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Chapter l
INTRODUCTION
\

Many phenomena that occur in nature are described
by nonlinear dynamical systems. Mathematical models which

describe these systems are usually formed by complicated
systems of algebraic or differential equations [23, 56].
Such systems possess interesting properties such as
oscillatory (periodic) solutions [45], travelling wave
solutions [43, 79], spiral wave solutions [10, 31] and the
like. These systems of equations very often include a
number of characteristic parameters as well. The solution
structures of these systems depend heavily on these para­
meters. If the values of some of these parameters change,
the system may exhibit many new phenomena such as the birth
of a family of limit cycles (oscillations) or new stationary
states or chaotic structures etc.

The space-time structural organization of biological
systems starting from the subcellular levels upto the level

of ecologgfal systems, behaviour of electrical net works[l2]
and complipated patterns produced by chemical reactions make
good examples described by such nonlinear systems.

l



Periodic phenomena or oscillations are one of the
fundamental characteristics observed in nonlinear dynamical
systems. In biological, ecological, sooial, physical and
chemical systems we find the oscillatory behaviour. Several
mathematical models such as Lotka, Volterra, Brusselator [ll
Oregonator [19] etc. are investigated to explain these
periodicities. Most of these models are nonlinear and their
analysis is based on the theory of nonlinear differential
equations.

The chemical oscillators, whose mathematical proper­
ties have much in common with the physical and biological
oscillators are less complicated, at least in modelling
them. After introducing the concept of ‘open system‘ the
studies on oscillators began seriously. A brief discussion
on the mathematical modelling of an open system is given
below:

Consider a general reaction mixture containing n

species {Xi} , i = 1,2, ..., n in a volume v, which satis­
fies the local equilibrium conditions. The system is open
to the flow of chemicals frogffiutside which react with

{iXi§ , i= 1,2, ..., n in tge reaction volume. However,
it may be assumed that the boundary conditions remain time
independent and that the system is in mechanical equilibrium



Under these conditions the instantaneous state will be

described by the composition variables ‘iXi}, i=l,2,...,n\
and by the internal energy density fDe, where,

Df’ = 2 x. (1.1)i=l 1

and e is the specific energy per unit mass. These quanti­
ties satisfy the conservation equations,

OX1 d'5? = "1(Xi»T> 'V~ J1 <1-2)

9-g-‘€-fl = -V. Jth + i: .E (i=l,2,@o¢,l'1) (l¢3)

J3 and Jth are respectively the diffusion and the heat
flow vector and T is the temperature. vis describe the
production of component i by the chemical reactions.

These will be in general nonlinear functions of Xis.
§ vi # O, characterises the open systems E is the electric
1

field and ‘Z the current density, which is given by

° -22.1“ (14)L _i=lii °



with zi, the charge per unit mass of i. It is assumed
that i and E vary slowly enough to neglect. J? and Jth
can be expressed as follows,

J‘; = - oixi [Vp.i(X,T)]T - 05 ti? (1.5)
(Va-)1"Jth= -XVI - >_.:o;._ --T-!--- (1.6)l

assuming a diagonal diffusion coefficient matrix

, pi, the electrochemical potential of constituent
i, Z. the thermal conductivity of the mixture, and oi the
thermal diffusion coefficient of i.

As (1.5) and (1.6) are introduced into (1.2) and
(1.3), one obtains a closed system of nonlinear partial

differential equations for iXif , i=l,2,...,n and T,
provided one also uses the constitutive relation

9 :- €  i :- l’2’ coo, n (107)
Their form is,

oxi-5-; —v(X T)+V.[ox(V )T+o.Y-I]- . . . . u. .1 1’ 1 1 1 1 T2
i = 1,2’ 000’ no (l°8)
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C (-3%) = V.?\VT + (diffusion and thermal diffusion
U

erms) + L + F ( )F wf, ( )t 0E Z  109
where c is the heat capacity of the mixture and ZSHP
and wp are respectively the heat and the velocity of
reaction P. Equations (1.8) and (1.9) must ofcourse be
supplemented with appropriate boundary conditions.

In the case of homogeneous isothermal systems,
we have the following simplified equations,

dX.

'd__'E"£ =  i 3: 1,2, O00’ 1'1
They become nonlinear ordinary differential equations of
the autonomous type. The mathematical theory of such
equations has been developed extensively by several
workers [8,24,33] beginning with Poincare. Convenience
is not however, the only reason for taking up homogeneous
cases as in (l.lO). Many bio-chemical oscillators in
homogeneous phase are known. In all these cases, oscilla­
tions can only be due to the chemical mechanism, since if?’

additional causes, such as, the presence of surfaces, 2
macroscopic inhomogeneities, electric effects etc. have
been removed. Thus the study of nonlinear system of
ordinary differential equations ( 1.10 ) will reveal
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conditions under which a chemical mechanism can by itself
generate an oscillatory behaviour.

Let Xi(t) be a solution of the system (l.lO). It
is assumed that, the motion is defined in the open time

interval (o,w) and that Xi(t) exists in this interval.
Then any Xi(t+t°), where to is an arbitrary constant
(phase) is still a solution of this system. These infinitely

many solutions define in the n-dimensional space of Xis
a trajectory C (or orbit) of the system. Applying the
techniques of the stability theory of Poincare, Liapunov
and Laplace (see [53, 69] ), the oscillatory behaviour of
the reaction system can be studied.

A system is structurally stable if the topological

structure of its trajectories in the Xn space is unaffected
by small disturbances modifying the form of the evolution
equations (l.lO). If a solution of the system (l.lO), once
near another solution, remains near together for all the

future time, then that solution is stable in the sense of
Liapunov. Usually, the behaviour of a chemical system
described by (l.l0) depends on the values of a set of

parameters, say' {p} describing, eg. the rate of entry
of substances from outside or the initial composition of
the mixture. The solutions of the differential equations

thus, become functions of {p} . For certain critical



values of the parameter (or bifurcation value) say,

p = uc, the structure of the trajectories changes
qualitatively (structural instability). Certain solu­
tions (steady state) or trajectories of (l.lO) become
at this point (Liapunov) unstable. Thus the transition
from a steady state to an oscillatory behaviour is
accompanied by a bifurcation phenomenon which occurs

for some critical values of a set of parameters
influencing the system. The system has then to evolve
to a new type of regime, the sustained oscillations.
The theory of nonlinear oscillations, both in two­
dimensional and three-dimensional systems are discussed
in chapter two.

The oscillators are mainly classified here into
two types, viz. biological and non-biological. From a
mathematical point of view, a biological oscillator is
any biological system which undergoes regular periodic
changes. ‘In many biological phenomena, such as circadian
clocks, the rhythmic activity of the central nervous

system, the problem of development and morphogenesis,
interactiofi%€etween competing species, oscillations are
the rule rather than the exception. Certain parts of the
mammalian brain respond electrically to an impulse-like
stimulation in the form of damped or even sustained
oscillations, (see L64, 68]). The short term memory and



learning processes are related to the electric activity
of the brain (see [57] ). The FHN Model is a modification
of Van der Pol's relaxation oscillator and is proposed to
describe the electrochemical activity in a nerve [37].
The competition between populations is a very general
phenomenon, whether one deals with the biosphere, human

societies, or even economics. It takes place as soon as
the resources necessary for the survival are limited or are
exhausted. Several examples of this phenomenon are known

(see [57] ) in the biosphere, both for natural [70] and
for artificial ecosystems.

The theoretical developments which were motivated
essentially by the study of biological systems, were
enriched by the discovery of several striking non-biological
oscillators viz., the Bray reaction, Belousov-Zhabotinskii
reaction, Bernard convection problem etc. The first two
are chemical oscillators, while the third is a non­
chemical oscillator. In the case of Bernard convection

problem (see [57]) when a horizontal fluid layer initially
at rest is heated from below, the convection patterns
appear, at a critical temperature gradient. Examplesiif
chemical oscillators are many. The earliest reportedi
periodic chemical reaction in homogeneous solution is the
Bray reaction (see [57]) which is the catalytic decomposition



of hydrogen peroxide by the iodic acid-iodine oxidation
couple. The second case of an oscillatory chemical
reaction in homogeneous solution was reported by
Belousov [5], which is the oxidation of citric acid by
potassium bromate catalyzed by the ceric-cerous ion
couple. Zhabotinskii [81] demonstrated that the cerium
catalyst could be replaced by manganese or ferrom and
that the citric acid reducing agent could be replaced by
a variety of organic compounds, such as malonic or bromo­
malonic acid. Sustained oscillations in the concentration
of chemicals appear spontaneously if the reaction is carried
out in a well-stirred homogeneous medium. The periods and
amplitudes are very sharp and reproducible. This reaction
is discussed in detail in the third chapter of this thesis.

The discovery of B-Z reaction lead to the discovery
of many other chemical oscillators. One of them is the
Briggs-Raucher reaction (see[58]) which is a combination
of B-2 and Bray reactions. This reaction involves hydrogen
peroxide, malonic acid, potassium iodate, manganese sulphate
and sulphuric acid. The colourless solution becomes golden
yellow, then blue, then colourless, ... . The og§?llations
are in the order of seconds and life time is in Ehe order
of the hour. More details about the chemical oscillators
can be obtained from the review feature article by Nicolis
and Portnow [57].
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The appearance of periodic spatial structures in
purely chemical systems fascinates all. When the B-Z
reaction is carried out in a thin long vertical tube [7],
there appear horizontal bands corresponding to alter­
natively high concentration regions of the chemicals.
Further more, Zaikin and Zhabotinskii [80] have reported
travelling two-dimensional waves and Winfree [78] reported
spiral waves in such systems.

Apparently simple chemical systems and reaction
mechanisms involving a small number of components may give

rise to remarkable variety of dynamical phenomena of the
systems, which are maintained sufficiently far from equili­
brium. These include multiple stationary states, simple
and complex periodic oscillation, aperiodic (chaos) structure
and the growth of travelling waves and spatial structures in
initially homogeneous media.

These types of complex dynamical phenomena can occur

only in systems which are sufficiently far from equilibrium.
To explain this situation the example of CSTR (Continuous

Stirred Tank Reactor) may be used. CSTR may be-thoughgfitf
as a well stirred beaker, augmented by a constant tempgrature

1

I

bath, potentiometric, optical and/or thermal probes and most
importantly tubes for the input of reactants and for the

S
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inflow of reacted material. Ideally, then the system is
open, homogeneous and at constant volume and external\
temperature.

We may tend to think of chemical systems as having
a single stable mode of long time behaviour, generally the
equilibrium state. Multiple stable states are often
associated with biological (eg. asleep-awake, living-dead)
rather than chemical systems. The fact is that many chemical
reactions under appropriate conditions give rise to two or
more different states at a single set of constraint values.
(example, the ‘bistable’ situations).

Two types of bistability occur in a reaction system,
the first one viz., two stationary states, and the second
one viz., a stationary and an oscillatory state. An example
of a two component system, which shows the first type of
bistability is the arsenite-iodate reaction discovered by
De Kepper et al. (1981), (see Lllj). Bistability need not
always involve the existence of two stable stationary states.
Dne or both of the stable states may be oscillatory. For

. 1 1"._-'* 1a..a. , ...- ',

examples of chemical oscilfi%§:rs showing this type of bi­
stability is given by Epstein [ll].

The study of aperiodic oscillation or ‘chemical
chaos‘ is one of the fastest growing areas of nonlinear
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chemical dynamics. It is tedious to construct a simple
model of chemical chaos. Chaos represents an inherently
more complex phenomenon in the sense that at least three
independent first order differential equations are required
to generate chaos, whereas two equations will suffice for
periodic oscillation and one for bistability. In an experi­
mental study of the B-Z reaction in the CSTR, Turner et al.[72]
observed a sequence of alternating periodic and chaotic states.
In addition to the periodic-chaotic sequence described above,
the B-Z system displays several other well known phenomena.

These include the transition from simple periodicity to
chaos via a period doubling sequence [67], intermittency [62]
and the observation of the so—called U-sequency of periodic
states bordering the chaotic region in contrained space.
Many researchers reported about the spiral and travelling
wave solutions of B-Z reaction [13, 21, 26, 40, 55, 61, 77].

A number of nonmonotonic behaviours appear where the

B-Z reaction is run in a flow system (CSTR) which are not
observed when the reaction is run in a closed system. One

among these behaviours is the CDO (Composite Double Oscilla­
tion) in which nearly identical bursts of oscillation are_

1

separated by regular periods of quiescence. The CDO occur
as the system is carried back-and-forth across the area of
co-existence by the new slowly moving variable, whose con­
centration grows during the oscillatory phase, when the
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system is on the LSLC (Locally Stable Limit Cycle) and

decays during the quiescent phase, when the system on the
LSSS (Locally Stable Steady State) [41]. The transition
from excitable steady state to the oscillatory state
results in the SNIPER (Stable Node Infinite Period)
bifurcation phenomena [3].

Autocatalysis is a necessary prerequisite for
the existence of stable sustained oscillations, as we
examine the reaction mechanism of oscillators. The
earliest chemical model for sustained oscillations is that
suggested by Lotka (1920). The Lotka scheme contains two
quadratic auto catalytic steps. The 'Brusselator',
suggested by Prigogine and Lefever [63] is perhaps the
simplest oscillator obtainable from a chemical model based
on the law of mass action. This scheme contains a cubic

autocatalytic step. The reaction scheme of the OregonatorL19]
model of the B-Z reaction contains a simple quadratic auto­
catalytic step. Many other models based on the cubic auto­
catalysis are known L52]. Elaborations of the cubic auto­
catalytic scheme in order to match experimental data from

real systems have been made by Boiteux et al. §l975), (seeL52])
This thesis consists of five chapters including this introduc­
tory chapter.
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Chapter two presents the mathematical tools applied
to analyse the nonlinear oscillations in nonlinear systems.
The mathematical properties of reaction networks which can

give rise to oscillations are schematically described here.
Most of the reaction systems can be described in terms of
a limited number of local variables, which can be connected
by a relation, by the law of mass action. Once this is
achieved, we can have the governing system of differential
equations, describing the dynamics of the reaction systems
under consideration. The steady state solutions, or the
equilibrium states of the system can be found out. To
study the behaviour of the solutions around critical points,
apply perturbations to the system of nonlinear equations at
these points the qualitative analysis of these points can
be carried out using the stability theory due to Liapunov
and Poincare. The techniques to check whether a system of
nonlinear differential equations possess limit cycle
behaviour are discussed here. The existence of limit cycles
indicates the sustained oscillatory behaviour of the dynamical
systems. A recipe to find whether a reaction system exhibits
Hopf bifurcation is also given. Some numerifiii techniques to

find the solutions, (both stationary and tim; dependent),
bifurcation points, Hopf bifurcation points etc. of the system
of nonlinear differential equations are mentioned.



15

Many methods to integrate systems of differential equations,
to find bifurcation point, Hopf bifurcation points etc. can
be cited in the literature [42, 46, 47, 49, 66].

Chapter three describes the oscillatory behaviour
of a chemical reaction system, viz. the Belousov-Zhabotinskii
reaction, which is not exactly biological, but whose mathe­
matical properties have much in common with the physiology

of electrically excitable tissues, including nerve, heart
and smooth muscle. The oscillations occurring in B-Z reaction
are explained using the chemical reaction steps in Section (3.2)
The mathematical model studies to explain the oscillatory
behaviour of the B-Z reaction mechanism are also given. The
model we have studied is basically, the Oregonator model[l9].
This model consists of a system of three ordinary differential
equations, nonlinear and coupled in the concentrations of the

three key substances [ HBrO2 ] (X), [Br_] (Y), 2[Ce4+] (Z),
The evolution of X is very large compared to the evolution
of the other two variables Y and Z. In section (3.2), a two
variable model for the system (3.14) is studied. The equili­

brium points, the oscillatory behaviour (or l§5§R cycles)
and the range of the controlling parameter f, {or which the
system exhibits oscillatory behaviour are found and discussed
in detail. The numerical results obtained for this y-2 system
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are also displayed. The next section contains an elaborate
analysis of the three dimensional model suggested by Field
and Noyes L19]. This is a simple model of the ;ield-K6rbs­
Noyes mechanism [17]. An attempt is made to study the
oscillatory behaviour of the three-dimensional model for
different values of the stoichiometric coefficient f. The
analytic expression for the Hopf bifurcation value of the
parameter f is obtained. The range of f at which the
system has limit cycle behaviour is given. The numerical
integration of the full model (3.14) results in one limit
cycle in the y-x phase plane for f = 1.0 and for f = l.l.
These diagrams are shown at the end of the third chapter.

Considerable interest in oscillatory reaction systems
has been generated by the large number of such processes
observed in biological systems. The oscillatory reaction
systems generally involve autocatalytic reactions. Chapter
four describes an oscillatory model adopted from the MNS L52]
cubic autocatalytic model. An elaborate system of three­
variable nonlinear coupled differential equations represent

the chemical reaction mechanism of gar system. The physically
realistic equilibrium states are inikstigated. Their quali­
tative behaviour is discussed here. The Hopf bifurcation
points of the system are estimated both numerically and



analytically. The range of the parametric value Jk, at
which the system exhibits Hopf bifurcation phenomena is
given in Section (4.4). The numerical results, obtained
by integrating the model, by the Runge Kutta Method with
the step doubling technique [25] is given. At the super­

critical Hopf bifurcation pcinc,:K2C a stable limit cycle
is obtained, the solution trajectory approaches it as time
increases. The steady state is found to be unstable in the

range-Jklc < (kl <4xéc. The values of Jklc and J? C are2

obtained numerically.



