symbol from its Fourier coefficients. Some of the

results proved here, partly overlap with the known theorems in operator

theory. The pure linear algebraic approach is the main novelty of the

results proved here.

The pre-conditioners arising from the Frobenius optimal approximants

were used in the special case of Toeplitz matrices by Stefano Serra Capiz-

zano and Tyrtyshnikove (see [60, 65]). In this thesis, we extend this notion

of pre-conditioners in the setting of operators acting on a separable Hilbert

space. Here the new notions of convergence of Completely Positive maps

are introduced, using the notion of eigenvalue clustering. The new versions

of Korovkin-type theorems are proved with these new notions of conver-

gence. The classical Korovkin-type theorems are used as valuable tools

in the constructive approximation theory. The noncommutative versions

were proved in the case of algebras of operators. The theorems proved

in this thesis, are the infinite dimensional versions of the results in [60].

We hope that these developments are useful from a spectral theory point

of view, since the asymptotic of pre-conditioners contain much spectral
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information of the operator under concern.

1.1 Basic definitions and preliminary results

We begin with some basic definitions and useful results in our context.

Although these are classical notions, we present them just for the sake of

completeness. Denote by B(H), the set of all bounded operators on H.

Definition 1.1.1. A complex number λ is said to be in the resolvent

set ρ(A) of A, if the operator λI −A is bijective with a bounded inverse.

Rλ(A) = (λI − A)−1 is called the resolvent of A at λ. If λ is not an

element of ρ(A), then λ is said to be in the spectrum of A, denoted by

σ(A).

Definition 1.1.2. The spectral radius r(A) of A is defined as

r(A) = sup{|λ| , λ ∈ σ(A)}.

For bounded self-adjoint operator A, r(A) = ‖A‖, and we recall the

following result.

Theorem 1.1.1. If A ∈ B(H) and A is self-adjoint, then, σ(A) is

contained in the interval [m,M ], where m, M are given by

m = inf
‖x‖=1

〈A(x), x〉 and M = sup
‖x‖=1

〈A(x), x〉 (1.1)

The above bounds for the spectrum of a bounded self-adjoint operator
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can not be shrunk further, as observed in the next theorem. Also these

bounds give the norm of the operator.

Theorem 1.1.2. Let m, M are as in (1.1) for the bounded self-adjoint

operator A. Then both m and M are spectral values of A. Moreover, we

have

r(A) = ‖A‖ = max(|m| , |M |) = sup
‖x‖=1

|〈A(x), x〉| .

The spectrum of a bounded self-adjoint operator acting on an infinite

dimensional Hilbert space, may or may not have eigenvalues. The subset

of the spectrum consisting of discrete eigenvalues of finite multiplicity, is

called the discrete spectrum and denoted by σd(A). The remaining part

of the spectrum is called the essential spectrum and denoted by σe(A).

This part of the spectrum is invariant under compact perturbations and

it contains all spectral values, which are not discrete eigenvalues of finite

multiplicity. The definition given below is in the case of an arbitrary

bounded operator.

Definition 1.1.3. (Essential spectrum) We say that λ lies in the

essential spectrum σe(A) of a bounded operator A, if λI − A is not a

Fredholm operator.

Since the set K(H) of all compact operators on H is a norm closed

two-sided ideal in the Banach algebra B(H), the quotient algebra

L(H) = B(H)/K(H)
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is a Banach algebra with respect to the quotient norm

‖π(A)‖ = inf {‖A+K‖ : K ∈ K(H)} ,

where π : B(H) → L(H) is the quotient map. L(H) is called the Calkin

algebra.

Remark 1.1.1. In the case of a bounded self-adjoint operator A,

the notation ‖A‖ess will be used to denote the quotient norm and will be

called essential norm, since

‖A‖ess = max(|ν| , |µ|),

where µ and ν are the upper and lower bounds of the essential spectrum

respectively.

Theorem 1.1.3. The bounded operator A on H is Fredholm if and

only if A is invertible in the Calkin algebra. Hence σe(A) = σ(π(A)).

From the above theorem, it is clear that σe(A) is a closed subset of

σ(A) and in the case of self-adjoint operators, it is contained in a closed

interval, say [ν, µ] which is a sub interval of [m,M ].

Remark 1.1.2. There are other notions of essential spectrum in the

case of non separable Hilbert spaces, associated with ideals other than

K(H). However we will consider only the separable Hilbert spaces.

We end this section by recalling the Spectral Mapping Theorem, which

is useful for us.
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Theorem 1.1.4. (Spectral Mapping Theorem) Let A be a self-

adjoint operator and let φ(.) be a bounded continuous function on σ(A).

Then σ(φ(A)) = φ(σ(A)), where φ(A) can be defined using appropriate

functional calculus.

1.2 Outline of the thesis

What follows is a brief description of the contents of the thesis. The

thesis focus on the linear algebraic techniques used in the spectral theory

of bounded self-adjoint operators on a separable Hilbert space. The thesis

is divided into six chapters including this introduction.

This introductory chapter is followed by a chapter on spectral gap

problems. The usage of truncation method in the computation of spectrum

of a bounded self-adjoint operator A on a separable complex Hilbert space

H is discussed in that chapter. The sequence of eigenvalues of the finite

dimensional truncations An = PnAPn, where Pn is a sequence of finite

dimensional orthogonal projections on H, are considered to approximate

the spectrum of A. It was already observed in [19] that the bounds of

essential spectrum and the discrete eigenvalues lying outside these bounds,

can be approximated by this method. The major problem considered here

is to predict the existence of gaps that may occur between the bounds of

the essential spectrum of A, using the eigenvalues of An. When considering

self-adjoint operators coming from Chemistry or Mathematical Physics

[59], one is interested in the spectral gaps because they represent the region

of instability of the associated eigenvalue problem Au = λu. Also the

intervals between these bounds, containing only discrete eigenvalues, are
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treated as spectral gaps. Locating such eigenvalues in between a spectral

gap is another interesting problem.

In the third chapter, the discrete version of classical Borg theorem

for Schrodinger operator with periodic potential is proved. The discrete

versions of Borg-type theorem (see [36, 59]) are proved here, using the rich

theory of Toeplitz-Laurent matrices [18, 38].

Consider the one dimensional Schrodinger operator Ã(u) = −ü+V ·u
with real valued periodic potential V (·), defined on a suitable subspace of

L2(R): the spectrum is the union of closed intervals and in some cases,

these intervals may be separated by open intervals (spectral gaps). The

Borg theorem states that the spectrum has no gaps if and only if the pe-

riodic potential V (·) is constant almost everywhere. In this chapter, the

families of finite difference approximations of the operator Ã are consid-

ered, depending on two parameters n, that is the number of periodicity

intervals possibly infinite, and p, the precision of the approximation in

each interval. It is shown that the approach, with fixed p, leads to fami-

lies of sequences {An(p)}, where every matrix An(p) can be interpreted as

a block Toeplitz matrix generated by a p× p matrix-valued symbol f : in

other words, every An(p) with finite n is a finite section of the bi-infinite

Toeplitz-Laurent operator A∞(p) = L(f). The specific feature of the sym-

bol f , which is a linear trigonometric polynomial, allows to identify the

distribution of the collective spectra of the matrix-sequence {An(p)} and

in particular provide a simple way for proving a discrete version of Borg

theorem. Also, the Borg-type theorems in the case of a more general block

Toeplitz-Laurent operator and in the case of a periodic Jacobi operator

are proved in this chapter.
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In the next chapter, the approximation theorems in [19] are studied

under an analytic perturbation of the operator, using the perturbation

techniques due to Kato [43]. The observations in [19] are studied when

the operator is subjected to analytic perturbation, following the definitions

by Kato in [43]. It is shown that the bounds of the essential spectrum and

the discrete eigenvalues those lie outside the bounds of essential spectrum

of a holomorphic family of operators A(x) can be approximated uniformly

in any compact neighborhood of x. Also, the family of block Toeplitz

operators arising from a particular kind of matrix valued symbols is con-

sidered. The perturbation results for the eigenvalues of matrices (see [7])

are applied to the matrix valued symbol and achieved some estimates.

Finally, we extend the notion of pre-conditioners used in the case of

Toeplitz matrices (see [60, 65]), into the setting of operators acting on sep-

arable Hilbert spaces, and study with the help of certain noncommutative

versions of Korovkin-type theorems. This is interesting in spectral the-

ory point of view, because the pre-conditioners play a crucial role in the

approximation of spectrum. Stefano Serra Capizzano and Tyrtyshnikove

used the classical Korovkin theorem [45] to deal with pre-conditioners of

Toeplitz as well as block Toeplitz matrices (see [60, 65]). In this chapter,

some of the noncommutative Korovkin-type theorems are used to trans-

late the results in [60, 65], to a more general context of infinite dimensional

bounded linear operators. The notion of strong, weak and uniform clus-

tering of matrix sequences are introduced. These concepts were used to

study the problem of pre-conditioners for the Toeplitz matrix sequences

by Stefano Serra Capizzano and Tyrtyshnikove (see [60, 65]).

The theme of this chapter is to study pre-conditioners of infinite di-

mensional bounded linear operators on separable Hilbert spaces. This
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problem is analyzed using the concept of Completely Positive-maps (CP-

maps). The noncommutative Korovkin-type theorems are proved with

respect to strong, weak and uniform clustering, analogous to the Korovkin-

type theorems by Stefano Serra Capizzano in [60]. These noncommutative

Korovkin-type theorems are used to study the above mentioned infinite

dimensional pre-conditioners.

The thesis ends with a concluding chapter, which lists down some of

the problems that are to be addressed in future.

The main results of the thesis can be classified as three different ap-

proaches to the spectral approximation problems. The truncation method

and its perturbed versions are part of the classical linear algebraic ap-

proach to the subject. The usage of block Toeplitz-Laurent operators and

the matrix valued symbols is considered as a particular example where the

linear algebraic techniques are effective in simplifying problems in inverse

spectral theory. The abstract approach to the spectral approximation

problems via pre-conditioners and Korovkin-type theorems is an attempt

to make the computations involved, well conditioned. However, in all

these approaches, linear algebra comes as the central object.



Chapter 2

Spectral Gap Problems

The usage of linear algebraic techniques in the computation of spectrum

of a bounded self-adjoint operator A on a separable Hilbert space H, are

discussed in this chapter. The eigenvalues of truncations of a bounded

self-adjoint operator are used to study the behavior of its spectrum.

It was already observed in [19] that the bounds of essential spectrum

and the discrete eigenvalues lying outside these bounds, are possible to

approximate by this method. The usage of algebraic techniques in this

problem was done earlier in [3]. The major problem that is considered here

is to predict the gaps that may occur between the bounds of the essential

spectrum using the eigenvalues of truncations. An interval I is called

spectral gap if there exist real sets J1, J2 containing the spectrum of A

such that sup J1 6 inf I < sup I 6 inf J2. We are interested in the gaps lie

between the bounds of essential spectrum of A. Also the intervals between

these bounds, containing only discrete eigenvalues, are treated as spectral

11



12 Chapter 2. Spectral Gap Problems

gaps. Locating such eigenvalues in between a spectral gap, is another

interesting problem, to be handled linear algebraically. Historically, gap

related problems have been studied with special attention for Schrodinger

operators (see e.g. [26, 34, 35, 59]).

The chapter is organized as follows. We begin with a preliminary sec-

tion in which a survey of the algebraic and linear algebraic developments

in this area due to [3] and [19] are presented. In the second section, the

results which predict the existence of spectral gaps, using the eigenvalues

of truncations, are proved. A new method to detect the spectral gaps

is proposed in the third section, which is an analogue of the study by

E.B Davies, Levitin and Shargorodsky (see [34],[35], [51],[52]). Also some

computational issues are addressed there.

2.1 The Truncation method

Let A be a bounded self-adjoint operator on the separable Hilbert space H

and let {e1, e2, . . .} be an orthonormal basis for H. Denote by Pn, the pro-

jection of H onto the finite dimensional subspace, Ln = span{e1, e2, . . . , en}.
Consider the finite dimensional truncations of A, that is An = PnAPn.

Now if (ai,j) = (〈Aej, ei〉) is the matrix representation of A associated

to the orthonormal basis {e1, e2, . . .}, then the n × n matrix (ai,j)16i,j6n

coincides with the matrix representation of An restricted to the image of

Pn.

The following basic question is addressed here. What is the relation

between the eigenvalue sequence of the matrices (ai,j)16i,j6n, and spectrum
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of A. Whether the spectrum can be approximated using the eigenvalue

sequence of truncations. There are some disappointing examples in which

the eigenvalues of truncations give little information about the spectrum.

For instance, in the case of the right shift operator on the sequence space

l2(Z), the eigenvalue sequence of the truncations is the constant sequence

1, while the spectrum is the whole closed unit disc. For a self-adjoint

example, one can consider the operator A on l2(N), defined as follows.

A(xn) = (xπ(n)), (2.1)

where π is a suitably chosen permutation on N. The essential properties

required for the permutation π, are discussed in [3], due to which the

truncation method fails to approximate the spectrum.

Some developments in this area are reported below. The major con-

tributions are due to W.B Arveson, who generalized the notion of band

limited matrices in [3], and achieved some success in the case of some spe-

cial class of operators. We brief up the definitions and some results below

which will play a very important role in the approximation of spectrum

of self-adjoint operators. The notation An is used to denote the matrix

(ai,j)16i,j6n.

Definition 2.1.1. A filtration of a Hilbert space H is a sequence of

finite dimensional subspaces of H, {Ln;n ∈ N} such that

Ln ⊂ Ln+1 and closure of
⋃

n

Ln is H.

Example 2.1.1. A typical example for filtration in a Hilbert space

with an orthonormal basis is the following. Let {en : n ∈ Z} be the
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bilateral orthonormal basis for H and let {Ln} be defined by

Ln = span{e−n, e−n+1, . . . en}.

Then {Ln;n ∈ Z} is a filtration.

Definition 2.1.2. Let {Ln : n ∈ N} be a filtration. And Pn be the

projection onto Ln. The degree of a bounded operator A on H is defined

by

deg(A) = sup
n>1

rank(PnA− APn).

Corresponding to each filtration, a Banach ∗−algebra of operators can

be defined, which is named as Arveson’s class, defined as follows.

Definition 2.1.3. A is an operator in the Arveson’s class if

A =
∞
∑

n=1

An, where deg(An) <∞ for every n and convergence is in the

operator norm, in such a way that

∞
∑

n=1

(1 + deg(An)
1

2 )‖An‖ <∞

In case the filtration is the span of finite number of elements in the basis

as defined in example (2.1.1), the following gives a concrete description of

operators in the Arveson’s class.

Theorem 2.1.1. [3] Let {Ln;n ∈ Z} be the filtration defined in

example (2.1.1). Also let (ai,j) be the matrix representation of a bounded
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operator A, with respect to {en}, and for every k ∈ Z let

dk = sup
i∈Z

|ai+k,i|

be the sup norm of the kth diagonal of (ai,j). Then A will be in the

Arveson’s class whenever the series
∑

k |k|1/2dk converges.

In particular, any operator whose matrix representation (ai,j) is band-

limited, in the sense that ai,j = 0 whenever |i−j| is sufficiently large, must

be in the Arveson’s class. Before stating the spectral inclusion theorems

for arbitrary self-adjoint operators and for operators in the Arveson’s class,

recall the notion of essential points and transient points.

Definition 2.1.4. Essential point: A real number λ is an essential

point of A, if for every open set U containing λ,

lim
n→∞

Nn(U) = ∞,where Nn(U) is the number of eigenvalues ofAn, inU.

Definition 2.1.5. Transient point: A real number λ is a transient

point of A if there is an open set U containing λ, such that supNn(U)

with n varying on the set of all natural numbers, is finite.

Remark 2.1.1. It should be noted that a number can be neither

transient nor essential.

Denote Λ = {λ ∈ R;λ = limλn, λn ∈ σ(An)} and Λe as the set of

all essential points. The following spectral inclusion results for a bounded

self-adjoint operator A is of high importance throughout this thesis.
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Theorem 2.1.2. [3] σ(A) ⊆ Λ ⊆ [m,M ] and σe(A) ⊆ Λe.

Equality in one of the above inclusion for self-adjoint operators in the

Arveson’s class, was also proved in [3]. The precise result is the following.

Theorem 2.1.3. [3] If A is a bounded self-adjoint operator in the

Arveson’s class, then σe(A) = Λe and every point in Λ is either transient

or essential.

Remark 2.1.2. The above two theorems enable us to confine our

attention to the limiting set Λ and the essential points Λe, in the task

of computation of spectrum and essential spectrum of a bounded self-

adjoint operator respectively. Now the following issues may arise. The

limiting set Λ may contain points which do not belong to the spectrum.

Such points are called spurious eigenvalues. In the case of an operator

in the Arveson’s class, the essential points will give all information about

essential spectrum, while the transient points may be misleading. Here we

loose only information about eigenvalues of finite multiplicity. But this is

very important if such points exist between the lower and upper bounds

of essential spectrum, since they lead to the existence of spectral gaps

between these bounds.

Things can be more difficult in the case of an arbitrary bounded self-

adjoint operator. There may exist essential points, which are not spectral

values. The operator given by the equation (2.1) is of that kind. Anyway

the inclusion in Theorem (2.1.2) helps us to determine the spectrum, with

an additional assumption of connectedness of the essential spectrum. The

details of this claim are given below, which is a brief review of the arti-
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cle [19] with some slight modifications. This will play a key role in the

forthcoming sections.

2.1.1 Linear algebraic approach:

Recall that, for a bounded self-adjoint operator A, σ(A) is contained in

the interval [m,M ] and σe(A) in [ν, µ] where m,M, ν, µ, are bounds of

σ(A) andσe(A) respectively. The following definitions and preliminary

results are needed further.

Definition 2.1.6. Consider the singular number sk, k natural num-

ber, sk (A) = inf {‖A− F‖ ;F ∈ B (H) , rankF 6 k − 1} is the kth ap-

proximation number of A.

Clearly we have ‖A‖ = s1 (A) > s2 (A) > . . . > 0

Theorem 2.1.4. [37] limk→∞ sk (A) = ‖A‖ess where ‖A‖ess is the

essential norm.

Theorem 2.1.5. [19] limn→∞ sk (An) = sk (A) .

Remark 2.1.3. For |A| = (A∗A)
1/2 , in case A is a finite matrix,

the approximation numbers are the eigenvalues of |A|. That is sk (A) =

λk (|A|) , where λk (|A|) is the kth eigenvalue of |A|.

Theorem 2.1.6. [37] The set σ(|A|) − [0, ‖A‖ess] is at most count-

able, ‖A‖ess is the only possible accumulation point, and all the points
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of the set are eigenvalues with finite multiplicity of |A|. Furthermore if

λ1(|A|) > λ2(|A|) > . . . > λN(|A|)

are those N eigenvalues (N can be infinity), then

sk (A) =

{

λk (|A|) , ifN = ∞ or 1 6 k 6 N

‖A‖ess , ifN <∞ and k > N + 1
(2.2)

Corollary 1.

lim
n→∞

λk (|An|) = lim
n→∞

sk (An) = sk (A) =

{

λk (|A|) ifN = ∞ or 1 6 k 6 N

‖A‖ess if N <∞ and k > N + 1

Remark 2.1.4. The above result will play a key role in the approxi-

mation of spectrum. Considering the positive operator A−mI, it can be

deduced that the set σ(A)∩ (µ,M ] is at most countable and that consists

of eigenvalues of finite multiplicity by Theorem (2.1.6). Also µ is the only

possible accumulation point. Let these eigenvalues be

λ+
R(A) 6 . . . 6 λ+

2 (A) 6 λ+
1 (A).

Similarly by considering the operator MI − A, it can be observed that

σ(A) ∩ [m, ν) consists of at most countably many eigenvalues of finite

multiplicity with only possible accumulation point ν. Let

λ−1 (A) 6 λ−2 (A) 6 . . . 6 λ−S (A)

be those eigenvalues. Also the numbers R and S can be infinity. Arrange
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the eigenvalues of An as

λ1(An) > λ2(An) > . . . > λn(An).

From here onwards, the above notations will be used.

Now we prove the following result from [19] which is the major tool

that is used frequently in this thesis.

Theorem 2.1.7. For every fixed integer k we have

lim
n→∞

λk(An) =

{

λ+
k (A) , if R = ∞ or 1 6 k 6 R

µ, if R < ∞ and k > R + 1

lim
n→∞

λn+1−k(An) =

{

λ−k (A) , if S = ∞ or 1 6 k 6 S

ν, if S < ∞ and k > S + 1

In particular,

lim
k→∞

lim
n→∞

λk(An) = µ and lim
k→∞

lim
n→∞

λn+1−k(An) = ν.

Proof. The following observations are made first.

|A−mI| = A−mI, Pn(A−mI)Pn = An−mIn, and |An −mIn| = An−mIn.

Hence from the above corollary, we have

lim
n→∞

λk(An −mIn) =

{

λk (A−mI) , ifR = ∞ or 1 6 k 6 R

‖A−mI‖ess, ifR < ∞ and k > R + 1

(2.3)
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Similarly, by considering the operator MI − A, we get

lim
n→∞

λk(MIn − An) =

{

λk (MI − A) , ifS = ∞ or 1 6 k 6 S

‖MI − A‖ess, ifS < ∞ and k > S + 1

(2.4)

Also we have the following identities

‖A−mI‖ess = µ−m, ‖MI − A‖ess = M − ν. (2.5)

λk(An −mIn) = λk(An) −m, λk(MIn − An) = M − λn+1−k(An). (2.6)

λk(A−mI) = λ+
k (A) −m, λk(MI − A) = M − λ−k (A). (2.7)

Substituting them in equations (2.3) and (2.4), we get

lim
n→∞

λk(An) =

{

λ+
k (A) , ifR = ∞ or 1 6 k 6 R

µ, ifR < ∞ and k > R + 1

lim
n→∞

λn+1−k(An) =

{

λ−k (A) , ifS = ∞ or 1 6 k 6 S

ν, ifS < ∞ and k > S + 1

Hence the proof.

Remark 2.1.5. The above results are also true if we replace An by

some other sequence A1n with the property that

‖An − A1n‖ → 0 asn→ ∞

In order to justify this, we need only to recall an important inequality

concerning the eigenvalues of self-adjoint matrices A,B ( see page no.63
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of [7])

|λk (A) − λk (B)| 6 ‖A−B‖ . (2.8)

Remark 2.1.6. By Theorem (2.1.7), all the discrete spectral values

lying outside the bounds of essential spectrum and the upper and lower

bounds of the essential spectrum can be approximated. Note that, the

theorem points out exactly the particular sequence that converges to a

discrete spectral value. But how fast does the convergence take place, is

still not known. Looking at some concrete situations, one may hope for a

better rate of convergence.

