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PREFACE

The investigations presented in this thesis have

been carried out in the Department of Physics, Cochin University,
there the author has been working as a part—time research scholar
during the period 1977-'82.

The major objective of the thesis is essentially
to evolve and apply certain computational procedures to evaluate

the structure and properties of some simple polyatomic molecules
making use of spectroscopic data available from the literature.
It must be said that though there is dwindling interest in
recent times in such analyses, there exists tremendous scope
and utility for attempting such calculations as the precision
and reliability of'experimental techniques in spectroscopy have
increased vastly due to enormous sophistication of the instruments

used for these measurements. In the present thesis an attempt
is made to extract maximum amount of information regarding the

geometrical structure azd interatmic forces of simple molecules
frem the experimental data on microwave and infrared spectra of
these molecules.

A notable feature of the present thesis is the usec

of centrifugal distortion constants for the first time to
determine the geometry of symmetric top molecules (Ghapter'Y).

Te-method developed here shows that reliable estimation of the

molecular geometry can be carried out even when he microwave

1
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spectroscopic data on isotopic molecule are unavailable. The
thesis contains seven chapters in all. The first two chapters
are of an introductory nature and the basic background required
for the calculation of centrifugal distortion constants is
developed here. In the third chapter theory of parametrisation

of centrifugal distortion constants in KY2 bent symmetric
molecules is discussed in detail. In addition to difining the

limits of'1"‘p76- elements, this approach helps to fix uniquely
the force fields of molecules belonging to the above type. It
is also shown that the prediction of fundamental vibrational

frequencies is possible from a knowledge of the experimental

values of Tdpyg elements in these molecules. Ln exhaustive
discussion of the parametrised form of DJ, DJK for pyramidal

KY3 molecule is given in Chapter IV. Certain natural
approximation formulas for DJ, DJK and Dk are developed and the
use of these formulas is demonstrated in Chapter V. The

interatomic distances and interbond angles of PF3. AsF.’3r

OPT} molecules for which no complete isotopic data are available
hare been calculated making use of centrifugal distortion

constants along with rotational constants and fundamntai
vibrational frequencies. Excellent agreement with results from
electron diffraction studies assures the reliability of the

method presented here./
Chapter VI contains a simple formula for the

vibrational mixing parameter for XY2 bent symmetric molecules.
It also shows how the interbond angle in these molecules can be



III

estimated from the pair of frequencies of‘the symmetric
vibrations. In the last chapter an attempt? is made to solve
a third order vibrational problem using pseudo-exact parameter
method. The set oi’ force constant elements obtained in the

case of CH3? making use of this method is found to agrees very
well with the results from more elaborate calculations.

Most of the calculations presented in this thesis
have been carried out using the computer facilities available

at the Cochin University Computor Centre. A sample programme

(BASIC) used for the calculation of the centrifugal distortion

constants in XY3 symmetric top molecules is given as an
Appendix.­

Part of the investigations presented in this
thesis has been published in the form of following papers.

1) Use of DJ, DJK constants for the unique fixing of
intramolecular forces in XY3 pyramidal molecules.
Ananthakrishnan 'I.‘.R., Paul C.M. and

Girijavallabhan C.P. 1977 Pramana 2 329

2) Molecular geometry using centrifugal distortion
constants.

Paul C.M. and Girijavallabhan C.P.

’" 1979 Nat. Acad. Sci. Letters cg 237



IV

A note on obtaining vibrational mixing parameter

from average bending energy criterion.
Girijavallabhan C.P. and Paul C.M.

1981 Pramana 11_ 193

Molecular geometry of XY3Z type molecules using
centrifugal distortion constant.
Paul C.M. and Girijavallabhan C.P.

Paper presented at the fifty—first annual session
of The National Academy of Sciences, India,
Cochin 1981 Paner No.122 (Physical Science Section)
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CHAPTER I

INTRODUCTION

Abstract

A general introduction to earlier work such as
normal coordinate analysis, importance of L matrix, parametric

approach, model force fields, kinetic models of molecules,

approximation techniques and molecular structure determination

from microwave data. The parameter representation of

vibrational normal modes is stressed throughout.
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1-1 Introduction:

The studies of structure and properties of molecules
have acquired a renewed vigour in the past two decades mainly

on account of the great strides made during these p8r1Od8 in

the design and fabrication of technical equipment for
spectroscopic measurements. The fact that the advent of

laser has revolutionised the field of molecular spectroscopy
is a well known one. Coupled with the microprocessor
revolution which.yields virtually unlimited computational

capability, these recent developments have given the
spectroscopists unprecedented power, precision and possibility
to gain new insight into the atomic and molecular processes.

Even after the classic attempt by Wilson, Decious

and Crossz a great deal remains to be done to organise and

to assimilate the experimental.data that have accumulated in
the recent past. The body of knowledge of the vibrational
infrared and Raman spectra of molecules and of rotational

spectral data from microwave and high resolution infrared
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and Hanan spectral studies of low pressure gases and vapours

is so immense that the above objective is a major task which
is likely to remain unfinished for ever. .In the"present
thesis a humble effort is made to obtain some useful

infbrmations on the structure and properties of some polyatomic
molecules making use of the experimental data on vibrational
land rotational frequencies of the molecules reported earlier
in the literature. The work heavily exploits many of the
recently introduced unifying pictures of molecular vibration
and interatomic force field. The following sections in this
chapter give a systematic and concise description of the

different aspects of vibration and rotation of polyatomic
molecules.

.1-2 Normal coordinate analysis;

According to the theory of small vibrations

in the harmonic approximation, any actual vibration of the

pmolecule can be represented as e linear superposition ofia
number of normal vibrations1'1o at the characteristic

'\

frequencies of the molecule. Eliminating the six coordinates
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required to describe the translational and rotational

motion of the molecule as a whole, there are ‘(3 N — 6)

normal modes of vibration for a molecule consistina/of
N atoms. Since no rotational freedom exists around the

molecular axis-a linear molecule has only (3 N — 5)
normal modes.­

The frequency of a normal vibration is determined

by the kinetic and potential energy of the system. The
kinetic enerty depends on the masses 04 the individual

atoms and their geometrical arrangement within the molecule,

while the potential energy arises from interaction between
the atoms and is described in terms of a set of force constants.

The programme of evaluating force constants and normal
coordinates-of the molecule is known as normal coordinate

analysis. Force constants may be conveniently calculated~ ' O - 1 1 0 - 0 ausing Wilson's GF matrix method. O The essential merit oi
this method lies in the fact that it leads to a break up of
the vibrational secular equation according to the symmetry
species of the molecule. To applg the GF matrix method,

first the number of genrine vibrations belonbing to each
irreducible representation of the point bl0UQ of the moleculet . . - .t 2 7is found by groug theoretical considerations ’ ~. A set
of internal coordinates which are changes in
hondlength and bonds angle is chosen. From the internal



coordinates,orthonormalised linear combinations called symmetry

coordinates are constructed such that they tranform according to
the characters of the symmetry species to which they belong.

Let R denotes the column matrix of any gymmgtrig

coordinates ri and S the column matrix of any symmetry coordinates

S1 and Q the column matrix of nOrm&l coordinates. These are
connected bys-=1-Q=vn (1.1)
Herr U is an orthogonal matrix and L is called the normal
coordinate tranformation matrix1o. The potential energy of the

molecule is given by the expression2 2: '2 V 1,3 £11 ri rj (1.2)
in which £1‘, == £31 is tke tome constant corresponding to the
interaction pair oI'internal coordinates ri, rj. In matrix form
this is expressed as

pfil2 V = ‘R f R (103)
Here"" denotes the tranpose of‘the column matrix R. The potential

energy is not changed by the tranformation to symmetry coordinates.
Hence

,¢-.12 v = s F s (1.4)
Where F is the fozce constant matrix in symmetry coordinates.

It can be Econ thatF s U r ft (‘~53
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!he kinetic energy can also he expressed in matrix torn es
1-J
‘O -1 O2 I = S G 8 (1,5)

Here G represents the inverse kinetic energy matrix which
sstieties the nornelieing condition

-aG I In L (1,1)
Ihe G elements tor a nm degenerate species ere given by the
relatim

G1: . zpfip ‘P (‘git '  ('ea)
Here 1 and j recter to the symmetry coordinates S1 eni 8:
respectively, p the set of equivalent atoms, a typical est being

ht,/U-P the reciprocal mass oi’ en atom and gp the mnber oi’
equivalent atone in the pth set. The sunnstion ineq.(1.8) extents
over all the sets et equivalent atone in the molecule. For a
degenerate species

-9‘

Ga . (1/<1) 5;, /"p ‘p (sis,t ° §?a,t) “'9,
Here d denotes the degree of degeneracy of the species. The
vectors appearing in both the above expressions (1.8) em (1.9)

A

ere known es 8 vectors and are obtained tron the "Sn vectors"
seoording to the equationZ "’ .81: "' 1: U1: Sn 01°)
It being he coetticient of the internal coordinates rk in the
qnetry coordinates Si. Iileon, Decius and Orosez have givn
enression tor the sen vectors restoring to dii’1’erent types er
internal coordinates. Ierigle end lleisters hive develeped
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‘°th°“ 3°!‘ "1'1u-"8 down these vectors in the case of linear
molecules.

The matrices G, F and L together serve to determine

the vibrational itreqmncies A1 tn;-oug1""° the equation

Here /\ is a diagonal matrix of elements Xi --= 4H2 Q2 mi. The
condition for seli’ consistency of eq.(1.11) can be expressed as

|GP-E/\| =0 (1.12)
The elements )\i can be calculated by solving this secular equation
provided G and F are accurately known.

However in practice the eq.(1.12) is utilised tor

determining the F13. elements since
1) direct relationship available tor the force constants

are only approx.imaten'12’13

ii) the vibrational frequencies can be obtained from

infrared and Raman experiments with very high accuracya.
But under this formalism a vibrational species oi‘ order n would

involve (1/2) n (n-1) force constant elements ard their evaluation

Iith the n experimentaly available X 1 values is an indeterminate
problem. (in all cases except when n =  Any attempt to render
the problem determinate should be based on either 1) the reduction

of the number of IP13 elements by evolving restrictive models for
force fields or 2) the increase of experimental results which
can be used as additional input data. While the former method in
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not unique, the latter one sounds more physically satisfactory.
Force constant evaluation during these years utilizes either
of the two or both method together.

1-3 Importance oi‘ L matrix ;

Recent trends in the evaluation oi’ molecular force
conetazte are directed through the normal coordinate trantornation
matrix L and employ the equation

-11' - '5' /\ 1." (1.13)
obtained by substitution of eq. (1.7) into (1.11). Equation (1.13)
throws light on the signefecsnce of matrix L in the analysis oi’
molecular force fields. In addition to force constants“, the
sen ampletude 01’ vibration, the Coriolis coupling constantss,
centritugal distortion constants”, the molecular dipole moments16’"

and the polarizability tensors are all basically governed by the

Lu elements. In short the L matrix governs the characteretic
vectors representing the vibrational forms of the molecule and
beers the key for the whole molecular dynamics. The geometrical
visualization oi’ these nomal coordinate tranfernetion netrices

Ilse been illustrated by Persm and Crawford”.
//I

;_1-4 Parametric approach =

In the parametric approach to the vibrational problem
,the normal coordinate tranformticn L is split up into two parts
5*?‘­

iin e more visualiaable manner. Thus the splitting is in no say
it
gunique, generaly we can write
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L " Lo C (1-14)
the only condition imposed on Lo is that Lo Lo .= G, Sine, L 1,
normalised by Wilsons condition, eq.(1.7), one can expect 0 to
be an orthogonal matrix. A rigorous proof for this conditim
Q8 O has been given by ‘llorok and Puleygo.

Though one can have several models for Lo, mainly two
§_e‘thodl are being used. They are the shear method, whose

'-"""

geometrical significance in the S and Q space have been illustrated

by Person and Crawford. Employing the most currently used
terminolog

1no - VT‘ /2 (1.15)
In the rotation method andLo 3 T
In "the shear method. Herc V and T‘ are the eigen vector and\

leigeyn values of G respectively. El‘ is a triangular matrix which

be written in the term, viz. Tia. == 0 with 1 ( 1 Or With
J ( 1. The former one corresponds to a lower triangular matrix.

Bowever if the order of frequencies is such that X17 *2 ....9)~m
and it the normal coordinate is nearly pure, the lower triangular
latrix is pre1'errable.19’21

The matrix C can be expressed as a fimction 01'

(1/2) n (n-1) parameters. Among the diiferent ways oi’ writing
the 0 matrix, the following three" representations are userulzz

1) Angle parameters I3~1 1.1K° W5) = 121 1;-1+1 *1; £9514) ('
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Here the Aij'8 are elementary rotation matrices in the ij plan
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In an the 11"‘ and 31”‘ element 1» eoa¢n, the 13“ element 1»

<5

Oi
O
03

OA
!0

Of

0,;

O;

1_l

-a1n¢ and the »;11“h element is =m¢ . All the other diagonal13 1;]
elements are unity and off-diagonal elements are zero.

Lb) Antiaynmetric parameters

c-(E-x)(n+1<)"=z (n+x)‘-n (1.16b)
Hem E is a unit matrix and the elements of the antisymmetric
matrix K am the parameters11'" oi 0< '1‘;| 0   00000000E OK o('i '1"  O  00000004i‘ ¢;( _0€ 0 0( ?_ Ii II 0O\0OOOo 3n.|K = 2 1 % 13 23 Hr; Q Q‘ 0 00000010, \Y! 5!. ; Q 00000000 0 }

=-- 1n 2n 311 OJUIOOOOQO
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Q) Exponential parameters
O = ex

H020 K his the sane meaning as in eq.(1,16b). Thus the first two types
m quite often used, rather than the last one.

It should be mentioned that neither the I|°'e nor
the 0'0 are the eame in the two romalim arising out oi’
eubstitutim of eq.(1.15) and (1.16) in eq.(1.14), though
thy may be related by the constraint that L ziust be the sane
in both caeesdlhus

v‘1“'/2 on -= 1 cs (1.17)
Ihie can be written as

r'\_/ _ I\Ion cs - ‘P ‘/2 v g (1.10)
Here OR and 08 represents the C matrices in the rotation and

sheer ethods respectively. Thus for n = 2, On and C3 natrioee
contains only one angle parameter in each which we will call

¢R and dis respectively and one gets a relationm

¢B e Q58 + 5 + 2n1T (1.19)
Here ¢ is the angle parameter, of the rotation matrix

I HT '1/2 Al; T. Other tom of Lo matrices have also been
23,24,525

suggested but these forms are ortten applicable to n I 2 oases
onlyzs and are reducible to one of the two types discussed above,
though equations analogous to eq.(1.17). Among these di1’i’erent

representations for Lo, the one in the trmngulel‘ fore enpem
superior by virtue of
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1) 9533' °°mPutabil1tYiw'21a °l3Pe¢ia3-3' for higher order
problems

11) the Pmgrooaive rigidity picturc26"34, it preaenta
amongpthe different: modes of vibration

111) the case withcwhich any particular mode of vibration
can bcctreatcd an uncouplodzi and

iv) its invariant nature to the scaling changes.

substituting cq.(1.14) into eq.(1.‘l3) we get

/'\I "1 r\.I -1P =- Lo C /\ C Lo (1.20)
This result was first obtained by Taylor” in 1950 and lojiiqr by
Torok and Pulay in a more general fox-m2°. The above equation
is basically important and provides a systematic approach to the
study of the complete oat of mathmatically possible solutions.
This equation has been succeafully appliod to studios of problems
in infrared and NJLR. spectroscopy an roll“

1-5 llodel force fields:

The inadequacy of frequency data in determining all

the‘ (1/2) n (n+1) force constants for a symmetric opecica ot order
n constitutes the main problem or nomal coordinate analysis. The

problem in general is indeterminate unlooa additional data made
use oi’ or some extra assumptions arc made which reduce the the

number of force constants. In the absence of additional data,

om: can generate an iriinito sat of Iorce fields as given in

’\J-.‘ "3 - ‘I "r r1F 3: L /"\ L #11311-U :3 LUV 0
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Ls a soluticn to this multiplicity, various lpprozijgtg gem.
1'10!-<18 he" been Mieseetea which um one or other aesulption
of a physical or mathematical nature.

One such approxination leads to the Qflnfrfl fgrgg

field of Dennison“ which postulates only forces along lines
jeining pairs of atom. The number of force constants in this
lodel is less than that of the frequencies. However, this
llsbpticn is strictly valid only if the molecule is held by
ionic intractions and this is not in the case of general.

The simple valenae force field (8.VJ'J'), first
introduced by Bjerrun“, postulates a strong restoring force
in fie line of each valence bond whenever the distance between
8

tie bonded at@ changes. In addition, there is a resistive
force opposing a oblige of angle between any two bonds,

The ncst general fora of force field called the
general valance force field (G.V.l'.I) is defined by eq,(‘l.2),

the fu are the general valance force constants. Various
intraotions between stretching and bending and stretching an!

stretching deformations are taken into account in this nodal­
fhs nmber of interaction force constants that can be included
in the potential energy function is always nuch larger than that
ef the observed frequencies from which they have to be evaluated
Ihen it becomes necessary to neglect some of the intonation
force constants. The gemral valance force field presents a near
complete picture of the internuclear forces and has been widely
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used in the investigation of force fields. If there are n
J

vibrations of a given species J, the totalnumber of independent
force constants for a molecule in the general valance force field

is given by (1/2) Y. nj (nj +1).