Chapter 2

METHODS OF NONLINEAR DYNAMICS

In this chapter, we intend to discuss the mathe­
matical techniques employed in understanding the nonlinear
dynamics of the systems studied in this thesis.

2.1. SYSTEMS INVOLVING CHEMICAL REACTIONS

A dynamical system in which the parameters vary
in time is one type of system of evolution. We consider
an open system at mechanical equilibrium involving n

chemically reacting constituents Xl,X2, ..., Xn. The
dynamical system is described by the composition variables

(non dimensionalised concentrations of constituents) {xi} ,
i = 1,2, ..., n. Then we have the mass balance equations,

dx.

52% = fi(t,xi), t e 1, 1 = l,2,...,n. (2.1)

where the nonlinear functions fi describes the overall rate
of production of xi from the chemical reactions and I is an
interval of time. This is also knQlfi”as the kinetic equations.

When the right hand member of the equation (2.1) do not
contain t explicitely, the system is autonomous. In the

l8



vector form (2.1) becomes,

§ = f(X) (2-2)n TX € R  f =  000’  0
By the solution of (2.1) we mean a set of n

functions {mi} such that

(1) {ni(t)} , 1 = 1,2, °.., n exist

(ii) the point (t, ni(t)) remains in D, the domain
of fa

(iii) n§(t) = fi(t,ni(t))
d .[t€I9 I:  3-=1-929 ¢'~9 n]

Geometrically, this is a curve in the n+1 dimensional
region D such that each point on the curve has co-ordinates

(t, ni(t)), i=l,2, ...; n, where ni(t) is the ith component
of the tangent vector to the curve in the direction xi.

Autonomous systems describing natural phenomena

usually takes the form,l’
»

§i = fi(xi,p), 1 = 1,2, ..., n (2.3)



where p is a parameter appearing in the system. A reaction
system that contains a parameter can be treated as a special

case with one more state\variables (xis). It is interesting
to visualize what happens to the dynamical system, when we
allow the parameter to vary in specified ways. This is
discussed later in this chapter.

A more general form of (2.3),

xi = fi(xi9Pi)1 i = 1920 0°‘: n (2.4)

where xi<E Rn, the system is known as the lumped parameter

system or LPS, here piS also should belong to a finite
dimensional space. When xis belong to an infinite dimensional
space, the system is known as distributed parameter systems
or DPS. The LPS are usually described by systems of ordinary
differential equations,while the DPS are described by partial
differential equations of the parabolic or hyperbolic type.

In a chemical reaction model, when the diffusion
is also taken into consideration, we have,

bxi L f (X ) + 0 2 (2 5)6?" 1 1 1 Y7 *1 ’
where the diffusion-coefficient matrix is diagonal and the



21

coefficients Dis are constants. The fis has the same
meaning as in equation (2.l). For a physico-chemical
system obeying the law of mass action at equilibrium,

fis will be nonlinear functions of {xifi , i=l,2,...,n
of the polynomial type. This makes the differential
system (2.5) a system of nonlinear partial differential
equations. The presence of first order time derivatives
and second order space derivatives makes the equation (2.5)
parabolic. This will become the evolution equations
describing dissipative systems (in which the dynamical
parameter depends explicitly" on time or energy absorbing
or nonconservative).

Some boundary conditions can be applied to the
system (2.5) such as Dirichlet conditions,

{X1-’ 000, Xn} =
or Neumann conditions,

in. Vxl, ..,,- n. Vxn} = {const} (2.6b)
$§§“a linear combination of both the conditions. The system
fie closed with respect to exchange of the corresponding
chemical substance, if one of the constants in (2.6b) vanishes
identically. This condition applies to some of the experiments
of the Belousov-Zhabotinskii reaction, which is the well-known
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chemical reaction giving rise to dissipative structures
(structures maintained at the expense of energy flowing
into the system from the outside).

2.2. STABILITY IN NONLINEAR SYSTEMS

Fixed points or equilibrium points are an important
class of solutions of a system of differential equations.

The steady state solution xio (or xi(tO) ) of the system(2.3)
is defined by the equation

= O’ i = 1,2’ 000’ 1'1
where the values of the parameter u is known. This gives
us a system of nonlinear algebraic equations. A nonlinear
equation may have several singular points, all, none or
some of which may be stable.

A fixed point xio is said to be stable if a
solution xi(t) based nearly remains close to xi for all time.
In addition, if xi(t)———axiO as t-—+»w, then xi(t) is said
*~ he asymptotically stable.

There are basically three categories of the stability
concept: Laplace, Liapunov and Poincare (see [69] ). If all
the solutions of the differential equations are bounded as



t—4)w, the system is stable in the sense of Laplace.
Liapunov stability requires that solutions which are once
near together remain near together for all the time. If
for a given n > O, there exists a 6 > O such that any

solution xi(t), satisfying I xio - xi(t) | é 8 for t = O,

also implies | xio - xi(t) I § n for every t g O, we say
the system is stable in the sense of Liapunov. But in
some systems, eventhough the representative point on the
path of the solutions does not satisfy the above criteria
of Liapunov stability, they are considered to be stable.
In this particular situation, Poincare introduced the
orbital stability concept. A solution path is said to
possess orbital stability, if the neighbouring half paths
which are once near the solution path remains near for
ever. The orbital stability need not imply the Liapunov
stability.

The solutions of the system (2.4) depends on a
number of parameters. As the system evolves and is
continuously perturbed, some of the parameters change
slightly or abruptly. New parameters can be appeared
and hence increasing the number of interacting degrees
of freedom. Thus the change of parameters generally
changes the structure of the equations themselves. For
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these new equations, we can have a new set of solutions.
If this set of solutions remain in a neighbourhood O(n)
[where n is the change in some representative parameter],
we say that the system is structurally stable. If no such
neighbourhood exists, the system is structurally unstable.
Thus in a structurally stable system, the topological
structure of the trajectories in phase space remains un­
changed.

If xio is an equilibrium solution of the nonlinear
system of differential equations (2.2), a new variable yi
is introduced as follows:

Y1 = *1 ' X10

and (2.2) can be transformed as

O

Y1 = fi (Y1 * xio)

Then the right hand side of (2.2) can be expressed as,

fi(xi) = A(xi—xio) + f§l)(xi) (2.8)
(1)where A is any constant matrix and fi (xi) is the differ­

ence fi(xi) - A(xi-xio). Suppose a nonsingular matrix A
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can be so chosen that,

(1)lim | fi (xi) | _ .
x____)x_ * * - * - O: 1 = J-929 Q": n (QQ9)1 1o I xi xio |

Then the following system of equations,

dxiET" = A(xi-xiO) (2'1O)
is termed as the ‘linear approximation’. The nonlinearity
condition is given by (2.9). To check the stability of
the solutions of (2.2), it is enough if we study the
stability of the solutions of the linear approximation.

For the qualitative study of the solutions, it is
not necessary to find all the characteristic roots of the
linear matrix A. It is enough if we find the sign of the
eigen values. If all the characteristic roots have negative
real part, the solution is stable, since it decays exponen­
tially and returns to its original position. If any one of
the eigen values has a positive real part, the solution

blows out as time increases. If all the eigen value? are
purely imaginary, we get the center and the solutions are
stable. In certain systems, the variation of some controlling
parameter results in changing the sign of the real part of the
complex eigen value. This phenomenon is discussed in detail
later.
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We can study the qualitative behaviour of the
solutions if we are able to represent the solution in a
phase plane. We can represent the solution graphically
only for the two dimensional systems. The general form
of typical physical systems with one degree of freedom
is,

xl = fl(xl, x2)
(2.11)

x2 = f2(xl, x2)

where fl and f2 are analytic functions of xl and x2 which
vanish at the origin. It is possible to eliminate dt
between the equations and write,

dx f (x x )2 _ _2, 1’ 2
‘a-*1 — fl(xl’x2) 7 fl(Xl,X2) # O

which is a differential equation of the integral curves.
The integral curves of (2.12) in the plane of variables

(xl,x2) is called the phase plane. The asymptotic
behaviour of the trajectories in the neighbourhood of a

singular point determines the type of equilibrium represen­
1

ted by the singular point. According to Poincare, the
singular points are classified as nodes, foci, centers and
saddle points.
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Also from the characteristic equation correspond­
ing to (2.11), we can analyse the qualitative behaviour
of the solutions. In some problems, it is very difficult
to estimate the characteristic roots (eigen values). But
from the coefficients of the characteristic polynomial we
can find the sign and nature (ie. real or complex ) of the
eigen values. The characteristic equation corresponds to
the system (2.11) has the form,

A2 - T7\ +13 = o (2.13)
where of of1"=—-1 2+--1­

oxl 6x2

ofl of2 ofl of2ix = ___ .,___ _ ___ -____
oxl 6x2 6x2 ox,

are the trace and determinant of the coefficient matrix.

It is evident that, the roots are real when the
discriminant T2- 4A g, O. If in addition A > O, implies
both the roots have the same sign and the singular point
will be a stable or unstable node, according as the sign
negative or positive. The characteristic roots are complex
when T2 - 41$ ( O. The two roots have non—vanishing real
part T # O. T < O corresponds to a stable focus and T > O
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corresponds to an unstable one. When T = 0, (ZQ»< O),

the roots are purely imaginary, Iki = 1 iw. In this
case, the trajectories are closed, surrounding the singular
point viz. ‘center’.

The reaction models consisting of three variables
present a much more complicated structures Let us discuss
the characteristic equation of a three dimensional system
of differential equations. It takes the form,

?~3-T>\2+S7\-[l= 0 (2.14)
The necessary and sufficient conditions Ll] for all the
characteristic roots to have negative real parts are given
by,

T<O, A<o, A- T§> o (2.15)
The singular points, so far discussed belong to the

class of 'simple' singular points. We consider the
characteristic roots\mua1Z§ ¥CL The singular points,
whenZ§ = O are referred to as multiple singular points.
In fact, they are the points of contact of the curves defined
bYr

ii E2 = .°_‘°l “Q (2 16,oxl dxl 6x2 5x2
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Multiple singular points splits up into more than one
singular point, due to the slight variations of the functions

fl and £2. The analysis of the trajectories in the vicinity
of this point become more complex. New types of multiple
singular points appear in systems involving several variables.
As the system parameter crosses some ‘critical’ value, there
occur coalescence of simple singular points and give rise
to the multiple singular point.

The analytic approach (rather than the phase plane
analysis) to the theory of stability develops from the so
called variational equations (Poincare). Consider a dynamical

system such as (2.1). If xio = xio(t) is a solution of the
system (2.1), it is called the non-perturbed solution. The

solution xi(t), corresponding to an initial value xio # O,
is called a perturbed solution. Between these two solutions,
there exists a relation,

xi(t) = xiO(t) + ni(t), i = 1,2, ..., n (2.17)

wherezghe functions ni(t) are called the perturbations andPg,
Inil gre very small. When (2.17) is substituted in (2.1)

5

and the functions fis are developed around the non-perturbed
values xi0(t) to the first order in ni, the following system
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of variational equations is obtained,

0 1'1 5f.(X. )
n. = 2 2 §x1° ni, 1 = 1,2, ..., n‘ (2.18)J 1 J1 ._ .

If all the perturbation functions ni(t)-———% O as
t ———§ w, the perturbed solution tends to the nonperturbed
solution (2.17). In this case, the stability is called the

asymptotic stability. When xiO(t) = O, we have the position
of equilibrium and which is referred to as the constant

solution. Then from (2.17) we have, xi(t) = ni(t). Then
(2.18) can be read as,

. n oriXi = jEl ‘Egg 0 Xi (2019))
The variational equation of an autonomous system based on a
constant solution is of the form,

I
‘~0 U ‘

xi = jil aij xj, 1 = 1,2, 00¢’ H (2020)

The characteristic roots of the above,§ystem are known as

the characteristic exponents. If allithe characteristic
exponents have negative real parts, the identically zero
solution of (2.20) is asymptotically stable. If at least
one characteristic exponents has a positive real part,
the identically zero solution is unstable.



From the above discussion, it is clear that,
the stability of solutions of a system of differential
equation is described by the sign of the characteristic
roots or exponents. For this purpose, Hurwitz (see[53])
criterian is used. The necessary and sufficient conditions

that the roots of a polynomial, aoxn + alxn_l+ ...+aO = O,
ais are real and ao > O, to have negative real part is,

asa > O, a4 > O
a 3i ,\ 1 »

81 a3 as ooo O y
ao a2 a4 ... O t
O al a3 ... O > O
.0 CC O‘ O00 a

n \

By¥expanding the above determinants, we can make use of the
5 O Ocohditions.

For systems involving many chemical variables,
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Liapunov's second method (direct method) is used to study
the qualitative behaviour of the solutions. The nonlinear

system (2.2) is considered here. Let F = F(xi), i=l,2,...n.
If F takes values having a single sign in D, (D: |xi| < n,
n is a const) and F(xi) = O only for xi = O for every i,
where i = 1,2, ..., n, then F is said to be definite
(Positive or Negative). F is semi-definite if it takes
the same sign or vanishes in D. F is indefinite in any
other case. The derivative of F (or the Eulerian derivative)
along a solution of the system (2.1) is,

' OF axi .
F =  5-ii . -51- , 1=1,2, ,,,.,, n (2.21)

The three important results (Liapunov) about the stability
of the system (2.1) are stated below without proof.

l. The steady state xio = O, i = l,2,..., n is stable
in a domain D, if there exists a definite function F, whose
Eulerian derivative is either semi-definite of sign opposite
to P or vanishes identically in D.

2. The steady state xio = O, i = 1,2, ..., n is asympto­
tically stable if one can determine definite function, whose
Eulerian derivative is definite and has a sign opposite to
that of F.
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3. The steady state xio = O, i = 1,2, ,.., n is
unstable if one can determine a function F whose Eulerian
derivative is definite F assumes in D values such that,

dF

These theorems only provide sufficient conditions
for stabilityo The principal advantages of the direct
method are:

(i) independent of the integration of the linearized
system,

(ii) applicable to all initial solutions xio of all
kinds including space and time dependent ones,

(iii) applicable directly to nonlinear systems.

2¢3. LIMIT CYCLES

The integral curves of the two-variable system (2.11)

in the (xl,x2) plane in the parametric form is called a
traiectorv. Positive half path is that portion of trajectory
for t Q O, while the negative half path is the portion of the
trgjectory for t g O. The isolated closed trajectories are
called limit cycles. The positive limit cycle of a trajectory
is the set of those points which are near it for t-———9 w.



If for large values of t, the trajectory intersects each
neighbourhood of a point, then that point belongs to the
positive limit cycle of the trajectory. A limit cycle
could be a singular point or a closed trajectory, contain­
ing no singular point (corresponds to a periodic solution
of the differential equations), or an empty set (ie.
non existent), or a collection of singular points with
the connecting paths (separatrices).

The limit cycles arise only in the theory of
oscillations of nonlinear dissipative systems. The auto­
nomous system of differential equations (2.11) some times
gives rise to special type of solutions represented by
closed curves in the phase plane, and are called limit
cycles (Poincare). A limit cycle is stable if all the
neighbouring trajectories tend to it as t-——4?~% and
unstable if they tend to it as t ———9' —w. The limit
cycle is said to be semistable (considered as unstable)
if the trajectories are attracted to it from one side
and are repelled from the opposite side. A stable limit
cycle represents a stable stationary oscillation of a
physical system in the same way that a stable singular
point represents a stable equilibrium.



The existence of limit cycles (periodic solutions)
in an autonomous system of differential equations is
examined using several techniques. These techniques are
discussed one by one in the remaining part of this section.

Converting the system (2.11) into the polar
co-ordinates (r,6), we have

I-‘O

= Q (roe)
= (rye) (2.22)

Q0

where r2 = xi + xi , 6 = arctan (x2/xl)

and xl = r cos 6, x2 = r sin 6.

The system having self-sustained oscillations (limit
cycle behaviour) has the form

L = @(r), é = const.

Since the circular motion ( Q = O ) corresponds to the
IQQt&aQf the equation, @(r) = O and these are to be

positive, the problem reduces to the determination of
real positive roots of @(r). The roots are negative (real)
or complex conjugate means the non-existence of the

equilibrium. As 6 = const, to each positive root ro,



there corresponds a circle in the phase plane. The

concentric circles corresponding to the positive roots
of @(r) = O are thus the limit cycles. The variational0 i
equation of r = Q(r), corresponds to r = ro is,

jib = @r(ro)° gr

and the root ro is stable if §r(rO) < O. But this
direct approach is applicable only in a few isolated
cases. Some established results for limit cycles in two­
dimensional phase spaces [2] are stated below without
proof.

D

(i) A limit cycle surrounds at least one singular
point and this can only be a focus, a center or a node.
It can be neither a saddle point nor a multiple singular
point.

(ii) Stable limit cycles emerge from an unstable
singular point (soft self-excitation).

(iii) Unstabletlimit cycles emerge from a stable singular
point (hard selfiexcitation).

(iv) Stable limit cycles can emerge by the coalescence
of a stable and an unstable limit cycle.