Even the rate of convergence is not estimated, it can be proved that

the order of convergence is the same as the order of convergence of ap-

proximation numbers. The following theorem gives a vague idea about

the rate of convergence.

Theorem 2.1.8. If sk(An)− sk(A) = O(θn), where θn goes to 0 as n

tends to ∞, then

λk(An) =

{

λ+
k (A) +O(θn), ifR = ∞ or 1 6 k 6 R

µ+O(θn), ifR < ∞ and k > R + 1

λn+1−k(An) =

{

λ−k (A) +O(θn), ifS = ∞ or 1 6 k 6 S

ν +O(θn), ifS < ∞ and k > S + 1

where R and S are the same notations used in Theorem(2.1.7).

Proof. Let N be the number of eigenvalues lying in σ(|A|)−[0, ‖A‖ess] .
From equation (2.2), and the remarks that was made just before Theorem
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(2.1.6), we have the following identity.

sk(An) − sk(A) =

{

λk(|An|) − λk(|A|), ifN = ∞ or 1 6 k 6 N

λk(|An|) − ‖A‖ess , ifN <∞ and k > N + 1

Since by hypothesis, sk(An) − sk(A) = O(θn), we get

λk(|An|) − λk (|A|) = O(θn), if N = ∞ or 1 6 k 6 N,

λk(|An|) − ‖A‖ess = O(θn), if N < ∞ and k > N + 1.

Applying this to the positive operators A − mI, and MI − A, with the

notations used in Theorem (2.1.7), we get the following conclusions.

λk(An −mIn) =

{

λk (A−mI) +O(θn), ifR = ∞ or 1 6 k 6 R

‖A−mI‖ess +O(θn), ifR < ∞ and k > R + 1

and

λk(MIn − An) =

{

λk (MI − A) +O(θn), ifS = ∞ or 1 6 k 6 S

‖MI − A‖ess +O(θn), ifS < ∞ and k > S + 1

Using the identities (2.5), (2.6) and (2.7), we get the desired conclusions

λk(An) =

{

λ+
k (A) +O(θn), ifR = ∞ or 1 6 k 6 R

µ+O(θn), ifR < ∞ and k > R + 1

λn+1−k(An) =

{

λ−k (A) +O(θn), ifS = ∞ or 1 6 k 6 S

ν +O(θn), ifS < ∞ and k > S + 1

Hence the proof.
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The above theorem is the first result regarding the rate of convergence

in the approximations done in Theorem (2.1.7). So far there is no evidence

of remainder estimation and the error estimation in these approximations

in the case of an arbitrary self-adjoint operator to the best of our knowl-

edge. The subsequent theorem taken from [19] denies the existence of

spurious eigenvalues under the assumption of connectedness of essential

spectrum.

Theorem 2.1.9. [19] If A is a self-adjoint operator and if σe(A) is

connected, then σ(A) = Λ.

Remark 2.1.7. It is worthwhile to notice that the connectedness

of essential spectrum enables us to compute the spectrum using finite

dimensional truncations. Thus, if we can not determine the spectrum

fully by the truncations, then the essential spectrum is not connected.

In short, if there is a spurious eigenvalue, then there exists a gap in the

essential spectrum.

Remark 2.1.8. The converse of the above observation need not

be true. That is the existence of a spectral gap does not lead to the

existence of a spurious eigenvalue. For example, if we take A to be be the

projection operator on to some closed subspace of H, then the eigenvalues

of truncations are 0 and 1 only. There we have Λ = σ(A) = {0, 1}. Hence

no spurious eigenvalues, but still there is a gap.

In summary, the upper and lower bounds of the essential spectrum

can be computed by using the sequence of eigenvalues of finite dimen-

sional truncations. Also the discrete eigenvalues lying below and above

these bounds can be computed. The above results pinpointing the par-
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ticular sequence of eigenvalues that converges to a particular eigenvalue

of the operator. Now the remaining part is the computation of essential

spectrum. The problem is whether it is possible to locate the gaps in the

essential spectrum using these truncations. If it is possible, then the spec-

trum is fully determined up to some discrete eigenvalues that may have

trapped between these gaps.

2.2 Gaps in the essential spectrum

The following theorem is an attempt to predict the existence of spectral

gaps, using the finite dimensional truncations. The notation #S is used

to denote the number of elements in the set S.

Theorem 2.2.1. Let A be a bounded self-adjoint operator and

λn1(An) > λn2(An) > ... > λnn(An) be the eigenvalues of An arranged in

decreasing order. For each positive integer n, let {wnk : k = 1, 2, ...n} be

a set of numbers such that 0 6 wnk 6 1 and
n
∑

k=1

wnk = 1. If there exists

a δ > 0 and K > 0 such that

#

{

λnj;

∣

∣

∣

∣

∣

n
∑

k=1

wnkλnk
− λnj

∣

∣

∣

∣

∣

< δ

}

< K (2.9)

and in addition if σe(A) and σ(A) has the same upper and lower bounds,

then σe(A) has a gap.

Proof. Consider the set S =

{

n
∑

k=1

wnkλnk, n = 1, 2, 3 . . .

}

. Observe
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that λnn 6
n
∑

k=1

wnkλnk 6 λn1. Also since each λnj’s lying in the interval

[m,M ], the set S is contained in the interval [m,M ] = [ν, µ].

Case 1. Assume that S is a finite set, say S = {a1, a2, a3 . . . am}. In

this case, the value of the sum
n
∑

k=1

wnkλnk equals some of the numbers ai’s

for infinitely many n. Let a1, a2, a3 . . . ap be those numbers. That is

n
∑

k=1

wnkλnk = ai for infinitely many n and i = 1, 2, . . . p.

From this and by the condition (2.9), for each i = 1, 2, . . . p, we have

Nn(ai − δ, ai + δ) = # {λnj; |ai − λnj| < δ} < K for infinitely many n.

HenceNn(ai−δ, ai+δ) will not go to infinity as n goes to infinity. Therefore

no number in the interval (ai − δ, ai + δ) is an essential point. Since the

essential spectrum is contained the set of all essential points, by Theorem

(2.1.2), there is no essential spectral values in this interval. Also since

each ai lies between the bounds of essential spectrum, we can choose an

appropriate ǫ > 0 such that (ai − ǫ, ai + ǫ) lies between the bounds and

contained in the interval (ai − δ, ai + δ). Then the interval (ai − ǫ, ai + ǫ)

is a spectral gap.

Case 2. Now we consider the case when S is an infinite set. Here S

has at least one limit point in R. If w0 is a limit point of the set S, then

we have ν 6 w0 6 µ.

Now the interval
(

w0 − δ/2, w0 + δ/2

)

will contain infinitely many
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points from the set S. Corresponding to these points, there are infinitely

many An’s for which the number of eigenvalues in
(

w0 − δ/2, w0 + δ/2

)

is

bounded by K due to (2.9). Hence the sequence Nn

(

w0 − δ
2
, w0 + δ

2

)

will

not go to infinity, since a subsequence is bounded by K. Hence no point in

the interval
(

w0 − δ/2, w0 + δ/2

)

is an essential point. Since the essential

spectrum is contained the set of all essential points, by Theorem (2.1.2),
(

w0 − δ/2, w0 + δ/2

)

contains no essential spectral values. Hence, as in the

case 1, we can choose an ǫ > 0, such that the interval (w0 − ǫ, w0 + ǫ) is a

spectral gap between the bounds of the essential spectrum and the proof

is completed.

Remark 2.2.1. The proof of the above theorem gives some infor-

mation regarding the gap size. Since the interval
(

w0 − δ/2, w0 + δ/2

)

contains no essential spectral values, it is a spectral gap if it lies between

the bounds of the essential spectrum. In that case the gap size may be

greater than δ. In the case 1, it could be greater than 2δ.

Remark 2.2.2. There is the possibility for the presence of discrete

eigenvalues inside the spectral gaps detected using the above theorem.

Remark 2.2.3. The special case which is more interesting is when

we choose wnk = 1
n
, for all n. In that case, we are actually looking at the

averages of eigenvalues of truncations and these averages can be computed

using the trace at each level.

In the Theorem (2.2.1), the weighted mean of the eigenvalues at each

level and its deviation is analyzed. Now some special choices of the weight-

ing method are discussed below to predict the existence of spectral gaps,

using the Theorem (2.2.1).
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Special Choice I

Here is an instance where these weights wnk arises naturally associated

with a self-adjoint operator on a Hilbert space. Let An =
n
∑

k=1

λn,kQn,k

be the spectral resolution of An. Define wnk = 〈Qn,ke1, e1〉 . Then 0 6

wnk 6 1 and
n
∑

k=1

wnk = 1. Now

n
∑

k=1

wnkλnk =
n
∑

k=1

λnk〈Qn,ke1, e1〉 = 〈Ane1, e1〉 = 〈Ae1, e1〉 = a11.

Therefore by Theorem (2.2.1), if there exists a δ > 0 and a K > 0, such

that

# {λnj; |a11 − λnj| < δ} < K

then there exists a gap in the essential spectrum of A. That means the

spectral gap prediction is done by looking at the first entry in the matrix

representation of A. That is, if the first entry in the matrix representation

of A, is not an essential point, then there exists a gap in the essential

spectrum.

Remark 2.2.4. All points of the form 〈Aei, ei〉 = aii are in the

numerical range which lies between the bounds of the essential spectrum,

in the case that the bounds coincide with the bounds of the spectrum.

Hence in that case, if aii is not an essential point for some i, then that

will lead to the existence of a spectral gap. That means if any one of the

diagonal entries in the matrix representation of A is not an essential point,

then there exists a gap in the essential spectrum as indicated in the above

special choice of wnk.



28 Chapter 2. Spectral Gap Problems

The following is an example where the first entry a11 is a transient

point and the spectral gap prediction is valid.

Example 2.2.1. Define a bounded self-adjoint operator A on l2(N),

as follows.

A(xn) = (xn−1 + xn+1) + (vnxn), x0 = 0;

where the periodic sequence (vn) = (1, 2, 3, 1, 2, 3, . . .). The matrix repre-

sentation of A, associated to the standard orthonormal basis, is tridiag-

onal. The diagonal entries are the entries in the periodic sequence (vn)

and upper and lower diagonal will be 1. In the next chapter, we will see

that such matrices can be identified as the block Toeplitz operator with

corresponding matrix valued symbol given by

f̃ (θ) =







1 1 eiθ

1 2 1

e−iθ 1 3






.

By our special choice above, Theorem (2.2.1) guarantees that if 〈A(e1), e1〉 =

1 is a transient point, then σe(A) has a gap. The proof for the fact that 1

is a transient point, is given in the Example (3.4.1).

The operator considered in the above example comes as a discrete

version of Schrodinger operator, which arises naturally in many practi-

cal problems. In general, the discrete Schrodinger operator is defined on

l2 (Z) as follows.

A(y) = (yn−1 + yn+1) + (vnyn) for every y = (. . . y1, y2, y3 . . .) ∈ l2 (Z)

where v = (. . . v1, v2, . . .) is a fixed bounded sequence. The corresponding
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truncations are

(A)2n+1 =











































v−n 1 0 0 .

1 v−n+1 1 0 0 .

0 1 . 1 0 0 .

0 0 1 . 1 0 0 .

0 0 1 . 1 0 0 .

. 0 0 1 . 1 0 0

. 0 0 1 . 1 0 0

. 0 0 1 . 1 0

. 0 0 1 . 1

. 0 0 1 vn











































We consider the cases where the bounds of σ(A) and σe(A) coincide. Let

an be the averages of the 2n+1 terms (v−n . . . v1, v2, . . . vn) of the sequence

v. If we choose wnk = 1
n
, by Theorem (2.2.1), if there exists a δ > 0 such

that

# {λnj; |an − λnj| < δ} < K for some fixed K,

then there exists a gap in the essential spectrum.

Remark 2.2.5. The Borg-type theorems will be proved in the next

chapter, which will ensure that if the potential function is periodic and

non constant, then the operator will have gaps in the essential spectrum

[39]. For eg. if x = (. . . a, b, a, b, a, b, . . .), with a < b, then the interval

(a, b) is a gap.

Special Choice II

By invoking Theorem (2.1.7), there exist sequences of eigenvalues of trun-
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cations, which converges to the bounds of the essential spectrum. That

is

there exist λnl
, λnm such that lim

nl→∞
λnl

= ν, and lim
nm→∞

λnm = µ.

Now fix a number t ∈ (0, 1), and define wnk as follows.

wnk =











t, if k = l,

1 − t, if k = m,

0, otherwise,

Then we have the following conclusions. If there exists a δ > 0 and K > 0

such that

# {λnj; |tλnl + (1 − t)λnm − λnj| < δ} < K,

then there is a gap in the essential spectrum σe(A).

Proof of the above assertion is only a repetition of the arguments used

in the proof of Theorem (2.2.1). Theorem (2.2.1) can not be applied

directly because the crucial assumption that σ(A) and σe(A) have the

same bounds, is missing here. Notice that this assumption was used only

to ensure that the sum
n
∑

k=1

wnkλnk lying between the bounds of essential

spectrum. But the above choice of wnk guarantees that the sum
n
∑

k=1

wnkλnk

converges to some number between the bounds of essential spectrum. And

that number will create a gap in the essential spectrum, as observed in

the proof of Theorem (2.2.1).

Remark 2.2.6. The above observations show that we may be able to
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predict the existence of spectral gaps, relaxing the assumptions of Theorem

(2.2.1). But the freedom for choosing the weights wnk to be arbitrary, is

lost here.

It is not clear whether the converse of Theorem (2.2.1) is true for an

arbitrary self-adjoint operator. The converse is proved below in the case

of operators in the Arveson’s class.

Theorem 2.2.2. Let A be a bounded self-adjoint operator in the

Arveson’s class. And suppose that there exists a gap in the essential

spectrum. Then there exists a set of numbers {wnk : k = 1, 2, ...n} such

that 0 6 wnk 6 1 and
n
∑

k=1

wnk = 1 and a δ > 0 such that

#

{

λnj;

∣

∣

∣

∣

∣

n
∑

k=1

wnkλnk
− λnj

∣

∣

∣

∣

∣

< δ

}

< K,

for some K > 0.

Proof. Let (a, b) be a gap in the essential spectrum. Then there exists

sequences of eigenvalues of truncations λnl
, λnm such that

lim
nl→∞

λnl
= a and lim

nm→∞
λnm = b.

Fix a t ∈ (0, 1) and define the sequence wnk as

wnk =











t, if k = l,

1 − t, if k = m,

0, otherwise,
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Since the number ct = ta+ (1 − t)b is in the interval (a, b), it is not an

essential point. Also since A is in the Arveson’s class, all such points are

transient points by Theorem (2.1.3). Hence there exists a δ1 > 0 such

that supNn (ct − δ1, ct + δ1) < K1 for some K1 > 0. Also

n
∑

k=1

wnkλnk = tλnl
+ (1 − t)λnm→ta+ (1 − t)b = ct as n→∞.

Therefore there exists an N such that

∣

∣

∣

∣

∣

ct −
n
∑

k=1

wnkλnk

∣

∣

∣

∣

∣

< δ1/2 for all n > N.

Now if for some n > N,

∣

∣

∣

∣

n
∑

k=1

wnkλnk
− λnj

∣

∣

∣

∣

< δ1/2, then |ct − λnj| < δ1.

Therefore,

#

{

λnj;

∣

∣

∣

∣

∣

n
∑

k=1

wnkλnk
− λnj

∣

∣

∣

∣

∣

<
δ1
2

}

< Nn (ct − δ1, ct + δ1) < K1, ∀n > N.

Now choosing K = sup{K1, N} and δ = δ1
2
, the proof is completed.

Remark 2.2.7. In the above proof, the sequence {wnk} and the

bound K will depend on the particular choice of t ∈ (0, 1) .

2.3 Gap prediction methods

The concepts of second order relative spectra and quadratic projection

method, which are almost synonyms of the other, were used in the spec-
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tral pollution problems and in determining the eigenvalues in the gaps

by E.B. Davies, Levitin, Shagorodsky, etc.(see [34],[35], [51],[52]). Anal-

ogous to them, a new method is proposed in this section, to use in the

spectral gap prediction problems. In short, the spectral gap prediction

problems are reduced into the determination of nonzero values of a partic-

ular function. This particular function can be approximated by a sequence

of functions uniformly. And this sequence of functions comes directly from

the eigenvalues of truncations of the operator under concern.

The idea is to open the gap by translating and squaring the operator

and identify each numbers in the interval (ν, µ) as the lower bound of

essential spectrum of a positive definite operator. And there the trunca-

tion methods, in particular, Theorem (2.1.7) are applied to compute this

lower bound. The idea of squaring the operator to get information about

its spectrum was used before. First, we shall briefly mention the work

done by E.B.Davies in [34] and [35], which is of great interest, where he

considered functions which are related to the distance from the spectrum.

2.3.1 Analytical approach

In his paper published in 1998 [34], E.B.Davies considered the function F

defined by

F (t) = inf

{‖A(x) − tx‖
‖x‖ : 0 6= x ∈ L

}

(2.10)

where L is a subspace of H. Then he observed the following (Lemma 1

and its corollary in [34]).

• F is Lipschitz continuous and satisfies |F (s) − F (t)| 6 |s− t| , for
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all s, t ∈ R.

• F (t) > d(t, σ(A)) = dist(t, σ(A))

• If 0 6 F (t) 6 δ, then σ(A) ∩ [t− δ, t+ δ] 6= ∅.

From these observations, he obtained some bounds for the eigenvalues

in the spectral gap of A, and found it useful in some concrete situations.

For the efficient computation of the function F, he considered family of

operators N(s) on the given finite dimensional subspace L, defined by

N(s) = AL
∗AL − 2sPAL + s2IL (2.11)

where P is the projection onto L and the notation AL means A restricted

to L. The eigenvalues of these finite dimensional operators form sequence

of real analytic functions. He used these sequence to approximate the

function F and thereby obtain information about the spectral properties

of A. The main result is stated below (special case of Theorem 9 in [34],

under the assumption that A is bounded).

Theorem 2.3.1. Suppose {Ln}∞n=1 is an increasing sequence of closed

subspaces of H. If Fn the functions associated with Ln according to

(2.10), then Fn decreases monotonically and converge locally uniformly

to d(., σ(A)). In particular, s ∈ σ(A) if and only if

lim
n→∞

Fn(s) = 0.

In his paper on spectral pollution [35] in 2004, he tried to link the

above method with various techniques that were known in the past due
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to Lehmann [49], Behnke and Goerisch [11], Zimmerman and Mertin [72].

There he tried to resolve the problem of spurious eigenvalues in a spectral

gap. He considered the function

G(t) = inf{‖A(x) − tx‖ : x ∈ H, ‖x‖ = 1}

and wanted to evaluate G numerically and to locate spectrum of A, using

the fact that G(t) = d(t, σ(A)). He introduced the approximating sequence

of functions as

Gn(t) = inf{‖A(x) − tx‖ : x ∈ Ln, ‖x‖ = 1}

where Ln is an increasing sequence of subspaces whose union is dense in

H, and used them to obtain some results as listed below (page no. 422-425

of [35]).

• Given ǫ > 0, there exists an Nǫ such that n > Nǫ implies

G(t) 6 Gn(t) 6 G(t) + ǫ for all t ∈ R

• σ(A) ∩ [t−Gn(t), t+Gn(t)] 6= ∅ for every t ∈ R.

Using these and with some assumptions on Gn, he obtained some

bounds for the eigenvalues between the bounds of essential spectrum. He

also produced some numerical evidence for the implementation of these

techniques in bounding the eigenvalues of some particular operators.

Levitin and Shargorodsky considered the problem of spectral pollution

in [52]. They suggested the usage of second order relative spectra, to deal
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the problem. For the sake of completion, the definition is given below.

Definition 2.3.1. [52] Let L be a finite-dimensional subspace of

H. A complex number z is said to belong to the second order spectrum

σ2(A,L) of A relative to L if there exists a nonzero u in L such that

〈(A− zI)u, (A− z̄I)v〉 = 0, for every v ∈ L

They proved the following. Consider a disc in the complex plane with

diameter is an interval on the real line which intersect with the spectrum of

A. Every such discs will have nonempty intersection with the second order

relative spectrum (Lemma 5.2 of [52]). They also provided some numerical

results in case of some Multiplication and Differential operators, which

indicated the effectiveness of second order relative spectra in avoiding

the spectral pollution. In [51], Boulton and Levitin used the quadratic

projection method to avoid spectral pollution in the case of some particular

Schrodinger operators. Before introducing the new method, we list down a

couple of theorems from [54] which considered operators with disconnected

essential spectrum and useful in our context.

Lemma 2.3.1. [54] Let A be a bounded self-adjoint operator with

the essential spectrum, σe(A) = [a, b]
⋃ {c} where a < b < c. Assume

that b is not an accumulation point of the discrete spectra of A. Then

a,b,c can be computed by truncation method.

Next theorem will give information about one endpoint of the spectral

gap, provided the other end point is known.

Theorem 2.3.2. [54] Let A be a bounded self-adjoint operator and
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σe(A) = [a,b]
⋃

[c,d], where a < b < c < d. Assume that b is known

and not an accumulation point of the discrete spectra of A. Then c can

be computed by truncation method.

2.3.2 The new method

To predict the existence of a gap in the essential spectrum, we need to

know whether a number λ in (ν, µ) belongs to the spectrum or not. If it is

not a spectral value, then there exists an open interval between (ν, µ) as a

part of the compliment of the spectrum, since the compliment is an open

set. We observe that the spectral gap prediction is possible by computing

values of the following function.

Definition 2.3.2. Define the nonnegative valued function f on the

real line R as follows.

f (λ) = νλ = inf σe((A− λI)2).

The primary observation is that we can predict the existence of a

gap inside the essential spectrum by evaluating the function and checking

whether it attains a nonzero value. The nonzero values of this function

give the indication of spectral gaps.

Theorem 2.3.3. The number λ in the interval (ν, µ) is in the gap if

and only if f (λ) > 0. Also one end point of the gap will be λ±
√

f (λ).

Proof. Using the spectral mapping theorem, we observe that f (λ) is

the square of the distance of λ to the essential spectrum of A. The details
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are given below.

inf σe((A− λI)2) = d(0, σe(A− λI)2) = d(0, σe(A− λI))2 = d(λ, σe(A))2

Hence λ is in the essential spectrum of A if and only if f (λ) = 0, since

essential spectrum is a closed set. Therefore the number λ in the interval

(ν, µ) is in the gap if and only if f (λ) > 0. Now if λ is in the gap, then

one of the end points will be at a distance
√

f(λ) from λ. Hence that end

point will be λ±
√

f(λ).