The concept of directed valanee48 has been applied by
Heath and I-innet49_52 to the function of e force field called the
orbital valance force field (0.V.F.F), which eliminates the

difficulty of introducing separate angle bending constants for
out—of-plane vibrations. 0.V.F.F accounts in a better way for the
vibrational frequencies of certain molecules than does the simple

valance force field. This however differs from the latter only
in the treatment of the angular displacements. This 0.V.F.1F

criterion for minimum potential energy is maximum overlap between

the bonding orbitals of bonded atoms. O.V.P.F. breaks down in the

case of molecules 0Ont9.1nir§," heavier atoms, and further, its

treatment of bending vibrations is essentially artificial. But
b.V.F.F. is only an approximation of the G.V.F.F., since the former
takes into account a limited number of force constants. The

hybrid bond force field (H.B.F.F), a modification of 0.V.F._F.based
on the correlation of bond strength with bond angle, is successful];

applied to NI-I3 m0lecule66.

In the Urey Brad1y67 force field (U.B".lE'.F) in addition

to main force constants which represents stretching or bending,

repulsion force constants between non-bonded atom are of the

Vendor Uaals type. The main advantage of U.B.FJ‘. is that it
contains a smaller number of force constants thm the G.V.I'.P.
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4°», and Shinonanochi68'6»9’7° has demonstrated the general niiaitr
.t ill ILBJJ.

Several modifications have been suggested 191- Q3

conventional U.B-Ll‘ by various workers7°'77. Iron a comparative

shady of tin U.BJ.P. and the G.V.PJ'. in sons tetrahedral,"
pyrenidal and trigonsl planar molecules, Duncan“ has cenelm“
that for the Urey Bradly model to be successful, the non,-bonded

repulsion force constant must explain both bond-bond and bond-angle
interactions at one and the sane time. However, this restriction
breaks down when the atomic repulsions are not all in one plane
and in these cases the Urey Bradly model fails to give a true
P1-0fllIl'Ce

1-6 Kinetic models tor molecules:

Despite the indeterminate nature oi‘ vibrational problem

when the frequencies are the experimental data, many attempts have
been made to rind mthenatical conditions which at least

approximate the correct physical situation. By putting O I I in
,eq.(1.20) we get a certain I matrix which depends only en the 111"?"
kinetic energy matrix G. 0 I 3 means vibrations are purely
governed by kinetic coupling between internal coordinates. Ideas

along these lines or kinetically defined normal. coordinates
been suggested mainly in the three difierent patterns.

l i) the method or Billes potential53l'54. 24,37 1,40,41,55
ii) the method of charaterstic set of coordinates

iii) the method ct progressive rigidityw’ 26'”
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The method of progressive rigidity has been enjoying
wider use in the recent years26"34. Here L = ‘I! :15 the 1°”;­

triangular matrix. The validity of this approximation in

calculating the force constants has been investigated by Muller“
eat al in detail. This method has the advantage that the potential
is independent oi’ the normalisaticn of the internal coordinates.
this property known as scaling invariance makes the model oi’

progressive rigidity more satisfactory than the two other models.- O
l'reemsn3 has given a comparison between the three kinematic models.

1-7 Approximation techniques :

The kinetic models mentioned earlier often lead to
approximate force fields near the exact ones. But this method is
besioaly unrelia tie since 0 = E means that the vibrations are
purely governed by kinematic couplings between the internal

coordinates. When these couplings are lags, physically unacceptable

_“0fi-diagonal elements appear in F. Moreover, the force field
Obtained in most cases fails to reproduce some of the senitive

edfiitional data. These facts suggest small non zero values for_ 9
>

the off-diagonal elements in C.

Many methods have been suggested during the lest ten

Yjeers to obtain C matrices, that would correspond to the real
K-1

fphysicel situation in a better manner. Few of such methods ePP¢81‘
to give -the same picture given by the kinetic models, but some

dpecent ones approach to true physical situation in a more
ilthtactory manner. They are 8tre¥'9‘m°th°d44'21'23~'32a l9th°¢

1
;\; ‘.|

items»: and sa111¢n23'“’56'57. 1- matrir approximation by
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m1er32'3"5°"‘ and Beddingtode method“. Ont or Q11 theee

litter-ent methods, L "net:-1:: eppnonnetion teomiqne developed
nelnly by lnller and collaborators is a more convenient one when

eenpered to other methods end hence it in given below.

The L matrix plqe e. vital role 01’ bringing in n:|.::Lng
between the eymnetry coordinates end the normal ooordinetee.

the validity or certain L matrix approximation hee been enelyeed
by laller et el. Accordingly the trequenoiee 9 and 5 ere
eleigned to the stretching and bending aodee m e molecule. v 1e
grater than 6' in lent second order vibraticnal epeoiel fill thin
type o1’ problel may be called evé oeee. rollonng the eene
convention other oeeee vis.vv,6'6 and 96' ere also real;
poeeihle. the epproxination euggeeted by lnller ere

1512 =1 0 ior 96' ale

L2‘ 1- O tor 159 oeee

L12 n L21 tor 91’ or J5 oeee

1,12 1- L21 as 0 Ih¢fl‘llIf1'IQBII¢1IIl2IUIO11­
Ilpntltide

en. npproxilntion 1% - 0* in eewtwfl-‘mt tv "II
yfoggenive rigidity nodal an well an to Streye>' F22 minimisation
condition ea elreedy mentioned. ma method 5,2 - 9 to eevwlellr
excellent in the evaluation of vibrational nplituiee. Izller hee

further noted that 1'22 will be more eoourete then I1; in under thil
Qpproxiflgtiqn. Bxpreeeione for In elennte  epproxinetiu
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I112 I 0 and L21 I 0 are included in Table 1. The L12 = Q
approximation actually leads to a complete characteristie

vibration for the mode corresponding to frequency?54’57'6°, This
is quite obvious since under this condition, one is able to write

en equation G22 P22 = a) 2. Supplementing to this idea it may be
eeid that L21 = 0 approximation should lead to a complete
characteristic vibration for the frequency V , since under this

condition one is able to write an equation G" In I 31. The
ilPPI‘°IilIl8-131011 I-12 = 1:21 == 0 originates from the characteristic

let of coordinate picture and is valid only in the limiting
case of G12 73$ 0.

A rationalisation of the properties of L matrix for
n_ = 3 is possible by considering the n == 3 problem to be made up

of three n = 2 cases. Thus in a\>1>d' case one expects Ln ‘:1 1.23’; 0
(96 case) and L12 '2'» L21 (*0? case) as has been suggested by Iuller.
Though there are sight different cases associated with the three
frequencies, onlyvvd and vd’d' are the common ones. The approximation

cw =- L13 -= L23 = 0 forvvdcase have been found to be quite valid
for the bent X Y Z molecules, with the frequencies in the decreasing
order. The examples analysed are NSF, NSCl, ONT‘, OHCI anl 0H'Br3‘.

lbs expressions for the Pu elements in terms of the 7\ and G
elements are given in Table 2. The approximation L12 I L13 == L23 =
corresponds to the progressive rigidity model. It can be noted T

that under this model the F13 elements for n -== 2 can be obtained

1':-on the rm elements for n -= 2 by putting A 3 = 0.

A general feature of the three approximation methods
discussed so far is that the L matrix elements in all these are
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determined by mechanical couplings rather thm by am; chemical
binding ¢oup1mg£""65. MU.llBI‘63 has shown mt the different

approximation methods for the n = 2 case, discussed so far

coincide in the case of very small mass couplings, ie. when

G12( ( G" and G22. This means that aw approximation method
should be better checked with molecule having large mass

couplings. Results of such attempts indicate that the L12 = 0
model gives better force fields generally3o’61. Quite recently
the criterion oi’ minimum average bending energy has been round

to give very satisfactory results in the case oi’ small molecules79

1-8 Molecular structure determination from microwave data:

Determination of molecular geometry from spectral data
has been a major endeavor of the experimental microwave

spectroscopist. Spectroscopy in the microwave region is concerned
with the study of rotating molecules. The rotation of a three

dimensional body is quite complex and it is convenient to resolve
Iv

O

it into rotational components about three mutually perpendicular
directions through the centre of gravity - ie. along the principle
axes of rotation. Then a body has three principal moments oi’

_:I.nertia,. one about each axis, usually designated I‘, IB and I0.
Iolecules are classified into groups according to their relative
values oi’ their three principal moments of inertia

i) Linear molemles for which IB = Ic, I‘ == 0
ii). Symmetric top molecules tor which IB -= Ic 94' I‘

iii) Spherical top molecules for which IB I Ic = IA
iv) Asymmetric top molecules for which IB 95 Ic =75 I‘

9
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The structural information concerning bondlengtn and

bond angles in a particular molecule in contained in the principal
nhents of inertia, which are inversely propoticnel to the
retetimel constants A, B, and O derived tron the microwave

spectrum. Ihe ettective bondlength derived tron 18° for the general
ground vibrational state is designated as ro and the associated

structure is celled 1'0 etmcture.

Solving Schrodinger equation , the rotational energ
levels allowed to a rigid diatomic molecule ere given by the

expression

B, - (ha/av’ I) J(J+1) (1.21)
mu J = O, 1, 2, 3, .... . In this expression h in Planck's
constant, I in the moment oi’ inertia either I3 or Ic, eince both
ere equal. J is the rotational quantum number. for a diatolie

nolecule ii’ :1 and I2 are the neeeee separated by e. dietance re
then noment or inertia

I 0.1 .2 (g_‘ + .2)-1r.in/-41% (1.22)
In the rotational region, spectra are usually discussed

in terns oi’ wave number, eo eq,(1.21) can be expressed as

9} I (1;/pg) = 3 J (J~l-1) en"1 (1.23)
Ihsre c is mt velocity or light in on 5"‘ ma n is the rotational
eenstnt given by
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Consider the molecule in J = 0 state. By absorbing radiation
it is raised to J == 1 state. The energy absorbed will beG -6 -1J21 Jae =2Bom
Hence an absorption line will appear at 2 B cm“. In general
to raise a molecule from J to (J +1) state we would have

’€J -->€J+1 = 2 B <3“) °m'-I (1.25)
The step--wise raising of the rotational energy results in an
absorption spectrum consisting of lines at 2 B, 4 B, ..... cm'1.
Once 2 B is known from the measurement of the separation between

the absorption lines, the bondlongth of the diatomic molecule can

be obtained using eq.(1.22) and (1.24).

On studying closely the spacing between the spectral

lines we can find that separation slightly decreases for higher
values of J . This is caused by the centrifugal stretching of the
bonds, which indicates that the bonds are not rigid. In the upper
rotational levels the molecule rotates faster and the bond is

elongated slightly resulting in a decrease in the spacing between
levels due to a slight increase in the moment of inertia.

The Schrodinger equation may be set up for a non-rigid
molecule and the rotational energ levels are found to be

€J = B J(J+1) - n J2 (J+1 )2 em" (L26?
Ihere D is the centriifugal distortion constant given by

D = (I13/32174 I2 1'2 K o) cm“ (11537)
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K is the elasticity or force constant of the bond, and if the
motion is S.H.eM. .

1<=4rr2¢‘a2/*3 (mg)
0-’ is the vibrational frequency in cm“ am}/* is the reduced mass.

For diatomic molecule )4» = m1 m2 {mi '1,

+
E

ro

Ii‘ the force fieli

is anhermonic eq.(1.26) becomes

EJ = B J (.I+1) - 1) J2 (J+1)2 +21 J5 (.1+1)5 +

K J4 (J+1)4 + ......¢m"‘ (1.29)

where H, K etc. are small constants dependent upon the geometry
of the molecule. They are nowever negligible compared with D,

Considering the eelection rule A J == _~_l-_ 1 the energy levels of a
non rigid molecule can be expressed as

EJH - 5; = 2 B (.:+1)-41> (.r+1)3 cm-1 (1.30)

Symme trio top L mole cule e:

The rotational energy equation for symmetric top

molecules involve two different moments oi’ inertia and two quantum

numbers, namely Jwhereoterizing the total angilar momentum of the

molecule and K,the angular momentum about the major axis. The

energy levels of non r11 gid e;/mmetri.c top can be expressed as

1’-J If = B J (J-+1) + (A - B) K2 - DJ J2 (:-'+1)2 ­9» "
DJK J (J+1) K2 - nk K4 ¢m’1 (1»3*)

r--I
U

Co
‘m I

1.“-k3eLre 3 .: (hi/5112 _* and A = (11/8'11‘? 1A.;;). The ene1*g_v depends

\
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on K2 so that it is immaterial whether the molecule spins in

clockwise or anticlockwise, the energy is the same for a given J.
For all K > 0, the energy levels are double degenerate. The

selection rule isA J =- 0, 3-_ 1 and A K = 0. DJ, DJ-K and are
the small corrections for the non rigidity.

5%,’; - em. = 2 B(J+1) - 4 DJ(-1+1 )3 - 2 em J(J+1) 1:2 cf‘ (1.33)

the spectrum is basically that oi’ a linear molecule including
centrifugal stretching, with additional term which depends on K2.

Due to the selection rules, the analysis of the
nicrowave spectrum of synmetric top molecules yields only information
about the rotational constant B. In symmetric top molecules the
structural parameters to be evaluated is grater than the available
rotational constants-Hence in these type of molecules the molecular
geometry is obtained by studying the microwave spectrum or its

isotopic substituents. The terms DJ, DH and D! which are the
corrections tor the non rigidity of the molecule, are functions or
noleculsr geometry and force field of the molecule. The details
regarding the calculation oi’ centrifugal distortion constants for
polyatomic molemles are discussed in chapter II.
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-TABLE 2

Expressions for P matrix elements under the approx1.mat1on3 4

I112 == L13 == L23 = 0 for third order vibrational species.

1'1: The expression
P11 ( £1 A + ‘A2 cfz + X3 01, c2 121") / G11 A

1-12 -()\2 @12lcl+ X330)/Aim
-1F13 *3 ° 'G'

F22 (A2 an IGI + X3 B2) / A Ic-1

.. x -11:23 3 B IGI
-1

F33 X3 A lG\
_ ~2___ . ,_ _2 ; _ * ~_ — _ .____ "1 *"— 2;**1_“*­

2

B = (G11 G23 ‘ G12 G13)’

° = (G12 G23 ' G13 G22)
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Abstract

The general quantum nmchanicsl theory oi’ centrifugal

distortion constants in polyatomic molecules as developed by
Kivelson and Iilson is briefly outlined. A summary oi’ the

simpliiied computational procedure based on 0yv:Ln's T5 matrix

1'01-malian is given. The calculation of ta‘ B16 elements is
illustrated in the case ct KY2 bent symmetric molecular system

'50
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2'-1 Introductim:

Considering molecule as a rigid rotor, the rotational

energy levels of the eymetric top molecules have been obtained by
Dennison‘. Iangz has given the corresponding expression for the
asymmetric top aoleculee. Later workez-e3" found um; rotgtiqngl

fine atruoture is influenced by the nm rigidity of the molecule,
eepeoia]; through the coupling of the angular momenta of vibration

and rotation. Another known fact is that different enperioal
aonente of inertia are needed in applying the Iang secular equation
for the asymmetric top to each vibration rotation band, presumably
due to the variation of effective moments of enertia by the
vibrational motion. Again the rigid top never accounts for the
centrifugal stretching effects where these are obeerved experimental];
Ibeae points stress the fact that aoleculee lust be treated as
non-rigid rotatore. The rotational energy levele of non- rigid
rotor can be obtained ueing classical approachs or quantum

mechanical approachs. Here we outline briefly the theory for
the non- rigid rotator using the quantum mechanical approach based

on the firt order perturbation theory.

2—2 Hamiltonian for non-rigid rotor:

Int 8“ be the/(4 components 914- z,y,a) of tin angular
@001-dinate system and let cc’,/5’, '/'and‘1'/,_,,,;g be conatente
indepencbnt of the rotational quantunrnunber. Then the Haailtonian
for the non--rigid rotator is given by Benedict? ae



‘ IH I Ho . +0 I I ’
where Ho -= 04 PE +/$ Pi+>’ Q; (24))
and H; -= (1/4)t4£T/“_H,€ nkrvré Pg (2.3)

I

Ho represents the Hamiltonian for the ctfective
1' Otor. 1 , /

°‘-152 /21,./‘ =52/2 11,1/=-1&2/21,
Ix, I? and Is arc the efiective principal momanta or inertia tor

¢

the given vibrational state. H1 in the centrifugal diatom-tion
term, the parameters of which depends on the geometry and zlorce

constants ct the molecules. It in assumed that the ettect of

H; 1» anal]. ac um 1: W be treated by the first order perturbation
theory. arm aoluticn out ihe eigen value c-1' 5;, the zero
approximation toil! has been diacuaeed by King, Rainer and 0rcsw8’9.

