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CHAPTER I

INTRODUCTION

1.1 Reliability models in discrete time

In most of the studies relating to life testing and reliability,

life time is treated as continuous and accordingly continuous

probability distributions are proposed as models. There is an

extensive literature on reliability modelling, inference relating to

reliability characteristics, various notions of aging and applications

to specific problems in continuous time. However there is

comparatively less discussion on reliability when life time is

treated as discrete. There are examples of discrete random

variables that arise naturally in life length studies like the number

of cycles to failure, or the number of failures in a given time
I

~

interval. Further, many of the sophisticated equipments used in the

manufacturing process require very accurate measuring devices to

record their failures in continuous time. In situations where such

measuring instruments are very costly or their availability cannot be
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ensured it may be desirable to go in for failure times that are in

completed units of time (Xekalaki (1983)). The latter procedure is

more desirable, provided the loss of accuracy in replacements of

continuous measurements to discrete ones is more than compensated

by the gain in terms of other considerations such as money, ease of

analysis, saving in time etc. Discrete distributions naturally arise

when records are taken in completed units of time. The fact that

manyof the discrete distributions, can be closely approximated by

continuous distributions adds to the utility of the former as models

of life length. Also there is a well developed methodology to

separately find. the distribution of the integer parts and fractional

parts of continuous random variables, that often permit inference on

parameters based on count data to be translated to those based on

continuous measurements with a reasonable estimate of the margin

of error on account of the translation.

Motivated by the relevance and usefulness of discrete models

the present study aims at establishing some results that have

applications iii the modelling and analysis of life time data in the

discrete time domain. In the following sections we present a brief

review of the concepts and results that will be helpful in carrying

out this objective.



1.2 Basic reliability concepts

Cox (1972), Kalbfleisch and Prentice (1980) and Lawless

(1982) in their books briefly touch upon some theoretical aspects of

reliability modelling in the discrete time domain.

Let X denote a discrete random variable in the support of

F={O,l,2, ...} denoting the time to failure of an equipment or

device. Denoting by,

R(x)=P(X 2x) (1.1)
the survival function ofX and by f(x) the probability mass function

of X, these authors define the failure rate ofX as

h(x) = P(X=x |X2x)

=f(x)/R(x). (1.2)
It is shown that the failure rate determines the life distribution

uniquely through the formula,

R<x>= fitl-ho» (1.3)
F0

The expression (1.3) demonstrates that if the functional form of

h(x) is known, the life distribution can be determined. This points

out to the use of the functional form of h(x) in modelling failure

time data and also for characterizing the underlying life
distribution.
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This fact was exploited by Xekalaki (1983) to show that ifX

is a random variable taking values in the set {O, l, 2, ..., m},

me (0,l,2 . . . ...) U{+oo}. Then,

h(x) = (a+bx)'l (1.4)
iffX has geometric distribution with

P(X=r)=pq‘, °<P<1,q= 1-P (1.5)
for b=0,

Waring distribution with

P(X= x) = (a-b)  a>b>0 (1.6)
where (a), = a (a+l)...(a+x-1) is the Pochammer symbol, for b>0

and negative hypergeometric distribution with

(k+n-x—l)P(X=x) = _,,g”'x  k>0, x=0, 1,  n (1.1)
("Z")

for b<0.

Hitha (I990) has shown that the continuous approximations of

the geometric, Waring and negative hypergeometric distributions

are respectively the exponential, Pareto II and beta distributions

which have the same form for failure rates in continuous time.



A second concept that is extensively used in modelling is the

mean residual life (MRL),

r(x) = E(X- x] X> x)

=R(x+1)'1 iR(y). (1.8)
Like the failure rate, MRL also determines the distribution ofX as,

Rm = fifi‘-3lT—‘<1-1(0)) <19)u=l r(u)

where f(0) is determined such that Zf(x)=l (Nair and Hitha,

(1989)).

The relationship between failure rate and MRL is given by,

1-h(x+l)= E-E-i+1; ,x=0,1,2,... (1.10)

Nair (1983) has used the function r(x) to define the notion of

memory of life distributions and also to classify them as possessing

no memory, negative memory and positive memory at a point x,

according as r(x) = r(x+l) , r(x)<i'(x+l) and r(x)>r(x+l). Since a

distribution can have different types of memory at various points of

its support, a consolidated measure of memory for the entire

support was obtained by considering a weighted average of the

measures at various points which is given by,



M = 2511?‘) +s]_5~({)_1E(X2 )E(X’)+E(X) (H1)
The distribution itself has lack of memory, negative memory and

positive memory according as M is zero, negative or positive. In a

subsequent paper Nair (1989) has shown that geometic, Waring and

negative hypergeometric laws in that order are the only discrete

distributions that possess lack of memory, constant negative

memory and constant positive memory at each point of its support.

Various characterizations of life distributions based on the

functional form of r(x) is possible. For example, Nair and Hitha

(1991) have shown that the mean residual life of X, r(x) is of the

form,

r(x) = Ax+B (1.12)
if and only if X has geometric distribution for A=0, or Waring

distribution for A>0 and negative hypergeometric distribution for

A<O.

The case when A=0 was established earlier in Shanbhag

(1970). Salvia and Bollinger (1982) besides obtaining (1.3) proved

that for increasing failure rate distributions,

ho

and



7

R(x) 3 (1-ho)" = e-"r,

where ho = h(0) and f(x) defines a proper probability mass function

CO

if and only if zh(j) diverges to +00. They also demonstrated some
;"=o

limiting behaviour through the equations

r = (R-1)",f= 12"‘ and h = (r +1)

where,

r = lim r(x), h = lim h(x), f= lim --[ii)— and R = limf(x+l) R(x+1)

A concept that is closely related to that of MRL is the vitality

function defined by Kupka and Loo (1989) as

v(x) = E(X|X>x) (1.13)
Evidently

r(x)=v(x)-x (1.14)
and

h(x+l)r(x+1) = v(x+1)- v(x). (1.15)

It has been mentioned earlier that functional forms of h(x) or

r(x) can be used to characterize life distibutions and some results in

this connection were reviewed. In the majority of distributions,

however simple functional forms do not exist for r(x) or h(x).

Common distributions like binomial, Poisson, negative binomial,

hypergeometric etc belong to this category. Therefore instead of
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postulating functional forms of r(x) and h(x) some researchers have

attempted to derive relationship between r(x) and h(x) that render

unique representation off(x).

Osaki and Li (1988) generalized the Shanbhag (1970) result

by providing a characterization of the negative_ binomial

distribution. They proved that,

ifX is a positive discrete random variable with pmf given by

x+r—l , X
f(x)= r_l p q,x=0,1,2,...,p,q>O (1.16)

if and only if,

E(X|X>m) = p +(m+1-Q? (1.17)

for all integers mzr-1, where p = r/p and h(k) is the failure rate at

k. Following this Ahmed (1991) established that

E(X|X2x) = np +q x h(x) (1.18)
and

E(X|X2x) = /1+x h(x) (1.19)
are respectively the characteristic properties of the binomial and

Poisson distributions.

Generalising these results for the Ord family defined by



f(r+1)5f(r) = ,__,“—(r+d)  (1 20)f(x) b, +b,x+b2x2 '
Nair and Sankaran (1991) obtained the result,

E(X|X 2x) = 11 + (a0+a1x + agxz) h(x) (1.21)

where,

d=fl_!.__.£fi bI.=__€€__ ,'=Q122a,+1 ’ 2a,+1’ ’ ’
as a characterization. The results of Osaki and Li (1988) and

Ahmed (1991) are particular cases of Nair and Sankaran (1991).

Further extension of these results are given in Ruiz and Navarro

(1994). They define,

p(k+l) 3 h(x, +1) _
pm hm) (1 h(x"))

for a discrete random variable X with v(x)<oo and Q:D—>R, a real

function wth q(xb) = xb -c for b<O0, or ling[q(xk )p(k)]: 0 other wise.

Then the conditions,

1 P<’1+,,1>- P“) = xi -6 1+2?» +1><q<*»>' p(k) q(rr + 1)
2. v(xk) = c + q(xk) h(xk)

are equivalent.

If klim[q(x,)h(x,)]=0 then c =,u. Taking
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a. xk = k and q(k) = k/a, we obtain the results given by Osaki and

Li (1988), Shanbhag (1970) for geometric and negative binomial

distributions.

b. x;,=k and q(k) = -iifl or q(k) = k we obtain the results in Ahmed

(1991) for binomial and Poisson distributions.

c. xk = k, q(k) = ak2+ bk +c, we obtain the result given by Nair and

Sankaran (1991).

For c =0, E uni uel determines F(x).ho‘) q Y

If one defines Y, ={X-x|X>x}, then Y, is also a random

variable and represents life time remaining to an individual or

device when it has survived age x. The survival function of Yx is

R(y; x) = Rgzi B1), yz-O (1.22)
and the distribution of Y, is called the residual life distribution

(RLD) ofX beyond age x. It can be seen that,

r(x) = E(Y,)

implying that the mean of the RLD is the MRL. Once this

interpretation is accepted a detailed understanding of the

characteristics of residual life requires an analysis of the residual



life distribution. We may then require the higher moments of

residual life as well.

Accordingly, the second factorial moment of residual life is

M(x) = E Y,(Y,, - 1)

=E(Yf)—E(Yx) (1-23)
If we denote E (if) as r;(x)

M(x) = r2(x) — r(x) (1.24)
In terms of the survival function

= r;(x)= 1+ 51?:-5i(2n+l)R(x+n+l)and (1.25)
E(Y,,) = r(x) = 1+ -1-$5 £R(x+n+l)

Thus

M(x)=-' '}'Yx2;'5 gnR(x+n+l).

Navarro, Franco and Ruiz (1998) have given a general method

to obtain a distribution function F(x) through the km moment of

residual life, defined by,

rk(x) = E[(X-x)" | Xzx] for k = 1,2,3,... (1.27)

They study characterizations based on relations between failure rate

functions, left censored moment function,
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v;,(x) = E[X"|X>x] (1.28)
Their results are

1. If F(x) is the distribution function of a discrete r.v. X with mass

in {x,-, i = a, a+l,..., b} where x,~ < x,-+1,a can be -00, b can be +00

then rk(x) uniquely determines F(x) through the inversion

formula.

F(x) = 1,
nix rk (xn)

for all x <xb, rk(x+) = lim rk(t).
t—)I+

2. Taking rk(x) = ak, where ah =E(X") they have characterized the

geometric distribution.

They have also characterized a distribution function through a

relation between failure rate h(x) and left censored moments rk(x)

both in continuous and discrete cases.

1.3 Some notions of aging used in the present study

All the concepts described above can be used in the

exposition of the manner in which life length is affected by the

advancement of age. In ‘other words, we can define various notions
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of aging based on failure rate, MRL, or vitality function that tells

us what happens to the life length of a device (whether decreases,

increases or remains steady) as it ages. Classification of life

distributions based on different criteria of aging is available in

continuous time, but their counterparts for the discrete domain have

not been fully investigated. Klesfsjo (1982) has provided discrete

analogues to some of the classes discussed in literature in the

continuous case. A brief review of the classes that are mentioned in

the sequel is presented in the next section.

First we present the simplest concept of aging based on the

monotone character of failure rate.

Definition 1.2.1

A discrete random variable X or the corresponding survival

function R(x) belongs to the increasing failure rate or IFR

(decreasing failure rate or DFR) class if, the failure rate h(x) is an

increasing (decreasing) function of x, for all x in 1+.

Characterization of geometric distribution and discrete IFR

(DFR) disctributions using order statistics are established in

Neweichi and Govindarajulu (1979). Hitha (1991) has given certain
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necessary and sufficient conditions for a distribution to be IFR

(DFR). The results are

1. X is IFR (DFR) if and only if %+)’L) is a decreasing.x

(increasing) function of x, for all y in 1+.

2. X is IFR (DFR) if and only if H(x, y) is an increasing

(decreasing)-function of x for all y in 1+, where H(x,y) is the

cumulated failure rate in the interval [x, x + y-1] defined by,

x+y—l

H(x, y) = Zh(r) (1.29)

Studies in the same direction are given in Roy and Gupta

(1991) who proved the following results.

I. The probability mass function f(x) belongs to both IFR and DFR

class if and only if

= (1—c)"c x=0, 1,2, ...,k—lf(r) i(1_c),, pk (1-30)
where c is any arbitrary parameter between 0 and 1.

2. If R(x) is the survival function of a life distribution belonging to

IFR class then for O<q<l,

D(x) = R(x) — qx , x = 1, 2,

changes sign atmost once and the change occurs from positive to

negative.
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3. For a survival function R(x) of any life distribution belonging to

IFR class, given any integer x0eK, K = {O,l,2,..., k}

R(x) 2 [R(x0)]"/"°, for x = o,..., xo

5 (R(x0))"”‘°, for x = x<,+l,...

and the bound is sharp.

4. A survival function R(x) of a discrete life distribution is IFR if

and only if for every fixed integer xo e K,

log —@sL(x-xo) for all x GK,
R(Xo)

i where L is a constant depending on h(x0).

A similar classification of life distributions in terms of the

monotone nature of MRL function is also possible.

Definition 1.2.2

A discrete r.v X or its distribution belongs to the DMRL

(IMRL) class if r(x)2 r(x +l)[ r(x)s r(x +1) ]for every x in 1*,

Ebrahami (1986) has discussed the class of discrete
decreasing and increasing mean residual life functions. The

increasing or decreasing nature of failure rates can be subsumed

into the concept of bath-tub failure rates in which the failure rate at

first (increases) decreases then remain constant and there upon
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starts decreasing (increasing). The papers by Guess and Park (1988)

and Miejie (1994) discuss the properties of the class of discrete life

distributions with bath-tub shaped failure rates. Guess and Park

(1988) in their paper develops a general approach to modelling

discrete bath-tub and upside down bath-tub mean residual life

functions.

Hitha (1991) has shown that a sufficient condition for X to be

DMRL(IMRL) is that -1-a—(1%c(_|_Ty) is a decreasing (increasing) functionx

ofx, for all y in F.

It has also been shown that

l. A necessary and sufficient condition for X to be DMRL is that,

the variance residual life,

V(Y,) 5 r(x) (r(x)-1)

2. Xis DMRL (IMRL) if, r(x)h(x) is not less than (not greater than)

unity.

V Y
3. If b(x) = s (") s a, among the class of distributions with

"(I)(’(I) - 1)

strictly increasing (decreasing) MRL, Waring (negative

hypergeometric) is the only member for which b(x) is a constant.
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Salvia (1996) has given an upper and lower bound for MRL

for devices with monotone failure rates given by

1. If {hk} is IFR , then (1-ht-) s rk 5 (1 - ho)/ho

2. If {hk} is DFR and if E(X) exists , then $35 rk 50 _ 0
I

It is known that if X is IFR (DFR), then X is DMRL (IMRL).

However, the converse need not be true as exemplified in Hitha

(1991). The additional condition required on IFR distributions to

make it DMRL remains to be established.

1.4 Equilibrium distributions

Another concept that is used in the sequel is of an

equilibrium distribution. Corresponding to every discrete

distribution of a random variable X in the support of I+, we can

define a random variable Y, with probability mass function,

g(y)=P—()-(£7?-¥l,y=0, 1,2,  (1.31)

and p = E(X) which is finite. This is called the distribution based

on the partial sums ofX (Johnson, Kotz and Kemp, (1992)) or the

equilibrium distribution corresponding to X. In the context of

reliability, Gupta (1979) has shown that the failure rate of Y is the

reciprocal of the mean residual life function of X and when the
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equilibrium distribution belongs to the class of modified power

series distributions, the geometric law is the only one satisfying the

property E(X) = E(Y). Continuing the work along these lines Nair

and Hitha (1989) obtained mutual characterizations of the

distributions ofX and Y. Some characterizations given by them are

(1)A necessary and sufficient conditions for X to be geometric (p),

Waring (a,b), negative hypergeometric (k, n) is that Y is

geometricip), Waring(a,b+l) negative hypergeometric (k+1,n-1).