Figure 2.1: Graph of f(λ)

The advantage of considering f(λ) is that, it is the lower bound of the

essential spectrum of the operator (A − λI)2, which we can compute by

using the finite dimensional truncations with the help of Theorem (2.1.7).
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So the computation of f(λ), for each λ, is possible. This enables us to

predict the gap using truncations. Also here we are able to compute one

end point of a gap. The other end point is possible to compute as discussed

in Theorem (2.3.2).

Coming back to the Arveson’s class, we observe that the essential

points and hence the essential spectrum is fully determined by the ze-

ros of the function in the definition (2.3.2)

Corollary 2. If A is a bounded self-adjoint operator in the Arveson’s

class, then λ is an essential point if and only if f(λ) = 0.

Proof. This follows easily from Theorems (2.1.3) and (2.3.3).

When one wishes to apply the above results to determine the gaps

in the essential spectrum of a particular operator, one has to face the

following problems. To check for each λ in (ν, µ) , is a difficult task in

the computational point of view. Also taking truncations of the square of

the operator may lead to difficulty. Note that (PnAPn)
2 and PnA

2Pn are

entirely different. So we may have to do more computations to handle the

problem.

Another problem is the rate of convergence and estimation of the re-

mainder term. For each λ in (ν, µ) the value of the function f(λ) has to be

computed. This computation involves truncation of the operator (A−λI)2

and the limiting process of sequence of eigenvalues of each truncation. The

rate of convergence of these approximations and the remainder estimate

are the questions of interest.
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Below, the function f(.) is approximated by a double sequence of func-

tions, which arise from the eigenvalues of truncations of operators.

Theorem 2.3.4. Let fn,k be the sequence of functions defined by

fn,k (λ) = λn+1−k

(

Pn (A− λI)2 Pn
)

. Then f(.) is the uniform limit of a

subsequence of {fn,k (.)} on all compact subsets of the real line.

Proof. By Theorem (2.1.7), we have for each λ,

f (λ) = lim
k→∞

lim
n→∞

fn,k (λ) , where fn,k (λ) = λn+1−k

(

Pn (A− λI)2 Pn
)

.

Now the quantity ∆ = |fn,k (λ) − fn,k (λ0)| can be estimated as follows.

∆ =
∣

∣λn+1−k

(

Pn (A− λI)2 Pn
)

− λn+1−k

(

Pn (A− λ0I)
2 Pn

)∣

∣

6
∥

∥Pn (A− λI)2 Pn − Pn (A− λ0I)
2 Pn

∥

∥

6
∥

∥(A− λI)2 − (A− λ0I)
2
∥

∥ =
∥

∥(λ2 − λ0
2)I − 2(λ0 − λ)A

∥

∥ 6 M |λ− λ0| ,

where M = 2 (|µ| + ‖A‖). The first inequality follows from (2.8) and the

second one from the fact that ‖Pn‖ = 1. Hence we have

|fn,k (λ) − fn,k (λ0)| 6 M |λ− λ0| . (2.12)

Since the constant M above is independent of n, k or λ, {fn,k (.)} forms an

equicontinuous family of functions, also it is point wise bounded. Hence

{fn,k (.)} has a subsequence which converges uniformly on all compact

subsets by Arzela-Ascoi theorem. Hence the proof is complete.

The following result makes the computation of f (λ) much easier for

a particular class of operators. When the operator is truncated first and
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square the truncation rather than truncating the square of the operator,

the difficulty of squaring a bounded operator is reduced. The computation

needs only to square the finite matrices. Denote A − λI by the symbol

Aλ.

Theorem 2.3.5. If ‖PnA− APn‖ → 0 as n→ ∞, then

lim
k→∞

lim
n→∞

λn+1−k

(

Pn (A− λI)2 Pn
)

= lim
k→∞

lim
n→∞

λn+1−k (Pn (A− λI)Pn)
2 .

Proof. Observe the following chain of equalities;

∥

∥Pn (Aλ)
2 Pn − (Pn (Aλ)Pn)

2
∥

∥ = ‖Pn (Aλ) (Aλ)Pn − (Pn (Aλ)Pn) (Pn (Aλ)Pn)‖
= ‖Pn (Aλ) (Aλ)Pn− (Aλ)Pn (Aλ)Pn + (Aλ)PnPn (Aλ)Pn − Pn (Aλ)Pn (Aλ)Pn ‖

using Pn
2 = Pn and adding and subtracting (Aλ)Pn (Aλ)Pn. And notice

that the latter is equal to

‖[Pn (Aλ) − (Aλ)Pn] (Aλ)Pn − [Pn (Aλ) − (Aλ)Pn]Pn (Aλ)Pn‖ =

‖[Pn (Aλ) − (Aλ)Pn] [(Aλ)Pn − Pn (Aλ)Pn]‖ 6 2 ‖Aλ‖ ‖Pn (Aλ) − (Aλ)Pn‖ =

2 ‖Aλ‖ ‖PnA− APn‖ → 0,

as the dimension n tends to infinity. The proof is completed by applying

(2.12) to the matrices
(

Pn (A− λI)2 Pn
)

and (Pn (A− λI)Pn)
2.

Remark 2.3.1. The function f(.) that is considered here is directly

related to the distance from the essential spectrum, while Davies’ function

was related with the distance from the spectrum. Here the approximation

results in [19], especially Theorem (2.1.7) are used to approximate the

function. But it is still not known to us whether these results are useful in
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a computational point of view. The methods due to Davies were applied in

the case of some Schrodinger operators with a particular kind of potentials

in [52] and [51]. We hope that a combined use of both methods may give

a better understanding of the spectrum.



Chapter 3

The Borg-type theorems

In this chapter, the indications are given for the possibility of classical

Borg-type theorems in the case of discrete Schrodinger operator with pe-

riodic potential. Moreover we convert other results as those regarding the

spectral distribution, in the spirit of Szegö theorems [38]. The main tools

are the use of finite differences for identifying the analogous discrete oper-

ators and a formulation of the discrete problem in terms of block Toeplitz

sequences with p × p matrix-valued symbols. Also, different possibilities

for the generalized versions of the theorem are discussed. As it is remarked

earlier, the usage of the matrix valued symbol to compute the spectrum

of the operator may not be possible in many practical situations. In many

such cases, only the Fourier coefficients will be available from which the

symbol has to be recaptured, which is again a difficult problem.

Consider the one dimensional Schrodinger operator Ã(u) = −ü+V ·u
with real valued periodic potential V (·), defined on a suitable subspace of

43



44 Chapter 3. The Borg-type theorems

L2(R). The Borg theorem states that there are no spectral gaps if and

only if the periodic potential V (·) is constant almost everywhere. Here the

families of finite difference approximations of the operator Ã are considered

depending on two parameters n, that is the number of periodicity intervals

possibly infinite, and p, the precision of the approximation in each interval.

In this chapter, it is shown that the approach, with fixed p, leads to families

of sequences {An(p)}, where every matrix An(p) can be interpreted as a

block Toeplitz matrix generated by a p × p matrix-valued symbol f : in

other words, every An(p) with finite n is a finite section of the bi-infinite

Toeplitz-Laurent operator A∞(p) = L(f). The specific feature of the

symbol f , which is a linear trigonometric polynomial, allows to identify

the distribution of the collective spectra of the matrix-sequence {An(p)}
and in particular provide a simple way for proving a discrete version of

Borg theorem, in which the discrete operator L(f) has no gaps if and only

if the potential V (·) is constant.

Some of the results here, partly overlap with known theorems from

operator theory due to Flaschka (see [36]). The main novelty here is the

purely linear algebraic approach.

The chapter is organized as follows. In the first section, the gap related

problems of Schrodinger operators with periodic potential are described

briefly. Section 3.2 is devoted to describe the process of approximation of

the Schrodinger operator, that leads to the families of matrix-sequences

{An(p)} and to the Toeplitz-Laurent operator A∞(p) = L(f). The next

section deals with basic notions, definitions and preliminary results. Sec-

tion 3.4 contains the main results on a discrete Borg theorem via block

Toeplitz-Laurent operators. In the next two sections, the possibility of

these results into more general block Toeplitz-Laurent operators and pe-
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riodic Jacobi matrices are discussed.

3.1 Description of the problem

As already mentioned in the previous chapter, gap related problems have

been studied with special attention for Schrodinger operators in the past

(see e.g. [26, 34, 35, 59]). Consider the one dimensional Schrodinger

operator with periodic potential, Ã(u) = −ü+V ·u, defined on a suitable

subspace of L2(R). It can be proved that the spectrum is the union

of closed intervals (see [59] for the proof). In some cases these intervals

may be separated by nonempty open intervals: it is evident that all these

nonempty open sets are spectral gaps. For instance looking at the Mathieu

operator, which is defined by the potential V (x) = β cos(x) for a certain

nonzero constant β, it is known that all the spectral gaps are open; (see

page 298 of [59]). A summary of general and elegant classical results

regarding the Schrodinger operator with periodic potential is reported

below (see page 297 of [59] for the proof).

Theorem 3.1.1. Take the one dimensional Schrodinger operator

Ã(u) = −ü+ V · u (3.1)

with periodic potential V , defined on a suitable subspace of L2(R):

• There are no gaps in the spectrum if and only if the potential func-

tion reduces to a constant (Borg theorem; see e.g. [29]).

• If there exists exactly one gap, then the potential function is elliptic.
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• The potential function is real analytic if there exist finitely many

gaps.

Here families of finite difference approximations of the operator Ã are

considered, depending on two parameters n, the number of periodicity

intervals, and p the precision of the approximation in each interval. Here

it is shown that the approach, with fixed p, leads to families of sequences

{An(p)}, where every matrix An(p) that can be interpreted as a block

Toeplitz matrix generated by a p × p matrix-valued symbol. Indeed, the

parameter p is the periodicity index appearing in the diagonal of the ap-

proximating matrices, where the periodicity is induced by that of the po-

tential V and in fact the entries on the diagonal are, up to a proper scaling

related to the finesse discretization parameter 1/(p + 1), exact samplings

of the potential V (·) in equispaced points.

3.2 From continuous to discrete

In this section, a simple (in fact the simplest) finite differences approxi-

mation is proposed for the Schrodinger operator with periodic potential

V (x). Without loss of generality, assume that the periodicity width is 1

that is V (x+ 1) = V (x) for every x ∈ R. Now approximate the equation

(3.1) in the interval [−n, n] with n ∈ N∪{∞} by using p equispaced points

in each interval [j, j + 1] ⊂ [−n, n] by using the standard difference

−u(xi+1,(j)) + 2u(xi,(j)) − u(xi−1,(j))

h2
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with h = h(p) = 1/p, xs,(j) = j + sh(p), j = −n, . . . , n − 1, s = 0, . . . , p.

In this way, letting n = ∞, this can be treated as an operator acting on

the sequence space l2(Z), defined as follows.

For {un}n∈Z ∈ l2(Z), A({un}n∈Z) =
−(un−1 + un+1) + 2un

h2
+ vnun, (3.2)

where the sequence {vn}n∈Z is obtained as the values of the periodic func-

tion V at p equispaced points in an interval of length 1. And the periodicity

of V will imply that the sequence {vn}n∈Z is also periodic with period p.

Now, the matrix representation of this bounded operator with respect to

the standard basis in l2(Z), is obtained as a tridiagonal matrix that, up

to the scaling factor h2, coincides with

An(p) =





















. . . . . .

. . . . . . . . .

−1 2 + h2V (xs,(j)) −1
. . . . . . . . .

. . . . . .





















. (3.3)
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Given the periodicity this matrix can be re-written as

An(p) =





































. . . . . .

. . . . . . . . .

−1 2 + v0 −1
. . . . . . . . .

−1 2 + vp−1 −1

−1 2 + v0 −1
. . . . . . . . .

. . . . . .





































, (3.4)

with vj = h2V (xs,(j)), j = 0, . . . , p− 1.

When n is finite then the resulting matrix of size np is just a truncation

of the bi-infinite matrix reported above.

Along the same lines, consider the variable coefficient one dimensional

Schrodinger operator Ã(u) = − d
dx

(

a · d
dx
u
)

+V ·u, with a(·) being positive

and periodic with the same period as V (·). In that case, the very same

type of infinite difference approximation will lead to a bi-infinite symmetric
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matrix of the form

An,α(p) =





































. . . . . .

. . . . . . . . .

−αp−1 γ0 −α0

. . . . . . . . .

−αp−2 γp−1 −αp−1

−αp−1 γ0 −α0

. . . . . . . . .
. . . . . .





































,

(3.5)

with γs = αs + α
(s+1) mod p

+ h2V (xs;(j)),

αs = a(xs+1/2, j), xs+1/2,j = j + h(p)(s+ 1/2).

Observe that resulting structure, up to the sign, represents the case of

general p-periodic Jacobi matrices.

3.3 Preliminary results and notation

This section is divided into two parts. In the first, a few results concerning

the spectra of Toeplitz-Laurent operators with matrix-valued symbols are

briefly recalled. And in the second, the definition of spectral distribution

and results regarding the case of Toeplitz sequences coming from sections

of infinite Toeplitz operators are given.

The connections among these ingredients will become evident in Sec-
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tion 3.4, since the approximation of the Schrodinger operator with periodic

potential using finite differences as in Section 3.2 leads to matrix-sequences

{An(p)}, where p is a parameter associated with the precision of the ap-

proximation. The results in Section 3.3.1 allow us to prove the main results

on a discrete version of Borg theorem, while the results in Section 3.3.2

are of interest for the distributional analysis.

3.3.1 Toeplitz operators and sequences

Given a p× p matrix-valued integrable function f defined on (−π, π), the

p× p matrices fj, j ∈ Z, represent the Fourier coefficients of f defined as

fj(θ) =
1

2π

∫ π

−π

f(x)e−îj θdx, j = 0,±1,±2, . . . .

Then for n being a nonnegative integer number or ∞ we define Tn(f) the

Toeplitz matrix or operator of size n generated by f via the relations

(Tn(f))i,j = fi−j, i, j = 1, . . . , n.

Here the integration of the matrix valued function turns out to be the

entry wise integration. When n = ∞ the Toeplitz operator Tn(f) is simply

written as T (f) while the symbol L(f) denotes the doubly infinite Toeplitz

matrix with (L(f))i,j = fi−j, i, j ∈ Z. Furthermore by {Tn(f)} we indicate

the Toeplitz matrix-sequence generated by f , with Tn(f) of finite order.

Let f be a continuous and Hermitian p× p matrix-valued function on

the unit circle, and let λ1(f(.)) > · · · > λp(f(.)) denote its eigenvalues.

Then it is well known that the essential spectrum of L(f) and the essential
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spectrum of T (f) coincide with the union of the ranges of the eigenvalues

λ1(f(·)) > · · ·λp(f(·)), that is

σess(L(f)) = σess(T (f)) =

p
⋃

j=1

[

inf
θ

(λj(f(θ))), sup
θ

(λj(f(θ)))

]

. (3.6)

For the latter result which is crucial for the discrete version of the Borg

theorem, see Proposition 2.29(a) of the book [15].

3.3.2 Spectral Distributions

Here the definition of spectral distribution concerning matrix-sequences

of increasing size are reported and a distribution result for block Toeplitz

sequences, are given in the spirit of Weyl.

Definition 3.3.1. Let C0(C) be the set of continuous functions with

bounded support defined over the complex field, N be a positive integer,

and ψ be a p × p matrix-valued measurable function defined on a set

G ⊂ R
N of finite and positive Lebesgue measure µ(G). A matrix-sequence

{An} is said to be distributed (in the sense of the eigenvalues) as the pair

(ψ,G), or to have the eigenvalue distribution function ψ ({An} ∼λ (ψ,G)),

if for every F in C0(C), the following limit relation holds

lim
n→∞

1

n

n
∑

j=1

F (λj(An)) =
1

µ(G)

∫

G

1

p

p
∑

s=1

F (λs(ψ(t))) dt, t = (t1, . . . , tN).

(3.7)

Remark 3.3.1. Here G will be often equal to (−π, π)d so that eiG =

T
d with i2 = −1 and T denoting the complex unit circle.
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Concerning the spectral distribution of Toeplitz matrix-sequences, the

main result is the Theorem of Szegö (see [17]), that was reported in its

most general version due to Tilli [64].

Theorem 3.3.2 (Szegö-Tilli). Let f be a p × p matrix-valued inte-

grable function defined on (−π, π) and let {Tn(f)} be the block Toeplitz

sequence generated by f . Assume that f is Hermitian almost everywhere

on its definition set. Then

{Tn(f)} ∼λ (f, (−π, π)),

that is, for every function F continuous with bounded support we have

lim
n→∞

1

n

n
∑

j=1

F (λj(Tn(f))) =
1

2π

∫ π

−π

1

p

p
∑

s=1

F (λs(f(θ)))d θ.

with λj(A) denoting the eigenvalues of the square matrix A.

We end this section by stating the Cauchy interlacing theorem

which plays a crucial role in the further proofs (see page 59 of [7] for the

proof).

Theorem 3.3.3. Let A be an n× n Hermitian matrix, and let B be

its principal sub matrix. If λj(A) and λj(B) are eigenvalues of A and B

respectively, arranged in non increasing order, then

λ1(A) > λ1(B) > λ2(A) > λ2(B) > . . . > λn−1(B) > λn(A).
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3.4 The discrete Borg Theorem

Our aim is to suggest a pure linear algebraic approach to discrete version

of the celebrated Borg theorem. First of all we make a simple but crucial

observation concerning the matrix An(p) in (3.3) when n = ∞. Given

the periodicity, well emphasized in the expression reported in (3.4), and

taking into account the definition of the Toeplitz-Laurent operator L(f)

in Section 3.3.1, it is clear that An(p) = L(f) where f = fp has size p and

can be chosen from the finite set {g0, . . . , gp−1} with

gj = 2Ip −Hp + diagi=0,...,p−1

(

w
(j+i) mod p

)

− eiθE1,p − e−iθEp,1, (3.8)

j = 0, . . . , p − 1, Es,t, 1 6 s, t 6 p, being the dyadic matrix having 1 in

position (s, t) and zero otherwise, Hp being the matrix having 1 in position

(s, t) with |s − t| = 1 and zero otherwise, Ip being the identity matrix of

size p.

That means upto some scaling by constant, and translation by the

identity, the symbols have the following form.

gj (θ) =























vj+1 1 eiθ

1 vj+2 1

1 . .

. . .

. . 1

e−iθ 1 vj+p























.

In this way the matrix gj, j = 0, . . . , p − 1, will have on its diagonal
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the vector

πj({v0, . . . , vp−1}),

where π is the periodic permutation defined by

π({α0, α1, . . . , αp−1}) = {αp−1, α0, . . . , αp−2}.

If Π is the square matrix of size p that represents such a permutation,

then it is easy to see that

diag(gj) = Π diag(gj−1) ΠT .

However the matrix gj is not similar to gj−1 via the same transformation

Π. On the other hand, without using any linear algebra argument, we can

immediately see that these symbols share somehow the same spectrum in

the sense that, for every s, t = 0, . . . , p− 1, we observe

p
⋃

k=1

[

inf
θ

(λk(gs(θ))), sup
θ

(λk(gs(θ)))

]

=

p
⋃

k=1

[

inf
θ

(λk(gt(θ))), sup
θ

(λk(gt(θ)))

]

.

(3.9)

As already mentioned the latter statement is immediate due to (3.6). Now

we are ready to prove that the operator A∞(p) has no gaps if and only if

v0 = . . . = vp−1. Equivalently, for the sake of notational simplicity, we can

consider for Â∞(p) = −A∞(p)+2I, with I denoting the identity operator

acting on l2 (Z).

Theorem 3.4.1. The essential spectrum of A = Â∞(p) is connected

if and only if the p-periodic potential (vj)j∈Z
is constant.
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Proof. Case1: period p = 2. Let (−vj) = (. . . a, b, a, b, . . .) . Then

A =

















































. . . . . . . . . . . . .

. . . b 1 0 0 .

. . . 1 a 1 0 0 .

. . . 0 1 b 1 0 0 .

0 0 1 a 1 0 0 .

. 0 0 1 b 1 0 0

. 0 0 1 a 1 0
. . .

. 0 0 1 b 1
. . .

. 0 0 1 a
. . .

.
. . . . . . . . . . . .

















































which can be put in block form as

A =













































. . . . . .

. . . A0 A−1

A1 A0 A−1

A1 A0 A−1

A1 A0 A−1

A1 A0 A−1

A1 A0 A−1

A1 A0 A−1

A1 A0
. . .

. . . . . .












































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where

A0 =

[

a 1

1 b

]

, A1 =

[

0 1

0 0

]

, A−1 =

[

0 0

1 0

]

Now this is in the block Toeplitz-Laurent form, whose matrix-valued

symbol is

f (θ) =

[

a 1 + eiθ

1 + e−iθ b

]

The eigenvalues are given by the following functions

λ1,2 (θ) =
a+ b±

(

(a− b)2 + 8 cos θ + 8
)

1/2

2
.

Now we observe the following simple facts.

If a 6 b, then
(

(a− b)2 + 16
)

1/2 > b−a and −
(

(a− b)2 + 16
)

1/2 6 a−b.

Hence we get

a+ b−
(

(a− b)2 + 16
)

1/2

2
6 a 6 b 6

a+ b+
(

(a− b)2 + 16
)

1/2

2

And if a > b, then

(

(a− b)2 + 16
)

1/2 > a− b and −
(

(a− b)2 + 16
)

1/2 6 b− a.

Hence

a+ b−
(

(a− b)2 + 16
)

1/2

2
6 b 6 a 6

a+ b+
(

(a− b)2 + 16
)

1/2

2
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We conclude that the range of λ1 (θ) is

[a, s+] , if a > b, and [b, s+] , if a 6 b,

while for the range of λ2 (θ) is

[s−, b] , if a > b, and [s−, a] , if a 6 b,

where the notation

s± =
a+ b±

(

(a− b)2 + 16
)

1/2

2
.

Now the union of ranges of these functions will be precisely the essential

spectrum of A (refer to (3.6)). That is,

σe(A) = [s−, b] ∪ [a, s+] , if a > b,

σe(A) = [s−, a] ∪ [b, s+] , if a 6 b.

The latter concludes the proof because we clearly see that there exist no

gaps if and only if a = b.

Case2: period p > 2.