2-3 Simplification tor dietorticn tern :

The commutation rule: tor angular ncnentunm viz.

- r/,,1>,, - - 1 Pp (2.4)
‘her; /4 , -9 , P in cyclic order can be used to c1im1.natef¢vr;’zj
term in 5;. the result or this pzocecure ie e change in the
coefficient ct the remaining term in  which can he cbocrbod

‘aid

s 1"

into Hg. The new fem ct H is tlnnH ‘ H9 +
when Ho Iflrfi  ‘FY P?
and g, - <1/4)/5;?-',“,»-   1"; <2-1)
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I

tho relation botwoog tho new cootticiontuot,/6 , ‘Y mg ‘T/‘F vv
Ind the pronoun ones an

T’ nT- 1=,4,"'C’ u(T 4.2‘: >154Illl ISIS If IQ, Q‘I IE  I tn" ( Ln“ + 2  kI I"'5 ‘T *'4.‘T -(‘T +2‘? M41117 U17 can an an:
I

Of-0‘ +(3"lT -QT ..2L,"‘)j;4/4
0

I

'7 - ‘Y’ + (3'T-',a, - 2‘T,,,, - 2'Tqq)‘h4 / 4

Eh! tlltal angular lolontul givon by

Izafli-0-P;-0-Y: (2.Q)
comztu with H and Ho and homo it in a constant matrix with
diagonal valuoa J (J-+1) no tar no the prooont problem is omooz-nod.

Binoo P2 oomntoa with Pi and P3, we can ton tin following ulotul
operator produotl.

r§r2+r2r§-2:(:+1)r§+2r; P2

4­IK IO f\
an _...__ .1»'4 4- +
3a3@
.1. ..'1.. '*"'“an Q» so 4»

Q

ow}
-P

Pi (2.9)
!:f+'r2P;.2J§J+1)2§ ‘ Ii1'2 (2.10)
Anothor nlation that in and aim; expansion tor Ia in obtdaol
W aqua-in oq. (2 .6),
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53 " ma 1': -Q92 P; +72 P; +ap(1»fi pi

/87 '3 '5  *7“??? 1’: (2.111

~0­

+

61» 2
Q10‘ :1‘:

-:1»
+

I

B1. (2 28) oen he need to eliminate P: in the ezpreeeion for H.
from eq. (2 .6). further equering Ho end diflerenciating it with
reepeot to Of , we get

93% /don 2 (or-,9) 11: +(/3--1)(1>£ pi

4­

-"lo

~11»
4'

2 Y J (J+1) Ii (2.12)
Io. can derive similar expression in which Pi ie elinineted in e
like manner. Thue,

BB: /a~<- 2 (ot-,3) 2:1 + (1-5) (pg PE pi

‘I’

~<"|oxv
1‘

2 J (J4-1) ring (2,3)
It I0 ie the energy of the rigid rotor represented by 8., Breggnh-to shown that _ ­

( 1»: > -. ((3)3. /c)c<  -= 81°/<9o< (,g,14)
Ihere the bracket ( > represents the diagonal elenente (everege
veluee) oi’ the enoloeed operetore in a beeie which diegmelieee Io.
01-nu-1; 1: oen he shown ma

_ <an§/ad) -. c)w°/<9<>< -2I° t( 1%) (2.15)
linee we ea eoneidering only the first order, the required energ »
will involve only the diagonal nluee or ti: perturbing ope:-etore.

the equation oonteining H1 will alt ante]; he med cal) for tin
diagonal vnluee with the help of eq.(2.15). Ie than the feet tht
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>. ':' c°n'1&r1-n‘ .\'(2e9) fl1I'0\1@ OQe (2e1§) Qfl

avenge velm equations, they can be solved eo tint ( P: ) ,
<r;> §<’§ ’§*’§’5>'<’§Pi+P§'§>"*<Pi*i+'i'i>
een be erpnened in terns out J (J+1)(P£> , J (J-I-1) (
1 (:+1><r§>,<r1>. vi uni (ri >.n-O .. em 1...
eql.(2.6) and (2.8) to solve for  in text! 0!

01>

I

-{v,-Y: <:+n-<=<-Y><r§>/mp-1)} (2.16)
Mailer}; we can get expneeeion tor < 1'5 > . Using these result:
13H‘ , we get the tollowing expneeeion tor we energy et e nu­
rigid asymmetric rotor in the first order.

I - I‘+1.|I'i+L2I°J' (;+1) +542 (;+1)2+

A4 J (:+1)(r§ ) + 45(r:)+ 16 @422) (2.11)
1'0 ere independent of the rotationelquannm numbers. Io in the
1-igu rotor eneqy ee solved by King, Hniner and 01-ou°'9.

Ivelnntima qr ( If > ma(21)mm been done by anew" an
Iiveleonwna reepectively end tbeee are given by

<r:)<: (r§)2,~:, x‘ (2.11¢)
3‘ I 15 36 / (£3-'1/)2 . (ZJTD)
a--[ 16 as (;8+1)/ (p-"/)2 + 451 / (,0-1)] (2.110



£5

A3--nJ+2a6h+16n6 (.,<2 -gr)/(/Q-Y)? +

25: (/@+Y)/(,3-Y) (2.1?a)
54 - - pm - 2=$';_s--16 R6 (o(2-/B7) / (/5-a/)2 +

4 R603 + 4 R5 <1/+,e) / (/a-1) (2.110
gs:-(BK-+435 +2116-4126:-2) (2.172)
46 - (a as -16 R66“) / (,8-Y) (2.110
a—-(20:-/6-Y)/(,0-Y) (2.1'n:)

IhO1'0

DJ , _ (1/33) (3 Txxn + 3'3”? 3» 2'31”, + 4"":nn)'Fa4 (2.171)

D; " D; " (1/4)“-‘Isuzu -(E1811 “rays: " zfrllll _ 2‘g‘81$n'4(2'"i

pm - - 1>_, - nx - (1/4>‘T,m 1.‘ (amt)
. R5 = - (1/32)[(Tnn "'(-L-yyyy " 2 (I-Enzz * 2‘-Exam) "'

2 (.-gnu ,. 2'-E-y5yz)“] ,5. (2.111)
R6 _ (1/54)['T_'xxn ./En” _, 2 ("Cray + 2‘Tnn)]T14 (2.1%)

d

J; ' _ (1/16)  ,, ([1371) F4 (2017!)
For symmetric rotor R5» R5 53 "B1911 "14 )3 " Y ' ‘PP17“‘
this condition to sq!» (2-17) and using the result ot oq. (2.171),

eq.(2.17) can be ~=Pv==='¢ '8
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Islo-17:12 (an)? -baa (.r+1)r2 -nxx‘ (2.10)
his equation repreaente the rotational energ levels oi’ a non
rigid aynetric rotor in the first order theory.

2-4 Centrifugal distortion 2

Baaic picture oi’ the centrifugal dictation can he
obtained by coneidering a diatomic molecule. Atom are conaidered
to be hard apherea Joined by a rather rigid spring which obeye

Hook°e law. Ii’ the aolecule is rotated about an axie perpendicular
.­

to internuclear 'one, then at equilibrium, centrifugal force ia

equal to centripetal torce. Let /*4 1- :1 :2 / (a1 + a2) be the
reduced naaa ct the molecule at equilibrium. Ie then have

K (r — re) I-/-4 rwz a P2 //1-1'3 (2.19)
Ihere K is the force oonetant, r°,the bond length of the stationary
nq1_¢¢u]_g, (.0, the angular velocity and P is the angular momentum.
Energy of the system is given by the Hamiltonian

n =- .2 / 2/*1-2 + (1/2) x <1» - 1-0)’ (2.20)
Expanding the internuclear dietance about ro

,2-= 1-.[1+2(1--ro)/r°+ .... 1 (2.21)
Iron which we get

11 -(P2/2/i1-E)-(P‘/2/*2Krf,)*°P6 9'")
liret ten in the K.l. ct tb rotor an! the eecond ten ariaee
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due to centrifugal force. Crose12%, Law:-encew end Wilson“ have

discussed the centrifugal distortion for polyatomic molecules.
Here we are giving below the formula for centrifugal distortion
in polyatomic molecules using quantum mchemcal approach.

Wilson“ has given the method for evaluating the centrifugal

distortion constants ‘Teena, which appear as the coefficients
of the matrix terms in the expression for the Hamiltonian of e.

non—ri-gid rotator given by

H =- Ev}, (1/2) Z88, 0*“, Pg P8, + (1/4) gm, r6Pg,r3r1,’F88,“,
(2.23)

Ev is e. constant diagonal matrix representing the vibrational

energ. P8 is the matrix of component of the total angular
momentum along the g axis (represented by 1, y, 2). 488, is a
numerical coefficients related to the moment of inertia of the
molecule and is a fixed number for a definite vibrational state.

‘I88, N, depends only on the vibrational state. How

"‘e'=~' “ "1 ‘l?‘“;l‘l_flL_Zf;21ffQ <w>n\>'- V ‘ V0
The prime indicates that V is excluded fmm the sum. "\"’V,Y"

is the difference in the cneréf 33° "" 'v°"~ I“ £81 9*" *3" 1"-m°*1°°”
of the normal coordinate such that ~

i
~

_ I

/“:1 = <1w1»=~"‘§~@"">

/Ayy I‘ (III? I22‘

i

pfk
‘t-I
\.
D
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/1, - (In.1,,.-I§,.) /A
F, - (I,,; In. +1". In.) /A
/4. - <1,.-1,..+1,,- :...> /A
/'3; " “n'5v*Iq'11=') /4

.3‘ F III! "" Int " K‘:
A . V‘ I13’ I13‘ - I11‘ ,

l - In, ... 1", I",
In order to calculate these 'T'e we nuet know the molecular geonetry
fundamental node or vibration (or torce ccnetante) and the nornel

‘Tlvibrational frequencies. Qhe e can be obtained ea tollowe.

!or a non linear molecule oi’ H atom there ere (31-6)

independent internal displacement parameter-e. Let 5111 be the
correeponding set ct internal displacement coordinates. rheee
dieplecenont coordinates up be changes in bond length or bond

mu. 1:/-£6, 1» the equilibrium value or/1*“, (e113-oi - o) cm,d 2
/‘Es’ =/"‘g6'+; 6-qi + 0 (6% ) (2.24)

where /“£3: = ( 6/336'/aqi Jaqigo (1525)
All quadratic and higher order terse are neglected in eq.(2.24).

Ueing lnmonic oecilator wave functions in eq.(2 .24)» /"iv./4:‘;
are conetente einoe Y qt V". The orthogonal property of the

Hermite polgnoaiel givee



40I  1(Y //1*“. / Y“) - 1 /:8. (V / 11 / 7') (2.26)I‘ ,,.
U” Qt ‘Q0   81-YQI
‘F -2' Z 1 1‘ <v/J / v- 5“'3' _ ’ ' Q1 )(7"/ q / Y)~ » '- ”‘ /4§.‘;,/%Li..:1__1___;, (2.21)

Ibo noun]. coordinates at may bu written in term 01' internal
l1lP1l0Ol0lit coordinates Jqi as

6111 "' at bit Qk (2028)
thorotoro

(V/611/v)-(v/Zk on Gk/V")

-Zr bu (v / Q, / Y") (2.29)
lor tho basic tunotima in Harmonic Oocilator, the quantity

(1 / Qt / V") ia non vanishing only it all 19¢ L9" oxoopt tho single
quantum mmbor Vk associated with the normal coordinate Qt. Hon

lg‘ 1-U; 3-_ 1. By considering this propu-tyT'l can be oxprouoo as

,L[;"u. _ Z/€.‘4é"./515.2; b1lbkl,{[(q/Q1/‘U1 +1) .­

(I11 /Q1/01)]/h >>1,1+1 +

[U91/11 /"°1"‘)("°i"/Q1/01 )/h )1~1"]} (M0)

flu matrix olunnt tor tho harmonic Osoilator an nail; ocloulrhd
to gin
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(191/Q1/<91») =/W W; >4
Q

4‘

(U1/Q1/01-1) = \/ U1 /8 '; 1’;
If £3 :I.a the potential ocnetmt in the expzeeaion for the potential
energy“, when it in-expreaeed in tonne or the displacement

coordinatee 6-111 , then

(£-1)u ‘Z1 “bu bkl / 4Tl'2 (9 )2 (3,311)
5

Ueing eq.(2.32) and (2.31) in eq. (2.30) we get expreeaion £or'?."e an

($80310 "' " (1/2) Zik /‘£80 /L310 (1-‘)2 (2033)
Iileonw has derived the same ztornula using claeaical approach.

T ‘e are again be simplified :Ln terae or fine inertia nteneor I in

place or the inveree inertia tensor/¢ . Expanding the inertia
teneer in tern 01’ the displacement coo:-dinatea J qi, we get

I I I‘ ‘F 1   '|‘ eeee
m ‘ma: 1° 1: the equilibrium tenear am

Q)". (a1/ 0,1) (2.39)
he aere enbecript indicates that J1 1| evaluated at Jq‘ I 0
einee /44' I 1'1,

1/4 - 1 - I‘/4'».-PI. ‘ii /4‘ J'q1+Z1(I‘),J'e1 ,+--(1-3‘)

Beeeuee/uie the inveree at I for all the valuee at J Ag‘ fliea an
anaepnam, eq-(2-36) can be examined M

/#1 _ _/Q U1)‘ /3 (2.51)
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'0' it 1' .353 t0 “'9 Q19 P111105-PB-1 £116 oyoten Io and /#0 ya thgt
both or the tenaorsare diagonal. Therefore the diagonal elegant

Io are the reciprocals or the/4°. How qq.(2-37) 10 Bi-lplitied
ani becomes

/“¢Z- ‘ " “’§a')o/128' 131' <2-3°)
It the average momenta or inertia are not known, it in dittimlt
to determine equilibrium momenta or inertia. Therefore 1° , and

Igd, luat be replaced by the momenta averaged over the grssund
vibrational state. Once averaged momenta oi’ inertia are known,
we can calculate the centrifugal distortion constant. Thus

‘aa'a:' " " 2 ‘Ea I§'s' I3: 1321' 'tu'aa' “'3”
‘ganja: " £11 U280)‘, (J§Jg)° (1-1 )3 (2040)
The t88,u, notation is given by Kiveloon and Iileonw.

2--5 Oyvina '.l"5 matrix formalin I

cyv1n'9 has auggeeted a modified mum by which the

quantities oi’ t 0‘ /9 ycgare related by the aid or certain elements
910;’; ,0 rather tlrnn the partial derivation or inertia tenecr
coaponente used in the method at Kivelaon and Iileonw. the lap ,0
elements may easily be evaluated for a given molecular nodal tron­

the equilibriun poition vectors.

The centrifugal distortion conetante r':a;316' are neI

related to qumtitiee ta/373-through the eq. (2 .39) as

tdflrg an -2 1;“ I;/8 1.77 I35 Tdlgyj (2¢‘1)
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391$ ‘X a/5» '/»  '= In I 91‘ 5 and 1;, 1;’, I?“ are the principal
momenta of inertia at equilibrium. Let Jq be a matrix with 6

' .
°°1‘"m° ‘In-Q’ ‘Tarn’ ‘Imam’ ‘Tram’ JIM} M J1-rm‘ smhrh
the matrix JS can also be expressed. Hero Q and 8 refer to
the normal and symmetry coordinates roapootivoly. Then

»~/ ~ _1
Hero 5“ I 1/417292 ‘$2, '9 being the wave numbor oi’ the fundamentals
and 1'" is the inverse toroo constant matrix. The J quantities
are the partial derivatives or the instantaneous inertia tensor
taken at equilibrium. That is

.553,“ I (Q 1,93  Qt)“ J:p'8 er (O)I°<f3/‘981)° (2.43)
The new matrix In introduced by Oyvin again consisting of 6 oolume

The quantitioa flaw 8 are given by the relationw9

0(0( .rdous - 23 1 a (2-44)Q . -3 nip 2' (2.45)
dfies

e
Where B is the symmetric coordinate transformation natrix, R ie
a column vector composed oi’ the equilibrzlnn position vector

componenta oi tho atom (3! elements) md Lap oonlilte oi! I 383
matrix, one for each atom along the main diagonal» 011! 81¢ 51°03
has the torn



0 0 0 7 Y"o 1 0*‘
(1*x)a = 0 1 1 0 1 (1*Y)a = 1 0 0‘!