(2)If h(x), k(x) are the failure rates of X and Y, the property

h(x)=ck(x) for all integers x20 and a constant C, characterizes

geometric (p) for C=l, Waring (a,b) for C>l and negative

hypergeometric(k,n) for O<C<1.

(3)The MRL and failure rate ofX is such that r(x) h(x) = C for all

integers x20 and a constant C>0 if and only ifX is geometric (p)

for C=1, Waring (a,b) for C>l and negative hypergeometric (k,n)

for 0<C<1.

(4)The relationship r(x) = ka(x) where a(x) is the MRL of Y is

satisfied for all integers x20 and a constant k if and only ifX is

geometric (for k=l) or Waring (for k<l) or negative

hypergeometric (for k>l).

(5)IfX has a particular type of memory, at a given point, then Y

also has the same type of memory at that point.



19

1.5 Mixture models

Let ._X_ = (X1, X;,..., X") be a random vector with a family

{f(x,6), 6 e ®} of probability distributions, where (9 is a subset of

RT, R= (-00, 00) and T is an arbitrary fixed positive integer. Let G(Q)

be a T dimensional cumulative distribution function. Then

/to = jf<x,Q>dG(§> (132)

is called a mixture density function. In (1.32), G(.) is called the

mixing distribution. The definition given above is quite general in

nature and the special case when G(.) is discrete and assigns

positive probability to only a finite number of points (9,-, i = 1,

2,...,k) is often found useful in applications. When this is the case

we get what is called a finite mixture density which can be written

in the form,

f(X)= Pif1(X)+ P2f2(x) +~--+Pkfk(X) ('1-33)

Where

f,~(x) 20, Zf,.(x)=1 ,p,- 20 (i = 1, 2,..., k), ip,.=1.
i=1

The constant p,-’s are called mixing weights and ffs are called

component densities.



20

Nelson (1982) points out that units manufactured in different

production periods may have different life distributions due to

difference in design, raw materials, handling etc and it is necessary

to identify production period, customer, environment etc that has

poor units for remedial action on that part of the population. When

the population decomposes into different sub populations the

appropriate model of life time data is a mixture of distributions.

Cox (1979) has analysed data on failure times using a mixture of

exponential models by classifying the data on failure times into two

subpopulations depending on whether the cause of failure was

identified or not. Mendenhall and Hader (1958), Kao (1959),

Fowlkes (1979) Everitt and Hand (1981) and Mendelbaum and

Harris (1982) provide examples of life lengths that are distributed

in the form of finite mixtures. Thus there is a strong case for a

detailed study of mixture distributions in the context of reliability

analysis.

The survival -function, failure rate and MRL for the mixture

distribution represented by (1.33) are

R(x) = P1R1(x) +P2 R20‘) +-~- +Pk R1<(X) (1-34)

hm ,__ Jfl 5 nfi(r)+p2fz(x)+.~+P,.ft(x)_, (1 35)
R(x) P1R\(x) +PzR2 (x)+---+PzRx (x) I
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i[P1R1(Y) + P2R2 (1)+---+PrRt (1)1r(x) = HI e s r n   rs" (1.36)
P1R1(x +1)+ P2R2 (x +1)+---+PkRx(x +1)

Identification of models in the case of mixture distributions

can be facilitated in the same way as general models through

characterization theorems involving reliability concepts. However

characterization of mixture distributions through reliability

concepts is a rarely visited area of investigation. The only result

that is known to us is in the continuous case.

Nassar and Mahmoud (1985) gave a necessary and sufficient

condition for the random variable X to be distributed as a mixture

of two exponential distributions. They showed that

f(x) = a)l1e’*“ + (1-a) /bed”, /'11, ii; >0, 0<0:<l (1.37)

if and only if, for all y >0,

E[X|X>y] =y +  +11] -3%’). (1.38)

In our knowledge , no characterization of discrete distributions in

terms of reliability concepts have appeared in literature and

therefore an attempt in this direction is taken up in a subsequent

chapter.
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1.6 Partial moments

The rm partial moment of a random variable about a point is

defined as,

p,.(t) = E[(X- t)+]’, r = 0,1, 2, (1.39)
where (X-t)+ = max (0, X-t).

The properties of partial moments can be used to characterize

probability distributions in the same way as truncated moments are

employed. The random variable (X-t)+ used in defining partial

moments are meaningful in the study of personal incomes. Those

incomes which fall short of tax exemption level t is of no

consequence in the computation of taxes and therefore they are as

good as treated to be zero. Thus the study of partial moments is

useful in analysing measurements that exceed a threshold level

without truncating the distribution at t.

Chong (1977) has characterized the exponential distribution

by the property.

E(X-t-s)+ E(X) = E(X-t)* E(X-s)+ (1.40)

of the partial means. Gupta and Gupta (1983) have mentioned the

definition and some properties of partial moments in the discrete

case. A detailed study does not_ seem to have taken place.
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1.7 Summary of the present study

The present study consists of five chapters. In Chapter II we

take up the derivation of some general results useful in reliability

modelling that involves two component mixtures. Expression for the

failure rate, mean residual life and second moment of residual life

of the mixture distributions in terms of the corresponding quantities

in the component distributions are investigated. Some applications

of these results are also pointed out. The role of the geometric,

Waring and negative hypergeometric distributions as models of life

lengths in the discrete time domain has been discussed already.

While describing various reliability characteristics, it was found

that they can be often considered as a class. The applicability of

these models in single populations naturally extends to the case of

populations composed of sub-populations making mixtures of these

distributions worth investigating. Accordingly the general

properties, various reliability characteristics and characterizations

of these models are discussed in chapter III. Inference of

parameters in mixture distribution is usually a difficult problem

because the mass function of the mixture is a linear function of the

component masses that makes manipulation of the likelihood

equations, leastsquare function etc and the resulting computations



24

very difficult. We show that one of our characterizations help in

inferring the parameters of the geometric mixture without involving

computational hazards. As mentioned in the review of results in the

previous sections, partial moments were not studied extensively in

literature especially in the case of discrete distributions. Chapters

IV and V deal with descending and ascending partial factorial

moments. Apart from studying their properties, we prove

characterizations of distributions by functional forms of partial

moments and establish recurrence relations between successive

moments for some well known families. It is further demonstrated

that partial moments are equally efficient and convenient compared

to many of the conventional tools to resolve practical problems in

reliability modelling and analysis. The study concludes by

indicating some new problems that surfaced during the course of the

present investigation which could be the subject for a future work

in this area.



CHAPTER II

RELIABILITY CONCEPTS IN
DISCRETE MIXTURE MODELS

2.1 Introduction

Eversince the concept of mixture distribution was introduced

by Newcomb in 1886 as a model of outliers, the interest in mixture

distributions have increased considerably as models appropriate to a

wide variety of data situations in different scientific investigations.

In Section 1.5 we have pointed out various practical problems that

lead to a mixture of distributions for life length and cited case

studies and examples in this direction. In addition to known

physical characteristics that suggest such laws, cases where

interrelationships within the system is not known to indicate the

appropriate model it may some times happen that there would be a

pronounced lack of fit to single models such as Poisson, negative

binomial etc in which case mixture of two or more distributions

would be more appropriate. Further, for data sets with multiple

modes, mixtures are preferred to multimodal single distributions,
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because of the flexibility in the former in terms of more parameters.

In this chapter we discuss some general results involving the basic

reliability concepts mentioned in Section 1.2 when the life

distribution is a mixture of two discrete distributions.

2.2 Failure rate and residual life

Let X be a discrete random variable in the support of the set

of non-negative integers 1+ with probability mass function of the

form

f(r) =Pf1(r) + (1-p)f¢(r), O<P<1- (2-1)
Then the survival function ofX is

R(x) = P(X-Zr) = P R1(X) + (1-P) R20‘) (Z2)

where R,-(x) is the survival function corresponding to f,-(x), i = 1, 2.

The mixture and component distributions possess failure rates
I

specified by

h(x) = Pf1(x)+p(1p-P)fz(-Y) (2.3)
pH, (x) + (1 - p)R2 (x)

and

h,-(x) = , 1' = 1, 2. (2.4)
It follows that

R(x) h(x) = p R1(x) h1(x) + (1-p) R;(x) h2(x). (2.5)
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Under the assumption that E(X)<so, the MRL functions arising from

f(x),f1(x) and f;(x) are

i <pR, <1) + <1- p)R2 <1»

M) 2 IJETEI +i1>+<1-1v>R,<x+1> (26)

iR.m’:(I) =  (2-7)
From (2.-6) and (2.7)

R(x+1) r(x) = p R1(x+1) r1(x) + (1-p) R;(x+1) r¢(x). (2.8)

Also from the relationship between MRLF and vitality function,

R(x+1)(v(x)-x) = p R1(x+1)(v1(x)-x) + (1-p) R;(x+1)(v;(x)-x)

or

R(x+1) v(x) = p R1(x+1) v1(x) + (1—p) R;(x+l) v;(x). (2.9)

Eliminating R1, R2 and R from equation (2.2), (2.5) and (2.9)

v(x) [h1(x+1)-h;(x+l)]- h(x+1)[v1(x)-v;(x)]

=h1(x+l)v2(x) - h;(x+1)v1(x) (2.10)

Similarly

r(x) [h1(x+1)-h;(x+1)]- h(x+l)[r1(x)-r;(x)]

=h1(x+l)r;(x) - h;(x+1)r1(x) (2.11)

The primary use of the last two equations is to work down identities

connecting v(x) and h(x) of mixtures when the form of the

component densities are known. Equation (2.11) can be converted
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into an equation connecting r(x), r|(x) and r;(x) if one uses the

relationship between failure rate and MRLF given in (1.10) viz.

1-h(x+1) = :-g)-5% (2.12)
Rewriting (2.11) as

r(x) [1-h;(x+l)-(l-h1(x+l))]+(l- h(x+1))[r1(x)-r;(x)]

=(1-h2(x+l))r1(x) - (1- h1(x+1))r2(x)

and applying (2.12), we have

r x -1 r x - r —
'(x) L: ¥x)+ 1) — r:€x)+ lfl+ 725%; [?1(x)-M(x)]

= r1(x)— r;(x). (2.13)
The second factorial moment of residual life of a random variable X

was obtained in equation (1.26) as

M(x) = 2[R(x+1)]‘1 finR(x+n+l)

Denoting by Mi(x) and M¢(x) the second factorial moments of the

component distributions we can write

R1(x+1)M1(x) = 2 ii/2Rl(x+n+1)

and

R;(x+l)M2(x) = 2 znR2(x+n+1).

Thus
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W

M(x)R(x+1) = 2 Zn[pR, (x+n+1)+(1—p)R2 (x+n+1)]

= p R1(x+1)M1(x) +(1-p) R¢(x+1)M;(x) (2.14)

As before eliminating R1 and R; from (2.2), (2.5) and (2.14),

M(X)[h1(X+1) — h2(x+1)] — /1(x+1)[M1(X) - M2(X)]

= h1(x+1)M;(x) -— h;(x+1)M1(x). (2.15)

2.3 Criteria for aging

This section deals with some approaches to the phenomenon

of aging in the case of life times following a mixture distribution.

Through the conditions presented here one can check whether the

life length of the device is increasing or decreasing together with

the manner in which these improvements or deterioration in the

effectiveness of the device takes place with regard to its age.

From equation (2.5)

h(x+1) — h(X) =[P R1(r+1) h1(r+1)+(1-P)Rz(X+1)/1z(x+1)]/R(x+1)

- [P R1(X) h1(X) +(1-P)R2(r)hz(r)]/R(X)»

and hence

R(x)R(r+1)[ h(I+1) - h(x)]=[P R1(X+l)h1(r+1)+(1-P)R2(X+1)h2(X+1)]

[PR1(r)+(1-P)Rz(X)]

— [P Rm mo) +<1-p>R2<x>h=<x>1

[P R1(x+1)+(1-P)R2(X+1)]
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= p’ R1(x)R1(x+l)[h1(x+1)- h1(x)]

+ (1- P)’ Rz(r)R2(x+L)[h2(r+1)- h¢(r)]

+ p(1-P)R1(r)Rz(r+l)[h:(x+1)- h1(r)]

+P(1-p)R1(r+1)R2(r)[h1(x+1)- h2(r)]

= R(X)[(h1(X+1)- h1(I))PR1(x) +(h2(X+1)

- hz(X))(1-P)Rz(x)]+ P(1-P)(h1(I)

- h2(X))[R1(X+1)R2(I) " R1(I)R2(x+l)]

= R(X)[(h1(X+1)- h1(I))PR1(I) +(h2(X+1)

- h2(r))(1-P)Rz(X)]

- P(1-P)[h1(X)-/12(r)]2 R1(I)R2(r)~ (2-16). R . . .
On using - = 1-h,-(x). Equation (2.16) yields the following1. x

theorem.

Theorem 2.1

The mixture distribution (2.1) is IFR (DFR) if and only if

R(¥)[(h1(x+1)- h1(X))PR1(I) +(h2(x+1)- /12(X))(1-P)R2(X)]Z ($)

P(1-P)(h1(x)- h2(x))2 R1(X)R2(X)
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Corollary 2.1

If the component distributions are DFR then the mixture is

always DFR.

Iii view of the similarity between (2.5) and (2.8), we have by

similar computations

R(r+1) R(r+2)[r(r+1)-r(r)]=R(r+1) [(r1(x+1)- ri(r)).vRi(x+1)

+(rz(r+1)- rz(r))(1-p)Rz(r+1)]

-p(1-p)[r1(x)-r;(x)]2 Ri(x+l)R;(x+l). (2.17)

and nie following.

Theorem 2.2

The mixture distribution (2.1) is IMRL (DMRL) if and only if

R(I+1) [(Y1(r+1)- r1(I))PR1(X+1) +(r2(X+1)- f2(X))(1-P)Rz(X+1)]

2 (5) p(1-p)[r1(x)- r2(x)] 1 R1(x+l)R;(x+l). (2.18)

Another condition can be obtained if we substitute

PRl(x) = ""‘)_"*(")R<x> en<1<1-p)R=<x)= "(")"”'(") Rmh1(x)_ h2 (I) h2 (X) *" hi (x)
obtained from equations (2.2) and (2.5). This gives

r(x+1) - r(x) = [h1(x+1)- h,(x+1)]" [h(x+1)(r1(x+1)- r¢(x+1))

+ h1(x+1)r;(x+l)- h;(x+l)r1(x+l)]

— {h1(X)— h:(X)]" [h(r)(r1(r)- r2(r))

+ h1(x)r;(x)- h;(x)r1(x)]. (2.19)
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Theorem 2.3

The mixture distribution (2.1) is IMRL (DMRL) if and only if

__h(x)(r1(x) T rz  + hi (x)rz  '" }_72 (x)r1_(x)
hl (x) _ hz (x)

(2.20)

rs an increasing (decreasing) function in x.

Note

In Theorem 2.1 we have not made any specific assumption on the

monotonicity of h1(x) and h;(x). Therefore the DFR nature of

the mixture holds under the given conditions even if the

component distributions are IFR. A similar comment is true of

the IMRL nature of (2.1) even when the component distributions

are DMRL.

The other aging properties like IFRA (increasing failure rate

average), NBU (new better than used) NBUE (new better than

used in expectation) HNBUE (harmonically new better than used

in expectation) etc defined in terms of h(x) and r(x) can be

obtained directly from the above expressions. They are

therefore, not considered separately.

2 4 Equilibrium distributions

The definition and some reliability characteristics of

equilibrium distributions were discussed in Section 1.4. The
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importance of such distributions arise from the fact that the

corresponding random variable Y describes the residual life of a

component in a system where a component of life length X is

replaced upon failure by another having the same life time, so that

the sequence of life lengths form a renewal process. Deshpande et

al. (1986) have obtained certain new notions of aging based on the

distribution of Y. They argue that life distribution of a device

which ages more rapidly will come off worse in a comparison

between the reliability functions ofX and Y.