Let the p-periodic sequence be (−vj) = (. . . , a1, . . . ap, a1, a2, . . .). If

the sequence is constant that is a1 = a2 = · · · = ap = a, then the operator

A reduces to a standard Toeplitz-Laurent operator with (scalar-valued)

symbol f(θ) = a+2 cos(θ). Therefore, in the light of (3.6), the spectrum is

the closed interval [a−2, a+2] and of course there are no gaps. Conversely,

if the p-periodic sequence is not constant, then there exists at least one pair

(vs, v(s+1) mod p
) such that vs 6= v

(s+1) mod p
. Without loss of generality



58 Chapter 3. The Borg-type theorems

we take −vs = ap so that necessarily −v
(s+1) mod p

= a1: it is important

to make clear that we have this degree of freedom due to the possibility

of choosing the generating function among p different symbols.

Now

A =













































. . . . . .

. . . A0 A−1

A1 A0 A−1

A1 A0 A−1

A1 A0 A−1

A1 A0 A−1

A1 A0 A−1

A1 A0 A−1

A1 A0
. . .

. . . . . .













































where

A0 =























a1 1

1 a2 1

1 . .

. . .

. . 1

1 ap























, A−1 =























1























= AT1 = Ep,1.
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Consequently, the matrix-valued symbol is

f (θ) =























a1 1 eiθ

1 a2 1

1 . .

. . .

. . 1

e−iθ 1 ap























.

We now consider two special principal minors of this matrix-valued symbol

of size p − 1: the first is obtained by deleting the first row and the first

column from f(θ) and the second is obtained by deleting the last row and

the last column from f(θ). Both minors P1 and P2 are constant matrices

since they do not contain terms depending on θ:

P1 =























a1 1

1 a2 1

1 . .

. . .

. . 1

1 ap−1























, P2 =























a2 1

1 a3 1

1 . .

. . .

. . 1

1 ap























.

Now these matrices cannot have the same eigenvalues because they have

different trace. Indeed

trace(P1) − trace(P2) = a1 − ap (3.10)

and the latter is different from zero because ap = −vs 6= −v
(s+1) mod p

=

a1. Let α1 < α2 < · · · < αp−1 be the eigenvalues of P1 (all distinct

because P1 is a Jacobi matrix, see [22]) and let β1 < β2 < · · · < βp−1
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(all distinct because also P2 is a Jacobi matrix). Now due to (3.10) there

exists i ∈ {1, . . . , p − 1} such that αi 6= βi. Without loss of generality

assume αi < βi (the other case is treated identically). Then by Cauchy

interlacing theorem we find

λ1 (θ) 6 α1, β1 6 λ2 (θ) 6 · · · 6 λi (θ) 6 αi < βi 6 λi+1 (θ) 6 · · · 6 λp (θ) .

Thus it is clear that the ranges of the eigenvalue functions will not intersect

the interval (αi, βi) which will be a gap. In conclusion we have determined

the existence of at least one gap and the theorem is proved.

Figure 3.1: Graphical visualization

Example 3.4.1. Recall the operator introduced in Example (2.2.1).
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That is an operator with non constant periodic potential and therefore

the essential spectrum is disconnected by the above theorem. It can be

noticed that the essential spectrum is given by the following equation.

σess(A) =
3
⋃

j=1

[

inf
θ

(λj(f̃ (θ)), sup
θ

(λj(f̃ (θ))

]

where λj(f̃ (θ)) are the eigenvalues of f̃ (θ) . A straightforward numerical

computation of the eigenvalue functions gives

σess(A) = [−0.2143, 0.3249] ∪ [1.4608, 2.5392] ∪ [3.6751, 4.2143] .

Also since A is in the Arveson’s class ( since it is represented by a band

limited matrix), the point 1 lies in the gap, is a transient point. Hence

the prediction of the existence of gap, in Theorem (2.2.1), is valid in this

example.

3.5 Generalized version

In this section, the spectral gap issues of some block Toeplitz-Laurent op-

erators are studied. The operators under concern are some perturbations

of discrete Schrodinger operator on l2(Z), that was considered in the pre-

vious sections. The discrete version of Borg theorem proved in the last

section is generalized here.

The following question is addressed here. In Theorem (3.4.1), if more

nonzero entries are in the off diagonal, does the same result remain valid.

When doing that, an additional assumption on the diagonal entries has
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to be made. That is the assumption that they follow a monotone order

periodically. Also, this assumption can not be relaxed as it can be seen

by an example.

Theorem 3.5.1. Let A be the bounded operator defined by the block

Toeplitz-Laurent matrix

A =













































. . . . . .

. . . A0 A−1 A−2 . . . A−N . . .

A1 A0 A−1 A−2 . . . A−N . . .

A2 A1 A0 A−1 A−2 . . . A−N . . .

A2 A1 A0 A−1 A−2 . . . A−N

. . . AN . . . A2 A1 A0 A−1 A−2

. . . AN . . . A2 A1 A0 A−1 A−2

. . . AN . . . A2 A1 A0 A−1 A−2

. . . AN . . . A2 A1 A0
. . .

. . . . . .













































where

A0 =























b1 1 a0

1 b2 1

1 . .

. . .

. . 1

a0 1 bp























, Ak =























ak






















= A−k
T ,

such that b1 6 b2 . . . 6 bp and
∑

k |ak| < ∞. If A has connected essential

spectrum, then b1 = b2 . . . = bp.
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Proof. For the case p = 2, the matrix-valued symbol associated with

the operator A is given by

f̃ (θ) =

[

b1 1 + f (θ)

1 + ¯f (θ) b2

]

,

where f (θ) =
∑

k ake
ikθ. For p > 2, the matrix-valued symbol associated

with the operator A is

f̃ (θ) =























b1 1 f (θ)

1 b2 1

1 . .

. . .

. . 1
¯f (θ) 1 bp























.

Therefore from equation (3.6), we have

σess(A) =

p
⋃

j=1

[

inf
θ

(λj(f̃ (θ)), sup
θ

(λj(f̃ (θ))

]

. (3.11)

Now consider the sub matrices

P1 =























b1 1

1 b2 1

1 . .

. . .

. . 1

1 bp−1























, P2 =























b2 1

1 b3 1

1 . .

. . .

. . 1

1 bp























.
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If any of their eigenvalues are different, say λj(P1) < λj(P2), then by

Cauchy Interlacing theorem, λj(f̃ (θ)) 6 λj(P1) < λj(P2) 6 λj+1(f̃ (θ)),

for every θ. But from (3.6), this will give us the contradiction that essential

spectrum of A is not connected. Hence all the eigenvalues of P1 and P2

are same. Therefore

trace(P1) − trace(P2) = b1 − bp = 0

Hence b1 = b2 . . . = bp.

Remark 3.5.1. The assumption
∑

k |ak| < ∞, is used to make

sure the convergence in the expression of f̃ (θ) . The assumption on the

diagonal entries, b1 6 b2 . . . 6 bp is used in the last line of the proof. The

assumption is not required for the case p = 2.

Remark 3.5.2. The converse of the Theorem (3.5.1) is not true

in general. There may have gaps even if the diagonal entries of the block

Toeplitz-Laurent operator are same. For if A is the block Toeplitz-Laurent

operator arising from the matrix valued symbol

f̃ (θ) =

[

b 1 + f (θ)

1 + ¯f (θ) b

]

.

where f is a non negative function, then the eigenvalue functions of f̃ (θ)

are

λ1(θ) = b− 1 − f(θ), λ2(θ) = b+ 1 + f(θ)

Since f(θ) > 0, λ1(θ) 6 b− 1 < b+ 1 6 λ2(θ). Hence spectrum of A will

have a gap, since the ranges of the eigenvalue functions never intersect.

Example 3.5.1. The assumption b1 6 b2 . . . 6 bp can not be dropped
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in the above theorem, if p > 2. For if we consider the block Toeplitz-

Laurent operator arising from the matrix valued symbol

f̃ (θ) =













1 1 0 10cos (θ)

1 2 1 0

0 1 2 1

10cos (θ) 0 1 1













.

The eigenvalue functions of f̃ (θ) are

λ1,2(θ) = 2 + 5cos(θ) ±
√

25cos2(θ) − 10cos(θ) + 2

λ3,4(θ) = 1 − 5cos(θ) ±
√

25cos2(θ) + 1

We list the values of these functions at certain points in the table below.

θ λ1(θ) λ2(θ) λ3(θ) λ4(θ)
0 11.123 2.877 1.099 -9.099
π 3.083 -9.083 11.099 .901

From the table, it is clear that the ranges of the above continuous

functions intersect. Hence their union is a connected interval. Therefore

the essential spectrum of the operator has no gaps, even the periodic

potential does not reduce to a constant.

3.6 Periodic Jacobi matrices

In this section, we look at the possibility for Borg-type theorems in the

case of periodic Jacobi matrices, by identifying them as block Toeplitz-
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Laurent operators. The double infinite, p-periodic, p > 2, real Jacobi

matrix is defined below.

J =































. . . . . .

. . . b1 a1

a1 b2 a2

. . . . . . . . .
. . . bp ap

ap b1
. . .

. . . . . .































, an+p = an > 0; bn+p = bn :

(3.12)

The standard convention an > 0, is followed here which differs by sign from

(3.5): indeed the bi-infinite matrix reported in (3.5) is easily converted into

a Jacobi matrix multiplying it by -1. An important observation is that

J = L(fk), where in the case p > 3, the symbols are given by

fk (θ) =























bk+1 ak+1 0 eiθak+p−1

ak+1 bk+2 ak+2 0

0 ak+2 . .

. . .

. . ak+p−1

e−iθak+p−1 0 ak+p−1 bk+p























, k = 0, 1, . . . p−1,

(for the case p = 2, an example is given later in this chapter). Denote

by λj(fk), j = 1, 2, . . . p the eigenvalues of fk, arranged in the decreasing

order

λ1(fk(·)) > · · ·λp(fk(·)),
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and put

λ+
j,k = max

θ
λj(fk(θ)), λ

−
j,k = min

θ
λj(fk(θ))

The spectrum of the original matrix J is (see Equation (3.6) earlier in this

chapter)

σ(J) =

p
⋃

j=1

[

λ−j,k, λ
+
j,k

]

. (3.13)

and the right hand side does not depend on k. Consider the following sub

matrices of the symbols of order p− 1.

Jk =























bk+1 ak+1 0

ak+1 bk+2 ak+2 0

0 ak+2 . .

. . .

. . ak+p−2

0 ak+p−2 bk+p−1























, k = 0, 1, . . . p− 1,

and put

σ(Jk) = {µ1,k > µ2,k > . . . µp−1,k}.

The Cauchy interlacing properties for eigenvalues of Hermitian matrices

lead to the following inequalities

λ1(fk(θ)) > µ1,k > λ2(fk(θ)) > . . . λp−1(fk(θ))µp−1,k > λp(fk(θ)),

λ1(fk(θ)) > µ1,k+1 > λ2(fk(θ)) > . . . λp−1(fk(θ))µp−1,k+1 > λp(fk(θ)).

Lemma 3.6.1. Suppose that J has no spectral gaps. Then all Jk

have the same spectrum.

Proof. Assuming the contrary, we would have µj,k′ > µj,k′′ so by the
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interlacing properties there is a gap in the spectrum.

Remark 3.6.1. Let bj = 0, a1 = a3 = . . . , a2 = a4 = . . . , but

a1 6= a2. Put p = 4. Then

det(J0 + λ) = det(J1 + λ) =

∣

∣

∣

∣

∣

∣

∣

λ a1 0

a1 λ a2

0 a2 λ

∣

∣

∣

∣

∣

∣

∣

= λ3 − (a2
1 + a2

2)λ,

so σ(J0) = σ(J1). From a simple computation with the help of Equation

(3.6), we see that

σ(J) =
[

−(a1 + a2)
2,−(a1 − a2)

2
]

∪
[

(a1 − a2)
2, (a1 + a2)

2
]

.

Hence it is evident that J has spectral gaps since a1 6= a2, and the converse

to above Lemma (3.6.1) is false.

Lemma 3.6.2. Suppose that J has no gaps. Then b1 = b2 = . . . = bp.

Proof. By Lemma (3.6.1), tr(J0) = tr(J1) = . . . = tr(Jp−1) and so

p−1
∑

j=1

bj =

p
∑

j=2

bj = . . .

2p−2
∑

j=p

bj

which implies b1 = bp, b2 = bp+1 = b1, b3 = bp+2 = b2 etc. as claimed.

With no loss of generality we put bj = 0. Assume also that the period

p is an even number (otherwise take 2p as the period, see also Remark

below). We proceed with the simple case of p = 2.
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Example 3.6.1. Let p = 2 and bj = 0. The symbol now is

f (θ) =

[

0 a1 + e−iθa2

a1 + eiθa2 0

]

, λ1,2(f(θ)) = ±
∣

∣a1 + e−iθa2

∣

∣

Again we get

σ(J) =
[

−(a1 + a2)
2,−(a1 − a2)

2
]

∪
[

(a1 − a2)
2, (a1 + a2)

2
]

.

Hence there is no spectral gap for J if and only if a1 = a2, so p = 1.

The following result is a version of Borg theorem for Jacobi matrices.

Theorem 3.6.1. Let p = 2m+2 and J has no gaps in the spectrum.

Then a1 = a2 = . . . = ap.

Proof. Since J has no gaps, the diagonal sequence is constant by

Lemma (3.6.2), which we assume to be 0 without loss of generality. We

use the notation D (λ; a1, a2, . . . an) for the determinant. That is

D (λ; a1, a2, . . . an) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ a1 0 · · · 0

a1 λ a2

0 a2
. . .

...
. . . an

0 0 an λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

By expanding over the last row and induction we see that

D (λ; a1, a2, . . . an) = λn+1 − λn−1

n
∑

j=1

aj
2 + . . .
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Here we are not bothered about the other terms in the above sum, since we

will only equate the coefficients of higher powers of λ. By Lemma (3.6.2),

det(Jk + λ) = D (λ; ak+1, . . . ak+2m) = λ2m+1 − λ2m−1

k+2m
∑

j=k+1

aj
2 + . . .

does not depend on k so

k+2m
∑

j=k+1

aj
2 =

k+2m+1
∑

j=k+2

aj
2 ⇒ ak+1 = ak+2m+1, k = 0, 1, . . . p− 1.

Hence a1 = a3 = . . . = a2m+1, a2 = a4 = . . . = a2m+2, so p = 2. By

Example(3.6.1), a1 = a2 = . . . = ap, as claimed. Hence the proof.

Remark 3.6.2. For the odd period p = 2m − 1, the argument is

simple. Since

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 a1 0 · · · 0

a1 0 a2

0 a2
. . .

...
. . . a2m−1

0 0 a2m−1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)m
m
∏

j=1

a2
2j−1,

det(Jk) = (−1)m
m
∏

j=1

a2
k+2j−1,for k = 0, 1, . . . p − 1. But the left hand side

is independent from k. Therefore we have

m
∏

j=1

a2
2j−1 =

m
∏

j=1

a2
2j =

m
∏

j=1

a2
2j+1 . . . =

m
∏

j=1

a2
2j+p−1.

Using this and ak+p = ak, we can conclude that so a1 = a2 = . . . ap.
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Example 3.6.2. Coming back to the symbol associated with discrete

Schrodinger operator, the following observations can be made.

f (θ) =























0 1 eiθ

1 0 1

1 . .

. . .

. . 1

e−iθ 1 0























= Ze−iθ + Z∗
e−iθ ,

where

Zω =























0 0 ω

1 0 0

1 . .

. . .

. .

0 1 0























.

The following matrix multiplications can be used to obtain a decomposi-

tion of Zω.























1 0

0 δ−1 0

0 δ−2 .

. . .

. .

0 0 δ−p+1













































0 0 1

1 0 0

1 . .

. . .

. .

0 1 0













































1 0

0 δ 0

0 δ2 .

. . .

. .

0 0 δp−1






















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= δ−1























0 0 δp

1 0 0

1 . .

. . .

. .

0 1 0























.

Therefore we have

Zω = δD−1
δ Z1Dδ, where Dδ = diagj=0,1,...p−1(δ

j), with δp = ω.

Also, recall that Z1 = FpDδF
∗
p , where δ = ei

2π
p and Fp is the Fourier

matrix of size p.

That is Fp =

√

1

p
(e−i

2πjk
p )p−1

j,k=0.

Therefore we get the Jordan decomposition of the symbol as

f (θ) = Ze−iθ + Z∗
e−iθ = e−iθ/pD−1

e−iθ/pZ1De−iθ/p + eiθ/pD∗
e−iθ/pZ

∗
1De−iθ/p

= D∗
e−iθ/pFp[e

−iθ/pDδ + eiθ/pD∗
δ ]F

∗
pDe−iθ/p

= D∗
e−iθ/pFpdiag

(

2 cos

(

2πj − θ

p

))

F ∗
pDe−iθ/p

With reference to the previous notations we observe that for fixed j and

p large, we have

λ+
j − λ−j = λ+

p−j − λ−p−j = O(p−2)

while, for indices j in a fixed neighborhood of p/2, with size independent

of p, we have λ+
j − λ−j = O(p−1). Finally, for all indices j, we obtain

λ+
j − λ−j = O(p−1).
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3.6.1 A specific example

The connection between the number of spectral gaps and the period, has

to be studied in detail. We give an example below which gives some hints

of the connection. We say that J has essential period p if p is the minimal

positive integer for which an+p = an > 0, bn+p = bn, for all integer n.

Here we give a specific example that supports the general statement that

J of essential period p implies that the spectrum is the union of p disjoint

intervals. That is the number of spectral gaps is exactly p− 1.

Consider f0(θ) with a1 = a2 = . . . ap = 1 and b1 = b2 = . . . bp−1 = 0

and bp = 1. The last relation implies that the essential period is p. Hence

the symbol f0(θ) is

f0(θ) =























0 1 e−iθ

1 0 1

1 . .

. . .

. . 1

eiθ 1 1























.

Observe that the eigenvalues of f0(θ) are separated by those of

Hp−1 =























0 1 0

1 0 1

1 . .

. . .

. . 1

0 1 0























.
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and those of

˜Hp−1 =























0 1 0

1 0 1

1 . .

. . .

. . 1

0 1 1























.

with Hp−1, ˜Hp−1 being principal minors of f0(θ). In order to prove that

there exist exactly p − 1 gaps, it is enough to prove that the eigenvalue

λj( ˜Hp−1) is strictly greater than λj(Hp−1) for every j = 1, 2, . . . p − 1.

The matrices Hp−1, ˜Hp−1 are the generators of sine-transform algebras

with different boundary conditions and their Jordan form can be explicitly

computed.

In both case we observe that the matrices are real symmetric and

irreducible so that the use of the first and of the third Gershgorin theorem

implies that the eigenvalues belong to the open interval (−2, 2). Let λ(X)

be a generic eigenvalue of X ∈ {Hp−1, ˜Hp−1} and let

v(X) = (v1(X), v2(X), . . . vp−1(X))

be the corresponding normalized eigenvector. The corresponding eigen-

value equation is

X.v(X) = λ(X).v(X);X ∈ {Hp−1, ˜Hp−1}.

Setting λ(X) = 2cos(ψ), we get the following system of linear difference

equations.

vi−1 + vi+1 = 2cos(ψ)vi, i = 1, 2, . . . p− 1.
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with boundary conditions given by

v0(Hp−1) = vp−1(Hp−1) = 0 and v0( ˜Hp−1) = 0, vp−1( ˜Hp−1) = vp( ˜Hp−1)

respectively. The general solution for this is vj = aeijψ + be−ijψ. Applying

boundary conditions for the case of Hp−1, we get a = −b and then

a(eipψ − e−ipψ) = 0

which implies eipψ− e−ipψ = 2isin(pψ) = 0. Hence pψ = jπ, and therefore

λj(Hp−1) = 2cos( jπ
p

). In the case of ˜Hp−1, the use of boundary conditions

shows that

λj( ˜Hp−1) = 2 cos

(

π (2j − 1)

2p− 1

)

> 2 cos

(

πj

p

)

= λj(Hp−1), j = 1, 2, . . . p−1.

where the strict inequality is true simply because π(2j−1)
2p−1

< πj
p

for every

j = 1, 2, . . . p− 1. Hence the number of spectral gaps is p− 1.

3.6.2 Remarks

Some observations on the sequence {An(p)}, are made here. Clearly each

An(p) can be viewed as Tn(gj) + Rn,j, where gj, j=0, . . . p− 1 , are those

reported in(p-symbols) and where the correction term Rn,j is Hermitian

for every n and j and has rank bounded uniformly by p. Therefore in the

light of general perturbation results (see e.g. Proposition 2.3 in [61]) and

in the light of Theorem 3.3.2, we have

{An(p)} ∼λ (gj, (−π, π)), j = 0, . . . , p− 1, (3.14)
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which clearly implies that, for every k, the range of λk(gs) coincides with

the range of λk(gt), for s, t = 0, . . . , p−1. It is evident that (3.14) improves

relation (3.9). Moreover, from (3.14), for every function F continuous with

bounded support, we obtain that

1

2π

∫ π

−π

1

p

p
∑

k=1

F (λk(gs(θ)))d θ =
1

2π

∫ π

−π

1

p

p
∑

k=1

F (λk(gt(θ)))d θ, (3.15)

s, t = 0, . . . , p − 1, which means that the eigenvalues of every gs, s =

0, . . . , p− 1, induce the same measure on the real line.



Chapter 4

Perturbation and

Approximation of spectrum

Perturbation theory of operators incorporates a good deal of spectral the-

ory. In this chapter, the approximation theory of spectrum is discussed

in the case of a one parameter family of operators. The basic ingredients

are the perturbation theory of linear operators developed by Kato in his

celebrated book [43] written in 1966, and the linear algebraic techniques

in the approximation of spectrum in [19]. All the results in [19] are con-

sidered here under a holomorphic perturbation of operators. It is shown

that the bounds of the essential spectrum and the discrete spectral val-

ues outside the bounds of a holomorphic family of operators A(x), can be

approximated uniformly on all compact subsets by the sequence of eigen-

value functions of A(x)n. The known results for a bounded self-adjoint

operator in [19], are translated into the case of a holomorphic family of

operators. Also an attempt is made to study the effect of holomorphic

77
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perturbation of operators in the prediction of spectral gaps. Finally, some

known results on the bounds for eigenvalues of perturbed matrices are

used to analyze the symbol of the block Toeplitz-Laurent operator that

was used to prove the Borg-type theorems in the last chapter (see [7],[27]

for reference).

This chapter is organized as follows. It begins with a brief introduction

to the perturbation theory of linear operators, followed by the discussion

on the approximation of spectrum of a one parameter family of operators,

by truncation method. In the third section we consider the spectral gaps

under perturbation. In the last section the symbol associated with some

block Toeplitz-Laurent operators, is analyzed using the known results re-

garding the eigenvalues of perturbed matrices.