Around a singular point of certain systems,
there can be infinite number of limit cycles [53].
In the configuration of limit cycles, the first limit
cycle around an unstable critical point is stable, the
second limit cycle will be unstable and so on. A stable
critical point is surrounded by an unstable limit cycle,
which is surrounded by a stable limit cycle and so on.

The limit cycles arise mainly from two situations,
viz. soft self-excitation and hard self-excitation. The
initial conditions do nothing in the stationary oscilla­
tory state of the self-sustained oscillators, while the
system parameters control the oscillatory behaviour.
Self-starting or self-excitation means, the oscillatory
phenomenon starts spontaneously from rest and reaches
its stationary state on the limit cycle. This is known
as the soft self-excitation. But in hard self-excitation
a certain amount of impulse is needed to start the
oscillation, and once this is obtained, the system attains
the stationary oscillatory behaviour, ie. the limit cycle
behaviour. Soft self-excitation corresponds to the qjffi
in which a system departs from an unstable singularitfi
while the hard self-excitation corresponds to the situation
in which the equilibrium is stable.



The concept of index (Poincare), just gives
a necessary condition for the existence of limit cycles.
This simply asserts the condition for the non-existence
of the limit cycles. Consider a Jordan curve C, free
of singular points in the phase plane of the system (2.11)
and the vector field V of the trajectories. The Poincare
index is defined as

1(cv)-1 fa t (dxz) (223), -2-‘; C 8I‘C8fl -6';-J: 0
This is the number of positive revolutions of the vector
V, as the curve C is described once in the positive
direction, and which is known as the index of C with
respect to V. I (C,V) = O indicates that C surrounds no
singular points. I (C,V) = + l, implies that C contains
either a focus or a node or a center. When I (C,V) = -l,
C surrounds the saddle point.

Poincare has indicated and Bendixson has completed
a theorem that gives both necessary and sufficient condition
for the existence of limit cycles. This is known as the
Poincare-Bendixsofi*theorem. Earlier, Bendixson established
a condition for the non-existence of limit cycles and which
is known as the negative criterion.



Bendixson theorem states that for the two

dimensional system of differential equations (2.11), if

ofl bf2
the expression 5;— + 6;- does not change its sign1 2
(or vanish identically) within a region D of the phase
plane, no closed trajectory can exist in D. It shouldof of. 1 2
be noted that, even though the expression +
changes sign, it does not imply the existence of a limit
cycle for the system (2.11). The powerful Poincare­
Bendixson theorem defend this situation. If a half path
C remains in a finite domain D without approaching any
singularities, then C is either a limit cycle or
approaches such a closed trajectory.

The principal drawback here is the determination
of the domain D. Poincare suggested the following method
to determine the P.B domain. In the case of a ring shaped

domain D bounded by two concentric circles Cl and C2, it
is sufficient for the existence of atleast one closed
trajectory that,

(i) Trajectories enter (leave) D through every

point of Cl and C2,

(ii) There are no singular points either in D or
on Cl and C2.
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A topological method can be used to determine
the existence of limit cycles in a system of nonlinear
differential equations (2.2). A useful condition for
proving the existence of oscillatory solutions of finite
amplitude is that a surface S must exist on which every

solution trajectory xi of (2.2) must enter. Thus the
condition required is,

dx.
S . 33$ < o, xi eh s, i = 1,2, ..., h (2.24)

and S is the outward drawn unit normal to S. Hastings
and Murray [36] used this method to discuss the limit
cycle behaviour of the Oregonator model [19] of the B-Z
reaction system.

A number of chemical systems exhibit limit cycle

behaviour. Systems other than chemical systems exhibiting
nonlinear behaviour are, Van der Pol oscillator, Harmonic
oscillator etc.

2.4. DEPENDENCE OF STEADY STATE SOLUTIONS ON A PARAMETER_ 1 —

If a dynamical system is represented by the system
of differential equations (2.3) containing a parameter u,
the solution (motion) becomes a function of p. If the



change in the parametric value does not give rise to any
qualitative change in the topological structure of the
solutions, such values of p are called ordinary\values.

If for some p = po, there arises a qualitative change
in the topological configuration of solutions, then uo is
called a ‘critical’ or a'bifurcation' value. In some
systems, the total number of solutions varies as the para­

meter p crosses the critical value po. So it is necessary
to study the dependence of steady state solutions of the
system (2.3) on the values of the parameter p.

Consider the system of equations,

fi(xi(p)Ip) = O (2925)
The equilibrium points of the system (2.3) are given by the
system (2.25). On differentiation of (2.25) with respect
to p, the following set of differential equations is obtaineddx. -of. >

1J<><i.~> af = .1.-» »<.<».> =  <2-26>
v 1-‘

where J(xi,p) is the Jacobian matrax of (2.25). If
det J(xi,u) # O, we can have the following system of linear
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dx

algebraic equations EH5:

dx.
1

bf.__-1 __1. _dE_ _ J (xi’p) op ’ xi(po) ' xio (2'27)

For p = po, we shall assume that

fi(Xi0,uO) = 0 (2-28)
If the Jacobian matrix J (xi(u),p) is regular on the
interval [po,pl], the dependence xi(p) obtained by
integrating (2.25) satisfies the following relation,

fi(Xi(l1)9|-1) = O9 |-1 €[ P02 pl J (2~29)

The Jacobian matrix is singular at a branch point and hence
cannot be inverted at such points. In such cases,Va para­
metrization, say, with respect to the arc length could
provide a suitable method. Let us take arc length (y) of
the solution curve as a parameter. Differentiating (2.25)
with respect to y, we get,

dfi n (Mi dx. Mi dp.
i = 1,2’ 00¢, 1'1.



The initial conditions are,

Y = O, Xi 1: X10’ H. = ‘Jo \
The additional equation for the arc,2 2 2

+  +  +  = 1 (2.31)dy dy dy
determines y as the length of arc on the above mentioned
curve of solutions. For each y, the equations (2°3Oa)
form a system of n linear algebraic equations in n+l

dx

unknowns 3;; , i = 1,2, ..., n an . Now let us

Q.­

3%?

assume that the matrix*_ “Tdfl bfl bfl ofl r'—-'-' 000 _'i_' 9 _i""" 9 coo ‘-""_'i'—°x1 bxk-l °xk+1 °*n+1Jk = ~ 0
O

of of 3 of of
__Q ___ __2_ , __Q__ , ,,_ .___n__OX1 éxk-l °xk+1 °xn+1‘ii q—-1‘
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is regular for some k, l g k < n+1 taking.- :: 7
\

The system (2.30) can be solved for the unknowns,

d*1 dxk-l dxk+l
, QCO

dx, , 9 000 , "_—rl'-tl-'dy dy dy dy
dxi dxk
‘-67 =:  F Q i = 1,2’ O00’ k—'l’  O00’

(2.34)

If (2.34) is substituted into (2.31), we obtain,

dxk 2 n+1 2 -ldy i=l 1
i¢k

dx

The sign of the derivative EVE is given by the orientation
of the parameter y along the curve. The other derivatives

can be computed f£2i*(2.34). The systems (2.34) and (2.35)
can be solved by ahy numerical technique for the integration
of initial value problems. Using this method, the solution
can be obtained as a function of arc length. This method
can take care of branch points. Thus the property that the
solutions are dependent on parameter can be effectively
made use in tracing solution curves of complex nature.
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2.5. BIFURCATION

As mentioned earlier, xio be the steady state
solution of (2.3). By a branch of solutions, we mean a

continuous and uniquely dependent xi(u), for every fixed
u Q (uo, pl) such that

H Yi(H) - xi(u) ll < n, for a given n,

the uniqueness fails. The branch of solutions can be
continued in both directions upto certain values of u,
where the uniqueness fails. Such critical points are
called branch points. Mainly there are two types of
branch points, viz. limit points and bifurcation points.

If all the eigen values of the Jacobian matrix J
of the system (2.3) evaluated at the steady state solution,J =  <2...)oxj

have strictly negative real parts, the steady state solution
is staqlg. Bifurcation theory is used to analyse what

happensiwnen a part of the Jacobian matrix J moves into the
right half plane, where the steady state solution is un­
stable. The steady state solution of the one-dimensional
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system [39] corresponds to the solution of

f(X,p.) = O
where the function f is assumed to have continuous first
and second derivatives. The solution state (x,p) may
belong to one of the following seven categories.

1. The point (x,u) is regular if,

3%?
‘Pk

5’

§§ ¢ o (2.38)
The unique curve x = x(p), or p = p(x) (the branch of solu­
tions) passes through this regular point (x,p).

2. Limit point (regular turning point) is a point

(D

Q12X

G

2|:

wher hanges sign ( and £ O ). ie. the two
branches which are joined at this point have a limiting

@12­X

are

tangent = O while has opposite sign on either
side of this point. Clearly,

£53?

§§ = o, ¢ o (2.39)
3. Singular point is a point where

EEK

E’

éflfif

= = o (2.40)
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4. Double point (bifurcation point) is a singular
point at which two (and only two) curves possessing

distinct tangents gfi crdss. Four branches of solutions
emanate from this point forming the two pairs, each of

which has a common tangent gfi .Two such branches which
have a common tangent at the double points are sometimes
considered as one branch.

5. A singular turning point (bifurcation-limit
point) of the curve (2.37) is a double point at which two

of the four existing branches have a limiting tangent §§ = o
and different signs of -§§ in the neighbourhood of the point.

6. A cusp point of the curve (2.37) is a point of second
order contact between two curves (2.37). All four branches
have the same limiting tangent at the cusp point.

7. A higher-order singular point of the curve (2.37)
is a singular point at which all the three second derivatives

0 0»
><Nl\\)it

o@rw
t rott

U

IO

~§;§; of f(x,u), vanish.

The;§Hhit points play an important role in determin­

ing the numbir of solutions to a specific problem for a given
value of the parameter u. For particular values of u, some
times we have multiplicity of solutions (or multiple solutions
exist). A solution diagram is the pictorial representation



of the dependence of steady state solutions on the
parameter p.

The relationship between the branch points and
the loss of stability of the steady state solution is
evident in the one-dimensional case (ie. x 6 R1). Here,
the Jacobian matrix (2.36) contains only one element and
therefore it has only one eigen value. A change of
stability occurs (with the change of parameter p), when
the eigen value passes through the origin of the complex

plane. In the Jacobian matrix, the element gé vanishes
at this instant. But exactly, this is the condition for
the existence of the limit and bifurcation points. The
stability of steady state solutions may change at these
points only. As the parameter value increases beyond the
critical value, the originally stable steady state solution
becomes unstable. Branching of new solutions may occur
in three ways viz. supercritical, subcritical and trans­
critical bifurcation.

By the term bifurcation point, we mean a point at

which theibggnching of solutions occur. Generally, two

types of bafurcations occur, the real and the complex
bifurcation. When the branching is related to (branching
of steady state solutions) the passage of the real eigen
value of the Jacobian matrix J through the origin in the
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complex plane, we get the ‘Real’ bifurcation. The loss of
stability of the steady state solution, when a pair of
complex conjugate eigen values crosses the imaginary axis
corresponds to the complex bifurcation.

A method to evaluate the limit and bifurcation

points is discussed briefly, as follows. Detailed discussion
is given by Kubicek and Marek [48]. The determination of
primary bifurcating points (branching from the trivial solu­
tion) is more easy than the determination of secondary
bifurcating points (those occurring from nontrivial solutions)
Consider the system of nonlinear algebraic equations,

:3 O’ i = 1,2, Q00, n
The necessary condition which determines the branch points
is,

fn+l(Xi,p) = det J(xi,u) = o, 1 = 1,2, ...,n(2.42)

where J is the Jacobian matrix with the elements,

_ bfi(xi9p) . 0 — 2 2g" - T " 9 19] — la 9 °'~v n ( 043)13 ox
J

Eigen values ,2 of the Jacobian matrix J satisfy the
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characteristic equation,

I J<><i.p> - AI I = 0 (2.44)
Equation (2.42) indicates that the Jacobian matrix J has
a zero eigen value. This is another definition of point
of real bifurcation. If the parameter u varies as, the
eigen values move along the real axis and crosses from
the left complex half plane into the right one or vice­
versa, the stability of the solution can change.
Let,

fn+2(xi,u) = det J (xi,p) = O (2.45)
where _’ _J =  =   i = 1,2’ 000’ D

j = J-,2, 000, 1'1-l

and _ bfi
= '5--_ Q i 7: 1,2, 000’ DU

of.
As the last column ie. ( -l ) of J is replaced by the

oxafi _ “
column 65-, J is obtained. A limit point (xi*,u*) satisfies
the inequality,

fn+2 (xi*s P*) £ O (2~46)
Since a unique dependence p(Xn) exists in the neighbourhood



of this point from the implicit function theorem. On the

other hand, a bifurcation point (xior uo) satisfies the
relation,

fn+2 (xi°, u°) = o (2.47)
because the dependence of u on xn is not unique in the
neighbourhood of (xio, uo). Hence the limit and bifurca­
tion points can be distinguished using the equations
(2046) and (2047). The original equation (203) and the
necessary condition (2042) form a set of n+1 equations

in n+l unknowns (xi,u), i = 1,2, 0.., n corresponding to
co-ordinates of the branch points (both limit and bifurca­
tion points).

In the case of complex bifurcation, also known as
Hopf bifurcation, a limit cycle (or periodic motion)
surrounding an equilibrium point emerges from the equili­
brium (steady state) solution. There arise two types of
complex bifurcations in systems exhibiting nonlinear
oscillations [53]. At the critical parameter value
(say, u = uo), the steady state solution bifurcates to a
stable limit cycle and an unstable singular point (soft
self-excitation). In certain systems, two limit cycles,
one stable and the other unstable coalesce and subsequently

vanish at u = uo (hard self-excitation).
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Periodic phenomena, or oscillations are observed
in many naturally occurring dissipative systems. Consider
the autonomous system of nonlinear differential equations
(2,3). The assumptions made are that (2,3) has an isolated

stationary point say xi = x. *(p) and that the Jacobian10

matrix,

of.

J(p) = 3_i (xio*(P)»u), i,j = 1,2, ---, n (2-48)X
J

has a pair of complex conjugate eigen values 11 and §\2,

7\l(u) = '7\2(u) = <1(u) + iw(l~1) (2-49)

such that, for some p = po,

w(pO) = wo > O, a(po) = O and a'(po) £ O (2°5O)

If the eigen values of J(po), other than 1 iwo, all
have strictly negative real parts, the assumption (2.50)
implies the loss of linear stability of the steady state
xi0*(u), as p crosses the threshold value no. The
appearance of periodic solutions out of an equilibrium
state, is examined by applying the Hopf bifurcation theorem
in the system of equations (2.3). The periodic solutions

exist in exactly one of the cases p > po, p < pos The
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classical Hopf bifurcation theorem may be stated as
follows.

A steady state solution XiO(p) and a branch of
steady state solution xi(u) of (2.3) are considered at
u = u, and in the neighbourhood of p, respectively. The

fis are sufficiently smooth. It is assumed that all eigen
values of the Jacobian matrix J are non—zero and that only

two eigen values are purely imaginary viz.'%l(u) and§32(u)
satisfying the conditions (2.49) and (2.50).

ie. Re {7\l(uo)} = Re{>\2(po)} = O, Re{?\(uo)} ;€ O .

Then there exists a branch of periodic solutions of (2.3)

for p > po and p < po.

Hussard, Kazarinoff and Wan [35] have given a
recipe to check whether a system exhibits Hopf bifurcation
or not. The recipe is given below.

l. Select the bifurcation parameter u.
Let xi = fi(xi9p)9 i = 1929 ¢'°s n
denote the system to be studied.

2. Locate xi*(p), the stationary point of interest.
Calculate the eigen values of the Jacobian matrix
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of

mo = -5-1 <><i*<p>.p> 1,3‘ = 1.2,...,n.X.
J

and order them according as

Re Q Q Re?\ Z ... > Re7\ .1 - 2 - = n
3° Find a value uo such that, Re§Rl(po) = O

If (a) Al and A2 are a conjugate pair

( ie.§Xl(u) =;\2(p) ) for p in an open interval
including H00

(b) Re ‘Xi (no) :4 0

(¢) Im A1010) aé 0

(d) Rc-(Aj,po)<o,(j=3, .,..,n.)
then a Hopf bifurcation occurs.

In the models presented in Chapters 3 and -4 we
have observed the appearance of Hopf bifurcation.

Let us denote (xio, po) as a complete bifurcation
point of the system (2.3). At this point the Jacobian

matrix J(xi,p) has a pair of complex conjugate purely
imaginary eigen values,

ie. Re{?\l’2} = O (2051)
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Let the characteristic polynomial J be

P(?\) =)\n + al)\n'l + a27‘m'2 +  + an_l'X+ an (2.52)

The necessary condition for the occurrence of the Hopf
bifurcation point is given by (2.51), ie. the polynomial
(2.52) has two roots,

A13 = i iwo, do > o (2.53)
The polynomial P(%) can thus be decomposed into

2 2P(9~) - (?( +wo )Pn_2(?\) (2.54)
where Pn_2(%) is a polynomial of degree n-2. For an
estimate of w, (2.54) can be written using Lin-Bairstw
method as,

P(A) = (A2+w) (}n'2+ pl)?-3+ ... + pn_3j\+ pn_2)

+ A9\ + B (2.55)
,

| .Coefficients pi, i = I??, ..., n-2, A and B can be
calculated recursively,

P_l = or Po=l; Pk = ak'wpk_22 k=l929"'9n'2°
2.56A = an_l - wpn_3; B = an - w pn_2 ( )



The values pk, A and B depend on xi, p and w.