For the mixture model (211) the density function of Y from

(1.31) is

go»)=~"Ro+1>, y=<>,1,2, ...;#=E<X> (221)

and therefore the survival function becomes

S(y) = /I‘ [piRi(r + 1) + (1 — P)iR2 (x + 1)]

= #1" [piR1(x) +(1- P)iR2(r)]

= tr‘ [PRi(r+1)r1(I) +<1- p)R2(x+1)r2(x)]

The failure rate of Y is accordingly

kw 2 u"[PRi(r +1>+<_1; p>&<x+1>1
/f‘lPR.(r + 1)r.(r) + (1 - P)&(r +1)r1(r)]
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h(x+1):h1(§+1) +Eh(x+1)—h2(x+l)
_ h2(x+l)-hl(x+l) hl(xf“1)—h,(x+1) y
_ iiiih(x+l)-h,(x+l) h(‘x+l)—h2(x+1)ir2(x)  e ~  ~~ +r1 (x)  ~—e 2

h2(x+1)—h1(x+1) h,(x+1)—h2(x+1)

= -__  t  2  (222)
h(r +1)['1(I) - G (x)] + ht (X +1)G(X) " /'2 (X + 1)?'1(x)

Equation (2.22) will be used in the sequel to extract mutual

characterizations of the distributions ofX and Y.

2.5 Mixture with a geometric component

The results in the preceding sections assume a much

simplified structure when one of the components is geometric

because of the constancy of the failure rate and mean residual life

in that case. For example the necessary and sufficient condition for

the mixture to be IFR(DFR) and DMRL (IMRL) respectively reduce

t0

h;(x+1) - h;(x) 2 (5) P(‘”‘_l§'(*x(;‘))2 qr (2.23)

and

r¢(x+1) - r;(x) 2 (5) p(p'_11;(3Erx1)§2qr+l . (2.24)
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when the first component is geometric with parameter pl. Further

explanation of these results will be taken up in Chapter III when we

consider mixtures of specific distributions.



CHAPTER III

SOME MIXTURE DISTRIBUTIONS
USEFUL IN RELIABILITY MODELLING

3.1 Preliminaries

Some results relating to two-component mixtures of discrete

distributions were presented in the previous Chapter. Also a survey

of "important distributions used in the context of reliability

modelling and their properties in this connection was made in

Chapter I. We now consider mixtures of these models and prove

that several results in the case of single distributions extend to

mixtures under specified conditions. Apart from the applications in

reliability studies, many of the results are found to be useful in a

more general' situation and suppliments the general discussion

available in literature on mixture models.
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3.2 Geometric mixture

A two-component mixture of geometric distributions with

parameters pl and pg has probability mass function

f(r) = PP1‘1i+(1'P)P2 qi‘, r= 0, 1, 2,  (3-1)

0<p,-<1 and q,-=1+p,-,i=1, 2.

3.2.1 General properties.

The rt” factorial moment 'is

flu) =1? 1'! £3‘-T1“ (1'P) r! Pi] (3.2)P1 P1
so that mean and variance ofX are

#=Pq1Pfl +(1-P)q2P§' (3-3)
and

0-’ = pqr pf + (1~p)q=p;’- (3.4)

The reliability function, failure rate and MRL are respectively

ROI) = P qi + (1-P) q§ (3-5)

hm = PP1<Ii; +(1-—p)piq§ (3 6)
pql +(1_ P)q2

lo

x+l -1 __ x+1 —l_
rm = “"11, *“ ”"’i+.”* ~ 01>

pql + (1 ’ P)q2

Further in the notations ofthe previous chapter,
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Mr) = Pr, n-(x) = pi‘ and Mix) =2q:P§2

Substituting these values in (2.11)

r(x) + P{‘P;‘ h(r+1) = PI‘ + P5‘ (18)

giving a compact relationship between the failure rate and MRL of

the mixture independently of the reliability measures of the
Q

components. A similar relationship between M(x) and h(x) is

obtained from equation (2.15)

M(r) - 211;’ P;2(PlP2'P1'P2) h(x+1) =21)?’ P;’[pf+P§+P1P=(1-P1-p=)]

(3-9)

The left hand expression of the condition in Theorem 2.1 is zero.

Accordingly since

p<1~p)<hr(x)-hm)’ Rl(x) R207) = pm-p><p1-pr)’ qr q: 20

the mixture is DFR. Thus eventhough the component distribution

possesses no aging property, their mixture has decreasing failure

rate. Likewise from Theorem 2.2 the distribution is IMRL. From

equation (2.22) the failure rate of the equilibrium distribution is

h(x+1)[P{‘ -P;‘]+P1p;‘ -P211?‘
E‘

Q.=   M  - (3.10)1P +172 "h(x+1)



39

3.2.2 Characterizations

In this section we establish several characterizations of the

mixture geometric law.

Theorem 3.1

Let X be a discrete random variable in the support of F with

E(X)<oo. Then

r(x) = (P? + P?) —pI‘P;‘ h(r+1)

for all x in 1+ if and only ifX has distribution with probability mass

function (3.1).

Proof: The ‘if’ part is proved in section 3.2.1. To prove the ‘only

if’ part we write equation (3.8) as

iRm= (pf + p;‘) R<x+1> -pf pg‘ /"<x+1> (3.11)

on using the definitions of r(x) and h(x). Now (3.11) is

ZR(r>= (pf + p;‘) R(x+1) —p;‘ P? (R(x+1> — R(x+2>>. (3.12)

Changing x to x-1

iR<1>= (pi + 11;‘) Rm —p;‘ 1);‘ (Ru) - R(x+1>>. (3-13)

Subtracting (3.13) from (3.12),

R(x+2) + (Pi + P: — 2)R(X+1)+(1- P1)(1- P2) R(I) =0
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This is a homogeneous difference equation of the second order

whose solution is of the form

R(x) =p mf + q mg‘, for some constants p, q

where m1 and mg are the roots of the auxillary equation

m’-(1-pl +1-P2)m+(1-P1)(1-P2)=0- (3-14)

Equation (3.14) has roots

m1= 1-p1= q1 and mg =1-pg = qg.

Thus

R(r)= P qi‘ +q <15

Since R(0) = 1, p+q =1 and hence

R(x) = p qi‘ + (1-P) qi‘

as claimed in the Theorem.

Corollary 3.1

Xfollows geometric law with

P(X=x) = qxp, x = 0,1, 2,

if and only if

r(x) = 2p’1—p'2 h(x+l). (3.15)
The result follows by taking pl = p; = p in Theorem 3.1. This is a

particular case of the result for the Ord family proved in Nair and

Sankaran (1991). Further if one notes that h(x) is a constant p for

7
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the geometric distribution, we have Shanbhag’s (1970) result from

(3.15).

Theorem 3.2

IfX be a discrete random variable in the support of 1+ with

E(X2) <00. Then the distribution of X is geometric mixture as in

(3.1) if and only if

M(x) = Ah(x+l)+B

where

A = 2 '2 ‘*2 - ~ 3 16)P1 P2 (PIPZ P1 P2) ( .
and

B = 2Pi'2P§2[P12+P§+P1P2(1—P1—P2)] (3-17)
\

Proof: When the distribution is mixture geometric it is shown in the

previous section that (3.9) holds.

Conversely assume that,

M(x) = Ah(x+ l)+B

That is,

2[R(x+1)]'1 §nR(x+n+l) = A[f(x+1)/R(x+1)] + B
n =1

01'
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;nR(x+n+1) =Af(x+1) + B R(x+1) (3.18)
n=1

and

i»Rtx+~> =Af<x> +BR<x> 0.191

Subtracting (3.18) from (3.19) gives,

flux + rt) = A t/(x1-r(x+1>> + B (Rm -R<x+11>
n=l

Of

Q

ZR<x+»> = A (rte)-1(r+1)> + B/(x) (3.20)

From (3.20),

iR(x+n+1) = A (f(x+l)-f(x+2)) + Bf(x+l) (3.21)
n=l

and then from (3.20) and (3.21) gives,

R(x+ 1) = A(f(x)-2f(x+ 1)+f(x+2))+B(f(x)-f(x+ 1)) (3.22)

R(x+2) = A(f(x+1)-2f(x+2)+f(x+3)+B(f(x+l)-f(x+2)) (3.23)

Lastly

f(x+ 1) = R(x+ 1) - R(x+2)

= A(f(x)-3f(x+1)+3f(x+2)- f(x+3))+B(f(x)-2f(x+ 1) + f(x-4-2)).

(3.24)

Introducing the forward shift operator U defined by Uf(x)=f(x+l),

equation (3.24) becomes,
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[A U3-(3A+B)U2+(3A+2B+1)U-(A+B)]f(x) = 0

whose soiution is of the form

f(x) = C1r;‘+ C, 1; + C; 1;‘,

where 11, t2 and t3 are solutions of

At’-(3A+B)t2+(3A+2B+1):-(A+B)=0.

Substituting for A and B and solving,

tlzqlv t2 = qz and t3 Z  ‘p? _plP2(P1
Thus

f(x) = @1qf+ flpzqfz‘ +6; [(11% 'Pi2)/(Pg — P12 — P1192 (P1 +102 ))l"

with a = 23- andfl =  It can be readily verified that f(x)P1 P2
cannot be a probability mass function unless C3-=0 and fl=l-a, since

otherwise the value of (pi —pf)/ (pf —p,z —p,p2 (p, +p2 )) would be

greater than one.

Hence,

f(x) = ap1qi‘+(1-a)P= qi‘,

as required.

Corollary 3.2

X follows the geometric law with probability mass function
E. I

f(r)= q"p, r = 0, 1, 2,  0<p<1, q =1-P,
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if and only if for all x,

M(x) = 2p" <1»-2)h(x+1>+2p" <3-21>) (3.25)

If one uses h(x) =p in equation (3.25) that equation becomes

E[(X-x)(X-x-1)|X>x] = EX(X+1) for all x

which is closely related to the result of Navarro et al. (1998).

Theorem 3.2 exhibit an identity connecting the failure rate

with the second moment of residual life. Another direction by

which the results in Theorem 3.1 and Theorem 3.2 can be

generalised is by increasing the number of component densities in

f(x). Accordingly the next Theorem concerns three component

geometric mixtures in which the second moment and mean of

residual life and failure rate are involved. When the observations

arise from a system which can be decomposed into three sub

populations Theorem 3.3 can help in identifying whether the

underlying distribution is a geometric mixture or not. Apart from

this the form of the identity established here will give us a hint to

the general structure of the characteristic property in the case of

any finite mixture.

Theorem 3.3

A discrete random variable in the support off with E(X2)<oo

will be a geometric mixture with probability mass function
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fix) = Zaip.-qr‘ , <2i><>; Z<2,=1 (226)
i=1

if and only if

M(x) = A1r(x) + A2 +'A3 h(x+1) (3.27)
where

A1= 2 Z115‘ — 2; A1= -2 Zp;‘p;‘, 1; 1 =1,2,2,1<1;A3 = 2 12;‘ 12;‘ p;‘

Proof: When the distribution is specified by (3.26) by direct

calculations

R(r) = <21q{‘+ <2: q;‘+ asqé‘

h(x) = [R(I)]'l(<11qixP1+ a2 q§P2 + asqips)

r(r) = [R(r+1)]" Z (aiqi + 21 <15 + asqé)
x+l

3

= [R(x+1)1" Zaiq:"‘p;‘
i=1

and

M(x) = 2[R(r+1)]" Z~(mqi‘*"“‘ + <2: q§‘””‘ + <2:~»q§‘*"*‘)
n=1

3

= 2[R(r+1)]" Zaiq§*’p.*’ 
i=1

By direct substitution of these values in (3.27) we can verify that

(3.27) holds.

Conversely assume that (3.27) is valid for some distribution

in the support of 1+. Then by definition of h(x), r(x) and M(x)
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2inR(x+n+l) = A1 iR(t)+ A2 R(x+1) + A;f(x+l) (3.28)

Differencing with respect to x,

2212(1) = A; Rot) + A, [R(x) - R(x+l)] + A3[R(x) -2R(x+1)+ R(x+2)]

Further differencing successively leads to the equation,

A;R(x+3) - (A;+3 A;)R(x+2) + (2+A;+2A;+3A3) R(x+1)

- (A1+A¢+A3)R(x) = 0 (3.29)

Setting R(x) = mx,

m’ - ----A’ HA3 m’ + ?*sA17'2A*+3A1m -14' *A1+Al= 0 (3.30)A3 A3 A,
Replacing A1, A; and A; by the values in the Theorem,

"13 - (3-P1*P2-Pa) "'2 + (ZRP; "222 +3)?" "

(1-29, +2211, -P1P;P3)= 0

[m-—(1-P0] [m—(1-p¢)] [m—(1-P0] =0

Now the solution ofthe equation (3.29) is of the form

R(x) = a;mf+ a; m§+ awn;

where ml, m; and m; are the roots of the auxiliary equation (3.30)

which are ql, q; and qg. Thus

R(x) = <11qf+ <12 q§+ 41¢];

Since R(0) = 1, Za,=1 and the Theorem is completely proved.
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Now we are in a position to state the general result in the

case of any finite mixture of geometric laws with n components,

n=l,2,3,.H

Theorem 3.4

Let X be a discrete random variable in the support of F with

E(X")<<>o. Then ifX has a probability mass function of the form

f(x) =zaiqixpi> aI'>0v Eaizli
i=1

then,

m,,(x) == A,,.1m,,-1(x)+ ...+ A; m1(x)+ A1+ A0 h(x) (3.31)

where

An-1 = (SI?!-1-,’)

A, = n(n-l)... (n-7-_i)(-1)""' s,-, 1' =1, 2,  n-2.

A0 = (-1)” Sn.

where'S, is the product of pf‘, ...,p;‘ taken r at a time and

{iii
m,- = E[(X-x)(X-x-l)... (X-x—i- l)lX>x].

Proof: Since the method of proof is identical to that of Theorem

3.4, except for the number of components, we give only an outline.

We note that in the present case
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Rm = fan.‘

ho) =[R<x>1"‘ §:‘,a.q:'p1

m,,(x) =[R(x+l)]'l n! iqf+" pf", n = 1, 2, 3,
i=1

Substituting these expressions in (3.31) and comparing coefficients

of a,-, on both sides we get the values of A,~, i=0, 1, ..., n-1 stated in

the Theorem.

3.2.3 Inference of parameters

Two basic problems that have to be settled while modelling

life time data are (i) identification of the appropriate distribution

and (ii) estimation of parameters to test model adequacy. The

results obtained in the previous section can be employed to tackle

both the problems.

(i) identification

From Theorem 3.1

r(x) =A +Bh(x+1)

where A = (pf + pf) and B = -pf‘ pg‘, which show that the graph

(h(x+l),r(x)) is a straight line with slope B and intercept A. Given

a random sample of size n, say X1, ..., X, from the distribution

(3.1), we can have the estimates of h(x) and r(x) viz.
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};(x)= £=__:.'Z£:L (3.32)
"I

and

Z";f(x)= -’11*'— (3.33)
nx+l

and plot the resulting estimates to produce the graph (l;(x+l),F(x)).

If the points fall approximately on a straight line then it could be

concluded that mixture of geometric laws is a plausible model.

(ii) estimation of parameters.

Rough and ready estimates ofA and B can be obtained from

the graph (Ii(x+l),F(x) ), by measuring the slope and the intercept of

the line about which the points cluster. A more accurate method is

to derive the least square estimates ofA and B and then solve for pl

and pg from the equations

i1‘=i>;‘+i>;‘ and 1?=-fi;‘i>;‘»

Since the mean of the geometric mixture is

E(X) =PqiP;‘ + (1-P)qzp;‘

replacing E(X) by the sample mean and the parameters by their

estimates, the value ofp can also be estimated.
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Of the classical methods, one that is simple to use is the

method of moments. From (3.2) the first three moments of (3.1) are

#<1)=Pq1Pi"+(1-P)<12P§‘

M2) = 2[Pq_i2 PI2 + (1-P) Q; Pf]

.u<:»>= 6[pq?P{’ + (1-1») qipfl.