4.1 Introduction to Perturbation theory

The basic problem that is addressed here is to investigate the behavior of

the spectrum of an operator, when we make a small perturbation of the

operator. To deal such problems, one may have to consider a family of

operators of the form

A (x) = A+ xC (4.1)

where x varies in some subset of the complex plane, say D0. The operator

A (0) = A is the unperturbed operator and xC is the perturbation. In

general, we may suppose that A (x) is an operator-valued function, which

is holomorphic in a given domain D0 of the complex plane. That is for
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each y ∈ D0, the following limit

lim
x→y

‖A(x) − A(y)‖
|x− y|

should exist and must be finite. The aim is to study the changes in

the behavior of spectrum, under these perturbations. The approximation

techniques used in the case of a single operator, is generalized into a

holomorphic family of operators. It is observed that all the main results

are preserved under a holomorphic perturbation in a uniform way. The

important thing to be noticed is that here the eigenvalues of truncations

are sequence of functions. But the holomorphic assumption will help us

to guarantee that each functions involved, are continuous. So we will be

dealing with sequence of functions, instead of numbers.

4.2 Spectrum under perturbation

Let A (x) be a holomorphic family of operators with domain D0 in the

complex plane. Recall the inequality of approximation numbers. For each

x ∈ D0,

‖A (x)‖ = s1 (A (x)) > s2 (A (x)) > . . . > sk (A (x)) > . . . > 0. (4.2)

Before proving the generalized approximation results for holomorphic fam-

ily of operators, we state Dini’s theorem (for the proof, see page 150 of

[58]) which is used in the subsequent theorems.

Theorem 4.2.1. Suppose K is a compact subset of a metric space,
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and

• {fn} is a sequence of continuous functions on K,

• {fn} converges point wise to a continuous function f on K,

• fn(x) > fn+1(x) for every x in K, n = 1, 2, 3, . . .

Then fn converges to f uniformly on K.

Theorem 4.2.2. sk(A (.)) converges to ‖A (.)‖ess as k → ∞, uni-

formly on all compact subsets of D0.

Proof. Consider the sequence of functions fk(x) = sk(A (x)). Then for

each x, by Theorem (2.1.4),

fk(x) = sk(A (x)) → ‖A (x)‖ess .

Also since

|fk(x) − fk(y)| = |sk (A (x)) − sk (A (y))|
6 ‖A (x) − A (y)‖ ,

and since A(x) is holomorphic, we observe that each functions in the

sequence are continuous. Hence using the monotonicity of the sequence

of functions in (4.2), we conclude that the convergence is uniform in each

compact subsets, by Theorem(4.2.1).

Now consider the truncations A (x)n = PnA(x)Pn and singular num-

bers sk(A (x)n) = inf{‖A (x)n − Fn‖ , rank(Fn) 6 k − 1}.
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Remark 4.2.1. A similar interlacing theorem as Theorem (3.3.3),

holds in the case of singular values. If sj(A) and sj(B) are singular values

of the matrices A and B respectively, arranged in non increasing order,

then
s1 (A) > s1 (B) > s3 (A) ,

s2 (A) > s2 (B) > s4 (A) ,

......... ..................

sn−2 (A) > sn−2 (B) > sn (A) ,

sn−1 (A) > sn−1 (B) > 0.

With these tools, the following theorem can proved.

Theorem 4.2.3. sk(A (x)n) converges to sk(A (x)) as n → ∞, for

each k, and the convergence is uniform on all compact subsets of D0.

Proof. Our first observation is that the sequence of functions

fn,k(x) = sk(A (x)n)

form an equicontinuous family of functions. This follows from the following

inequality.

|fn,k (x) − fn,k (y)| = |sk (A (x)n) − sk (A (y)n)| 6 ‖A (x)n − A (y)n‖
6 ‖A (x) − A (y)‖ .

Also, from the interlacing theorem for singular values remarked above, we

have

fn,k(x) = sk(A (x)n) > sk(A (x)n−1) = fn−1,k(x),

for each k and for every x ∈ D0. Hence the sequence of singular value
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functions form a monotone sequence of functions. And by Theorem (2.1.5),

fn,k(x) = sk(A (x)n) → sk(A (x)) as n→ ∞,

for each k and for all x ∈ D0. Now by Theorem (4.2.1), the convergence

is uniform on all compact subsets of D0 and the proof is completed.

For the rest of this chapter, we assume that A(x) is self-adjoint for each

x. Let ν(x), µ(x) be the lower and upper bounds of σe(A(x)) respectively.

Also let

λ+
R(A(x)) 6 . . . 6 λ+

2 (A(x)) 6 λ+
1 (A(x))

be the discrete eigenvalues of A(x) lying above µ(x) and

λ−1 (A(x)) 6 λ−2 (A(x)) 6 . . . 6 λ−S (A(x))

be the eigenvalues lying below ν(x). Here R and S can be infinity. The

quantities λ1,n(x) > λ2,n(x) > . . . > λn,n(x) denote the eigenvalues of

A(x)n in non increasing order.

Theorem 4.2.4.

lim
n→∞

λk,n(x) =

{

λ+
k (x) , if R = ∞ or 1 6 k 6 R,

µ(x), ifR < ∞ and k > R + 1,

lim
n→∞

λn+1−k,n(x) =

{

λ−k (x) , if S = ∞ or 1 6 k 6 S,

ν(x), if S < ∞ and k > S + 1.

In particular,

lim
k→∞

lim
n→∞

λk,n(x) = µ(x) and lim
k→∞

lim
n→∞

λn+1−k,n(x) = ν(x).
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Furthermore, in each of the cases given above, the convergence is uniform

on all compact subsets of D0.

Proof. For each fixed x ∈ D0, these limits exist by Theorem (2.1.7).

Now observe the fact that the sequence of eigenvalue functions,

fn,k(x) = λk,n(x)

form an equicontinuous family of functions, from the following inequalities.

|fn,k(x) − fn,k(y)| = |λk,n (x) − λk,n (y)| 6 ‖A (x)n − A (y)n‖
6 ‖A (x) − A (y)‖ .

Also by Cauchy’s interlacing theorem for eigenvalues,

λ1,n+1(x) > λ1,n(x) > λ2,n+1(x) > . . . λn,n+1(x) > λn,n(x) > λn+1,n+1(x),

for each x ∈ D0. In particular, for each k and for every x ∈ D0,

fn+1,k(x) = λk,n+1(x) > λk,n(x) = fn,k(x).

Hence fn,k(.) forms a monotone sequence of continuous functions that

converges point wise. Therefore by Theorem(4.2.1), the convergence is

uniform on all compact subsets of D0. Hence the proof is completed.

Remark 4.2.2. Using Theorem (4.2.4), we can approximate the

discrete spectrum of a holomorphic family of operators, lying outside the

bounds of essential spectrum by the eigenvalue functions of truncations

uniformly on all compact subsets. This also reveals the following fact.

If one wishes to study the effect of perturbation in the spectrum of an
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operator, it suffices to study the effect in the eigenvalues of truncations

of the perturbed operator. Hence the sequence of eigenvalue functions

contain much of the discrete spectral information.

It was observed in [19] that norm of An
−1 is uniformly bounded if A is

invertible and the essential spectrum is connected. The perturbed version

of this result is proved below.

Corollary 3. Let A(x) be a holomorphic family of bounded self-

adjoint operators such that σe(A(x)) is connected for all x in the domain

D0. Then

lim
n→∞

∥

∥(A(x)n − λIn)
−1
∥

∥ =
∥

∥(A(x) − λI)−1
∥

∥ for every λ ∈ C − R.

Also the convergence is uniform on all compact subsets of D0.

Proof. By Theorem (2.1.9), σ(A(x)) = Λ(A(x)). Hence we can easily

observe the following.

d(z, σ(A(x)n)) → d(z,Λ(A(x)) = d(z, σ(A(x))) for every complex number z.

Therefore, for every non real λ,

∥

∥(A(x)n − λIn)
−1
∥

∥ =
1

d(λ, σ(A(x)n))
→ 1

d(λ, σ(A(x)))
=
∥

∥(A(x) − λI)−1
∥

∥ .

Also the convergence is uniform on all compact subsets of D0 as observed

in the previous theorems.
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4.3 Gaps under perturbation

Now we look at the spectral gaps that may occur between the bounds of

the essential spectrum of a holomorphic family of self-adjoint operators.

Recall that the gaps remain invariant under a compact perturbation of the

operator. The question that is addressed here is how stable these gaps,

under a more general perturbation. Also the stability of the spectral gap

predictions under a holomorphic perturbation, is another question to be

addressed here.

The stability theorem of bounded invertibility is stated below

and it will be used to achieve some invariance for the gaps. The theorem

is stated in a more general form in [43]. We need only the following special

case.

Theorem 4.3.1. Let A and B are bounded operators and A is in-

vertible. If ‖A−1‖ ‖B‖ < 1, then A+B is also invertible.

The following theorem is an immediate consequence of the stability

theorem stated above.

Theorem 4.3.2. Let (a, b) be a gap in σe(A(0)) which contains no

discrete spectral value in it. Then for all small enough ε > 0, there exists

a δ > 0 such that (a+ ε, b− ε) is a gap in the essential spectrum of the

analytic family of operators A (x) for every x with |x| < δ.

Proof. First we note that, A−λI is invertible for every λ in the interval

(a, b) , since it contains no spectral value.
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Therefore,

sup
{∥

∥(A− λI)−1
∥

∥ ;λ ∈ (a+ ε, b− ε)
}

= Mǫ <∞ for a fixed ε > 0.

Now using the continuity assumption, corresponding to minimum of { 1
Mǫ
, ǫ},

there exists a δ > 0, such that

‖(A(x) − A(0)‖ < min{ 1

Mǫ

, ǫ} for every x with |x| < δ.

Now for |x| < δ, observe that

∥

∥(A− λI)−1
∥

∥ ‖A(x) − A(0)‖ < Mǫ.
1

Mǫ

< 1

for every λ in the interval (a+ ε, b− ε).

Hence by Theorem (4.3.1), if |x| < δ, then

A(x) − λI = A(x) − A(0) + A(0) − λI

is invertible for every λ in the interval (a+ ε, b− ε). Therefore the interval

(a+ ε, b− ε) does not intersect with σ(A (x)), for every x with |x| < δ.

Now, since ‖A(x) − A(0)‖ < ǫ, (a+ ε, b− ε) will lie between the bounds

of σe(A(x)), for every x with |x| < δ. We conclude that (a+ ε, b− ε) is a

spectral gap in σe(A(x)) for all x, with |x| < δ.

Remark 4.3.1. In Theorem (4.3.2), ǫ must be small enough so that

the interval (a+ ε, b− ε) should makes sense. This theorem indicates that

to some extend, the gaps are stable under small norm perturbation. Once

we get (a+ ε, b− ε) is a gap, we may remove that interval and look at the
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rest of the interval (a, b) and continue the search for gaps.

Let’s look at an example to support the above theorem.

Example 4.3.1. Define a two parameter family of matrix valued

symbols as follows

f(x, θ) =























a1(x) 1 e−iθ

1 a2(x) 1

1 a3(x) 1

1 a4(x) 1
. . . . . . . . .

eiθ 1 ap(x)























,

where a1(.), a2(.) . . . ap(.) are analytic functions defined on complex do-

mains which have nonempty intersection with real line. Also the functions

are real valued on the real line, and θ varying in the interval [0, 2π]. Note

that

f(x, θ) = A0(x) + A1e
iθ + A−1e

−iθ, where

A0(x) =























a1(x) 1

1 a2(x) 1

1 . .

. . .

. . 1

1 ap(x)























,
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A1 =























1























= A−1
T .

Consider the one parameter family of block Toeplitz-Laurent operators

arising from these symbols, which are represented by the following doubly

infinite matrices,

A(x) =



































. . . . . .

. . . A0(x) A−1

A1 A0(x) A−1

A1 A0(x) A−1

A1 A0(x) A−1

A1 A0(x) A−1

A1 A0(x)
. . .

. . . . . .



































Thus we get an analytic family of bounded operators, A(x) which are self-

adjoint for all real x in the domain. Now, by Theorem (3.4.1), the essential

spectrum of A(x0) : x0 real, has no gaps if and only if a1(x0) = a2(x0) . . . =

ap(x0). Hence if there is a gap in σe(A(0)) then ai(0) 6= ai+1(0) for some

i. Using the continuity of ai and ai+1, we can find a δ > 0 such that

ai(x) 6= ai+1(x) for all x with |x| < δ. Hence there is a gap in the essential

spectrum of A(x) for all such x lying in the interval (−δ,+δ).

Remark 4.3.2. To check whether two complex analytic functions
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are identical, it suffices to check on a sequence with one limit point in the

set. This can be used to detect spectral gaps in the above example.

Using Theorem (2.2.1) and Theorem (4.3.2), we arrive at the following

conclusions. The gap predictions that we have done for a single operator,

are remain valid for a family of operators. The advantage is that we

can predict gaps of a family of operators, with assumptions only on the

unperturbed operator. We give the precise statement below.

Corollary 4. Let A(x) be a holomorphic family of operators with

A(0) = A, and λn1(An) > λn2(An) > ... > λnn(An) be the eigenvalues of

An arranged in decreasing order. For each positive integer n, let

{wnk : k = 1, 2, ...n} be a set of numbers such that 0 6 wnk 6 1

and
n
∑

k=1

wnk = 1. If there exists a δ > 0 and K > 0 such that

#

{

λnj;

∣

∣

∣

∣

∣

n
∑

k=1

wnkλnk
− λnj

∣

∣

∣

∣

∣

< δ

}

< K,

and in addition, if we assume that σe(A) and σ(A) coincide, then

σe(A(x)) has a gap for each x in a sufficiently small neighborhood of 0.

4.4 Perturbation of matrices

In this section, we recall some classical results on the eigenvalues of per-

turbed matrices and use them to get some estimates, which may be useful
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in the practical implementation of the Borg-type theorems, proved in the

last chapter. Recall that in the Borg-type theorems, the matrix valued

symbol,

f̃ (θ) =























b1 1 f (θ)

1 b2 1

1 . .

. . .

. . 1
¯f (θ) 1 bp























.

had a crucial role to play. But computing the eigenvalue functions of this

symbol, may not be easy in general. Hence the application of the theorems

may be difficult in the computational aspects. The symbol may be identi-

fied as a one parameter family of matrices which is the perturbation of a

matrix with constant entries. Also the following lemma gives the bounds

for the eigenvalues of perturbed matrices ( see [7],[27] and references there

in). Hence we try to strengthen our results by inputting these bounds to

our matrix valued symbol.

Lemma 4.4.1. Let H =

(

H1 E

E∗ H1

)

and H̃ =

(

H1 0

0 H1

)

,

λ1 > λ2 > . . . λp and λ̃1 > λ̃2 > . . . λ̃p be the eigenvalues respectively.

Then
∣

∣

∣
λj − λ̃j

∣

∣

∣
6 ‖E‖ (4.3)

∣

∣

∣
λj − λ̃j

∣

∣

∣
6

2 ‖E‖2

η +
√

η2 + 4 ‖E‖2
, where η = min

µi∈σ(H1),µi∈σ(H2)
|µi − µ̃i| .

(4.4)



4.4. Perturbation of matrices 91

Theorem 4.4.1. Let A be the operator considered in Theorem

(3.5.1). If λ1 > λ2 > . . . λp are eigenvalues of the matrix























b1 1

1 b2 1

1 . .

. . .

. . 1

1 bp























,

and σess(A) has no gap, then

|λj − λj+1| 6 2 ‖f‖∞ for every j = 1, 2 . . . p− 1.

Furthermore, if we assume that b1 6 b2 . . . 6 bp, then

|λj − λj+1| 6 2 for every j = 1, 2 . . . p− 1.

Proof. Apply above lemma with

H(.) =























b1 1 f (θ)

1 b2 1

1 . .

. . .

. . 1
¯f (θ) 1 bp























, H̃ =























b1 1

1 b2 1

1 . .

. . .

. . 1

1 bp






















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and

E =























f (θ)






















.

Then we get

|λj − λj(H(θ)| 6 ‖E‖ = ‖f‖∞ by (4.3).

Combining with (3.6), we get

σess(A) =

p
⋃

j=1

[

inf
θ

(λj(H(θ))), sup
θ

(λj(H(θ)))

]

⊆
p
⋃

j=1

[λj − ‖f‖∞ , λj + ‖f‖∞] .

Therefore if |λj − λj+1| > 2 ‖f‖∞ for some j, then there exists a gap in

the essential spectrum. Hence we proved the first assertion.

Now in addition, if we assume that b1 6 b2 . . . 6 bp, then since the

essential spectrum of A is connected, by Theorem (3.4.1), b1 = b2 . . . = bp.

This implies that H̃ is a tridiagonal Toeplitz matrix with b1 on diagonal

and 1 as off diagonal entry. The eigenvalues of such matrices are explicitly

known and they are b1 +2cos( πj
p+1

). So the second assertion follows by the

following computation.

|λj − λj+1| = 2

∣

∣

∣

∣

cos(
πj

p+ 1
) − cos(

π(j + 1)

p+ 1
)

∣

∣

∣

∣

= 2

∣

∣

∣

∣

2sin(
π(2j + 1)

2(p+ 1)
)sin(

π

2(p+ 1)
)

∣

∣

∣

∣

6 4

∣

∣

∣

∣

sin(
π

2(p+ 1)
)

∣

∣

∣

∣

.
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Since
∣

∣

∣
sin( π

2(p+1)
)
∣

∣

∣
6

1
2
, for p > 2, we get the desired conclusion.

We can apply the same technique in the case of general Jacobi matrices

to predict gaps in the essential spectrum.

Corollary 5. Let J be the Jacobi matrix defined by (3.12), and let

λ1 > λ2 > . . . λp are eigenvalues of the matrix























b1 a1

a1 b2 a2

a2 . .

. . .

. . ap−1

ap−1 bp























.

Then σess(J) has a gap, if |λj − λj+1| > 2 |ap−1| for some j.

Proof. The proof is an imitation of the proof of Theorem (4.4.1), how-

ever we provide all the details. Apply Lemma (4.4.1) with

H(.) =























b1 a1 ap−1e
iθ

a1 b2 a2

a2 . .

. . .

. . ap−1

ap−1e
−iθ ap−1 bp























, H̃ =























b1 a1

a1 b2 a2

a2 . .

. . .

. . ap−1

ap−1 bp























,
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and

E =























ap−1e
iθ






















.

Then we get

|λj − λj(H(θ)| 6 ‖E‖ =
∥

∥ap−1e
iθ
∥

∥

∞
= |ap−1| by (4.3).

Combining with (3.13), we get

σess(J) =

p
⋃

j=1

[

inf
θ

(λj(H(θ))), sup
θ

(λj(H(θ)))

]

⊆
p
⋃

j=1

[λj − |ap−1| , λj + |ap−1|] .

Therefore if |λj − λj+1| > 2 |ap−1| for some j, then there exists a gap in

the essential spectrum. Hence the proof.

Remark 4.4.1. The last couple of results help us to reduce the

computations in predicting spectral gaps, for operators arising from the

matrix valued symbols. We need to check only the eigenvalues of a matrix

with constant entries. The proof also gives us the spectral inclusion

σess(A) ⊆
p
⋃

j=1

[λj − ‖f‖∞ , λj + ‖f‖∞] .

which is very important, since the right hand side includes only the eigen-

values of a constant matrix. Whether equality holds in this inclusion, is

still not clear to us.



Chapter 5

Preconditioners and

Korovkin-type theorems

The sequences of matrices related to operators acting on infinite dimen-

sional Hilbert spaces, were considered so far. But usually these matrix

sequences need not be simpler enough to make the computations easy. If

a different matrix sequence can be used to do the same approximation,

without loosing much spectral data, then it will be helpful to make the

computations easier. In many cases it will be convenient to look at a dif-

ferent sequence of matrices associated with the original sequence that we

deal with, which are comparatively simpler to handle. When doing so, the

results obtained with the new sequence must be sufficient for the spectral

information of the original operator under concern. The advantage is that

we are able to confine our attention to “simpler” matrices without loosing

much spectral data. In a heuristic language, such new sequences of matri-

ces are called preconditioners. Recall that in the numerical linear algebra

95
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literature, preconditioners are used to reduce the condition number and

to make the iteration methods much more efficient.

The notion of preconditioners, introduced in this chapter, is an exten-

sion of the notions available in the case of Toeplitz matrices, to the setting

of operators acting on separable Hilbert spaces. Also we introduce the new

notions of convergence induced by strong, weak and uniform eigenvalue

clustering of matrix sequences with growing order. It is observed that

the asymptotic of the preconditioners with respect to the new notions of

convergence, contains much of the spectral information of a bounded self-

adjoint operator. Hence we hope that the usage of preconditioners may

be useful in the spectral approximations that we discussed in the previous

chapters.

The classical as well as noncommutative Korovkin-type theorems deal

with the convergence of positive linear maps with respect to modes of

convergences such as norm convergence and weak operator convergence.

In this chapter, new versions of Korovkin-type theorems are proved with

respect to the notions of convergence induced by strong, weak and uniform

eigenvalue clustering of matrix sequences with growing order. Such modes

of convergence were originally considered for the special case of Toeplitz

matrices by Stefano Serra Capizzano and Tyrtyshnikove (see [60, 65]).

Also the Korovkin-type approach, in the setting of preconditioning large

linear systems with Toeplitz structure is well known (see [60]). Here we

translate such finite dimensional approach into the infinite dimensional

context of operators acting on separable Hilbert spaces. The asymptotic

of these preconditioners are obtained and analyzed using the concept of

completely positive maps (CP-maps). It is observed that any two limit

points of the same sequence of preconditioners are the same modulo com-
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pact operators.

The chapter is organized as follows. It begins with an introduction to

the basic notions and the classical as well as non commutative versions of

Korovkin-type theorems. In the second section, the new notion of precon-

ditioners in an operator theory setting and new modes of convergence of

positive linear maps in the strong, weak and uniform distribution sense are

introduced. The new versions of non commutative Korovkin-type theo-

rems are proved in the next section. The special case of Toeplitz operators

and the example of Frobenius optimal maps are considered in the fourth

section. Also, the stronger versions of the finite dimensional results in [60]

are proved. Finally, a discussion on the possible applications of the main

results to the spectral approximation problems is presented.