0 0 1_1 L_o 0 o_
1 0 0 0 0 0

(1YY)a = 0 0 0 (1Y”)a = o 0 10 0 1 0 1 0
*1 0 0 T‘o 0 1

(i““)a =  0 1 o (1“”)a = t o o 0
L_ O O O L1 0 O

In terms of Te matrix, the t matrix is given by the relation
t ="-I; 9 Ts

where e = 0'1 F"' 0
t is a complete symmetric tensor or matrix defined by the

t-wentyone distinct quantities of ta/31,6 arranged as

#1
d“

d­

d’

Cl’

ti‘

¢+

J

xxxx xxyy xxzz xnqyz xxzx xxxy
“ twyyy tyyzz tyyyz trrzr tyrrw
H tzzzz tzzyz tzzzx tzzxy 51;= 1

Symme1;r1l.c ty zyz iiyzzx iy Myii tzxzx taxi;11 21 5'J "tn”1 F...
44

(2.46)

(2.47)

(2.48)

(2.49)



sou explicit tom or ad; ,3 are 31",; M1”
' 1" 2 Z; ‘e (Y: Aei

n.2‘Z;

=1;
-. Z

Q

+‘.A§)1anus I. I1
J1; ,8 -e (3: ‘:1 + I: ‘:1,1 x e 3JSM3 . -I (1: ‘I1 + In ‘a1)

JILB " ‘a (Y: ‘:1 ‘ ‘:1 ‘{1}

»M»l"l

1 e x e zJex,8 .8 (ze ‘oi + In ‘a1)
no (I: ‘ii + Y: ‘xi)

1J11 ,3 Q
Horn I‘ denotes the mane of atom a and 1:, Ya, Z: contain the
equilibrium position vac-tors. Components o1’ the solo eton ere
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(2 .501)

(2.505)

(2-50»)

(2.501)

(2.500)

(2.50!)

referred to the principal system of coordinate ex1e.Th@ coefficients

noted, A.1 (°<-I x, 1, z) are the elements et A netr1x16'2°.

Z o<(Xe " 1 ‘ail. Si
phenol. (xv 1‘, 5.) roproaents the carteoian dieplacelmt

ooordinntee. J“; era related to tap throng: tho relation”

%9B98 . G-1 %flQo8
-18gd ,8 G  is

lenoe the oxproeoion ta: 1! 8 ere given below.otpo

’;:,a " 2§';.(!:B,1e+z:B;e)

- =2 <=:»:.~:#;.>
- =5. <r:»:.+r:»1.>

(2.51)

(2.52)

(2.53)

(2.s4e)

(2-54>)

(2.540)



¢nB' ”Z;(qBL*z:flJ
!:x,S " " 2;‘: (Z1311. .31.)

+

*1»

*1” Bi. * Y1 BL)

I

I

,P4

3

Here BL are the 320'“ matrix elements defined by_ x mSi Xi (Die Xe + 3,1: Ia * Hie ze)

46

(2.544)

(2e5‘O)

(2.541?)

(2.55)

It is eleer that the expreeaione eq.(2.54) are simpler to evaluate
that eq.(2.50). The A metrix elements ere equivelent to Povector
components in the notation or Poloaz, while the B metrix elemnb
conetitute the usually simpler S vectors of Iilnonw. Another
eimplificaticn arises Iran ihe important teat that the equilibrium

position vectors (Io, Y‘, Z’) ueed in eq. (2-54)_need not neceeeevl-1;
refer to the centre ct gravity ct the molecule ea their origin

ee it 1e required in eq. (2.50). The procedure to um out Idle '8
elemente 01’ I12 (C27) bent symmetric molecule ie given below.

2-6 I12 bent eyunetric molecule ea example :

Vibreticn 01' I12 (Czv) #1138 molecule ll oleeeitied 11190

2 A1 + B2 species. The eymetry coordinates are

82(1) 1- r A04

83(3) " 2-1/2 (A P1 "" A 1'3)

(2-$5)



1

X

1) /Q /' Y
7

Y

K1

FTC-.(?,1‘,

XY2 bent symmetric molecule

(symmetry 02v)

\\‘B; X
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Ibex-eA :1 1:165 :2 -ere the ohengee in bond length endAo< is change
in lnterbond angle. 2&1: tho oquillbrlul I I I angle. let mx
and mY bo the meson of atoll I and I. The oonponontl
of 8 notore, if vectors, G matrix elemnta, components at I‘

veotere and tho B matrix or H2 boat eymutric noleoulee are given
b'1°" S - Vectors

1 0 21/2 ainot - 2"/2 ooeo(
2 o - 2"/2 e1n0( - 2"/2 coeol (2.51)
3 o 0. 2'/2 <=oeo<
Atom 82 (L)
1 0 coeol einvl
2 O -ooad 01:10! (2.53)
3 0 0 — 2 sin“
nae B2‘ (B)
1 0 2"‘/2 gust - 2‘/2 oolct
2 0 2"”? einot 2"/2 coed (2.59)
3 O - 21/2 l1hO( 9
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Ot - vector!

Atom B1 (A)
1 o 2*‘/2nmo< -2"/2 I" 5 con“
2 0 -2'1/2a:Ln0( -2'1/2 T1 nx ooaot (2 .60)
3 0 0 2'/2 I-1 I! o0oo(
Atom a2 (1)
1 0 2"‘ 000°! 2"‘ ['1 II 01:10!
2 0 -2" coa0( 2'1 I“, ll nine! (2.61)
3 o 0 -I" my 01:10!
ltfil S2 (B)
1 0 2‘/201 I;x)"1 :1 I! rzaincl -21/2 (II;,7'I1I;r2<=@I °‘

2 0 21/2(II;x)"1 lxlyrzsind 21/2(lI;;)"l1ly1‘2¢°l°(

3 O .81/2(n;x)" ‘g 132.13“ 0 Q0“)
Elements of G matrix

Q“ an (2 col2O(/ 31) "' (1/lg)
/“*2 ' "2' 2 '1” 20” 5) (2.s$)

Q22 ¢ (4 gmzot / ix) + (2/I!)

g” .. (2 u1n2oc/ I1) + (1/lg)
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Wherel=nx+2mY. mxandmramthomaaaoflandlatom.

1;: - 1;, +1;2"-12 ( 2 2I r my mx-0-mYsin0<+mYein0() (2.64)
r in roprosent the bond length I-Y

Re - matrix
P

\T\I o A
V -ra1n0(A, ,o “0 1R0 I Q ‘A (20

r cofl °(
Q '1;

A rain0(
L 0 1
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CHAPTER III

PARAMETRISATION or csmmnxrucu. nlsmonnon consumes:

APPLICATION TO KY2 BENT SYMETRIC MOLECULES

Abstract

A method to generate all the mathematically possible

values of centrifugal distortion constants oi’ a molecule compatible
with its vibrational frequencies is developed. Application of the

method to the KY2 bent synmetric molecules enables mapping of all

theTd/3 Y6 constants as a junction of a single parameter. The use
01' the method in defining the limits as well as in refining

the experimental values oi’ Tap“ constants is discussed. The
method also opens up a route to fix the force constants unambigouely

employing the ‘T q fin; constants as additional data. The numerical
example of SO12 molecule is given to illustrate the general
pr0cedure.Approximation formulas are derived for easier

evaluation ofT,%Y5 constants in KY2 bent symmetric molecules.

The T,<p,5 elements calculated under this approximation
agree very well with the experimental values obtained frcm the

microwave spectrum. Also a method is presented here to predict
fundamental vibrational frequencies from Tgfiyé elements available
tron the microwave spectrum. Using this method fundamental

vibrational frequencies of few KY2 bent symmetric molecules are

obtained from T a ,9 Y 5 elements.
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3—1 Introductimn:i

From the theoretical discussion given in the previous
chapter. we find that the centrifugal distortion constants are
th functions of interatomic forces of the molecule as well as
of molecular gemmetry. In section 4 of chapter 1 we have seen that
tne intramolecular force can be expressed in terms of dimensionless
mixing parameters. This meats that the explicit dependence of the
centrifugal distortion constants on the force constant matrix

elements can be eliminated and the DJ, DJK values also can be
expressed in terms of the sam: dimensionless parameters. In section

2 01’ the present chapter, the pars.n1e1.risa. ti on of centrifugal
distortion constants is discussed in detail. In section 4 of this
chapter the problem of fixing the intramolecular force field
uniquely by taking centrifugal distortion constant as additional
experimental data is discussad within th frame work of parametric

formalism for XY2 bent symmetric molecular system. SCl2 molecule
is taken as an example and accurate values of force constants are

obtained. The theoretical formula derived here leads to the
interesting conclusion that the prediction of fundamental vibrational
frequencies in the molecule is possible solely using th microwave
Spesbrai data, viz.rotational constarms and centrifugal distortion
constants. The method is demonstrated in the case of few molecules

by working out the numerical values of their vibrational frequencies
from.microave data and comparing them with the experimental

‘vibrational frequencies. In section 3-7 we show how parametrisation
leads to the natural approximation formulas for centrifugal
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lietortion conetente in IY2 molecular model.

3-3 P8I'8~1II<¢’¢1'i8%1f-ion of centrifugal distortion cmstentei

As noted earlier in eq. (269) the centrifugal dietorums 1
°°n"l11t°'Ton,g,,,5 are related to tow M. . Because oi‘ the obvious
advantages of Ts matrix which have already been discussed in the
previ-‘me chapter, we have followed the Cyvins2'3 modified "@594
tor computing centrifugal distortion constants. The t matrix

consists of elements tqflws through the relation ’"V — -1 -1r = Te 0 ' r G Ts (3,1)
Ihqpg G 1 19 the kinetic energy matrix and F“1 is the

inverse force constant matrix. Using the eqe.(1.13), (1.7) and
(1.14) of chapter 1, eq. (3.1) can be expressed in the form‘!‘\/ r\/It - K c /\ ‘ c x (3,2)
where K = (I»°)." Ts (3.3)
The Ts matrix for few molecular models have been already discussed

by cyv1n3'3. Eq. (3.2) is important because we can map all the

mathematical values of ta/8,6 fitting the observed vibrational
frequencies by systematically changing ,1;-Z1 ni (D1 -1) parameter!
of C matrix in the general case.

3--3 Application to KY2 bent symmetric molecular models’.

when Lo is taken in the lower tr.>.@v+~..,di;,‘~lar tore4’5

(1,o)1J 1:: 0 for 1 4 J. An advantage here is that all the non-eero/*-J

elements of Lo matrix can be obtained from the relation Lo Lo = G.
The non-vanishing elements of K obtained from eq.(3.3), then

1,0 is taknn in the lower triangular I01‘!!! B" 81-‘"3 5']-°"



K11

K12

K13

K21

K22

K23

K36

<1.;‘>1,\/5 1­

(L°"1)1:/5 r coez (<1/2)

<I»;;‘ >1;/'1? r e1n2)(~</2)

("8' )21‘/5 r

11.5‘ )21~Ié 1» 0082 (~< /2) - (1,;‘ >22 21- simx

(I-;1)21\/5 1- a1.-:12 (<>< /2) + (LZU22 2 r sin

(LSUB3 2 r a1no<

(5.41)

(3.4b)

(3.4e)

(3.44)

(3-40)

(3.41)

(3.43)

where r represents the bond length and ok represent the interbond
angle. A suitable form of C that can be used for the eaee under
consideration is given below.

1-ér-I1,11 C1 ‘ 1= ———- 1- 1 O 4C G  c i
LO 0 GY

where G = (1+c2)1/2

Substituting eq. (3.5) and (3-4) in ¢q- (3-2) sivefl the direct

expression for to(fl,,6 as-1 -1 2 -1 -1
<1<?M'l +1<€1 A'Z>J / <*+~’>- -1 2 -1 -1

7173'!

<1<$2»x} + K32 /r}>]/ <1+¢’>

(3.5)

(306Q)

(3.6u)



(K%3 Ar: + Kg; ATg)]./ (1+c2) (3,5¢)

(K K -1-1-K -1) Q24.‘n1y“[1112"2 21 K22 "1

(K11 K22 * K12 K21) (AK; " /7:) ° *

(K K "-1 K "' 211 12"1 K21 22"2)]/ ('*°), --1 .­
"mz “[(K11K13 /‘ 2 ‘K21 K23 /*1) °2 *

‘Mr

Due to the plansrity of the molecule, Kivelson and Wilson have

shown that some of the tosgw elements are related through the

(K11K23 * K21 K13) (“-2 " A-1) ° *

(K K " +1: K *1) / 1+ 21113/\1 2123'\2] (°)-1 _
tyyzz = [(K12 K13 A 2 K K22 K23 A1) c2 4'

-1 -1
(K12 K23 ‘K13 K22) (K2 “ A1) ° *-1 -1 2
(K12 K13 A1 "K21 K23 A2) 1 / ('*°)

following equations

tII'I.I

tIIIX

KIXZZ

tyyyy K tzzzz K tyyzz + yyzz

t + ixmyy xxzz

zzzz K tyyzz

(3.64)

(3.60

(3.61)

, = <K,6)2 /1'; (3.62)

(3.71)

(3.7b)

(3.70)
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gm‘ W Fwd! WE variation of different tap“; elements in
Bq. (3.6) it is enough ii‘ we study the variation of the independent
qvlntitvl tn”. tn“ and tun. Also we find that the up;-...1°n
for tin‘ is independent of o. The centrifugal distortion constants

Tap Yd, are related to tap"; are given below.

‘T --ex 21‘/ 37ymv new (3-8
T8885 - — Q tans / 2 1:2 (3-5
"E --ct /214xxx: xxx: xx (3-Ee _ __ 2 2syyzz -- Q 1iyyzz_/ 2 gy Izz (3.5
where In == In + In (3_5

Q

In ==2llYMxr2 @082 (°</2)/(2M!+MX) (3.5
2 2In I 2 IT r sin (°</2) (3,§

here Q is a constant equal to 677.3 when mass of the atom is

expressed in a.m.u., bondlengtn in L frequency in cm“ and ‘T3 in
EH5. € is a unit conversion factor to transform the unit of t into
that 01"‘: . In general eq. (3.8) can be expressed in the for!

T0981; I (P e2 + q <= + r) / (H62) (3.11
Here P, q, r, are constants containing molecular geometry,
fundamental vibrational frequencies and atomic masses. An importam

property of eq. (3.10) is that this equation helps us to plot

directly the centrifugal distortion constant (7-.-otfiyg as a function
of a single parameter c. When c === 0 Tqpyg = r and Tap rd’ tend!
p when o takes very high values. Differencsiating eq. (3.10) with



1‘°9Pect to c and equating it zero for extremal values, we get the
maxima and minima of'T.‘ corresponding to

¢= (P--r)i[(P—r)2+q2 1‘/2 (3.11)
UV V8-1“? 01' T b‘-*.\/ond its maximum ani minimum values will not be

consistent with the vibrational frequencies in the harmonic

approximation. The importance of this equation is that it help us

to find out the range of T“/3,6 without knowing the force field of
the molecule. It is 1-eel-l.v a definite advantage to the microwave

spectroscopist to know the range of‘Eq/3,6 values in interpreting
the microwave spectrum.

3-4 Unique fixing of intramolecular forces:

Gama values are necessary to know the rotational
energy levels of the molecule. The centrifugal distortion constant
can be obtained experimentally by studying the microwave spectrum

or they can be computed from the force constants of the molecule.

In many molecules the force field is not fixed uniquely because

the frequency data alone are not sufficient for this purpose.

However ifT,_-H375 are knom precisely from the microwave spectrmn,
it helps to fix uniquely the force field of the molecules. Hence

Tqpflg are an important set of molecular data like isotopic
frequencies6, Coriolis coupling constants’, vibrational amp1.i.tud€88
and infrared intensit iesg.

3-5 Example S012 molecule:

In order to illustrate the theory outlined above, SO12
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molecule is treated here as an example. It is one of the H2
bent symmetric molecules recently studied by Jerry") at a1,
Ioleeular geometry and fundamental vibrational frequencies are

taken from reference 10 and 11. respectively. Using eq.(3.10),
#116 V8.14-8’¢i0fl 01‘ the To<gvS against c are studied and the results
are shown in Pie-(3.1), (3.2) and (3.3) and this shows that
values should lie within a certain range given by the extreme
points of the curve. The experimentally observed values of

elements alongwith uncertainities are included in Pig.(3.1), (3.2)
and (3.3) and are marked by solid and dotted lines. The numerical

values of p, q, r terms in eq.(3.10) for different values o1"E¢p,,6­
elements are given in Table 1. It may be noted tint an experimental

value of TM;-,5 generally gives two values of o. This is possible
because the quadratic namre of eq.(3.10). The two values of c

obtained from sq. (3.10) , described as c‘ and cv,for different
values of‘T.'a;;yg are also given in Table 1. The use of two values
of c in eq.(3.2) gives two sets of force c-.1.1stant. This leads to

an interesting conclusion that use of any one of the Toner; values
as additional datum yields in general two possible sets of force

constants fitting theT¢,3.,5 as well as the fundamental vibrational
frequencies. More than one set of force fields fitting the additimsl
experimental data like isotopic frequenciees, Coriolis coupling
constants7, vibrational ampletudesa and infrared intensitiesg have
been noted earlier. The present result shows that the centrifugal
distortion constants are no exception to this general result-in lick
cases of multiplicity of force constants, use of yet another datum
has been suggested earlier to eliminate the anomalous sets» In this
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‘>599 ‘@1919 81-‘Q 15hr" illdopendent Tu./316 elements as additional

experimental data. The values of cv given in Table 1 corresponding

to each of the rt“/9.5 elements show a large difference but the
rial value of o (eh) corresponding to each of the ‘Tam/5 elemente
has almost at common value near origin. This shows that use of

more than one '7-1.515 elements will help us to calculate the force
constants in e. unique wag. From Table 1 the real value of c

corresponding toffyyn, Tu“ andq-inn“ are 0.062 1 0.005,
0.064 1-_ 0.001 and 0.065 _-I; 0.002 respectively. We can find that
there is a slight difference in the real value of ac obtained from

different Tap-,5 elements. The value of c = 0.064 _-1; 0.001 is
contained in all c values, hence we take c -= 0.064 _-I; 0.001. The

expression to calculate the force constants of Hzlbent eynnetric
molecules in parmatric formalism is given belcl.

