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INTRODUCTION

A theory of fuzzy sets, was introduced by
L.A.ZADEH [30] as an alternative to classical theory of
sets. He took the closed unit interval [0,1] as the
_membership set. J.A.GOGUEN [13] considered order structures

beyond the unit interval for the membership set. He
considered fuzzy subsets as generalized characteristic
functions. Thus the ordinary set theory is a special case of
fuzzy set theory where the membership set is {0,1}. GOGUEN

suggested that a complete and distributive lattice would be
a minimum structure for the membership set. Thereafter, many

mathematicians, while developing fuzzy set theory have used
different lattice~structures for the membership sets, like
1) Completely distributive lattice with O and 1 by
T.E.GANTNER, R.C. STEINLAGE and R.H.NARREN E12], 2) Complete

and completely distributive lattice with order reversing
involution by BRUCE HUTTON and IVAN REILLY E83, 3) Complete

and completely distributive non~atomic Boolean algebra by
MIRA SARKAR E20], 4) Complete chain by ROBERT BADARD E2] and

F.CONRAD E10], 5) Complete Brouwerian lattice with its dual

also Brouwerian by ULRICH HOHLE E25], 5) Complete Boolean

algebra by ULRICH HOHLE E26], 7) Complete and distributive

lattice by S.E.RODABAUGH E21] and S.P.LOU E17].



Fuzzy topology was introduced by C.L.CHANG E9] and

the theory of fuzzy topology was developed by many
mathematicians, thereafter. BRUCE HUTTON Eb,7J, BRUCE HUTTON

and IVAN REILLY [8] observed that the lattice of all fuzzy
subsets on a set, has all the properties required of the
membership set in the point-fuzzy set approach and hence the
underlying set could be dispensed with. They defined a fuzzy
topology as a subset of the membership lattice closed for
finite meet and arbitrary Join operations, and containing 0,
1. RICHARD LOHEN E183 vastly modified the definition of
fuzzy topology, given by C.L.CHANG E9] and obtained a fuzzy

version of Tychonoff therom, but he lost the concept that
fuzzy topology generalizes topology.

We believe that every fuzzy generalization should be

formulated in such a way that it contain the ordinary set
theoretic notion as a special case. Therefore we take the
definition of fuzzy topology in the line of C.L.CHANG E9]
with an arbitrary complete and distributive lattice as the
membership set. Almost all the results proved and presented
in this thesis can, in a sense, be called generalizations of
corresponding results in ordinary set theory and set
topology. However the tools and the methods have to be in
many of the cases, new.



In the first chapter of this thesis, we study the
properties of induced functions between the lattices of
fuzzy subsets, where the underlying sets and the
corresponding membership sets are allowed to vary. Complete
and completely distributive lattices are taken as membership
sets. Let X and Y be two sets and L,M be the corresponding
membership sets. Let L(X) and M(Y) denote the lattices of
fuzzy subsets of X and Y respectively. Let f:X~~-}Y and
g:L-~-}M be two given functions. Corresponding to the pair
of functions (f,g), a function E:L(X)——~}M(Y) and another
F:M(Y)~~~}L(X) are defined. S.E.RODABAUGH [213 had used

(f,g):/;.g satisfying some’ more properties, to define
morphisms in the category of L-fuzzy topologies: FUZZ.
Necessary and sufficient conditions on the pair of functions
(f,g) are investigated so that the induced functions E and F
are one to one, onto, lattice homomorphism and
t~homomorphism. A t-homomorphism is a {D,1}-homomorphism

[GEORGE GRATZER, 14] which preserves arbitrary join
operation. Also minimal conditios on the pair of functions,
are derived so that E and F are inverses of each other. The
collection of all fuzzy topologies Ecf.,C.L.CHANG, 9] is
found to be a lattice under the order relation of set
inclusion. Conditions on f and g are further investigated so
that f and g naturally induce a function E’:(L,X)-—->(M,Y)



and another, F’:(M,Y)~--}(L,X). Properties of E’ and F’ are
also studied with reference to properties of F and g.

Some results in lattice theory, are developed which are
required for further studies in the later chapters. A
complete lattice L is considered, in general. The concept of
Join and meet irreducible element EGRATZER,14,p.bDJ is
adapted to define t-irreducible elements,t-irreducible
subsets and minimal t-irreducible subsets. Existence of
t~irreducib1e elements in a complete, complented and
distributive lattice is studied in detail. The minimal
t-irreducible subsets of the Boolean algebra of subsets of a
set, are characterised. It is shown that in a lattice if
every nonzero element belongs to some minimal t~irreducib1e
subset of the lattice, then the lattice must be a chain.
In chapter IV, minimal t~irreducib1e subsets of the
membership lattice are shown to be intimately connected with
the dual atoms in the lattice of fuzzy topologis.

A.K.HATSARAS [16] introduced fuzzy filters, taking the

membership set to be the closed unit interval [0,1].
P.SRlVASTAVA and R.L.GUPTA [23] observed that the behaviour

of ultrafuzzy Filters, is radically different from the
ordinary set theory. we, in the third chapter, study the
properties of fuzzy filters and ultrafuzzy filters with



reference to the structure of the membership lattice. We
begin the study of fuzzy filters by taking a complete and
distributive lattice as the membership set and any ordinary
set, as the underlying set. Some necessary and sufficent
conditions, for a fuzzy filter to be an ultrafuzzy filter,
are derived. when the membership lattice is further assumed
to be complemented, many characterisations of ultrafuzzy
filters are obtained, analogous to those available for
ultrafilters. Principal fuzzy filters are introduced and
found that unlike in the ordinary set theory, principal
fuzzy filters on fuzzy singletons are not ultrafuzzy
filters. Only when the membership value in the fuzzy
singleton is an atom, the principal fuzzy filter is an
ultrafuzzy filter. Thus it is observed that if the
membership lattice is the unit interval CD,1J, then no
principal fuzzy filter is an ultrafuzzy filter.