For w = wo2, we can write (2.34) as

fn+l (xiiptw) = A(xi9p9w) = O (2057)
fn+2 (Xi,p.,w) = B(Xi,p,w) = O, j..='-].,2,oo,no

As a result we have n+2 equations; (2.3), (2.57) in

n+2 unknowns xi,p,w; i = 1,2, ..., n. The solution of
these equations gives the Hopf bifurcation point

(xio. no. w°)~

The above method is an indirect method used for

the computation of Hopf bifurcation points. Hopf bifurca­
tion points are obtained by solving the algebraic equation
d(p) = O during a continuation process along the branch of
steady state solutions.

2.6. NUMERICAL METHODS

The reaction models involving two intermediates can
be handled mathematically without much difficulty. Power­
ful mathematical methods has been developed for limit cycle
behaviour of differential equations, describing such two
dimensional systems. As the state of a system can be



described by a point in a phase plane, the well known
theorems of Poincare and Bendixson are applicable. The

multivariable systems could be tackled only using
numerical methods.

A number of numerical methods have been developed

to get the approximate solution of a system of differential
equations (2.1). When we think of approximating a solution
numerically, we are concerned with the accuracy of it to
the actual solution. At this point, we define the concept
of convergence to mean that any described degree of
accuracy can be achieved for any problem having a unique
solution, by picking a small enough step size h. The
discrete variable methods (difference methods) are used
for the automatic computation of general nonlinear problems.
This provides a rule for computing the approximation at

step i to xi (ti) in terms of values of xi at ti_l and
possibly preceding points.

Let an approximate solution at a point

tj ( j '30,]-, Q00,    > O)’
be xiJ/\/xi(tj). The methods of numerical integration
can be classified into single-step and multi-step technigues
By means of the single-step methods, the approximation at

the successive points tj+l is constructed solely on the
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basis of the known solution approximation at the point tj,. l . .XiJ+ Z XiJ + hj ¢i(tj) xij’ hj) (2058)

where the functions ¢i do not depend on tj for the autono­
mous systems (like 2°2). The function ¢i characterizes
the particular single-step method. When ¢i depends on
xj+l, we say the method is implicit and explicit otherwise.

If in a method, the error behaves like O(hr), we
call it an rth order method. If the higher order deriva­

tives of xis can be calculated, we have

H3‘
on l-1

X
Ho /5

. . 23+1 __ J ‘ h 1 ___ I)Xi — Xi + hXi + 2— Xi' + 000 +

hr+l X (r+l)
The local truncation error will be a—=< bl s s 0 Euler's

(r+l)£

method (first order method) is not very useful in practical
problems, because it requires a very small step size, for
reasonable accuracy. Taylor series method of higher order
is not appropriate, because of the need to obtain higher

total derivatives of xis. The most important among the
single step methods, the Runge-Kutta methods attempt to
obtain greater accuracy and at the same time, avoid the
need for higher derivatives, by evaluating the function

fi(xi) at selected points on each subinterval.
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The classical scheme for the fourth order Runge­

Kutta method is as follows. For this the function ¢i is\
expressed recursively in the form,

kl =
k2 =
k3 =
*4

j+l

Jh. fl(xi )
h. f (x.J1 1

X
J1 1

X

++

j1 +

N)!-' FOI-'
3'

I-'
\./

- k2 > (2.59)
1.3)

_ i Axi _ xi + 6 (kl + 2x2 + 2x3 + k4)

The local truncation error in this method is O(h )5 O

The disadvantage of this method is that, the four func­
tion evaluations, at each step provide much discretization
error. This method has the important advantage that it
is self starting.

The single-step method (2.58) is convergent if

xij —-—-> xi(t), for every O § t Q b as j --9 on and
xio-———$> xi(o) with h = % for any differential equation

like (2.1), which satisfies a Lipschitz condition. We note

that errors are permitted in the starting value xio since
in practice we cannot represent y(o) exactly in finite
precision. Convergence assures that, the true solution can
be approximated arbitrarily close by making h smaller and
using greater precision.



Stability of a method is concerned with the effect
of perturbations on the numerical solution. A single-step
method is stable if for each differential equation satisfy­
ing a Lipschitz condition there exist positive constants

ho and k such that the difference between two different
numerical solutions xi and Q1, each satisfying (2.58) is
such that

|!xi"';i g k“YO"'7O“,

for every

O
ll/\

D‘

“A
‘J’

O.

Some results in connection with the stability of
single-step method [25] are stated below without proof.

l. If ¢(t,x,h) satisfies a Lipschitz condition in L,
then the method given by (2.58) is stable.

-2. If ¢(x,t,h) is continuous in y,t,h for O 5 t Q b,
O g h g_ho, and all x, and if it satisfies a Lipschitz
condition on y in that region, a necessary and sufficient
condition for convergence is that,

¢(><(’c). 1.0) = f(><(’¢). t)

This is called the condition of consistency.
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Applying the above result, we can show that the
classical fourth order Runge-Kutta Method converges for a

system of equations (2,2). Since the functions fi satisfies
a Lipschitz condition,

kl = h fi(xi) satisfies

H kl(xi) - kl(xi*) H
l= h <>fi(Xi + '2

H k2(xi) - k2(xi*) H s

5

§ h L H xi ’ xi* H

kl(xi) ) satisfies

h L HX.—X.*+ 1 k (X )- lk (x.*)“1 _1 Q 1 1 Q l 1
n L (1 + % n L) H Xi-xi* H

k3(xi) = h fi(xi + % k2(xi)) satisfies,

H k3(xi)'k3(Xi*) ll §

S

1 1
h L H xi-xi* + §k2(xi)- §k2(xi*)“

h L(l+ %hL+ §(hL)2) “xi-xi*H

and k4(xi) = h fi(xi + k3(xi)) satisfies,

H k4(xi)-k4(xi*) H Q h L “xi-xi* + k3(xi)-k3(xi*) ||

S.

Therefore

l 31 2
5 L (l+hL+ §(hL) + Z(hL) )Hxi-xi*“1 . .

¢(xi,t,h) = -35 (kl+2k2+2k3+k4) satlsfles,

H ¢(xi9t2h) ' ¢(xi*9t9h) H

; %(1+ %hL + %(hL)2 + %z(hL)3) Hxi-xi*H
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Hence ¢ satisfies a Lipschitz condition in xi. It can
also be seen to be continuous in h and hence we can

conclude that the classical Runge—Kutta method converges

for a system of differential equations.

To minimize the error in a single—step method,
we have to choose the suitable step size and order of
the method. Step doubling technique is one method used
for the error control in the Runge-Kutta Method. Each
basic step size h is done twice once as two steps of
size g and once as one step of size h. Since the error
has the form,

nr*l ¢i(xi,t) + o(nr*2) (2.60)
the two results can be compared to estimate H ¢ Hi.

If the result of one step of size h is yi, while the
result of two steps of size g is xi, we have,1 - 2

H 'vi-Xi H = h’* (1-2 r) H ¢i<t) H + o<h’* > (2.61)

We have basically followed the typical fourth
order Runge-Kutta method with the step doubling technique
as suggested by Gear [25], to solve the reaction systems
described here. The scaled error is restricted to be less
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than 10-8 (EPS), an input parameter. The value of h
for the next step is computed to make h nearly as necessary
to make the next scaled error‘equal to lO-8. If the scaled
error is greater than EPS, the step is rejected and repeat­
ed with the newly recommended H subject to a minimum step
size of HMIN. This method keeps the relative error
approximately constant in the maximum norm.

The difference between the multi-step and single­
step methods, lies in the fact that, in the former, the
value of solutions (and the right hand sides of the differ­
ential equations to be solved) are used at more than one
of the previous mesh points. In comparison with the single
step methods, multi-step methods have higher efficiency.
But the disadvantage is that the initial conditions are
not sufficient to begin the integration. To begin the
multi-step method, several steps of a single step method
are usually used. The second disadvantage to multi-step
method is the difficulty in implementing the automatic
step-size control.

For a constant step size h, the general linear
multi-step method tan be written in the form
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j+l j j-l j+l-kGk xi + ak_l 1 + ak_2 xi + ...+ aoxi

X

. 1 . . l_
= h[Bk fg* + ak_lfi + ... + so f§* k ] (2.62)

where ak # O, aO2 + 502 > O.

This is called the k-step method. It is fully characterized

by the elements ai and Bi. If ak = l, ak_l = -l, and ai = O,
for i = 0,1,2, ..., k-2 (2.62) are Adam's methods.

For Bk = O, the method is explicit (Adams-Bashforth)
because, we need not iterate to calculate xij+l. In the
Adams-Bashforth method, we have:

xffl = xi + mfg +%Afli1"l + %ZZ\2 f?:;"2 + -3133 f§L"3 )

where

Afj'l = fj - f§"li i 1
2 j-2 _ j _ j-l j-2[X fi - fi 2fi + fi ,*fl‘ (2.63)

+-"L­

'0

3 1-3 _ j_ 3-2 1'-2 J-isZ3 fi _ fi sfi + afi - fi

In this method, we should know four successive values of
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fi at equally spaced points before this formula can be
used. These starting values can\be obtained by using
either Taylor series or Runge-Kutta Methods.

For Bk £ O (2.62) gives an implicit multistep
method (Adams-Moulton type). To obtain xij+l, we have
to use an iteration technique. If ak = l, ak_2 = -l
and ai = O for i # k, k-2, we obtain the Nystrome and
Milne-Simpson methods. Coefficients of these methods
as well as coefficients of the Adams type are given by
Henrici (1962), (see [48] ).

When some of the components xi change rapidlydx
with varying independent variable t (the derivative afi
is large), the method of integration along the solution
arc may be used. Let y denotes the length of the arc and
differentiating (2.1) formally with respect to y,

dx. dx. at__£ = __1- - (2.64)dy dt dy
Then it follows fromfihe Pythagorean theorem for the lengthJ».

of arc that,

dx 2 dx 2 — AQ - (-i> (-Q) 2dy - i [l+ dt + ... + dt ] (2.65)



where the positive or negative sign denotes orientation
along arc. The n+l differential equations (2.64) and
(2.65) are integrated instead of integrating the n differ­
ential equations. Further,

d .
:' I fi(t0xi) fo(tsxi) I é. 1 (2066)

\%§\ = |f0(t,><i) | g 1 (2.67)where 1
f0(t,xi) = {Ll+ [fl(t,xi)]2+ ... + [fn(t,xi)]€} Q

(2.68)
will not occur.

Stiff systems of ordinary differential equations are
characterised by systems with real parts of the corresponding
eigen values differ from each other by several orders of
magnitude. The problem of 'stiffness' arises in solving
system of differential equations describing reaction systems.
The two aspects of problems connected with the stiff systems
are the stability and the accuracy.

Let us consider a scalar equation,%% =
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for a general complex number X with a negative real part.
A numerical method of integration that produces a\
sequence x3 = x(tj) with a constant integration step h
is called A-stable (see [48] ) if in the recurrent relation,

xj+l = p(hA). Xj (2.70)
the variable p (dependent on the product h‘Q) satisfies the
relation,

| p(h7\) | < 1 (2.71)
for any integration step size h. Also the method is said
to be L-stable if |p(h?\)| ———-) O as h ———> co .

If a method which is not A-stable is used, large
negative numbers decrease the integration step h, so that
the integration becomes ineffective. On the other hand,
if an A-stable method is used, the problem arises in the
aspect of accuracy in the solution, rather than the stability.
Here, for certain step size h, the solution component corres­
ponding to the eigen*Value with the largest absolute value
is approximated inaccuratelys Gear [25] gives a method
(based on Multi-step Methods) to solve a system of stiff
differential equations. Many of the chemical reaction
systems exhibit stiffness property.



We have tried several numerical methods to study
the systems. However, we found that the Runge-Kutta
method with step doubling to be a more efficient method
to study our systemso However, to trace points of bifurca­
tion or points of branching continuation methods or the
like are more suitable if one can afford for the computer
time. We have used a continuation method [47] to study
the dependence of steady state solution of the system (3.14)



Chapter 3

A MODEL FOR CHEMICAL REACTING SYSTEMS

3.1. INTRODUCTION

The Belousov-Zhabotinskii (B—Z) reaction is

probably the most widely studied oscillating reaction in
recent years. Although it is chemically complicated,
it is still very simple compared with biological oscilla­
tors. The oscillatory phenomenon in the oxidation of
citric acid by potassium bromate in a sulphuric acid
medium, catalyzed by the ceric-cerous ion couple was

first reported by Belousov [5] and the necessary modi­
fication (citric acid is replaced by malonic acid) was
done by Zhabotinskii [81]. Field, Koros and Noyes [17]
produced a detailed reaction mechanism consisting of
eleven complicated steps, widely known as the FKN mechanism

Many mathematical models are suggested for the study of
B-Z reaction. The most well known among them is the
Oregonator model [19] consisting of five steps.

!"“‘lI‘/“

The reaction mechanism and model are described

below. In the earlier studies, the oscillatory behaviour
of the Oregonator is explained mathematically by keeping
the controlling parameter fixed, viz. f = l.O. Both the
two-dimensional and the three-dimensional systems were
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studied [19] for f = 1.0. We have presented some results
pertaining to both the two-dimensional and the three­
dimensional approximations of B-Z reaction for various
values of the stoichiometric parameter f. We have followed
basically the kinetic model suggested by Field and Noyes[l9]
to explain the oscillations.

3.2. CHEMISTRY OF THE B-Z REACTION

A convenient recipe [73] for the B-Z reaction is
as follows: . I ‘t’ lIngredlents concgntrgtions

150 ml 1M H2504 l M
0.175 g Ce(NO3)6(NH4)2 o.oo2 M ( )3.1
4.292 g CH2(COOH)2 0.28 M
1.415 g NaBrO3 0.063 M

Dissolve malonic acid and cerium ammonium nitrate

in sulphuric acid in a beaker equipped with stirring
apparatus. This yellow solution turns clear after a few
minutes. When sodium bromate is added to the clear

solution, it will turn to yellow (corresponds to ceric ion),
then clear (corresponds to cerous ion), ..., oscillating
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with a period on the order of one minute, depending on
the rate of stirring, whereas the life time of the
phenomena of the order of the hour. Finally the oscilla­
tions die out as the system remains closed to mass transfer
and the raw materials necessary for the reaction are
exhaustedo

In 1972, Field, K6r6s and Noyes [17] proposed a
detailed kinetic mechanism (FKN) of the reaction, comprising
ll steps, Later, in 1974, Field and Noyes [19] simplified
the more complicated FKN, consisting only of five steps
(referred to as the Oregonator in the literature) and
interpret the oscillations in homogeneous solution, in
terms of the properties of the key substances,

(i) HBrO2 (Bromous acid), seems to play the role of
a switch intermediate.

(ii) _Br (Bromide-ion), which seems to play the role
of a control intermediate, and

(iii) Ce4+ (ceric-ion), which seems to be a regeneration
intermediate, in the sense that, it is rapidly produced
when the gystem is switched in one direction and permits
thereafter the formation of the control intermediate Br-.
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O With excess of Br-.
1<

1

(1) Bro3' + Br" + 21~1* —-a HBrO2 + HOBr (Ml)k2 (3.2)
(ii) HBrO2 + Br‘ + I—I+ ---> 2HOBr (M2)

O With small quantities of Br’ left,
Cerous-ion (Ce3+) is oxidized as follows,

k3 .
(iii) BrO3 + I-IB1:02 + H+ —-a 2BrO2 + H20 (M3)

k¢ 4
(iv) B102 + Ce3+ + 14* --9 HBrO2 + ce“* (M4) (3.3)

k
5

(v) 2HBrO2 —-—> 31:05 + I-lOBr + I-I+(M5)

Here ki, i = l,2,3,4,5 are the reaction constants. The
superscripted '.' of Br62 indicates that it is more reactive.

By the law of mass action, in the first quasi­

steady state, the rate of reaction of HBrO2 is given by,

[HBr02]A = (kl/k2) [mg] [11+] (3.4)

where kl/k2/R5 1o"'9.

Similarly, in the second quasi-steady state,

[HBr<>2]B = (K3/21<5> [H*] [Br<>§ 1 (3.5)



where k3/ks,/xi 1o'4, k3 = 104 M-2 s"l

_from (ii) and (iii) it appears that Br and BrO3 compete
with HBrO2. Then at equilibrium,

k2 [Br ] = k3 [B103] (3,6)
The autocatalytic production of HBrO2 ceases when

k2 [Br ] >» k3 [ Bro; J (3.7)
Thus at the critical concentration value,

[Br 16 = (K3/k2) [B103] (3.8)

where k3/k24=95xlO 6, the reaction switches from path­
way (302) to pathway (303). As [HBrO2] increases, Br’ is
consumed and [Br'] drops below the critical value. On the
other hand, the produced ceric-ion (Ce4+), regenerates
bromide-ion (Br'), according to the global reaction,

ks
(vi) 4Ce4+ + BrCH(COOH)2 + H20 + HOBr ——-—>

2Br_ + 4ce3* + 3002 + 6H+ (M6)

Hence the oscillation occurs.