5.1 Preliminaries

The notions of preconditioners and convergence of matrix sequences us-

ing the clustering of eigenvalues, is used in connection with the Frobenius

optimal approximation of matrices of large size which has been widely

considered in the numerical linear algebra literature for the design of effi-

cient solvers of complicated linear systems of large size. More specifically,

the approximation is constrained in spaces of low complexity: as examples

of high interest in several important applications (see [24], [38] and ref-

erences therein), we may mention algebras of matrices associated to fast

transforms like Fourier, Trigonometric, Hartley, Wavelet transforms ([44],

[68]) or we may mention spaces with prescribed patterns of sparsity. In

the context of general linear systems, accompanied with the minimization
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in Frobenius norm, these techniques were originally considered and stud-

ied by Huckle (see [9] and references there reported), while the specific

adaptation in the Toeplitz context started with the work of Tony Chan in

[66].

More recently, a unified structural analysis was introduced by Stefano

Serra Capizzano, in connection with the Korovkin theory, which represents

a nice branch of the theory of functional approximation. More precisely,

the analysis of clustering of the preconditioned systems which gives a

measure for the approximation quality is reduced to classical Korovkin

test set of a finite number of very elementary symbols associated to equally

elementary Toeplitz matrices. Here the same approach is considered in an

operator theory setting. The Korovkin-type approach used in the finite

dimensional case in the setting of preconditioning large linear systems

with Toeplitz structure is translated in the infinite dimensional context of

operators acting on separable Hilbert spaces.

We begin with the classical Korovkin’s theorem.

Theorem 5.1.1. Let {Φn} be a sequence of positive linear maps on

C[0, 1]. If

Φn(f) → f for every f in the set {1, x, x2},

then

Φn(f) → f for every f in C[0, 1].

Here the convergence is the uniform convergence of sequence of func-

tions. For the noncommutative versions of this theorem, we need the

notion of completely positive maps and Schwarz maps.
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Definition 5.1.1. Let A and B be C∗ algebras with identities 1A

and 1B respectively and Φ : A → B be a positive linear map such that

Φ(1A) 6 (1B). For each positive integer n, let Φn : Mn(A) → Mn(B) be

defined as Φn(ai,j) = (Φ(ai,j)) for every matrix (ai,j) ∈ Mn(A). If Φn is

positive for each n, then Φ is called completely positive.

Remark 5.1.1. Let CP (A,B) denote the class of all completely

positive maps (CP-maps) Φ from A to B such that Φ(1A) 6 (1B). All such

maps will have norm less than or equal to 1. Then it is well known that

CP (A,B) is compact and convex in the Kadison’s B.W topology [1], if B

is a sub algebra of B(H). Convergence in the B.W topology is defined as

follows.

Φα → Φ in the B.W topology means Φα(A) → Φ(A),

in the weak operator topology for every A in the C∗ algebra A.

Remark 5.1.2. Let A,B and C be three C∗ algebras. If Φ is in

CP (A,B) and Ψ in CP (B,C), then the composition Ψ◦Φ is in CP (A,C) .

One of the most fundamental result, the Stinespring dilation Theorem

[62] is stated below.

Theorem 5.1.2. Let A and B be C∗ algebras with identities 1A

and 1B respectively. Let Φ : A → B be a completely positive linear map

such that Φ(1A) 6 (1B). Assume that B is a sub algebra of B(H) for

some Hilbert space H. Then there exists a representation π of A on a

Hilbert space K and a bounded linear map V from H to K such that

Φ (a) = V ∗π (a)V for every a ∈ A.
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Remark 5.1.3. It is known that if either A or B is commutative then

every positive linear map is completely positive.

Recall that any positive linear map Φ : A → B with Φ(1A) 6 (1B),

satisfies the well known inequality of Kadison, namely,

Φ(a2) > Φ(a)2, for every a such that a = a∗.

Definition 5.1.2. A positive linear map Φ from a C∗ algebra A to a

C∗ algebra B is called a Schwarz map if Φ(a∗a) > Φ(a∗)Φ(a) for all a in

A.

Remark 5.1.4. It can be easily seen that every completely positive

map of norm less than 1, is a Schwarz map. Also, a Schwarz map is

clearly positive and contractive. If the C∗-algebra A is commutative, then

a positive contractive map is a Schwarz map.

Remark 5.1.5. In the case of an arbitrary C∗-algebra A, a positive

linear map Ψ with Ψ(1) 6 1 was called a Jordan-Schwarz map in [6], since

it satisfies the following inequality.

Φ(a∗ ◦ a) > Φ(a∗) ◦ Φ(a) for all a in A,

where ◦ is the Jordan product defined by a ◦ b = 1
2
(ab+ ba).

Definition 5.1.3. [6] a ∗− closed and norm-closed subspace of a C∗-

algebra A, which is also closed with respect to the Jordan product called

a J∗-sub algebra of A.

The non commutative versions of the classical Korovkin’s theorem have
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been obtained by various researchers for positive maps, Schwarz maps and

CP-maps, in the settings C∗-algebras and W ∗-algebras. A short survey

of these developments can be found in [56]. For example, the following is

such a version proved in [48].

Theorem 5.1.3. Let the sequence of Schwarz maps Φn, from A to B

be such that Φn(1A) 6 1B. Then the set

C = {a ∈ A; Φn(a) → a,Φn(a
∗a+ aa∗) → (a∗a+ aa∗)}

is a C∗-algebra.

The following theorem, taken from [47], can be thought of as an exact

analogue of classical Korovkin’s theorem where the convergence is the

weak operator convergence.

Theorem 5.1.4. Let {Φλ} be a net of CP-maps on B(H), where H

is a separable, complex Hilbert space. If

Φλ(A) → A for every A in the set {I, S, SS∗}

where S is the unilateral right shift operator on H, then

Φλ(A) → A, for all A in B(H),

where the mode of convergence is the weak operator convergence.

The concept of generalized Schwarz map was introduced by Uchiyama

in [67]. Below, the definition and an important inequality ( Theorem 2.1
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in [67]) are given, which will play a crucial role in the proof of new versions

of Korovkin-type theorems.

Consider a binary operation ◦ in a C∗-algebra A, satisfying the follow-

ing properties for every α, β ∈ C and x, y, z ∈ A.

1. (αx+ βy) ◦ z = α(x ◦ z) + β(y ◦ z).

2. (x ◦ y)∗ = y∗ ◦ x∗.

3. x∗ ◦ x > 0.

4. There is a real number M such that ‖x ◦ y‖ 6 M ‖x‖ ‖y‖ .

5. (x ◦ y) ◦ z = x ◦ (y ◦ z)

6. (x ◦ y) = (y ◦ x) and x ◦ x = x2 if x = x∗.

Remark 5.1.6. Note that ◦ is bilinear and that the ordinary product

satisfies (5) and the Jordan product (6). Conversely if ◦ satisfies (6), then

◦ is the Jordan product.

Definition 5.1.4. A linear map Φ on a C∗-algebra A is called a

generalized Schwarz map with respect to the binary operation ◦, if Φ

satisfies Φ(x∗) = Φ(x)∗ and Φ(x∗) ◦ Φ(x) 6 Φ(x∗ ◦ x) for every x ∈ A.

Remark 5.1.7. Note that a generalized Schwarz map Φ is not nec-

essarily positive. However, under point wise product in function spaces

and with usual product of operators or matrices, all Schwarz maps are

positive.
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Theorem 5.1.5. [67] Let Φ be a generalized Schwarz map on a C∗

algebra A with respect to ◦, and for f, g ∈ A, if we let

X = Φ(f ∗ ◦ f) − Φ(f)∗ ◦ Φ(f) > 0

Y = Φ(g∗ ◦ g) − Φ(g)∗ ◦ Φ(g) > 0

Z = Φ(f ∗ ◦ g) − Φ(f)∗ ◦ Φ(g)

Then we have

| φ(Z)| 6| φ(X)|1/2. | φ(Y )|1/2, for all state φ on A (5.1)

In particular, ‖ Z ‖6‖ X ‖1/2‖ Y ‖1/2 (5.2)

Remark 5.1.8. The above inequality holds for Schwarz maps with

respect to usual product and for contractive positive maps with respect

to the Jordan product.

Now we introduce the notion of preconditioners and new modes of

convergence in an operator theory setting.

5.2 Pre-conditioners and convergence of CP-

maps

Let {Pn} be a sequence of orthogonal projections on H such that

dim(Pn(H)) = n <∞, for each n = 1, 2, 3 . . .

and lim
n→∞

Pn (x) = x, for every x in H.
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Let {Un} be a sequence of unitary matrices over C, where Un is of order

n for each n. For each A ∈ B(H), consider the following truncations

An = PnAPn, which can be regarded as n × n matrices in Mn (C), by

restricting the domain to the range of Pn. For each n, we define the

commutative algebra MUn of matrices as follows.

MUn = {A ∈Mn (C) ;Un
∗AUn complex diagonal}

Recall that Mn (C) is a Hilbert space with the Frobenius norm,

‖A‖2
2 =

n
∑

j,k=1

|Aj,k|2

induced by the classical Frobenius scalar product,

〈A,B〉 = trace (B∗A)

with trace(.) being the trace of its argument. That is the sum of all its

diagonal entries. Observe that MUn is a closed convex set in Mn (C) and

hence, corresponding to each A ∈ Mn (C), there exists a unique matrix

PUn(A) in MUn such that

‖A−X‖2
2 > ‖A− PUn(A)‖2

2 for every X ∈MUn .

We recall the following two lemmas, which reveal some fundamental prop-

erties of the map PUn for each n.

Lemma 5.2.1. [60] With A,B ∈Mn (C) and α, β complex numbers,

we have

PUn(A) = Unσ (Un
∗AUn)Un

∗ (5.3)
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where σ (X) is the diagonal matrix having Xii as the diagonal elements.

PUn(αA+ βB) = αPUn(A) + βPUn(B) (5.4)

PUn(A∗) = PUn(A)∗ (5.5)

TracePUn(A) = Trace(A) (5.6)

‖PUn(A)‖ = 1 (Operator norm) (5.7)

‖PUn(A)‖F = 1(Frobenius norm) (5.8)

‖A− PUn(A)‖F
2 = ‖A‖F

2 − ‖PUn(A)‖F
2 (5.9)

Lemma 5.2.2. [10] If A is a Hermitian matrix, then the eigenvalues

of PUn(A) are contained in the closed interval [λ1(A), λn(A)], where λj(A)

are the eigenvalues of A arranged in a non decreasing way. Hence if A is

positive definite, then PUn(A) is positive definite as well.

Now we define the generalized notion of preconditioners on B(H) as

follows.

Definition 5.2.1. For each A ∈ B(H), Φn : B(H) → Mn(C) is

defined as

Φn(A) = PUn(An),

where PUn(An) is as in Lemma (5.2.1), for each positive integer n.

We may call Φn(A), the preconditioners of A. One of the straightfor-

ward but crucial implications of Lemma (5.2.1) is the following theorem.

Theorem 5.2.1. The maps {Φn} in the Definition (5.2.1), is a se-
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quence of completely positive maps on B(H) such that

• ‖Φn‖ = 1, for each n.

• Φn is continuous in the strong topology of operators for each n.

• Φn(I) = In for each n where I is the identity operator on H.

Proof. From Lemma (5.2.2), it follows that PUn(.) is a positive linear

map for each n. Since MUn is a commutative Banach algebra, PUn(.) is

a completely positive map for each n. Hence Φn is a completely positive

map, since it is the composition of CP-maps (PUn(.) and the maps which

send A to PnAPn and pull back). Now continuity in the strong operator

topology follows easily from the definition and the remaining part of the

theorem follows from the following observations.

‖Φn‖ = sup
‖A‖=1,A∈B(H)

‖Φn (A)‖ = sup
‖A‖=1,A∈B(H)

‖PUn(An)‖ = 1

by the identity (5.7) in Lemma (5.2.1). The last part of the theorem

follows easily from the identity (5.3) of Lemma (5.2.1).

In the next section, Korovkin-type theorems for completely positive

maps are proved with respect to various types of clustering of eigenvalues.

The completely positive maps that arises from preconditioners discussed

above can be considered as an example.

The different notions of convergence of sequence of positive linear maps

on B(H) in a distributional sense are introduced below. These definitions

are motivated from the different notions of convergence for preconditioners
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in the Toeplitz case done in [60]. To avoid confusion with the classical

notion of strong, weak and operator norm convergence, we address them

by strong cluster, weak cluster, and uniform cluster to mean the

strong, weak and uniform convergence respectively used in [60].

Definition 5.2.2. Let {An} and {Bn} be two sequences of n×n Her-

mitian matrices. We say that An − Bn converges to 0 in strong cluster

if for any ǫ > 0, there exist integers N1,ǫ, N2,ǫ such that all the singular

values σj(An − Bn) lie in the interval [0, ǫ) except for at most N1,ǫ (inde-

pendent of the size n) eigenvalues for all n > N2,ǫ.

If the number N1,ǫ does not depend on ǫ, we say that An−Bn converges

to 0 in uniform cluster. And if N1,ǫ depends on ǫ, n and is of o(n), we

say that An −Bn converges to 0 in weak cluster.

The following powerful lemma is due to Tyrtyshnikov (see Lemma (3.1)

in [65]).

Lemma 5.2.3. Let {An} and {Bn} be two sequences of n × n Her-

mitian matrices. If ‖ An −Bn ‖F 2 = O(1), then we have convergence in

strong cluster. If ‖ An −Bn ‖F 2 = o(n) then the convergence is in weak

cluster.

Using the above notions, we introduce the new notions of convergence

of positive linear maps on B(H).

Definition 5.2.3. Let {Φn} be a sequence of positive linear maps on

B(H) and Pn be a sequence of orthogonal projections on H with rank n
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such that Pn converges strongly to the identity map. We say that {Φn(A)}
converges to A in the strong distribution sense , if the sequence of ma-

trices {PnΦn(A)Pn} − {PnAPn} converges to 0 in strong cluster as per

Definition (5.2.2).

Similarly We say that {Φn(A)} converges to A in the weak distri-

bution sense (uniform distribution sense respectively), if the se-

quence of matrices {PnΦn(A)Pn}−{PnAPn} converges to 0 in weak cluster

(uniform cluster respectively) as per Definition (5.2.2).

Remark 5.2.1. The above definitions make sense only in the case

when A is a self-adjoint operator in B(H). In the non self-adjoint case,

one may have to translate things in to the language of ǫ−discs instead

of intervals. But we are dealing with the self-adjoint case only. Also the

definitions depend on the choice of P ′
ns.

Remark 5.2.2. In the case of nets, the definitions are the same with

convergence in terms of directed set.

Consider a sequence of CP-maps {Φn} in B(H) with ‖Φn‖ 6 1. By

the compactness of CP (B(H)), in the Kadison’s B.W topology, {Φn} has

limit points. Let Ω be the set of all limit points of {Φn}. Next we discuss

some properties of the limit points Φ in Ω . The relation between Φ(A)

and A for A ∈ B(H) are considered here.

Lemma 5.2.4. Let Φ ∈ Ω and let {Φnα} be a subnet of {Φn} such

that Φnα converges to Φ in the Kadison’s B.W topology. Then for each m,

the truncations Φm,nα(A) = PmΦnα(A)Pm converges uniformly in norm to
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PmΦ(A)Pm. That is lim
α

‖Φm,nα(A) − PmΦ(A)Pm‖ = 0.

Proof. This follows immediately since Pm is of finite rank and there-

fore, on range(Pm), weak, strong and operator norm topologies coincide.

Remark 5.2.3. For each A ∈ B(H), note that Anα − Φnα(A) con-

verges in the strong operator topology to A− Φ(A). Hence,

PmAnαPm − PmΦnα(A)Pm converges to PmAPm − PmΦ(A)Pm

in the norm topology for each m.

The above observations can be used to deduce the following result.

Theorem 5.2.2. Let A ∈ B(H) be self-adjoint and Φn(A) − A con-

verges to 0 in uniform distribution sense as in Definition (5.2.3). Then

A− Φ(A) is finite rank.

Proof. By assumption PnαΦnα(A)Pnα −Anα converges to 0 in uniform

cluster, as in the Definition (5.2.2). Hence for each ǫ > 0, there exist a βǫ

in the directed set and N such that

#(σ(Anα − PnαΦnα(A)Pnα) ∩ R − (−ǫ,+ǫ)) 6 N, whenever α > βǫ.

Therefore by Cauchy interlacing theorem,

#(σ(Pm(Anα−PnαΦnα(A)Pnα)Pm)∩R−(−ǫ,+ǫ)) 6 N, if α > βǫ and nα > m.
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As we apply limit over α, since by the above remark, Pm(Anα−PUnα
(Anα))Pm

converges to Pm(A−Φ(A))Pm in the operator norm topology for every m,

#(σ(Pm(A− Φ(A))Pm) ∩ R − (−ǫ,+ǫ)) 6 N, for every m.

Therefore R− (−ǫ,+ǫ) contains no essential points of A−Φ(A) and hence

by Arveson’s Theorem (2.1.2), it contains no essential spectral values of

A − Φ(A). That is the essential spectrum σe(A − Φ(A)) is contained in

the interval (−ǫ,+ǫ) for all ǫ > 0. This implies that σe(A− Φ(A)) = {0}.
Hence A−Φ(A) is compact and it has at most N eigenvalues. Hence it is

finite rank by spectral theorem.

The above theorem is very important from a spectral theory point of

view. Since Φ(A) is one of the limits of the preconditioners of A, the

above theorem says that the change in the operator, when we move to

preconditioners is not more than a finite rank perturbation if you look

at a uniform limit point. We list down the properties preserved by this

change.

Remark 5.2.4. Under the assumptions that A ∈ B(H) is self-adjoint

and Φn(A) converges to A in uniform distribution sense as in Definition

(5.2.3), the following results are easy consequences of the above theorem:

• A is compact if and only if Φ(A) is compact.

• A is Fredholm if and only if Φ(A) is Fredholm.

• A is Hilbert Schimidt if and only if Φ(A) is Hilbert Schimidt.

• A is of finite rank if and only if Φ(A) is of finite rank.
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• A has a gap in the essential spectrum σe(A) of A if and only if

σe(Φ(A)) has a gap.

In the next theorem, we observe that if the mode of convergence is

strong, then the change to preconditioners, amounts a compact perturba-

tion.

Theorem 5.2.3. Let A ∈ B(H) be self-adjoint and Φn(A) converges

to A in strong distribution sense as in Definition (5.2.3). Then A− Φ(A)

is compact.

Proof. The proof is not much different from the proof of Theorem

(5.2.2). All the arguments are same, except the fact that here the number

of eigenvalues of (Anα −PnαΦnα(A)Pnα), outside (−ǫ,+ǫ), is not bounded

by a constant, but by a number N1,ǫ, which depends on ǫ. Hence we

can conclude that A − Φ(A) is compact, and can have countably infinite

number of eigenvalues.

Remark 5.2.5. Under the assumptions that A ∈ B(H) is self-adjoint

and Φn(A) converges to A in strong distribution sense as in Definition

(5.2.3), the following results are easy consequences of the above theorem:

• A is compact if and only if Φ(A) is compact.

• A is Fredholm if and only if Φ(A) is Fredholm.

• A has a gap in the essential spectrum σe(A) of A if and only if

σe(Φ(A)) has a gap.

Remark 5.2.6. Hence (Φ(A)) contains much of the essential spectral

information of A.
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5.2.1 Modified preconditioners

It is interesting to observe that the notion of preconditioners can be modi-

fied by replacing ’diagonal transformation’ by ’block diagonal transforma-

tion’ which is obtained by applying the pinching functions defined below.

Definition 5.2.4. [7] Let Pnk
be a family of mn pairwise orthogonal

projections inMn(C), such that
∑mn

k=1 Pnk
= In, the identity matrix. Then

the operation of taking A to
∑mn

k=1 Pnk
APnk

is called the pinching function.

Let MUn = {A ∈Mn (C) ;Un
∗AUn is block diagonal}, where the block

diagonal is obtained for each A in Mn(C) by applying pinching function

to A for each n. The modified preconditioner on Mn(C) takes values

Ψn(A) =
mn
∑

k=1

Pnk
APnk

for everyA ∈Mn(C). (5.10)

From Stinespring’s theorem, it is clear that the maps Ψ′
ns are CP-

maps. Now if we define PUn(A) in a similar way with MUn replaced by

MUn , we can formulate an analogue of Lemma (5.2.1).

Lemma 5.2.5. With A,B ∈Mn (C), we have

PUn(A) = UnΨn (Un
∗AUn)Un

∗ where Ψn is as in (5.10).

PUn(αA+ βB) = αPUn(A) + βPUn(B)

PUn(A∗) = PUn(A)∗

TracePUn(A) = Trace(A)
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‖PUn(A)‖ = 1 (Operator norm)

‖PUn(A)‖F = 1(Frobenius norm)

‖A− PUn(A)‖F
2 = ‖A‖F

2 − ‖PUn(A)‖F
2

We shall list down some of the properties of the maps {Ψn} as we did

in Theorem (5.2.1).

Theorem 5.2.4. The maps {Ψn} is a sequence of completely positive

maps on B(H) such that

• ‖Ψn‖ = 1, for each n.

• Ψn is continuous in the strong topology of operators.

• Ψn(I) = In for each n, where I is the identity operator on H.

Remark 5.2.7. The above mentioned modified version of precon-

ditioners are better than the previous one in the sense that the modified

version is closer to the operator in the Frobenius norm and is simpler

enough also.

We may construct examples for the modified preconditioners as follows.

Example 5.2.1. Let Ũn be unitaries in Mn(C) as in Definition

(5.2.2). For each positive integer n, let Un be unitaries in B(H) defined as

Un
⊕

(I − Pn). Observe that there are many interesting, concrete exam-

ples of unitaries Un in [60]. For the sake of completeness, we quote them

below.
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Let v = {vn}n∈N with vn = (vnj)j6n−1 be a sequence of trigonometric

functions on an interval I. Let S = {Sn}n∈N be a sequence of grids of n

points on I, namely, Sn = {xni , i = 0, 1, . . . n− 1}. Let us suppose that the

generalized Vandermonde matrix

Vn = (vnj(x
n
i ))

n−1
i;j=0

is a unitary matrix. Then, algebra of the form MUn is a trigonometric

algebra if Un = Vn
∗ with Vn a generalized trigonometric Vandermonde

matrix.

We get examples of trigonometric algebras with the following choice

of the sequence of matrices Un and grid Sn. These examples will be con-

sidered in section 5.4.2.