In the final chapter we study some of the lattice
properties of the lattice of fuzzy topologies on a fixed
set X. Membership set is taken to be a complete and
distributive lattice L. The collection (L,X) of all fuzzy
topologies on a set, ordered by set inclusion is a complete
lattice. It is in general, not distributive. This lattice is
atomic. The dual atoms in (L,X) are designated as ultrafuzzy
topologies. The existence of minimal t-irreducible subsets



in L, is proved to be necessary and sufficient for (L,X) to
have dual atoms. A significant observation is that
ultrafuzzy toplogies do not exist if, the membership set is
taken to be the closed unit interval [0,1]. A necessary and
sufficient condition for (L,X) to be dually atomic is
derived. In the light of the above characterisation, a few
necessary conditions on L, is found out for (L,X) to be
dually atomic. It is found that if L4‘-'{o,1} and if x
contains atleast two elements, then (L,X) is not dually
atomic. However the lattice of topologies on a set is dually
atomic EFROLICH, 11]. Finally, an attempt is made to solve
the problem of complementation in the lattice of fuzzy
topologies on a set. It is proved that in general, the
lattice of fuzzy topologies is not complemented. Complements

of some fuzzy topologies are found out. It is observed that
(L,X) is not uniquely complemented. However, a complete
analysis of the problem of complementation in the lattice
of fuzzy topologies is yet to be found out.



CHAPTER I

PROPERTIES OF INDUCED FUNCTIONS

1.1 Preliminaries

Many order structures are being used as membership
sets in fuzéy set theory and fuzzy topology. Through out
this chapter we consider complete and completely
distributive lattices only, as membership sets. Let X and Y
be two sets and, L, M be the membership sets respectively.
"B" and "1" commonly denote the least and largest element in

any lattice. The symbols "2","A" and "V" are also commonly
used to denote the order relation, meet operation and Join
operation in any latice. "I" denotes an arbitrary index set
and "i" is a general member of I. We take join of members of

empty set =o. i.e., v¢ = 0

1.1.1 Lattice of fuzzy sets

Definitions

A function a: X~~~)L is called a fuzzy subset of
X. For a point X in X, a(x) is called the membership value
of x in the fuzzy subset a.



Let L(X) denote the collection 0? all fuzzy
subsets of X. In L(X) we can define an order as iollows: for

a,b in L(X), a 5 b if? a(x) Q b(x) For all x in X.

1.1.2 Remark

L(X) is a complete and distributive lattice.
Clearly 3 is a partial order and L(X) is a lattice under
this order relation. we have that for a,b in L(X),
(aAb)(x) = a(x) A b(x) and (aVb)(x) = a(x) V b(x), for each
x in X. Let { a(i) 3 i in I } be a subset of LCX). Then
((Va(i))(x) = Va(i)(x), similarly (Aa(i))(x) = Aa(i)(x) for
each x in X. Thus L(X) is closed For arbitrary join and meet
operations. Moreover the constant fuzzy subsets taking the
membership values 0 and 1 of L respectively are the least
and the largest elements in L(X). Further L(X) is
distributive, since if a,b,c are in L(X), then

(aA(bVc))(x) a(x)A(b(x)Vc(x))

(a(x)fib(x))V(a(x):E;3J) ..L is distributive
ll (afib)(x)V(aAc)(x)

((aAb)V(a*c))(x) ..For each x in X

Further, if L is assumed to be complemented then L(X) is
also complemented.



1.1.3 Definition

Let A be a subset of X. Characteristic function on

A is a fuzzy subset of X defined by
1 if x belongs to A

Char(A)(x) =
0 otherwise.

1.1.4 Note

Denoting the two element sublattice {U,1} of L by
2, 8(X) denotes the lattice of all characteristic functions
on subsets of X. 2(X) is also the lattice of all fuzzy
subsets of X with the membership set {0,1}. 2(X) is a
complete and complemented distributive sublattice of L(X).

1.1.5 Induced functions

Definition

Let F:X——->Y and g:L~~~)M be two given functions.
Define functions E:L(X)---)M(Y) and F:M(Y)-—)L(X) as

follows: for a in L(X) and y in Y,
E(a)(y) = g(Vf'()/H and F(b)(x) = vg"(b+"<xn

for X in X and b in N(Y).

1.3.2 Definition

Let f:X-*~)Y and h:M-*~>L be two given functions.
Define function H:M(Y)---)L(X) as Follows: for d in fl(Y) and

X in X, H(d)(x) = hdf(x).



1.2 Properties of E

1.2.1 Theorem

(1) E is one to one if? f and g are one to one,
(ii) E is onto if? f and g are onto,

and hence

E is a bijection if? f and g are bijections.

Proof

1) Sufficiency: Let f and g be one to one and a,b belong to
L(X). Let E(a) E(b). we want to show that a = b,
equivalently a(x) b(x) for each x. Suppose not, then there
exists an x in X such that a(x)‘¢’b(x). Since f is one to
one there exists a unique y in Y such that f4(y) = {X}. Then
af4(y) = a(x)=# b(x) = bf4(y). Now since g is one to one

E(a)(y) = g(Va§—%y)) = g(a(x))‘#?g(b(x)) = Eb(y).

i.e., there exists a y such that E(a)(y)=# E(b)(y), hence
E<a) # E(b), a contradiction. Thus a(x) = b(x) for all x in
X. i.e., a = b and Therefore, E is one to one.

Necessary: Let E be one to one. we want to show that
a) F is one to one and b) g is one to one
a) Suppose f is not one to one, then there exists w,x in X
such that f(w) = F(x) = 2 in.Y (say). Let a = Char({w}) and

10



b = Char({x}). Then a, b belong to L(X) and a ¢ b. However,

_‘ g(1) if y = 2
E(a)(y) = g(Vaf (y)) = { B if y 4 2

_‘ g(1) if y = zand E(b)(y) = g(Ubf (y)) n

<'''/.-—‘
G if y ¢-2.

Thus, though a ¢rb, E(a) = E(b), hence E is not one to one,
a contradiction. Therefore, F must be one to one.

b) Suppose g is not one to one, let 9(1) = g(m) for some 1,m
in L and l=$ m. Consider the constant fuzzy subsets ;,m of X
taking the membership values 1 and m respectively on X.
Then though l-$'m, for y in Y

_‘ 0 if y is not in f(X)E(l)(y) = g(V;f (y)) =
g(l) if y isMf(X)

_‘ 0 if y is not in f(X)and E(g)(y) = g(Vgf (y)) =
g(1) if y is in ¥(X)

i.e., E(;) = E(@) and hence E is not one to one.
Therefore, g must be one to one.

ii) Sufficiency: Let f and g be onto, and d belongs to M(Y).
Since 9 is onto, there exists l(y) in L such that
g(l(y)) = d(y) for each y in Y. Since f is onto, for each y

11



in Y, fA(y) is nonempty. Now define a in L(X) as iollows:
for x in X, a(x) = 1(y) if f(x) = y. Clearly E(a) = d.
Since d is an arbitrary element in M(Y), E is onto.

