

By

mitere

Rresented to the Univoraity of Coohin
in partial suifilment of the requirementes for the degere of Doctor of Philesophy

1975

This is to certify that this thesis is a bonafide record of work of 8 mri Varghese P. Nomen, M. Be., carried out in the Department of Marine sciences, University of Cochin, Frnakulam, under my supervision and guidance and that no part thereof has been submitted for a degree in any other Univeraity.

I wiah to express my deep sense of exatitude to De. P. Dinamand, former Leeturer in Invertebrata, Univereity of Coohin for the general superviaion and guidance. I an grateful to Dr. C.V. Kurian, Head of the Department of Marine seiences for his generous help during the course of the study. Ny thanks are due to Dr. C.M. Iyar, Profemer of Bioohemintry, Medieal College, Eottayan for helping me in the Biochomical eatimations carreied out in the Blochemintry Laboratory of the college and to Br. Anna M. Bidder, Department of Zoology, Cambridge University, Engiand for her valuable augestions and guidance especially in the histological studies.

To the Univeratity of Coohin I an grateful for providing facilitios to woric in the Department of Marine seiences, trnakulan. Thia work was carried out during the tenure of a rescaroh training fellowahip granted by the Government of India.

Finally my thanks are due to all my friends in the Department of Marine soiences, who helped in the day to day work in the laboratory.

THE DLORSTIVE SYBITM IN THE GEPHALOMODS: FOOD AND yESDINO ORAAHS O CRETANN COLROIDS

aratuty

1. Introduction 1
2. Materials and Mothode 7
PARY I PUNGEIOXAL MORYHOLOCY OE THE OUE AND AEsOCIATED CFANDS
3. Organt of feeding 23
4. Organs of Digestion 17
5. Histolocy of the Alimentary Canal 24
6. Glands related to the Alimentary Canal 37
7. Digeative maymen 40
8. Ciliary Cusrents of the Caeoum 48

9. Food and Feeding 53
10. Discuseion 78
PARE III BIOMASS
11. Blomana of the Cophalopods of the 90
12. Sumary 104
13. Literature Cited 106

The cophalopods are the mont active and apecialised group of Mollusca living in the open watere of the ocean on 'more or lese in equal terms with much creaturea as 18 ch and aquatic mammale'. Almost all of them are fant moving carniVores and as an adaptation to their highly active habits, have perfected their digestive system to deal rapidiy with food and digeation. Eittle is known about the proceas and organs of digestion in the group as a whole, and the few feferences below reveal the soantiness of our inowledge on the subject.

Morphologieal aecounta on the digestive mystem of some mepioids and teuthoids exist, such as that of William (1909) for Iolipo mealeli, Tompsett (1939) for sepie officinalis and Bldder (2950) for the Buropean aquide Leliro mulmaris Fa forbenis. Alloteuthis media and A. mubuiata. Jordan (1913) described the action of jaws and Maef (1923) figured the jaws and radula for ferulraple and fic forbetil.

Many publiehed accounte exint dealing with the analyses of stomach contents. Thus Bidder (2950) for Le forbesi1, samaki (2929) and Okutani (1962) for 0mantyophen sloani pacifious, Verrill (1882) and Squires (1966) for Illex inlecebrosus, Okiyame (1965) Lor Fodarodue pacificus and Owen (1882) for Mautilug ap., have all noted stomach contente.

Direct observations and experiments on feeding have been recorded for Ayronauta apro by Lecaze-Duthiers (1892) and Youns (2959, 1960), for Oplsthoteuthis deprease by Meyer (1906), for gepin offieinalis by Hertling (1929), Holmes (1940) and Wilson (1946), for In Lorbesit by Bidder (1950), for Idiosepius paradoxa by samaki (1929) and tor Filex 111ecebronue by Verrill (2882).

The cillary ourrent in the cacoum has been studied by Bidder (1950) for the European squids I. Vulparis. I. forbesil, A. media and 1. subulata.

Hietology of the allmentary canal of fe pealeit has been dealt with briefly by Williams (1909). Cuenot (1907) has desoribed the liver of g, officinalis, te vulmaris and Qatopus yul rapis and Vigelius (1881, 1883) hat deseribed the
 Q. vulmaris, O. tetracixyus, Piedone manchata and Eremactopus Yioleceus. A detailed account of the histolocy of fovulgaris, Te forpentif A. media, and A. ubulata has been given by ILdder (1950).

The digentive onsymes have been disoussed by some authorn. Thus Willians (1909) observed that the liver extract is proteolytic in nature while the pancreatic extract is amyloiytic, lipolytic as well as proteolytic in the case of Le mealeik. Bidder (2950) ataites that both liver and pancreas
of European mquids contain proteolytio and lipolytic enzymes. Blaschko and Hawkins (1952 a) observed very high enzymic activity in the ilver of 8. officinalis. starch and glycogensplitting enzymes have been identified from the extracts of Liver and pancreas of 8. officinalis by Momijn (2935). Fakahashi (1960 a,b) showed the presence of amylolytic and proteolytic activity in the digestive glands of the Japanese
 in the liver of Ceshoani pacifious by Kawata and Takahashi (1955) while Cuenot (1907) observed it as fat droplets in the cella of the ilvor of 8. offlainalig and Bidder (1950) found out it as cholestrol in type, which contained within the large vacuoles of the liver colls. Bidder also observed that the pancreas is free from lipid materials. A number of other subatanees have been identified in the liver extracte of some of the decapod cephalopod forman by me authors. Amine oxidases and oxidation of tryptamine derivatives were observed In the liver of g. officinalis by Blasahko and Hawkins (1952 a,b) and Blaschico and Inilpot (1953). The oytochrome C was identified by Chiretti-Magaldi and Chiretti (1958) in the liver of g . officinalis. Inorganic compounds were identified from the 12ver of g. gloant pacificua by talcahashi (1959).

Much of our exiating knowledge on feeding and digestion. in cephaiopods is due to the studies of Bidder (2950) on European aquids I, vulearis, I.e forbeail, A. media and
A. aubulata. The important features of digention in these forms are the apeed and offiaiency of the organs and the mechanism. The bystem is completely under nervous control. The food is captured by the tentacles and held at the mouth and bitten by the jaws in the buccal cavity. The foregut glands, the abredular giand, the antertor malivary glands and the posterior salivary glands all pour theit searetions into the buecal cavity. The sadula has no ramping power. The food reaches the stomach through the lons stralght oesophagua whore proliminary digestion takes place. The stomach is a simple bag-like struoture. The inner wall of the atomach, the oesophagus and part of the buceal eavity is Iined by a chitinous layer. The stomach is followed by the caceum. It is a thin walled complex organ where final digestion and absorption takes place. It receives the opening of the midgut glands. It contains the olose-set oiliated learlets whose main groove leads along the intestine towards the anum. The openinge of the caccum in to the stomach, the intestine and the midgut gland are guarded by an elaborate valve mechanism. From the cacoum the undigested food materials pass to the intestine. It is a short tube inned with a eiliated muous epitholium where absorption is completed; undigested material goes through short reatum and anus.

The midgut cland, whieh is the origin of all the digentive enzymes. is foxmed of two unequal parts 'inver' and 'panereas', but their appearance differt both morphologically and histologicaliy. Littie is known about the difference in seeretion and their separate roies in digestion.
Digestion appears to be completely extracellular. It begins in the stomach and is completed within the caecum. Mechanical breakdow of the food material ocourt within the stomach where it is mixed with pancreatio seoretion. Ehis partially digented food goes to the caeoum where it is mingied with the Bearetion of Iiver. During the transfer of this partially digested material from the stomech to the asecum the oillated leaflets of the caecum help to sort out the indigestible solid materials which aze then oarpied to the intestine.

The paucity of work on the Indian cephalopods may be appreciated by the faet that the fow studies are mainly oonfined to taxonomical studies. the work of Goodrich (1896), Masey (1916) and Adam (2939) may be mentioned in this connection aince they contain valumble information on the cephaw Iopod collections made from Indian Oeean. Ine oniy other work that contring any refercnee to digestive organ it that of tho (2954) who gtudied the blology and f1shery of the Palk-Bay Squid, Sepioteuthis arotipinnis and made some observations on its stomach contents. It was therefore considered necessary and important to oarry out myetematic survey of
the morphology and histogy of the digentive tracts the feedIng habits together with the analysis of stomach in at leant one fepresentative group of cephalopodia. No sueh treatment of the group has been attempted earlier to this sudy.

The work wae begun with the broad aim of determining the modifieations of the gut and the organs of feeding in rosponse to the food and feedins habites, and compli a detalled study of the histology of the digestive giands. The ftudy was IImited to three apeeles. Iresh apecimens of which wore aiways avallable near the ftudy area. These were two sepiolds (Sepla
 (Perusmac and d'orbigy, 1835-1848)) and one teuthoid (Toliso duvaueels d'orbigny, 1835).

Whe yittemitic position of the species (following the dasesileation of Nace. 1923) in as follow.

Clase	Cophalopoda
Subolane	Coleoldea
Order	sepiotdea
Pamily	sopildae
Gonus	gepia Linnaeus, 1758
	gapia mouleata Perumac and d'orbigny,
	1835-2848.
Oenus	Seplelia Oray, 1849
	soplolla inormis (Forussac and d'orbigny,
	1835-1848)

PLATE I
A. Sepia aculeata (dorsal view).
B. Sepielia inermis (dorsal view).
c. Loligo duvauceli (dorsal view).

Order	Teuthoidea
Suborder	Mropsida
Mamily	Loliginidee
Genus	Loligo Lamarck, 1798
	Loligo duvauceli d'Orbigny, $\mathbf{1 8 3 5}$

2. MAEERIALS AND MEYHODS

Specimens of Sepia aquleata Perussac and d'Orbigny, 1835-1848 (Plate Ia), Sepiella inoxmis (Ferusaac and d'Orbigny, 1835-1848) (Plate Ib) and Lolino duvauceli d'Orblgay, 1835 (Plate Ic) ware genorally obtained from otter trawls operated by fishing trawlers off and around Coohin (Latitude M $09^{\circ} 58^{\prime}$ and Longitude $E 76^{\circ} 16^{\prime}$) (Rate II) during 1966 and 1967.

The three species do not form any marked percentage of fishery in this area but ooour in comparatively large numbers in trawl antohes from middle of Oatober to middle of December. Though they are available generally throughout the year, there is a paucity of apeoimens during the monsoon period (from June to September), when heavy rain and rough weather keeps all the fishing vessels of this area idie. However, during Maroh and April specimens of $\mathrm{S}_{\text {, inermis }}$ were. colleoted from the backwaters of Cochin, where the salinity reaches that of sea water during the season.

PLATE II

Map showing the area of collections.

$$
-18 \text { i- }
$$

Abstract

Speciment obtained from October to December were sexually mature but from January till hay the apecimens caught in the trawls were immature and smaller in size, even though a mall percentage of mature forme were present throughout the year.

For morphological studies, speoimens were 8ixed either in 4/ neutral formalin or in 18 ohromic aeld. Observations were made wherever possible on fresh meterial. After dissection, the gut was laid out in its natural atate and size measurements were mede. Specimens which had little or no contents in their alimentary treots were used for the study of the intemal anatomy since inner folds and ridges inside oesophagus, stomach, cacoum and intestine including rectum were better delineated in these, than those filled up with food. The digestive tract thus obtained was disseated and washed, a series of oross and longitudinal hand sections of buccal masses were made to study its structure. Radula was observed after isolating it completely from the bucoal mass and treating it suitably. Particular attontion was paid to the following struotures: oesophagus, stomach, cacoum and intestine including rectum.

Speoimens obtained from the trawls were kept alive and stomach and caecum were transferred to physiological sailne for the study of ailiary currents. A stereoscopic binocular microscope was used for these observations. Powdered oarmine
and Indian ink were initially used for the study of oiliary ourrents, but later Indian ink stieks ground up in saline proved to be more effective.

Examination of gut contonts in freah condition in the field being not always posaible, whole apecimens were fixed soon after capture in $4 /$ neutral formalin, after being laid open by a cut along the ventral aurface. During examination $a l l$ other data were recorded, such as; dorsal mantle length (measured from behind the region of the head to the posterior end of the animal) and sex and maturity (sex and maturity determined by an examination of the gonads). In the laboratory etomacha were examined, the extent of the feed was determined by the degree of its distention as well as the amount of food it contained. The amount of the feed was determined aceording to the condition of the stomach and recorded in the data shect as 'full' (1.0), '3/4 full' (0.75), ' $1 / 2$ full' (0.50), ' $1 / 4$ full' (0.23), 'meagre' (0.10) or 'ompty' (0). Detailed analyses of stomach contente was done for all apecies, since only in the stomach was identification of contents relatively leas difficult.

Volumetrio analysis, being the most reliable was adapted for stomach analyses during the course of this study (Me Atee 1912, Colilinge 2927 and Hynes 1950). As often happens in stomach examination, decayed organic metter is present which does not 1 end itself to a numerieal method of

$$
-10:-
$$

analysis, particulariy when they ace aimost in a semidigested state. By volunetric analysis however, it is poseible to astest with sufficient acouraey the relative composition of Sood constituents. Reiative volumes of food constituents which were often orunhed or reduced to pulp were estimated by Peare's method (aited by Breder and Orantord 1922). Aecording to this method the contents of each sample is considered as undty, the various itoms boins thon expressed in texms of percentage by volume to it by rough estimate.

Food contents, after larger identifiable items had been removed, were transferred in small 10 ts to petri diahes and examined under a binocular mioroscope. Volumes in percentages were roughly estimated and recorded for different constituents of food. From individual tabulations thus made monthly $118 t s$ were prepared.

For histologieal studies the seneraliy aceepted methods of inxation were followed. She liver wes ilxed in situ as quicky as possibie and thon out into mallex pieces in the fixative. Generally 4; neutral rormalin, Zonker's Ruid, Helly's Zenicer formol, aleoholie Bouin (Duboseq-Dranil) and Flaming without acetis acid were used. Paxafiln sections were out, usually about $6 \mu \mathrm{~m}$. thiak and stalned with iron haematoxylin and cosin, Mallory's triple and Prenant's tripple (Adder 2950) Etains.

Inzymatio studies wore broad based and there was no attempt to delineate the specifie onzymes. Thus only the
broad grouping into peptidase, anylase and 2ipaze wore oaxried out. For enzymatio study live material was collected from the otter trawis and immediately disseated and their guts were taken out and separated into stomach, aecoum, intestine (includins rectum), liver and pancreas and kept in separate labelled bottles and stored in a thermosplask containing a mixture of ice and common salt. They were then brought to the Laboratory and kept at $-10^{\circ} \mathrm{C}$. The food particles present in the stomach, caceum and intestine (including rectum) were washed with distilled water and the mueosal layer was seraped out for the preparation of homogenates. The homogenaten were prepared from each part separately by grinding the tissue in a mortar with quartz sand with suitable quantity of distilled water (about 5 ml . to 1 grm. of tissue). The homogenate thus obtained was centrifuged until a clear supernatipnt was obtained. The extracte were then frozen at $-10^{\circ} \mathrm{C}$ until required. Protein content was estimated for every homogenate.

Aralolytic activity was estimated by following the method of Netelson (2963). The homogenate was inoubated at $37^{\circ} \mathrm{C}$ for 30 minutes with staroh sumpension at a pil range of 6.8-7.2. The enzymatic activity is expressed as units of amylase per gram protein.

Lipoiytie ectivity was determined by the method of ICing (1965). The incubation of homogenate was carried out for 30 minutes at $37^{\circ} \mathrm{C}$ and phenyle lurate was used as the
substrate. The pil of the media was 7.4. The aotivity of the enzyme is expreased as $\mu \mathrm{g}$ of phenol liberated per 30 minutes per gram of protefn.

Proteolytic aetivity was estimated by the method of Iunt (1948). The homogenate was incubated for 30 minutes at $37^{\circ} \mathrm{C}$. Ixperiments were carried out with different substrates in different pil media. The working aubstrates and plimedia weres-

1. Casein pH 2.0 and 10.0
2. Albumen pi $6.0,7.4$ and 8.14 .

The onzymatic activity is expressed as $\mu \mathrm{g}$ of tyrosin
21berated per 30 minutea per gran of protein.