303. MATHEMATICAL MODELLING

It has already noted that the most important
phenomena associated with B-2 reaction is the oscillations.
The occurrence of oscillations is explained [19,20] mathe­
matically below. Let X,Y,Z represents the concentrations
of the three key substances: Bromous acid, Bromide-ion

and ceric-ion respectively. ie.

X =
Y =

[ HBrO2 ][ Br ] (3.9)
z = 2 [ce4* ]

And also it is set

A = B = [Bro3']
P,Q = Waste product concentration

Then from the reactions (Ml)-(M5), we can see that,

(1)

(ii)
(iii)
(iv)

(v)

(vi)

describes the conversion of Y to X,
implies the simultaneous inactivation of X and Y,

indicates the catalytic generation of X,

the bimolecular decomposition of X and the
global reaction,
indicates the transformation of Z into Y.

(3.10)



A + Y

X + Y

B + X

2X

Z

+0 osm, [H ] = 0.8M

k1
——->

k2
——>

K34
——>

ks
———->

k
__§,

O

Hence we have the following scheme,

X

P

2X+Z

Q

f Y

Here, f is a suitable stoichiometric coefficient, the

acid A comparison with the detailed mechanism [15]

kl = 1.34 M-1 s'l
R2 = 1.6 x 109 M'l s'1

x34 = 8 X 103 M-1 s'l

k5 = 11 x 107 M 1 s 1

75

(3.11)

rate constants kl to k34 contain the effect of bromomalonic

suggests the following values for the rate constants [63].

(3.12)

The values of k6 and the stoichiometric coefficient f are
used as parameters in general [60]. But in our discussion

we fix k6 = l and only f is used as the system parameter.
Also in the region studied experimentally, A = B = [BrO3_]=
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The differential equations describing the dynamics of
the model obtained by applying the law of mass action
to the reactions (Ml)-(M5) are as follows.

QZat

2!at

Q;at

2
_ klAY - k2XY + k3BX - 2k4X

= -klAY - k2XY + fk6Z (3.13)

= k3BX - k6Z.

The dimensionless scheme of (3.13) is given as

“Ii”f\

dz
E?

These equa

ordinary d

X

Z

Q

w

Q5
dT = s(y-xy+x-qx2)

= %(-y-xy+f2) (3.14)
= W(X—Z)

tions represent a system of nonlinear coupled
ifferential equations with x,y,z,?,q,s and w as,

= (k2/kl)X. Y = (k2/k34B>Y
l

= (1< 1< /1< 1< AB)Z T = (1< k A1-3)'i'.t2 6 1 34 ' 1 34 (3015)
= 2klk5A/k2k34B , s = k34B/klA

= k6/klk34AB
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For the estimates given above, we have

q = 80375 X  S =7  and W -"3
We notice that the system (3.14) involves two time scales,
since the evolution of x is very large, whereas that of
y and z by inverse time constants of order less than unity.

Since the three-variable model (3.14) is nonlinear,
coupled and stiff in nature, it cannot be integrated directly.
Therefore we first present a discussion of the two variable
model, y-z system which is more interesting than the x—z
system. Rinzel and Troy [65] have discussed the x—z system
in detail.

3.4. TWO VARIABLE OREGONATOR MODEL

As mentioned earlier, the values of the constants
s, l/s and w in (3.14) suggest that the evolution of x is
much faster than y or z. The pseudo-steady state hypothesis
§ E O, ie.

2y-xy+x-qx E O (3.16)
provides a value of x as a function of y,§say g(y). When
this value of x, viz. g(y) is introduced in the x-y-z
model, the y-z model is obtained. When we discuss this
y-z model, we restrict our attention to the parametric



values f > l. The second half of this section describes
the behaviour of the system for O < f < l.

The quadratic equation (3.16) gives,

1

X = q(Y) = [l—Y + [(1-v)2+ 4Yq]:] / Zq (3-1

where y > O.

Now, the y—z model can be cast in the form,

i = [-Y (l+q(Y)) + fz 1/S
(3.1

2 = w [o(Y)—z]

The model (3.18) exhibits oscillatory behaviour over
an appropriate range of the controlling parameter f.
Limit cycles for the system are obtained numerically
for several values of f and some of them are given towards
the end of this sections

The steady state solutions of the system is obtaine

by solving § = 2 = O, we have g(yo) = 20. And § = O, impli
YO = (f~9(YO)) / (l+q(vO))­

i9. Yo = fZO/l+Z0
From the complete model (3.14), E = O, implies, xo = zo.
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Then by using (3.19) and (3.16), we can have

qz 2(l+z ) - z (l+z ) - y (l+z ) + fz 2 = Oo 0 o o 0 o \ 0
ie. qzo2 - (l-f-q)zo — (l+f) = O (3.20)

.1.

z0(f) = -5-;1'(\(l-f—q) :1: [(1-f-q)2+4q(l+f)]2:) (3-21)
Also from (3.16), we can have the following relation

2
qzo - 20 + yO(l+zo) - 2yo = O

ie 2y = qz 2 - z + fz (3 22)° o o o o '
Applying (3.22) in (3.20) we have,

2yo = l+f — qzo

.°. yo(f) = 2%; (approximately) (3.23)

We can expand yo and 20 as powers of q, since q = O(lO'5).
Consider the discriminant of the equation (3.21), we have2 2 l+f 2
[(1-f-q) + 4q<1+f)1»,=¢(1-f-q)+2q (-l—_-;) + 5%;-;). f 1
O O zo(f)w -;-1-I + 0(q)

/v f-1-1~ -F (3.24)
Thus the approximate value of the equilibrium solution is

wow). zO<f>1= [£51.-§—_-1%]
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The y-z system (3.18) can be modified, by introducing
the variable

1l__2lxllz*<y> = 1; . as
; = (-z*(y)°f + fz)/s (3.25a)
5 = w(q(Y)-2)

Now applying the linear transformation Y = y-yo, Z = z-zo
and using Taylor series expansion, we have the linearized
matrix, A as follows, i

f
EA = a (3.25b)

W- dq(vO)1 ———————— -w \_.. dY _n
T’ 5 dZ*(Yo)' s dy

From (3.17), we can have the approximation for g(y) as
\

g(y)//v £3 + O(q) (3-26)_'°  ( O (3.27)Y (Y-1)

-5-3-* = % [Y9'(Y) + l+q(Y)]

O -1+ 2_2_
. . %%—LX)= % [ LfYii)§ 1 1 (3~28)
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The roots Q1, A2 of the det (A—?\I), determine the

stability of (yQ,yz) and satisfy the equations,' .
dz*(Y)‘1‘=9\l +22:-‘E '-'a';"-9' -W

d*( ) d( )
A =9\l?\2 =-"i-5 —f-a;/l‘l- --33%-L (3.30)

From (3.27) and (3.28) we have

dz* l

318'

Using the trace T (sum of the eigen values) and the
determinantqZ)(product of the eigen values) of the matrix A,
we can discuss the topological structure of the steady

state (yo,zO). Both the eigen values are real if T2 > 41).
Because the accessible phase plane is bounded and the
uniqueness of steady state solution in the positive y-z
quadrant lead to the requirement that, for this model,
[§ > O, and hence both real roots have the same sign.

T ,g§o corresponds to the stable node, while T > O gives
theiunstable node. When T2 = 4&3 , the two roots become
equals When T2 < 4!), the roots are complex conjugate
and the steady state is a focus, which is stable or un­
stable depending upon the sign of T.
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The steady state (y z ) is a stable node0’ 0 ’
dZ*(vO)

when ——aV—— > O. ie. when f > l i Y2. ie. when
dZ*(YO)

f > l + Y2. When ——a§—- < O, with a small enough w,dZ*(YO) d9(YO) _
and -——37- — -——a§— > O implies the steady state 1S

an unstable node. Hence the range of f, where the unstable
node lies is

1

f < 1+ V2 and f > 1.

i.e. 1 < f < 1 + V2 (3.33)
As f crosses the critical value f = l+ V2, unstable node
becomes a stable one. Hence the real bifurcation occurs.

When the roots are complex conjugate, the steady
state is a focus, which is stable or unstable depending
upon the sign of T. Since the accessible phase plane is
bounded, the Poincare-Bendixson theorem requires that an

unstable node or focus is always surrounded by at least
one stable limit cycle. When T = O, the system undergoes
a Hopf bifurcation as it makes a transition between stable
and unstable foci.= If that bifurcation is supercritical,
the associated stable focus is globally attracting [3].



The value of f (say f = fl) at which a Hopf
bifutcation occurs in our system satisfies,

dz*(YO) W5

Using (3028) we have

(2+ws) (yo-l)2 = 1

l+(2+ws)'/7' ( )000 Y = s"s=—"**s“ 3°35
O (2+ws)v2­

From (3023), for f = fl, we can have

fl: 2Y0-1
2ies f = l + ———————- (3.36)1 (2+ws)%­

Then at f = fl, the eigen values of A have zero real part
(to first order in q).

Let the eigen values have the form

’)\l= cxO+iwO, ?\2= 0:0-iwo

where ao = O and hence the eigen values are i iwo.



Considering the characteristic equation of (3 25b)

with 21, Q2 = _-1; iwo, we have

T

Thus

iA l,§\2 =

= .-:

=1

mo can be expressed in terms of fl as follows,'. 2 2Al.22=¢.=»[§-‘($1->1 (arm
Here, for sufficiently small If-fl] > O, w gives the
frequency of oscillation of small perturbations from

(yo,zo). The condition for the existence of complex
eigen values for the matrix A can be obtained in the form,

= O and Z3 = woz

i VA

.H
s

i [ S

(2(y0_l)2  1+f1> Q
(Y0 l)2 l l

-aw [l+(2+ws)2 ]] 2

f +1 A

[l_ __g___ W512 < fi£§£_<f-1>2 J’ 7 (f-1>2

2yfws, 2 ws.. |l-———-2+-Q-|< fl (338)(f—l) '
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By the hopf bifurcation theorem discussed in
chapter two, we can test the behaviour of the steady

state solution as f crosses the threshold value fl.

3
QQ_ - _ (2+ws[df  '-' " 28

f=fl
The loss of stability at f=fl is thus a classical Hopf
bifurcation in which

a'(o) = Re $\'(fl) ;£ O
and hence periodic solutions are observed out of the

stationary state (yO,zo)s

For f g l, the above mentioned approximations
are not valid. In this range of f, the following approxi­
mations [l9] for (yo,zO) are used.l-f ~

204%-I—a—, when f<l

//\/J  9 when f/A’: l

The corresponding value for yo can be obtained using (3ol9)0

(3.40)

Prom (3040), it is to be noted that 20 be of O(lO5) and we
cannot proceed further in this direction analyticallys But
numerically, some results are obtained for the whole range,

é < f < 1 + V2, which is discussed belows
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To solve the two-variable system (3.18) numerically,
we used a fourth order Runge-Kutta method with the step
doubling technique (Section 2.6). Oscillation occurs only
for 0.5 < f < l+Y2. In this range of f, limit cycles are
obtained for certain values of f in the y-z plane, We have
plotted log z vs. log y. The initial values set for the
computation is (y ,z ) w¢(l.0 488.8) and the values of theo o ’
parameters as, s = 77.27, q = 8.375 x l0'6, and w = 0.161.

At f = 0.5 an ‘L: shaped solution curve is obtained
instead of closed trajectory, and the solution (y,z) blows
out at the dimensionless time ’E= so [Pig.l(a)]. But for
a value of f, very near to 0.5, ie. at f = 0.5001, a limit
cycle is formed and the trajectory just closes at =297.0.
According to Bar Eli and Noyes [3], all limit cycles (stable
and unstable) can occur in the range of 0.50005 < f < 1.9475.
Our results are in confirmatory with this observation.
Fig.l(b) gives the limit cycle corresponding to f = 0.5001
and it is in the shape of a pentagon.

Q

An incomplete trajectory in the y-z phase plane is
obtained for f = 0.6 and the solution blows out at =340.0,
[Fig.2(a)]. The same behaviour is observed [Fig.2(b)] for
the parametric value f = 0.7 and the solution blows up at
1T=235.0. But at f = 0.74, a complete limit cycle [Fig.3(a)]
is obtained and it closes at =375.0. For the parametric
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Fig.l(a). Phase plane plot of loglO[Ce4+](z) vs. loglO[Br_](y)

obtained by the numerical integration of equations (3.18).
The trajectory corresponds to the parametric value f=0.5
and it blows out at/2: 30. The steady state (y ,2 ) =(1.0, 488.8) and the values for S = 77.27 ° °
q= 8.375 x lO'6, w = 0.161 are used throughout this work.The arrow indicates thfi direction of time evolution.

Fig.l(b). Limit cycle obtained from the system (3.18), for f=O.500l
which closes at’? = 297.0.



[J36 Z

5‘,*,

3­

"]: l,_

Fig.2(a)

Fig.2(b).

1- ' T
-4 -2

_ 0 .__*aa W ois_c_- -01 . _ 0 ps1
\ F

i

1 o 1 * * *#'" o * 1 Y h *1 e  T e h 1O 2 473 "2 0 2 4LOG Y LOG YFig.2(a) Fig.2(b)
Phase plane diagram of logloz vs. logloy obtained
by numerical integration of equations (3.18). The
incomplete limit cycle corresponds to the para­
metric value f = 0.6, and the solution blows outat’Z= 340.0. '
gflite plane plot of logloz vs. logloy obtained by
the numerical integration of (3.18). The trajectorycorresponds to the parametric value f = 0.7, and
which blows up at‘? = 235.0.
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Limit cycle obtained for the system (3.18) for the
parametric value f = 0.74, where logloz is plotted
against logloy. The period i$‘f = 375.0.

The unstable limit cycle surrounded by the stable
one for the system (3.18) corresponds to f = 0.8.
logloz is plotted against logloy. This leads to
hard self excitation.



value f = 0.8, an unstable limit cycle surrounded by a
stable limit cycle [Fig.3(b)] is obtained. The steady
state is locally stable, then Fig. 4(a) illustrates the
existence of an unstable periodic solution, surrounding
the steady state and wholly inside the stable limit cycle.
This situation is often called hard self-excitation because
though there exists a self-excited oscillation (ie. an
orbitally asymptotically stable limit cycle), it takes
a hard (finite) perturbation to move the system out of
the domain of attraction of the stable resting state.
In the two-dimensional case, a separatrix may be an
unstable limit cycle, which separates a locally stable
steady state or limit cycle from a surrounding locally
stable limit cycle.

Isolated limit cycles are observed [Fig.4(a) and
(b)] at the parametric values, viz. f = 0.9 and f = l.0
and the period of oscillation are Q== 448.0 and Q = 395.0.
More than one limit cycle is obtained for some values of f
greater than 1.0. At f = l.l, two limit cycles are formed
simultaneously, in the sense that, the first one is formed
from Q = 0 to Q = 353.0 and the next starts from¢t,= 353.0
and winds up at T = 743.9 (ie. with a period 390.9). These
two limit cycles are shown LFig. 5(a) and (b)] separately.
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Fig.4(a). The isolated limit cycle of the system (3.18)

corresponds to f = 0.9, when loglgz is plotted vs. logloyThis limit cycle formed at'f=448.0

Fig.4(b). The isolated limit cycle in the logloy - logloz plane
of the system (3.18) corresponding to f = 1.0, which
completes ati?= 395.0. Field and Noyes [19] found
their limit cycle closed at’?= 302.9.
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Fig.5(a). The limit cycle of the system (3.18) at f = l.l

in the logloy - logloz Plane formed from':= O to
T, = 353000

Fig.5(b). The second limit cycle for the YTZ model at f = 1.1,
from’? = 353.0 to T = 743.9 (period = 390.9) logloz
is plotted against logloy.
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For f = 1.3 [Fig.6(a)] and f = 1.4 [Fig.6(b)],
single closed trajectories are formed. Former closes
at Q = 425.0, while the latter closes at 2‘= 432.3. The
isolated limit cycle [Pig.7(a)] formed at f = 1.5 closes
at €‘= 458.6. It is very interesting to note that for
f = 1.2, there are three limit cycles. First one forms
with a p€IiOd'@ = 376.16. The second one starts from
Q = 376.16 to Q = 736.9. The third starts from 17: 736.9 to
T =982oOo

It may be noted that for values, 0.74, 0.9, 1.0,
1.3, 1.4, 1.5, there arise only one limit cycle and for
some other values of f like 1.2 there arise more than one
limit cycle. This behaviour indicates that in this particular
range of f, something more than the oscillatory behaviour
of the system happens. We can expect excitability in this
region. In the previous section, the qualitative analysis

of the steady state solution (yb,zo) of (3.18) we have seen
that (y0,zo) is an unstable node in the parameter range
1 < f < l + Y2 and therefore by Poincare-Bendixson theorem,
we can have limit cycle solutions for the system. Theoretically

the Hopf bifurcation occurs at fl and which is estimated as
fl = 1.526, using the parameter values, s = 77.27 and w =0.l61.

Three limit cycles [Fig.8 (a), (b) and (c)] are obtained

for a parametric value f = 1.595288, which is very close to fl.
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Phase plane plot of logloz vs. logloy obtained by the
numerical integration of the system (3.18). The isolated
closed trajectory corresponds to the parametric value
f=l.3, with period 425.0.
Numerical solution of the system (3.18) is represented
graphically by plotting logloz vs. loglgy. The limitcycle corresponds to the parametric value f=l.4, with
period 432.3.
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The isolated limit cycle corresponds to the parametric
value f=l.5 with period 458.6. Logloz is plotted against
logloy.