'11 "[ {(1'§1)11"2 * (1';1721“1S°2 * 2 (I';1)11(I'§1)21("2 “"|) °.‘ 0 -- .4

+ {(1.;')"'\1 + (1.;‘)21 A2)  (1-+02) 0.12;).-. 44 I ' '
1'12 " [(1';1?22 9'31 ?21 A1 °2 * f¥';1)11 <1?-';‘>52 (A2 ‘ A1) ° *

(1';1)21 (1';1)22A2] / (“'°2) (3'm’_)

F22 " [ u‘;1)§2 A1 ‘*2 * “'31 A2 1 / ('*°2) (3'n°)
The force constants which mm been obtained in the meant W1‘!
are compared with those from earlier works and are given in Taole 2.
The force field obtained in the present calculation is in better

10
agreement with the results of Davis and Gert? - Th! b01W¢1'
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accuracy of the present result is a particularly notable feature.

3-6 Prediction of fundamental vibreticnel frequencies from
microwave data:

Use of -eqe. (3.6) and (3.6) enable us to predict up
infrered frequencies and the dimensionless mixing parameter 0

which control: the force fie Id. {the centrifugal distortion

conetent Tug,-5 can be rewritten no given below:

Q 2  It BA‘-13-1-(-‘-2-°—-1 251 ram my "1* “22 4 -1 -1
"-0-*é'°——l 2 IzzTzzzz"tzzzz ' DA1 +1 A22 ‘V -1 -1
- (115 ) 2 Ii, 1§,‘T”" -= tn" -r A14’ 0 A2
where

2
A-xgzez-2x,21c22¢ +1412

K12K22°*!§2'B nfiz Q2 4' 2

3- "‘ K22 K23 °2 "' (K12 K23 4 E13 K22) ° * K12 K13

o = K12 K13 oz + (K12 I25 *'K13 K22? ° *iK22 I23-1 -1
Fran eq. (3.13) A 1 is expressed in term of A 2 and 6 QM
applad in eq. (3.14) am; (3,15), It nelpe ue to plot e graph

($.15)

(3.14)

(3.15)

(3.160)

(3.1eb)

(3.16c)

(3.16a)

(3.160)

(3.16!)

bgtwgen A“;  0 as shown in Fig.(3.4),1ming eq» (3.14) l'l\d(3~15)¢
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/C; and e obtained from the intersection when used in any one or
'51" 9q~(3~13)» (3.14) or (3-15) will give K}. This procedure ie
applied to evaluate the infrared frequencies from microwave data

for molecules like H02, 0102, S02, S012 and SeO2. The reeult
obtained is given in Table 3 which is in very good agreement with
the experimental data. Such an approach in or great uee to the
experimentll infrared epeotroeoopiete. In the oaee 0:! infrared
spectra which are complicated by overtones and combination bands

and their overlaps, the Present calculation will be of value
in locating the tundamenble in a epeciee. Thus microwave data
could be great uee in toe analysis ct infrared epeotrum.

3-7 Approximation formula for calculating T,‘p7.6- elemmtei

In eection 2 oi’ this chapter we have diecueeed the

theory to parametrise the T“,-,5 constants in XY2 bent eymetric
molecular models. This approach leads to the natural approximation

formula for T,my; elsmmts. The t “ ,7‘ elements can be expressed
in the matrix form and it is given in eq.(3.2). It has been noted
that the matrix C is very close to unit matrix in the caee ct
molecules with vibrational frequeno ies of order two, when Lo in
taken in the lower triangular £orm6’7’12 tor non-hydridee and in1 1  . t
upper triangular form 2' 3 for hydx-idea. Hence is H2 bent

symmetric molecules eq.(3.2) can be approximated to

1; -= '1? A" K (3.17)
The simpletied formulas tor tap’; 0191119111?! BR 81"" 5'1-°'~_



KY2 (02?) Hon hydrideb

% I PXIII

5"‘. ruJHvm+[q-2an£(mnfl»j
*3 " P °°°4.(°(/2) +[Q + 2 R coaz (°</2)] A“;U7!

2,    -1tn?’ P cos (IX/2) + B A2_ 2 -1tn“ P oin (<1/2) - n A2

t I P a:Ln2(0$/2) ooa2(°‘/2) -[Q + R cocci]/Cg,yyzz

where P -»ar2 ( AT} - efiz A“; /'|o| ) a1,

Q -= 4:2 G" a:i.n20( /1&1

n-u§IEenumu),He|2 1-1
tin‘ I (2r /G33) 8:l.n‘°b( A 3

r in the bond longth md o< in intorbond anglo.

H2 (02?) Hydride:

‘III!

‘$111

taazl

‘Irv!

txxfii

A %nT}

A X: ¢oa4(°‘/2)+B E:+23/2G12coa2(“/2)]/T:+D Kg

A K: a1n4'(°</2)-1-B [C-23/261281112 (°‘/23/(‘*9 K-23

A /1'} 0002 (°‘/2) +\/T2 B em A“:

A /§':a1n2 (‘X/2)-‘EB G12 A’:

b8

(3.1aa)

£3.18»)

(3.180)

(3.1ea)

(3.180)

(3.1ar)

(3.183)

(3 .191»)

(s.19b)

(3.190)

(3-194)

(3.190)
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tn“ "' (A/4) A’: ling -- B(C+ 2 G12 coe0< ) A’: - D A"; (3,191)

ti”! '= ( 2 r2 / G33) einz (K/2) A‘; (3.190
Here A -= 8r2 G22/IGI

B =- 4 1-2 emu/Ia:

c - efiz ein0</ 022

n - 4 r2 ain20(/ 022

In Sable 4 :ne'T@<p¢5 values wbtainad ueing the prelent mama 1­
compared with the experimntal values 0‘: tained from microwave

spectrum. It is found that the agreement is very good. Advantages
oi‘ the approximation formulae developed for calculating
conratente are the following.

i) The expreeaions contain only atomic maaeee, nolecullr

geometry and fundamental vibrational frequencies.

ii) The formulae derived will be a definite advantage
to the microwave apectroecopiet because the method

yields values ort‘T¢p,,5 elements near the real onel
without recourse to a detailed force field aznlyaie.

Hence for a quick computation oi’ the approximate magnitude

oi‘ the centrifugal distortion conatante, the-ee formulae are of

great help.
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CHAPTERIV

CBHTRIFUGAL DISTOBTION CONSTANTS IR KY3 PYRAIIDLL IOLEOUISBS

um mm APPLICATION non UNIQUE FIXING or Immlonncumiz roncts

Abatract

A formalism is developed to evaluate all the

possible lets of intramolecular force fields fitting fundamental
vibrational frequencies and centrifugal diatortian conntantl in

the ease of KY3 pyramidal molecules. The method in applied to

P13 molecule as an.exampLe. It is found that there exist an
many an four sets of force field fitting all the above experilnntel
data. L~fQI general criteria are suggested to eliminate euprieul
sets, thus making further experimental data unneoeseany to fix

the true physical farce field.
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4-1 Introduction I

In the previoxn chapter we have seen how the

parametrisation of centrifugal distortion constants enables us

to find out the accurate force field of KY2 bent symmetric
moleciles. In this chapter parameter method which incorporates

the centrifugal distortion constants DJ and DJ-K into vibrational
problem asso<"1'.ated with KY3 pyramidal type molecules is presented.

In this case centrifugal distortion constants D; and DJK involve
simultaneous contributions from various symmetry species, unlike

I

in the case of Coriolis coupling constants. Hence a solution
using these centrifugal distortion constants becomes a separate
problem by itself for each molecular model. Also the centrifugal
distortion constants are expected to suffer least from anhamonicity
of vibration and are obtainable with extremely high accuracy, they
should form a much preferrable set of additional data in the
solution of vibrational problems. The theory developed here to

evaluate all the possible sets of intramolecular force field

fitting the fundamental vibrational frequencies and the DJ, D“

constants in KY3 pyramidal molecules is applied to P13 molecule
as an example. It is found that there exists as many as four sets
of force fields fitting all the experimental data mentioned above.
A few general criteria are suggested to eliminate the suprious
sets, thus making further experimental data unnecessary to fix
the true physical force field.
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4-2 Theory:

Pyramidal KY3 molecules posses two vibrational speciee
(Te 21 + 23) each of order two and hence matrix O would involve

two arbitrary parameters as against one in the earlier ease.
Consequently, a plotting of all the mathematically possible values

or '30‘/3,5 elements in terms of arbitrary parameters, fitting the
vibrational frequency data would yield various surfaces. A method
to cast the problem in two dimentions is presented here by imposing
the additional constraint that the parameters should tit the
experimental values of the centrifugal distortion constant also,
in addition to the vibrational frequencies.

The matrix Lo can be taken in the lower triargulezr

form as in the earlier‘ case, (L°)1j = 0 for i<J for each oi‘ the
vibrational species. The nonvani shing ' K matrix elements obtained

from eq. (3'-L3) employing this form of Lo and the To matrix2'3 ie
given in Appendix 1. A convenient tom of C matrix which can be
used here is

"H"" \
I

~ 0 0 Q eEQ 0 °Q as at 7%  11 0 0 -eEQ Q 0 ° anO 0 O 0 Q °gQt o o 0 0 -e3Q Q t“ .-Jbun!

where 8 == (1+¢'i)-'1/2 8114 Q " (1*¢%)'-I/2
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0‘ and on repreeente the pa:-enntere aeaooieted with
A end I epeoiee viliratione reepootivoly, eubetitution of oq.e(4.1)

into eq. (3.2) yields erpreleion tor ta/376.. The centrifugal
dietortion oonetente DJ, D“ and D‘ ero linear oombinetione of

W676 elelnnte end they are given by

D; ' "'(€'/4')‘-E111: (4-02e. .u 4-.

1*-=--~ '“?-1" F"’? <""==-- M»-=-> <*~=

DI ' -198! -?JK ' fa/‘Y-till! (‘J
‘Uee oi’ eqe. (3.2) and (2.41) in eqe.(4.2), (4.3) nnd (4.4) um;-"' " .. r
yields diroot expneeions tor DJ, D“ and D‘ ea runotiona of
pereletezfe o‘ end ole:

(p o2+qo+r) (1 2-+nol+n)DJ -,  4.  (4.5(1-ho‘) (1-0-or) .
»\

(p 02-rq o+r)+(1 2+: +n)
D“ . __zL.A___g._¢__1..K_ __&_i’.1=_z_a=__°1__z;_ (4,;(1+o‘) (H03)
I1; .. _.‘LA____:__A___x_‘  °2 "“ ° *’) +§z_£§1!:£1n*“;l <4-1-_ . vnai) . n (Hui) . ,
rho verioue p, q, r, 1, Ia, n toms ere ee mentioned oerlier,

tunotione of molecular geometry end vibrational frequencies.
lxplioit expreeeiona tor theee quantities ere given in Appendix 2.
:1» threo relations (4.5). (4.6) end (4.7) ere but mun torr. -\ " "- 1'
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simultaneous mapping oi’ all the mathematically possible values of

DJ, DJK and BK compatible with vibrational frequencies. This

imediately indicates that any theoretical calculation of DJ, DJ!
and BK constants employing the vibrational frequencies and molecular
geometry as input data is bound to lack uniqueness due to the two
degrees of freedom still lett open in the detemination or mole cular

force field, as these paramtere are directly controlled by the
matrix P and vice verse, as is evident from sq. (1.23)

M -1 "‘ ” -11- (Lo) 0 /\ c (1.0)
On the other hand any ct the two centrifugal distortion omstants

DJ, DJ and DE are known from the analysis oi’ microwave spectrum,

the exact values or ct and cg can be solved tron their respective
relations in eqs.{4.5), (4.6) and (4.7) and can be used to
determine P matrix through eq. (1.23). However the ditticulties
due to the multiplicities of solutions arising from the quadratic
nature oi’ these equations are bound to complicate the problem

Further, the experimental uncertainties intbe values or DJ, ID“
and D! (though very smell) sake the three equations slightly
inconsistent thus making e direct mathematical solution undesirable.
Considering the Probable extent of uncertainties in the experimental

data, the best possible values of 0‘ end on can be obtained by
graphical methods. For different values ct c‘, the values ct
cE can be calculated and 0‘ versus cg curve can be plotted
corresponding to eqe.(4<-5): (4.6) and (4-7) Ill ‘#110 15°81 “"0

a unique point must exist in the parameter space, the coordinates
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of which would correspond to the actual force field of the molecule
I

b

find satiety 0ql- (4.5). (4.6) and (4.7). If the experimental
uncertainties in the values of centrifugal distortion constants

are also taken into account, then each of the curve gets the
uncertainity epread and the region where they intersect should
contain the point corresponding to the exact force field. The
force field fitting the experimental values of'the vibrational
frequencies and centrifugal distortion constant can be calculated

from eq. (1.23) using the values of 0‘ and cE corresponding to
the boundaries of tln intersection of these curves. ‘

4-3 Example: P13 molecule

P13 provides an excellent test case, since for this
molecule:

(i) the centrifugal distortion constants are known to
very high degree of accuracys

(ii) the geometry is accurately known from microwave
and electron diffraction etudies7'8

(iii) the vibrational frequencies are known accurately,
the spectrum being almost non-overlappedg

(iv) the vibrational frequenoie are supposed to suffer
least from anharmonicity correotionlw

(v) the force field has been well established by the
use of additional data6’7’9'1°’"

-The value of  is notpavailablc experimentally, but
this is the case for most of symmetric top molecules as the
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frequencies in pure ‘rotational spectrum are independent of BK,
However, this does not present any problem since the correct values

of c‘ and on will be contained in the solution of eqs.(4.5) and
(4.6),

The numerical values of p, q, r, l, n, n for DJ, D“
"4 D1; "I'll" in N9» (4-5)» (4.6) and (4,7) for PP3 are given in
Table 1 alongwith the required experimental data, The c‘ versus

0‘ curves corresponding to the experimental values of DJ and D“
are drawn in the range -2 < 0‘ < +2 as shown in Iig,4--1,

The curves shoe four intersections and are indicated

as I, II, III and IV by arrows in the figure. The coordinate

values, c‘ and cg, corresponding to each of these intersections

are given in Table 2, The In elemnte, characterising the
intramolecular force field, corresponding to each of those
intersections calculated are also included in the Table 2, The

results thus obtained,~indioate that there exists four sets of
force field that would fit the experiaental data on all the four
vibrational frequencies and the two centrifugal distortion
constants.

4-4 Elimination of the anomalous force fields;

Existence of four sets of force field fitting as nan;
as six experimental data, in this case, leads to s puzzling
situation, since only one of these would correspond to the actml
force field in the molecule. In situations where such

multiplicities occur elimination of the anomalous sets can be done
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with the use oi’ yet'anothsr experimental datum like mean amplitudes11 1 1 - , .of vibration ' 2’ 3'" ,' absolute infrared intensitiesg etc. But
there exist chances that even this procedure may not resolve the

»

ambiquity completely thus making s unique solution still impossible.
Ior exmple , it has been noted that the vibrational amplitudes
corresponding to the non bonded atom pairs tit both the real

and anomalous solutions arising from the use at Coriolis coupling
constants or isotopic frequencies as additional data into the
vibrational problem""2’U. In the present case we note that
both the solutions corresponding to intersections I and II given
in Qable 2 tit the coriolis data extremely well. Considering also
the situation in which the required additional data are not readily
available , it would be preterrabls to use some general criteria
tor the eliminationcr the anomalous force tields and the following

are suggested for this purpose.

(i) For the true torce field in I13 pyramidal type
molecules, there exists a relation P122’, — 2 F34.
Ponomarev and Khovrinw have shown that this criterion

is even superior to the coriclis data.
(ii) For most cases ct vibrational species possessing one

stretching and one bending motion, it is sell 1mcea'6'
that the later is highly characteristic and the L
matrix is best approximated in a lower triangular tors.