If the first three sample factorial moments are s1, s; and s3, we have

the moment estimates as the solution of

pt+(l-p)s=a1 (3.34)
ptz + (1-p)s2 = a; (3.35)
pr’ + (1-p)s’ = a3 (3.36)

WhBl’C G1 =S1, G1 = 1/2 S1, 03 = S3/6, 1': -Q-1-, S =P1 P2
From (3.34)

p(t-s) = a1 - s

and from-(3.35)

p(t2-s2) = a; - s2

or

_ Z1+5 =3?-S-. (3.37)
a,—s

Again equation (3.36) gives

p(t3-s3) = a; - s3

or
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3a —s
t2+s2+ ts =—3-——.

a,-s

Eliminating t in the last equation by virtue of (3.37), we have a

quadratic equation in s,

(a§— 03611) + (a3 — a1a;)s + (af -a2) s2 =0

which can be solved to give the values of s that provides the

estimate ofp; in the parameter space (0,1). Then t is obtained from

(3.37), which will give )5, and finally p from (3.34) on substituting

iv, and 13,. Harris (1983) discusses other methods of estimation

that makes use of sophisticated numerical techniques.

In order to verify the correctness of the methods of

identification and estimation using the characterization theorem, we

have simulated random samples of different sizes for chosen values

ofp, pl and P1. The data corresponding to the samples are provided

in the Appendix. The graph pr (l;(x+l),f(x)) for typical sample

withp = 0.7, pl = 0.35 and P1 = 0.85 producing 100 observations is

shown in Figure 3.1. As expected, the sample points provided a

reasonable straight line graph, confirming the model property. In

order to study the behaviour of estimates random samples of sizes

100, 200 and 400 were generated for p = 0.7, p1=O.35 and p;=0.85.
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Estimates derived by the method of least squares from the linear

relationship between r(x) and h(x+1) are Shown in table 3.1.

Table 3.1: Estimation of the parameters of mixture geometric law

5 Saim‘pleNoq.Wl Sample Size 4 pl pz q p A
3  pl _q 0 in 100%“ l;0.p42  0.70;

I.

E 2 p_  100    0.89__ql 0.60;_ p 200    0.16
” 4 200  -..<>~39~r 0:88 913

5 » 400% -0-3.2 A 0-33 r .0166“.

Since the estimates l;(x) and f(x)used in the least square procedure

are ratios of random variables, the expressions for the standard

errors of estimates become analytically intractable. That does not

leave scope for a theoretical study of the efficiency or bias of the

estimates. Hence we have simulated random samples of various

sizes and computed the mean square errors. The values obtained

were reasonable in all cases and in comparison the estimates ofp

showed more instability. For instance we quote below the mean

square errors of estimates obtained when sample of size 200 with

the above true parameter values were replicated ten times.

MSE( 15,) = 0.00133 MSE(j52) = 0.009089, MSE(f>) = 0.01335.

The corresponding data is given in the Appendix.
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Important aspects of the new estimation procedure suggested

above ca-n be summarised as (1) only pooled data is needed for the

purpose. That is, observations need not be identifed as belonging to

a particular component (2) no iteration as in the case of maximum

likelihood nor solution of equations needed in the method of

moments are required. The method provides quick estimates

without much loss of efficiency.

3.2.4 Equilibrium distribution

From section 2.3, we note that the equilibrium distribution

corresponding to a two-component mixture geometric distribution is

found to be

80¢) = A{'1R(X+1), I = 0, 1, 2,  11 = E(X)

PX qipi +(1— p)Z qipi

Plilrt-P>l"—’lPi P2
= PqT*‘t(1-Pl<Ii‘*‘ _ (338)

PP?‘ +(1—P)P£‘ -1
I.

Further the distribution (3.38) is characterized by the property

too = [p;‘+_v;‘-11;‘ p;‘h(x+1)1" (3-39)

which follows from equation (2.22).
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We now prove the following result concerning form of the

equilibrium distribution

Theorem 3.5

A necessary and sufficient condition that -the life time

distribution is a geometric mixture is that its equilibrium

distribution is also of the same form with the same component

distributions.

Proof: when the parent distribution is a finite mixture of geometric

distributions

f(x) =iaiq:¥pi > ai>0s zaizl
i=1

and hence

,, ia,qf*‘
g(r) = #"ZR.(r+1) =

“‘ ZWLPZ‘
i=l

\= 2
i=1 Zaiqi pr?!)

= iii,-q,i"1>.~ , fi,~>0 and Zfl,=1» (3.40)

Conversely from the relationship (2.21), if g(x) is a finite mixture

of geometric laws with mixing weight 16,-,
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R(r+1) = uffltqfpt
i=1

and
f(X) = R(x) — R(r+1)

= #ifl.P.~qS“‘P.~

= ¢Llil{ ]qitpi

-= Xi; .!‘=
flip,

= Z ——j’,g-—— qfpt, sinceZf(x) =111 I I 0
qt

PI

=Zaiq|'xpi > ai >0: Ear:-"1'
i=1

Identically we note that the weights a,- and ,6; ofX and Y should be

-1

such that  = 25¢‘-1-‘? = ,u. Further in view of the previousqt P,
Theorem all the properties of geometric mixtures hold good for

their equilibrium distribution too if we replace a,- by ,6,-. Since

Theorem 3.1 through 3.3 are independent of the mixing weights,

they continue to hold for the random variable Y, provided the

failure rate and residual life ofX are replaced by the corresponding

quantities for Y.
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3.3 Mixture of Waring distributions

The Waring distribution introduced by Irwin (1963) with

probability mass function (1.6) was found to be of special interest

as model for reliability in discrete time. Specifically, the

distribution has linear MRL, reciprocal linear failure rate and DFR.

Hitha (1990) uses the slope-ordinate ratio method to prove that a

continuous approximation of the Waring distribution is the Lomax

law and thereby justifies the similarity of the reliability

characteristics of the two. The distribution has a longer tail than

the geometric model and is J-shaped.

3.3.1 General properties

In this section we consider a two-component mixture of

Waring ‘distribution of the form

: __ (bl): _ _ (b2)xf(x) P(@ bl) —"— + (1 P)(a 52) -"— (3-41)(a)x+l (a)x+l
I = 0, 1, 2,...., a>b1, b2>0, b1>b1.

with survival function

___ (b|)x (b2)J:
RU)-P?;)—I"+(1'P) Q: (3-42)

The expressions for the failure rate and MRL function of (3.41) are
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2  + x)     Q   )2:  .
P(b1),, + (1 - P)(b2 L

and

;-(x):  x) ~_~éL_ 1)-I (bl )¥i'l P  _ b2i_-__D¢la(b2_,);+li _ (3 _ 44)
p(bl)x+1 +  _  )x+l

The rm factorial moment can be written as

flu) =p e(”e‘)'eee + (1-P)  (b’)'- <3-45)
(a —b, —-1)”) (a "_b2 -1)“)

In particular the mean is

.._ __ Pbl _e_+ (1"p)l?;_
p _ a-bi-1 a—b2-‘-1

When b1= l= b; in (3.41)

_ _ x! _ _ x!
f(X) *P(<1 1) -—-—-(0) I +(1 P)(a 1) ~——-(a) II-F 1+

_ _ x!
D (a  (a)x+1

which is the Yule distribution. For the component densities in

(3.41) we have the following

_ = __ _ )xf:(X) P(@ bi) ——
(a).r+l

a-b.h,-(x) = II; (3.46)
r,-(x) = -53%? (3.47)
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These derive from the expressions

an

R,-(x) = %))-?‘

°°  =  +  +
?<a>, (at (a)x+1

_.(bi)X a+x ( x)(b+x+1>_ _i  + éi + i
(a)x a+x (a+x)(a+x+1)

_ (bf )1: 4 fx"l
' (Q); a—b,. -1

on using the Waring expansion

x :]+ a + a(a>+fi1)%+x-a x+l (x+1)(x+2)
To evaluate M,(x) off,-(x), we note that

_ _ _ co (bi)x+n+l
R,(x+1) M,(x)—- 2 an -(5)---—x+n+l

=  +  Q"_)1:L.|_
2 {1.(a)x+2 2 (a)x+3 3' (an.

_ °° (b,-),,+,- °° (b.~),+,
_ 2  (a)x+j +12 (a)x+j



60

=2 "° (”*)»~ 1 bi +5i+i1'+<1>i+x+1><1a_+ix+1+1>Z(a) +a+x+' ( + +' + ' I +W1-=2 W. 1 a x ])(a x+ _]+ )

= 2 i(bi),.+,- g_+x§rj-1
1:2 (a).l'+j a-bl“ -1

= 2(a_bI._1)-1
1:2 (a)x+j

_.  )x+2 a + x._ 2 —  —Y 7 i  _ _
(a)M (a — bi - l)(a —- bi — 2)

Hence

M,-(x) = m2(b* +e"+1)(“+9s, a>b+2. (3.43)
(a-b, ——l)(a—b,. -2)

Entering the expression for r,-(x) and h,-(x) in equation (2.11),

r(x) a-b! _ a-—_b2 _ _h(x+l) *a+x% _ a+xM&a+x+l a+x+1 a—h—1 a-@—1

= a—b, a%+HxM_ %a—b2 a+x
a+x+l a—b2—l a+x+1a—b,—1

which simplifies to

_ <2“ jbl,--3? f 1) (¢+ixL _ (<1 +r)£¢ +¥+})
rm q (C-171 -1) (a—b2 -1) (a-bl —1)(a—b2 -1)h(x+l)' (349)

Again from (2.15) we arrive at the identity connecting M(x) and

h(x) as
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a—Q a-Q
l—— ~——lMa+x+l a+x+1

= h(x+1) 2o(4+oX)(b1T"*1)a __ 2(a+ XXI’: +x+1)u
(a—b,-—1)(a—b1-2) (a—bZ —l)(a—b2 -2)

+ 2(a+x)(b2+x+l) }a—b, _ a-b,_ _2(a+x)(b,+x_+1)
(a—b2-1)(a——b2—2) a+x+l a+x+l (a—b1—l)(a—b1-2)

O1"

M(x) = [(a-bl-l)(a-bl-2) (a-1»,-1) (a-b;-2)]"

[{(a-bg-1)(a-bg-2)(b1+x+1)-(a-bl-1)(a-bl-2)(b2+x+1)}(a+x+1)h(x+l)

(a-b1)(a-b1-l)(a-bl-2)(b;+x+1)- (a-b;)(a-by 1 )(a-b;-2)(b1+x+l)].

To infer the nature of the failure rate we need the quantities

R(r){[h1(r+1)- h1(r)] P R1(X) + [h2(r+1)- hz(X)](1- P) R2(r)}

_ f7"b1_ afbl (bl);  b2 f75b2 (bl);
_R(x){[a+x+l —a+x]p E5: +[a+x+l - a+x] (1-P)

= Rm  (b2)I
(a;1_x)(a+x+1'j  (alt (bl'a) +(1'p) (alt (bl _a)]

and

p<1-p>[h1(x>- h1<x>1’R1<x>R2<x>= B(s“(f)ff)Ib‘)z  i (151)

Since a>b1, (3.50) is always negative and (3.51) is always positive.

Hence by Theorem 2.1 we conclude that the mixture of Waring
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distributions is always DFR. Compare this with the fact that the

component distributions are also DFR.

Further

a+x+1 a+x 1
"*"‘"“" ' "<">1b"_1 ' M -1l l 1

since a> b1+l for the MRLF to exist. Similarly

1

!'g(X+1)— r;(x) = >O.2

Thus

R(r+1) {[r1(I+1) - r1(¥)1P R1(x+1) - [r2(I+1) — '2(I)](1- P) R2(X+1)}

=  in P (b1);_+l  P) (b2)x+1
Rm” I:(a_b1_:l)(a).<+1 " <a~1»;>1> bra)“,  “S”

and

P(1-p)[r1(r)-rz(r)]’R1(r+1)R:(r+1)

= P0 ‘1?)("=f bi)’ <0 f >9’ (51% (5%
(a _ bl _  -H bl F  .(a)x+1 (a)x+1  .

The difference of (3.52) and (3.53) is calculated as

2 2 -1 " -1 -1_(t_5)2 2 2 -1
P (b1),+1 I +P(1'P)(b1)x+1 (b2)r+l I +s -—t—s— + (1-P) (baa, S 

For the last expression to be non-negative we should have

Z

{ll5+lI-3-+2} 5 1 (3.54)I S IS
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with t = (a-bl-1) and s = (a-b;-l). Thus by Theorem 2.2 the

condition that the mixture is IMRL is given by (3.54). If the

inequality is reversed we‘ have the condition for the distribution to

be DMRL.

3.3.2 Characterizations

As in the case of the geometric distribution, we will make use

of the relationship between MRL and failure rate to characterize the

Waring mixture. The relevant result is stated in the following.

Theorem 3.6

Let X be a non-negative random variable in the support of F.

Then the distribution ofX is a mixture of Waring distributions with

pmf (3.41) if and only if

,0.) = .<..-'.’+¢*.-'11-,1’: -1).. (Q +,x> _. _  <a+r><¢+r+1) ,,(,,.,1)
(a—-bl-1) (a—b2-l) (a—b,—l)(a-~b2—l)

for all x = 0,1, 2,

Proof: Equation (3.49) is already established in the previous

section. It remains to prove the converse. Assuming (3.49), we can

write as,
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no

(a-bl-1) (a-b;-1) ZR(t)= (a+x)(2a-bl-b;-1) R(x+1)

— (a+x+l)(a+x) (R(x+1)-R(x+2)). (3.55)

Changing x to x-1

@

(a-b1-1) (a'-b;-1) ZR(t)= (a+x-l)(2a-bl-b;-1) R(x)

— (a+x-l)(a+x)(R(x)-R(x+1)). (3.56)

Subtracting (3.56) from (3.55) and rearranging the terms,

(a+x)(a+x+ 1)R(x+2)-(a+x)(1+b1+b¢+2x)R(x+ 1)

+(b1+x)(b;+x)R(x) = 0. (3.51)

which is a second order difference equation in R(x). Equation (3.57)

can be written as,

(b1);+l  )x+lR(x)_ (a);-¢l  )3-1-j__ +  )x+2:'R (x+(b1).r (bl )1: (a)x (bl )x (b2 )x+I

+ (q_)&~:l_ £q)r+2 R(x+2)=O
(a)x (a)x+l

O1‘

(b1__)x+1 (b2)_x-y-1 _ (a)x+l
(bu, [(1% Rm (Q), R(”+1)]

~:>;;~is  1a b2 x+1 a x+
which is same as
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»-9'9

(b2)x+1R(x) _(a)x+1R(x+ )]< L at T» ‘

Q<Q"l\) l\-7

= ((:))x+1 2%x+2R(x+1)- R(x+2)] (3.58)1x+l x+1 x+l
Denoting the left side of equation (3.58) by v,, we can write (3.58)

as a first order equation ofthe form

V; = vx-l-I

which has the unique solution v, = C, where C is some constant to

be evaluated from the boundary conditions. That is

lb l

(q)x~ [ (1 x)+1R(r)— R(x+l) =C.(bllx 2 x x
Now setting C =a (bl-bg),

b2+x (bl)
R(x+l)= -&—_:R(x) + a(b;-b2) (:)-—-i- , x = O,1,2,... .(3.59)x+l

Iterating (3.59) for x=0,l,2,... leads to

(bl) (bl)
R(x) = a --—"- + (1- a) ———’i.(Q), (<1),

This completes the proof of the Theorem.
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Corollary 3.3

X follows the Waring distribution with mass function,

_ (bk _f(x) — (a-b) ———————, x—0,l,2,..., a>b, a, b>0.
(a)x+l

if and only if

r(x) = §2a_2b _~~1)— (a + x) - (a +» x)s(—a if xi1)~h(x+ 1). (3 .60)
(a—b—l)2 (a-b——l)2

The corollary is proved by setting bl = b; in (3.49).

Corollary 3.4

X follows the Yule distribution with mass function,

-- l
f(x)= -(3-ll?‘-', x=0,l,2,..., a>0.