PARI I

3.

ORGANS OF FEEDING

3.1 Arms and Tontacles

The arman are radially arranged and are highly muscular. The base of all but the ventral pair are connected by interbrachial webbing. On their oral surface they bear longitudinal rows of atalked suckers. In sepia aouleata and in gepiella inermis auokers are arranged in four row while in Ioliro duvauceli only two rows are present. In female specimons of 8 . incrmig the horny rim of suckarn is smooth but in S. aculeata in male specimens of S. inermis and in L. duvaucelif the distal half of the rim of the suckers are provided with teeth (Plate III a-d). The fourth left arm in the male is heatocotylized in all the three apecies.

The two tentacles are longer and slender than the arms and ond in a olub shaped tip. These organs are originate from the pookets situated between the 3rd and th pairs of arms. Normally in S. aculeata and in S. inermis the tentacles 1ie retracted in pookets, with only the sucker-alad tips protruding, but in L. duvauceli only partial retraction is possible. In the case of the tentacles the auckers are present only on the olub shaped tip, which are arpanged more or less in longitudinal rows. The hoyny rim of the sumkers are toothed in all the three species desoribed here (Plate III e-g).
a. Arm sucker of S. aculeata.
b. Arm sucker of S. inermis (male).
c. Arm suoker of S. inermis (female).
d. Arm sucker of the duvauceli.
e. Tentacular sucker of S. aculeata.

1. Tentacular sucker of S. inermis.
g. Tentacular sucker of t. duvauceli.
h. Buccal membrane sucker of S. aculeata.
2. Buccal membrane sucker of L. duvaucell

3.2 Mouth and Buccal Mans

The mouth is situated in the centre of the eirelet of armis. The opening is guardod by a paip of eireular lips, the inner and the outer. The inner is heavily papiliated while the outer is smooth. The outer lip is surrounded by a well developed fold of tisaue called buccal membrane, which is divided into seven lobes. These lobes are attached to the base of the elght arms at seven places. In the female the ventrai part of the buceal membrane is modifled to form a pouch like organ which acts as a reservoir for the spermatophore. The tip of the seven lobes of the buccal membrane are provided with suckers in 8. aouleata and in F_{e} duvauceli (Rate III $h, 1$).

The mouth leads in to the bucoal cavity, which is located inside the buceal mase. The buceal mass is a bulbous oval mass placed inside the peribuceal sinus and attached to the surrounding tissue by a fold of akin, whioh is a continution of the outer 11p. This ailow the whole buccal mass some kind of freedon, so that it ean be extended, retracted and even rotated to facliltate the working of the jaws.

The buccal mans is oporated by two paire of museles. (1) the Oblique Retractor Muscles. These are a palr of brond, delleate band of museles originating from the dorsal wall of the peribuecal sinus alons its medial region and ourving round the buceal mans and attaching to its sntorior
ventral surface elose to the middle Iine. (2) the Iateral Retractor Musele. These 11e with in the oblique muscies and have their origin in the posterior dormo-laterel wall of the peribuccal sinus. They extent forward as a thin broed sheet of buscie. in the form of almost a complete cone which aurPounds the anterior part of the buocal mase and is attached to 1ts anterior surface.

A-pair of powarfut horny jaws are placed inside the bucoal mass. the tip of the lower jaw overlaps that of the upper jaw, and gives the appearance of strong parrot beak, the posterior and peripheral regions of the jaw are ombedded within the muscles. The musclem form a solld sheath around the jawe. It in not possible to recognise or eegregate individual mumoles.

In duvauceli possesses the weakest jaws among the three species studied and its upper jaw ahow a prominent indentation at the jaw angle. In ge aculata and in seineryis the outting edges of the Jaws are amooth and the winge are without any eqooves (PLate IV a-L).

In the buccal oavity lies the so-ealled tongue, otherwise celled as salivary papilla or sub radular organ. The surface of this orgin is papillated and is clandular and the duct of the posterior malivaxy eland runs along the midde musoular part to opan at its tip (1ate V a-t).

plate IV

a. Upper Jaw of S. aculeata.
b. Iower jaw of S. aculeata.
O. Upper jaw of S. inermis.
d. Lower jaw of S . inermis.
e. Upper jaw of tie duvauceli.
f. Iower jaw of It duvauceli.
g. Radular teeth of s. aculeata (three rows).
h. Radular teeth of S. Inermis (three rows).

1. Radular teeth of t. duyaucel1 (three rows).
$D Q$
E D A

Dorral to the tongue lies the radula. In S. aquleata and in S. ineryis there are seven teeth but in he duvauceli there are nine teeth in a row. In g. aculeata and in S. Inerpis the rphachidian tooth is unicuspid, pointed and cone, shaped. The first and the second laterals are also of the same pattern. The third lateral is longer than the others, with broad base. Marginals are absent in these two species (Nate IV g-h).

In If. duvauaell the whachidian tooth is tricuspid, the central ousp or the mesocone is very long. The ectocone are shorter and smalier. It has got a squarish base. The first lateral is bicuspid, the inner oump is longer than the outer one. The second lateral is thiok with long pointed ousp. The thixd laterral is also with a long cusp as the second one. Marginals are present, they are amall and oblong (Plate IV i).

The radula forms comparatively a small proportion of the buccel mases thus only 24-19\% in s. aculeata 13-188 in S. inermin and 18-20\% in f. duvauceli. It is therefore ilkely that the radula is not used for rasping and probably assists only in swallowing. However, xadular teeth which are expozed are blunter than teeth within the radular sac which are more pointed.

The odontophore is a musoilar atruoture, U-Ehaped in oross seotion and reinforced by a pair of cartilaginous rods. The radular sac, with ite ribbon of teeth, lies in the

PLATE V

a. Longitudinal section of the buccal mass of S. aculeata.
b. Longitudinal section of the buccal mass of S. inermis.
c. Longitudinal section of the buccal mass of L. duvauceli.
d. Transverse section of the buccal mass of S. aculeata.
e. Transverse section of the buccal mass of S . inermis.
f. Transverse section of the buccal mass of L. duvaucel1.

1. Outer 11p
2. Inner lip
3. Upper Jaw
4. Lower Jaw
5. Palatine Lobes
6. Salivary papilia
7. Radular teeth
8. Radular sac
9. Duct of the posteri salivary gland
10. Jaw muscles
11. Odontophore

longitudinal groove formed in between the axms of the U-shaped odontophore. The posterior ond of this sac contains the radular gland, where teeth are secreted.

The palatine lobes, also known as lateral lobes, buceal palps or Zungelaschen arise just doraal to the tongue and project dorsally on either aide of the radula. These lobes are covered with a ehitinous layer which bears amall backwardiy projecting apines on its inner surface. The ohitinous layer is also present on the inner surface of the dorsal jaw, oesophagum and stomach. These lobea bear the opening of the anterior selivary glands on their inner surface. The anterior alivary glands 11 behind, the palatine lobes, wholly embedded in its muscies (Rate V a-f).

The groovel forwed between the palatine lobes leads the buccal cavity into the oesophagus. The radula helps to push the food through this groove to the oesophagus.
4. ORGANS O DIGESTION

4.1 Desophagus

Oesophagus is a long straight siender tube, the anterior part of which iles freely in the perioesophageal sinus and passes through the centre of the brain. Then it pierces the membrane which closes the foramen magnum, enters the visceral cavity and runs backward and Joins the stomach.

In S. aculeate and in 3. Inermis the oesophagus runs along dorsally and medially between the two lobes of the liver before it unites with the stomach. But in F. duvaucelif the oesophagus lies freely between the liver and the gladius and pierces the aingle-lobed liver at its posterior region. The oesophagus then takes an oblique ventral course to unite with the tomach.

Abstract

The oesophagus is lined with soft, smooth, colourless, distensible cutiale. The oesophagus is considerably extensible during foeding but in its relaxed atate, its mucus membrane is thrown into a number of irregular longitudinal rolds.

4.2 stomach

In cephalopods, unilke in other molluscs, the midgut is divisible into three regions, namely, the stomach, the vestibuie and the caecum, which lie across the body from right to left in that order. The stomach is a simple muscular bag-like structure. Its inner surface is lined with a colourless distensible cuticle. In the empty stomach the cutiale and the underifing muscular layer form a number of longitudinal ridgee. These ridges are very prominent eapecially in the middle region of the stomach. The hard distensible outiele present in the etomach in ilkely to protect it from injury caused by hard and rough partiales prosent in the food. In freahly killed animals occasional pulsatory movoment can be obsorved in the stomach.

The stomah receives on $2 t$ anterion pight side the opening of the oesophagum and on the anterior left side it communieates with the vestibuie. The two opaninge into the tomeh are provided with ophinctor museles. the gastric gangilon is attached to the rentral wall of the tomach at the angle formed by the oesophagus and the intestine.

4.3 Veatibuie

The vestibule is the meeting place of the stomach, the caceun and the intestine, the openings between which control the diraction of food $120 w$, thus when the muscles of the Etomoh opening and the caccal oponing relax the somi-digested food flows from the stomach to the onecun. The hard akeletal remans can also be short routed from the stomen to the intestine without entoring the caceum, when the openings of the stomach and the intertine are relaxed. Normal food movem ment occuse whon the aceun relaxen to direct the food into the intestine.

In Te duvaugels the ventibule 18 not so well developed
 result of the presence of more elaborate meohanism (the hepatopanoreatie told). restricting the function of the vostibule.

4.4 Caecum

It is athin walled, aplrally aolled and complex organ. The mpleal is wound around an axis whion is obilquely disposed.

The caceus communieates with the vestibule on 1 ts anterior right side and reooiven the opening of the midgut glands on the anterior left alde. Ine oponings of the gland and the vestibuie - the latter deseribed by Bidder (1950) as the eacco-intestinal opening - ace situated on elther end of the epiral and are connected by the hepatopanoreatic groove, whioh runs parallel to the columella. The hepatopanereatie groove along with the openings of the midgut gland and the vestibule Is situated in between the columellar pidge and mother fold (extension of one of the two ridges travelilng along the dorsal wall of the intestine). the hepatopancreatic fold. whis azpangement helps to direet the RLow of glandular seoretion through the hepatopancreatic aroove ither to the stomach or to the caecum. In Fe duvancel the arrangoment for guarding the gland is more alaborate and complieated.

The inner wall of the caecua is throw into a number of Tolds or 2eaklote. They are glandulas in native and covered with olila. The leallots are'so arranged that the grooves between them discharge into a ommon groove, the main mueus groove. Rldges on the leaflets reault in 'primary' and 'secondary' grooves. The net result of this olaborate mechanism is to increase the inner surface aren for sorting the food particles and for abrorbing the digested matter. The main mucus aroove and the hepatopanareatic groove run parallel to each other on elthor side of the oolunelins ridge. The ontire oxcan is musculas, shows a pulsatory movement even in
recently dead animals. The rim of the caccovestibular opening and the valves are muscular, and are reinforeed by cartilaginous tisaue, whioh make it possible for the fizm closure of the caccoventibular opening with the hepatopanereatic fold.

Morphological variations of the caecum oecur in the two families undor study.

4.4.1 Caceum in 8. aculeata and in 8. ineryis

In these two species the caecum in a sac-like structure, amaller than the stomech and partially hidden by the grape like bunches of panereas, when viewed from the ventral side. The elliated learlets on the inner caccal wall vary in size. The Larger ones atretoh from the columeliar pidge to the caccal wall while the galler ones are set in between. Nearly the whole area of the caecun is oceupied by varying sizes of clliated 1eanleta.

The opening of the gland is placed alightly to the left of the spiral and anterior, chee to the columallar region. the opening is guarded by the dorsal and ventral valves. The doreal vaive is the hopatopancreatic fold and the ventral valve is the flap like extension of the columellar pidge. These two run parallel along the spiral to the blind and of the caeoum and terminate inside it. The hepatopanoreatio croove which puns in between theac two valves, can be united to form a tube which is able to convey the seoretions from
the glands directly to the stomach. When the groove is separated it conneats with the esecum. Thus the vaives control the Ilow of glandular seoretions either to the stomach or to the caecum (Mate VI d, e).

4.4 .2 Gaeoun in Ite duvauoeli

In Ie duraugeli the caecum is an longate thin walled sac, almost reaohing the postorior end of the abdominal oavity. It is divisible as pointed out by Bidder (2950) into two parts. the anterior spiral region and the posterior se like region.

The anteriox mpiral region caxrian the conneotion between the vestibule and the oseeum and bearg the ciliated Leaflets and the opening of the digentive ciands. The ciliated learlets project from the ventral wall of the caeoum across the spipal. 2his arrangement ensures that the inner leafiets grooves lead to the main mucus groove, as in the aage of the two speetes described earlier.

Whe cacooventibular opening and the gland opening are situated on either end of the spiral in the columellar region as in s. soureata and Se inermis. However. in It duvauceit the mechanism guarding the opening of the gland is more elaborate and as a result the vestibule diminishes in importo ance when compared with the sepioids. The dorsal valve has an enlarged semicircuiar fold which extends to the ceecovestibulax opening. 2nis extension may serve to unite with
a. Alimentary canal of $\mathrm{S}_{\text {. aculeata (}}$ (ventral view).
b. Alimentary canal of S. inermis (ventral view).
c. Alimentary canal of L duvauceli (ventral view).
d. Transverse section of the caecum of S. aculeata.
e. Transverse section of the caecum of S . inermis.
f. Transverse section of the caecum of L. duvauceli.

1. Buccal mass
2. Posterior salivary gland
3. Oesophagus
4. Liver
5. Pancreas
6. Stomach
7. Caecum
8. Intestine

the columellar ridge and thus convert the hepatopanereatie groove into tube and also help to out off the aonnection between the caecum and vestibule. In the olosed position the oaecum has no conneotion with the hepatopancreatic groove and the vestibule (PLate VI T).

The posterior region of the aseum is a simple elongate sac-ilke structure whioh extends upto the posterior region of the visceral dome under nowmal conditions. But the shape and the size of this sac varies according to its physiological state, mainly on the volume of the food contents or the state of ripeness of the gonads. Bidder (1950) has 11lustrated and sccounted for the ohanges in shape and volume of the sac.

In addition; the anterior spiral region of the caccum has a small projection, the appendix (Bidder 1950), on 1ts anterior right side.

4.5 Intestine and Rectum

The intestine is a short tapered tube running from the vestibular region and between the two lobes of the panoreas and anteriorly along the ventral surface of the liver to join with the small bulb shaped rectum. The rectum opens just behind the funnel through a slit like anus, whioh is guarded by two small anal leaflets. The intestine is loosely attached to the ventral wall of the visceral dome. In ge aguleata and in 8. incuris the intestine deseribes a loop just arter
emerging from the panoreatic lobes. The duct of the ink sac opens on the inner side of the rectum. Iphinetor museles are present on the rectal bulb on either side of this opening.

The inner wall of the intestine is lined with a ciliated mucus epithelium, whiah is thrown into a series of longitudinal folds. Two prominent fidges run along the dorsal wall as the continuation of the main mucus pidge. In 8. aouleata and in S. Inermis these ridges reach upto the reetal bulb but in in duvaucell they rum only a short distance (Plate VI a,b,e).

5. HIstozogy of thi almenizany canal

The gut wall in cophalopods is generaliy composed of Sour layers, the serosa, the musoularis, the sub-musosa and the mucom. The full complement of these layers does not exist in all the regions of the gut, and one or two layers may be absent. The serosa ia aniform thin layer forming the outer wall. It encloses few blood vessels. The musoulapis is differentiated into a longitudinal and a cireular musele layor. In all the regions excopt in the caceal wall the layer of the eireular muscle is external and the longitudinal musole is internal. The oireular musele gencrally forms a continuous layer while the longitudinal muscle forms bundles enclosed in sheaths of conneetive tisaue. The muscularis is better developed in the stomach wall than in any other region
of the alimentary eanal. The submucosa is an extensive, vascular and well defined layor of conneetive tissue. Its outer portion is loose while the portion adjacent to the mucosa is dense. The mucosa is the inner most layer and shows much variation in structure in different parts of the alimentary amal.