1

Since we have taken Lo in the loser triangular fora,
O in sq. (4.1) should be very nearly a unit aatrix and
this theretcre suggests extremely saall values tor



values 0:81,‘/£3 I, 5 elements, thus yielding different surfaces for
DJ, DJK and DK values. This projects the physics 01’ the problem
in a much better fashion than :l.n a blind computer calculation

which merely seeks a best tit solution. Eqs.(4.5)» (4.6) and
(4.7) alongwith eq.(1.23) leads to e streamlined mathematical
procedure incorporating the centrifugal distortion constants in
the vibrational problem, thus leading to the various solutions
of intramolecular force field. The multiplicity of solutions
must be anticipated because of the inherent nonlineerity of such
problems and in the present case the criteria discussed in the
previous section conveniently serve towards the elimination of

the unphyeioel solutions.
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CHAPTER V

EVALUATION OF‘MOLECULAR GEOMETRY OF SYHMETBIC TOP

MOLECULES USING CENTRIFUGAL DISTORTION COHSTANTS:

Abstract

Expressions are derived to obtain the centrifugal
distortion constants in symmetric top molecules. It is found
that the centrifugal distortion constants obtained using the
above expressions is in very good agreement with the

experimental values. Considering the mixing parameter to be

very small, the formulas derived to calculate the centrifugal
distortion constants contains only molecular geometry, atomic
masses and fundamental vibrational frequencies. This leads

to an interesting conclusion that centrifugal distortion
constants can be used as an additional data, snlg with the
rotational constants to fix the molecular geometry of symmetric

top molecules with insufficient data on the isotopic

substituents. Using the above approach molecular geometry

of PF3, AsF3 and OPF3 are evaluated. The structural parameters
obtained using th above expression is in close agreement
with the available experimental values.

96
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5--I Introduction 3

We have already discussed the theory of parametrisaticn

>1‘ centrifugal distortion constants DJ, DJK and DK in KY3 symmetric
hope moleculeccs-.-s In this chapter, it is shown that a parametric

rpproach leads naturaly to a set of approximation formulae for
aentrifugal distortion constmts. These approximtion formulae

lerived here have the advantage that they contain only molecular
geometry, atomic masses and fundamental vibrational frequencies

>1’ the molecule. It is found that the centrifugal distortion
aonstants calculated using these expressions agree very well with
the standard experimental results available from the litrature.

Ehis observation leads to a very interesting conclusion that with
the help or these expressions the centrifugal distortion constants

together with rotational constant can be ueed to fix the geometry

at symmetric top molecules like PF3, lee, for which rotational
late on the isotopic eubstituents. are not available.

In symmetric top moleculesm pure rotational spectrum
in the microwave gives only one rotatioml constants Bo. Ihen the
structural parameters exceed the number oi’ available rotational
constants, molecular geometry is usually obtained from the microwave

spectrum of its isotopic substituents. There are molecules like

P33 and AsP3 tor which there exists no stable isotopic eubetituente.
The bond length and interbond angle of these molecules cannot be

obtained Iron one rotational constant Bo. Similarly in the case of

qgrtajg I232 type symmetric top molecules like OPP3, which have
only one stable isotopic substi tuent, thong!» two values at rotational
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constants can be obtained, the two bondlength and one intgrbgnd
angle needed to fix the geometry of euch.molecules cannot be

evaluated from these. Under such circumstances, it is suggested
in this chapter that experimental values of centrifugal distortion
constants can serve as additional data to evaluated the molecular
geometry.

5-2 Approximation formulas to evaluate DJ, DJK and Dk in

KY3 symmetric top molecules ;

In section 2 of_chapter IV we have seen that DJ, DJK
and D! can be parametrised and represented by the eqs.(4.3),
(4.4) and (4.5) as

DJ = @fi*“f1*‘fi-+ "f%*”fia*?Q

D (pJK°A * qJK°A rax) + (1JK°E * “JK°E +'nJK)
JK = ~ _;~~ ,—.~~:_< %—o .—c:--_ ~ _c s,—~:~.n...s:~ ~:s -__ —__ ;_-_ __1_-~;:_ —::c  — ~— ; ; 1 — ——-- - ­

<1+cfi> <1+¢§>2 + 2
<1+c§> <1+¢§>2 2

(PK°A * qK°A * rk) (1K°E * "K°n * “K)

<1+ci> <1+¢§>
It is known that the mixing parameters are very small for the
vibrational species of order two and the matrix C is very close

to an orthogonal matrix. In chapter III We found that by B99“min8

the mixing parameter c equal to zero, the"Cd/37,5 elements of KY2
bent symmetric molecules calculated is very close to to

experimental values7’8’9. Though KY3 symetric top molecules also
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come under second ‘order vibrational problem, one important

difference in this case is that instead or a single mixing parameter

c as in the caee of KY2, it contains two parameters c‘ and cs
connected with A and B epeciee 01’ vibration. Alec from the actual

calculations oi’ 0A and cg on a number of KY-5 pyramidal type molecules,

we find that ck am cE to be very small. As an approximtion,
considering each parameter c‘ and on equal to zero, we get

DJK 8 IJK 4' DJ-K

On expanding r and n tome in the above equations

DJ -= (Kati A“: + Q1 A‘; + K_§1 A’; + Ki‘ A-1) / (3 IL) (5-4)

nu - (K1, 1:13 /{'1 + K211!” /».";_.) / (4 I; 1i,)+

i
N.

J1»
\,'|

>|u i
+
R)

xi, K1) / <4 xi, Ii,» - <5-$1
(1% A”: + lg‘ A“; + 1%‘ A‘; + Ki‘ A1) / (4 IL)

DK B (£3 A“: + K33 A—;) / (8 I23) ‘*' D; "

(K11 K13 A’: * K21 K23 '73) '1 Q  IE1) * 6'6)

(2 K1315 ,1“; + 2 xis K1) / (4 I; ii‘)
‘Isis

Q
In hydride type molecules I40 is taken in V-PDQ!‘ t1'1"-‘S’-flu‘ 7°“ an_ 102 :3
in non hydride type Lo is taken in the lower triangular £01‘!



tho non -vanishing K matrix elonanta which an and for the

calculation of DJ, pm and  constants  hydride and non
hydride nolcculoa an given belev.

K matrix elonnnta for H3 hydride nolaculu;

‘11 " (I-;‘)11 (2/3'/2) R 0+2 “>02 A) ­

<1.;‘ >12 <2/3‘/2) n (4 1:002 A - 1) tan 4’
I

I21 . -(n;‘)22 (2/3‘/2) n <4 @082 1 - 1) tan A
i

K31 . -(L;‘)33 (a/3) n ainz A ­

(1.';‘)“ (2/3) n (1+2 coaz A) tan A

K“ 8 (1,';1)“ (2/3) R (1-+2 oosz A) tan A

K13 - <n§'),, (8/3) R nine A +

u:;‘>,,<4 /3‘/2> <4 M’ A — 1) tan A

- u.;‘),2 (4/3'/2) R <4 “.2 A - 1) =1» A

I (L;1)33 8‘/2 R sin A cos B +
0

‘as

(L;1)3‘ 8‘/2 R sin L cos B tan A

gw I (L:1?“ 81/2 R sin A tan A cos B

100

(5 ~13
,-.

(5.1b)

(507U)

(5.14)

($07G)

(5.1:)

(5/7‘)

(s.1hJ
r’

IhcrIcOIBI\X(jl-0092l"'1)/3 Rrotoratotbcbondlongth
and A rotors to’ halt the into:-bond maili­
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5"" (1':1?11 " @220)‘/2 / G1/2 » -(I-1,4)", - + 012 //72;?!. 2 -- _.¢¢ 0 ,

(L:1?22 I 1/@342’ (L;-1  - .(G44)1/2 /he"-T .

(I-';')54 - -an /J 0“ |o‘_'| , (1.;‘)“ .. 1/ ax?% 3 0
Ihexelqm. Q-11322-G12, \q.l ,9” q,“_9§4

0'11 .  O0I2l"'1)/Ix + 1/‘Y

on -= -2(4<=<>n21-1)m1;/‘X

G22 I (4-I002 L) (4 l|in2A/ix) +1/3!

on -= zliflzl/.1-l-1/I!

03‘ - 2e:Ln2A’cenA/Ix

=(2 a1n2Atan2A/nx)+(1-+2-1 aeez 1)/en!\ ­°44

mx and my ere the neee or I and I atom respective];

I matrix elements tar I13 non hydride molecules

x,, - (I-;‘),,' (2/s‘/2) 1 0+2 c-=2 A)

:2, - (L:1)21 (2/3'/2) n (1+2 0002 4) ­

(1':‘ )2»; (2/31/2) R (4 cone A - 1) tm A

:31 .' "’ (L31  (8/3)‘/2 R I112 1

(5 an)

(5.85)

(Lie)
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K4,] ._ -'  (8/3)1/2 R 81112 L +
1

(I';1)44 (21/2 /3) R (1-+2 0002 A) tén A (5.34)

K13 " (I';1)11  B B1112 A (5.,8.)
1,, - <1-';‘>,, <8//3) R .13 A +

-I

§1.;')22 (4/T5) ‘R (4 c002 4 - 1) tan 4 5,8,)
_ -1 1 2 ,I35 (Lo )5; 3 / R sin A con B (5.38)‘ A

4

K45 =' (¥~;1)43 31/2 Rain A cos B +

-1 , 1/2(I40 )4‘ 8 B sin A tan A con B (5,&,)
- -1 --1/2_ -1/ -12 .-1/2

(Lo )22.. cu ma , (Lo )3?) ..G3;/2

-1 , -1/2 * -1/2  -1 -1/2
(Lo >43 " ‘G43 “$5 ‘°~' ‘(Lo )44 “ “£2 '°f'

In - 3 ‘Y 112 [2 - (1-3 my m§') (4/3) ainz 4]/ (2+s my Q‘) (5.9)L 2 2I" - 4 at n sin 1 (5.10)
Using tho abovyoxpresuiona the DJ, DJK and BK constants 01’ IE3,

P33, SbH3, A0013, PO13 and H3 are calculctod and the roaulto an
given in Tabla 1. It is found that the DJ, DJ-K and  oonltantl_ . \
oaloulatod using the above expansions agraea "very u11_w1tn tho
oxporimenial results .
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5-‘-3 Molecular geometry of KY3 symmetric top molecules using

centrifugal distortion constants DJ and DJK

Many attempts have been mag; 1;; we mat to evaluate by

other meam the bondlengtb and interbond angle oi’ H3 pyramidal
type molecules for which the microwave date are inadequate. (he
of the methods employed in this context is to make use oi’ the

Coriolis zeta sum rule oi’ Johnson and Dennison. Hokinsm in thi

way tried to fix the interbond angle oi’ N33, PR3 and A513 molecules.
Since the error involved in the zeta constants are fairly large,
the interbond angle evaluated from them are not quite correct.

Ponomarev" and Hxovrin tried to fix the geometry at
these molecules using Coriolis zeta constants and centrifugal
distortion constants along with s certainconstrsint on the
quadratic force field oi’ the molecule. Their work showed that
the variation of molecular geometry has an extremely marked effect

on the centrifugal distortion constants DJ and DJ-K. Conversely
c

we inter that the molecular geometry evaluated using DJ, DJ:
constants must be very close to the actual geometry or the molecule.
Indirect evaluation out molecular geometry is tbretore possible

when the centrifugal distortion constants DJ and D5-K ere available
from the microwave spectrum with sutticiont accuracy. Determination

of those omstsnts with an accureq ct 15 or better is poseiblotor
symmetric top molecules from the measurement at high J rotational
tra.naiti0ns12. In this context we suggest hero a method to

determine the structure oat KY3 symmetric top molecules tron the
centrifugal distortion constants and the fundamental vibrational
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frequencies .

31- (5-1) Ind (5.2) are of great importance when tln

structural parameters of the molecule are not known precisely.
Vith the help or sq-(5.4) and (5.5) the bondlength and mm-b°n¢

angle may be calculated from the experimental values of DJ and Du,
Ie have adopted the following procedure for obtaining the molecular

geometry of H3 symetric top molecules. Ior different values of
interbond angle o( . the bond length R was solved from eq.(5.4) and
(5.5 ). n against (°‘/2) is plotted in both cases. The intersection
gives the currect value of the bondlength R and half the interbond
angle as shown in Fig.(5.1) and (5.2). Using this procedure we have

obtained the molecular geometry of PF3 and MP3 for which there
are no stable isotopic substituents. The structural parameters
obtained for these molecules is in very good agreement with the

experils ntal values obtained from the electron diffraction and they
BIB given in  2e

S-4 Approximation formula for centrifugal distortion constants

in H32 symetric top molecules

In this chapter we have already seen that approximation

formulas to evaluate DJ, D“ in H3 pyramidal type molecules help
us to obtain the molecular geometry of symetric top aolecules

shoes isotopic substituents are not available. this encourages
one to extend the method to develop approximate expressions for

centrifugal distortion constants in H33 srnmtris WP I03-00111000

Among H32 syusetric tops also there exist certain molecules
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like OPF3 for which'data on isotopic substituent are not sufficient
enough to fix the molecular geometry. The analysis of microwave

spectrum of OPF3 molecule yields one rotational constant Bo. An

isotopic substitution of the OPP} molecule (018 PF3) yigldg one
more rotational constant B‘. From two rotational constants three

structural parameters viz. two bondlength and one interbond angle
cannot be evaluated. If one more datum containing the structural
parameters is available, we can fix the molecular geometry.

Here we have taken DJ as this additional data.
Expression to evaluate DJ is derived with the assumption that
the mixing parameters in the different species of vibrations

are neglegible. The approch developed by Muller13 et al to higher
order problems can be highly useful here. A detailed discussion

of this aspect is given in chapter VII. The coupling between any

two symmetric coordinates Si and S3 are governed to a large extend

by Qjij which in turn may be set to zero, provided that Si and SJ
corresponds to stretching and bending vibrations. ¢ij's are the
.mixing parameter expressed in the angular form. We have calculated

the force constants of many XY3Z symmetric top molecules by setting

all the ¢ij's equal to zero and have compared with the force
constants calculated using additional experimental data. The
observatitn is that even if there are small changes in the off­
diagonal force constants, the diagonal force constants are reprmfiuced

all­

well. "The centrifugal distortion constaatsm» tare Often W611 d9fin¢d
@313

by the diagonal force constants" as observed by Mills14. Therefore
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"“1l8 *1" I-111113 Pl-reneter matrix equal to unit mat;-1; {qr fly

calculation oi’ D; is .quite reasonable.

‘°°°1‘53-"8 15° °q-(2-41) 1i¢’6,,5- are related to ’\'-1%,;

tap 1'5 " " 2 1:11 I763 I311 1&6 rZP‘,6’I5

h°n°' tun ' " 2 Ii: (crux
ThereforeWan =- - tun / (2 IL) (5.11)
Iron eq.(4.2) Tun is related to DJ as

DJ ' " (G/4)’-can

with the help of eq. (5.11) we can write the above expression an

D; -= (6/8 1;) tun (5.12)
Using eq.(3.17) t matrix can be expressed as"’ -1 -1t-IK A K ehereK=(L°)Ie
the ‘Be matrix need tor calculating centrifugal distortion ometante

ie given in in Appendix 1. (Ie have noted an error in the Ts matrix
formulated earlier by Joseph and Venkateswarlu16.The second term in I

1e actually negative ). How tun can be expreeeed e'ee 2 -1 -1 -1
tz:n':'x11A1+Kg1/‘Z +K§1A3 +

-1 2 -1 2 -1
Being eq.(5.12) and (5.15) we can write



DJ =1

Where K."

K21 ‘

K31

K41 -~

K61 ”

Here

2R

2

'l

4 2 ’-1 - ..Ix_x)(I\ A +K2/\-1-i-K2 A14.11 1 21 2 31 3
N.‘ -1 r '-1Ki‘! A4 + K€1’\5 '* ‘£21 A5 ) (5-14)

"‘ 2 R(I';1)11

R (1£;');1 - (1.;')32 3'/2 (1+¢<>a"",@ ) +-1/2 1
(113183 3 r (3 + 3 P2) [2 cosz/5 (coed -1)(s:Ln¢()" +

P

+

q ainlg cos/5]

(L31 )54 (3/2)]/2 @1112/-3 1‘ " (I1;;1)55 (3/2)‘/2 q r sinflcosfi

(I-I;1)64 (3/2)‘/2 811153!‘ *' (L;1>65 (3./2)‘!/2 q r ainfl coep

(I»;1)66 (3/2)‘/2 r a:|n€5(2+coao< )(aina( )"1

P == 31/2 <>osA/ cos (M/2)» q = (R/1-)1/2
d

¢

B is the Z — I bondlength, r is the X - Y bondlength, o( is

theY--X-Yangle, /3 is the Z-X-Yangle given bythe
relation ain/3 == 180 -- [2 3'1/2 ain(¢ /2) J

The relation between (L-1) and G matrix elements is given below.O n 1/2/‘ "‘ — 1/ 1*. =- iv -1'2 >-1 1
(Lo 311 =1/T11* T11 ‘ G11 » (Lo 322 " T22’ '22 '22 21



-1 , 2 2
'21 ' “Q1 /’11' (Lo >33 ' ‘/‘as’ ‘as *J/Ass "’s1 *6’a2)

23,-1. _ _ --1 -1 _ -1("6 )31 (‘:2 "'21 '-'31 T22) an T22 T33) 4% )32 "’32(’22*33)

. < -1
“$1 /"w 1'32 " (“$2 "' "21 r31) / T22’ ("6 321 " ""21(*11*2

-1 1/2 -1
“6 >44 " ‘/54’ 54 "’ (044) ' “'6 755 " '/'55’ T55 "' (G55 " ‘$43-1  2 2 1/2
*54 ' °54 / H4’ “'6 >66 " 1/T66’ T66 ’ [G66 "' (T64 * T65 )1

T64 " °64 / 54' '65 "' (“'65 ‘ T54 T64) / ’ss""§1)s4 “ "*54"44""'5s)'

<1-Q‘ ­

“11

°22

“$3

G21

63,

632

°44

“$5

°66

°45

>64 (T65 T54 ' T64 T55) (T44 T55 T66)_1'(L§1)65 ' '*65(T5s‘66)'1

l+§I0Ol2fl

<x2+1)(-+;um2,<;)
[+1

an (K2 +1)‘/2 am/9 666,5

31/2 Icoafi

31/2 I (K2 +1)‘/2 0111/6

g+I(1-coed)
.<s-é2“>+nu-cw¢P/-m?
;+ 1.5 I (cos/5 -M2 +1.51 X2

n (1 - 666602 / -ma
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G64 = 3 ll sin/%(cos'/3 - ¢\ ) 2"‘

G65 ‘= (K/3) Em *' ll (<.>0B/3'-'>\) (1- cos vfi ) (cos/3)"1]

where K = - 3 sin/3 ¢08/Q / B11104 , x = r/B, v< is the Y-X-Y angle,
m, M, and X are the reciprocal masses of X, Y and Z atoms.