The phase plane plot of logloz vs. logloy obtained for
the system (3.18) at f =l.6. After a time'E= 381.0,
the trajector comes steady at a point (logloy, logloz) =(O.ll3, O.639¥
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The first limit cycle is formed by taking a period
Q = 454.1, second one with period T'= 406.82 and the third
with period 404.08. Then the trajectory continues to be

steady at a point (logloy, logloz) = (0.113, 0.639). The
existence of more than one limit cycle at this point
indicates the possibility of excitability in the region,
1 < f < 1 + Y2.

We have not come across any limit cycle behaviour
for the system (3.18) in the parametric range, f < 0.5
or f > 1.6.

We have presented here a series of figures obtained,
explaining the behaviour of the system. The intermediate
concentrations are clearly oscillatory in time and the plots
qualitatively supports the experimental [19] observations
in the B-Z reaction. The critical bromide ion concentration,

[Br']c can be read from the log [Br'] plot, at which the
spikes form. Logloy and loglOz‘are plotted against the
time Q§. The spikes corresponding to logloy and logloz
form at the same time Q . That is the bromide-ion concentra­
tion at which the concentration of the ceric—ion changes from
one phase to another (ie. increases or decreases) at the same

time. From the logloy vs. time plot, we can see that the
concentration of bromide-ion was in plenty and it decreases

till the [Br]C and the concentration of bromide-ion shoots
up again and this procedure continues. For the parametric



values. f = 0.74, 0.9, 1.0, 1.3, 1.4 and 1.5 only one
spike is obtained. This is depicted graphically in this
chapter. At the point where the spikes are forming, the
reaction switches from pathway (3.2) to the pathway (3.3).

More than one spike are seen for the parametric
values viz. f = 1.1, f = 1.2 and f = 1.595288. Two spikes
are seen (Pig.10) at f = 1.1. Three spikes unequally
spaced are seen [Figs. 11 and 12] for f = 1.2 and f=1.595288.
Obviously, the number of spikes indicates the number of limit
cycles formed for the system.

For the parametric value f = 0.8, the spike forms
at'? = 130.0 and at f = 0.9, the spike forms at€?= 133.0
[Fig.9(a)]. For f = 1.0, the spike appears at1f= 139.0
[Fig.9(b)]. At the parametric value f = 1.1, the first
spike forms at’? = 145.0, followed by the second one at
T'= 448.0. Figure.l1 gives three spikes at‘? = 151.0, 457.0
and 762.0 for the parametric value f = 1.2. Similarly the
spikes of concentration profile of y and z for f = 1.595288
are formed at’? = 193.0, 530.0 and 865.0.

For f = 1.3, the spike forms at‘? = 158.0, for
f = 1.4, the spikes forms at 12: 165.0 and for f = 1.5,
the spike forms at’? = 173.0. No spikes are observed for
f = 0.5, 0.6, 0.7, 1.6, 1.7 etc.
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Fig.9(a). Traces of logloz, logloy vs. timeft). The integration
used f=O.9. The Process I(3.2) is occurring during
the long stretches when [Br'] Or (Y) is high andProcess II (3.3) is occurring when the sharp spikes
of [Br-] or (y) appear. The spikes corresponding
to logloy and logloz are forming at1T=l33.0.
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Traces Of 109101, logloy vs. time(1§ obtained by
the numerical integration of (3.18) at f=l.O. The
spikes corresponding to log y as well as log z10 l0
are forming at'Z =l39.0.
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From all these we can conclude that the critical

bromide-ion concentration ( [8r]c) Varies as f Varies­

A special type of behaviour for the trajectory of
the system (3.18) at the parametric value 1.6 is to be
mentioned. The trajectory starting from the initial value

(yo,Z0) = (1.0, 488.8) observed to be attracted by another
steady state (1.297, 4.355). Fig.7(b) depicts the phase

plane plot of loglcz vs. logloy for the parametric value
1.6. The same type of behaviour is exhibited by the system
(3.18) for some other parametric values, viz. 1.7, 1.8, 1.9,
2.0, 2.1., etc.

3.5. THREE-VARIABLE MODEL

The three-variable model (3.14) of the B-2 chemical
reaction is a system of ‘Stiff’ differential equations, as
stated earlier. It is convenient to express (3.14) in the
vector form,

t = F(r; Sawafrq); r = (xayvz)

where ,.._. —-~.
2

1 s(y-xy+x-qx )

F = W %(-y-xy+fz) 1 (3.41)
T w(x-z) ‘Q_-.. lb,
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The possibility of oscillatory solutions, almost
always depends on the existence of at least one unstable
non-zero steady state of the system of governing equations.
This point in r-space is enclosed by the trajectory of the
periodic solution of (3.41) given by setting 5 = O, are

r = (09090): I = I0 = (xovyoa Z0)

fx l
zo = xo, yo = Txgo = §(l+f-qxo) (3.42)

where

qxO2 + [q-(l-f)]xo - (l+f) = O (3.43)

(There is another steady state for which xo < 0, but this
is unrealistic). In (3.42) and (3.43), if q 2 O, f 2 O,
then xo Q O, yo Z O, zo Z O.

The stability of the steady state is given by
linearizing (3.41) about r = O~and r = ro. First, let us
consider the trivial equilibrium state r = O. The linearized
form of (3.14) is given by simply neglecting the quadratic
terms and the corresponding linearized matrix A is as follows.

s O

(D mr~ m

A =-. o - -g (3.44)W "WL... _.J



The eigen values Qtof A satisfy

)3- Q?[s — % - w] +jk[~g - ws - 1] -w(f+l) = O (3045)

The three solutions 9\l,?\2 and A3 of (3.45)
satisfy ’Xl@7\2~:X3 = w(l+f) > O and therefore, there
is at least one root with a positive real part and so
the equilibrium state r = O is unstable. An oscillatory
solution enclosing r = O is physically uninteresting,
since it would necessarily require negative values for
x,y and z, that is, negative concentrations.

For the nontrivial steady state r=rO, we take
the linear transformation X = x-xo, Y = y-yo, Z = 2-zo
and accordingly, we can have the linear matrix,

‘L* -1
s-syo-2qsxo s-sxo O

U = -yo/s -l/s ixo/s f/s (3.46)w O -W____ __..J
From the det IU-ill], we get the characteristic equation as,

A3-rA2+§A-A = 0
Where,



T = -(E+w),<§ = wE+R, [§= w[-R+f(l-xO)]l lE = syo + ( E + 2qs)xo + E - s (3.47)
R = 2qxO2 - xO(l-q) + f

The possibility of having limit cycle type

oscillations is when (xO,yO,zo) is an unstable critical
point. Then at least one of the eigen values of U must
have positive real part. The necessary and sufficient
conditions for the roots of the cubic polynomial to have
negative real parts are (2.15),

T<O, A<o, A-T; >o.
The first two conditions are satisfied for all realistic
values of the parameters s,w,f and q. Now let us consider
the third inequality

A- ré".-= Ew2 + w (f<1-><D>+ E2) + ER (3.48)
Clearly, (3.48) is a quadratic in w and therefore

i
w = - %E(E2+f(l-xO)i §§[(E2+f(1-xo))2-4E2R]2 (3°49)

Then the instability condition which is the reverse of
the third inequality can be cast in the form,

O < w < wC(f) (3050)
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Wharethe stability curve wc(f) is given by (3.49) and
(3.50) is meaningful only if the right hand side is
positive and this requires,

2qxo2 + xO(q-1) + f < O (3.51)
Applying the necessary and sufficient conditions

(2.24) for the boundedness of solutions of (3.41),
Murray [54] obtained the bounds of the solutions as

l
1§><s;,--vlsv<,v2,1;Zs§_E_ -31.Y1 “ l+q ' Y2 " 2q (3'52)
Hastings and Murray [36] proved, using topological

methods, that the model equations (3.14) possess at least
one finite amplitude periodic trajectory. The same result
is proved using bifurcation theory. The existence of a
periodic solution for the complete model (3.14) is proved
asymptotically by Stanshine (1935) [58].

The classical Hopf bifurcation theorem [35] is

applied to estimate the Hopf bifurcation point (say) fc
of the system (3.14). If the characteristic equation

(cubic) has purely imaginary roots, ?\l’2 = i iwo and one
real root (say) §\3, then the characteristic equation can



be expressed in the form,3 2 2 2
Q - >\39\ + LOO?‘ — A3 (1)0 = Q

Comparing the coefficients of the above with the general
cubic characteristic equation, we have,

23 = T. 5= wO2, A = A3 @002 (3.53)
Hence,

the real root = - (E + w) (3.54)
which is always negative.and 1

mo = 1-_ 1 [wE-+-R]? (3.55)
Also,

- [wE2 + ER + w2E + wR ] = wf(l-xo) - wR

Putting R = Rl+f, we have2 2
-[WE + E(Rl+f) + w E] = wf(l-xo)

-E [w2 + wE + R1]fC=  3 3 3 (3.56)
E + w(l-X0)

Differentiating the general cubic characteristic equation,
with respect to the parameter f and simplifying, we get,
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|(f) = WXQ AQ 322-2)T+0fl
Lw(l+xO) + E]= - . . ~§ .2 » < 0 (3.57)

wc +T

Thus the loss of stability at f = fc given by (3.56) is
a classical Hopf bifurcation.

Results are obtained numerically to support the
above fact, viz. for certain values of f, stable limit
cycles exist for the system. This indicates that the
system (3.14) exhibits Hopf bifurcation. Field and Noyes[l9]
have considered the case for only one parametric value,
f = 1.0.

Since the complete model (3.14) is stiffly coupled,
it cannot be integrated directly. The true solutions of
differential equations, as y tends to large values, x tends

to 1.0 and %% tends to zero. that is, for higher values
of y, slight errors in x caused by round off, propagate to
produce very large computed values of %% , when its value
is actually approaching to zero. This problem can be

eliminated by putting %% = 0, where x and %%¢ began to
oscillate during the integration. A complete limit cycle
is the y-z phase plane is obtained [19] for f = 1.0, with
a period1§= 309.2. A limit cycle in the y-x phase plane
is also obtained for the same parametric value.



If a reasonable accuracy is to be maintained,
the integration must be carried out over exceedingly
small increments. We used the Runge-Kutta method, with
the step doubling technique (Section 2.6) to integrate
the complete Oregonator Model (3.14). We obtained closed
isolated trajectories in the y-x phase plane only. Fig.l3
gives the isolated limit cycle of the system (3.14) in
the y-x phase plane for the parametric value f = 1.0 and
it closes at T = 143.5. A limit cycle in the y-x phase
plane, for one more parametric value viz. f = 1.1 is
obtained (Fig.l4) with a period 2 = 148.9.

For the three-variable model (3.14), complete
limit cycle in the y-z phase plane is not observed using
the Runge-Kutta step doubling method. The solution
trajectory in this phase plane blows out (Fig.15) at
2 = 143.5, for the parametric value f = 1.0. The same
behaviour for the solution trajectory is obtained in the
y-z phase plane for f = l.1 also. The numerical integra­

s

tion of the complete model is very much time consuming.

3.6. DISCUSSION

To study the temporal oscillations in the B-Z
reaction quantitatively, the model proposed by Field and
Noyes [19] is used here. The overall net reaction of the
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Fig.l3.

. Projection of limit cycle solution for the complete
Oregonator model (3.14) in the space of logarithmic
variables y and x for the parametric value f=l.O.
Note logl scale. The initial value taken for the
integratign of the X-Y-Z system is (xO,y0,zo) = '
(488.8, 1.0, 488.8). The values taken for the para­
meters s,w and q are respectively 77.27, 0.161 and
8.375 x lO'6. The arrow heads indicate the direction
of time evolution and the numbers indicates times in
the cycle.{f=l43.5 for the entire cycle.
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five step reaction model (3.ll) according to Field and
Noyes [19] is as follows:

fA+2B———> fP+Q

Here, f is the stoichiometric factor and which indicates
the quantity of production of the control intermediate (Br')
in the second half of the oscillatory process. As the con­
centration of the bromide ion crosses the critical concent­
ration value, the first half of the reaction (3.2) proceeds.
Thus actually, the oscillatory mode depends on the controlling
parameter f. Hence it is necessary for us to investigate
the behaviour of the model for several values of f.

The oscillatory behaviour of the complete model (3.14)
as well as the two-variable model (3.18) is studied in detail
only for f = 1.0 so far. A topological proof for the exist­
ence of at least one periodic solution for the complete
model (3.14) is given by Hastings and Murray [36]. The bounds
for the solutions of the complete model was given in 1974 [54].
The reversibility of each reaction step was also taken into
consideration by Field [15]. In the CSTR Model [41] the

species A (or [Br03j ) and P (or [HOBr] ) are treated as
dynamic variables and so it is a five-dimensional model. They

predict that at A = 0.06M and k6 = l, the steady state of the
model is unstable and oscillation occurs for the parametric
range, 0.5010693 < f < 1.526776.

, (;,40§/­
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Fig.l4. Stable limit cycle of the complete model (3.14) in
the-logloy - loglox plane at the parametric value f=l.l
The initial values of the variables and the other
parametric values are taken as mentioned in Fig.l3.
1f= 148.9 for the entire cycle.
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Tyson [75] investigated the behaviour of solutions

of the Oregonator model and predicted that, for % < f < 1+V2,
there exists a stable limit cycle for the model. Hard self
excitation (subcritical bifurcation) is believed to occur
in the B-Z reaction.

In the investigation of the oscillatory behaviour
of the y-z system, limit cycles are obtained numerically

for several values of f in the range % < f < l + V2. Isolated
limit cycles are observed for the parametric values,-0.5001,
0.74, 0.9, 1.0, l.3, 1.4 and l.5 in the y-2 phase plane,
for the simplified model (3.18). It is interesting to note
that, at f = l.l, two limit cycles are observed. Again at
f = 1.2 and f = 1.595288, three limit cycles are seen. At
these points, some behaviour other than oscillatory is
observed. The excitability property of the system is expecte<
at these values of f. When the system jumps from the oscilla­
tory mode to the excitable mode or vice-versa, SNIPER (Stable
Node Infinite Period) bifurcation may occur, for certain
parametric values. Then we could expect some special proper­
ties like SNIPER in some particular range of f as suggested
by Bar Eli and Noyes [3]. The chaotic behaviour of the B-Z
reaction is discussed by Hudson and Mankin [38].
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Fig.15. The trajectory obtained by the numerical integration
of the complete model (3.14) in the logloy-loglOz
plane for f=l.O. The solution blows out at1I=l43.5.
Same type of trajectory is obtained for the system(3.l4)
at f=l.l also.



Chapter 4

MODEL STUDIES ON A CUBIC AUTOCATALYTIC SYSTEM

4.1. INTRODUCTION

The interest in the theoretical and experimental
studies of oscillating reactions is increasing very
rapidly. The pioneering work of Lotka (1920) [34] and
Volterra (1931) on the oscillatory behaviour of the compe­
ting biological species lead to the discovery of many
mathematical models to explain the observed periodicities.
An important feature common to many of the observed
oscillatory reactions, isothermal in nature, is that of
autocatalysis.

Gray and Scott L27,28,29] and Scott [52] introduced
a two reaction scheme which constitutes one of the simplest
known oscillators that operated in an isothermal well-stirred
open system. This is also a good example of the Continuously
Stirred Tank Reactor (CSTR). This model involves a cubic
autocatalysis.

A + 2s ——> as, rate = klabz (4.1)
and a first order decay reaction

lOl
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with only these two components, the analysis provide a
complete, algebraically tractable system which exhibit
many complex patterns of behaviour. Merkin et al. [52]
investigated an adaptation of the Gray-Scott cubic auto­
catalator, as a model for long-lived oscillatory behaviour
in a closed vessel. Instead of having a constant inflow,
the reactant A is envisaged as being formed by the decay
of a precursor species P,

P ———-> A, rate = kop (4.3)
In this study we adapt the following reaction step

S + A ———+- P + A, rate = kola (4.4)
where S is the substrate and which is in abundance. The
species P undergoes chemical transformation through two
intermediate species A and B to the final product C, which
is thermodynamically more stable. This transition is
interrupted by a train of oscillatory excursions in the
concentrations of the intermediates. In a system, where
the species P decreases steadily initially, A,B(autocatalyst)
and C increases in the begining, then the oscillations sets
in the concentrations of A and B. Eventually the oscilla­
tions die out. In our model, the oscillations in the
species P also sets in. This oscillatory behaviour remains
for a very long time.
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We have presented briefly in Section (4.2) the MNS
model analysed by Merkin et al. [52]. In Section (4.3)
the more detailed model of the oscillator involving auto­
catalysis is presented. The stationary states and the
oscillatory behaviour of the present model is discussed
in Section (4.4). The limit cycles obtained in the X-Y,
Y-Z and Z-X phase planes for the system numerically are
presented in Section (4.5).