(a);+i

if and only if for all x,

r(x) = (a+x) - (“+€‘a)(:*2’;+1)h(x+1). (3.61)

3.3.3 Equilibrium distribution

The equilibrium distribution corresponding to (3.41) is

specified by the probability mass function
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goo = /r‘[pR1(x+1)+<1-p)R2(x+1)1,~ = E00

: P{_(_b1)x+1_/ (a)x+_1} +0 _p)(b2)x+1 /(a);_+_1}

Plbi /(a_b‘l _1)]+(1_p)[b2 /(a_b2 _1)]

= Apbl g__ (_b1 +1): + (15 p)€72 _(b2 +_1)x g Bbi 7+ (If p)b_2
a—b1—-l (a)x+, a-bl-1 (a)m a—b,—l a—b2—l

=fi +(1_/;)(_b1_i)_.a’jg= a Pb!/(a_b1_1)s __ (3.62)

(a)x+l (a)x+l K pbl  pbl Ja—b, -1 a—b2 —-l

This leads us to the following theorem.

-1

Theorem 3.7

A necessary and sufficient condition that the life time

distribution is an n-component mixture of Waring distribution with

parameters (a,b,-) and mixing constants a,- is that its equilibrium

distribution is also of the same form with components as Waring

with parameters (a,b,~ +1) and mixing constants

5.: %~b=;/(""l’,1~s‘ 17
' 201,15, /(a-—b, -1)'

From the deliberations it follows that the two-component mixture

(3.62) is characterized by the property

W) = [ 20-12; 1  (am _ (a:%*>(~ + x +1)  ,,(,, +1)](a_b1"1)(a_b2_l) (a"'b1_1)(a'b2"1)
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gm = #"[pR1<x+1) +(1-p) R=(x+1)1, p = E00

: p{(b_l)x+l/ (a)x+1} + (1_ P)(b2 )x»¢1 / (a);c+1_}_

P[b1 /(a _b1_1)]+(1_P)[b2 /(a“'b2 " 1)]

-1

= P51 e_ £51 +1); + _(1- P152 (51 +1)i P51  + (1f"P)b1
a_b1"l (a)x+l a'_b2"'l (a)x+l— ;7'b1"1 a_b2_1

=fl(b1+l)x +(l_fl)(b2+1)x,fl= _pb1/(a__b1f_1)  (3-62)

(an, ta)“. ( P51 ]+( pa Ja—b1 -1 a-122 -1

This leads us to the following theorem.

Theorem 3.7

A necessary and sufficient condition that the life time

distribution is an n-component mixture of Waring distribution with

parameters (a,b,-) and mixing constants a,- is that its equilibrium

distribution is also of the same form with components as Waring

with parameters (a,b,- +1) and mixing constants

/;.= oaibi/r(“ * but ' 1)
: Ea,-b, /(a——b, -1) .

From the deliberations it follows that the two-component mixture

(3.62) is characterized by the property

—b - - (a+x)(a+x+1) "_ 2” glib;  ,___t _ _ -~ r at
km _ [(a—b,—l)(a—b2-l)(a+x) (a—b,—-1)(a—b2—1)h(x+l)]
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It could be taken that in the above discussions it was assumed

that the same parameter a was used in the component distributions.

We can assume the mixture to be in a more general form with

= (a1 g“ b1_)(_b1);_ _ (a2 _" b2 )(b2 )x
fix) P <01)“, +0 P) (a2)x+1 '

Though this model may impart more flexibility with the addition of

a new parameter, the resulting computation becomes too much

involved and the estimation problem becomes very much

complicated. Even for the four-parameter model discussed earlier

application of the methods of moments, the simplest available for

most mixture models, results in a system of non-linear equations

which can be solved only on a computer numerically. To get an

idea of the extend of complexity in the various results, we quote

below the relationship connecting the MRL and failure rate inthe

five parameter mixture.

(a,—b)(a,—b,-l)(a +x)—(a2-—b)(a -b —l)(a +x),(x)=  ,1, _ ,_ 2, at ,_  2 ,2  1_ _, X
(a1"'b1_1)(az'"b2_1)[(a1 _b1)(a2+x+1)‘"(a2_b2)(ar+x+l)]

- ‘E3; 121 >£lf‘f:i’i§i $33 iii ,{i,"i’;i’i§’ <a~x+1> <a~+1> kw

The particular case bl = bg does not hamper the utility of the model

as none of the characteristics of the general model is entirely

dependent on bl or I22; in fact, the means, variances etc of the

distribution (3.41) are different.
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3.4 Mixture of negative hypergeometric distributions

The negative hypergeometric law is one of the oldest

probability distributions derived as early as 1785. It has

probability mass function of the form

P(X=x) = {-3) {"163/[~an_ )6} , x = 0, 1, 2, ...n. (3_.63)

For a historical perspective of the distribution and the different

modes of its derivation we refer to Johnson, Kotz and Kemp (1992).

Along with the geometric and Waring distribution, a particular case

of (3.63) when a = 1 form a class that is of special importance in

reliability modelling. This is given particular emphasis in the

review of literature made in Chapter I. In the present section we

deal with lifetime X having two-component mixtures with mass

function of the form

or so or ""0
foo =1» E_1:"fl_Ij” + (1-P) E_1f’/£5‘ (164)n, n2

where 7712?‘); and x=0, 1, 2, ...,n1, fl,->0. Notice that unlike geometric

and Waring mixtures the support of the components need not be the

same. In the case of (3.64) the support of the first component is
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(O, 1, 2, ..., n1) and that of the second is (O, l, 2, ..., n2), where

7112172 is assumed without of loss of generality.

3.4.1 General properties

The survival function ofX is

(p,+n,-1-1] (,62+n2—t—1]

Ru) =p i  + <1-p) i[fl"f;] (3.65)n, n2
on using

—u V u+v—ll l=  l 1V V
Equation (3.65) is the same as

{film-1) 062+:-1)‘ I "’*" IR(x)=P L-+(1-P) -v
§ (/11 H11] § (/12 +112]nl "Z
£:81+n1_x] (»62+n2'“x)nl -x n2 —x=p  1 +0-p)  e.

(161 +711] (52 +772)"1 n2
by virtue of the combinatorial identity

i(u+n—x—-1] __ £u+n]no n—x n '
Since f(x) can also be written as

.3

H
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(,6,+n1—x-1] [,62+n2-x-1)
f(x)=p (—1)x("1l)"“_i 1m”1ci’?  -i-(1-p) ("1)x('i)”"x " i il2.t7’o‘

<—1> (A M1,) (-1) [pa +112]U1 I72
(fl,+n,—x—l) (fl2+n2-x—1J=  _‘ _ "1 - x

P (/1. +111) "*1 P’ (/1, +112) (W)nl n2
Hence

{fl,+n,-—x—l) (/i’2+n2—x-1)n1—x 1 n2 —xP  *‘ “”"  i"1 "2
h(x) = I6 +n ;x* to    +n;*x  (3-63)

t 711-1?) I t J
P (A ~11) "‘ ‘P’ (/12 M2]"1 "2

which, though in closed form, is not of a nice functional form for a

direct characterization. The MRL is

{fl1+n|_xJ {/82 +n2_x]nl — x —l nz — x —l~  +(1- )-- e
P (,6, H11) P (£2 +111]"1 "2

’<") " (/3, M, -x_-1] (;;,+n,_x-1] (369)'11 1 "1 1I
P (film) *‘ ‘P’ (52 ~12]"1 "1
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For the components, the expressions for the failure rate and MRL

8I'6

hr(x) = 131/(fir + "r '-X)

'i(x) =(15r"' "1 '1‘)/(.31 +1)

Substituting these values in (2.11) we find

r(x)[ '6‘ 3 s»s»_ '61 ii - h(x+1)['81+"1_x._g2-+_n1 '47]fll+n1-x—l fl2+n2-x-1 ,6l+l ,62+l

=  _s #61 +n13__x __  §1_+?’1*" (3 70)
fl1+n,—x-—l ;B2_+1 fl2+n2—x—l /3l+1

which simplifies to

r(x) =

-10031 + pf xf1)_lB2(p2 + l)(lq;+ 7'1"‘  _"fn1 "' xi“ 1) _
(161 +1)(»8z +1)[fl1(n2 " x“ 1) -18:07: _ x “ 1)]

[(91 + Wt + "1 + r):,(_fl1 +1)(fl2 + "1 7' x>1§!_1;%r"1 — I _._1)(flZ_ +3 "1 3-i¥:1)_
161072 "'x“1)“flz(n1 "x“1)

h(x+l). (3.71)

For reasons specified at the end of Section 3.3.3, in the present case

we take ,6; = ,6; to achieve a significant reduction in the above

expression. In that case

r(x): 216+"; £21; 2x3-1_   + nl-_x-1)(fl + n;-x—-1), (3,72)
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On the other hand if we assume n1= n1, the support of the two

components become identical and the identity (3.71) takes the

simple form

,-(x) = (1+fl1a+&61)("T'x)+2_/61/31 _ (/61t+""x___1)(/81 +n"_xT1) ;,(x+1)_51/?,(1+fi,)(1+fl2) (1+fl1)(1+fl1)

(3.73)

The nature of the failure rate derives from the fact that the mixture

of two DFR distributions is DFR (Barlow and Proschan (1976)).

The second factorial moment of residual life of f,-(x) with

parameters (,8, n,-),

R,-(x+1) M,-(x) = 2 ZtR(x+r+1)

fl+n,.—x-—1 _ ,B+n,-x—l-1
[ n,-x—1JMi(x)_2 Zt[ n,—x—t—lJ

' [fl+m—y—x] .= , m="x-J= _ m—y-x

B)

3 2M;
s ilvlf,

IQ

TQM

i["L_

_ ~ (,6+1+m—y-x—1)= m—y—x

_ " (,6+1+n,.—j-—y—x—1)= - ni"j"y"x

to

11"]-P

‘lMf.

_ ,6'+1+n,.—j-—x)_ xn-'

to

T.;[\’]~=

/—“\

x.

= 2 2 [fl+1+n,.—y—-2—xjy=0 n:'_y_2-x

3'
N
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= 2 [fi+n, —x)‘ni-x-2

fl+m—x

Mr(X) = 2 L2‘ -xnzj e

(fl+n,.-x-1)ni-x-l

= 2 ('~6+""_3‘~)(”‘ "VD, 1 =1, 2.
(fl+1)(fl+2)

Hence from equation (2.15), we have

M(x)[ ,s/3  _ '6 7 J,6+n1-x-1 ,6+n2—x—l

= 2h(x+l) .(fl+P1f"x)(”1__x_f_l) _ (16+n2 _x)(n2 " x_ 1)(,3 "'1)(»3+2) (fl+1)(»3+2)

+2  ifl   (fl+":;¥)('?1*x'1)
fl+n1-x-1 (fl+l)(fl+2)

-2 7 /3  (fltm - x)("1"¥__i1l 9
,B+n2-x-1 (,6+1)(,6+2)

This simplifies to

Z *  2 " 1*-"** -v - n -x’-»
Mm <n,—~~,)flw+1)w+2){(fl+”‘ x 1) W ’ 1)

[(/3+"1-X) ("1-x-1)- (/3+":-x) ("2-I-1)] h(x+1)

+ [(,3+"2-X) 03+":-I-1) ("2-I-1)

- (fi+"1-r) (fl+"1-X-1) ("1-X-1)]}
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_ _2  _ _ _ _
- p(fl+1)(/3+2) mm 3)+<2fl 1><~1+~2 2x>+(~= x)’

+(n1-x)2 -(n1-x)(n2-x)]-(,6+n1+n;-2x-1) h(x+1). (3.74)

The negative hypergeometric law with parameter (,8, n) noted in

(3.63) has survival function

P(X2x)= (fl+"_x)/£52”)n—x 

and mean value

fl+n+1= !'(—]) =
Thus the equilibrium distribution is specified by the probability

mass function

goo = /1‘ [pR1<x+1> + <1- p>R2<x+1)1y —
A 131+".-X-1 l31+"1-X-1 1
P n-x—l (l—p) -x—1 =5=,,-1  1 is +  "*3  (3 75)
5 [.61 + '71] {:62 + '72) . I; "1 "2 

where

+n +1 +n +1
/31+] ,62+1

We can write (3.75) as
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= fl1+n1+1 )6]-l-1+I21—-I] £fll+n1-i-1)g(x) p ,6l+l  n,—-x / nl

+ (l_p) [(fl, +ni-:3 -1:]/(,3; +nr:, +1M

The above representation shows that g(x) is a mixture of two

negative hypergeometric mixtures with parameters (fl,-+l, n,-).

Further, the converse is also true since the calculations made above

holds good for any number of components, we have the following

theorem.

Theorem 3.8

A random variable in the support off is a finite mixture of

negative hypergeometric distributions with parameters (,6,-, n,-)

M fix i_ _1 )6; 1' 
f(x)= gar,  +n':_xx J/l  1 =1, 2,  m, Za, =1

iff its equilibrium distribution is of the same form with parameters

([3,-+1, n,-) and mixing constants

5 = <1,-(fli +0; +1)' (fit +1)/1

where

_ fl,.+n,.+l
'u Ea’ ,6,.+l '
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In Chapter II we have presented some general results

involving identities connecting various reliability concepts in the

case of mixture distributions. This was followed in the present

chapter by specialising the results for mixtures of discrete

distributions that have closed forms for their failure rate, mean

residual life etc. It may be noted that similar results are possible

for any discrete mixture, but most of them do not admit convenient

forms that are analytically tractable as in the above cases, to be of

theoretical consideration for a characterization or inference. A

special feature of the distributions considered here is that the

identities we have proposed are independent of the failure rates or

MRL’s of the component populations from where they come. Part

of the results in this Chapter has been published in Nair, Geetha and

Priya (1999).



CHAPTER IV

PARTIAL MOMENTS AND THEIR PROPERTIES

4.1 Introduction

Many of the characteristics of probability distributions

introduced earlier to the development of reliability theory as an

independent discipline, came to be associated with life time later

with meaningful interpretations of immense practical utility. The

truncated mean was viewed as mean residual life and the reciprocal

of the Mill’s ratio as the failure rate. In the present chapter we

look at the concept of partial moments associated with probability

distributions and establish that like the earlier concepts, partial

moments are also useful in reliability modelling. The review of

literature initiated in Chapter I on partial moments reveals that an

intensive study of this type of moments have not been carried out

both from the theoretical and practical points of view. The

absence of aniindepth study of the topic in the discrete set up is

more evident, although partial moments of discrete random

variables have been touched upon in Gupta and Gupta (1983). The

close analogy the partial moments have with truncated moments has
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motivated a deeper look at the former and to explore the

possibilities of it being used in the context of reliability modelling.

Accordingly the aim of the present chapter is two-fold. First we

define and study the properties of partial moments in the case of

integer valued random variables. Secondly we examine their role in

modelling lifetime data, through characterization theorems and

properties that describe the aging process. Some results in this

chapter have appeared in Nair, Priya and Geetha (2000).

4.2 Definition and properties

Let X be a discrete random variable in the support off with

probability mass function f(x) and survival function R(x) and finite

moments of order r, r = 1, 2,  . Then the rm descending factorial

moment ofX about a positive integer t is defined by

a(,-)(t) = E[(X-t)+]('), r = 1, 2,  X>t+r-l.

= i(r—l)"’f(r) (4.1)
where,

+ X—-I X I
(X-o ={ "0 XS!and (4.2)
X”) =X(X-1)  (X-r+l).



80

The rm raw partial moment ofX at a point tis

6141) = E[(X-1‘)+]'

which is more primary than factorial moments in describing the

distribution. However, if S(r, k) is the Stirling number of the

second kind

[<X-1>*1’ = il<X-r>*1"’ Se, k) (4.3)

Equation (4.3) implies that a, can be computed from am and vice—

versa and hence our discussion is mostly confined to aw pnly in

view of the ease in computation ofthe latter for many distributions.