Necessary: Let E be onto. we want to show that a) f is onto
and b) g is onto.

a) Suppose f is not onto, then there exists an 2 in Y such
that +*<z) = 5; Now let d Char({z}). Then d is in M(Y).

gtvaf”(z>> = o. Therefore, a isFor any a in L(X), E(a)(z)
not an image under E, as d(z) = 1. Thus E is not onto, a
contradiction. Hence f must be onto.

b) Suppose g is not onto, then there exists an m in M such
that m is not in g(L). Then the constant fuzzy set m o? Y
cannot be an image under E. Therefore, E is not onto, a
contradiction. Hence 9 must be onto.
The proof of ii) is complete.

1.2.2 Theorem

If g is a non-constant function, then E is a latice
homomorphism if and only if g is a homomorphism and f is one
to one.

Proof

Necessary: Suppose g is a non-constant function, E is a

12



lattice homomorphism, and F is not one to one, then there
exist w and x in X such that w=# x and f(w) = f(x) = 2 (say)
Let a Char({w})and b = Char({x}). Then a A b = O in L(X),

but E(a4b)(z) = g<v(aAb)r“Hz)) = 9(0), whereas
E(a)(z) = E(b)(2) = g(1). Since for a non-constant lattice
homomorphism g, 9(0)-$ g(1), we have that E(a‘b) # E(a)4E(h)

Therefore, E isa not a lattice homomorphism. Thus F must be
onto.

Suppose g is not a homomorpism, then there exist
1,m in L such that either

g(1Vm)-$'g(1) V g(m) or gtlfim) %'g(1) A g(m).

Correspondingly For the constant fuzzy subsets ; and m

either E(;vm)~+ E(;)VE(m)
or E(;fim)=$ E(;)*E(m).

Therefore, for E to be a lattice homomorphism, g must be a
lattice homomorphism.

Sufficiency: Let F be one to one and g be a lattice
homomorphism. Then for a,b in L(X) and y in Y

E(aVb)(y) g<v<avb)r”<y)>

g<<af”(y))v<bcr“(y))) ..r is one to one
[1 g(a?‘(y))Vg(gffl(y)) ..g is homomorphism

E(a)(y)VE(b)(y)

13



Similarly, E(a4b)(y) = E(a)(y)4E(b)(y). Hence E is a lattice
homomorphism.

1.2.3 Note

If g is a constant Function then E is a lattice
homomorphism irrespective of f being one to one or not,
since E, in this case will also be a constant Function.

1.2.4 Definition

Let J and K be two complete lattices and h:J---)K
be a function such that

i) h is a homomorphism,

ii) h(B) = 0 and h(1) = 1.
and iii) h(Vl(i)) = Vh(l(i)) where {1(i)3 i in I} is

an arbitrary subset of J.
Then h is called a t~homomorphism.
E”t" in the above definition is indicative of the Fact that
a t-homomorphism takes a fuzzy topology to a fuzzy topology.

In particular when 3 = K = 2(X), a t-homomorphism takes a
topology to another topology on X].

1.2.5 Theorem

E is a homomorphism with E(0) = 0 and E(1) = 1 if?

g is A homomorphism , 9(0) = D and 9(1) = 1, and f is a
bijection.

14



Proof

Necessary: From the theorem (1.2.E) F must be one to one and
g must be a homomorphism when E is a homomorphism. Clearly

if g(D)‘¢'D, then E(O) # 0 and if g(1) ¢-1 then E(1) #' 1.
Thus 9(0) = O and g(1) = 1, are necessary. Now if F is not
onto then there exists an 2 in Y such that f (2) = 0. But
then E(1)(z) = D and hence E11) +'1, a contradiction. Hence
f must be onto, as well.

Sufficiency: From the theorem (1.2.2), if f is a bijection
and g is a homomorphism with 9(0) = U and g(1) = 1, then E
is a homomorphism. Further, for all y in Y, since f is onto

E(1)(y) g<v1€”(y)> 1II g(1)

and E(0)(y) g<vof”<y)) 9(0) o.

The proof is complete.

1.2.6 Theorem

Let f be a bijection. Then E is a t-homomorphism
if? g is a t~homomorphism.

Proof

In the light of the theorem (1.8.5), to complete
the proof. it is enough to show that E preserves arbitrary
join operation if? g does so.

15



Necessary: Suppose g doesnot preserve arbitrary Join
operation, than there exists {l(i): i in I}, an arbitrary
subset of L such that g(V1(i)) #= Vg(1(i)). Consider the
constant Fuzzy subsets ;(i), For each i. we then have that
E(V;(i)) #=VE(;(i)). i.e., E doesnot preserve arbitrary join
operation.

Sufficiency: Let g preserves arbitrary join operation and
{a(i)% i in I} be an arbitrary subset of L(X). Then For each
y in Y,

E(Va(i))(y) g(v<va(i)r”<y>>

gcv(a<i2r"<y)>) ..r is a bijectionII

= Vg(a(i)f’Wy)) ..g preserves arbitrary
Join operation

= vE<a(1n(y>

i.e.. E(Va(i)) VE(a(i))

1.2.7 Observation

Taking L = H and g to be the identity function, we
have that g is a t-homomorphism, which is also a bijection.
In the light of the above theorem, we have that,
corresponding to every function f:X—-->Y, there exists a
function E:L(X)---)L(Y) such that

i) E is one to one if? F is one to one
ii) E is onto if? f is onto

and iii) E is an onto t~isomorphism iff f is a bijection.

16



Taking X “ Y and f to be the identity function, there
exists a naturally induced function E:L(X)-~-)M(X),
corresponding to every function g:L-—-)M such that

i) E is one to one iff g is one to one
ii) E is onto iff g is onto

and iii) E is a t~homomorphism iff g is a t-homomorphism.

1.8.8 Definition Ecf. C.L.CHANG, 9]

A subset T of L(X) is said to be a fuzzy topology
on X if

i) 0,1 6 T,
ii) a,b C T implies a4b G T

and iii) a(i) 6 T for i in I implies Vati) E T.