Un = Fn =

(

1√
n
eijx

n
i

)

, i, j = 0, 1, . . . n− 1,

Sn =

{

xni =
2iπ

n
, i = 0, 1, . . . n− 1

}

⊂ I = [−π, π]

Un = Gn =

(

√

2

n+ 1
sin(j + 1)xni

)

, i, j = 0, 1, . . . n− 1,

Sn =

{

xni =
(i+ 1)π

n+ 1
, i = 0, 1, . . . n− 1

}

⊂ I = [0, π]

Un = Hn =

(

1√
n

[sin(jxni ) + cos(jxni )]

)

, i, j = 0, 1, . . . n− 1,

Sn =

{

xni =
2iπ

n
, i = 0, 1, . . . n− 1

}

⊂ I = [−π, π]



5.3. Korovkin-type Theorems 115

5.3 Korovkin-type Theorems

The noncommutative Korovkin-type theorems are proved in this section.

We begin with the noncommutative analogue of the remainder estimate

in the classical Korovkin-type theorems, as proved in [60] for the Toeplitz

operators.

Lemma 5.3.1. Let {A1, A2, . . . Am} be a finite set of operators in

B(H) and Φn be a sequence of positive linear Schwarz maps on B(H) such

that ‖Φn‖ 6 1, for every n and ‖Φn(A) − A‖ = O(θn), for every A in

the set D = {A1, A2, . . . Am,
∑m

k=1AkAk
∗}, where θn −→ 0 as n −→

∞. Then ‖Φn(A) − A‖ = O(θn) for every A in the algebra generated by

{A1, A2, . . . Am}.

Proof. We have by linearity,

Φn(
m
∑

k=1

AkAk
∗) =

m
∑

k=1

Φn(AkAk
∗).

Also by adding and subtracting the term
∑m

k=1 Φn(Ak)Φn(Ak)
∗,

Φn

(

m
∑

k=1

AkA
∗
k

)

−
m
∑

k=1

AkA
∗
k =

[

Φn

(

m
∑

k=1

AkA
∗
k

)

−
m
∑

k=1

Φn (Ak) Φn (Ak)
∗

]

+

[

m
∑

k=1

Φn (Ak) Φn (Ak)
∗ −

m
∑

k=1

AkA
∗
k

]

The norm of left side of the above equation as well as of the last term of
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the right side are of O(θn). The first term of the right side is

m
∑

k=1

[Φn(AkAk
∗) − Φn(Ak)Φn(Ak)

∗]

Hence norm of this term is of O(θn). But each term inside this sum

are nonnegative operators by Schwarz inequality for positive linear maps.

Therefore norm of each term namely Φn(AkAk
∗) − Φn(Ak)Φn(Ak)

∗ is of

O(θn). Also since each Φn is a Schwarz map, by applying inequality (5.2)

to maps Φn for each n and operators Ak and Al, we get

‖Φn(Ak
∗Al) − Φn(Ak)

∗Φn(Al)‖ = O(θn). (5.11)

Also, we can manipulate ‖Ak∗Al − Φn(Ak)
∗Φn(Al)‖ as follows.

‖A∗
kAl − Φn (Ak)

∗ Φn (Al)‖ =

‖(Ak − Φn (Ak) + Φn (Ak))
∗Al − Φn (Ak)

∗ (Φn (Al) − Al + Al)‖
6 ‖(Ak − Φn (Ak))

∗Al‖ + ‖Φn (Ak)
∗ (Φn (Al) − Al)‖

Now each of the terms in the last sum is of O(θn), since by the assumption

on Ak, Al and since ‖Φn‖ 6 1. Therefore we have

‖Ak∗Al − Φn(Ak)
∗Φn(Al)‖ = O(θn) (5.12)

Also we have the following identity:

‖Φn(Ak
∗Al) − Ak

∗Al‖ =

‖Φn(Ak
∗Al) − Φn(Ak)

∗Φn(Al) + Φn(Ak)
∗Φn(Al) − Ak

∗Al‖
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Applying (5.11) and (5.12) in the above identity, we get

‖Φn(Ak
∗Al) − Ak

∗Al‖ = O(θn)

Therefore the proof is completed for every operator of the form Ak
∗Al and

hence in the algebra generated by the finite set {A1, A2, . . . Am}. Hence

the proof.

Before proving the more general Korovkin-type theorems, we prove the

following lemma, which is useful for us.

Lemma 5.3.2. Let {An} and {Bn} be two sequences of n×n Hermi-

tian matrices such that {An}−{Bn} converges to 0 in strong cluster (weak

cluster respectively). Assume that {Bn} is positive definite and invertible

such that there exists a δ > 0, with

Bn > δIn > 0, for all n.

Then for a given ǫ > 0, there will exist positive integers N1,ǫ, N2,ǫ such that

all eigenvalues of Bn
−1An lie in the interval (1 − ǫ, 1 + ǫ) except possibly

for N1,ǫ = O(1) (N1,ǫ = o(n) respectively) eigenvalues for every n > N2,ǫ.

Proof. First we observe that, since {An} − {Bn} converges to 0 in

strong cluster (weak cluster respectively), by definition, for any given ǫ >

0, there exists integers N1,ǫ, N2,ǫ such that all eigenvalues of An − Bn lie

in the interval (−ǫ, ǫ) except for at most N1,ǫ(N1,ǫ = o(n) respectively)

eigenvalues whenever n > N2,ǫ. Hence by spectral theorem there exist
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orthogonal projections Pn and Qn whose ranges are orthogonal such that

rank(Pn) + rank(Qn) = n, rank(Qn) 6 N1,ǫ, ‖ Pn(An −Bn)Pn ‖< ε

and An −Bn = Pn(An −Bn)Pn +Qn(An −Bn)Qn

Hence for ǫ1 = ǫ.δ > 0, there exists natural numbers N1,ǫ, N2,ǫ with the

following decomposition.

An −Bn = Rn +Nn, for all n > N2,ǫ, (5.13)

where the rank of Rn is bounded above by N1,ǫ and ‖Nn‖ 6 ǫ1. Now let

β be an eigenvalue of Bn
−1An with x being the associated eigenvector of

norm one. Then we have

Bn
−1An(x) = βx.

Hence,

(An −Bn)(x) = (β − 1)Bn(x).

Which implies that

〈(An −Bn)(x), x〉 = (β − 1)〈Bn(x), x〉.

And

β − 1 =
〈(An −Bn)(x), x〉

〈Bn(x), x〉
Now from the decomposition (5.13), we have

β − 1 =
〈(Rn +Nn)(x), x〉

〈Bn(x), x〉
=

〈Rn(x), x〉
〈Bn(x), x〉

+
〈Nn(x), x〉
〈Bn(x), x〉
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Now since ‖Nn‖ 6 ǫ1 and Bn > δIn > 0, the second term in the last sum

is less than ǫ1
δ

= ǫ. Also since rank of Rn is bounded above by N1,ǫ =

O(1)(o(n) respectively), there are only at most N1,ǫ linearly independent

vectors x for which Rn(x) 6= 0, by rank-nullity theorem. Hence, except for

at most N1,ǫ = O(1)(o(n) respectively) eigenvalues,

|β − 1| 6 ǫ.

This means that all eigenvalues of Bn
−1An lie in the interval(1 − ǫ, 1 + ǫ)

except possibly for N1,ǫ = O(1)(o(n) respectively). This completes the

proof.

Now we prove our main result of this chapter, the non commutative

versions of Korovkin-type theorems. Here the ◦ denotes the Jordan prod-

uct of operators or matrices.

Theorem 5.3.1. Let {A1, A2, . . . Am} be a finite set of self-adjoint

operators on H and Φn be a sequence of contractive positive maps onB(H),

such that Φn(A) converges to A in the strong (or weak respectively) dis-

tribution sense, for A in
{

A1, A2, . . . Am, A1
2, A2

2, . . . Am
2
}

. In addition, if

we assume that the difference Pn(Ak
2)Pn−(Pn(Ak)Pn)

2 converges to the 0

matrix in strong cluster (weak cluster respectively), for each k, then Φn(A)

converges to A in the strong (or weak respectively) distribution sense, for

all A in the J∗- sub algebra A generated by {A1, A2, A3, . . . .Am} .



120 Chapter 5. Preconditioners and Korovkin-type theorems

Proof. First we consider the following sequence of Hermitian matrices.

Xn = PnΦn(A
2
k)Pn − (PnΦn(Ak)Pn)

2
> 0

Yn = PnΦn(A
2
l )Pn − (PnΦn(Al)Pn)

2
> 0

Zn = PnΦn(Ak ◦ Al)Pn − (PnΦn(Ak)Pn) ◦ (PnΦn(Al)Pn)

Since these sequences of matrices are norm bounded, we have

‖ Yn ‖< γ <∞ for all n, for some γ > 0. (5.14)

Also if we write

Xn = PnΦn(A
2
k)Pn − (PnΦn(Ak)Pn)

2

= [PnΦn(A
2
k)Pn − Pn(A

2
k)Pn] + [Pn(A

2
k)Pn − (Pn(Ak)Pn)

2]

+ [(Pn(Ak)Pn)
2 − (PnΦn(Ak)Pn)

2],

the first two terms in the above sum, converges to 0 in strong cluster

(weak respectively) by assumption. Also since PnΦn(Ak)Pn−Pn(Ak)Pn =

Rn +Nn, where Rn and Nn are as in the proof of Lemma (5.3.2), we have

the following.

(PnΦn(Ak)Pn) − (Pn(Ak)Pn) = Rn +Nn

((PnΦn(Ak)Pn) −Rn)
2 = ((Pn(Ak)Pn) +Nn)

2

From the above identity, we can deduce that (Pn(Ak)Pn)
2−(PnΦn(Ak)Pn)

2 =

R
′

n +N
′

n where R
′

n has bounded rank and N
′

n has small norm as required

for the convergence in strong cluster (weak respectively) to 0. Hence the
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third term also converges to the 0 matrix in strong cluster (weak respec-

tively). Therefore Xn converges to the 0 matrix in strong cluster (weak

respectively).

Now for each fixed x with ‖x‖ = 1, if we consider the state φx on B(H)

defined as

φx(A) = 〈A(x), x〉

then by the inequality (5.1) applied to the contractive positive maps

PnΦn(.)Pn, we get

|〈Zn(x), x〉| 6 |〈Xn(x), x〉|1/2.|〈Yn(x), x〉|1/2 (5.15)

Now let δ > 0, be given and ǫ = δ2/γ, as in the proof of Lemma (5.3.2),

there exists integers N1,ǫ = O(1) (N1,ǫ = o(n) respectively) and N2,ǫ such

that we have the following decomposition

Xn = Nn +Rn for all n > N2,ǫ,

with ‖Nn‖ < ǫ and rank of Rn is less than N1,ǫ = O(1) (N1,ǫ = o(n)

respectively). Applying this and (5.14) in the inequality (5.15), we get

|〈Zn(x), x〉| 6
√
γ.[|〈Nn(x), x〉|1/2 + |〈Rn(x), x〉|1/2] (for all n > N2,ǫ)

Since the rank of Rn is bounded above by N1,ǫ = O(1)(o(n) respec-

tively), there are only at mostN1,ǫ linearly independent vectors x for which

Rn(x) 6= 0, by rank-nullity theorem. Hence, |〈Zn(x), x〉| 6 δ, except for

at most N1,ǫ = O(1)(o(n) respectively) linearly independent vectors x.

Therefore all eigenvalues of Zn, except for possibly N1,ǫ = O(1)(o(n) re-
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spectively), lie in the interval (−δ, δ), whenever n > N2,ǫ. Since δ > 0,

was arbitrary, Zn converges to the 0 matrix in strong cluster (weak re-

spectively).

Now consider

PnΦn (Ak ◦ Al)Pn − Pn (Ak ◦ Al)Pn = [PnΦn (Ak ◦ Al)Pn−

(PnΦn (Ak)Pn) ◦ (PnΦn (Al)Pn)] + [(PnΦn (Ak)Pn) ◦ (PnΦn (Al)Pn)−

(Pn (Ak)Pn) ◦ (Pn (Al)Pn)] + [(Pn (Ak)Pn) ◦ (Pn (Al)Pn) − Pn (Ak ◦ Al)Pn]

The first term on the right hand side of the above equation is Zn and the

last term is also in the form of Zn for the positive contractive maps Pn(.)Pn

on B(H). Therefore both the terms converges to the 0 matrix in strong

cluster (weak respectively). By simple computation, it can be proved that

the middle term also converges to the 0 matrix in strong cluster (weak

respectively). Hence the theorem is proved for the operators of the form

Ak ◦ Al.

The same proof can be repeated for operators of the form Aj◦(Ak◦Al),
using the boundedness of Ak ◦ Al and convergence assumption on Aj in

strong cluster (weak respectively). Continuing like this inductively, we

get the assertion is true for any operator in the form of a polynomial in

{A1, A2, A3, . . . .Am} , with respect to the Jordan product.

Now for A ∈ A, ǫ > 0, let T be the operator in the form of a polynomial

in {A1, A2, A3, . . . .Am} , with respect to the Jordan product, such that

‖ A− T ‖< ǫ/3, and ‖ Φn(A) − Φn(T ) ‖< ǫ/3.
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Consider the following equation:

PnΦn(A)Pn − PnAPn = [PnΦn(A)Pn − PnΦn(T )Pn] + [PnΦn(T )Pn − PnTPn]

+ [PnTPn − PnAPn]

Thus the norm of the sum of the first and third terms is less than 2ǫ/3.

The middle term PnΦn(T )Pn−PnTPn can be split into a term with norm

less than ǫ/3 and a term with constant rank independent of the order

n (or of o(n) respectively) since T is in the form of a polynomial in

{A1, A2, A3, . . . .Am} , with respect to the Jordan product. Thus the se-

quence of matrices PnΦn(A)Pn − PnAPn converges to 0 in strong cluster

(or in weak cluster respectively). Hence the proof is completed.

Remark 5.3.1. Note that even if Ak and Al are self-adjoint, their

composition need not be self-adjoint. But the Jordan product of two self-

adjoint elements is self-adjoint. The proof of the above theorem uses this

fact.

5.4 Toeplitz case

In this section, we will be dealing with the completely positive maps Φn,

that we introduced in Definition (5.2.1), and its modifications. We use

them to get stronger versions of the Korovkin-type theorems in [60] and

provide examples for the results in last section.

Consider the sequence {Φn} of Definition (5.2.1). By the compactness

of CP (B(H)), in the Kadison’s B.W topology, {Φn} has limit points. We
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note some of the properties of the limit points Φ of {Φn}, as immedi-

ate consequences of Theorem (5.2.2) and Theorem (5.2.3). The following

special cases are of interest from a spectral theory point of view.

• A is a Hilbert Schmidt operator on H.

• A = A(f), is the Toeplitz operator where the symbol function f ∈
C [−π, π] and H = L2 [−π, π].

• A is a Fredholm or compact operator.

Theorem 5.4.1. Let A ∈ B(H) be self-adjoint and PUn(An) − An

converges to 0 in uniform cluster as in Definition (5.2.2). Then A−Φ(A)

is finite rank.

Proof. Follows easily from Theorem (5.2.2), by considering

Φn(A) = PUn(An).

Theorem 5.4.2. Let A ∈ B(H) be self-adjoint and PUn(An) − An

converges to 0 in strong cluster as in Definition 5.2.2. Then A − Φ(A) is

compact.

Proof. Follows easily from Theorem (5.2.2), by considering

Φn(A) = PUn(An).
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Remark 5.4.1. The analysis of convergence in ‘weak cluster’, in the

sense of Def (5.2.2) is taken up later in this chapter.

5.4.1 Korovkin-type theory for Toeplitz operators

Now we consider the case where A = A(f), is the Toeplitz operator where

the symbol function f ∈ C [−π, π] and H = L2 [−π, π]. Some of the

results in [60] are generalized and get stronger versions. First we recall

the Korovkin-type results in [60]. The notation An(f) is used for the finite

Toeplitz matrix with symbol f.

Theorem 5.4.3. Let f be a continuous periodic real-valued function.

Then PUn(An(f))−An(f) converges to 0 in strong cluster, if PUn(An(p))−
An(p) converges to 0 in strong cluster for all the trigonometric polynomials

p.

Theorem 5.4.4. Let f be a continuous periodic real-valued function.

Then PUn(An(f)) −An(f) converges to 0 in weak cluster if PUn(An(p)) −
An(p) converges to 0 in weak cluster for all the trigonometric polynomials

p.

Before proving the general results, we prove the following lemma, the

remainder estimate version of classical Korovkin’s theorem as proved in

[60], which is used to get more general versions of Theorems (5.4.3) and

(5.4.4). This is the commutative version of Lemma (5.3.1).

Lemma 5.4.1. Let {g1, g2, . . . gm} be a finite set of continuous peri-

odic functions and Φn be a sequence of positive linear maps on C[0, 2π]
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such that ‖Φn‖ 6 1, for every n, and

Φn(g) = g +O(θn) for every g in the set D = {g1, g2, . . . gm,
m
∑

k=1

gkgk
∗},

where θn −→ 0 as n −→ ∞. Then Φn(g) = g + O(θn) for every g in the

algebra generated by {g1, g2, . . . gm}.

Proof. The proof is obtained by replacing functions in place of opera-

tors, in the proof of Lemma (5.3.1). Using linearity of Φn’s, we write,

Φn(
∑m

k=1 gkgk
∗) −∑m

k=1 gkgk
∗ = (

∑m
k=1 Φn(gkgk

∗) −∑m
k=1 Φn(gk)Φn(gk)

∗)

+(
∑m

k=1 Φn(gk)Φn(gk)
∗ −∑m

k=1 gkgk
∗)

The left side of the above equation as well as the last term of the right

side are of O(θn). Hence the first term of the right side

n
∑

k=1

[Φn(gkgk
∗) − Φn(gk)Φn(gk)

∗]

is of O(θn). But each term inside this sum is nonnegative by Schwarz

inequality for positive linear maps. Therefore each of its terms, namely

Φn(gkgk
∗)−Φn(gk)Φn(gk)

∗ is ofO(θn). Also since every positive contractive

map in a commutative C∗ algebra is a Schwarz map, each Φn is a Schwarz

map. Therefore by applying inequality (5.2) to the maps Φn for each n

and functions gk, gl, we get

Φn(gk
∗gl) − Φn(gk)

∗Φn(gl) = O(θn)
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Also, we observe the following

Φn(gk)
∗Φn(gl) − gk

∗gl = (gk
∗ +O(θn))(gl +O(θn)) − gk

∗gl = O(θn)

Using the above two identities, we deduce that

Φn(gk
∗gl)−gk∗gl = [Φn(gk

∗gl)−Φn(gk)
∗Φn(gl)]+[Φn(gk)

∗Φn(gl)−gk∗gl] = O(θn)

Therefore the proof is completed for every function of the form gk
∗gl and

hence in the algebra generated by {g1, g2, . . . gm}. Hence the proof.

Now we prove some general versions of Theorems (5.4.3) and (5.4.4).

The technique of the proof is the same as in Theorem (5.3.1). However

we provide all the details.

Theorem 5.4.5. Let {g1, g2, . . .gm} be a finite set of real valued con-

tinuous 2π periodic functions such that PUn(An(f))−An(f) converges to 0

in strong cluster, for f in {g1, g2, . . . gm, g1
2, g2

2, . . . gm
2}. Then PUn(An(f))−

An(f) converges to 0 in strong cluster for all f in the C∗- algebra A gen-

erated by {g1, g2, g3, . . . .gm} .

Proof. For any k, l = 1, 2, 3 . . . m, setting

Xn = PUn(An(g
2
k)) − PUn(An(gk))

2
> 0

Yn = PUn(An(g
2
l )) − PUn(An(gl))

2
> 0

Zn = PUn(An(g
∗
k ◦ gl)) − PUn(An(gk))

∗ ◦ PUn(An(gl))

(Here ◦ denotes the usual point wise product in the case of scalar valued

functions and matrix product in the case of matrices.) Observe thatXn, Yn
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and Zn are all Hermitian matrices of order n. It is clear that all the above

sequences of matrices are norm bounded. Then for all n

‖ Yn ‖< γ <∞ (5.16)

Also if we write

Xn = Φn(g
2
k) − Φn(gk)

2 = [Φn(g
2
k) − An(g

2
k)] + [An(g

2
k) − An(gk)

2]

+ [An(gk)
2 − Φn(gk)

2],

the first term on the right hand side of the above equation converges to 0

in strong cluster by assumption. The second term is

An(g
2
k) − An(gk)

2 = PnH(gk)
2Pn +QnH(gk)

2Qn (5.17)

whereQn’s are projections andH(gk) is the Hankel operator, which is com-

pact, since the symbols are continuous. This equality is due to Widom

(page 2 of [70]). Hence An(g
2
k) − An(gk)

2 can be written as the sum of

sequences of matrices that are truncations of compact operators. But the

compliment of any neighborhood of 0 contains only finitely many eigenval-

ues of a compact operator, as its spectral values. Also the truncations of a

compact operator on a separable Hilbert space converges to the operator

in norm. Therefore we conclude that An(g
2
k)−An(gk)

2 converges to the 0

matrix in strong cluster.

Since Φn(gk) − An(gk) = Rn + Nn with Rn and Nn are sequences of

matrices with properties that we already mentioned before, the third term
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can be written as follows.

An(gk)
2 − Φn(gk)

2 = An(gk)
2 − [An(gk) +Rn +Nn]

2
= R

′

n +N
′

n

where R
′

n and N
′

n are sequences of matrices with bounded rank and small

norm respectively. Hence the third term also converges to the 0 matrix in

strong cluster. Therefore Xn converges to the 0 matrix in strong cluster.

By the similar arguments in the proof of Theorem (5.3.1), we conclude

that Zn converges to the 0 matrix in strong cluster.

Now consider

PUn(An(gk ◦ gl)) − An(gk ◦ gl) = [PUn(An(gk ◦ gl)) − PUn(An(gk))PUn(An(gl))]

+ [PUn(An(gk))PUn(An(gl)) − An(gk)An(gl)]

+ [An(gk)An(gl) − An(gk ◦ gl)]

By similar arguments above, we see that each term in the right hand side

of the above equation converges to the 0 matrix in strong cluster. Hence

the theorem is proved for the functions of the form gkgl. Hence it is true

for any function in the algebra generated by {g1, g2, g3, . . . .gm} .

Now for f ∈ A, ǫ > 0, g be the function in the algebra generated by

{g1, g2, g3, . . . .gm} such that

‖ An(f) − An(g) ‖< ǫ/3, and ‖ PUn(An(g)) − PUn(An(f)) ‖< ǫ/3.
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Consider the following equation:

An(f) − PUn(An(f)) = [An(f) − An(g)] + [An(g) − PUn(An(g))]

+ [PUn(An(g)) − PUn(An(f))]

Thus the norm of the sum of the first and third terms is less than 2ǫ/3.