From the definition, it follows that

Q

011(1) = a<1>(l‘) = ZROF) (4-4)

R(x+l) == a;(x) - 0:1(x+l) (4.5)
f(x+1) = a1(x) - 2a1(x+1)+ 0:1(x+2) (4.6)

The expressions (4.4) through (4.6) enable the evaluation of the

probability mass function and survival function in terms of the

partial means. Further it is seen that the probability mass function

is completely determined from the sequence of partial means

<a1(x)>, x = O, 1, 2,  . We now establish some properties of

partial moments.
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Theorem 4.1

a<,,(z) = r Z(x-1-1)""’ R(x) (4.7)
+7’

Proof;From equation (4.1),

a<r>(r>= §<x-0"’ [Rm -R<x+1)1
1+7"

= i<x-r)"’R<x> - iv-r>"’R(x+1>

= £(x-t)(')R(x) - i(x-t-1)")R(x)

= fur-1)") -(x-1-1>"’1R<x> + r"’ Row)
t+r+l

= i:[{(x — t)(x-t-1)... (x-t-r+l)}-{(x-t-1)(x-I-2)... (x-t-r)}]R(x)

+ r") R(t+r)

= i(x—t-1)(x-I-2)...(x-t-r+1)}rR(x) + rm R(t+r)
!+r+l

= r Z(x—t—1)("')R(x) + W) R(t+r)
!+r+l

= r i(x - t -— l)('*" R(x).

It could be observed that there are two constants associated

with the sequence of partial moments relating to a distribution.
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One is the order represented by r and other is the point I about

which the moment is taken. The implication of these two constants

is that, unlike the usual moments all the partial moments are not

independent. We prove this fact in the next theorem.

Theorem 4.2

The partial moment satisfies the recurrence relation,

<1<»>(1) - a<r>(i+1) = F av-1>(1+1) (4-3)

for r =1, 2, 3,  and t = 0,1, 2,

Proof: From equation (4.7)

a(,)(t) - a(,)(t+1) = rZ(x-t-1)("')R(x) - r Z(x-it-2)("')R(x)t+r t+r+l
= rZ(x—t- 1)("')R(x) - rZ(x—t-1)('"')R(x+l)t+r t+r
= ri(x-t- 1)<'"‘> [R(x) - R(x+l)]

= rib: - 1 -1>"""f<x>

From the above recurrence relation (4.8), once a(,)(t) is known for

two consecutive values of t, the corresponding lower order moments

can be determined. Furthur if the entire sequence (a(,)(t)) is known
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for all t and a specified r it is possible to compute all the lower

moments of order r-l. More specifically, we have the following

theorem on the subject.

Theorem 4.3

Let X be a non-negative integer valued random variable such

that E(X’)<oo. Then for any one positive integer r, a,(t) determines

all the lower order factorial moments that exist.

Proof: From (4.8), we have

l

do-1>(1+1) =;" [a<o(1) - a(o('+1)]>

which provides,

1

av-1)(1+1) = -;(1-E) f1(o(1),

where E is the usual forward shift operator.

Similarly,

1

do-2>(1+1) = :70-E) do-1>(i)

= -1--<1-E) l<1-E>a<,><¢-1)r—l r

= r—(r~1:"]'i'(1-E)2a(r>(i-1)

Similar iteration on r gives,
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a(r._;)(t+l) = r(r ;1).Hl(r -84-_1) (1—E)s (IQ-)(l‘—S+l),

1 .1’
= :5 (1-E) a(,)(t-s+l), s =1, 2, ..., r-1, r>s. (4.9)

we can verify theorem (4.3) for geometric distribution.

Example 4.1

For geometric distribution with probability mass function

f(x) =pq”,x= 0,1, 2,

we obtain by direct calculation

_ {+2 2a<1>(f) - 29 P‘ 

From (4.9),

a<1)(1)= i (1-E)<I<1>(¢)

= "ii (1-E) 2qH2 p'2.

1 + + .
=  2 _ qt 3]: q:+2p1.

4.3 Partial moments of modified power series distribution

In modelling statistical data families of distributions follow

an important role. A recent emphasis in distribution theory is to

develop methodology and techniques towards identifying the
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random mechanism that generates the data in question. We may

often have to formulate hypothesis to ascertain the chance

mechanism for the most appropriate explanation of the underlying

phenomena. When physical characteristics of the system is not

known, one has to be satisfied with determination of the

distribution from the empirical information in the form of data. In

such cases, the approach to modelling is to start with a family of

distributions with enough members that can accommodate different

shapes and characteristics and then choose that member from the

family which resembles the data. An aid to such choices is the

characteristic properties that are alluded to the family. A second

advantage of discussing properties of family is that, a uniform

analytic treatment can be made available to all members so that

specific methods for individual members can be dispensed with.

Some times, such considerations can also unearth new members in

the family. Therefore it is worthwhile to consider properties of

partial moments for families than for individual distributions. One

important family of discrete distribution is the modified power

series family. The family of modified power series distributions

introduced by Gupta (1974) has probability mass function of the

form



86

rm =9%%-if-)l, (410)
where the support ofX is F, or a subset thereof, a(x)20 and b(6)

and A(6) are finite, positive and differentiable functions of the

parameter 6. When b(6) is invertible it reduces to the generalised

power series family. This class of distributions includes the

Poisson, logarithmic series, generalised negative binomial and the

lost games distributions. First we prove a recurrence relation, that

characterizes the MPSD.

Theorem 4.4

A random variable X in the support off or a subset of it with

E(X'+’)< co, r = 0, 1, 2,  has a MPSD if and only if for a finite,

positive and differentiable function b(19), its factorial partial

moments satisfy the recurrence relation,

a<-1><r> = or - o+r)1 awe) +  am) (+11)

Proof: Suppose that X has MPSD. Then from (4.10),

A(9)a(,)(t) = Z(x—t)(’)a(x)b(9)’. (4.12)
I+f'

Differentiating (4.12) with respect to 9, we get,
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A<@)a;,,(r>+ aw) Aw) = iv-r>"’ x a<x>bw>‘"‘ b'<@>

OI’

V

A<@)a;,,<r)+ aw) Aw) = A<@>*Zx<x~r>"’ am

which gives

a(7'
or

5(9) - - ¢4'(9) 5(9) = °° __ r 5(9)‘
5;'(;)'1(,)(Y)+ 1100(1) 2(9) 5(6) 2141* 1)‘) 61(1) Aw)

The last equation is

5% <1;,,<r>+ aw)

= i(x—t)(x-t-1)... (x-t-r+l) (x-t-r+t+r)a(x) b(

OI"

same 3.8

14(6) 5(9)
/1(0) ma)

0H A09
§‘;‘-% a;,,<r>+ 1» aw) = 0+0 am) + a<~1><r>,

. A'(6) b(¢9)
SIIICB [1 = 9

a<~1><r) = [p - <r+»~>1 aw) +  am).

which is (4.11).

)2:
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Conversely, if the b b'l'pro a 11ty mass function f(x) of X

satisfies (4.11), we can write.

§<x-1)” %= Zn-r>"*"/(x) + <r+r-~)§<x-r)<'>f(

= in-1) (x-1‘-1)... (x-t-r)f(x)

+ (¢+r)i(x-¢)(x-1-1)... (x-t-r+l)f(x)

Q

- p Z(x-t)(x-t-I)... (x-t-r+1)f(x).
t+r

co

= Zx(x—-t)(x-t-l)... (x-I-r+1)f(x)

- (t+r) in-1) (x-t-1)... (x-t-r+1)f(x)

+ (t+r) i(x ~t) (x-1‘-1)... (x-t-r+l)_f(x)

- p in-1) (x-t-l)... (x-t-r+1)f(x).

01'

§<x-r)"’<x-m/(x) = 35%‘?-r>"> 56%.

Changing t to t+1 in (4.13), we get

§l<x-0"’ (r-11) rm =  gfx-r>"’ gig.

X)

(4.13)

(4.14)
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Subtracting (4.14) from (4.13), we get

E _ =M1 5J'(‘+')
M6) (t+r p) f(r+t) 66 . (4.15)

Since this equation is true for all t and r, we can write,

sa~logf(x)= 5(9)» (x-p), for all x = O, 1, 2,66 b(9)
Integrating with respect to 9,

10gf(x) = (X-/1) log 5(9) + log 00¢)

/(x) = a<x>[I><@>1‘*' "’ exp I-gglog I><@> d6

= a(x)b(9)"
A(6)

where A(t9) = [b(6)]" exp -J.-gglog b(6) d9.

This completes the proof.

Corollary 4.1

The usual factorial moments of MPSD satisfy the recurrence

relation,

. __ aw) dri, .
/1(r+1) _ 5.16) dé) +(.u‘r) /10)

This result proved in Gupta (1974) is obtained by setting t = O in

(4.11) since a(,)(0) = rim.
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For the MPSD class and even for the subclass of generalized

power series distributions, moments have not been obtained

exclusively in literature. Only difference differential equations

connecting the successive moments have been derived in literature

which is difficult to solve in particular cases. The same arguments

apply for partial moments also. However, we will illustrate the

results for some specific distributions.

4.3.1 Generalized negative binomial distribution

A discrete random variable X has generalised negative

binomial distribution if its probability mass function is

= ~P<~r+@<>r  iQ<1—@>?“1f =
f(x) xfl_(n+flk_x+l) (1__9)_n ,x 0,1,2,...,0<9<1,|49,6’|<1.

In the notations given above

11(9) = 9 (1-‘g)fi-1; /1(6) = (l-t9)'” and a(x) = xu_?££n,[;€’2+1)

so that for thisdistribution

,u=ne(1-em’.

and

9 1- 6 .
<1<r+1>(1) = (/1-I-F) am(1) + { %>(1)

In particular, when ,B=0, X has binomial distribution with
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a(~1><r> = we-1-r) <1m(l) + 9%? aim (416)

and when ,6=1, we have negative binomial distribution for X in

which case

a(,+1>(r) -= [-13_’_i9-1-r)a(,)(¢) + 0 a;,,(:). (4.17)

Further when t = O, (4.16) and (4.17) reduce to recurrence relation

connecting factorial moments of the two distributions, viz

. _ 0(1-0) d,u', .

and

. d/1', m9 .
/-‘(r+1) = 6 dg) +  ‘Up-)>

results which are not quoted often in literature.

4.3.2 Generalised Poisson distribution

The generalised Poisson distribution is given by

A x-l —2.;9 J:
f(x) = M 1:12‘) ['9eem1~, x = o, 1, 2,  0/t1>o, |0/t2|<1.

{Jere

x—1

b(6) = 6e""a, A(6) = em, and a(x) = /1‘~(l~?:j’x) _.

For this distribution,
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= /1119
‘” 1 21,0

and

a<r+1>(¢) = (/1-I-T) a<r>(¢) + F1-fit; ai,)(f)"

In particular when /1; = Oand 6 = 1, we have the Poisson distribution

for X, in which case,

a(r+1)(t) = (Z1-I-I‘) 6Z(r)(i) + a;,)(t). (4.18)

Further when t = O, (4.18) reduces to the recurrence relation

connecting factorial moments, viz,

. d,u', .
p(r+i) = -8‘/i(l4-(/11-r) p(r) ‘

1

4.3.3 Generalised logarithmic series distribution

This distribution has probability mass function

=  Fixfl)  9”(1r9)”“i‘ =
f(x) xl__(x)l_(xfl_x+1)[_l0g(1_6)], x l,2,3,..., 0<9<l, 0<6fi<I,,B21.

It is seen that

aw) = 0 (1-0)”-‘; A(6) '= -log (1-0) and a(x) = x1_(x)lf((;‘5ix+1)

so that for this distribution

_  oo9a W
” (1-p0)1<>g(1--0)"
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and

a<r+1>(1) = (#1-I-F) ¢¥<r>(‘) + ? ¢I},)(1‘)

In particular when ,6 = 1, we have the logarithmic distribution for X,

in which case,

(Z(r+1)(i) = {(l_6)lO:(l_6)_1 —t—rj O!(r)(t) + 96Z'(,)(l). (4.19)

Further when t=0, (4.19) reduces to the recurrence relation

connecting factorial moments, viz,. d/J, 6 .
d6 (1 - 6)log(1- 0)

4.3.4 Lost-games distribution

The lost games distribution of Kemp and Kemp (I968) is

[2x—a]
a

f(x) = »~~»—s¥~ a [6(lf-6)], x = a, a+l, ..., azl.2x-a 6“

specified by

By comparison with the general form of MPSD

a(2x-a]
19(0) = 0(1-0), /1(0) = 0" and a(x) =

For this distribution,
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a(1— 6)
/*=—_""(1 26)

and

a(r+1)(Y) = (/1-1-F) a<r>(¢) + % al,>(1)

Theorem 4.5

For the modified power series family

b6 .
a(r+1)(t)=(,u-t) a(r)(t+l) + Z;£(—‘%a(,)(t+l), r = 0, 1, 2,  (4.20

Proof: Changing tto t+l in (4.11) we get

<1<»+1><r> =- U1-(1+r+1)] a<r><r+1> + 3f;-(5% a;,,(¢+1>

= (.11-1) a<r><r+1)-0+1) a<r><r+1> +  a;,,<r +1)

<1<»+1><r+1> +<r+1> a<r><r+1> = (11-1) a<r><r+1) +  a;,,<r+1>~

Using the recurrence relation in (4.8)

(H1) a<r)(l-1) =a(r+1>(f) -a(r+1>(1+1),

we get

a(r+1>(T) =(,l1-4) 0-'<r>(Y+1) + Z—,((%); al,)(¢+1)
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Remark

Equation (4.11) enables us to calculate the higher order

moments for a given value of t, while (4.20) helps to get the

moments for successive values of t.

Although there exists an identity between partial moments

and partial factorial moments, it is not apparent that a recurrence

relation for the former exists from the relationship (4.11). A direct

derivation of the recurrence relation for partial moments that

characterize the MPSD is proved in the next theorem.

Theorem 4.6

A random variable X in the support of I+ or a subset of it with

E(X'H)<oo, r = 0, 1, 2,  has a MPSD if and only if for a positive,

finite and differentiable function 12(6), the partial moments satisfy

the relationship,

amt) = or-1) am +  am (4.21)
for all t in I+ and r =0,1, 2,  and ,u = E(X).

Proof: We have,

A(6) a,(t) = i(x—t)(’)a(x) b(t9)" (4.22)
r+l
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I

Differentiating (4.22) with respect to 6, we get

A<@>a;<r> + am Aw) = fju-1)’ amx b<@)"‘ b'<@>

This gives,

' ___. = .__ _ __I.
a,(t) + a,(t) Aw) M6) §(x t) a(x) x Aw) .

O1’

am) 3‘-61’-+ am A16’ "“”— = i<x-r>' (x-r+oa<x>

:+l

= A(9)i(x—t)' a(x) x

A'(49) 5(9) "’ r b(9

W)‘ 2191
Aw) hm)

15(0)‘5(9) /1(9) b'(9) H-I /1(9)‘

where

or

which is (4.21)

b

= E(x—t)"" a(x) -1%?-3% +1‘ a,(t)

04(1) ffg-+ am 11 = ar+l(t) +1 am

= = A19) ,b(9)s
” E“) /1(0) 5(0)

arm) = <11-1) am +  04(1)
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Conversely, ifthe probability mass function f(x) satisfies (4.21), we

can write,

_ O0 _ rg_ = co __ r+l _ Go __ r
M9) 20¢ I) 6,9 20¢ 1) f(X)+(f #);l:(x 1) f(x) (4-23)

changing t to 1+1 in (4.23) we get

-5% i<x-1)’-3'; = iv-r>'*‘/(x) + 0- /J>i<x-0'10) (4.24)

Subtracting (4.24) from (4.23), we get,

fig; 1) =f<r+1i> + <1 - 11>/0+1)

;’,(((;))@rg;1_) =(r+1- ;1)f(t+1). (4.25)

The equation is valid for all t, we can write,

@1<>gf<x>, we av b<e>"“"'
Integrating with respect to 6,

__ x-y du
f(x) — a(x) 12(6) exp I——-—logb(6)d9d9

which is of the form (4.10) and our proofis complete.