The midgut glands consist of two unequal parts, the larger anterior portion is called the liver and the amaller posterior portion is onlied the panoreas. Their histology has been interpreted in several ways as stages of secretion have been mistaken for distinct cell types. In f. duvaueeli it was possible to detect only one type of cell while in A. aculeata and in B. inermis two types of cells were distinguished.

5.1 Foliso duvaucel1

5.1.1 Oesophagus

In the oesophageal wall the serosa, the circular muscle, longitudinal muscle fascicles, the submucosa and the mucosa are present. The serosa forms a very thin layer and is composed of cuboidal cells with large nucleus placed in the middle. The eircular muscle layer is well developed. The longitudinal musele fascicles are distributed discontinuously and appears as part of the submucosal layer. The submucosa is somewhat extensive, and extends into an intensely folded

Abstract

mucosa. The cells of the mucosal epithelium probably gives rise to the outiole lining. This lining varies in thicleness $(5-7 \mu \mathrm{~m})$ depending on the stage of shrinkage of the oesophageal wall. The shape of the epithelial celle ranges from cubicle to columar accosding to the degree of contraction of the organ. The oytoplasm is fibrillar in nature. The nuelel of these ocils are mall, darkiy stained and are placed tomards the basal region. The formative layer is not obserVed between the outicle and the mucosal opithilium (plate VII a).

5.1.2 stomach

In the stomach wall muscle layers are thick especially the oiroular layer, and glands are absent. The histology of this region is almost same as that of the oesophagus. The mucosa has numerous folds, some folda are larger while others are smaller. The formative layer present in between the outi01. and the epithilum is somewhat thicker. This formative layer as pointed out by Bidder (1950) is present everywhere on the wall of the stomach between the epithelium and the cuticle. The mucosa is composed of a angie row of columar cells with large centrally placed oval nuelei, showing large chromatin granules. The contents of these cells provide a fibrillar pattern. Like the oesophagus the thiekness of the cutiole varien according to the state of contraction of the stomach wail. In a fully distanted wail the outiole has a thiciness of $9-11 \mu \mathrm{~m}$. The maximum thickneas is observed in the middle

PLATE VII

L. duvauceli (histology; transverse sections)
a. Oesophagus
b. Stomach
c. Caecal leaflet
d. Intestine
e. Rectal cell
f. Liver
g. Panoreas

1. Cuticle lining
2. Pormative layer
3. Mucosa
4. Mucus cells
5. Submucosa
6. Cillated cells
7. Longitudinal Muscle
8. Calcareous cells
9. Ciroular muscle
10. Pat droplets
11. Serosa

region of the mtomah where the folds are comparatively prominent and higher (llate VII b).

5.2.3 Ceneom

The serosa is very thin. The muscle layers are in the reverse order, with the longitudinal outer and the cireular inner. A layor of delicate conneetive tissue pleh in blood capillaries separates the two layors of muscles. This conneetive tissues is not seen in other parts of the alimentary canal. The musosal epithelium consists of a layer of oiliated cellw. The shape of the colis vacies from eubical to columnar. The nucleus is oval and placed basally. The cilia rise from basal granules and have long parallel rootletg. The eytoplasm is fincly granular.

The cells of the ciliated leaflets are typically columar with the oilia provided with well devoloped basal granules and parallel rootlets. The oytoplasm is granular and the nucleus is large and oval in shape and ocoupies the basal half of the cell. Two types of mucus cells are observed in the ciliated leaflets. One is vesicular and orowded on the free edges of the leaflets and the contents are discharged through a common pore. The second type of cells are pyriform mainly found on the econdary leaflet grooves and opening separately (nate VII ©).

5.1.4 Inteatine and Reotum

The serosa is very thin. The outer ofroular layer of musele is very prominent, but the inner longitudinal layer is thinner and continuous. The submucosa is somewhat norrower. The mucosal epithelium consists of tall columnar cillated cells interspersed with mucus glands. The columar cells are more regular than those of the oesophagus and the stomach walls. The mucosal epithelium is thrown into a number of longitudinal ridges, which are subtended by the connective tiasue containing longitudinal musole fibres, and vary in thickeness. The olliated colls have o111s, $.5-7 \mu \mathrm{~m}$ long with basal granules and parallel rootlets. The cells have a well maxked bush border. The oval shaped nucleus is nearly central. The basal portions of these cells are stack-like and their fibsils are closely intertwined with the basement membrane, as in the cells of the oesophageal wall. Scattered among these cells are the mucus producing goblet-shaped cells, opening independentiy into the intestine. these eells have large darkiy ataining basal nuclei. The contents of these cells provide a reticulate pattern (plate VII d).

Histologically the reotum resembles the intestine, but the cillated cells are replaced by cells with a hyaline border. These cells are interspersed with sacoular mucus colls. The mucosal epithelium of the terminal part is characterised by special type of cell, which can discharge long retractile
processess. The cells are cuboidal and the processess arise In bunohes, and the length of this ranges from 35-45 $\mu \mathrm{m}$. Rach process is supported by a median long davic filament. Biddex (2950) named it as axial fliament (Plate VII).

5.1.5 Midgut G1ands

5.1.5.1 Eiver

The liver consists of bundles of tubules interspersed with soft traneparent conneative tiseue ilbres packed in a delieate layer of muscular sheath. The tubules communieate with a central lumen on each side. Fine blood capillarien Fun around the tubules. Though in parafiln sections these have lacunar struature the Iuminae of the maller tubules are nearly obliterated by the mollen ands of liver oells. The cells are tall and columar with buiging granular free onds. Alternating with the columnas cells are small pyramidal cells, which form a basal fomative layer (Bidder 1950). Only one type of cel1 was observed in I. duvauceli whioh has two phates of activitys in the secretory phase the cytoplasma generally filled whth granules or olusters of granules enelosed In vacuoles, and often containe fat droplets towards the base of the cells. In the excretory phage of the cell the cytoplasm 18 filled with a single large granular mass. the nuclei are in the basal portion of the cell (Rlate VII f).

5.1.5.2 Pancreas

The pancreatic tissue lies within the kidney sac and is covered by the renal epithelium. The tubules are wide with a thin epithelial lining. The spongy walle of the tubules are in intimate communication with the cavity of the hepatic ducts. The epithelial ilning has a well marked oell-border, which is basiphilic in nature. The individual cells are difficult to differentiate in paraffin sections. The nuclei are oval and distal in position. The nature of cytoplasm is fibriliar. The secretory vacuoles usually contain solid spheres and soattered granules which atain darkly with haematoxylin. The blood capiliariea are distinguished by the clearly staining blood cells (Flate VII 8).

The paired hopatopanoreatic ducte are non-glandular in structure. A sphincter can be distinguished, where they leave the liver, is made up of a layer of mumele fibres.

5.2 Sepiella incrmis

The histology of the alimentary canal of S. inermis is broadiy similar to that of feduvauceli.

5.2.1 Oesophagus

The serosa, the oiroular musole layer and the longitudinal muscle layer are typical. The submucosa is rather extensive
and the mucosa is much folded. The mucosa has a single row of columar cells with mall darkly staining nuolei occupying their basal region. The oytoplasm is fibrillar in nature. These cells secrete a layer of outiole. The thickness of the mucosal folds and the cutiole varies according to the stages of contraction of the oesophageal wall. The formative leyer 1s not observed between the cuticle and the mucosal epithelium (Plate VIII a).

5.2.2 Stomach

The serosa, the circular muscle layer and the longitudinal muscle fascicle constitute the outer region of the stomach wall, as in the oesophagus. The oiroular layer of muscle is thick. The mucosa is thrown into a number of folds. The epithelial cells of the mucosa are columar, with a large nucleus near the middie region of the cells. The cytoplasm is fibrillar in nature. These cells secrete a layer of cutiole. The mucosal folds are comparatively prominent in the middle region of the stomach. The thickness of the outicle also varies from 20-13 $\mu \mathrm{m}$. depending upon the nature of contraction of the stomach wall. The formative layer is present in between the cutiole and the epithelial layer (1 ate VIII b).

5.2.3 Caecum

The thin serosa, the reverse order of arrangement of the muscle layers, and the connective tissue with rich blood

PLATE VIII

S. Inermis (histology; transverse sections)
a. Oesophagus
b. Stomach
c. Caecal Leallets
d. Intestine (along typhlosole)
e. Rectal cell
f. Liver
g. Pancreas

1. Cuticle ining
2. Mucosa
3. Submucosa
4. Longitudinal Muscle
5. Circular muscle
6. Serosa
7. Pormative layer
8. Mucus cells
9. Ciliated cells
10. Calcareous cells
11. Fat droplets

caplllaries are Eimilar to that of Le duvauaeli. The mucosal epithelium is fomad of a layer of cuboidal to columar shaped ciliated cells. The oytoplasm is granular in nature, the nucleus is oval in shape and occupies the basal portion of the cells.

The cells of the olliated leaflets are columnar, with a basally situated large oval shaped nucleus. The oilis are with basel granules and parallel rootlets. The cytoplasm is granular in nature. The mucus cells are saccular in shape, only one type of muous oell occurs in this speciea. They occur In groups and the contents are discharged through a common pore (Plate VIII o).

5.2.4 Intestine and Rectum

The serosa is thin, but the circular layer of muscle is somerhat thiok, and the thin inner longitudinal musole is continuous. The sub-mucosa is somewhat thinner. The mucosal epithelium oonsists of a single layer of tall columar ciliated cells interspersed with mucus cells. The mucosal opithelium is thrown into a number of longitudinal ridges supported by conneotive tissue containing muscle fibres. The ciliated cells have long cilia with basal granules and parallel rootlets. The oytoplasm is fibrillar in appearance. The nucleus is oval in shape and occupies more or leas the middle region of the cell. Soattered amons these olliated cells are mucus producing goblet cells. These cells have a reticular oytoplasm with basally situated large nucleus (plate VIII d).

The reotum resembles the intestine in histology but the ciliated mucosal cellame replaced by non-oiliated cells with a byaline border. The inner wall is frequently longitudinally ridged. The ridges are supported by the underiying bands of Longitudinal muscle layer. The contractile reotal cells are prepent (plate VIII e).

5.2.5 Midgut Glands

5.2.5.1 Liver

In 3. inermis the iiver is a bilobed structure composed of innumerable tubules placed in a thin layer of muscular sheath. The tubules of each lobe open into a central lumen. Sach tubule is surrounded by a system of fine blood capillaries. Two types of cells are met within this organ. One type is a secretory - excretory - absorptive type which has usually a granular cytoplasm and basal nucleus. The cytoplasm contains larger granules, single or ageregates, enclosed in vacuoles, and often contains fat droplets basaliy. In the secretory phase the cells contain densely filled granules, while in the excretory phase granular masses or spherules appear. In the absorptive phase the cells have a highly vacuolated inner area, finely granular oytoplasm at the blunt end onding in brush border. The cell probably passes through a sequential phase and the activity of the gland on the whole is rhythmioally
controlled. The second type of cells are calcareous cells, which are involved in the formation of the cuttle bone. These cells are low, broadly based with a pyramid like contour, and containing granulea and spherules, and usually occurring between the bases of other cells (Plate VIII f).

5.2.5.2 Pancreas

The panoreatic follioles are covered by the renal epithelium in g. inermis. Each folliole has its own narrow duct opening into the hepatopancreatic duct. The histologioal characters are same as in the case of L. duvauceli. Fach follicle has a wide lumen with a narrow lining of epithelial cells. They have a well marked basiphil cell border. The individual cell boundaries are not distinct. The nucleus is oval in ahape and usually terminal in position. The cytoplazm is fibrillar in nature. Blood capillaries are evident in sections with the blood cells staining deeply (Plate VIII g).

5.3 Sepia aculeata

The histology of the alimentary canal of g. aquleata is almost identical with that of 8. inermis.

5.3.1 Oesophagus

The serose form very thin layer. The oiroular layer of muscle is well developed, while longitudinal muscle

Abstract

fascioles are discontinuous. The submucosa is somewhat extensive and the mucosa has a large number of folds. The mucosal epithelium is a single layor of columar cella. The oytoplasm is fibrillar with a small basally aituated darkly staining nucleus. The thiokness of the outiole varies aceordIng to the contraction of the oesophageal wall. The formative layer is not distinguishable (Nate IX a).

5.3.2 8tomach

The mtomach is a thick muscular sac, with longitudinal ridges internally oovered by a chitinous layer whioh is supported by the columar epitholium as in S. inermin. The thickness of the chitinous layer in fully extended region varies from $9-13 \mu \mathrm{~m}$. The cells of the mucomal opithelial layer are columnar with fibrillar oytoplasm and large oval nuclei (Pate IX b).

5.3.3 Caecum

The serosa, the order of arrangement of muscle layers are all resemble with that of S. inermin. The mueosal epithelium is formed of a layer of alliated cuboidal cells. The oytoplasm is granuiar with an oval nucleus ocoupying the basal portion of the cell.

The colls of the ciliated learlets are columar and the cllia are with well developed basal granules and parallel

plate IX

S. aculeata (histology; transverse sections)
a. Oesophagus
b. Stomach
c. Caecal leaflet
d. Intestine (along typhlosole)
e. Rectal cell
f. Liver
g. Pancreas

1. Cuticle lining	7. Formative layer
2. Mucosa	8. Mucus cells
3. Submucosa	9. Ciliated cells
4. Longitudinal muscle	10. Calcareous cells
5. Circular muscle	11. Fat droplets
6. Serosa	

rootlets. The cytoplasm is granular with large oval nucleus. The mucus cells are sacoular, occur in groups and open through a common pore (Plate IX c).

5.3.4 Intestine and Rectum

The lining epithelium consists of tall columar cillated cells interspearsed with goblet cells. The layer is underilain by submucosal connective tissue followed by longitudinal and circular muscle layers (Plate IX d).

The rectel epithelium is non-ciliated and the cells are with hyaline border. The retractile reotal cells are present (Plate IX ©).
5.3.5 Midgut alands

5.3.5.1 Liver

The histology of the liver of 8. mouleata has much similarity with that of $\mathrm{S}_{\text {. inermis. }}$ The gland is a bilobed structure composed of a large number of tubules thickly paoked in a delicate sheath of muscle and connective tissue. The tubules are open into a wide central lumen. Two types of cells are met.within this gland. The first type of cells are tall, cylindrioal in form with oytoplasm filled with granules, vecuoles and often fat droplets at the base. This type of
cells carry out excretory, secretory and absorptive functions. In the excretory phase the cells are filled with vacuoles containing spherules. In the seoretory phase the cells are demsely filled with fine granules and with swollen onds. At times this swollen ends obliterate the luminal spaces. In the absorptive phase the cells contain vacuoles and the free onds axe filled with clustere of granules and usualiy with a brush border. The second type of cells are pyramidal in shape with darkly staining oytoplasm containing granules and sphorules. These cells are mainly associated in the formation of outtle bone (Plate IX f).

5.3.5.2 Pancreas

As in the case of S. ingrmis the panareatic follicles are covered by the renal epithelium. Each folliole is communicating with the hepatopancreatio duct through a short narrow duct. The boundaries of the individual cells were not able to make out in the parafinin seotions. The luminal apace is lined with a low opithelium having a well marked basiphil cell border. The eytoplasm is fibrillar in appearance. The oval nucleus usually occupies the terminal portion (Rate IX g).

The glands of the digestive system can be classified mainly as (a) Fore gut glands and (b) Mid gut glands. The
hind gut glands, consisting of the ink sac, are associated with the digestive system though they have no digestive function (Plate V a-f and Pate VI a-o).

6.1 The Fore gut glands

There are three sets of glands - (i) sub mandibular glands, (ii) Anterior salivary glands and (iii) Posterior salivary glands - present in the fore gut and opening into the buccal oavity.

6.1.1 Sub mandibular glands

This is a single median glandular tissue lying along the 'salivary papilia'. This is also known as 'sublingual gland' or: 'subpadular gland'. It is ductless and its seoretion is direetiy into the buccal cavity.