Making use of eq.(5.14) we have evaluated tne DJ for few heavy
symmetric top molecules given in Table 3, We can fins that thg

DJ calculated using the above expressions agrees with the
experimental values available from the literature.

5-5 Molecular geometry or X232 symmetric top molecules 1

In section 3 or this chapter we have seen that one or
the important application of the approximation formula used for

calculating centrifugal distortion constants is in the evaluation
oi’ molecular geometry of symnetric top molecules whose isotopic

substituents are not easily available. Among XY3Z syetric tops
also this becomes applicable. Here the molecules may posses

isotope but the number of rotational constants available from them
may not be sufficierrt to fix the molecular geometry. A typical

case is that 01’ OPP3 molecule. It posseses only one additional
isotopic species namely 018PF3. Hence from 016PF3 and O18PF3 we
get two rotational constants which are not sufficient to fix
structural parameters namely two bondlengths and one interbond

angle. In this situation we suggest to use DJ as an additional
datum.

OPF3 is a heavy symmetric top molecule, the microwave
1

spectrum of which has been very recently studied 5. The centrifugal



112

distortion here induces a. small change in the dipole moment and

hence a study of the {Q branch of inc spectrum yields the value of

(Bo — A0). The selection rules of the distortion moment spectrum

is that A-I == 0, 11, AK = 3; 3. Knowledge of Bo from the I-I branch

and (Bo - A0) from Q branch enable us to determine A0. How for
OPF3 molecule A0, Bo and DJ are known. Hence we can evaluate the
molecular geometry without the need of an isotopic substitution.

The expression for A0 and Bo are given below.

A°=2mYr2 (1 -cosofi) (5,15)
BO = my r2 (1 - coed) + mY(mx+mz)(3 my-mz + mx) r2(1+2 cosoz )+

(3 m-Y + Ix + mz)‘-rnz R  my + Ix) R + 6 my
(5.16)

Here my is the mass of I atom, ml is the mass of P atom,
mz is the mass of 0 atom, R is the OP bondlength, r is the PF
bondlength and o( is the F-P-P angle. The molecular geometry can be
obtained from eq. (5.14). (5.15) and (5.16)-As a. direct solution

is not easy we have adopted here a graphical method. From eq. (5.15)
r is expressed in terms of d. and that is used in eq.(5.14)Whi¢l1 9-1-01116

with eq.(5.16)givee us a relation between R and o( ._ Hence a graph

is plotted between H and at using DJ and Bo represented by oqe.
(5.14) and (5.16) as shown in Pig.(5.3). The intersection gives
the values of R andoé . The value oi d obtained from the graph

is used in eq. (5.15) to evaluate r. In Table 4 the molecular

geometry obtained using the present method with D3 as additional. ,'
data is compared with values ob'tai.n-ac! from % literature. The
agreement is very good. The above approach W18 *h°"fl 9- W"
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application for centrifugal distortion constants which can be and

cc additional data to ti: tho mole cular geometry ct H32 symmetric
top nclcculcl tor which the microwave data are inadeqvfl-e~
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--2 coaz/8 (1-coed) (sin o<')"1 + p q amp coafl
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CHAPTER VI

SOE ASPECTS OF VIHRATIONAL MIXING PARAMETER IN RELATION W111-I

IOLECULAB STRUCTURE AND PROPERTIES

Abstract

Analytical expression is given for the mixing parameter
that characterises the vibrational eigen vector matrix in the
second order case based on the criterion of minimisation of

average bending energy of molecular vibration. The expression

which is derived on the assumption that the parameter c is small
contains only interbond angle and the two nornnl frequencies of

the species. Bent KY2 molecular system is taken as an example
and it is found that the calculated values of the parameter are
in good agreement with the standard values. The value of c
obtained using the average bending energy criterion is directly

plotted against the mass ratio my/mx of KY2 (Czv) molecules and
the graph shows an interesting linear relationship. This relation

helps to evaluate the interbond angle out KY2 bent symmetric
molecules from mass ratio and the two normal rrequenciefl 91' *1"

A species.
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6-1 Introduction:

As observed in earlier chapters vibrational eigen
vector matrix is of crucial importance in the studies connected

with the internal mechanics oi’ molecules as many molecular

quantities like force constants, centrifugal distortion constants
and vibrational amplitudes are directly related to this. The
normal coordinates for a vibrating molecule is given by cq.(1.1)
as S = LQ. The eigen vector matrix L, determined by the molecular

geometry and the true harmonic force field oi’ the molecule is
obtained from eq..(1.11). Recent studies1’?1ave shown that a
reasonably valid L matrix can be obtained from the G matrix alone.

Such kinematically defined eigen vector matrices are of gust
help in determining the vibrational normal coordinates as I011 as
approximate internal force field in the molecule.

6-2 Average vibrational potential energy!

Using eq.(1.2) the potential function may be expressed
in terms of internal valance coordinates an

@

¢ .
an

.5-_["‘l

In ri 1-‘
Taking average in the sense defined by Oyvin‘

3-l“’\

(2 V>== in (rt rj  (54;

Q
(‘J­

Where 0"“ are the mean square amplitudes defined as c-is 1- (rirj )­
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The average of the square of the instantaneous change in the

equilibrium distance between an arbitrary pair oi’ atoms is called
the mean square amplitude. The spectroscopic calculation of

mean square amplitudes oi’? vibration, which are themselves a set
of characteristic constants oi’. the molecule, utilizes the date.
on vibrational frequencies. Cjvin4’5 has developed a detailed
tormalimn for the spectroscopic evaluation of mean square amplitudes
in terms oi’ the symmetrised mean square amplitudes matrixhi .
The mean square amplitude of vibration retering to internal
coordinates are called paralel mean square anplitudes to
distinguish them from the general moan square amplitudes based

on cartesion coordinates. Z13 are defined by the matrix relation:»:= <8 ?, > (6.3:
By eq.(1.1) i= L A L (6.4)
Ihgre A = ( Q flu > . From qiantum mechanical considerations
it can be shown to be a diagonal matrix elements

Ar == (h/8112 c cor) cot n (hc wt/2K'1‘) (6.5)
Hgrg h'19 the Planck's constant, K is the Boltzman constant and

T is the absolute temprature.

At any finite temprature, vibrational excitation occurs
with a Boltzman distribution and the above mentioned averaging

process implies a thermal averaging in addition to quantum
mechanical averaging. In order to avoid higher vibrational states
and consequent variation of ( V>Wi1ih i¢mPI‘BWI‘¢» 8I‘°"n@ “it”

undergoing zero point vibrations are considered in this study.
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In terms of symmetry coordinates one may express eq,(6.2) as

2 = Z . '< "> 1.1 F1; in (6.6)
For n internal coordinates, the right hand side of this equatiqn
"'°"]-<1 °°I1t&i11 B (n+1)/2 11911115» "18-I18 of which are identical. By

Parametrising F13 and Zia, one can stuiy the symmetric variation
of<V>

5'3 Application to KY2 (C2?) typo molecules;

For this type of molecules, the potential energ
can be expressed as

2 V = 1'r(Ar?+ Arg) + r2 1'“ (Aol)2 +

2 tn, Ar, A r2 + 2 r fr“ (A r1+Ar2) (6,7)

Where Ar‘ and A r2 are the stretch increments and A ck is the
change in bond angle. r denotes the equilibrium X — Y distance.

Averaging eq.(6.7)
U

<2 V > = 2 frrr + far“ + 2 frrrrr + 4 frarra (63)
I

Here the first term arises from pure stretching, the second term is

pure bending, third term is stretch-stretch interaction and the last
term represents the stretch-bend interaction.

6--4 Average bending energy criterion:

For all the KY2 bent symmetric nonhydridos studied,

Girijavailabnan et ale’? find that there exists a minimum for

the average bending energy F22 Z22. The value of the mixing
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parameter c corresponding to the minimum oi’ bending energy term

is found to yield a force field, which agrees exceedingly well
with that fixed with the aid of additional
experimental data. This criterion is called the average bending

energ criterion. It is known that c i quite small3 when Lo ie
taken in the lower triangular form. Hence we can neglect terms
containing c3 and higher powers of c and write the average

bending energy with sufficient accuracy as,

(2 V¢)= 1'22 Z22’; l:(pn+r1) c2+rmc-l-m] / (14-202) (6.9)

Where F22 is the symmetry force constant corresponding to bending
vibratim given by the expressiong

P22 = (Pcz + r) (1+¢2)" (6.10)
and 222 is the corresponding mean amplitude") given by

Z22 = (l c2 + mc + n) (1+c2)'1 (5-11). -1  -1
where~ p = (Lo)22 A1, r == (L°)22 A2e 2  2

1 “ (I"o)22 A1 * (I'o)21 A2

m = 2(I'o)21 (Lo)22 (A2 " A1)a 2
an “ (1031 A1 + (I"o)22 A2.. -. -12 -1/2 --1/2

(5)2; = G11 '9‘ 1» (‘Q21 " G12 G11/ ' (I‘o)22 “ '9‘ G11

2
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.D1t£0r0nc1at1ng with respect to o and netting thn reault oqual to
zero

- __4_g-22222) - - [(pn-t-rl) $2 + no + m]4 = <11/M)“-’ +dc . ,. - . ­
2 (:>n+1-1) c + rm (1+2¢2)"2 - o (6.12)

r

. I;%(E1l‘22Z22)=4 03 (pn+r1.)-4c’ (pn+r1) +2nc2 -4nla2 4­
2 (pn+r1)0--4rno+1I=0

Z22)=-2mo2+2 (pn+rl-2rn)c-+111:-0

%l&
NH
I0

Ihen 0 is vary mall one can express c an

c = — 11/2 (pn+r1-rn) (6.13)2 .. ...
'llO1‘l"'1'lII—G1.|U-)2? 912 Pg‘ (W21-W11)

“FT ;—-G" 11-1/2 _
-. Q in 2 G12 |G| ((010-,2 ""og)"°1‘ (‘c143,

2 pm; 1-1..4m.gqf2|q| 1 (u-5+w2-2w2w1 )+
4­

- 2 -12 (wfw; +1-12 w, - 2"->2) (6.10), . -4 P
Hence c = E/(J + K) (5->15)

H01-0 I 1 On I0‘ 1/2 (“)1”); 'w2?w1.. -1
""‘*%2'°'1(w1*“’2 "2“"gw1)

-- -1
I 1(1)? (U21 +0-7: (91 " 2%



1 '1 /~

Prom this expression for c, the vibrational eigen vector matrix

can be constructed using the eq.(1.14) with 1,12 = Q and

-1/gt° ' (W2)  § 1 (6.16)
6-5 Results 2

1)

ii)

111)

The present result for the value of the parameter c
helps to clarity a number of recent observations. For
example the result indicates that as a first
approximation the value of the mixing parameter is

directly proportional to square root of (£2/IGI as
noted by Mullerw.

The mass dependence of the eigen vector matrix element

noted by Muller et alw and Ananthakrishnan et alu
can be explained on this basis. It can also be shown

that the ratio of L12 / L21 of the matrix element is
proportional to the parameter and also proportional to

on / G12 since L12 / 1.21 :1 on c/G12.

Another important feature of the present expression

is that the eigen vector matrix is not defined solely
on a kinematic basis. The molecular force field as

expressed through the frequency factors in the

expression for c also has an important role in
determining the true vibrational eigen vector matrix.
In Table 1 the result calculated using the present

formula for a number of KY2 non-hydride molecules are
compared with the c values determined from standard
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rorce field obtained with the help of additional
experimental data.

6-6 Application of the average bending energy criterion;

Values of the mixing parameter c obtained from average
bending energy criterion when plotted directly against the mass

r&tio.mY/mx gives an interesting linear relationship11. Hence for
molecules of small mass coupling also certain regularities between
the L matrix elements and the mass ratio can be established. One

interesting feature of this graph is that all the c values are
positive for non—hydrides and negative for hydrides. Since it is
impossible to pinpoint the force field or the c values by virtue
of the inherent spreads in the experimental values as well as<of errors
due to anharmonicity, the observations of such regularities in the

value of L12/I21 or of o with molecular structures are bound to help
refinement of our knowledge of many of the molecular constants.

A very interesting result arising from such observation is that the

L13 show almost complete dependence upon geometry and atomic masses
at least in such.simple cases. Here we find for molecules 0f'sma1l
mass ratio

c = 0.05 my/mx + 0.034 (6.17)
and for molecules of large mass ratio

C = 0,005 my/mx + _0.08£3 (638)
These relation are useful in determining the interbond angle 20K

of KY2 bend symnstric molecules when the frequencies are Kn0*n
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'9' 1 .‘ Flg. (5.4)
Variation of c with my/ml in molecular types X!2(02v)

1) S002 2) 37c1o2 3) 55c102 4) S02 5) sc1é

‘I --;~I-‘*-Qi ~i1‘  __~*  if‘ ‘;.-i   5 ‘_1f€ if 4:‘ .i__i" *t- ..x_f H1: "14? _1*.-'; ."'__At-(‘pun

7
6) s37c12 7) 092 5) s02 9) 550120 10) 5 C120

11) H2Se 12) H25 and T250 13) H20 and P29

14) 12s 15) B20 and 16> T2°~

1
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along with the mass ratio. Iith the help or eqe. (6.15), (6.17)
end (6.18) here we have calculated the interbond engle or eoae

IY2 non-hydride molecules. Herzbergw hes already given e nthod

to find out the interbond angle oi’ IY2 bent synmetric Qclgculgg
using the formula_ -1
I3 - (1-+21! ex‘) (of “>2 +v§) v§ I (of vi) +

(1+2mY If) (1+mY m§')v§ (vi vi)“ -= 0 (6.19)

Ihere I = 1-1-2m! my sinzqcz ,- 2°‘ is the interbomd angle. my and
ml are the mass of I and Y atom. The interbond arglei evaluated
using the present method and the Hersbe:-g‘s method are given in Table 2

Ie can tind that the into:-bond angle evaluated using the present
method is very close to the experimental value . The present

method requires only two frequencies 1:1 and 92 and the atomic
masses. Bventhough Herzberé method make use of all the three

frequencies v1, v2 and 93 the interbmd angle obtained are
widely different when canpared with the experimental values except

in  QQIQ Qt
6-7 Interbond engle ct H2 (027) hydride molecules using

isotopic frequencies:

In hydride KY2 bent eymetric noleoulee, it ie poeeiblea 1
to oeloulete the interbmd engle using the expreeeim 2

3 _ eg eginaec - :_(:’J_:I_..0_,1.._:l (6.20)
2 ‘I -1 W’? - "’§>
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Here 2 °< is the interbond angle, cu: represent frequencies of the
isotopically substituted molecule. It this equation is used to

evaluate the bondanglc of H20, H23 and H280 we can find from

Table 3 that intcrbond angle oi’ H2Se is imaginary even if the
bondangle oi’ H20 and H28 come out correctly.

The tome constant and hence the F matnic are invariant

under isotopic substitution of atom in the molecule. This in
turn, enable us to write eq.(1.23) as

-L

ll

II"Q *
-\

r-I N /4 ml_ _, ,, ~l- 1- 1- *­n°' 0 A c Lo c A c Lo 1 (6.21)
Here the * denotes the case after isotopic substitution. New

by virtue of the orthoganality of 6, we can write the condition
from sq. (6.21) as

,1

1

I

Trace (L Lg‘ C A C 11;‘ I»: ) = T1‘B¢e  (6-22)

O

This in turn leads to a simple equation of the form

p¢2+qc+r'-=0 (6.23)

* " "1 6.24(en s22 - 2 e12 012)/\1 IGI ( a)1 * 1 -1 -1/2Q, 2 (G12..G12 G116" ) (A2-/\1)|Gl (6.24b)
- 0' e"" (A + G2 A 1&1") - (K +/1*r 11 11 1 12 2 1 2) *
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Since 0 ie very snnll, higher powers of c can be neglected hence<= ‘ - 1'/<1 (6.25)
Ie know that tor hydride molecules c

o -= - (0.4 my/ax + 0.025) (6.26)
Iron eq. (6.25) and (6.26) we can write r

r/q I (0.4 I-Y/RX + 0.025) (5,37)
(.