1.2.9 Remark

Let (L,X) denote the collection of all fuzzy
topologies on X. Ordered by set inclusion (L.X) is a
lattice. For S,T in (L,X), SAT = S(\T and SVT is the./
smallest fuzzy topology containing 8 and T. This is
meaningful, since arbitrary intersection of fuzzy topologies
is a fuzzy topology and L(X) is the largest element in
(L,X). The smallest fuzzy topology on X is {D,1}. More
lattice properties of (L,X) are studied in Chapter IV.

1.2.10 Note

A t-homomorphism E:L(X)——-)M(Y) induces a function

17



E‘:(L,X)—--)(H,Y) where E’(T) = {E(t)# t G-T} For each T in

(L,X). Clearly E‘(T) is a fuzzy topology on Y, for each T
in (L,X).

The following observations on E’, are immediate:

i) E'(D) 0

ii) E'(1) 1 if? E is onto, and
iii) E‘(VT(i)) = V(E‘(T(i)) for T(i) in (L,X) and I in I.

1.2.11 Theorem

Let E:L(X)-—-}M(Y) be a t-homomorphism and
E':(L,X)~-->(M,Y) be the induced Function E1.E.1DJ. Then

i) E’ is one to one if? E is one to one
ii) E’ is onto if? E is onto

iii) E’ is a homomorphism if? Efl(d) is either a singleton or
empty for all d in H(Y) and d-¢ 0,1

iv) E’ is an onto t-isomorphism if? E is a bijection.

Proof

i) Necessary: Let E‘ be one to one and a,b G;L(X) be such
that E(a) = E(b). consider 5 = {D,a,1} and T ={O;b,1}. S and

T belong to (L,X) and E'(S) = E’(T). Since E’ is one to one,
5 = T and hence a = b. i.e., E is one to one.

18



3-3? ,-'C'\ "2.

Sufficiency: Let E be one to one and S,T G-(L,X) be such
that S ¢=T. Then there exist an a €.L(X), which belongs to
only one of them. Assume that a ( 5 only. Then E(a) 6 E’(S)
but E(a) ¢E’(T). Therefore, E’ is one to one.

ii) Necessary: Let E‘ be onto and d E M(Y).Let T = {U,d.1}.
Then T E (M,Y) and there exists S in (L,X) such that
E’(S) = T. Thus there exists an s in S such that E(s) = d.
Hence E is onto.

Sufficiency: Let E be onto and T G (M,Y). Let S be the set
of all s in S such that E(s) E T. Clearly 0, 1 belong to S.
If .3, b e s, then E(a), E(b) (_—T and hence E(aME(b) E T.
Since E(a)AE(b) = E(aAb), aAb belongs to S. Finally if
{a(i): i in I} is a subset of S, then E(a(i)) G T, for each
i, hence V(E(a(i)) Q, T. Since V(E(a(i)) = E(Va(i)),
Va(i) E, 5. Thus 5 is a fuzzy toplogy and trivially
E‘(S) = T. Therefore, E’ is onto.

iii) Necessary: Let E’ be a lattice homomorphism. Suppose,
there exists d in M(Y) such that dst 0,1 and E (d).¢: 0, is
not a singleton, then there exist a,b in L(X) such that
E(a) = E(b) = d. Let R = {0,a,1} and S = {O,b,1}. Then
R,S e. (L.,)().. R 4: s and R A s = {cm}. However,
E‘(R) = E’(S) = {D,d,1}. Thus E'(R“S) #5 E'(R) A E’(S). a
contradiction to the assumption that E‘ is a homomorphism.

19



j
Therefore, E‘ (d) must be either a singleton or empty
whenever E’ is a homomorphism.

Sufriciency: Let E be such that éfl(d) is either a singleton
or empty, for all d in M(Y)\{O,1}. Recalling the result
(1.2.10)(iii), it remains only to prove that E’ preserves
meet operation. Let R,S belong to (L,X). Clearly E'(RAS) is

asuhset of E’(R)fiE’(S). Let d ( E’(R)fiE’(S). If d is either 0

or 1, then d belongs to E'(R/\S) also, and if d -1* o,1 then
there exists s in S and t in T such that E(s) = E(t) = d.
Thus {s,t} is a subset of E"‘(.-.1). Since E“(a) is nonempty, it
must be a singleton. Therefore, s = t. i.e., t €lR4S. Thus
E(t) d, and d E-E'(R4S). Hence E'(RAS) = E'(R)4E’(S) and E‘

preserves meet operation and the proof is complete.

iv) iollows from i), ii), and iii) above and the
result (1.2.1D).

1.2.12" Theorem

If f:X—~-}Y is a hijection, then the following are
equivalent, for the induced functions.

1) g:L~~->H is an onto t-isomorphism,

ii) E:L(X)--->N(Y) is an onto t—isomorphism,

and iii) E':(L,X)---)(M,Y) is an onto t—isomorphism.
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1.3 Properties of F

1.3.1 Theorem

i) If 9 is a bijection, then F is one to one if? f is onto
ii) F is one to one does not imply either 9 is one to one or
g is onto. But,iF F is one to one,then g is one to one
implies g is onto.
and iii) F is one to one implies F is onto.

Proof

i) Necessary: Suppose F is not one to one and F is not onto

then there exists an 2 in Y such that 2: ¢ f‘(X). Let
a = Char({z}). Now a 6 M(Y) and a:# D but F(a) = F(U), which

is a contradiction to the assumption that F is one to one.
Hence F must be onto.

Sufficiency: Let a,b E M(Y) and F(a) = F(b). Then For each x
in x, F(a)(x) = F(b)(x). i.e., v§'a:<x) = v§‘br<x). This
implies that af(x) bf(x), since g is a bijection. Thus
a = b, since F is onto. Therefore, F is one to one.

ii) Consider the following example.
1.3.2 Example: Let L = M = X = Y = [0,1] and F:X-—-)Y be the

identity function. Let {p(n)§ n = 1,E,...} be a set of
distinct prime numbers. Let Atn) denote the set of all
p(n)-adic rationals in (0,1) and let {q(n)5 n = 1,8...) be
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the set of rationals in (0,1). Now define for each x in
[0,1]. subsets :

{x} if x is a irrational{0} if x = BB(x) = .A(n)(\E0,x] if x = q(n)
(U{A(n) #‘B(q(n))}) U {1} if x = 1

Now { B{x}€ x 6 [0,1] } is a partition of [0,1] such that
VB(x) = x , for every x in X. Define g:L~-->M such that for
each 1 in L, g(1) = x if 1 G B(x). Then 9 is onto, but not
one to one. However for a,b in M(Y), F(a) = Ftb) implies
a = b since, F(a) = F(b) implies F(a)(x) = F(b)(x), for each
x in X.

v§‘br<x)i.e., Vg”af(x)
i.e., vg"a(x) vg‘”‘t.(x) .. {‘,is the identity.