4.2. MNS MODEL

Autocatalysis is shared not only by the Belousov­
Zhabotinskii reaction, a wide range of halide-based
oscillators but by numerous enzyme systems. All mechanistic
schemes include autocatalytic steps. However, even the
simplified forms of these schemes (for eg. Brusselator [58]
and Oregonator [19] ) are still complicated and necessitates
studies of even simpler prototypes in a logically ordered
way. Gray and Scott [27,28,29} considered the overall
stoichiometry, A -——§ B, satisfying the rate law = ka.
When the same change is catalyzed by a species Y and has
a rate = kay, this is considered as A+Y -——9> B+Y.
Autocatalysis corresponds to catalysis by the product itself.
Two exemplary cases [27,29] span the whole range of behaviour
likely to be encountered,

quadratic auto catalysis rate = kqab
cubic auto-catalysis rate = kcabz.
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These may be represented by the chemical equations,

and

A + 2B ———7 3B

The simplest decay of B is via a first order process,

B ‘———9 C, rate = k2b

This adds another dimension to the system, as there are
three species concentrations and still only one relationship
exists between them. Most importantly, the concentrations
of A and B may now vary independently of each other- a require­
ment for oscillatory behaviour. Almost all of the special
features of these autocatalytic systems can be highlighted
by studying the system,

A + 2B ———§ 3B, rate = klab2 (4,6)
B »———? C, rate = k2b

This initial concentrations of A and B are taken as ao and
bo. It is to be noted that, klaoz has units of S-1. It
is the inverse of a characteristic [27,28] chemical time scale,

_ 2tch - l/klao (4,7)
where ao is the initial concentration of A in the reactor flow.



Note that, we need not consider a third differential
equation for the concentration of the product C, as this
is uniquely determined at all times by the concentrations
of A and B in the reactor and the inlet conditions,

c = (ao + bo) - (a+b)

Merkin et al. [50,51] studied the quadratic auto­
catalytic system, with a modification viz. the quadratic
step is coupled with a more complex removal of the auto­
catalyst,

B-——5' C, rate = k2b/l+rb (4,8)
In 1986, Merkin et al. [52] (MNS Model) modified

the cubic autocatalytic reaction scheme of Gray and
Scott [27,28,29], by considering a new reaction step.
In this scheme, the first intermediate A is formed via,
the slow decay of a reactant or.precursor species P as,

P ———9 .A, rate = kap

Thus the MNS scheme is

P ——) A , rate = kop
A+2B ———§ 3B , rate = klab2 (4,9)

B -———9 C , rate = k2b.

105
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Now, the governing differential rate equations are,

Q2dt

Q2dt

Q2dt

On introducing

G

TI

(4.10) becomes

5&3

da

KI££%

= - kop
= k p - k ab2 (4 10)0 l ’

2

the dimensionless concentrations and time

= a/ao, B = b/ao
2= p/ao and ff: klao t

= - 71'“

= n'n - CB2 (4.11)
= (152 "' B//C2

where ‘T 2 = klaoz/k2 is the dimensionless catalyst
time, and

-nl
2= ko/klao .

The system (4.11) is nonlinear, coupled and it cannot
be solved easily. The ‘pool chemical approximation‘ was
used to reduce the system (4.11) into a simpler two dimensiona
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model. Under this approximation, the early period of the
reaction is modelled with the precursor concentration

assumed constant and set equals to its initial value po.
The first of the above equations (4.11) involves only the
concentration of the precursor and can be integrated to give,

_ '"'TTI - ‘EOE

where no = po/ao in the dimensionless form for the initial
concentration of P. Introducing this result into the three
dimensional model (3.11) gives rise the following two
dimensional model

3%: = 8'”? - @152
(4012)

53%

= “B2 ’ B/'t2

where CK-= n‘ 1:0.

The initial conditions are taken as a(’f-'= 0) e 1,

B(T'= O) = 5° = bo/ao is some constant. Because A is
being formed from the precursor p, which is in great excess,
so that a and eventually B may come to exceed unity. Taking,

V1 Vi
x=a’Z'2, y=B’C2 andt=-. T/1'2 (4.13)

where x and y are new dimensionless measures of the concentra­
tions of A and B respectively and t is a new dimensionless
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time t = k2t, (4.12) becomes,

9§ = u e'"t - KY2at
(4.14)

9% = XY2 — Yat
.y.

Here, p =3¢Té is of order unity and n =‘Z2n' = ko/k2

is a small quantity, n § l. This has only one parameter
p, while the system (4.12) contains two parameters, viz.

yjand ‘Z2. The pool chemical approximation forms are
obtained from (4.12) or (4.14) by considering the limit
in which (4.12) or (4.14) by considering the limit in
which n‘ or n become zero. Thus the pool chemical approxi­
mation equations are

da _ 2d’: " in “Bd 2 _3% = “B " B/T2
(4.15)

and from (4.14)

25_ = u - KY2at P (4.16)

-d-X = xY2...Y
dt

The constants iKp and up represent the constant rate of
formation of A from the inexhaustible supply of precursor P.
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The system (4.15) has a unique non zero stationary­

state solution (ao, Bo), at which the derivatives vanish
simultaneously.

wna
l—'

5%
-u

_ __________ _ /‘<10 - Q . so - L2 lKp (4.11)
The stationary-state concentrations of intermediates A and

B vary inversely and linearly with the group {KP respectively
The local stability of this stationary state is determined
by considering how small perturbations decay or grow. The

linearized matrix at (do, Bo) is evaluated and the
characteristic roots are obtained from

2 l 2 2 n 2
2 "9<(,L-:3";-’t2Kp )+(/2 KP = O (4.18)- 2 2

.'. Trace = ‘C21 (l -‘E; Jfip ), det =‘C2 {KP .

The determinant is always positive and which implies the

product of roots §Xl,§\2 is positive. Thus the critical
point is either a stable node or an unstable one. Systems

for which the groups Q12 and {KP have values such that

I000
v

[Kg ‘Z’ l are stable,

l\J(.d

xi ‘Q 2 3 + V 8 stable node
(4.19)

row
/\

l (Kg ‘Z,’ 3 + T5 stable focus
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For j(p and ‘E2 such that, Q(€ ’@; < l, the stationary
state is locally unstable with,

3 - \/'§ <  T < l unstable focus

I000

(4.20)
O < < 3 - Y5 unstable node

%§
U M

r%
haw

As the group J(g‘Eg ( or kiklpi / kg ) is reduced through
unity, eg. by decreasing the initial precursor concentration,
there is a Hopf bifurcation. Here a stable limit cycle
emerges. This point heralds the onset of sustained oscilla­
tions. Also, it is to be noted that, this Hopf bifurcation
occurs when the stationary state concentration of the two

\

intermediate species A and B are equal (ie. (Io = 50 =-1';/2').

The unique steady state corresponding to (4.16) is

_. -1 _X0 “ pp 1 YO - Up (4021)
It is seen that (xo,yo) is stable for up > l and unstable
for up < l with changes between nodal and focal character
at up = Y2 i l. The Hopf bifurcation at up = pp* = l
(when xo = yo = l) produces a stable limit cycle, as above
with vanishingly small amplitude. As p is decreased below
unity, the limit cycle grows in size and the corresponding
oscillatory amplitude and period increase.



lll

The MNS model discussed above is two dimensional

and simple compared to the following modification, which
is three dimensional, nonlinear and coupled. A comparison
study is given in the discussion section.

4.3. A MODIFIED MODEL

We consider a chemical reaction scheme containing
a cubic autocatalator, with the intermediate species A
produced via, a simple first order decay process from a
precursor or reactant P, in which the decay process is
controlled by the production of A.

Thus the scheme is
kOlS + A ————9 P + A
k

oP -————+ Ak (4.22)lA+2B ————9 3 B
*2B ————9» -C

where kol, ko, kl and k2 are the rate constants.

The kinetic behaviour of the model can be described

by the equations (4.23) involving concentrations of P and
the intermediates A and B. By the law of mass action, the
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governing differential equations are,

%|%

= — kop + kolada _ 2
db _ 2dt - klab - k2b

where p = [P], a = [A], b = [B]

ie. the concentrations of the reactants.

Equations (4.23) could be handled more easily
and the general nature of the solution could be emphasized
by casting the concentrations and time in the dimensionless
variables x,y,z and “B, and the dimensionless parameters

7],<K.and‘?2 defined in (4025). We nondimensionalise the
characteristic system (4.23) with the characteristic time

scale tch given by (4.7).

d
3%: = — fl'X + £Fy

.%l%

= n'X - v12 (4024)
2

%% = yz - z/‘Z2
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where

X = p/ao, Y = 8/80, Z = b/80, t =A 2
where L2 = klao /k2 (4 25)2 2

q‘ = ko/klao , gg = kol/klao

The system (4.24) is a three dimensional nonlinear
coupled system of differential equations and are not easily
integrated. The previous studies [52] have been concerned
with the neglect of reactant consumption, or the ‘pool
chemical approximation‘ under which the early period of the
reaction is modelled with the precursor concentration assumed

constant (ie.Q(= O) and set equal to its value (po). In
such a case, the number of species with varying concentra­
tions reduces from three to two. The oscillatory dynamics
of such a two-dimensional system has been studied in detail.
In the system (4.24) the oscillations occur in the three
species P, A and B simultaneously for a long interval of
time. Since the decay of P is controlled by the production
of A, we can observe the oscillations from the beginning
itself. But in the model presented in the last Section (4.2),
the oscillations begin only after a long time and the oscilla­
tions decay soon after a certain time.
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4.4 STATIONARY STATES AND OSCILLATIONS

The effect of including the control mechanism in
the simple first order decay of the precursor P is studied
here, among the other species. We want to investigate the
possibility of having chemical oscillations of the limit
cycle type. An indication of the existence of such
solutions if (x ,y ,z ) is an unstable critical point.o o o
Critical points in r-space are given by the solutions of

(E = O = F(r; Tl'»9<~,
r = (09010): r = ro = (xovyoazo)%i "/2. y
><°=%;-5 =-——-,zo =4<’“ (4.26)

“<
O

<fi
N 3*

The stationary state concentrations of P and B
varies with <fiF% while that of the intermediate A, varies
withjK%% We are considering in (4.24) only those points,
which are physically realistic,‘viz. those at which

xo g O, yo_; O, zo ; O. The critical points at the origin
is always unstable, since the eigen values Q satisfyI I

73 +22 [w + -—-1+2 -gov] -’§-‘=2 = 0 (4027)

65w
IO

F‘?

SP

The three solutions j\l,)\2,iX3 satisfy the condition
A1sA2°A3 = '%n'> O and hence there is always at least one2

root with a positive real part..



By linearizing the system (4.24) around (xo,yO,zo)
we have

- n’ JK O
J = 11' .s< -2/‘E2 (4,253)

O IX l/Q2; _..J
The eigen values 7x, for the critical point ro satisfy

')\3—T>~2 +3.3-A = O
where

r=-;%—-:<-n',5=’¥—"'=-’1'.A %B'—’-“ (4.29)L2 L2 L2
The necessary and sufficient conditions for all the
solutions 7\to have negative real parts are,

T<O, A<o, A-T§>o

The first inequality is satisfied when _§— < @K+n'). The2

second condition is already satisfied for all possible

realistic values of the parameters n',,x,and Q2» Using
the third condition, we get the range of the control
parameter JQ, for which the solutions of (4.24) are in
the stable region. Thus the stability curve can be cast

ll5



in the form,

F’  (1 I I rd I2t -<}<(l+2¢.n)+n -tn =0 (4.30)2 2 2
The unstable solutions of (4.24) fall in the range,

K16 < {K < f.K2c

where
I

mlc = [( 1+2'@2n') - <1+81:§_ n-2)4-1 / 222
(4.31)

€K2¢ = [( l+2’¢’2n') + <1+e'@§ n'2)yZ] / 2/32

when <¥lcrosses the value JClC, the stable solutions become
unstable. Again ¥lcrosses the value J<2C, the unstable
branch becomes a stable one. Hence Jilc andlK2C are the
two critical points at which the solutions of (4.24) has
a qualitative change. The possibility of appearance of the
periodic solutions out of the equilibrium state, when ZK
crosses the critical value is examined.

Using bifurcation analysis, one finds that in the

vicinity of<K1c and 3426, the singular point behaves like
a focus, unstable (ifJClC < di < <X2c) or stable
(if <¥Y§ $416 or 6Q > éK2c). Comparing the coefficients
of the general cubic with real root §\3 and pure imaginary

ll6
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roots 1%l 2 = 3 iwo, with the following cubic7

A3-<-;-?--a<-n'>>2+<J-%C=I1l>A+?-2-1‘=o*2 2 ¢2
We have,

_ l
A3 - ,'?'5"a(¢"'Tl'' V_ . J(—1] Z

and 2 2
"C23 -3<(l+2 T211‘) + (n'-’£2n' ) = O

xlc = [(1-*2’:-‘211') - <1-mi n'2)y7']/TF2
2 2 '

x2e -.= [(1.2%->+<1+e@2 11' >/Z]/2%

Differentiating (4.32) with respect to JC, we have,

.,|vN.
+

(A2 + 3-*1)
,;<¢<> = - _ ~   4 ~ T2 _

3/\2 - 2>\< >91-— -ac-n'>+ <4-.553)

I\)

2 #04 ~.~i2_3 ._
2Té[wo + T ]

’><1(e1<lc) > 0 and qi(<9¢2C) < 0
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(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)
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Note that (4.31) and (4.35) are the same. From

(4.37) it is evident that J<lc and .k2C are the critical
Hopf bifurcation points for the system (4.24). For

Kl> KQIC (ie. Re.jxl(&1) > O) the existing periodic

solutions are supercritical and for {K < éilc, the exist­
ing periodic solutions are 'subcritical'. For any value

I\)l\)
J

2
of if , J<lc and 412C cannot be merged (a non-degenerate
Hopf bifurcation). At the upper Hopf bifurcation point,

ggzc, a stable limit cycle emerges (numerically found)

with an infinitely small amplitude. Sustained oscillatory
responses in the concentrations P, A and B are found for
certain other values of the controlling parameter. For a

parametric value<X lying between Jglc and 5KQc, the critical

point is an unstable focus. Large amplitude oscillatory
responses can be seen at this region.

4.5 NUMERICAL RESULTS

The chemical reaction model under consideration

(4.24) is a system of nonlinear coupled differential equations.
We used the fourth order Runge-Kutta Method with the step
doubling (Section 2.6) to integrate the system numerically.
The results of the previous sections have established that,
the system exhibits Hopf bifurcation resulting in sustained
oscillations in this model.
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The oscillations in the concentrations of the
reactants P, A and B start immediately, when the reaction

is switched on. When the parametric values ‘Z2 = 104 and
n‘ = lO 4 are used, the numerical values for 5QlC and<k2C
are obtained as

@(lc = 0.0 and 942C = 0.0003 (4.38)

In the figures we have used X,Y,Z for the concentration of
the reactants P, A and B respectively. At the supercritical

Hopf bifurcation point 642C = 0.0003, the oscillations in
the corresponding constituents P, A and B are shown
schematically (Fig. 16 (a), (b), (c) ). The amplitude of
these oscillations decreases as time progresses. After
a certain time ‘?=3 x lO5, t E 30, the oscillations become
uniform neither the amplitude nor the distance between each
spike increases. Before this time, the period between
peaks lengthens and the oscillations become less spiky than
earlier in character.

The reactant P oscillates [ Fig.l6(a)] with a higher
amplitude than that of A and B [ Fig. l6(b), (c) ]. The
dimensionless time 2,is plotted in the x-axis, while the
concentrations of P, A and B are plotted in the y-axis,
[Fig.l6(a), (b) and (c)] respectively. Initially P is in
abundance and gradually it is converted to A. Then by the
autocatalytic step, B is produced rapidly and finally is
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converted to C, after a very long time. The first of the
\

three reactants P, A and B forms at Q = 7 x 104.

The wave corresponds to P is more straight and spiky,
while that of A is sliding rightwards (or forward) and that
of B is sliding leftwards (or backward). P is decaying and
the speed of decay is controlled by the production of A.
Oscillations in the various species continue for a long
time, since the decay of P is controlled by the production
of A, unlike in the ‘pool chemical approximation model’.

The stationary-state solution of the full equations
for the system (4.24) shows two changes between stable and
unstable focus as the time is increased. Bofimthese changes
give rise to Hopf bifurcations. The nature of the limit
cycles produced at each bifurcation point has to be examined
numerically and this has been done for two periodic values,

94 = o.ooo2 and a< = o.ooo3 [(34%], while the other parameter
values 1‘2 = 104, n‘ = 10-4 are fixed. For6< = 0.0003,
stable limit cycles are obtained in the x-y (Fig.2l), y-z
(Fig.22) and x-z (Fig.23) planes. When.K.= 0.0002, it is
found that the trajectories are unwinding from a singular
point and some compartments (or boxes) are appeared
[ Fig. 27, 28, 29 ]. We shall discuss the behaviour of the
solutions at each of these points separately.
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Let us first consider the behaviour of the
solutions of (4.24) at the bifurcation point¢X.= 0.0003.
The concentration profiles of P and A are plotted against

the time ‘Tl [Fig.l7(a)], (scaled as Q1 = Tx 10-3 ) upto
Q1 = 300. The limit cycle formed by the combination P and
A is shown in Fig.l7(b). The limit cycle corresponds to
P and A seems to be formed at Q.= 494351. Similarly
Fig.l9(a) represents the oscillations of the combination

P and B upto the time /El = 300. The limit cycle formed
when B vs. P plotted in the z-x phase plane ati1= 456770.
This is shown in Fig.l9(b). The oscillations of A and B
plotted against Q is shown in Fig.l8(a). The correspond­
ing limit cycle is shown in Fig.l8(b), which forms at

Fig.2l describes the portrait associated with the
solutions P and A, where P is plotted in the x-axis and
A is plotted in the y-axis._ The solution curve of (4.24)
is spiralling towards the critical point, as the time
increases and hence we get the asymptotically stable
solution. The small amplitude decaying oscillations in
Fig.l8(a) corresponds to the dense spiral in Fig.2l.