Corollary 4.2

The raw moments ,u', = E(X’) of MPSD satisfies the

recurrence relation,
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. __ . dpl. b(9)
”r+l p Iur +   '

The result is obtained by setting t=0 in (4.21).

Special Cases
4.3.1.1 Generalised negative binomial distribution

The recurrence relation for the partial moments is,

arm) = or-0 am + 9% am

where p = m9 (1-/36)“.

In particular, when fl=0, X has binomial distribution with

ar+1(t) = (n6-t) a,(t) + 6 (1-6) a',(t) (4.26)

and when ,6=1, we have negative binomial distribution for X in

which case

ar+l(t) = %—t) a,-(I) + 9 a',(t). (4.27)

Further when t = 0, (4.26) and (4.27) reduce to recurrence relation

connecting raw moments of the two distributions, viz

. d/.1, .
PM = ‘9(1-9) “;F"‘"9 I1,

and

. d,u', _ .
a“r+l = 9 -55+"  Ipr'
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4.3.1.2 Generalised Poisson distribution

The recurrence relation is,

(Zr-+1(t) = (‘U-I) Clr(t) + (fig O!.,(t).

where

_ 2,6pine
1-2.26

In particular when A2 = Oand 0 = 1, we have the Poisson distribution

for X, is which case,

0:,+1(Y) = (314) a(r)(?) + a;(t)- (4-23)

Further when t = 0, (4.28) reduces to,

. dp .
pr+l dll 1 rur

4.3.3 Generalised logarithmic series distribution

The recurrence relation is,

ar+1(t) = (,u-t) ar(t) + (glflfté-2% a',(t).

where

-T , —' ._,, ~9_ I _
” <1—fl@>1og<1- er‘
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When [3 = 1, we have the logarithmic distribution for X, in which

case,

ar-+l(t) =  6-)~_1 *1] ar-(1') +
Further when t=O, (4.29) reduces to,. d ' .

pr+1 = 9 -41’ + A h 9 K l 7-1 pr 'd6 (1 - 6)log(1— 9)

4.3.4 Lost-games distribution

The recurrence relation is specified by

arm) = 0»-1) a,-<1) +  a;<1>. (4.30)

where

= a(l—6)
‘U (1-29)‘

When t = 0, (4.30) reduces to

. 01-0 d' 1-0 .
pm = t(m ) #,+a(& _) fly(1-20) d6 (1-20)

Another important family of discrete distributions will be

considered in this section, which is the discrete version of the

Pearson family in the continuous case.



101

4.4 Partial moments of Ord family

The Ord (1967) family comprises of all distributions that

satisfy,

1; <:::1a<;;12 1)
where f(x) is the probability mass function and X has support some

subset of integers. Some important members of the family are

binomial, Poisson, negative binomial, hypergeometric, beta

binomial, beta-Pascal and the discrete student’s t distributions.

Theorem 4.7

If a random variable X in the support off or a subset thereof

with E(X’+1)<oo has a distribution belonging to the Ord family on F,

then

-r[a+b0+(t+r)(b1+b;(3t+3r+l)-1)]a(,.1)(t)

-[¢1+(>"+1)(l>1-1)+(1+r)(2b2-1)]a<r>(¢)—[(f+1)b2-1]<1<r+1>(1)=0 (4-31)

Proof: When the distribution belongs to Ord’s family,

[b0+( 2», - b;)x+b; x2] f(x) = [a+b0+( b, - b;-1)x+b¢ x2] f(x-1)

Multiplying by (x-1)”).

[b0+( bl - b;)x+b1 >8] (x-t)(’)f(x)

l = [a+b0+( b, - b;-l)x+b; >8] (x-t)(’)f(x-1) (4.32)
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Using,

x = x-t-r+t+r

x2 = (x-t-r)(x-t-r-1) + (2t+2r+l)( x-t-r) + (t+r)(3t+3r+2)

(4.32) becomes,

[b0+( b, - b2)( x-I-r+t+r)+b; {(x-t-r)( x-t-r-1) + (2t+2r+1)(_ x-t-r)

+(t+r)(3t+3r+2)}](x-t)('V(x) = [a+b0+(b1 - b,-1) (x-t-r+t+r)

+b, {(x-1-r)( x-t-r-l)+(2t+2r+l)( x-t-r)

+ (t+r)(3t+3r+2)}] (x-t)(’)f(x-1)

which gives,

be(x-r)"’f<x> +<b1 - bmx-1-r><x-r)"’f<x> +(b1 - be><r+r) (x-0”’/(x)

+b2(x-t-r)(x-t-r-1) (x-t)(’)f(x) + bg (2t+2r+1)(x-t-r)(x-t)('{f(x)

+(t+r)(3t+3r+2) (x-t)(')f(x)

= (a+b0) (x-t)(’)f(x-1) + (bl-b;-l)(x-t-r) (x-t)(’)f(x-1)

+ (bl-byl)(t+r)(x-t)('2f(x-1) +1), (x-1‘-r)( x-t-r-I) (x-t)(’)f(x-1)

+b2(2t+2r+l)(x-t-r) (x-t)(’)f(x-1)+(t+r)(3t+3r+2) (x-t)(')f(x-1).

Taking summation from (t+r)

be i (x-¢>"b‘<x>+<b1-mi (x-1-r><x-o"’f<x)

+0» - b2)(1+’) i (x-r>"’f<x) mi (x-1-r><x-I-r-1) (x-0"’/(x)

+b;(2t+2r+l)i (x-t-r)(x-t)(')f(x) +(t+r)(3t+3r+2) fi (x-t)(')f(x)
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= (a+b0) i (x-t)(’)f(x-1)+(b1-b;-1) <2 (x-t-r) (x-t)(')f(x-1)

+<b1-bi-1><r+r)i (x-¢>"’/‘(X-1)
1+!’

+1», i (x-2‘-r)( x-t-r-1)(x-t)(’)f(x-1)

+(2z+2»-+1) 1), i (x-t-r) (x-t)(’)f(x-1)

+ (l+r)(3t+3r+2) ii (x-t)(')f(x-1).

Rearranging the terms we get

[b0+(t+r){b1+(3t+3r+1)b;}]a(,)(l) +{b1+2(t+r)b;} a(,+1)(t)

+ b; a(,+;)(t) = [a+b0+(t+r){b1 -l+(3t+3r+l)b;}] a(,)(t-1)

+ {bl—l+2(t+r)b;}]a(,+1)(t-1)+ bg a(,+¢)(t-1). (4.33)

Using,

a(r>(1-1) = a<r>(i) + Y a<r-1>(1)

(4.33) becomes,

b0+(t+r){b1+(3t+3r+1)b;} a(,)(t) +{b1+2(r+r)b¢}a<,+1)(z)

+ b2 a(,+;)(t) = a+b0+(t+r){b1-l+(3t+3r+1)bg}{a(,)(t) + r a(,-1)(t)}

+ {bl —1+2(t+r)b;} {a(,+1)(t) + (r +1)a(,)(t)}

+ 52 {a<r+2>(1) + (F +2)a<r+1>(f)}

Rearranging the terms, we get the final relation
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-Y [a+b0+(t+r){b1+(3t+3r+l)b; -l}]a(,.1)(t)

- ta+(1+o<b1-1>+<r+r><2b1 -1)1a<r>(¢> - w+2>b¢ -11a<~1><r> = 0.

We will illustrate the result for some specific distributions.

4.4.1 Particular cases

(i) For a discrete r.v. following Poisson distribution with

probability mass function

ewlzlx

f(x) = -T, x =- 0, 1, 2,  /t>o. (4.34)I

On comparing (4.34) with the difference equation for the Ord’s

family, we get, a=/1, bo = O, bl =1, b; =0. The recurrence relation

(4.31) becomes

" '1 arr-1)(1) - [3-(¢+’)] a(r>(1)+ a(r+1)(¢) =0

or

a(,+1)(t) — (Z-I-r) a(,)(t) - r Z a(,-1)(t) =0.

When I = 0, this becomes

#5“, - (1-r) 1%,, —1w},-1, =0

(ii) Let X has binomial distribution with probability mass functionn I H-I .
f(x) = [Jp q , x = 0,1, 2, ..., n, O<p<1, q=1-p.
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Comparing with the difference equation for the Ord’s family, we

get, a = (n+1)p, bo =0, bl = q, b2 =0, so that the recurrence relation

becomes,

a<r+1)(¢) - [("-UP"!-F] ¢1<r>(l) " 'P("-I-r+1) do-1>(1) =0~

When z‘ = O, we have

uim, - [(n-r)p-1"] #},, -r P01-r+1)#L,-1, =0

(iii) When X has the hypergeometric distribution with probability

mass function,x n—x _(”ll”””’)

f(x) = [NJ e», x = 0, l, 2, ...min(M,n), n-N+M sxs m1n(M ,n).7?

Comparing this with the difference equation for the Ord’s family,

we get,

a =  , bo = 0, bi = N.-h  , b2 2 (N-|-2)'1,N+2 N+2
so that the recurrence relation becomes,

(N+1-r)a(,+1;(r) + [N(t+r)+(r-1)(M+n+ 1) - (M n+ M +n+1)]a(,)(t)

- r[M n+ M +n+1) +(t+r)(3t+3r- M -n)]a(,-1)(t) =0.

Some comments seem to be in order. The MPSD and Ord’s family

overlap in terms of members of the families, e.g. binomial, Poisson

etc. But the recurrence relations developed here are different in

both the cases as could be seen from the particular cases derived in
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Section 4.3 and 4.4. Further a separate consideration for each

family is also essential because there are members in one family

that do not belong to the other. For example, discrete t distribution

in Ord’s family and Legrangian distribution in MPSD.

4.5 Characterizations

The definition and some reliability characteristics of

equilibrium distributions were discussed in the previous chapters.

In this section we characterize the geometric, Waring and negative

hypergeometric distributions in terms of a(,)(t) and the factorial

partial moments ,6(,)(t) of the equilibrium distributions.

The rm factorial partial moment of the equilibrium

distribution about t is obtained from (2.21)

fl(;)(l‘) = /1.1 fi(X—l)(r)R(X+l).

From (4.7) and (4.35) we get,

<1<r+1>(f) =/1(F+1) i5<r>(1)- (4-36)

Theorem 4.8

Let X be a discrete random variable in the support of I+ such

that E(X')<oo. Then X has
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(a) geometric law with probability mass function (1.5) if and only if

for every r

a<r>(1) = l5'<r)(1) (4-37)
(b) Waring distribution with probability mass function (1.6) if and

only if for every r.

a—b—r—1

a(r)(() = W P /3(r)(7), a>b+r+1 (4-33)

(c) negative hypergeometric law with probability mass function

(1.7) if and only if for every r

k 1
<1(r>(¢) = ii? /1 »5<r>(1) (4-39)

Proof: (a) For the geometric distribution

H-1"

a(,,(t) = r! 51¢.
P

By direct calculation the distribution of equilibrium distribution is

again geometric with parameterp and hence

I-l-I’

1300(1) = Tl 2-,‘
P

giving relation (4.37).

To prove the converse, assume (4.37).

Substituting (4.37) in (4.36),

a<r+1)(i) = .11 (H1) a<r)(1)

or



108

a<r)(1) = 11 F an-1)(¢)

_= ,u2 r(r-1) a(,--;)(t).

Similar iteration on r gives,

<1<r>(1) = /1' '1 a(0>(1)

= p’ r! R(r+1). -(4.40)
Substituting (4.40) in (4.8), we get

,1’ r! 12(1) - ,1 r! R(t+l) = r ,u"1(r-1)!R(t+1).

or

R(t+1) pQtJ1¢ii
R(t) ,u+l'

Iteration on t gives,

_ _#._'
RU) U Lu-t-1]

and hence the distribution is geometric.

(b) For the Waring distribution,

a(r)(t) = r! Qt’)! U’):
(a-b-1)“ (Q), '

By direct calculation, the distribution of the equilibrium

distribution is again Waring with parameters a and b+1 and hence

(b+t+l), (b+1),
»5(r)(1) = F! Ede_bi_2)<,) wig’

so that
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a—b-r—1
a(r)(t) = —'I-Jfk-t—J";r—fi115(r)(1),

where

= biu a b l '-ii
To prove the converse assume (4.38).

Substituting (4.38) in (4.36) we get,

(b+t+r)(r+l)
a<r+1>(¢) = se(as_b___;"_l) a<r>(i)

aw) = -%-“_'_’5+7’3§~a<,_1><1).

Similar iteration on r gives,

Q'(r)(1) = I’!
Substituting (4.41) in (4.8), we get,

r! (a£l’b+j1r)(r)R(t) - r! (£1b_+b1j11))(i)R(t+1)=r(r-1)! (a(f;_j)l')_(',_l)R(t+1).

or

R(t+1) b+t—iii-3 U-0- -iii
0R(t) a+t

Iteration on t gives,

= QZL
Rm (a),

and hence the distribution is Waring.
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(c) For thenegative hypergeometric distribution,

rt k+n—tam“) =
K Vii]

The equilibrium distribution also has the negative hypergeometric

distribution with parameters k+1 and n-1.

r! k+fl—l

'60)“) _ (k+nJ L2—t—r—l)n-1

and hence

k+r+1
‘1(r)(1‘) = ";;"_*;f_*';#fl(r)(¢),

where
n

”=2Ti'

Conversely assume that (4.39) holds.

Substituting (4.39) in (4.36) we get,

_t_
a<r+1>(¢) = gr‘; (H1) ¢<r>(¢)

n—t-r+1
a(r)(¢) = T ’ av-1)(Y)

Iteration on r gives,

a(r)(t) = r! (7? (kt; r'):f)1)' 12(1) (4.42)

Substituting (4.42) in (4.8) we get
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(-1- +U, , (-1"), _M ("1" +UM
r!”(k +3’; R(z)- r! R(t+1)—r(r-1)!?k+r:l)(r_1)~R(z+1).

Proceeding as in the above cases, we get

(k+n—t]n—l

R"): "717
K J

and the distribution is negative hypergeometric.

4.6 Application to reliability modelling

u

ln the present section we point out the application of partial

moments in modelling life time data.

We can see that from equations (1.2) and (1.8), giving the

definitions of failure rate h(x) and MRLF r(x) that they can be

expressed in terms of partial means in a straight forward manner,

from equation (4.6) and (4.5),

1- h(x+1) = 9:x(:)1i:)2) (4.43)
and

= i  fZ1(x)
r(x) a1(x) — a1(x+ 1) (4.44)

OI‘
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al(x+1) = r(x)—l (4.45)“r(x) r(x)
Equation (4.43) and (4.44) can be used for translating all

characterization theorems given by properties of failure rate and

mean residual life time in terms of partial means. As an illustration

we prove the following theorem.

Theorem 4.9

The ratio of partial means of a discrete random variable in the

support of 1+ with E(X) <00 is of the bilinear form

a(x) = glgii) = (AT_1_)+Bx_., A>1a,(x) A+Bx
if and only if the distribution is geometric for B=0, Waring for B>0

or negative hypergeometric for B<0.

Proof: The Theorem follows from the result of Nair and Hitha

(1989). A discrete random variable with support 1+ has geometric

(B=0) or Waring (B>O) or negative hypergeometric distribution

(B<0) if and only if r(x) = A + Bx.

In a similar manner one can deduce the functional forms of

a;(x) corresponding to known functional forms of h(x) and r(x) that

generate various well known distributions. Like the functions h(x)

and r(x), the sequence of values of a1(x) also determines the
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distribution ofX uniquely. a1(x) also enjoy most of the properties

alike to those of h(x) and r(x). Thus for all practical purposes,

a1(x) can be used in the place of the other two functions in

modelling lifetime data. Apart from this equivalence with the other

two concepts for all practical purposes, partial means enjoy one

additional advantage. The failure rate and the mean residual life

when estimated from sample data, are in the form of ratios of

random variables and therefore, it is very difficult for most

populations to calculate their sampling variabilities in terms of

standard errors or confidence intervals. On the other hand, the

sample counterpart of partial mean is not a ratio and therefore do

not suffer from the above handicap. This is an important reason

that motivates the study of partial moments instead of truncated

moments.