6.1.2 Anterior salivary glands

These are paired glands, ambedded in the posterior muscular portion of the buccal mass, and extending to the palatine lobes. These glands open to the buccal cavity through the openings present on the inner faces of the palatine Lobes.

6.1.3 Posterior salivary glands

This gland 1s looated in between the cophalic cartilage and the liver mass. It opens at the tip of the 'salivary papilla' by a long duet after traveliling along the oesophagus through the mombrane of foramen magnum and the blood sinus. In S. aculeata and in S. inermis this is a paired structure and is partially embedded in the liver lobes. The duct from each lobe joins together to form a common duct, which in turn opens at the tip of the 'malivary papilia'. But in feduvauceli this is a fused median structure embedded in the iiver.

6.2 The Mid gut glands

The midgut glands are in the form of two unequal lobes which have a common duct. The larger lobe is distinguished as the liver and the amallor one an the panoreas.

The liver is a compact structure placed inside a delioate musoular sheath that lies between the retractor muscles of the funnel. It is completely separated by a hard membrane from the visceral mass and lies olose to the doreal body wall. In the freah live condition the liver has a fluid texture but becomes hardened after any type of fixation. Its colour varies from brown to yellow, and is probably determined by the type of food ingested. Thus the liver is invariably of a brownish colour when remains of prawns were found in the stomach.

In 8. acuieata and in S. Incrmis the iiver is a bilobed structure connected by very dellcate membrane. The oesophagus and the cephalic artery run along the groove formed by the two lobes. The cephalic artery gives out two hepatic branches at the middle of the liver lobes. The pallial nerve passes through the elefts present on the anterior region of the lobes.

In If duvaucely the iiver is fused into angle lobe. The oesophagus and the eephalic artery lies in a groove formed between the iiver and the gladius, and then take a course through the liver in an obliquely ventral direction to join with the stomach and the heart reapectively. The blood supply to the liver is identical to the sepioids.

The paired hepatic ducts arise from the lower half of the liver mans, travel towarde the caecum but unite just before entering the caecum.

The pancreas is an yellowish mase of tissue attached to the wall of the hepatic ducts. In 8. aculeata and in量. Inexalin it resembles a bunch of grapes while in Luduvaucel1 1t gives a spongy appearance. Its secretion also pour through the hopatic duct into the casoum.

7. DIGRSIVE ENZYNES

For the preparation of homogenate only the mucosal layer was used in the aase of stomach, caccum and intestine ineluding
rectum while the ontire organ was taken in the case of liver and panoreas. Each experiment was repeated five times and the results are presented in Tables I-V. Amylolytic activity was estimated by incubating the homogenate at $37.5^{\circ} \mathrm{C}$ for 30 minutes with 1.48 of starch having a pH 6.4. The quantity of maltose formed was then determined in a protein free filterate. In the case of proteolytic activity the homogenate was incubated at $37.5^{\circ} \mathrm{C}$ for 30 minutes with acid casein having a pH 2.0, with Bovine albumen having $\mathrm{pH} 6.0,7.4$ and 8.14 and With alkaline casein having a pH 20.0. The proteolytic aetiVity was measured by the colour developed by the liberated tyrosin with Folin Clocalten Phenol Reagent. The lypolytic activity was estimated after incubating the homogenate at $37.5^{\circ} \mathrm{C}$ for 30 minutes with phonyl lurate having a pil 7.4. The activity was measured by the colour developed by the liberated phenol with Folin Ciocalten Phenol Reagent.

7.1 Amylolytic activity

Amylolytic activity was more notable in A. ineryis and in se aquieata than in fe duvauceli. slight variations in the concentration of amylaee was found between the two species of cuttle fishes studied. of the two s, aquleata showed higher motivity in aimont all regions. Asong the various regions ilver howed the highest aotivity in these two forms. Activity was very moderate in all the regions of $\mathrm{H}_{\text {. duvauenti. The }}$ stomach was found to have no activity and the intestine showed
moderate degree of activity. Table I gives the amylolytic activity in the various regions of the gut.

7.2 Iipolytic activity

The results of the iipolytic aotivity is shown in Table II. The activity was considerably low in ilver, stomach and intestine of all the forme and was not observed in the stomach of If duvaugil. The organs where this activity was maximum were the pancreas in fic duvauceli and combined extracts of stomach and cesoum in se incexals and in ge acureats.

7.3 Proteolytic aotivity

Tables III, IV and V show the proteolytic aotivity in the three species of cephalopods under study. Observations were cawiled out ueing different aubatrate in different pH media.

In all the forma protease showed its maximum activity in liver in alkaline media and the activity was comparatively poor in acid media. But in the oase of pancreas protease showed its maximum aotivity in aoid media while for mtomach and caceum the maximum aotivity was observed in alkaline media. Proteolytic activity was not observed in plimedia 2.0 for the various regions of In duvauceli for the liver

TABLS I 8HOMTNG ANKOLYzIC ACIIVITY IT

	$\begin{aligned} & \text { Col1go } \\ & \text { cuvauelit } \end{aligned}$	$\frac{\text { Bepielia }}{\text { inermin }}$	$\begin{aligned} & \text { sepia } \\ & \text { eculeata } \end{aligned}$
Pemperature (${ }^{\circ} \mathrm{C}$)	37.5	37.5	37.5
pH	6.4	6.4	6.4
substrate	stareh	starah	starch
Incubation time (Hrs.)	0.50	0.50	0.50
	Units of Amylase	per 100 ml	. of extract
Liver	63	893	925
	60	885	930
	69	898	932
	65	889	910
	67	890	928
Panereas	21	11	18
	24	14	16
	20	16	14
	26	13	22
	23	18	26
stomach	12	12	9
	17	9	11
	13	14	15
	15	11	10
	23	15	16
8tomach	88	23	21
\pm	90	27	30
	85	25	18
casoun	94	29	24
Intestine	29	0	0
	25	0	0
	21	0	0
	26 30	0	0

$$
-144:-
$$

TABES II SHONTMG EIPORYTIC ACNIVIEY IN
 SOKIGO DUVAUCETE SEPIETMA TMEXMIS AND SEPLA ACULEATA

	$\begin{aligned} & \text { Eol180 } \\ & \text { duvauce } 11 \end{aligned}$	$\frac{\text { sepielia }}{\text { incrm18 }}$	$\begin{aligned} & \text { Sepia } \\ & \text { acuieata } \end{aligned}$
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	37.5	37.5	37.5
pH	7.4	7.4	7.4
Substrate	Phenyl lurate	Fhenyl Iurate	Phenyl Iurate
Incubation time (Hrs.)	0.50	0.50	0.50
	μ_{g} phenol liberated per 30 minutes por gram protein		
Liver	18098	18450	18255
	18008	18402	18255
	28140	18375	18240
	18087	18465	18150
	18128	28400	18200
Panoreas	104166	44642	37644
	104109	44552	37628
	204205	44608	37752
	104256	44616	37618 37520
	104280	44758	37520
Stomach	0	29460	2472
	0	29440	2406
	0	29334	2580
	0	19530	2477
	0	29426	2459
stomach	63988	208333	321288
	63980	208393	321178
	64072	208338	321212
Caecum	63904	208307	321207
	63983	208350	321263
Intestine	42321	21343	38431
	42378	21302	38409
	42206	21378 21348	38476
	42302	21238	38436

 Eerian puvavciti

TABLE IV BHOWINO PROLEOEYIC ACXIVITY IN SEPIETIA THERMIS

Temperature (${ }^{\circ} \mathrm{C}$)	37.5	37.5	37.5	37.5	37.5
pR	2.0	6.0	7.4	8.14	10.0
Substrate	Aold casein	Bovine albumen	Bovine albumen	Bovine albumen	$\begin{aligned} & \text { Alkaline } \\ & \text { casein } \end{aligned}$
Incubation time(H2E.)	0.50	0.50	0.50	0.50	0.50
	μg tyrosin 2iberated per 30 minutes per gram protein				
Liver	2767	3092	1868	2767	10032
	2776	3065	1828	2792	10142
	2709	3109	1854	2742	10109
	2722	3098	2875	2769	10025
	2742	3082	1842	2738	10062
Pancreas	0	12500	4687	3125	1562
	0	12479	4692	3107	1534
	0	12514	4661	3091	1516
	0	22482	4694	3129	1569
	0	12487	4679	3242	1548
atomach	0	51767	43123	42342	32192
	0	51722	43002	42318	32179
	0	51758	43038	41308	32159
	0	51774	43110	42328	32067
	0	51769	43231	41334	32175
stomach	0	31250	75000	93422	156350
	0	31209	75026	93330	156241
	0	31198	75041	$93+28$	256207
Gaecum	0	32252	75008	93472	156296
	0	32221	75032	93325	256259
Intestine	0	2123	10372	14832	79238
	0	2168	10318	14808	79212
	0	1197	10343	10343	79256
	0	2109	10300	14872	79220
	0	2151	10324	14826	79242

TABLE V SHONTM FROKEOLYTIC ACXIVLEY IH最胃A ACURATA

Temperature (${ }^{\circ} \mathrm{C}$)	37.5	37.5	37.5	37.5	37.5
pH	2.0	6.0	7.4	8.14	10.0
substrate	Acid casein	Bovine albumen	Bovine albuman	Bovine albumen	$\begin{gathered} \text { Alkcaline } \\ \text { camein } \end{gathered}$
Incubation time (Hrs.)	0.50	0.50	0.50	0.50	0.50

$\mu \mathrm{s}$ tyrosin liberated per 30 minutes per gram protein

Liver	1132	8041	3274	3924	31298
	1119	8069	3289	3901	31254
	1133	8020	3268	3921	31289
	1149	8051	3297	3895	31277
	1128	8032	3282	3882	31262
Pancreas	902	33428	9814	4621	2182
	979	33312	9847	4639	2101
	927	33326	9782	4618	2214
	908	33412	9809	4626	2180
	878	33433	9826	4613	2149
8tomach	0	71481	55301	32642	14731
	0	7516	55322	32628	14759
	0	72499	55289	32659	24728
	0	71470	55328	32642	14712
	0	12465	55333	32601	14737
stomach	0	92741	59731	74312	234071
	0	92718	59768	74340	234129
	0	92755	59792	74309	234109
Caceum	0	92766	59739	74328	234087
	0	92744	59720	74311	234032
Intestine	0	0	9127	42310	92422
	0	0	9141	42332	92438
	0	0	9124	42305	92450
	0	0	9128	42320	92424
	0	0	9154	42313	92429

of g. ingrats and for the liver and pancreas of ge aouleata. In ph 7.4 and in 8.14 no aetivity wars observed for the combined extraet of stomach and caccum of feceryauell. And also no activity was observed for the intestine of ge aculeata in pH 6.0.

8. OIEIARY CURTMETS GHE CASCUA

Observations on the cillary ourrents were carried out in specimens obtained from the trawl nets. The apecimens were kopt alive in sea water until juat before examination. Obsorvations wore then made dther in sea water or in physiological saline. In both the media the ciliary pattern did not significantly vary. Currents of the whole oaccum were atudied by opening the ventral wall of the mantle eavity and then injecting with the help of a hypodemic syringe, finely ground Indian ink stick in physiological saline into the alimentary canal through the mouth till it reached the cacoum, and then observing its movement within the caeoum through the semitranaparent wall. Currente within the caccum wore traced by outting open the cacoum. The dissected caecum was left undiaturbed for sometime in the observation media to allow the muscles to relax, before finely ground Indian Ink powder was introduced and the ourrent traced under higher magnirication.

Abstract

In general the caceum combines muscular and cillary action alded by muoum seoretion to deal with digeation. Ciliary ourronte in the cacoum or In duvaucelt, s. aculeata and 8. ingrmite sugseated that the net offeet of these mechanisms is to carry lighter and amaller particles in the general circulation to get absorbed, while heavier and larger partioles settie out or are ontangled in the mueo-oiliary action of the learleta and eventually removed via the rejection tract.

As the caeca differ morphologically in the three specles the olliary ourrent in the oacca are treated esparately below:-

8.1 Ciliary curront in t. duvauceli

The caceum is in two main parts, an anterior apiraliy coiled part, which bears on its ventral wall a number of radiating leafleta, and a simple highly extensible somitransparent aac. The caecal wall is muscular, oapable of expansion and contraction, and shows net woric of wrinicles on the wall. Oceasional pulsatory movements have also been observed in the caecum. The inner surface consists of olilated opithelium. The pulatory movements as well as the clliary action of the oaecal wall help to mix up the oacoal contents.

Particles of Indian ink that reach the oacoum always took a parallel course along the long axis of the caecum.

Generally it was possible to trace an 'incoming' as well as an 'outgoing' curvent parallel to one another. The incoming ourrent took a course along the ventral half of the oaecum, carrying food particles away from the cillary leaflets, while the outgoing ourrent ran along the dorsal half of the caecum carrying food particles towards the elilated learlets. Thus the ciraulation of the caecum has a clockwise direction (Plate X a).

All the particies that enter the osecum first come into contact with the cillated leaflets when the incoming ourrent coupaea along the ventral half of the caecum. The oiliated leaflets, along with a rilm of mucus direct particles generally towarde the eaecorestibular opening.

Particles falling on the erests of the leafleta are observed to slide into one of ita parallel grooves 1.e. 'primary' or 'secondary' groove, where they form mucus strings which are colleeted in the mucus collecting groove. Muscular Fippling of the leanlets was also observed, whioh oould help to bind large particles and strands of muous and to throw them into the lowest part of the groove. Such material is then carried forward to the main mueus groove to be discharged as waste.

The material collected in mucus strings in the main mucus groove has the form of a twisted rope, as a reault of

PLATE X

a. Cillary current in the caecum of I. duvaucell observed through the ventral wall.
b. Ciliary current along the leaflet of L. duvauceli
c. Cillary current along the leaflet of S. inermis.
d. Cillary current along the leaflet of S. aculeata.

Feathered arrows show the water currents.

Plain arrows show the mucus current.

the rotatory action of the allia of the colleating groove. The whole procese is carried out in rapid sucecssion.

The cilia on the learlet beat domwards except for two narrow traots on the shoulders of each ridge, where they oreate a narrow traot of ourrent beating in the opposite direction. It was noted that at times these two opposing currents help to suspend and delay the entry of partioles into the grooves (1ate X b).
8.2 ciliary ourrents in s. aculeata and in 8. incryis

The caecum in these two species is a mall sac, spirally colled around columella. The inner wall of the caecum is lined with vasying sizes of cillated leaflets. However, the caccal walls are nontranaparant. Observations through the wall was not possible, and so the pattorn of general cireulation within the eaecum was difficult to atudy. Moreover a bag-like extension is absont in theac forms. The structure and function of the caccum of 8. acuseata and 8 . inexmis are similar to that of Ife duvauceli. Though pulsatory movement was observed in the caecum no wrinkles develop on the walls of the eacoum as in the teuthoid.

The ciliary eurrent in the leaflet axis deliver materials to the inter leaflet grooves, where suoh material commonly possess forward directiy to the maln mucus groove

Similarly muscular rippling of the leasiets were also detected in these forms, allowing large particles and strips of muous bound cords to fall into the deeper part of the groove to be carried forwards to the main macus groove, to be eliminated as waste material. The beating of oilia as a whole gives a forward movement to the entangled materials and towards the caeoovestibular opening.

As in L. duvaucell a mall tract of dilla on the shoulder of the leaflets oreates an opposite ourrent. The opposing currents form an eddy-like offect, and prevent the acoumulation of large mass of food partioles in the leaflets groove (Rlate $x \quad c, d$).

PANE II

9. FOOD AND FRKDIMa

The examination of the gut contente is the obvious method of ascertaining the food and feeding habite of an active molluse in the absence of direat observations at eea. However, an adequate study based on a large sample, apread through two year provides reliable basis for understanding Pood and feedins hebits. Whis is lmportant because the roodifieations of the gut elther morphologionily, histologioaily, or phymiologlaally, may arize in reaponse to the type of food ingested and the mode of feeding. Another fact assessed from the meudy was the frequency and degree of feeding. this was estimated on acal of distension of the tomeh together With the quantity of food contained within. unis formed the base for an index of feeding.