The phase plane portrait associated with P and B
is shown in Fig.23, where P is plotted in the x-axis
and B is plotted in the y-axis. The decaying (or steady)
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oscillations correspond to the dense spiral is shown in
this figure. Again Fig.22 represents the portrait of A
and B where A is plotted in the x-axis and B is plotted
in the y-axis.

The interaction among the chemical constituents
forwk = 0.0003 is also studied numerically. The concentra­
tion profile of P (or P-wave) intersects with the concentra­
tion profile of A (or A-wave) only once and which is in the
initial stage of the reaction, at Q,= 60 (Fig. l7(a) ). It
is very interesting to note that the interaction between P
and B continues indefinitely (Pig.l9(a)). From Fig.l8(a),
we note that the interaction between A and B stops at

‘fl = 280. The interaction of the three reactants P, A and
B is shown in Fig.20.

The same type of oscillatory behaviour of the system
(4.24) is obtained for other values of the catalyst decay

constant't2 viz. 9999.0, l000L@0, 10002.0, 10004.0, 10005.0,
10007.0, 10008.0 and 10009.0 with n‘ = 10"4- and5(_ = 3 X 10"‘.

Now let us discuss the behaviour of the solutions of
(4.24) at the parameter valuecK_= 0.0002. We have seen

analytically that, the equilibrium solution (xO,yO,zo) of
(4.24) is unstable for the range of parameter,3Llc < &L< Kéc.
The result is confirmed, numerically for the parametric
value<£ lies in this particular range. The equilibrium
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solution of (4.24) is an unstable focus at the critical

parameter value<K.= 0.0002. Evidently,<K;2c = 0.0003 is
a Hopf bifurcation point, since at this critical point
the qualitative behaviour of the solution of the system
changes. When P is plotted against the dimensionless
time Q [Fig.24] we note that as time increases, the amplitude
of the P-wave [Fig.9] increases. Fig. 25 describes the
concentration profile of A which is plotted against the
dimensionless time Q,for the parametric value<k_= 0.0002,

32 = l04 and n‘ = l0'4. The amplitude of the A-wave in­
creases indefinitely as the time increases. Similarly,
Fig.26 shows the concentration profile of the catalyst B,
when plotted against the nondimensionalised time’? . The
amplitude of the B-wave increases rapidly as the time
increases. It is very interesting to note that, as soon
as the reaction is switched on, within no time, the
oscillations in the reactants P, A and B shoots up. The
three waves, P-wave, A-wave and.B-wave are plotted against
the time’? = 69.90175 to'Z = 454ll6.5, for our convenience.
The concentration corresponds to the time Q: = 69.90175 of
P, A and B respectively are 0.0032832, 0.0000849 and
0.0003354. The amplitudes of the three waves in the time
range 69.90175-454lll6.5 increases somewhat uniformly. The
maximum amplitude attained in this time range by the P,A
and B waves respectively are 0.8627064, 0.8428407 and 0.863683
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From the figures, it should be noted that the A-wave
spikes are tilted towards the right and the B-wave
spikes are tilted towards the left in comparison with
the spikes of the P-wave. This may be due to the relative
strength of interacting constituents in the chemical
reaction.

The phase plane plots corresponding to each pair
viz. A vs. P, B vs. A and B vs. P are much more interesting.
Corresponding to the parametric valuegg = 0.0002, the solu­
tion trajectory of the oscillator (4.24) unwinds from a
fixed point and making boxes from smaller to bigger ones.
Fig.2? represents the phase plane plot of A and P, which
is obtained by plotting A against P. Triangular shaped
boxes, four in number, are formed during an interval of
time, Q = 454ll6.5. The unstable focus has less the co­
ordinates (3.2 x 10-3, 8.4 x 10-5). As time increases, an
infinite number of boxes are observed at the parametric
valueCy_= 0.0002.

The phase plane plot of the intermediates A and B
is shown in Fig.28. The concentration of B is plotted
against the concentration of A. The minimum value of
(A,B) = (0.0000849, 0.0003354) and the maximum value of

(A,B) = (0.8428407, 0.863683 ) in the short interval of
time considered. The initial box is inserted in the second,
and the second is inserted in the third and so on. As time



.0HU>U pflefld wsp Op wUCOQm®HHOUHNHHQW QWCQU QCH _A’O_O _H_Ov " A<_mv MO QDH@> EDEHXME Qfip Qfiflzg AHOO0.0 _NmOO_OVH A<_mV MO COHpmHpCQUCOU EDEHCHE QCH _Axvm Pmfifimmw U@vPOHQ WH A>v< MO COMP'@HPC®UCOu 0:H _¢'OHXm " ¥_P® A¢N_qv EOPm>W GS? HOW x USN > “O POHQ QCMHQ Qwmca QLH _HN.mHm\_ X _ 3 _ gum .8&8“ NONNW8€ i ’ N \ M‘ N \ V \ ‘N  NA I |‘ “‘fl[ M \ N_ jX Q \_ _, \\\\__%L_____W_ (¢; A ’ A A p gamma‘i _Q  _



l2

increases a ‘nest of similar boxes‘ are formed.

The concentration of the catalyst B is plotted
against the concentration of P in Fig.29. The phase
plane plot of the system (4.24) in the X-Z plane looks
like a feather of a bird. The smallest one forms first
and the rest forms one after the other as the time
increases. The minimum value of (P,B) = (0.003282,
0.0003354) and the maximum value of (P,B) = (0.8627064,
0.863683) in the time interval considered here.

4.6 DISCUSSION

The chemical reaction model studied here is based

on a cubic autocatalator. We have considered here, the
precursor P to be produced from the substrate S and the
decay of P is controlled by the production of A. The
cubic autocatalytic step is coupled with a simple decay
of the autocatalyst B to the final product C.

The common feature of oscillators is the auto­
catalysis. The Lotka (1920) mechanism includes two auto­
catalytic reactions, but autocatalysis is not essential
for sustained oscillations. The Brusselator, a model
chemical reaction suggested by Prigogine and Lefever L63]
is perhaps the simplest oscillator obtainable from a chemical
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reaction model based on a cubic autocatalytic step.
The well known Oregonator discussed in the previous

chapter consists of sinqle quadratic autocatalytic step.

Gray and Scott [27,28,29] discussed the simple
schemes, consisting only either a quadratic autocatalytic
reaction step (4.1), coupled with the catalst decay or a
cubic autocatalytic reaction step (4.2), coupled with the
catalyst decay. These models contain only two dynamic
variables viz. A and B. Merkin et al. [50,51] studied
the quadratic autocatalytic system, coupled with a more
complex removal of the catalyst.

The system containing the quadratic autocatalytic
reaction step coupled with the catalyst decay (4.8) has
a unique, physically acceptable stationary state [50] at
any given residence time. The system exhibits Hopf
bifurcations and at the critical point sustained oscilla­
tions in the concentrations A and 5 appear. The oscillatory
patterns of behaviour exhibited by this system were examined
in detail [51].

The reaction model (4.9) exhibiting oscillatory
behaviour was discussed by Merkin et al. [52]. Besides
the cubic autocatalytic reaction step (4.1) and the catalyst
decay (4.2), the scheme (4.9) has a precursor chemical decay­
ing (4.3) continuously. In this model (MNS), the first
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intermediate A is formed, via. the slow decay of the
precursor species P, which is present in the reaction
mixture in excess. The concentrations of various species
at first change steadily with that of P decreasing while
A, B and C increase. This period is followed by the onset
and growth of oscillations in the concentrations of the
intermediates A and B. The oscillations in this model
starts only after a long time, at t = 7700, for t > 1790,
there is a damped oscillatory return to the stable stationary
state solution. By the ‘pool chemical approximation‘, the
three dimensional model (4.11) is converted to the more
convenient two-dimensional model (4.12).

In the model (4.22), we consider P as produced from
a substrate S and the decay of P is controlled by the produc­
tion of A. This adds another dimension to the system. The
system (4.24) is richly rewarded than the ‘pool chemical

approximation model‘ (4.16) [$21, where the reaction system
is a three-dimensional one, which has a more complicated
structure. In this model, the dynamics of the three react­
ants P, A and B is to be taken into account, unlike in the
two dimensional model (4.16). Hence the complete structure
of our system (4.24) is different and complicated than the
system with the ‘pool chemical approximation‘.



In the 'p00l chemical approximation’ model, where
the concentration of P is maintained indefinitely, the
concentration of A grows without limit in this region,
while that of B falls quickly to zero. The oscillations
in the concentrations of A and B start only after a certain
interval of time.

Below a certain critical value of the parameter,
the intermediate B decays more quickly than it is formed.
Once the concentration of B is zero, the autocatalytic
step, which is the sole route from A to B stops completely.
Thus we arrive at a situation where A is continually being
produced from P and not being removed. This behaviour can
be removed quite simply by introducing the controlling of
the precursor decay, by the production of A.

The oscillations in the intermediates of the system
(4.24) start immediately, when the reaction is switched on.

At the subcritical Hopf bifurcation point»K2C = 3 x l0-4
(where /52 = 104, 11' .-= 1o"4) the system (4.24)_ exhibit
oscillations in the concentrations of P, A and B simult­
aneously. The amplitude of these oscillations decreases
as the residence time is increased. At the same time the
period between peaks lengthens and the oscillations becomes
less spiky than earlier in character.
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The numerical results obtained for the system (4.24)
supports strongly the analytic results. Analytically, we
found the range of the controlling parameter.2(, where the
system (4.24) to have unstable equilibrium solutions. By
applying the classical Hopf bifurcation theorem, we found
that the system has complex eigen values in this parametric
range. The equilibrium solutions of (4.24) coming in the

range (gale < 34- <J<2C) will be unstable and will be of the
focal nature. When crosses the critical value 5(2C, the
unstable focus becomes a stable focus. The figures given
in the previous section supports the argument stated here.

The behaviour of the solutions of the system (4.24)
one more parameter value, viz.gK = 0.0002 is examined in

detail. Numerically, this ,X,< 362C = 0.0003. The
system (4.24) is integrated numerically for the parameter

valued: = o.ooo2, /32 = 104 and n' = 1o"4. The oscillations
in the intermediates P, A and B start immediately. The
amplitude of these oscillations increases as the residence
time is increased. Evidently the steady state of the system
is an unstable focus, when the parameter value lies in

the range gjlc < BL < 21226. At the critical Hopf bifurca­
tion point 2£2£ = 0.0003, we observe the qualitative change
of the steady state solution from unstable focus to the
stable one. The phase plane plots of the system (4.24) on
numerical integration for the parametric value<Kl= 0.0002
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in the X-Y, Y-Z and Z-X planes are very interesting to
study. Thus we get large amplitude oscillations for the
system at.X = 0.0002.

In the earlier studies [52] the precursor P has been
treated as a reactant whose concentration falls in time.
Such a scheme has distinct similarities to the isothermal
schemes. When the pool chemical approximation is contem­

plated, there is a unique stationary state (xo,y°,zo).
The system (4.24) contains three variables x,y,z and three

parameters, J(, Q2 and n‘ while the system (4.16) contains

only two variables x,y and one parameter up. The sub­
critical and supercritical Hopf bifurcation points of the
system (4.24) found numerically as (4.38). The configura­
tion sketched in Fig.2l shows that, the system jumps
abruptly into fully developed nonzero amplitude oscillation
This pattern of solutions indicates the slow decay of P

and oscillations are observed oyer a large range of time.
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Chapter 5

CONCLUSIONS

The nonlinear dynamics of certain important reaction
systems are discussed and analysed in this thesis. The
interest in the theoretical and the experimental studies of
chemical reactions showing oscillatory dynamics and associa­
ted properties is increasing very rapidly. Many researchers
work out mathematical models of such reactions to understand

the complex nature of the systems. The oscillatory behaviour
and other related characteristics in nonlinear systems far
from equilibrium has a highly interesting connection with the
organization of the structure of the system [30, 32].

An attempt is made to study some nonlinear phenomena
exhibited by the well known chemical oscillator, the Belousov­
Zhabotinskii reaction whose mathematical properties are much
in common with the properties of biological oscillators.
While extremely complex, this reaction is still much simpler
than biological systems at least from the modelling point of
view. A suitable model [19] for the system is analysed and
we have studied the limit cycle behaviour of the system, for
different values of the stoichiometric parameter f, by

keeping the value of the reaction rate (k6) fixed at k6 = l.
The more complicated three-variable model is stiff in nature.
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The arc length continuation method has been used to study

the dependence of steady state solutions (xO,yo,zo) of the
model (3.14) on the parameter f. The values of the para­
meters in (3.14) other than f viz. s,w and q are fixed as
77.27, 0.161 and 8.375 x 10-6. The existence of limit
cycle behaviour in the three dimensional model is shown
analytically and are verified numerically. Among many
numerical methods to solve such systems of nonlinear differ­
ential equations the Runge-Kutta Method with step doubling
is found to be the most suitable one to solve our system.
Limit cycle behaviour is observed for the complete model
in the y-x phase plane for f = 1.0 and f = l.l, with
periods‘? = 143.5 and Z = 148.9 respectively. The two
variable (y—z) model, being much easier to handle mathe­
matically, is examined more thoroughly. The oscillatory
behaviour of this system is examined for several values of

f lying in the unstable region é < f < 1 + Y2. Isolated
limit cycles are obtained for f'= 0.5001, 0.74, 0.9, 1.0,
1.3, 1.4 and 1.5 in the y-z phase plane. The birth of
more than one limit cycle is observed for the system (3.18)
at the parametric values f = l.l, 1.2 and 1.595288. This
may be considered as a signal for the excitability property
of the reaction model. Many workers L6,14,45,59,65,74,75]
predicted and some discussed the excitable behaviour of
B-Z reaction system for this range of f. The solution
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trajectory starting from the initial concentration

(yo,zo) = (l.O, 488.8) is attracted to another stationary
state (1.297, 4.355) for some parametric values, f = 1.6,
1.7, 1.8, l.9, 2.0, 2.1 etc. Thus multiple steady states
are observed in this region of f. The experimental results
observed in B-Z reaction can be cited in [4,l6].

The fact that the autocatalysis is the common
feature of almost all oscillators (biological and non­
biological) inspired us to study a general cubic autocataly­
tic system.

We have presented a model analysing the autocatalytic
system. The cubic autocatalytic step A + 2B~———9 38
lies at the heart of the simplest models for oscillatory
and other complex nonlinear behaviour in closed systems,
in the CSTR and in reaction coupled with diffussion [57].
General reaction systems containing either quadratic auto­
catalytic reaction step or cubic.aut0catalytic step, coupled
with autocatalyst decay step which are two dimensional were
studied so far [9,27,28,29]. In order to explain the complex
phenomena observed in oscillators like aperiodic oscillation,
period doubling, etc. a three dimensional model is required.
Sustained oscillatory behaviour is observed in the system(4.24)
The range of the parameter<£ at which the stationary states
are unstable is found analytically. This range is found to be
J<lc < K < <\<2c, where 3416 = 0 and 1426 = 0.0003. The values
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of other parametric values n‘ and /32 are fixed as n‘ = l0-4
and ‘T2 = 104. The initial value taken for the numerical
integration is xo = yo = zo = 0.1. Limit cycles are
obtained for the system in X-Y, Y-Z and Z-X phase planes
respectively. The trajectories are attracted to a limit
cycle and the unstable critical point inside it acts as an
attractor, for the supercritical Hopf bifurcation point<K2c.
When the integration of the system (4.24) is carried out
numerically for other parametric values less than xi: 0.0003,
large amplitude waves corresponding to the concentrations
of each constituents P,A and B are formed. The trajectories
corresponding to the system repel from a fixed point
( 3xl0_3, 8x10-5, 3xlO_4). Thus the numerical result con­
firms the analytic prediction that,the equilibrium state

solution of the system in the region <Klc < d< < $2C is an
unstable focus. At the critical Hopf bifurcation value,

342C = 0.0003, the unstable focus becomes a stable one.
The same behaviour of the solutions described above are
obtained for some other values of ‘F2, viz.9999.0, l000l.0,
10002.0, l0004.0, 10005.0, l0007.0, l0008.0, and l0009.0.

Several interesting phenomena, other than sustained
oscillations or damped oscillations, such as bursting,
excitability, intermittency, CDO, chaotic structures etc.



are to be examined more elaborately for the oscillators,
considered here. In the case of the three-variable
Oregonator model, the sustained oscillatory behaviour of
the system is to be examined for all other values of f.
Satisfactory models are yet to be developed for explain­
ing some recent experimental.results of the B-Z chemical
reaction (eg. certain pattern formation). Many attempts
to explain some of these phenomena are reported in the
literature [18, 22, 44, 71, 76]. The reaction system
based on the cubic autocatalytic step has to be subjected
to more studies.
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