But this implies that a(x) b(x) for each x. Thus F is one
to one, though g is not one to one. Moreover, here F is a
bijection (identity function).

1.3.3 Example: Let L = M = {0,1} and g:Lr--)H be the
constant function 1. Let X and Y be two sets such that there
exists an onto function F:X-—-}Y. Now if For some a,b in
N(Y), F(a) = F(b) then F(a)(x) = F(b)(x) For all x in X.

i.e., v<_?'a+*<x) = vg“br<x).

E2



Thus we have V§Aaf(x) = Vd4bf(x) = 0 or 1 for each x.

vg*ar<x) = vj”br(x> = o implies aF(x) = bftx) = o and
v§'ar<x> = v§‘b£(x) 1 implies aftx) = bf(x) = 1 for x 6 x.
Since f is onto , a b. i.e., F is one to one. though g is
not onto.

Suppose F and g are one to one but g is not onto, then there
exists min M such that maé-g(L). Let g(D) = n. Then n-14-'m.
Consider the constant Fuzzy subsets Q and m of V, g=# m but
F(g) = F(m), which is a contradiction to the assumption that
F is one to one. Hence 9 must be onto. Proof of ii) is
complete.

iii) If F is not onto, then there exists an 2 in Y such that
z ¢ HX). Let a = Char({z}). Then a 6 MW) and a :1: D, but
F(a) = F(0). Thus F is not one to one, a contradiction.
Hence the result.

1.3.4 Definition

Let h:L--—)H be a Function and L/h denote the set
{A(m) = H‘<m>: m < H }. A(m)'s are called the fibers of h at

,’;""""-/‘

m. Define V and-fi\operation in L/h as follows: For m,n E M

A(m) V A(n) = A(mVn) and A(m).A A(n) = A(mAn).

Thus L/h is a lattice which is complete and completely
distributive with least element A(D) and the largest element
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A(1). A function J:L/h-~->L defined by J(A(m)) = V A(m) is
called the join function on the Fibers of h. The fibers of h
are distinct if? h is either onto or M:¥ h(L)is a singleton.

1.3.5 Theorem

F is one to one if? i) f is onto,
ii) the fibers of g are distinct,

and iii) join function on the fibers of
g is one to one.

Proof

Necessary: f must be onto follows from the theorem (1.3.1).
Suppose the Fibers are not distinct then there exist m,n in
M such that m=¢ n and §4(m) = §fl(n). Consider the constant
fuzzy subsets Q and Q in M(Y), we have Q $'g but F(m) = Ftg).
Thus F is not one to one, a contradiction. Therefore, the
fibers of g must be distint.

Suppose the join Function on the Fibers of g is not one to
one, then there exist mm in M such that vg"‘(m) = vg""<n)
but m ¢rn. Thus the constant fuzzy subsets g and 3 are
different but F(g) = F(g), a contradiction to the assumption
that F is one to one. Hence the join function on the fibers
of 9 must be one to one.
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Sufficiency: Let Fit) = F(d) for some c,d in M(Y). Then
F(c)(:<) = F(d)(:-:) for all x in x. i.e., vg"c<x) == vg"d<x)
for each x in X. This implies c(x) = d(x) for each x, since
join function on the fibers of g is one to one. Thus c = d.
Since c and d are arbitrary, F is one to one.

1.3.6 Theorem

i) IF g is one to one then F is onto if? f is one to one.
ii) F is onto, does not imply that g is one to one.

iii) F is one to one does not imply that F is onto.
iv) F is onto if? F is one to one and the join function on

the fibers of g is one to one.

Proof

1) Necessary: Suppose F is onto and f is not one to one.
Then there exist w,x in X such that f(w) = F(x). Then For
all d in M(Y), F(d)(w) F(d)(x). Thus no c in L(X) with
c(w) ¢=c(x) can be an image under F. Therefore, F is not
onto, a contradiction. Thus F must be one to one,
irrespective of 9 being one to one or not.

Sufficiency: Let f and g be one to one and a E L(X). Define
d:Y~~-)M such that, For y in Y

ga(x) if F(x) = y
d(y) = { 0 otherwise.
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"d" is well defined, since f is one to one. For each x in X
F(d)(x) = Vgfidf(x) = Vj”ga(x) = a(x), since 9 is one to one.
Thus F is onto.

ii) In example (1.3.2), F is onto while 9 is not one to
one. Hence ii) holds.

iii) Let X be a set with atleast two points and Y = X;
f:X-~~)Y be the identity function; M = {D,1}: L = {D,1,1},
where O<1<1 3 g:L--->M be the constant function taking one
on L and l be the constant fuzzy subset on X taking the
value 1. Now for all d in M(Y) and x in X,

ll 41 if d(x)
F(d)(x) = {0 if d(x) ll 0

Then Ftd) #?1 for all d in H(Y). Therefore. F is not ontocg:

Hence iii) holds.

iv) Necessity: f must be one to one, follows from the proof
of 1). Suppose the Join function on the fibers of g is not
onto, then there exists 1 in L such that V§fl(m) ¢’1 for all
m in M. But then the constant fuzzy subset l in L(X) cannot
be an image under F. Therefore, F is not onto, a
contradiction. Hence the necessity.

Sufficiency: Let a E L(X). Since Join function on the fibers
of g is onto, for each x in X, and a(x) G L, there exists
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m(x) G M such that V§*m(x) = a(x). Define d E M(Y) by

m(x) if f(x) = y
d(y) ={' 0 otherwise,

for each y in Y. "d" is well defined since ? is one to one.
And for each x in X,

F(d)(><) = v-;“dr(x) = v.j"m<x) = a(x).

i.e., F(d) = a. Thus F is onto. The proof is complete.

1.3.7 Theorem

1) g is an onto isomorphism, implies F is a homomorphism
ii) F is a homomorphism , does not imply that

a) g is one to one,
b) g is a homomorphism,

and c) g is onto.
iii) F is a homomorphism iff join function on the fibers of
g, is a homomorphism.