Since B.H.S. is known the interbond angle can be evaluated from

this equation. This has been done here in the case oi‘ H20, H28
end H2Se

The results are given in Table 3, along with ‘lhe
conventional method given by Herzberg. We can find that the

interbond mgle or hydride molecules evaluated using the present
method agrees extremely well with the experimental values available
from litrature. Thus a knowledge of the vibrational mixing in e

symmetry species of a molecule is highly useful in determining
the geometry 01’ the system when frequencies of isotopic molecules
are available.
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CHAPTER VII

PSEUDOEXACT PARAMETER METHOD FOR THE AIIALYESIS

OF HIGHER ORDER MOLECULAR VIBRATIONS

Abstract

The normal coordinate tranfomation matrix L associated

with a vibrational problem of order 3 is expressed in the
parameter tom so that its elements become functions of 3

indepe;-1dOn1i angular parameters ¢12, ¢13 and ¢23. In order
to solve higher order vibrational problems, possessing insufficient
experimental data, the possibility of imposing constraints on
these parameters is analysed in the light of coupling they provide
between the various symmetry coordinates in a normal mode. It is

shown that the constraints like ¢12 == ¢13 = 0 are best valid
in the case of XYBZ (CW) type molecules when (1-'3: /001) is
approximately equal to (Gm /G11)1/2, a term which is calculable
purely from molecular geometry and atomic masses. The applicabilit

of th constraint is illustrated in the case of CH3? molecule,
the force field which is already well established.

14$
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7-1 Introduction;

A complete analysis of molecular vibration requires
unambiguous knowledge of the potential energy matrix F

characterising the intramo1ecular'forcee. In the general valance
force field representation, the matrix P associated with a
vibrational species of order n involves(1/@)n(n-1) elemnts and

their evaluation with n vibrational frequencies is mathematically
impossible. Recent works1_5 indicates that one may require as

many as four independent experimental data to fix unambiguously
the force field associated with the simplest case of order n = 2.
Per higher order problems this number would increase

disproportionate1y,thus making the available experimental date
insufficient for unambiguous calculation of force constants far

meet of the molecules. The scarcity of enough number of
additional experimental data accurate enough to provide
unique solutions of the force field F leaves open scopes
for techniques based on approximations.

Attempts in this direction indicate that such
approximations cen.best be initiated upon matrix L‘Ihi0h actually
trenfoms the symmetry coordinates S to the normal coordinate Q

en given by eq. (1.1). The possibility of obtaining the L matrix
near enough to the true one and hence the force field I in cases
where the available experimental data are colined only to

frequencies of vibration for a pair of isotopic substituente in
preeented.here by applying certain constraints upon the mixing
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pereleter which bring about mixing between symmetry coordinates

in each of the normal modee. The C matrix can be expressed in

terll oi’ angular parameters ¢ 13 ae given in eq.(1.16b) an

n--1 n
c (¢) - Tr 11 Au (0511)in‘

¢ia'e are called the mixing parameter in the eenee that they
determine the contribution from each normal mode to e. given

eynmetry coordinate or vice veraa.

7-2 llixing parameter and vibrational problem:

According to eq.(1.11)the matrix relation GFL=L/\atatea the

vibrational problem in a nutshell.The eq.(1,13)projectsthe
significance of L matrix in the determination of F from
vibrational frequencies. Differentiation of eq.(1.11) yields

A/\ -= 1." (A 0); _1+”f.(c r)1. +M."'(AI.) - I."'(A I.)/\ (7.1)

Ioting that A Eu becmea zero and the lest two terns together
do not contribute to the diagonal elenente, the above expreeeim
for the shirt in frequencies due to isotopic shift can be erittm
en z  ~ -~ 1(A»\)n - 1. (AG) L 11 (7.2)
Substitution oi’ L from eq.(1.14) £1?”

(1.-2-7?)“ .'E .1 c (1.3)Ihe _ ~'-11" ; .. 5°‘ (AG) 1.0 (7.4)J
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If Ioo is taken in the lower triangular g°’rm1e»»2~¢3-,8‘,a10-13 J can b.
411'-""1? 00-loulated from the molecularT e 8¢0IIetry and atomic masses.The i I

0 uh que evaluation of all ¢ia's from eq.(7-3) would be
impossible since:

1 Z 9-'3 _
) the sum rule 1 A .. ZJ11 implied in eq_(7_3)

constrains the n independent relations emerging from fine equation

$0 only (n-1) which is always less than (1/2) n (n-1) for n grater
than 2.

ii) Each of the relation will be of the second order in

terms of the ¢1j's to be solved. Much discussions have
been made on the ambigeous solutions emerging due to the quadratic

nature of these equations and the methods have been suggested to
spot correct ones in simple cases of n = 21-5 as we have already
seen in chapters III and IV. However this problem poses greater
difficulty in the case at higher order vibrational species and
it is in this context that a physicaly meaningful approximation
becomes worthy of consideration.

7-3 Constraints on mixing parameter:

The form of Lo obtained when it is taken in the lower
triangular forms, Presents a certain progressive rigidity model
tor L where the mixing between the symmetry coordinates in e.
normal mode is developed purely on a kinematic basis. The

validity oi’ this model an a very good approximation to the ectuel
L matrix has been well established. The model is found to hold

extremely well when the different symmetry coordinates are least
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coupled with one another - a consequence which follows due to the

difference in the charactericity of two normal modes corresponding
to one stretching and the other bending. Substitution or eq.(1.14)

in eq. (1.1) indicates that any additional mixing between S1 and ,

S3 can be brought about through parameter ¢ U. The approximation
that emerges from such considerations allows certain ¢ 1: to be
set equal to zero provided the related coordinates S and 8
corresponding to stretching and bending respectivelyihave J

negligible interaction, Lo here being taken in the lower triangular
tom. The consequence of this approximation in the present
context follows from eq. (7.3). For example the symmetry coordimtee

S1 involves least coupling with others, one would expect

(A /\1//\1)':» J." in the approximation ¢12=o and {$13 = 0
in the third order case. This inturn brings a considerable

reduction in the number of ¢ 13's to be solved from eq. (7.3).

7-4 Application or the present technique; .

As an illustration of the technique, the third order

vibrational problem associated with H32 symmetric top molecules
is analysed. There exist two vibration species (A and E)
each oi’ order 3 associated with this type oi’ molecules and the

frequency data required are readily available from the litrature"
with high accuracy. The first mode vibration in each species
corresponds to stretching vibration. This leads to the

gpprgxjflation ¢ 12 - ¢13 1 O in line with the discussion in the
previous section, thus leading to a relation
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D/\-|""7\']' 8 J11 = (AG11/G11) "'53
From eq.(7.3) this can be further be amplified to the form of
the frequency ratio as

Conversely, whenever this relation holds good one can reasonably

expect the stretching vibrations to be highly characterstic with

least perturbation, thus giving the mixing parameters ¢ 12 and

¢ 13 to be negligibly small.

In this case, the coupling between the two bending

modes, ¢23 alone need to be determined for which the relation

C032      C08  Bin  =
J22 sin2 ¢23+ J33 cos2¢23 -- 2J23 cos¢23 sin ¢23= (4%-‘)33 (7.8)

emerging from eq.(7.3) can be used and a solution of this
equation yields

tan ¢ 23 -= <- J23 1 1-1) /[J33 - <‘§;-@221 (1-9)

where H = \/J33  1:122  <e-9 >,_,2;1[J,,-l< e >223

nu ¢23 . (J23 _~_~_ P) / [J22 - (Q7;/i)33] (7.10)

M P = /J53" [J22-<‘-‘=’$»>u1£-B3-<‘%’>;l5J

The quadratic nature of the eq-(7.7) and (7<-3) leads 'm°°1'eti°°-117

to two different roots for 9523. new (1523 actual "I1 9523 ‘1*"‘“'*1

represented by ¢23A and ¢23V. This inturn leads to two acts of
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theoretically possible force fields. The ¢23 values and the
two roots cf force fields calculated for CH3F are given in Table 1,
using molecular geometry and frequency data. The force field of

CH3! is well studied by Aldous and Mills15 by employing as many as
22 experimntal data. The force field obtained using the present
approach is compared with Aldous and Mills in Table 1. The force

field obtained using ¢ 25A (smaller of the two values) agrees well
with the standard force field obtained from the literature.

Elimination of anomalous force field can be done by use of
additional experimental data like Coriolis coupling constants or
mean amplitude of vibration. The eriteria that mixing parameter
value must be less than 45? in order to hold the assignment proper
may also be usei’ul16 in many cases to eliminate the anomalous sets.

7-5 Conclusions:

1) The method presented is only pseudoexact in the sense

that it brings in a certain amount of decoupling of one of the ‘i
normal modes from the remaining ones and is expected to wcrk well

in cases whore such decoupling almost truely exists by virtue of
the characteristic nature of vibrations, which is easily checked

by (AA1//\1) observed ‘>6 J“ calculated.

2) The method gives almost the correct values of force

¢qng1;gngg, though we do notapply a sufficient number of

additional experimental data.
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3) The method gives two solutions as a consequence

or the quadratic nature of equations (7.9) and (7.10). However

there are infinite sets of force fields fitting;the frequency
data (including those of isotopic substituents),but the present
state of affairs which yields definite solutions certainly
improves the situation. In fact multiplicities of solutions
are inherent in many such approaches to the problem as has been
noted earlier.

4) The present approach of setting selective
constraints on the mixing parameters appears more logical and

pnysically meaningful.
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TAbLL 1

The E species force field of CHBF fitting the experimental data
on vibrational frequencies and isotopic substitution

.‘1‘-‘..._.._ 1 ‘_"‘_ LT. l_I .7<_; *1 ;—_'_—;—_ ' _ L? ;___—__ ___ __-_ ——' _ __~_:'»-——~—~-~~ +7: —~ ---- i#._ _._ -._ _ a _ _V

F13 Present method i Hi i ifrevicus r6.61t;“i " it iiiii
Set fog Set fox‘ Aldous and Mills15 Muller et a
Q31.-=5 11 ' ¢>23v=36v31 '

F11 40843 40844 40948:OuO65(5.371) (5.368) (5.422;0.054)

F22 0.467 0.595 0.470;0.0o6(00497) (00417) (o¢4qJf0ooO5) (O05)

F35 0.724 0.057 0.122+0.009(0.762) (0.904) (0.756¢0.007) (0.76)

(-0.090) (-0.062) (-0.115¢0.o12)
I’10.108 0.087 0.217+0.093F _‘3 (0.142) (0.102) (0.244¢0.0e4)

8

n "Q0061 00023 -0oO6O+0oO06F _23 (-0.064) (0.024) (-0.063;0.005) (-0.09)

*The values in parenthesis correspond to those obtained after

unharmonicity corrections of the observed vibrational frequencies.

All F13 are in mydn/A
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Computer programme for calculating p,q,r,l,m and n terms
in equation (4.5) and (4 6)

0005

0000

0010

0020

0030

0040

0050

0060

0070

0080

0090

0100

0110

0120

0130

0140

0150

0160

0170

0100

0190

0200

0210

0220

0230

RHMPGM FOR FORCEFIETD (KY3) BY CM PAUL

DIM J (14)

FOB I = 1 T0

(1)READ J

NEXT I

LET X1

LET x2

LET'X5

LET X4

LET x5

x6

X7

X8

LET

LET

LET

LET X9

LET X0

LET

LET

LET

LET

A1

A2

A3

A4

A5

A6

LET

LET

LET A7

LET

LET

LET

A8

B1

B2

1j
ZQ

’­
Ii
ii
1i
*Q

i1
ii
1i
”i

l1
3

B

8

H

3

B

SIN (J (3))
cos (J (3))
x1/x2

1/J (1)
1/J (2)
1/X2

2*J(4)*(1+2*X2*X2)

1/SQR(3)

2*J(4)*(4*X2*X2-1)

SQR(4*X2*X2-1)

(4*x2*x2-1)*X4+X5

- (4*x2*x2-1)*x4*x3*

(4-X6*X6)*(4*X4*I1*X1+XR)

(2*x4*x1*x1+x5)

2*x4*x1*x1*x3

2*x4*x1*x1*x3*x3+(1+ 5*x6*x6)*x5

A1*A3-A2*A2

%f*A6—A5*A5
1/(sQR(A1))

~A2/(SQR(A1*A7))

APPENDIX
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0240 LET B3 I (SQR(A1/A7))

0250 BET B4 = 1/(SQR(A4))

0260 LET B5 = -A5/(SQR(A4*A8))

0270 LET B6 = SQR(A4/A8)

0280 PRINT B1, B20 B3

0290 PRINT B4, B5, B6

0300 LET R1 = B1*X8*X7

0310 BET R2 = B2*X7*X8—B3*X9*X8*X3

0320 LET n3 - -B4*2*(SQR(2))*X8*J(4)*X1*X1

0330 LET R4 = (R3*B5/B4)+B6*(SQR(2))*X8*.5*X7*X3

0540 LET R5 = B1*8*J(4)*X1*X1*X3

0350 LET R6 - (R5*B2/B1)+B3*2*X8*X9*X3

0360 LET R7 - B4*2*(SQR(g))*J(4)*X1*XO

0370 LET RB = (R7*B5/B4)+B6*2*(SQR(2))*J(4)*X1*X3*XO

0300 PRINT R1, R2, R3, R4

0390 PRINT R5, R6, R7, R8

0400 LET P1 = 677.3*(R1*R1*J(6)+R2*R2*J(5))/(2*J(13))

0410 LET Q1 = 677.3*(R1*R2*J(7))/J(13)

0420 LET 01 = 677-3*(R1*R1*J(5)+R2*R2*J(R))/(2*J(13))

0430 LET L1 = 677-3*(R3*R3*J(12)+R4*R4*J(11))/(2'J(13))

0440 LET M1 = 677.3*(R3*R4*J(e))/J(13>

0450 LET N1 = 677.3*(n5*n3*J(11)+n4*n4*J(12))/(2#J(13))

0460 LET Y1 = (R1*R5'J(6)+R6*R2*J(5))'J(9)*J(9)/J(14)

0470 LET Y2 = (n1*R1*J(6)+n2*R2*J(5))*J(10)*J(10>/J(14)

0400 LET P2 0 (Y1-Y2)*677.3

0490 LET x3 - (R5*R2+R6*R1)*J(7)'J(9)*J(9)/J(14)



0500
0510

0520

0550

0540

0550

0560

0570

0500

0590

0600

0610

0620

0630

0640 PRINT

LET

LET

LET

LET

LET

LET

LET

LET

LET

LET

LET

LET

LET

LET

Y4

Q2

Y5

I6

C2

Y7

Y8

L2

Z1

Z2

M2

Z3

Z4

N2

Ga0Qq­
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2*n1*n2*J(7)*J(10)*J(10)/JC14)

(Y5-Y4)*677.3

(R5*R1*J(5)+R2*R6*J(6))*J(9)*J<9)/J(14)

(n1*R1*J(5)+R2*n2*J(6))*J(10)*J(10)/J(14)

(I5—Y6)*677.3

2*(R7*R7*J(12)+RB*R8*J(11))*J(9)*J(9)/J(14)

(R3*n3*J(12)+n4*R4*J(11))*J(10)*J(10)/J(14)

(Y7-Ya)*677.3

(2*R7*R8*J(8))*J(9)*J(9)/(.5‘ J(14))

(R3*R4*J(8))*J(10)*J(10)/(.5* J(14))

(Z1-z2)*677.3

2*(R7*R7*J(11)+R8*R8*J(12))*J(9)*J(9)/J(14)

(R3*R3*J(11)*R4*R4*J(12))*J(10)*J(10)/J(14)

(z3+Z4)*677~3

P1, Q1, 01

0650 PRINT L1, M1, N1

0660 PRINT P2, 02, 02
0670 PRINT L2, M2, N2'

-1 -1 -1 _ -1 -1 -1
0660 mm ml, IIIY, v</2, R, A1 , A2 , A2 A1 , A4 -A3

0690 DATA Ix, 12, A3‘, A4‘, 411x, 411x 122

Where P1

Q1

M1

P2

C2

M2

PJ

rJ of eq.(4-5),- L1

“J

pJK of 6q.(4.6>. Q2

rJK of eq.(4.6). L2
max

of eq.(4.5)» Q1 = qJ of eq.(4.5)

eq.(4.5)= IJ of

of eq.(4.5), N1 nJ of eq.(4.5)

L qJK of eq.(4.6)

nJK of eq.(4.6)of eq.(4.6), N25
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