Freshly eaught samples of the three seleoted epeciet were examined regularly for thelr etomach contente. In most cases the food contents were in an advaneed stage of digestion, so that identifiention of the contents proved disfieult or impossible. However, it was possible sometimes to distinguith
the type of food organisms present in the stomach from its external colour. Thus the atomach had a reddish colour when crustaceans were present, but had a yellowish grey colour when fishes constituted the diet. The food remains were distinguished as fich usualiy whon hard tisaues like soales, oye balls, fin raye, vertebral parte etc, wore present. Crustaceans were distinguished by the presence of their eyes, chelipeds, fragments of appendages and segmenta eto. The eephalopod molluses wore distingulshed by the presence of their beaks, chitinous ringe of muckerw, pigmented ekin ete. Information was gathered regarding the apeoies of animals caught at the same time as the cephalopod molluscs in trawl nets. Tables VI andVII shows the most abundant and common foyms caught in the trawl nete for every month during 1966 and 1967. Identified remains (Table VIII) present in the stomach revealed that the main diet consiats of fishes, orustaceans, and othor oephalopode.

Frequentiy, in preserved mpecimena the inner chitinous lining of the stomach beoame detached with the food contents when pipetted out for examination. In mature fomales the miarged gonads oceupy almost the entire body cavity so that the stomach and the cacoum are displaced to a side. The contents of the preserved cacoum appear mimays as a thick semitransparent mase, which may be due to the mixing of the food partieles with the digestive fluide. During the course
of the atudy it was observed that in normal feeding the oaeca wore silled with rood oven when the ntomachs wore enpty. But during low feeding periods both the seeoum and the atomach contained very little food and were even sometimes empty.

9.1 Food and feeding of foliso duvauceli

Altogether 481 specimens, 47 mm . to 195 mm . in alze were examined for their stomaoh contents. The analysed data of the stomach and stomach contents of in duvauceli during the period under observation is presented in Tables IX, X, $X V$ and XVI and Yige. 1-8.

Out of 288 apecimens examined during 1966, 54.2\% were reoorded with stomach empty and out of 193 specimens examined during 1967. 52.38 had empty stomach while the remainder had varying degrees of fullness (Figs. 1-4).

It is evident from the tablee and figures that the percentage of empty stomachs found nearly equal before and after the months February, Maroh, April and May, but in contrast, the number of empty cacea wore greater durins the monthe of October, November, December and January, and had food particles in the remaining period.

The stomach contenta of Le duvauceli consiated of the followings - (i) Crustaceans, (1i) Fishes, (1ii) Cephalopods

Fig. 1
The percentage condition of the stomach of L. duvauceli during different months of the the year 1966.

Fig. 2
The percentage condition of the stomach of Le duvaucell during different months of the year 1967.

Fig. 3
The percentage condition of the stomach of I. duyauceli during the year 1966.

Fig. 4
The percentage oondition of the stomach of I. duvauceli during the year 1967.

and (iv) Desayed organio matter (19gs. 5y8). The analysis made during the two years period chowed almost similar results. The identified list is presented in Table VIII.

The percentage composition sugsests that the crustaceans and fishes are of importance in the diet of squids. Taking the average for the years, it is seen that erustaceans formed 43.7\% in 1966 and 47.4x in 1967 of the stomach contents and thus ranked as the most important item of food. The orustaceans occuryed in the stomach through out the year. The most common of these were pramns, orabs and squilla. In April and May orustaceans showed a high percentage among the stomach contents.

Fishes figure next in importance, forming a total of 32.38 in 2.966 and 30.9% in 2967 of the gut contents. Fishes forned a very high peroentage of the etomach oontents from October to Maroh, the most common among them belng the sardines, anchovies, mackerels, Symarge and Faotarius.

Cephalopod molluscs were also consumed by these squids. On the whole they formed 26.18 in 1966 and 15.5% in 2967 of the gut contents. The most common of this item of food was the speeles of Lolifo and Loliolus. They wore found almost throughout the year in the atomach contents, with a peak period from october to January, coinciding with the spawning period. Thus cannibalism probably oceure throughout the year.

Fig. 5

> The percentage composition of the stomach contents of t. duvauceli during different months of the year 1966 .

Fig. 6
The percentage composition of the stomach contents of L. duvauceli during different months of the year 1967.

Fig. 7

The percentage composition of the stomach contents of Le duvauceli during the year 1966.

Fig. 8
The percentage composition of the stomach contents of L. duvaucel1 during the year 1967.

Decayed organic matter, forming an unidentifiable mass is found oniy in mall quantities, 7.98 in 1966 and 6.28 in 2967 of the food consumed.

Sexually mature squids occur throughout the year, though a greater number of such individuals may be noticed during October to January months. During the present study little variation in the composition of food occurred in squide at different stages of maturity. The proportion of different items, however may vary.

The presence of pelagio fishes like Anohoviella spp. gardinelia app. in the food contents suggests that I. durauceli feeds mostiy in the pelagic zone. However, the occurrence of prawns, crabs and squilla whioh are nomally benthic ereatures indioates that the squid ranges in depth to eatch its prey. The nature of the items of food reveals its high predatory carnivorous habit.

9.2 Food and feeding of Sepielia inermis

The stomachs of 422 apecimens of 8. Inexmis of the size range of 25 mm . to 135 mm . wore examined. The data on the condition of stomach and the pereentage composition of various organism constituting the food during different months and yeare are shown in Tables XI, XII, XVII and XVIII and Fige. 9-16.

Fig. 9
The percentage condition of the stomach of S. Inermis during different months of the year 1966.

Fig. 10
The percentage condition of the stomach of S. inermis during different monthe of the year 1967.

Fig. 11
The percentage condition of the tomach of S. inermis during the year 1966.

Fig. 12
The percentage condition of the stomach of S. inermis during the year 1967.

During the two yeare periods of observations empty atomache formed 18.3% in 2966 and 29.7% in 1967. The ocourrence of empty atomachs and the quantity of contents of caecum showed a certain seasonal trend. It was observed that January to March was a period of average feeding since the percentage of empty stomachs was less and the percentage of 'full' and '3/4 full' stomaohs was higher when compared to the period from October to December months. This average feeding period was followed by a period of somewhat active feeding 1.e. April and May months, since the peraentage of empty stomachs was less. The percentage of rull stomachs was higher and the caeca were aimilariy full. During Oetober to December the percentage of empty stomachs was higher, the percentage of full and 3/4 full stomachs was very 10 and the contents of caecum were negilgible. the two years period of observation gave almost similar results (Figs. 9-12).

Examination of the stomach contents revealed that the food of this outtiefish was malniy (1) Fishes, (ii) Crustaceans and (111) unddentifiable matters. Figures 13 to 16 show the relative importance of the main eategories of food items in the stomachs examined during 1966 and 1967.

It can be seen that the fishes formed the most 1 mportant food item of 8 . Inermis. The percentage of fish during 1966 was above 50 from October to December and deareased

F1g. 13
The percentage composition of the stomach contents of S. inermis during different months of the year 1966.

Fig. 14

The percentage composition of the stomach contents of S. Inermis during different months of the year 1967.

F1g. 15
The percentage composition of the stomach contents of S. inermis during the year 1966.

Fig. 16

> The percentage composition of the stomach contents of $\mathrm{S}_{\text {. inermis }}$ during the year 1967 .

gradually, during the period January to Maroh and reached a minimum of 20 in April and was absent during May. But during 1967 the percentage of fiah was above 50 from October to December and February. During January the percentage of fish was 49.1 and then $1 t$ decreased gradualiy and reached a minimum of 20.4 during May. Identifiable fish belonged to the following genera, Nemipterus, Sardinella and Anchoviella.

The rluctuation in the percentage composition of crustaceans from month to month were not so marked except in April and May when it was 43.7 and 70.0 during 1966 and 52.6 and 68.2 during 1967. Amongst the orustaceans, prawns formed the major portion and were found in all the months of the year. Squilia spp., and orabs stood next to prawns in order of predominence. Their percentage oomposition was higher in Oetober and Movember and appeared in very mall percentage during December and January.

Under unidentifiable matters included all the organiams which were in an advanced stage of digestion. It showed 32.4\% In 1966 and 20.9% in 1967 of the total food contents.

The occurrence of squid remains observed oniy in 4 stomachs during May 1967 and formed only 0.1% of the total oontents.

Abstract

The monthly variations in the proportion of the two principal food components, fishes and oruataceans indieate that the increase or deorease in the amount of $\mathbf{1 1 s h}$ food consumed is compensated by a corresponding decrease or increase in the amount of orustaceana ingested. This variation in the percentage of fishes and orustaceans in the food of S. incrmis may be due to their fluctuations in abundance during different months of the year. In the present case a close examination of the food organisms found in a sample of stomachs showed that this cuttiefish show a certain degree of uniformity in its diet.

The ooourrence of pelagic as well as benthic organime in the stomach shows that this outtlerish has an extensive feeding range.

9.3 Food and feeding of sepia souleata

369 specimens with length ranging from 31 mm . to 165 mm . were examined for their stomach contents during 1966 and 1967. Tables XIII, XIV, XIX and XX and Figs. 17-24 show the percentage condition and oomposition of stomach and stomach contents during different months and years.

During the course of this study ampty stomachs ocourred only occasionally. In the firet jear of observation 14.7% and in the mecond year 16.9% howed empty stomachs. The Ructuation in the pereantage occurrence of empty stomachs was

Fig. 17
The percentage condition of the stomach of S. aculeata during different months of the year 1966.

Fig. 18
The percentage condition of the stomach of S. aculeata during different months of the year 1967.

Fig. 19
The percentage condition of the stomach of S. aculeata during the year 1966.

Fig. 20
The percentage condition of the stomach of
S. aouleata during the year 1967.

impegular from month to month in both yeare. moy neither showed any relationship to the season nor to the size of the cutciefish.
the percentage of full stomahs was more ox less identical in both the yeare. In order to deterpine the seasonal variation in the degee of fuilness of stomahs monthiy anaLysis was attompted. From the data it 18 evident that the active feeding periods are not olearly indicated. the different degrees of fullness of stomachs mowed no periodieity as indioated by Rluotuation in the percentage in the different months. Condition of the stomeh during difierent months and yeare axe presented in gables XIII and XIV and Fige. 17-20.

The eomposition of food of s. aeuleath is presented in Tables XIX and $X X$ and Fige. 21-24. Food organiman can be grouped under four distinct categories, namelys- (1) Csustaceans. (11) Fishes, (111) Cophalopods and (iv) Unidentiflable matters. Figures 21 and 22 show the peroentage of occurrence of these items in the total food contents during the difrerent months of study. Figures 23 and 24 show the percentage occurrence of the different food iteme in the total number of cuttieisish examined during 1966 and 2967.

Crustaceans dominate in the diet throughout the year Sollowed by fishes and cephalopods. Prames, orabs and squilla, or often orustacean appendages, oecur in the stomach in

Fig. 21

The percentage composition of the stomach contents of S . aculeata during different months of the year 1966.

Fig. 22

The percentage composition of the stomach contents of S. aculeata during different months of the year 1967.

Fig: 23

The percentage composition of the stomach contents of s. aquieata during the year 1966.

F1g. 24

The peroentage composition of the stomach contents of S. aculeata during the year 2967.

Varying proportion. During Marah and April In both the years a high peraentage 1.e. 95.0 each in 1966 and 78.4 and 85.8 In 1967 were recorded.

Fishes form the second important item of food of A. aculeata. It appeared almost throughout the year and was dominent during May and Detober. But durins February, March and April of 1966 ilshes were absent from the stomachs of this cuttiefish. The common gencrat observed in the stomeh contents wore otolithus, Pardinclla, Pastrellines, Remptorus: and RLat Rishos.

Cephalopods were vare in the food. It was obsexved that in January, Fobruary, November and Decomber of 1966 and January and November of 1967, the stomachs were with mall pereentage of cephaiopod remains.

During January 1966 two speciei of Fopaninifera Nonion Slonit and gania tetrantomella wore noted. But they were in negligible quantity, formed only about 0.02 of the total contents.

From the lood organism prosent in the stomeh it appeazed that 8 , aculeata keeps near the botton and leeds on free moving orvitaceans and fishes. Howover, the presance of pelagie sishes like saxdinella spp. grovides proot that it 1s not exclumively a bottom feoder.

spactis	MOMTES							
	J	7	M	A	M	0	N	D
shiss								
Dungumperie app.	x	x	x	-	-	x	x	x
Saxdinctle Lonctoepe	x	x	x	-	-	x	x	x
empatiohle app.	x	-	-	x	x	x	x	x
Anchovielle spp.	-	-	-	x	x	x	x	-
Oplethopterus tardopre	x	x	-	-	-	-	x	-x
Thrismoden myen	-	-	-	-	\times	x	x	x
Chirooentrue dorab	x	x	x	-	-	x	\mathbf{x}	x
saurica tumbid	x	-	-	-	-	x	x	x
Ambarsil ocmmereont	-	-	-	-	x	x	x	-
3419\%0 sthana	-	-	-	-	x	x	x	x
Legtarius leotarius	-	x	-	x	x	x	-	x
caranx app.	x	-	-	-	-	x	x	x
Meriptorvie taponioun	x	-	-	-	x	x	x	x
Letornathus epp.	-	-	-	-	x	x	x	x
Otolithue spp .	x	x	x	x	-	-	x	x
Upencus app.	x	x	x	x	-	-	x	x
Leptureenthue mavale	x	-	-	-	-	x	x	x
hastrelliner kaparusta	x	x	-	-	-	\times	x	x
stromatere exmentere	x	x	\times	-	-	-	x	x
Cynonlonavi app.	x	-	-	-	x	x	x	x
Peoudorhombun invanious	-	-	-	-	x	x	x	x
grustacmaxs								
Pepagua	x	x	x	x	x	x	x	x
1. monoden	-	-	x	x	x	\mathbf{x}	x	x
Metapmaen affinis	x	x	x	-	-	-	-	x
$5 \cdot$ dobesoni	x	x	x	x	x	x	x	x
Perepenmeposis atritiora	x	x	\mathbf{x}	x	x	-	-	
Coptunue app.	x	\times	-	-	-	x	x	x
squsthe app.	x	-	-	-	-	x	x	x

table vil ahowino the most abundant and comon porms of piahiz
 ACUREATA AND SEPTETH DMEMOS TN THE TRALL HETS durina this year 1967.