Proof

i) Let g be an onto isomorphism. Then, for any c,d in M(Y),

F(cVd)(;<) vg7‘r(cvd)r<x)II

II §4§(cf(x)V(df(x))) .. g is one to one
g"‘(cHxn v g"'(dHx)> .. g is onto isomorphism
F(c)(x) V F(d)(x), for each x in X.
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Thus F(cVd) = F(c) V F(d). Similarly F(cAd) = F(c) fl F(d).
Hence F is a homomorphism.

ii) In example (1.3.2), F is an identity homomorphism while
g is neither one to one nor a homomorphism. So it remains to
prove only that "g is onto" is not necessary for F to be a
homomorphism. Consider L = [0,1] and M = {D} U EU.5, 1] and

g:L--~)M, defined as

g(1) = O.5(1) + 0.5, for 1 in L.

Then g is an isomorphism and not onto M. Consider c.d in
H(Y) and x in X.

F(cVd)(:<) vg“<cvd>r<:<)

vg"'(c+*<x) v df‘(><))

g“.-.+‘(x) v .j"‘a+"<x> if cf‘(x),df‘(x) #0

= {.d*cF(x) if df(x) = Dg"d+‘(x) H c+‘(x) = o
= F(c)(x) V F(d)(x). since cf(x) = 0

implies F(c) = D and df(x) = 0 implies F(d)(x) * 0.
i.e., F(cVd) = F(c) v F(d).

And F(c/\d)(:-<) = vg“(cndH<x)

= vg”(c+"(:<) A df‘(><))

= o

{<§‘c+*(x)> A (g"'d+*<x)> if af'(:<)O othewrwise
F(c)(x) A F(d)(x) for each x in X.
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Thus. F(chd) = F(c) A F(d) and hence F is a homomorphism.

iii) Necessity: Suppose join function on the fibers of g is
not a homomorphism, then there exists m,n in M such that

either vg*<mvn) ¢=<v§“<m)> v (v5‘<n))
or v§*(mAn) ¢s(v4“<m>> A (vg”<n>).

Correspondingly for the constant fuzzy subsets m and Q in M(Y),

either F(mVg) ¢ F(m) v F(Q)
or F(mAg) ¢=F(m) A F(g).

i.e., F is not a homomorphism. Hence the necessity.

Sufficiency: Let c,d 6 H(Y). Then for each x in X,

F(cVd)(x) v§”(cvd)i<x>

v§”<cr<x> v df(x))

<vg”<ci<x)> v <v§”(dr<x)) ..the Join function
is a homomorphism

= F(c)(x) V F(d)(x).

Similarly, F(cAd)(x) = F(c)(x) A F(d)(x), for each x in X.
Thus F is a homomorphism.

1.3.8 Theorem

If §4(0)CC {O} and the join function on the fibers
of g is a t~homomorphism, then F is a t-homomorphism.

[Prof is straight forward and hence is omitted]
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1.3.9 Theorem

1) r<o) = o irr §*<o)C {D}
11) g is a t-homomorphism and §‘<o)c: {o}, do not imply that
F is a homomorphism

Proof

i) Can be easily proved.

llii) Consider the following example. Let L {0,1,1}, where
D < 1 { 1 and M = { 0,m,n,1 }, where m and n are atoms in N.

Define g:L--~)M as Follows: g(D) = 0, 9(1) 1, and g(l) = m.
Then g is a t-homomorphism and §*(0)C:{ D }. Let X be an
arbitrary set, Y = X and f:X——-}Y be the identity function.
Consider the constant fuzzy subsets m and 9 of Y. m V 9 = 1.
Therefore, F(m V n)(x) = 1 while F(m)(x) = 1 and F(n)(x) = 0.
Thus F(m U 3) ¢' F(m) V F(g) and hence F is not a
homomorphism. The proof of ii) is complete.

1.3.10 Remark

If g is an one to one and onto lattice
homomorphism then f is an onto t-homomorphism. But the
converse is not true, follows from example (1.3.2), where F
is an onto t-isomorphism. while g is neither one to one nor
a lattice homomorphism.
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1.3.11 Theorem

FOE is the identity function if? f and g are one to one.

Proof

Necessity: Suppose F is not one to one, then there exist w,x
in X such that w ¢ x and f(w) = f(x). Let a be the fuzzy
subset of X defined by, y in tor X,

0 if y = w
a(y) =

1 if y_¢ w.

Now. (FoE)(a)(w) vg“‘(g(var"Hw))>ll

vg*'<g(va<{ w.x })))

vg"<g(1)

1=# a(w).

Therefore, (FoE)(a) ¢ a. i.e., FoE is not the identity
Function on L(X). Hence F must be one to one.

Suppose g is not one to one, then there exist an 1 in L
such that Voq(g(l)) # 1. Let L be the constant Fuzzy subset
of X, with the membership value 1. Then (FoE)(;) ¢ L, and
hence FOE is not the identity function. Thus 9 must be one
to one.

Sufficiency: Let a E L(X). Then for each x in X,
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vg"‘ (E(a)(x))(F°E)(a)(x)

vg“(g<var“(Hx)>)

V§1g(a(x)) ..F is one to one
a(x) ..g is one to one

Thus FOE is the identity function on L(X).

1.3.12 Definition

A subset S of a complete lattice is said to be
upper complete if VS belongs to 5.

1.3.13 Theorem

E°F is the identity function on M(Y) if and only if

i) f is onto,
ii) 9 is onto, and

iii) the fibers of g are upper complete.

Proof

Necessity: i) Suppose F is not onto, then there exists an 2
-1

in Y such that f (2) = fl. Consider d = Char({z}) in M(Y).
U .for all x in X. Therefore,d zero but F(d)(:<) = vg'“‘dHx)

ll(E°F)(d)(y) E(D)(y) = U,

for all y in Y. Thus (EoF)(d)=# d. Hence EOF is not the
identity Function, and hence f must be onto.
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ii) Suppose g is not onto, then there exists m in M such
that mt$'g(L). Then, for the constant fuzzy subset Q in
M(Y), and for each x in X,

r(p_)<m = vg"‘:_n_r<:.:) = v.;;'"‘ (m) = o.

Therefore, F(g) = 0. Thus, for each y in Y,

(E°F)(g)(y) E(D)(y)
g<voF‘<y>)

g(O).

Since g(U) #’m, (EoF)(g)a# 9. Thus EOF is not the identity
function. Hence 9 must be onto.

iii) Suppose there exist an m in H such that the fiber §*(m)
is not upper complete, then vg“<m) = 1(say) is not in g“(m).
i.e., g(1)=# m. Now for the constant fuzzy subset 9 of M(Y)
and for each X in X,

I j IF(g)(:<) = v5‘ r_11f(><) = v.j“<m)

Hence for each y in Y,

(E°F)(|1)(y) g<v<+‘<gg<F‘<y>>>> = g(l) 4. m.