We now give an illustration to the fact that partial moments

can be equally useful in describing aging properties.

In the next theorem we study the implications of the

connection between ratio of partial means and MRL given in (4.44)

towards describing aging behaviour.
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Theorem 4.10

A necessary and sufficient condition that X has increasing. . . . +1 . .
(decreasing) mean residual life IS that g—‘—(-x-——l IS non-decreasing

ar(x)

(non-increasing) in x.

Proof: From (4.44) it follows that

_  >0  <:> _g___l_£f___f__2l _ a1(x+l) >0r(x) r(x+l) _ _ a1(x+1) a,(x) — F
or X has increasing (decreasing) mean residual life if and only ifa x+1 . . . . .
+(————)- IS non-decreasing (non—1ncreas1ng) III x.am ~

I

It is well known that ifX has increasing failure rate then this

implies that X has decreasing mean residual life. In the next

theorem we investigate the additional property along with DMRL

that ensures a distribution to be IFR.

Theorem 4.11

If Xhas DMRL and the ratio Lt:-52 is decreasing then X hasr x

IFR.
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Proof: From (4.43) and (4.45) we see that,

1- h(x+l) = “;("(I)l) r(’;:)1). (4.46)

The result follows from (4.46) and Theorem 4.10.

The last two Theorems are intended only for illustration

purpose and similar exposition of many well known result can be

translated in terms of partial means.



CHAPTER V

ASCENDING FACTORIAL PARTIAL MOMENTS

5.1 Introduction

In the previous chapter we have discussed some important

properties of partial moments and characterizations based on them

relating to families and individual distributions. These were based

on descending factorial expressions. A similar treatment with

appropriate modifications can be attempted by replacing descending

factorial by ascending factorials. Almost all the results we have

encountered in chapter IV for descending factorial moments will

work out for the ascending ones also. To illustrate the role of

ascending factorial partial moments we define them and discuss

some results which are not parallel to those in the previous chapter.

5.2 Definition and properties

Let X be a discrete random variable in the support off with

probability mass function f(x) and survival function R(x) and finite
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moments of order r, r = 1, 2,  . Then the rt“ ascendin factorial8

moment ofX about a positive integer t is defined as

'"<r>(1) = E[(X-0+1”), r = 1, 2,  (51)

= i<x—r>"’f<x>

where,

X—— X(X_t)+ = t >t0 X tSand (5.2)
X") =X(X+1)  (X+r-1).

From the definition, it follows that

W

m1(t) = m(1)(t) = ZR(x) (5.3)

R(t+1) = m1(t) - m1(t+l) (5.4)
f(t+1) = m1(t) - 2 m1(t+1) + m1(t+2) (5.5)

The expression (5.3) through (5.5) enable_ the evaluation of the

probability mass function and survival function in terms of the

partial means. It is seen that the probability mass function is

completely determined from the sequence of partial means <m1(x)>,

x=0, 1, 2,

From the equation (5.3) and (5.4), we can see that m1(t) is

related to MRL function r(t) by,
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m I=  19)“O mm-m1<¢+1>' (56)
The relation between m1(r) and failure rate is,

1 -h(r+1) = '";:(‘:)11;n'"(*t(i B2) , (5.7)

We now establish some properties of partial moments,

Theorem 5.1

The partial moments satisfies the recurrence relation,

m(,)(t) - m(,)(t+l) = I’ m(,-1)(t), 120, 1'21.

Proof: From (5.1), we have

m(,)(t)- m(,)(t+l) = i(x—t)(x-t+l)...( x-t+r-l)f(x)

—- i(x—t—1)(x-t)...( x-t+r-2) f(x)

=i(x—t) (x-t+1)...( x-t+r-2) f(x)[(x-t+r-1)-(x-t-1)]

=rZ(x-t) (x-t+1)...( x-t+r-2) f(x)

= r m(,--1)(t).

From (5.8) it is seen that, once m(,)(t) is known for two consecutive

values of t, the corresponding lower order moments can be

determined.
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The next theorem gives a me

distribution from the knowledge of partia

Theorem 5.2

Let X be a non-ne

thod of determining the

lmoments.

gative integer valued rand om variable such

that E(X’)<oo. Then for any positi

the factorial moments that exist.

Proof: From the r 1

I

mo-1>(Y) = ;[ m<r>(f) - "Yo

which provides

mo-1>(i) = %(1-E)"'<r)(

where E is the usual forward shift operator.

Similarly,

l
mo-1)(¢) = 1

ve integer r, m(,)(t) determines all

e ationship (5.8), we have

>(¢+1)]

1)

--—( -E)"?(r-1>(1)r-1

= #5 (1-E)2 m(,)(t).

Similar iteration or r gives

1

mo-0(1) = —"(1ru) 'E)s m(r)(t)> S = la 2: 9 (

On the other hand from (5.8),

r-1),r>s. (5.9)
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m<r+1><r) = 0+1) <1-E)" m<r>(r>.

Similarly,

'"<r+2>(1) = (H2) (1-ET‘ m(r+1>(f),

= (r+l)(r+2) (1-E)" m(,)(t),

Iteration on r gives, | .
m(r+;)(I)=££-:79? (1-E)’: m(r)(f), S = 1, 2,  (5.10)

We can verify Theorem 5.2 for geometric and Waring distributions.

Example 5.1

For geometric distribution with probability mass function (1.5), we obtain by

direct calculation,

ml“) = qr+1p-1

and from (5.10), we have

m(;)(t) ,= (1-E)" 2! m1(t)

=(1_E)-12! qI+lp-1

= 2! p"(1+E+E’+...) q'*‘

2  qt+1 p—2.

Example 5.2

For the Waring distribution with probability mass function

(1.6), we obtained by direct calculation
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= (b+’)_ (bk
""(') (a-b-1) (a);

Then from (5.10) we get

m(;)(t) = 2! P(1+E+E2+...)

_.-  _@_r_ (b)r+l (b)r+2
i (a-b-1) i(b+') (<1), + (b+’+1)<a>,+, + (him) (an,

= *—-L (b+t) (bi): [ e 1% +e ~»b+tf1s(a—b—1) (a),_, a+t—1 (a+t—1)(a+t)

Z 2! (b+t)(b), _1%(“*5-1) ("L4 (“-5-2)

= 2%! (b +_t)(a +_t-1)(b), p
(a-1»-1)<a—b—2>(a), "

In the next theorem we prove that the rm factorial partial moment

m(,)(t) determines the distribution completely for any positive

integer r.

Theorem 5.3

Assume that E(X) is finite. Then for any positive integer r,

m(,)(t)determines the distribution completely.

Proof: From the equation (5.9), taking s=r-1, we get

m1(1) =  "'<r)(1) (5-11)
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From the equation (5.4) we see that the sequence (m,(t)),

t=O,1,2,... determines the sequence (f,(t)), t = 1, 2,  and this

along with the condition R(0)=l gives (f1(t)) for I = 0,1,2,  .

Thus the distribution is completely determined by the sequence

0111(1))

The above theorem has wide applications in modelling

statistical data. It is well known that MRL, r(t) determines the

distribution uniquely. However, partial moment m,(t) is superior to

r(t) in the sense that m,(t) accounts for the mean of (X - t)+ only

while r(t) measures the average of X-t |X>t.

Remark

From the definition of m(,)(t) we have m(,)(t) 20, r = 1, 2,

and thus the relationship (5.8) proves m(,)(t) 2 m(,)(t+l), t = 0, 1, 2,

. This means that m(,)(t) is non-increasing in t. However, it is

easy to verify that m(,)(t) is a non-decreasing function in r, for a

fixed t.

5.3 Characterizations

In this section, we present some characterizations of some

discrete models by properties of ratios of factorial partial moments.



Theorem 5.4

I23

The relationship

where c is a constant is satisfied for every 2‘ = 0,1, 2,  and r= 1, 2,

if and only if the

m(,)(t+l) _-—--i— —C, O<C<l (5.12)
m(r)(t)

distribution ofX is geometric.

Proof: For the geometric distribution, by direct calculation we get

mm) = r1q‘”p"

mg)  +  :: r  qr'+Z-t-Ip-(!'+l)—‘rlqf-Plp-7'
= q, a constant.

Thus (5.12) is verified.

Conversely, assume that (5.12) holds.

Substituting (5:12) in (5.8) we get

or

Iteration on r gives,

'"<r>(1) - C "'(r>(1) = F me-1>(1)

m(r—l)  : 1"“ C
m(r)  r

m(,)(t) =  ind). (5.13)
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Substituting (5.13) in (5.8), we get,

r! °° _ r! °° : r(r -1)! °°
—F _ c)r_l 21: R(x) -—----—(1 _ c)r_I ‘Z2; R(x) -F _ c)r_2 g R(x) .

OI’

R<r+1> = <1-C) film)
t+l

OI‘

r(t) =  (5.14)
The equation (5.14) characterizes the geometric distribution (1.5),

with p= l-c.

Theorem 5.5

The distribution of X is Waring with probability mass

function (1.6), if and only if for r = 1, 2,  and t = 0,1, 2,

1

’-:2353—(i= —Ai£—withA=b+1,B=a+l. (5.15)
m(,)(t) B-r+t

Proof: For the Waring distribution with probability mass function

(1.6), we get by direct calculation

m (1) = rt (b+t)(a+,t51)@,+_€:2)"'(a+t_r+1)(b)r
"’ ' (a-b-l)(a—b—2)...(a—b—r)(a),

So
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m(r)(t+1) = b+wI+1u: 14+)!
m(,)(t) a+t—r+l B—r+t'

Thus (5.15) is verified.

Conversely, suppose that (5.15) holds. Substituting m(,)(t+1) in

terms of m(,)(t) in the relationship (5.8), we get

A+t
"'(r)(Y) - "Z";-I",-I‘; "'(r)(¢)= F mo-1)(T)

which provides

B-r+t B—r+t-1 B+t—1, = s   L     —--—-—R +1 . 5.16m"(') r B—A-r B-A—r+1 B—A-1 (I ) ( )
Applying the identity (5.16) in (5.15), we get

R(t+2) = g-1;; R(t+1).

Iteration on t gives

A+t—2 A+t-3 A-1R =~ inf 1...-——-R0. 5.17(I) B+t.—2 B+t-3 B-1 ( ) ( )
Since R(0) = 1, (5.17) gives,

=  :__£élr_(B-1), <a),'

Hence the proof is complete

In the next theorem we have a characterization for the

generalized power series family of distributions using factorial

partial moments.
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Theorem 5.6

The distribution ofX belongs to the generalized power series

family with p.m.f

f(x) = -6-I9-C-)—€—x-, x= 0,1, 2, (5.18)
51(9)

where a(.) is a non-negative function ofX and g(6) = Z a(x)6"’ if

and only if the factorial partial moments satisfy the relationship

an(r)(t)
9 7: "'(r+1)(1+1) +(T+1-I1) '"(r>(¢) (5-19)

for every t = 0,1, 2  and r = 1, 2, where /J = E(X).

Proof: When X has the distribution (5.18), thenII) ( I
m(,)(t) = Z(x—t)...(x—t+r—1) agiée) (5.20)

Differentiating (5.20) with respect to 6 , we get

@~<,,(r) = °° _' _ _ a(x)x6""
69 ;(x t)...(x t+r 1)—-F

- i(x—t)...(x-t+r— 1) a(x)6’

= 9 'l[(1+1-H) m(r>(1) + '"<r+1)(1+1)]

since

= 62(6)
” gm) '
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Thus

9? = "'(r+1>(1+1) + (l+1-/1) "'(r)(T)

Conversely, if (5.19) holds,

°° @'(I)6 —  -t -1 ————Zl:(x t) (x +r ) 662+

= i(x—t-l)...(x-t+r—1)f(x) + (t+l-,u)i(x—t)...(x—t+r—1)f(x)r+l {+1
which gives

49 i(x—t)...(x—t+r—1)9&5)-=ix(x-t)...(x-t+r—1) f(x)

W

- /.1Z(JC—l)...(JC—l+f—1)_f(X)_ (5.21)

Changing t to 1+1 in (5.21), we get

x

0 £(x-t)...(x-t+r-1)%l= ix(x-t)...(x-t+r-1)f(x)t+2 4+2
ca

—,uz(x—l)...(x-t+r-l)f(x) (5,22)

Subtracting (5.22) from (5.21), we get,

9-rggi) = H‘ 0+1-p)/0+1)

OI‘

— 1 ~@((t+1) = H‘ (r+1 ).ft(1+t1) 56  “p



128

Since this equation is true for all t, we can write

¢91<>gf(1) = I-u56 9 '
Integrating with respect to. 6,

log f(t) = (t-_u) log 0 +  log 6d6 + log a(t).

f(t) = a(t) 6 "" exp{I-3% log r6d6}

a(x)6’°jQ1
15(9)

where g(9) = 0" exp{—I—q—/i log 040}.d9

This completes the proof.

We will illustrate the result for some specific distributions.

Table 5.1 provides the relationship (5.19) for some popular models

belonging to the Generalized power series family.

In the next theorem we give a characterization for the Poisson

distribution using a recurrence relation among factorial partial

moments.

Theorem 5.7

The identity,

m(,+1)(t+1) = (r-t-l) m(,)(t+1) + Z m(,)(t), /1 >0. (5.23)
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is satisfied for every t = 0, 1, 2,  and r = l, 2,... if and only if the

distribution ofX is Poisson with mean 2..

Proof: _When X has Poisson distribution with mean /I, we havetn AI -3.
m(,+1)(t+1) = Z(x — t —- 1) (x-t)... (x-t+r-1) —€'—H-Z 

= (r-t-1)i(x-t-1)(x-t)...(x-t+r-2) 5%1+ ‘
— - x-  x- r- ————-—+ A i(x t I)( 1) ( r+ 2)'1He-1!+Z

-ii (r-1-1) m<»><¢+1> + /1 "*<r>(1)

Hence (5.23) is verified.

Conversely suppose that (5.23) holds. Then we get

Q

Z(x—t—1)(x—t)...(x—t+r-1) f(x)

= (r-t-1)i(x-t—1)(x-t)...(x—t+r-2) f(x)

+ ,1 i(x—t-1)(x—t)...(x-t+r-2) f(x-1)

01'

(D

Zx(x—t-l)(x-t)...(x—t+r—-2) f(x)

- /I i(x-t—1)(x—t)...(x—t+r-2) f(x-l)=0. (5.24)
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Changing t to 1+1, we get

Zx(x — t — 1) (x-2‘) (x-t+r-2) f(x)
t+3

Q

- /iz(x—t—-l)(x-t) ...(x-t+r-2)f(x-1)=O (5.25)

Subtracting (5.25) from (5.24), we get

(t+2)f(t+2) - A f(t+1) = O. (5.26)

The equation (5.26) is true for all t. So we can write,

tf(t) - Z f(t-1) = O. (5.27)
The solution of (5.27) is given by

/<1) = lg-f<0). (5.28)
Since Zf(t)=l, (5.28) provides f(0) = e"’1 and thus the distribution

ofX is Poisson. Some of the result in this chapter is due to appear

in Priya, Sankaran and Nair (2000).

5.4 Conclusion

The present study established some results that are useful in

modelling and analysis of life time treated as a discrete random

variable. Arising from the study of mixture distributions, it was

illustrated in the geometric case that characterization connecting

mean residual life and failure rate could be used in the

identification of the model as well as in inferring the parameters.
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However the idea concieved here, could not be extended to other

mixture models. Attempts are being made to ensure that

characterizations of this type are indeed useful as a general tool by

finding more illustrations; Although some indications as to the

applications of partial moments in reliability analysis was made, a

more indepth study of its advantages vis-a-vis truncated moments

which are currently employed seems worth investigating.

Identification of specific members of families, through some

indices formed out of parameters is also a problem under

consideration. It is hoped that some results in these directions can

be reported in a future work.
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