Stactes	MONETHS							
	J	7	M	A	M	0	N	D
SISHES								
Duxquicris mpp.	x	x	x	-	-	-	X	x
gandinela lontonn	x	x	x	x	\cdots	x	x	x
8apdina 118 日pp.	x	x	X	x	x	\boldsymbol{x}	x	x
Opluthontrus tapdoorx	x	X	x	x	X	-	\cdots	-
Anchovisl1n mpo.	-	-	\mathbf{x}	\mathbf{x}	x	x	\cdots	-
Thatungits aretmx	x	-	-	-	-	\boldsymbol{x}	x *	x
Charopentrus dornh	x	x	\boldsymbol{x}	x	-	x	x	x
saresda tumbly.	x	x	x	-	-	-	x	x
Ambatil goumuxams	-	-	-	-	X	\boldsymbol{x}	\boldsymbol{x}	x
8illma sthas	x	-	-	\cdots	x	x	x	x
Paterly 1 actary	x	x	-	\boldsymbol{x}	x	\mathbf{x}	-	X
Gmanx epp.	x	x	X	-	-	\mathbf{x}	$\boldsymbol{\pi}$	x
Mesinterus itannione	\boldsymbol{x}	-	-	X	x	\boldsymbol{x}	X	x
Iolornthus mpp.	-	-	-	\boldsymbol{x}	x	x	X	-
Otolithus app.	x	x	x	X	-	-	x	x
Unanty ${ }^{\text {app. }}$	\boldsymbol{x}	X	X	\boldsymbol{x}	-	-	x	x
Inpturacathum enala	X	x	-	-	-	x	x	\mathbf{x}
	$\boldsymbol{\pi}$	x	-	-	*	X	X	X
Stromatoun mrentunt	x	X	x	x	X	-	\cdots	-
Cunolonny mpp.	-	-	-	-	x	x	X	X
Peudornombul Levancous	-	-	-	-	X	\boldsymbol{x}	\mathbf{X}	X
crustacenis								
Penatus indiang	x	X	x	x	x	x	X	x
Ee monodon	-	-	x	x	X	\boldsymbol{X}	x	x
Metapanagis affinis	x	x	X	-	-	-	-	x
M Aobont	x	x	x	X	x	\mathbf{x}	x	x
Faxapaneopsis stritioxa	X	x	X	X	x	-	-	\boldsymbol{x}
Mopturus spp.	x	X	*	-	-	x	x	\boldsymbol{X}
Squi12a 8pp.	x	\checkmark	*	-	*	x	x	X

TABLR $5 X$ SHONING PRRCENTAGE COMDIFION OF THE STOMACH CO IOLICO DUVAUCELI DURING DDFHRTMT MONTHS OF THE YEAR 1966

MONHHE	8 Condition of the stomach					
	1.00	0.75	0.50	0.25	0.10	0
January	3.7	-	3.7	-	33.3	59.3
Yebruary	-	-	-	-	42.3	57.7
March	8.3	-	4.2	-	33.3	54.2
Appil	-	-	-	-	76.9	23.1
May	4.8	-	-	-	61.3	33.3
October	3.6	-	3.6	3.6	25.0	64.2
November	-	-	4.5	9.1	18.2	68.2
December	21.2	-	11.2	-	-	77.8

TABEE \times BHOWING PERGENTAGE CONDITION OF THE STOMACH OF EOLICO DUVAUCETII DURING DIFIEREMT MONLHES OF THE yman 1967

MONTHS	\$ Condition of the stomach					
	1.00	0.75	0.50	0.25	0.10	0
January	-	4.2	4.2	8.3	25.0	58.3
February	4.0	-	-	4.0	36.0	56.0
March	4.2	-	8.3	-	37.5	50.0
April	8.0	-	-	12.0	56.0	24.0
May	8.4	4.2	-	8.3	58.3	20.8
Ootober	-	-	3.6	7.1	25.0	64.3
November	-	4.4	4.4	13.1	13.1	65.0
December	-	5.0	5.0	5.0	5.0	80.0

TABEE XI SHOWING PERCBMTAOS: CONDITION OF THE 8TOMACH OF GRFISTITA INGBMIS DURLNG DIFTERTMI MONRHS

OF THE YEAR 1966

MONTHS	\$ Condition of the Stomach					
	1.00	0.75	0.50	0.25	0.10	0
January	5.3	10.5	25.8	10.5	42.1	15.8
February	3.4	10.4	6.9	20.4	51.7	17.2
Maroh	5.0	5.0	10.0	10.0	55.0	15.0
April	13.0	4.4	23.0	4.4	60.9	4.3
May	19.0	4.8	4.8	4.8	61.8	4.8
October	-	-	7.1	14.3	53.6	25.0
Novamber	-	-	8.7	13.0	47.8	30.5
December	-	-	-	13.8	48.0	37.9

TABTE XII sHOWDMO PERGEMEAGE CONDITION OF THE DURDIC DIFFEREME MON2HS
 O THE yRar 1967

MOMrus	\% Condition of the stomach					
	1.00	0.75	0.50	0.25	0.10	0
January	-	9.1	9.1	13.6	50.0	18,2
Pebruary	7.4	3.7	11.1	14.8	52.8	11.2
March	-	4.5	-	13.6	68.3	23.6
April	17.8	3.6	3.6	10.7	57.2	7.1
May	21.2	9.1	6.1	22.1	45.4	6.1
October	-	3.7	7.4	11.2	51.8	25.9
November	4.2	-	12.5	8.3	45.8	29.2
Deeomber	-	3.8	-	-	50.0	46.2

TABKE XIII AHOMTHG PEACEMEAGE CONDITION OF THE SHOMACH O SEPIA ACUS:AZA DURTMO DIFTERENT MONTHE OF THE YEAR 1966.

MONTHES	\$ Condition of the stomach					
	1.00	0.75	0.50	0.25	0.10	0
January	16.7	16.7	20.0	-	53.3	3.3
February	5.0	5.0	5.0	15.0	60.0	10.0
Mareh	10.5	5.3	5.3	5.3	63.1	10.5
April	35.0	-	-	5.0	45.5	15.0
May	12.5	12.5	-	12.5	50.0	12.5
Oetober	25.0	-	-	12.5	37.5	25.0
Morember	24.0	4.0	8.0	16.0	28.0	20.0
December	4.5	4.5	4.5	9.3	54.5	22.7

TABE XIV BHOWING PERGWRAOS CONDIFION O THE STCNACH O SEPTA ACUEBATA DURTIO DIFTERENT MONTHS CF SEE yEAN 1967.

MOMrwis	8 Condition of the stomach					
	1.00	0.75	0.50	0.25	0.10	0
Januaxy	20.7	17.8	7.2	14.3	42.8	7.2
Pebruary	9.1	4.5	-	9.1	59.1	18.2
March	25.0	-	10.0	-	60.0	15.0
Aproil	23.8	4.8	-	9.5	47.6	14.3
May	30.4	-	8.7	4.4	47.8	8.7
Oetober	12.5	4.2	-	-	66.6	16.7
Movember	8.0	8.0	4.0	4.0	48.0	28.0
December	4.5	4.5	-	13.6	50.0	27.4

TAEE XV shownir phamishos conposition of this 8xomach conemm or tomige puvaucrai DURTMO DTHERETY MOMHHS c. Ter YEAR 1966.

MOMNTHS	Organiame			
	Fishes		Cophalopods Digested matter	
January	25.0	50.0	17.3	7.7
February	44.2	36.9	15.0	3.9
Maroh	35.0	35.0	8.6	21.4
April	29.5	53.5	9.8	7.2
May	24.4	71.2	7.2	7.2
Oetober	43.7	30.0	27.5	6.7
Hovember	35.6	30.2	27.5	6.7
December	30.0	43.4	23.7	2.6

$$
\text { - } 73 \text { :- }
$$

syonaci comrmex o zorico puvauctar DURIMO DEFEREMT MOMNHS
 C THE YEAR 1967.

8romuch conswirs of geptitis mixamis
 DURTMO DDFImary MONyHS
 © die year 1966.

H0Mrums	Organimas		
	Fishes	Crustaceans	Digested matter
January	35.4	20.8	43.8
February	40.2	18.8	42.0
March	30.0	20.0	50.0
April	10.0	43.7	46.3
May	-	70.0	30.0
Ootober	61.2	25.0	13.8
November	68.4	13.4	18.2
December	64.4	19.2	16.4

TARELE XVIII AHOWDM PERGENTAGE COMPGSITION OF THE DURINO DIFFERENE MOMTHS
 Of ges year 1967.

MONEHS	Orgentems			
	Fishes	Crustaceans	Cephalopods	Digested Matter
Januaxy	49.1	26.7	-	24.1
Febsuary	52.1	20.9	-	27.0
March	38.2	22.8	-	39.0
Apprel	25.0	52.6	-	22.4
May	20.4	68.2	1.0	10.0
October	59.4	27.7	-	12.9
November	61.2	25.0	-	13.8
December	68.4	13.4	-	18.2

TABE XIX BHOWINO PIRCENTAGE COMPOSITION CF THE 8TOMACH CONTEMTS OF SEPIA ACUSPATA DURING DIFFERENT MONLHS
 0 THE YEAR 1966.

MONLHS	Organdems				
	Fishes	Orustaceans	Cephalopods	$\begin{aligned} & \text { Porami } \\ & \text { nifem } \end{aligned}$	$\begin{aligned} & \text { DIgested } \\ & \text { matter } \end{aligned}$
January	27.2	49.3	2.9	1.1	29.5
February	-	75.0	3.3	-	21.7
March	-	95.0	-	-	5.0
April	-	95.0	-	-	5.0
May	50.0	28.7	-	-	21.3
October	61.7	33.3	-	-	5.0
November	18.7	57.1	14.3	-	9.9
December	22.8	42.7	11.3	-	23.2

ETQMACH CONTHNTS OF GPIA ACUTEARA DURTIGG DITEERTMT MONHHS of the year 1967.

MONTHS	Organisms			
	Fishes	ustace	Cephalopods	Digeated matter
January	14.2	61.7	1.8	22.3
February	12.8	68.4	-	18.8
Maroh	15.0	78.4	-	6.6
April	9.0	85.0	-	5.2
May	35.0	40.9	-	24.2
Ootober	28.7	50.0	-	21.3
November	22.8	42.7	21.3	23.2
December	20.2	50.3	-	29.5

10.

DISCUASION

Purohon (1968) stated that among Molluscs each Class or Order has become adapted to a particular mode of life, feeding and digention playing a large part in this adaptive radiation. Cephalopods have undergone considerable modifieations from the primitive mollumoan plan, being specialised for an active predatory mode of iife. In the primitive condition the digestive tract ran from an anteriorly located mouth to a posterior anus. but in cephalopods the intestine bends anterioriy, bringing the anus to an anterior position.

Another foature is their cophalization, which reaches its height in cephalopods, and compares favourably with the most highly evolved arthropods. The feeding orgens become adapted for the active predatory ilfe assisted by an array of oophaile organs such as eyes, mouth, bucoal mass and tentacles. The eophmilopods hunt thelr prey by sight, and the well developed eyes help them in phrusing their prey. The eyes are highly evolved and in gross morphology show marked parallel evolution with those of the vertebrates (Vells 1966).

The R2exibility and elastioity of the highly muscusar arms and the tentables along with their guckers always help them to make strong grip on the prey, ixrespeotive of its size and mobility. The retractile tentacles in me aculeata
and in 8 . incryis are very extensive but the partially retraetile tentacles of Ie duyaufichi onable the animal to live always in an alort position.

The food that is obtained by the action of the arms and tentacies is brought to the mouth, and comes in contact With the buccal mace. The buceal mase in these species is conneoted to the cephalic oartilage with two paixe of highly elantic museles, and anables it to move freely, and protrude and whirl zound while preying on other organiame. Bidder (1950) observed a similar structure in some of the Buropan squids such at he vulrapis Le forbesil, Acmedia and A. subulata.

The powerful atrong Jaws aituated inside the buceal mase help those animals to out down the prey into many pieces, alded by very strong muscies. Clazke (1962) pointed out that the horny materials of the jawa become dark as it agea as if atanning process takea place. In addition to the powerful jaws a radula is present, though it is very weak and probably does not have muah action in their foeding activity. The radula probably helps the animals to mvallow masticated food (Yompsett 1939, Bidder 1950, and Williams 1909).

The buceal savity receives the secretions of three sets of glands. Vory little work has been earried out on these clands and theis seoretions, and as pointed out by Bidder (1966), the mall size of these glands might have
reatrained workers. Romijn (1935), Bawano (1935) and Oniretti (1950) woziced on the enzymatic aetivity but could not pind out any enaymes in the postexior salivary clands of geofficinails. Romijn (1935) found out that the extracts obtained from the postorior malivasy glands of Sepia is poisonous and may help the animal to kill its prey. In the ease of the anterior selivasy clands and the submandibular eland, their slimy secretion probably proteets the delicate organs of the buccal eavity from the hard alceletal parts of their prey, as well as facilitate through the oesophagus. The musculature an woll as the extensible cutiele lining of the oesophageal wall also facilitatos eagy passace of food massen. The outiole lining also protects the wall from the possible injuries caused by the hard akeletal remains of their prey. Musoular peristalais also aids in the mallowing process, as indicated by morphom Logical structure and nature, Bidder (1950) during her studies on the European squide observed the mame fumetion for their oesophagus.

The outiele-lined and strons, thick-walied muscular stomach helps the animals in churning up food. Seoretions from the midgut giands and the pulattory movements of the Etomach wall help the food material to ohurn up in the stomach to form a semi-digented 5 Ruid. In this iiquid medium the heavier particles have a tendeney to settle down, while the ilghter partioulate materials are carried in aumpenaion to
the asectu as metult of the pumping of the stomeh aceompanied by the relazation of the aphincter at the cacaovestibulas openins.
the histologian etudies on the oesophagus and the stomach of the three apecies reveal that the cutiale secreting opitheilal oells build up the cuticulat materiale to the muoosal lining, whil the thick muscular layer provides great elastielty to the mall.

In the caecula the sarting of the digentible partioles as woll as their absorption take plaee. The sorting out of the digentible partiolen is onvried out by the elilated leafo 1ets. The meahanien by whioh the allia aze get in motion han stil1 not been aatinfactori1y explained (chiretti 1966). However, the action of the ellis as whole helps to sort out the digestible food particles. It seems that the particles of a mintmun sise will be accopted and rest will be rejected immediately along with the mueus meoreted by the mucus cells, at a continuout musus etring. The aecepted particies are absorbed in the leaklet cells. Thus the elila helps to elear the waste material immodiately an well as met free the muso face area of the lealleta ready for absorption. In the case of se seuleate and s. inerais the aceepted food moterials will also onter into the Iumen of midgut piands for absorption. The mueus produced by the cells helps to entangle the unwanted

$$
-882
$$

manderins particies into a atring and be asily disoarded. The promence of midgut clands opening and the oiliated atyrutures of the oncerim mocull the typleal molluacan midgut pattern (Crmban 1949).

The aldgut cland is compoeed of two unequal parts, the anterior largor part known as the liver and the poaterior maller part known as pancseas and Bldder (2966) atated that this is the typical nature in all the oolcoid cophalopods.
 yollowish in oolour, the diet of the animal is belived to influence ilver colouration since apownish colour invariably accompanies a diet of pramns. Iventhough the liver is a paired organ in g. inveris and in s. aquicatis, it in a fuaed etruoture in fe duxagenil. The paimed origin of the giands in development is ahown by the paired hopatopanoreatic duct, opening into the apex of the amecum (BIdder 1966).

The inteatine is ahort tube in all the three apeoies studied, leading formard to open inta the rectum. The inner wall of the intentine in longitudinaily miged, for ereater abaorption, and the continuation of the columar ridee and the main maoum pidge along the doreal wall of the inteatine recalle the typhlomole in other mollumes (Craham 1949). Hymen (2967) dupins her etudies on the pulmonate intestine obearved that the intentine is usuaily ahorear in carnivorous forma while longer in horbivoroue forme. The inteatine opmes
into a mort rectum, which is frequently longitudinally ridged in all the three species. The inner wall is lined with a non-alilated epithelium. The rectum opens out through the anus, which is median in position. In all the three forms studied the anal opening ia situated just posterior to the funnel opening, so that the faecal material pess out along with the out going wator curyent. The ink giands open more or Less in the same region of the rectum in all the forms studied.

Histologically, vasiations among different layers of the gut wall are not so definite, except in the mucosa where modifications from one part of the gut to the other has been observed. The chief variations within the mucosa are the mucus aecreting ealls and the oilia bearing cells.

The mueus secreting cells invariably ocour in the posterior region of the alimentary canal of all the three species of eephalopods studied, three different types of cells, Viz. pyriform, saccular and goblet shaped have been found. The pyriforw type of cells usually occure between the grooves of the olliated leaflets of f. duvaugeli. The saccular type of cells is present on the edges of the olliated leaflets and the goblet shaped cells in the intestine and rectum of all the three apecies studied.

The mucus cells are absent in the bucoal oavity, in the oosophagus and in the stomach and may be comrelated with
the presence of a outioular layer. The muous cells are quite common in the caccuri, in the intestine and in the reetum. The presence of mucus cells in the caecum helps the andmal to dispose of undigested partioles in a much faster and effective way, an offsetive mechanism for an active free suimming predatory form. Probably the greater abundance of mucus seareting cells in the intestine is to effect greater lubrication for the easy passage of mdigested as well as hard particles Of food through the intestine, the waste becomes concentrated in the rectum and facilitates defaceation. cilia in the caecum and intestine, probably have a sorting and propulsion aetion on the digestible an well as on the undigestible food materials.