Thus (EoF)(g) ¢rm. i.e., E°F is not the identity function.
Hence iii) is necessary.
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Sufficiency: Let d E M(Y). Then for each y in Y,

(E°F)(d)(y) g(VF(d)f-'(y))
= g<v<vg‘*dr<-F‘(y)>>)

= g(v<v.j"a<y>)) .. fis onto
= g(l) where 1=V§%d(y)
= d(y). .. fibers of g is

upper complete

Therefore, _EoF(d) = d for each d in M(Y). i.e., EoF is the
identity function on H(Y). The proof is complete.

1.3.14 Remark

E and F are inverses if and only of f and 9 are bijections,
since fibers of g are upper complete when 9 is a bijection.

1.3.15 Note

A t-homomorphism F:M(Y)——~>L(X) takes a fuzzy topology

of Y to a fuzzy topology of X. Hence F induces a function
F’:(H,Y)--~}(L,X) defined as F'(T) = { F(t): t E T }. for T
in (H.Y). Then the following observations are immediate.

i) F'(D) 0.

ii) F'(1) 1 iff F is onto.
iii) F‘(VT(i)) = VF’(T(i)), where { T(i): i in I }C?(H,Y).
iv) F’ is onto iff F is onto.
v) F’ is one to one iff F is one to one.
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vi) F‘ is a homomorphism in r“‘(o> is either a singleton or
empty, for each d in H(Y)\{D,1}.

vii) F’ is an onto t*homomorphism if? F is a bijection.

Now we can state the following theorem.

1.3.16 Theorem

If f:X--->Y is a bijection, then the Following are
equivalent, For the induced functions:

i) g:L~~-)M is an onto t-isomorphism.

ii) F:H(Y)~—-)L(X) is an onto t~isomorphism.

iii) F':(M,Y)-~~)(L,X) is an onto t-isomorphism.

1.4 Properties of'H E1.3.2J.

1.4.1 Theorem

1) H is one to one if? P is onto and h is one to one,
and ii) H is onto iff F is one to one and h is onto.

Proof

i) Necessary: Suppose fflis not onto, then there exists an
2 in Y such that z is not in f(X). Let d = Char({z}) in M(Y).

Then d ¢'D and for any x in X,

H(d)(x) hdf(x) h(D).

and H(D)(x) hDf(x) h(O).
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Thus H(d) = H(O). Hence H is not one to one, a
contradiction. Therefore, f must be onto.

Suppose h is not one to one, then there exist m,n in M
such that m=# n and h(m) = h(n). Let Q and Q be the constant
fuzzy subsets in Y, taking the membership values m and n,
respectively. Though Q and Q are different, For each x in X,

H(@)(x) = hmF(x) = h(m),

and H(Q)(x) = hgF(x) = h(n).

Since h(m) = h(n). H(m) = H(Q), a contradiction. Therefore,
h must be one to one.

Sufficiency: Let c,d 5 M(Y) be such that H(c) = H(d).
i.e., For each x in X,

H(c)(x) = H(d)(x).

i.e., hcf(x) = hdf(x).
This implies, cF(x) = dF(x) ..h is one to one

Hence c = d, as f is onto. Thus H is one to one.

ii) Necessary: Suppose i is not one to one, then there
exist w,x in X such that w # x and f(w) = f(x). Let a in
L(X) be the Characteristic function on {w}. Then
a(w) ¢ a(x). Hooever, for any d in H(Y),

H(d)(w) = hdf(w) = hdf(x) = H(d)(x).
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Thus, a cannot be an image under H. Hence H is not onto, a
contradiction. Therefore, f must be one to one.

Suppose h is not onto, then there exist an 1 in L\h(M)
and the constant fuzzy subset 1 of X, cannot be an image
under H. Thus H is not onto, a contradiction. Hence h must
be onto.

Sufficiency: Let -3 6 L()(). Then h“'<a<x>) an-,6, for all :4 in
X, since h is onto. Let 1(x) be a representative element,
from rf‘<a<xn for each X in x. Now define d:Y----—>M(Y) as

follows: for y in Y,

l(x) if f(x) = y
d(y) ={ 0 otherwise.

Clearly d E M(Y) and for every x in X,

H(d)(x) = hdf(x) = h(1(x)) = a(x).

i.e., H(d) = a. Hence, H is onto. The proof is complete.

1.4.2 Theorem

H is lattice homomorphism if and only if h is 50.

Proof

Necessary: Suppose h is not a homomorphism, then there exist
m,n in M such that either
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i) h(mVn) ¢=h(m) V h(n), or
ii) h(m A n) $’h(m) A h(n).

Let Q and Q be the constant fuzzy subsets of Y,
taking the membership values m and n, respectively. we have
that for each x in X,

II IIH(m)(x) hmF(x) h(m),
H(g)(x) hgf(x) h(n),

H(mVg)(x) = h(mVg)f(x) h(mVn),

and H(mfi§)(x) h(gn_/t_1_1)f‘(:<) h(mAn).

Thus in case i)

H(mVg)-¢'H(m;) V H(g),

and in case ii)
H(m/\g) ¢"H(m_g;) A H(1_1_).

Therefore, in either case, H is not a homomorphism, which is
a contradiction. Hence h must be a homomorphism.

Sufficiency: Let h be a homomorphism and c,d 6 M(Y). Then
for each x in X,

H(cVd)(x) h(cVd)f(x)
h(cF(x) V df(x))

h(cf(x)) V h(df(x) .. h is a homomophism
H(c)(x) V H(d)(x).

Similarly, we can show that,for each x in X,
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H(c4d)(x) = H(c)(x) A H(d)(x).

Thus H is a homomorphism.

1.4.3 Theorem

H is a t-homomorphism if? h is so.

Proof

Necessary: Since, H(D)(x) = h(0) and H(1)(x) = h(1),
for all x in X,

H(U) U and H(1) = 1

imply that
h(D) U and h(1) = 1.

From the theorem (1.4.2) h must be a homomorphism. It
remains to prove that h preserves arbitrary Join operation.