The middle term An(g) − PUn(An(g)) can be split into a term with norm

less than ǫ/3 and a term with constant rank independent of the order n

since g is in the algebra generated by {g1, g2, g3, . . . .gm}. Hence the proof

is completed.

Corollary 6. If PUn(An(f))−An(f) converges to 0 in strong cluster

for all f in {1, x, x2}, then PUn(An(f)) − An(f) converges to 0 in strong

cluster for all f in C[0, 2π].

Corollary 7. Under the assumption of Theorem (5.4.5), if f ∈ A is

strictly positive, then for any ǫ > 0, for n large enough, the matrix

PUn(An(f))−1(An(f)) has eigenvalues in (1−ǫ, 1+ǫ) except for Nǫ = O(1)

outliers, at most.

Proof. Since f ∈ A is strictly positive, (An(f)) is positive definite.

This implies that PUn(An(f)) is positive definite. Hence the proof is com-

pleted by Lemma (5.3.2).

Now we prove the exact analogue of Theorem (5.4.5) in the case of

convergence in weak cluster. The proof is more or less is the same but for

some obvious modifications. However all the details are provided.

Theorem 5.4.6. Let {g1, g2, . . .gm} be a finite set of real valued con-
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tinuous 2π periodic functions such that PUn(An(f))−An(f) converges to

0 in weak cluster for f in {g1, g2, . . . gm, g1
2, g2

2, . . . gm
2}. Then PUn(An(f))

converges to An(f) in weak cluster for all f in the C∗- algebra A generated

by {g1, g2, g3, . . . .gm} .

Proof. The proof is the same as Theorem (5.4.5), except that the

splitting of terms must be as the sum of one with small norm and the

other of rank o(n). We give the details below. Applying (5.2) with

Φn = PUn(An(.)) and Xn, Yn, Zn as in the proof of Theorem (5.4.5), if

we write

Xn = Φn(g
2
k) − Φn(gk)

2 = [Φn(g
2
k) − An(g

2
k)] + [An(g

2
k) − An(gk)

2]

+ [An(gk)
2 − Φn(gk)

2]

the first term on the right hand side of the above equation converges to 0 in

weak cluster by assumption. The second term, An(g
2
k)−An(gk)2 converges

to the 0 matrix in strong cluster by the same argument in the proof of

Theorem (5.4.5), and hence it converges in weak cluster. By a simple

computation, we get that the third term also converges to the 0 matrix in

weak cluster. Hence Xn converges to the 0 matrix in weak cluster.

By a similar argument in the proof of Theorem (5.3.1), we conclude

that Zn converges to the 0 matrix in weak cluster.

Now consider

PUn(An(gk ◦ gl)) − An(gk ◦ gl) = [PUn(An(gk ◦ gl)) − PUn(An(gk))PUn(An(gl))]

+ [PUn(An(gk))PUn(An(gl)) − An(gk)An(gl)]

+ [An(gk)An(gl) − An(gk ◦ gl)]
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By similar arguments above, we see that each term on the right hand side

of the above equation converges to the 0 matrix in weak cluster. Hence

the theorem is proved for the functions of the form gkgl. Hence it is true

for any function in the algebra generated by {g1, g2, g3, . . . .gm} .

Now for f ∈ A, ǫ > 0, g be the function in the algebra generated by

{g1, g2, g3, . . . .gm} such that

‖ An(f) − An(g) ‖< ǫ/3, and ‖ PUn(An(g)) − PUn(An(f)) ‖< ǫ/3.

Consider the following equation:

An(f) − PUn(An(f)) = [An(f) − An(g)] + [An(g) − PUn(An(g))]

+ [PUn(An(g)) − PUn(An(f))]

Thus the norm of the sum of the first and third terms is less than

2ǫ/3. The middle term An(g) − PUn(An(g)) can be split into a term with

norm less than ǫ/3 and a term with rank o(n), since g is in the algebra

generated by {g1, g2, g3, . . . .gm}. Hence the proof is completed.

Corollary 8. With the hypotheses Theorem (5.4.6), if f ∈ A is posi-

tive, then for any ǫ > 0, for n large enough, the matrix PUn(An(f))−1(An(f))

has eigenvalues in (1 − ǫ, 1 + ǫ) except Nǫ = o(n) outliers, at most.

Proof. Proof follows easily from Lemma (5.3.2).

Remark 5.4.2. It is to be noted that Theorem (5.4.5), (5.4.6) and

the corollaries are much stronger than the corresponding theorems in [60],
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where it has been assumed that the convergence takes place on the algebra

generated by the test set. But here it is assumed that the convergence

takes place only on the test set as in the classical Korovkin-type theorems.

However it is not clear whether the assumption of convergence on gk
2 for

each k can be replaced by convergence on
∑n

k=1 gk
2 as in the usual case.

5.4.2 The LPO sequences

The behavior of eigenvalues of PUn(An(f)) has been studied in [60] when

Un is the sequence of generalized Vandermonde matrices (Example 5.2.1).

Recall that the jth row of Un is a vector of trigonometric functions calcu-

lated on the grid point xj
(n). From Lemma (5.2.1), it follows that the jth

eigenvalue λj of PUn(An(f)) is σ(UnAn(f)Un
∗)j,j. Thus λj is the value of

the trigonometric function that takes on the jth grid point x = xj
(n). Now

we consider the function [Ln[Un](f)](x) obtained by replacing xj
(n) by x

in [0, 2π] in the expression of λj. To make it precise, let v(x) denote the

vector trigonometric function whose values at grid points {xj(n)}, form the

jth generic row of Un
∗. We define the linear operator Ln[Un] on C[0, 2π]

as follows;

Ln[Un](f) = v(x)An(f)v∗(x). (5.18)

Ln[Un](f) is the continuous expressions of the diagonal elements of UnAn(f)Un
∗.

And it is clear that Ln[Un] is a sequence of completely positive linear maps

on C[0, 2π] of norm less than or equal to 1.

First we recall the notion of uniform and quasi-uniform distribution of

grid points from [60].
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Definition 5.4.1. A sequence of grids Sn = {xi(n), i = 0, 1, . . . n− 1}
belonging to an interval I is called quasi-uniform if

n
∑

i=1

∣

∣

∣

∣

|I|
n

− (xi
(n) − xi

(n−1))

∣

∣

∣

∣

= o(1)

with |I| being the width of I. If the previous relation holds with o(1) is

replaced by O(1/n), then the mesh-sequence Sn is called uniform.

Now we recall two theorems from [60], on the Linear Positive operator

sequence Ln[Un].

Theorem 5.4.7. Let f be a continuous periodic function and let p a

function in the test set {1, cosx, sinx}. If Ln[Un](p) = p+ ǫn(p) with ǫn(p)

going uniformly to zero, then PUn(An(f)) converges to An(f) in the weak

sense.

Theorem 5.4.8. Under the same assumption of the previous Theo-

rem, if ǫn(p) = O(1/n) for the three test functions p and if the grid points

of the algebra are uniformly distributed, then the convergence is strong.

It can also be observed that similar stronger versions of Theorems

(5.4.7) and (5.4.8) are valid. Before proving the stronger versions of the

above two theorems, we need the following results from [60].

Lemma 5.4.2. Let Sn be a sequence of quasi-uniformly distributed

grid points on I. Then, for any bounded and Riemann integrable function

g, we have
n
∑

i=1

g(xi
(n)) =

n

2π

∫ π

−π

g + o(n).
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If the distribution is uniform and if g is bounded and Lipschitz continuous

except, at most for a finite number of discontinuity points, then

n
∑

i=1

g(xi
(n)) =

n

2π

∫ π

−π

g +O(1).

Now we state the Szego-Tyrtyshnikov Theorem (see [60]), which is a

special case of Theorem (3.3.2).

Theorem 5.4.9. Let f ∈ L2 and λni be the eigenvalues of An(f).

Then, for any continuous function F with bounded support, we find the

following asymptotic formula (the Szego relation)

lim
n→∞

1

n

n
∑

i=1

F (λni ) =
1

2π

∫ π

−π

F (f(x))dx.

With these tools in hand, we prove the generalized version of Theorem

(5.4.7).

Theorem 5.4.10. Let Ln[Un](g) = g+ ǫn(g) for every g in the finite

set {g1, g2, g3, . . . .gm,
∑m

k=1 g
2
k}, where each gk’ s are real valued, contin-

uous functions and ǫn(g) converges uniformly to 0. Then PUn(An(f)) −
An(f) converges to 0 in weak cluster for all f in the C∗- algebra A generated

by the finite set {g1, g2, g3, . . . .gm}.

Proof. First we observe that Ln[Un](g) = g + ǫn(g) for every g in

algebra generated by {g1, g2, g3, . . . .gm} , by Lemma (5.4.1). Also we have
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from the identity (5.9),

0 6 ‖ An(fl) − PUn(An(fl)) ‖F
2 = ‖ An(fl) ‖F

2 −‖ PUnAn(fl) ‖F
2 (5.19)

for every function fl in the algebra generated by {g1, g2, g3, . . . .gm}.

Here ‖ (.) ‖F denotes the Frobenius norm of matrices. Also the eigen-

values of PUn(An(.)),

λi(PUn(An(fl))) = fl(x
n
i ) + ǫn(fl), for every l.

Hence we get the following.

‖ PUn(An(fl)) ‖F
2 =

n
∑

i=1

λ2
i (PUn(An(fl))) =

n
∑

i=1

[(fl + εn (fl)) (xni )]
2

Hence

‖ PUn(An(fl)) ‖F
2 =

n
∑

i=1

f 2
l (xni ) + o(n).

Since {xi(n)} is quasiuniformly distributed, by Lemma (5.4.2), we get,

n−1
∑

i=0

[

fl(xi
(n) + εn(fl)(xi

(n))2
]

= n/2π

∫ 2π

0

f 2
l + o(n) (5.20)

Also

‖ An(fl) ‖F
2 =

n
∑

i=1

λi(An(fl))
2,

for every l, and hence by Szego-Tyrtyshnikov Theorem (5.4.9), we find

‖ An(fl) ‖F
2 = n/2π

∫ 2π

0

f 2
l + o(n) (5.21)
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Now from (5.19),(5.20) and (5.21) we get

‖ An(fl) − PUn(An(fl)) ‖F
2 = o(n)

for every function fl in the algebra generated by {g1, g2, g3, . . . .gm}. There-

fore by Tyrtyshnikov’s Lemma (5.2.3), PUn(An(fl)) −An(fl) converges to

0 in weak cluster. Hence by Theorem (5.4.6), PUn(An(f)) − An(f) con-

verges to 0 in weak cluster for every f in the C∗- algebra A generated by

{g1, g2, g3, . . . .gm}. Hence the proof is completed.

We need the notion of Krein algebra and Widom’s theorem (see [60,

71]) for further generalizations.

Definition 5.4.2. The set of all essentially bounded functions f such

that the sum
∑

k∈Z
|ak|2 k < ∞, where a′ks are the Fourier coefficients of

f, forms an algebra. This is named as Krein algebra and denoted by K.

To state Widom’s theorem, we let {σ(n)
i } be the singular values of

An(f), t
(n)
i = (σ

(n)
i )

2
and f ∈ K.

Theorem 5.4.11. Let G be a function belonging to C3 [m2
f ,M

2
f ] ,

where mf ,Mf are essential infimum and supremum of |f |. Then

lim
n→∞

{
n
∑

i=1

G(t
(n)
i ) − n

2π

∫ π

−π

G(|f(x)|2)dx} = c(f,G).

Here c(f,G) is a known constant characterized in [71].

Theorem 5.4.12. With the assumptions in Theorem (5.4.10), if

ǫn(g) = O(1/n) for g in the finite set {g1, g2, . . . gm,
∑m

k=1 gk
2} and if the
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“grid point algebra” are uniformly distributed, then the convergence is in

strong cluster, provided the test functions in the set {g1, g2, g3, . . . .gm}
are Lipschitz continuous and belong to the Krein algebra.

Proof. The proof can be obtained by replacing the polynomials p by

{g1, g2, g3, . . . gn} in the proof of Theorem(5.4) in [60]. The idea is to

replace the term of o(n) by constants in the equations (5.20) and (5.21).

For (5.20), we use the hypothesis ǫn(g) = O(1/n) and that the “grid point

algebra” are uniformly distributed. For (5.21), we use Widom’s theorem

stated above with G(t) = t. Hence we will attain

‖ An(fl) − PUn(An(fl)) ‖F
2 = O(1)

This completes the proof due to Lemma (5.2.3).

5.5 Applications to spectral approximation

In this section, we discuss the possible applications of the considered the-

ory. The results proved in section 5.4.1, are the stronger versions of the

results in [60]. Theorem (5.4.5) and (5.4.6) considered arbitrary contin-

uous functions, while in [60], trigonometric polynomials were considered.

Also the assumptions are reduced to finite number elements as in the clas-

sical Korovkin’s theorem. Theorem (5.4.5), (5.4.6), (5.4.10) and (5.4.12)

can be used to obtain new preconditioners belonging to different algebras.

The corollaries (7) and (8) are expected to be useful for deriving and

analyzing good preconditioners for the conjugate gradient method.
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In Theorem (5.2.2) and (5.2.3), we considered one of the limit points Φ

of Φ′
ns in the Kadison’s B.W topology. Here Φn(A) are the preconditioners

of A, but it is not clear to us whether Φ(A) is a preconditioner of A for

at least one limit point of Φn. That is to ask whether Φ(A)−1A has small

condition number. Theorem (5.2.2) guarantees that the change from A to

its preconditioners amounts only a finite rank perturbation if you look at

a uniform limit point. Hence the essential spectrum is unchanged due to

this change. The essential properties that are preserved, are mentioned in

the corollary. Also in the case of strong limit point, the essential spectrum

is unchanged by Theorem (5.2.3).

The Lemma (5.3.1) and Theorem (5.3.1) are of theoretical interest,

since it shares the same spirit of the classical Korovkin’s theorem. That

is the test on a finite number of elements guarantees the assertion on the

whole algebra generated by these finite number of elements. Theorem

(5.3.1) partly answers the following question. Suppose the usage of pre-

conditioners works for a finite number of self-adjoint operators on H. Does

it work for any operator in the C∗- algebra generated by these operators.

In short, we expect that the results may be applicable in many approx-

imation methods. For instance, the truncation method for the spectral ap-

proximation problem of bounded self-adjoint operators that we discussed

in the previous chapters.

In such problems, the usage of preconditioners may help us to make

the linear system well conditioned and to make the computations simpler.

Φn(A) converges to A in the distribution sense, means that the truncations

converge in the sense of eigenvalue clustering. So instead of considering A,

we can consider its preconditioners Φn(A) and do the approximations. We
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have already noticed that the essential spectrum remains the same in the

case of uniform and strong clusterings. Hence the usage of preconditioners

in these problems are justified. The examples for the numerical efficiency

of such preconditioners is to be investigated in future.
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Concluding Remarks

Some of the interesting observations regarding the considered theory and

a few possibilities for future works are remarked in this chapter. The

objective of this study is to discuss the linear algebraic techniques in the

spectral theory of bounded self-adjoint operators on a separable Hilbert

space. The usage of truncation method in approximating the bounds of

essential spectrum and the discrete spectral values outside these bounds is

well known. The spectral gap prediction and related results was proved in

the second chapter. The discrete versions of Borg-type theorems, proved

in the third chapter, partly overlap with some known results in operator

theory. The pure linear algebraic approach is the main novelty of the

results proved here. The perturbed versions of spectral approximation

results proved in the fourth chapter is helpful in the stability analysis of the

main results. That is to look at the situation when the operator is subject

to a small perturbation. The Korovkin-type theorems proved in the last

chapter is of high theoretical interest and face the approximation problem

141
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in a more abstract way. Some of the related problems are discussed below.

6.1 Discrete eigenvalues in the gap

It is an interesting problem to locate the presence of discrete eigenvalues

that may have trapped between the upper and lower bounds of the es-

sential spectrum. As already mentioned, such an eigenvalue will be lying

inside a spectral gap. The following theorem is taken from [54], which

can be used to get some information about the discrete spectral values

between the gaps.

Theorem 6.1.1. Let A be a bounded self-adjoint operator and f be a

real valued continuous function, supported on the interval [a, b] ⊆ [m,M ].

Define fm,n as fm,n(t) = f(2mt − n) for integers m and n. Then σe(A)

has a gap if and only if fm,n(A) is a compact operator for some m,n with

support of fm,n lie between ν and µ.

Proof. Suppose fm,n(A) is a compact operator for some m and n. Then

σe(fm,n(A)) = {0}.

But σe(fm,n(A)) = fm,n(σe(A)). Therefore fm,n(σe(A)) = 0. That is the

support of (fm,n) will not intersect with σe(A). Hence support of (fm,n)

is a gap in the essential spectrum, since m and n is such that support of

(fm,n) lie between ν and µ.

Conversely suppose that σe(A) has a gap. So we can choose m,n such
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that support of (fm,n) lies in that gap. Also since

σe(fm,n(A)) = fm,n(σe(A)) = {0},

fm,n(A) is a compact operator.

Remark 6.1.1. Observe the above proof shows that for any real

valued function f, which is continuous and supported in a spectral gap of

a bounded self-adjoint operator A, f(A) is a compact self-adjoint operator.

The above theorem tells that the existence of a spectral gap is equivalent

to the existence of a compact self-adjoint operator fm,n(A). Now these

gaps may contain some discrete spectral values. In the case where these

gaps do not contain any discrete spectral value, since

σ(fm,n(A)) = fm,n(σ(A)) = {0},

and hence fm,n(A) is the Zero operator.

Remark 6.1.2. In case there are finitely many discrete eigenvalues

in the gap, the following observations can be made. Let α be an eigen-

value in the gap. Then fm,n(α) will be an eigenvalue of fm,n(A), whose

computation is comparatively easier since fm,n(A) is a compact operator.

From these eigenvalues, we may compute the eigenvalues in the gap, pro-

vided f is simple enough. To check the compactness of an operator, the

essential norm has to be computed as the limit of singular values, using

Theorem (2.1.4). Recall that an operator is compact if and only if the

essential norm is 0. Hence the approximation numbers sk(fm,n(A)) has to

be computed and check whether they come closer to 0, for large values of

k.
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6.1.1 Further problems on Spectral gap

• If we replace An by some approximating class of sequences Bn,m

(finite rank and small norm perturbations, see [61] for precise def-

initions), can we state similar results as proved in chapter 2. Re-

searchers like Hansen in [41] used a sequence A1,n which is a rank 1

perturbation of An, to compute σ(A). If the above question has an

affirmative answer, we can replace An by A1,n whenever we need.

In particular, one can study the effect in the Fourier coefficients by

a small change in the function. One can look at the spectrum of a

multiplication operator via sequence of Toeplitz-Laurent operators.

This may contribute to the literature of recapturing the symbol with

the information of its Fourier coefficients.

• We point out that the problem of prediction and estimation of spec-

tral gaps of bounded self adjoint operators with the use of trun-

cations leads to the issues of error estimation. So far there is no

evidence of such estimation in the case of an arbitrary self adjoint

operator to the best of our knowledge.

• Also under compact perturbation, though the spectral gaps remain

the same, discrete eigenvalues may appear or disappear in such gaps.

Another problem is to handle such situations linear algebraically.

• The discrete spectral values lying between a gap in the essential spec-

trum, can be computed using linear algebraic techniques. To see this,

let (a, b) be a gap in the essential spectrum of A. Let λ0 = (a+ b)/2.

Since λ0 is in the gap, f (λ0) > 0. Now f (λ0) is the lower bound of

the essential spectrum of (A− λ0I)
2, all the discrete spectral values

below that can be computed with the use of truncations by Theo-
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rem (2.1.7). If β is an eigenvalue in the gap, (β − λ0)
2 will be an

eigenvalue lying below the lower bound of the essential spectrum of

(A− λ0I)
2. From these we can compute β.

6.2 Further possibilities on Borg-type the-

orems

Concerning future work on Borg-type theorems, there are some interesting

issues that should be addressed. These operators could be considered in

multidimensional domains and in the case of systems of equations (as in

[11]). A further intriguing issue could be the following: how to relate

the number of gaps to the periodicity index p of the diagonal periodic

sequence, the latter question been supported by the fact that no gaps is

equivalent to have all equal diagonal entries and by the example reported

in the section 3.6.1.

Also the random versions of these operators could be considered. The

analogue results of third chapter can be tried for the discretized random

Schrodinger operators (see [26]). The gap issues of arbitrary random oper-

ators, and the truncation method in that is an interesting problem. There

the results may be proved in the language of probability and almost sure

convergence. The basic object of high interest is the integrated density

of states (see [26]). The problem is to compute the integrated density of

states using the linear algebraic techniques.
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6.3 Perturbation problems

Note that in the theorems and examples discussed in the fourth chapter,

only the continuity is used in most of the cases. This shows that a more

general result is possible. That means similar results may be established

for some non holomorphic perturbations. The importance of the ana-

lyticity assumption is that in certain cases, one can use the rich theory

of complex analytic functions for eigenvalue functions and singular value

functions.

Also, we only considered perturbation of operators and not the per-

turbations of their truncations. In the Example (4.3.1) also the perturbed

symbol is directly related to the perturbation of operators. The pertur-

bation of truncations and their link with the spectrum of the original

operator is another problem yet to be handled.

Another question is whether equality holds in the inclusion

σess(A) =

p
⋃

j=1

[

inf
θ

(λj(fs(θ))), sup
θ

(λj(fs(θ)))

]

⊆
p
⋃

j=1

[λj − ‖f‖∞ , λj + ‖f‖∞] .

If so, we are able to determine all possibility of gaps with only looking at
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eigenvalues of the constant matrix























b1 1

1 b2 1

1 . .

. . .

. . 1

1 bp























.

Also the consequence of the estimate (4.4) is yet to be investigated.

6.4 Applications of Pre-conditioners

The pre-conditioners introduced in the last chapter may be very useful

in the spectral approximation problems. One future possibility is to link

approximation techniques in the second chapter with the notion of pre-

conditioners and the convergence in the distributional sense. To find good

examples where these pre-conditioners are effective in determining spectra

of operators, is another task to be taken up in future.

The Korovkin-type theorems are proved for convergence in the uniform

and strong distribution sense. The weak convergence has to be studied in

detail.

Finally we wish to change the setting into the case of unbounded self-

adjoint operators. All the basic notions have to be defined appropriately.

There we have to deal with operators with unbounded spectrum. Hence

the task is very difficult. But there are evidences for the approximation is
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successful in the case of some Schrodinger operator.
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