Modifieations in relation to diet ocour chiefiy in the oesophagus and in the stomach. Being carnivorous feeders, with Fish and crustacean as the main diet, hard skeletal remains pose diffioulties to delitate gut walls. It may be for this reason that the epithelial cells of the mucosa have developed a mooth distensible auticle, that offer: protection to the mucosa from possible injury. In Leqige the cutiole is a protein chitin complex (Bidder 2950). The thiek oirular muscle layer of the stomach wall also helps to triturate the Sood materials and mix it with the secretions of the digestive glands, and pump the semidigested food into the caecum.

Due to the limitation of facilities available, observations on living animals on experimental feeding were not possible. The midgut glands of the three species studied consisted of two unequal parts, the large liver and the mall panereas (terminology used by Bidder (1950)). In the ilver of S. incrilis and s.aquleata two cell types were observed: caleium secreting oells and the secretory - absorptive excretory cells. But in the duvaucell oniy one type of cell was obsorved which funotions both as exeretory and seeretory cell. Bidder (1950) also observed that the liver of the Lolimo has no absorptive cells. In 8. inermis and in S. seuleata during the absorptive phase the celle reveal a dense brush border of microvilil. Cuenot (1907) and Bidder (2957) have noted the same nature in S. officinalis. The aetivity of the cells may be rhythmie and the cell probably passes through a different phase, so naturally that cell changes occur continuousiy. A similar case of rhythmic aotivity was noted for the digestive diverticula of the bivalve Fasaea mubre by Morton (2956) and Ballantine and Morton (1956). The panoreas showed histological similarities In all the three forms studied.

Littie is known about the distribution of digestive ensymes in the alimentary canal as well as the exact nature of hepatopancreatic secretions. Bidder (1950) obsesved that the enzymatis aetivity of the liver mainly depende upon the
physiologieal etage of the clands, results of experiments with the panereatic region romains doubtful as clandular elaboration of hepatic duct and the maln tubules of the cland are liable to be filled with hepatic secretion. In the preaent atudy amyloiytie, ilpolytic and proteolytic activities have been found in aimost all the regions of the alimentazy oanal. therefore digestion is extracellular aided by enzymes derived from the midgut glands. There is no evidence of seeretion of digestive enzymes in other parts of the gut such as the oesophagus, the atomah, the caecum or the mid and hind guts.

The extracellular onzymes meereted from the midgut clande operate on the food materials present in the lumen of the atomach and the caecum. Digeation in the three species of cephalopode under study is confined to the stomach, the caceum and the intestinc. The soluble products of the digestion are mainly absorbed by the cella of the eaceum and partly by the intestinc. The fluid oontents of the oaceum do not penetrate to the midgut glands of faduraucelis. Thus digeation is entirely extracellular, it becins in the atomach and is completed elther in the caceum or in the liver or in the inteatine. The proeise stage to which gastrie digostion 1s carpied out ia stili on unsolved problem.

Examination of the stomach contente (quite often partially digested) forms the ohiof means of ascostaining the feeding preference and also help to ansess the atate of
feed or the intensity of feeding partioulavly where there are differences during maturity and spawning. It was not possible to observe the foeding activity of these mollusas in vivo in their natural surroundings or in captivity.

Observations revealed that the three species under study are carnivorous feeders. All the three species feed mainiy on fishes, crustaceans and other cephalopods. Many authors have discussed on the food and feeding habits of the decapod eephalopods. Some of the workers have observed feeding activities In iive condition while others based their studies on their stomach contents. Thus, in Sepia officinalis Wilson (1946) and Holmens (1940) observed their feeding activity in iive condition while Hertling (1929) and Tompsett (2939) observed their food and feeding from their stomach contents, and concluded that they feed mainly on crabs, prawns, shrimps and 81shes. sasaki (1929) noted that Idiosepius papadors swallowed gamarids of large size "as large as 地s own body" and also observed crustaceans, squids and sish remains in the etomach of Ommastrephes (1osili pacifious, Bidder (2950) observed crustaceans and fishes in the stomach of Filige forbosil. Verrill (2882) and Equire (2956) identified crustaceans and fishes from the stomach contents of Inex 112ecebromin. All these observations show that the decapod sephalopods typically feed on large macroscopic forms.

However, Forbes and Hanley (2953) noted chopped aea weed in the buccal oavity of gmantrophen sagittatut.

Aceording to Bidder (2966) it is possible that this may represent a corrective, comparable to the grass occassionally eaten by some carnivorous mammals. But the sea weed was noted oniy in the buccal cavity of a singie specimen, and might have been acoidental.

The cannibalistic behaviour of the cophalopod molluses has been recorded by several authors: Verrill (2882) observed this in Eoliso peaieif in live conditions Williams (1909) noted it from the stomach contents of Eepealeig Bidder (1950), observed similar habits in Alloteuthis spp., while Okutani (2962) found it among Ommastrephes shoanil pacifieus. In the present study cannibailsm was noted oniy in squids, though occasionaliy squid remains were observed in the stomach of the two species of euttiefish. Among squids the cannibalism was maximal during October to January, the period coinelding with the breeding period.

Differences in the intensity of feeding have been observed in some months. Thus feeding intensity is maximal during February-May for F_{e} duvauceli and from April to May for 8. incrmis. In 8. aculeata no feeding periodicity was discernible. Feeding activity is probably less intense during breeding season in the three species studied, but total cesaetion was never observed in any of the species.

In Indian waters Rao (1954) observed that in the PalkBay Squid Sepioteuthis aretipinnis the spawners, enpectally mature females do not feed during the breeding monthe. He
also observed oannibalism usualiy among these squids.

Definite food preferences among the three species has been difficult to establish during this study and has been observed to vary with seasonal faunal changes in the sea. Okiyama (1965) also suggested that the regional fluctuations in the abundance in the food organime be reaponsible for causing the differences in the feeding condition of Todarodes pacifious.

PARI III

Iquas

Abstract

Voas (1973) in a recent oircular of PAO ateted that moat of the people now engaged in the atudy of the eephalopod biology and fishorien are convinced that theae animals represent a vast atock, still largely unexploited and capable of heavy fishing. These animals are found throughout the world oesans from the aurface downard to atleast 5400 motrea and occupy the littoral, the benthic and the pelagic zones. Claske (1966) also contemplated that the equide are by no means rare in the world occans and the most obvious reason for the ipnorance on their ceology is the great diftioulty In oatahing them. Exeept for a very few reforencea like that of Oulland (2970), EL11ppove (1971), Zuev and Hosis (1971) and Voss (1973) there have never been any attompt to aurvey the eephalopod resourees and flaheries of the world on a comprehensive basis. tren those countries whose catch comprises reoognisable quantitiea of cophalopode ueually fall to list them separately from other molluscs. There are fow papers that deal with the fishories of the apeaific regions like that of Rathjen (1973) on the harreating of squids Ioliso pealeti and MIIex illeogbsonise of the Morthweat atiantie region, serohuk and Rathjon (1974) on the diatwi-

bution and abundance of long-sinned squid, fe pealetit of the Atlantie region.

At present the data on the cephalopod resourees of the Indian ocean area is insufficiont for stock asseasment, only some seanty reports like that of 81las (1968) on the diatrybution and abundance of planktonic forma, Adam and lees (1966) on the distribution of gepildae, gao (1954) on the fithory and biology of Paik-Bay squid, seriateuthis aretipinnis, Jone: (2970) on the commoreially important apeoles and Euev (1971) on the remouraes of the Moxthweatern Indian Oeean are available. Iecentiy Mational Inatitute of Oceanography (1971) published an atlas on the distribution and abundance of planktonic cephalopods of the Indian Ocean.

About 650 speeios of cephalopods have been reported so far from different parts of the Morld Dceans and out of this nearly 220 species ase from the Indian ocean. But only 43 apeciea are known to oceur in the Arabian sea area. Table XXI gives the names of all the species known to oceur in the Arabian sea, authora who recorded them 8rom the Arabian sea with dates, and souree, depth and area of collection, while the map (1Late XI) show the loeallties from where these species have been collected.

According to Voss (1973) the cephalopods are numerous both in numbers and epesies throughout the coastal maters of Indian Oeean and probably over a hundred neritic and benthie
species. Table XII gives the total cophalopod landing along the Indian Coants and eapecialiy in difforent contres along the Arabian sea coaste from $1966 \$ 01973$.

Species which oseur in comparatively large quantitios in the tram catohes are gepia seuleate sompraonis sepielia
 Invettimaris, gotoris robonus and saxpa roxientig.

Culland (1970) estimated that the production of squid Is in substantial quantitits in areas of upwolilns and it may exceed atleast meveral hundreds of thoumends of tons. Zuev and Hesis (2971) also observed that the oseanie squids cenerally oceup in abundance in areas of upwoling. Bolyaev (1962) dusing his studies on the distribution of cophalopod bente observed that the beake are most plontiful in the Northern, especialis in the Morthwestern part of the Indian Dean. In the Arabian sea they are between 1000 and 6500 beales/in ${ }^{2}$. Ina maximum quantity of beake thet has been resorded was in the Morthern and Nostern part of the Arabian sea, where it exeseds 10,000 beaice/m and reaches 15,000 bealcs/m in certain places. Zuev and Hesis (1972) stated that the hydxocraphical eonditions 1ike uperiling and the distribution of beaice in the sedimonts give eleax indieation on the exceptional abundanee of cephalopod resousees in the pelagle zone of the Arabian fea.

Abstract

On the whole as Voss (1973) commended at the present atate of our knowiedge of the eaphalopod fisherias, it is difficult to give any reality to our eatimates of catch potential. Important data like egs produation and diatribution, growth, longevity, stock size, flahing effort and even correct landing statistien are lacking.

-894 $8=$

mona to occur in tit arabian sia.

8pecies	Author who reee from Arabian with years	xded sea	Source	Depth (nts.)	Area
(1)	(2)		(3)	(4)	(5)
Order sepiolmas					
Fanily Sepildae					
Genus Sepia Linnacus, 1758 1. 8. ambica Massy, 1916	A.L. Massy	1916	Investigator. Stn. 246	124-271	$\begin{aligned} & N 11^{\circ} 14^{\prime} \\ & E 74^{\circ} 57^{\prime} \end{aligned}$
	W. Adam \& W.J. Rees	2966	John Muxymy		$\begin{aligned} & \text { Bombay, } \\ & \text { Karwar } \\ & \text { Coohin } \end{aligned}$
3. 8. elliptica Hoyle, 1885	A.E. Masey	1916	Investigator. stn. 366	995	$\begin{aligned} & \text { I } 24^{\circ} 45^{\prime}, \\ & \text { I } 63^{\circ} 50^{\prime} \end{aligned}$
4. 8. brevimana steenstrup. 1875	W. Adam	1939			Bombay
5. a. Kobionsis Hoyle; 1885	A.L. Hasey	1916	Investigator, stn. 246	124-271	$\begin{aligned} & \text { M } 11^{\circ} 14^{\prime} \\ & \text { E } 74^{\circ} 57^{\prime} \end{aligned}$
6. 3. phareonis Inrenberg, 1831	E.8. Goodrioh	1896	Investigator		$\begin{aligned} & \text { y } 24^{\circ} 45^{\prime} \\ & \text { E } 63^{\circ} 50^{\prime} \end{aligned}$

(1)	(2)		(3)	(4)	(5)
$\text { 7. Sc_murrext Adam \& Reez, } 1966$	H. Adam * W.J. Rees	1966	John Murray. Stn. 71	106	$\begin{aligned} & \text { M } 25^{\circ} 35^{\prime \prime} \\ & \text { = } 56^{\circ} 42^{\prime \prime} \text { to } \\ & \text { H } 25^{\circ}{ }^{433^{\prime \prime}} \\ & \text { E } 56^{\circ} 39^{\prime \prime} \end{aligned}$
8. 8. sewelli Adam \& Roes, 1966	W. Adan ${ }^{2}$ W.J. Rees	1966	John Murray. Stn. 27		$\begin{aligned} & \text { M } 11^{\circ} 557^{\circ} \\ & \text { E } 50^{\circ} 35^{\prime \prime} \text { to } \\ & \text { M } 11^{\circ} 566^{\circ} . \\ & 50^{\circ} 39^{\prime \prime} \end{aligned}$
9. 8. omani Adam A Heas 1966	W. Adam H.J. Reas	1966	John Murray. Stn. 75	201	$\begin{aligned} & \text { M } 25^{\circ} 10^{\prime} \text {, } \\ & \text { E } 56^{\circ} 47^{\prime \prime} \text { to } \\ & \text { N } 25^{\circ} 09^{\prime \prime} \\ & \text { E } 56^{\circ}{ }^{\prime \prime \prime} \end{aligned}$
> aenus 10. \qquad 8. Inermis \qquad (Fervisace * d'orbigny (2835-1848)	E.8. Goodrich	1896	Investigator		Bombay, Laceadives. Cannanore Telliohorry
Family sepiolidae					
Subfamily sepiolinae					
Cenue Intoteuthis Verrilis 1881					
11. Inmanlosa Coodrioh; 1896	V.3. Oommen	1974	Fishing Vessel	24	$\begin{aligned} & \text { N } 09^{\circ} 58^{\prime} \\ & =75^{\circ} 10^{\prime} \end{aligned}$

Order telurionma
Suborder Myopsida
Family Loliginidae
Genus Poliolus Steenstrup, 2856

12. I. invostipatoris

V.P. Oommen 1974 Fishing Veasel 23 N 09 ${ }^{\circ} 58^{\prime}$,

$\underset{\substack{\text { Coonin } \\ \text { varkulas }}}{ }$

Arabian sea
Laccadive sea
E/V Varuna
1968
B.G. silas

(1)	(2)		(3)	(4)	(5)
Oenus Abraliopsis Joubin, 1896					
16. A. gilehristi (Robson, 1924)	E.G. silas	1968	$R / \mathbf{V a r u n a}$		Arablan 8ea, Lacoadive sea
Genus Thelidiotenthis Preffer, 1900					
17. T. alessandrinit (Verany, 2851)	E.G. S11aE	1968	R / T Varuna		Arabian Sea, Laccadive Sea
Family Ommastrephidae					
Subfamily Ommastrephinae					
Genus Symplectoteuthis Pfeffer, 1900					
18. A. ounlaniensis (Lesson, 1930)	E.O. Silas	1968	R/V Varuna		Arabian Sea Laccadive Sea
Fanily Chiroteuthidae					
Subfamily Chiroteuthinae					
Gonu* chiroteuthis d'Orbigny, 1839					
19. G. imperstor Chun, 1908	E.B. Goodrioh	1896	Investigato	. 995	N $24{ }^{\circ} 45^{\prime}$,
			Stn. 366	1280-	- 6350
			Stn. 297	1260	$\begin{aligned} & 25^{\circ} 11 \\ & =57^{\circ} \frac{15}{\prime} . \end{aligned}$

- 100 8-

A.I. Massy

Gonus Hitreledonelle Joubin, 1918
26. Y. Jiohardi Joubin, 1918 Tamily Oetopodidae
Subtanily Oetopodinae umily octopodidae
subfanily Oetopodinae

Genus Oatopus Lamarek, 1798
 subgenus getopus Lamarak, 1798
 27. D. zurpons (Bose, 1792)

28. O. tonganue Hoyle 1885

29. 2. R2obous Appel10\%,

A.L. Masey
A.L. Masey
A.L. Massy
T.P. Oommen

R/V Comon

0	0	0	
$\underset{-1}{0}$	$\underset{\sim}{1}$	a	

A.L. Mazay

Family Vitreledonellidae

(1)	(2)		(3)	(4)	(5)
32. Q. varunas Oommen; 1971	V. P. Oomaten	1972	a/V Varuna	125-135	$\begin{aligned} & \text { I } 14^{\circ} 18^{\prime} \\ & =73^{\circ} 35^{\prime} \end{aligned}$
33. O. gaxdineri (Hoyle; 1904)					
Subgenus Manotritopus Bobson,1928					
34. K. bandenatin (Hoyle, 2885)	A.L. Massy	1916	Investigator. 8tn. 152	48	$\begin{aligned} & 11 \text { wiles } 8, \\ & 83^{\circ} \text { wof } \\ & \text { Colombo 1t } \end{aligned}$
Conus Gistopug Gray, 1849					
35. Ge indicus (d 'Oxbigny, 1840)	C.C. Robson	1928	(Roux, 1868)		Bombay
cenus zeryye Adam, 1939					
36. Be horlet (Berry, 1909)	A.L. Massy	1916	Investigntor, Stn. 379	46	$\begin{aligned} & \text { I } 28^{\circ} 59^{\prime} \\ & \text { E } 50^{\circ} 03^{\prime} \end{aligned}$
37. B. keralenatin Ocmmen, 1966	V.P. Oommen	1966	R/V conch	$\begin{aligned} & 225- \\ & 350 \end{aligned}$	($08^{\circ} 47^{\prime}$, E $76^{\circ} 05^{\prime}$ to y $22^{\circ} 05^{\prime}$. E $74^{\circ} 59^{\prime}$

- 202 :-

(1)	(2)		(3)	(4)	(5)
38. B. annae Oonmen, 1973	V.F. Ooumen	1973	M/V Varuma	275	$\begin{aligned} & \times 09^{\circ} 35^{\prime} \\ & \text { = } 75^{\circ} 50^{\prime} \end{aligned}$
aenus Scecurgus Trosohel, 1857 39. 8. unicivenue d'orbigny, 1840	V.P. Oommen	1967	R/V Conch	$\begin{aligned} & 250- \\ & 300 \end{aligned}$	
Genus Teretootopue Robson, 1929 40. T. 2loookg Robson, 1932	A.L. Masay	1916	Investigator, stn. 297 8tn. 34	$\begin{aligned} & 1260- \\ & 1280 \\ & 1114 \end{aligned}$	
41. Y. indiaus Robson, 1929	A.L. Massy	1916	Investigator. 8tn. 366	995	$\begin{aligned} & =24^{\circ} 45^{\prime}, \\ & =63^{\circ} 50^{\prime} \end{aligned}$
Family Argonautidae					
Genus Apronaute Linnaeus, 1758 42. A. arpo Linnaous, 1758	V.P. Oommen	1973	R/V Rastrollige	er 180	
43. A. hiank solander, 1786	E.c. silas	1968	R/V Varuna		arablen sea

PLATE XI

Map showing the Arabian Sea area indicating the
localities from where different species of cephalopods are recorded as 11sted in Table XXI.

$$
-8 \text { - }
$$

TABLE XXII BHOWNO THR TORAL LANDNOS OF CHMATORODA IN cmaryes of arabian sia coast

Area	1966	1967	1968	1969	2970	1972	2972	1973
I								
Total in India	964	640	1617	769	1184	1505	1015	1397
II								
Arabian Sea								
Gujarat	1	1	1	1	-	-	3	1
Maharaahtra	26	2	101	247	326	368	282	501
Goa	1	-	2	-	-	-	5	5
Mysore	1	-	13	57	11	7	25	19
Karala	714	374	1122	164	86	473	339	339
Minlooy * Leceadivea	12	13	11	10	9	13	17	-

12.

sumany

Three speoies of cephalopod mollusos collected from the waters in and around Coahin area of the Arabian Sea, off South India formed the subject of the prosent study. The species are Loliso duvauceli, Sepia aculeata and Sepiella inermis. Their food and foeding habits, morphology and histology of the gut as well as the physiology of digention have been described.

The feeding organs like the tentacies, the arms, the jaws and the buceal mass of these three apeoies are suitably adapted for the active predatory mode of life.

The stomach is well developed to triturate the food received along with digestive enzymes seareted by the midgut glands. The caecum sorts out digestible particles and facilitates absorption. Digestion is also carried out in the intestine.

Histologically the alimentary canal is adapted for the type of food ingested, cilla and mucus cells are the dominant features. The well developed muscle layers, the closing mechanism of the oatoum and the cillated leaflets are all adapted for a quiek and effiaient digestive process.

$$
-8105 \text { :- }
$$

Mysiological study was an attempt to entimate amylase, lipase and protease in the various regions of the alimentary canal, i.e. stomach, caecum, intestine including rectum, liver and pancreas. All the three enzymes were found from almost all the regions of the alimentary canal

All the three species were carnivorous forms feeding mainly on fishes, oxustaceans and squids. Cannibalistic behaviour has been observed in fi. duvauceli.

An attempt has been made to present useful informations regarding the biomass as well as the list of the species known to occur in the Arabian Sea.

Adam, W.	1939	The Cephalopode in the Indian Museum, Caloutta.
		Res. Indian yut. 42, 62.
Adam, W. ${ }^{\text {a }}$ Rees, H.J.	1966	A peview of the Cephalopod family sepildae.
		Jobn Murey Exped. sat. Rept. 11 (1), 2.
Anonymus	297	International Indien goean Epalizon riantion AEtas.
		Mational Institute of Docano-

Ballantine, D., a Morton, J.E.	2956	Filtering, feeding and digestion in the iamelilbranch, Fasaes mibra.
		I. max. 부이. 솔. U. I., 35. 241.
Belyaev, G.M.	1962	Cophalopod beake in oceanic bottom sediments.
		Oceanologiya., 2 (2). 325.
Eiddor, A.R.	1950	The digentive mechanim of the Iupopean squids, Telifo vularets in forberity Anotenthi
		91, 1.

Bidder, A.M.	1957	Evidence for an absorptive runction in the "liver" of gatorun yul masi量 Lam.
		Pubbl. 8taz. Zool. Mapoli., 29. 139.
Bldder, A.M.	1966	$\begin{aligned} & \text { Feadinc and prestion in } \\ & \text { eophapods } \end{aligned}$
		Thysiology of Mollumar II. Academic Press, Hew York., 97.
$\begin{aligned} & \text { Blaschico, H., } \\ & \text { Hawkins, J. } \end{aligned}$	1952a	Observations on amine oxidase in eophalopodn.
		1. myatol.. 118, 88
$\begin{aligned} & \text { Blanchko, H:, } \\ & \text { Havicins, } \end{aligned}$	1952b	D-Amine oxidase in the molluscan liver.
		B40, Ghem. I., 52, 306.
Elamohko, H. * milpot, F.J.	1953	Enzymic oxidation of tryptamine derivatives.
		工. Mrytie2., 122,403
Breder, C.M., 1 Crawford, D. R.	1922	The food of certain minnows. Zoo1orioa.. 2, 287
Clapice, M.R.	1962	The identification of cephalopod 'beaks' and the rolationship between beak size and total body weight.
		(2001).. 8, 419.

Clarke，M．R．	1966	A revicw of the systematios and coology of oseanic squids． Ady．Mas．Blol．．4． 92.
Collinge，W．E．	1927	The Rood of acme Britith weld Brid．
		York．，Fagland．
cuinot．L．	2907	Fonctions absorbants ot exorftrice du fole des c6phalopodes．
		Arch．Zool．exp．gin． 40 serie． T 7． 227.
Torussac，A．de．， d＇Orblgny，A．	$\begin{aligned} & 1835- \\ & 1848 \end{aligned}$	```Histodre naturalle ginfrele ot marticulycre den chphalopoden aaltabulircen vivante & {0%臬的.```
		Paris．，1－Ivi，1，Atian． 144p2：．
Filippova，Yu．A．	1972	The distribution of equide in the pelagie watere of the world ocean．
		TEcatel＂吾vo＂ranim＂，Monkave．， 89．（in Ruasian）
Forben，E． Hanley，8．	1853	A History of Britien Mollusca． I．Tan．Yoorat Iondon．
Chiretti．F．	1950	masini della ghiandole salivapi posteriori del cephalopodi，II， Attivita proteolition del seareto．
		Boid．809．ital．Biol．Bper．， 26， 779.

$$
\text { - } 109 \text { i- }
$$

Chiretti, \%.	1966	Respryation
		Mhysiology of Mollusca, II., Academie Press, New York., 125.
Chimetti, M.A., A ondretti, F.	1958	A eytochrome efrom the hepatopanereas of gepia offleinaite.
		If Experientis., 14, 170.
Ooodriah, E.8.	1896	Report on a collection of Cephalopoda from the Galcutta Musaum.
		```Trang. Linn. Soc. Fondon. zool., 7. 1.```
Oraham, A.	1949	The Mollusean stomach.
		$\frac{\text { 2xang. }}{3(27),}, 737, \frac{\text { Ros. }}{24} \text { text.fige. }$
Gulland, J.A.	2971	Therish Rosourgen of the Oecan.
		Fishing Hews (Books) ittd.. London.
Hertling, H .	1929	In Eepia officimelis in Aquariundor Biologimohen Anotalt ant Helsoland.
		Zool. Anz., Ed. HXXXVI, 34.
Holmes, W.	1940	The colour changes and colour patterns of enia offteinails I.
		$\frac{\text { Pros. Zool. Son. London., sor. A }}{110,17 .}$
Bunt, J.E.	1948	Popain Iatimation
		B1oghex. I., 42, 104


Hyman, I.H.	1967	The Invertebsatese IV, Mollusoa-I.
		Moaraw - Hill, Zondon.
Hynes, H.B. ${ }^{\text {H. }}$	1950	The food of freah mater stiokle backs, (Gasterosteus zculeatus and Byrosteve purtitius)with a review of mothods used in gtudies of the food of flahes.
		Lour. Antre Eeol. $29,36$.
Jones, 8.	1970	The molluscan fishery resouroes of India.
		8ymp. Ser. Mar. 로이. Assoc: India.: 3. 906.
Joxdan, H.	1923	$\begin{aligned} & \text { Vercletahende Physiologie } \\ & \text { Whronloter ticre. } \end{aligned}$
		Jena (Guestar Fischer)
Xamata, H., \& Talcahaghi, 5.	1955	studies on the utilimation of outtiofiah-I.
		Bu12. Japan son. set. Eishorios., 26, 888
xing, J.	1965	Practioal olinioal enzymology.
		Van Mostrand.
Iacaze-Duth1ers. H. de.	1892	Observation d'un argonaute de Ia Mediterranfe.
		Areh. zeol. exptil at gin.. 20, 37.
Mansy, A.L.	1916	Cephalopods of the Indian Museum. Hag. Indian Mus., 12 (5) 185.


Mc Atec, W.L.	1912	Methods of estimating the contents of bird stomach. Auk. Mans., 29, 449
Meyer, W. ${ }^{\text {P. }}$	2906	Die Anatomie von Opisthoteuthis depreasa (Ijima und Ireda).
		Z. M18E. Zook. $85,283$.
Morton, J.E.	1956	The tidal shythm and action of the digestive system of the Lameliibranch, Lasaca mbra.
		I. max. bion. Ass. U. K., 35. 563.
Maet, A.	1923	Tauna 2 Hora des Golfes yon Pcen 35. 2i cenhopoden.
		Berlin (Priedlander * 8ohn).
Meteluon, s.	1963	Maeroteonniguse of olinieal
		U. 8. A., 107.
Okiyama, M.	1965	On the reeding habit of the common squid, Sodarodes pacifieus steenstrup, in the oriahore region of the Japan Soa.
		Bu21. Iap. gea Reg. Fish. Ren. $\text { Fab. (14). } 31 .$
Olutani, T.	1962	Diet of the oommon equid, Onmantrephes slognt pacifious landed around lso port. Enizuck Porfeoture.
		Bulk. Tokal Reg. Rish. Res. Lab. 32. 142.


Oommen, Varchese I.		1966	The Oetopeda of the Iemala Coant-I. A new speotes of the genus mart. Adan, 1943.	
		Bu11. Pant. Mare Btol Oqeanores. 1nx. Nxia. $2,51$.		
Dommen, Varghese P.			1967	Mew records of Oetopods from the Arabian 8ea.
		Bun. Part. Mar. Byot. Moanore.		
Oommen, Varchese P.		2972	Oatopun yarumas a now species Irom the west coast of India.	
		Bul. Dert. Mar. B1ol. Deanory. Un9. coghin. 5, 69.		
Donmen, Varchese P.			2973	Ootopoda of the Rerala Coast-II. Indian I. Finh.. (in Preses)
Oommen, Varchese P.		38	New resords of Decapod cephalopods frow the Arabian sea.	
Oommen:	Varghese P.	148	A new epecten of the genus Prifthoteuthin Vorwill, 1883 (wophappodil NoLlusca) from the south Wost Comet of India.	
Orbigny.	A. $\mathrm{d}^{\prime}$	1835	gee Forusme and d'orbieny 1834-1848.	
Owen, R.		1882	Minctr of the Peaty Mathilus.	
			Iondon.	
Pearse, A	A.S.	1915	On the rood of the mall ghore Eishes in the waters near Madison, Wisoonsin.	
			Enl1. Misconsin Mat. Hist. Sog.	
			13. 7.	


Preffor, $0^{\text {. }}$	1884	Die Cephalopoden des Hamburger Naturhistorischen Musoume.
		Ahh. naturx. Yer. Hambury., 8, 1.
Purehon, R.D.	1968	The Biolory of the Mollunen.
		Pergamon Prese, Eondon.
MaO, K. ${ }_{\text {P }}$	1954	Biology and Fishery of the PalkBay squid, sepioteuthit aratipinnis could.
		Indian I. Plsh., I (1), 37.
Rathjen, W.F.	1973	Morth west Atlantic squids.
		Marine Fisheries Review.:
		35.(12). 20.
Robson, G.C.	1929	A monorraph of the meant cophalopoda, part 1 gazopodinas.
		British Museum (M, H)., Iondon.
Romijn, 6.	1935	Disentive enzymes in eophalopode.
		Axch. Yexpl. 2001. 1. 373
8asaki, M.	2929	A monograph of the dibranohiate cephalopods of the Japanese and adjacent watern.
		J. Coll. Aces. Hokkaide Inn. Univ., 20, 1 .
sawano, E.	1935	Protein digention in oephaiopod, Pelvin.
		Tokro Puriea palaku tet. Rep., B. 2, 101.


sorohuk, F.M., * Rathjen, W.F..	1974	Aspeets of the distribution and abundance of the long-finned squid. Loilio pealeil, between Cape Hatterus and ceorges Bank.
		Marine Fisheries Reviev.,
		36 (1). 10.
silas, E.C.	1968	Cephalopoda of the west ooast of India collected during the cruises of Research Vessel VABUNA, with a catalogue of the species known from the Indian Ocean.
		Proc. Sxmp. Mollusga, I, 277
Squires, H.J.	1966	Feeding habits of the squid, IIlex 112esebrogus.
		Nature. 211 (50055), 1321.
Takahasht, T.	1959	Biochemical studies on the Fiscera of cuttlefish, ommastrephes sloani pacifious Iた15.
		Bul2. Lapan Soc. Sat. Pisheries., 25, $44 \ldots 193$.
Takchashi. T.	29603	Blochemical atudies on the viscera of euttlefien. Ommastrephes sloan1 pacificus 111 \& IV.
		Bul․ Japan 200. (tet. Tishories., 26. 500, $\pm 504$.
Takahasht, ${ }^{\text {P }}$	1960b	Biochemical studies on the   viscera of cuttlefinh,   Ommastrenhes sloani pacificus $V$.
		Buld. Japan Soc. Sci. Itwheries., 26, 1006.


Tompsett, D.H.	1939	Sepia.   L.M.B.C. Memoir., 32.
Verrill, A.E.	1882	Report on the cephalopods of the north eastern coast of America.   U. S. Comm. Eisheries Rep. for 1872., 212.
V1gelius, Y.J.	1881	Ueber das sogenannte Pankreas der cephalopeden. $\text { Zoo1. Anz., 4, } 431 .$
Vigelius, W.J.	1883	Reoherohee d'anatomie comparee sur l'organe auquel on a donne le nom de panoreas.   Aroh. Zool. axp. aino. I, 38.
Voss, allbert u.	1973	Cephalopod resources of the world.   EAO ELsheries Cipoular No. 149, 1.
Well, M.J.	1966	Cophalopod sense organ.   Physiology of Mollusce II, Aeademic Iress, London.
Williams, L.W.	1909	Anatomy of the common squid. Leiden (E.J. Brill).
Whason, D.P.	2946	A note on the capture of prey by Seale officinailis L.   I. mar. biol. Ass. U. K., 26, 421.