Suppose h does not preserve arbitrary join
operation, then there exists a subset { m(i)% i in I } of M
such that h(Vm(i))=# Vh(m(i)). But then for the constant
Fuzzy subsets m(i), for i in 1, H(Vm(i))(x) ¢'VH(m(i))(x),
for each x in X. Thus H does not preserve arbitrary join
operation, a contradiction. Hence h must preserve arbitrary
join operation.

Sufficiency: Let h be a t-homomorphism. Then for each x in X,
i) H(O)(x) hDF(x) h(O) O:

H(1)(x) h1f(x) h(1) 1.
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ii) for d(i) in M(Y)1
H(Vd(i))(x) h(Vd(i))f(x)

h(Vd(i)f(x))

V(hd(i)f(x)) .. h is a t~homomorphism
VH(d(i))(:<).

From 1), ii) and the theorem (1.4.2). H is a t-homomorphism. The
proof is complete.

we state the Following theorem without prooi.

1.4.4 Theorem

1) H is a t-isomorphism if? h is a t-isomorphism and f is
onto.

ii) H is an onto t—isomorphism iff h is an onto t
isomorphism and f is a bijection.

1.4.5 Observation

Taking L = M and h:M—-~)L to be the identity function,

we have that, corresponding to every Function f:X~—->Y,
there exist a function H:M(Y)~--)L(X) such that

i) H is one to one if? f is onto,
ii) H is onto if? P is one to one,

and iii) H is a t-homomorphism for any f.

Taking X = V and f:X—--}Y to be the identity function,
we have that , corresponding to every Function h:M*--)L,
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there exists a function H:M(Y)--—>L(X) such that

i) H is one to one if? h is one to one,
ii) H is onto if? h is onto,

iii) H is a lattice homomorphism if? h is a lattice
homomorphism,and

iv) H is a t—homomorphism if? h is a t*homomorphism.

1.4.6 Note

The image of a fuzzy topology on Y, under a
t~homomorphism H:H(Y)~~~>L(X), is a fuzzy topology on X.
Hence H in this case, induces a function H‘:(M,Y)--—)(L,X)
such that H’(U) = { H(u)I u in U }, for U in (M,Y).

The following observations on H'are immediate.

i) H'(0) 0 always,

ii) H'(1) 1 if? H is onto,
and iii) H’ preserves arbitrary join operation.

The proof of the follwing theorem is on the same
line of proof of the theorem (1.E.11), hence we state it
without proof.
1.4.7 Theorem

If f:X--~>Y is a bijection, then the following are
equivalent For the induced functions.

1) h:M~--)L is an onto t-isomorphism

ii) H:N(Y)--—}L(X) is an onto t-isomorphism

iii) H’:(M,Y)--->(L,X) is an onto t-isomorphism.
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CHAPTER II

SOME LATTICE PROPERTIES

In this chapter a complete lattice L is taken and
a special class of subsets of it, -called t-irreducible
subsets are introduced and studied. These subsets play a
vital role in the study of the lattice of fuzzy topologies
on a fixed set. In Chapter IV, it is shown that the
existence of minimal t-irreducible subsets in the membership
lattice is a necessary and sufficient condition For the
lattice of fuzzy topologies on a set to hsve dual atoms. t
irreducible subsets in the Boolean lattice of all subsets of
a set are characterised.

Through out this chapter, L generally denote a
complete lattice and I is used as an arbitrary index set,
with i as its general member. 0 and 1 denote the least and
the largest element in L. For 1 in L, 1‘ denotes the
complement of 1.

2.1 t-irreducible subsets

2.1.1 Definitions

A nonempty subset R, not containing 0, of L is
said to be t-irreducible if no element of R can be written
as the finite meet or arbitrary join of members of L\R.
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If further, no proper subset of R is t-irreducible
then R is said to be minimal t~irreducible.

A nonzero element 1 in L is said to be a t
irreducible element if { l } is a t-irreducible subset of L.

WAn element a in L is called an atom if U is theA}
only element in L smaller than 1, and is called a dual atom
if 1 is the only element in L greater than D.

A lattice is said to be atomic if every element in
it is the join of some atoms in it, and it is called dually
atomic if every element in L, can be writen as the meet of
dual atoms above it.

2.1.2 Note

t—irreducible elements are meet and join
irreducible elements in the language of GRATZER [14].

2.1.8 Examples

In L(1) = { 0,1 }, 1 is a t~irreducib1e element.

1

InL<2=.>= a©b,{a,b}, {a},{b}..{b,1}and
D

{ a,1} are the t-irreducible subsets, and { a }, { b } are
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the minimal t*irreducible subsets; a and b are the t
irreducible elements.

2.1.4 Theorem

If 1 belongs to a minimal t-irreducible subset R,
then R = {1}. i.e., 1 is a t-irreducible element.

Proof

Let R be a minimum t~irreducible subset containing 1.
Suppose R #={ 1 }. Let S= R\{ 1 }. Then we shall show that S
is t-irreducible, which is a contradiction to the assumption
that R is minimal, and thus completing the proof. Let
{a(i)£ i in I} and {b(1),b(2),....b(n)} be two arbitrary
subset of L\S and let a = Va(i) and b = b(1)Ab(8)A....Ab(n).

Now if for some i, a(i) =1 then a =1-and -368, and H‘
a(i)=# 1 for all i, then a(i) E L\R for all i in I, and so
a¢g&R, hence a£S. Considering {b('1),... b(n)}, if b(J') =1,
for all J, then b 1 and hence b¢§ S, and if there exist
b(j), not equal to 1, then{b(j)} b(j) $*1 & j = 1,.,n} is a
subset of L\R and b = A{ b(j):b(j) ¢*1 & J = 1,..,n }. Hence
it: QR and therefore, be S. Altogether we have proved that S
is t-irreducible.

2.1.5 Theorem

In L an element which is both an atom and a dual
atom is a t-irreducible element.
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Proof

Let 1 he an atom and a dual atom in L. Let if
possible 1= Vl(i), for 1(1) in L, i in I, and 1(i) #'1. But
then 1(i) < 1 for all i, and hence 1(1) = U, as l is an
atom. Therefore, l.$ V1(i), a contradiction. Now suppose
l(1)A 1(2)A,.. A1(n) and 1(j)=# 1 for J = 1,2,....,n. Then

1(}) } 1 for all i, hence l(j) = 1 for all J, as 1 is a dual
atom. Therefore, 1 #=1(1) A 1(2)_A..u41(n), a contradiction.
Thus 1 is a t-irreducible element.

2.1.6 Lemma

If 1 of L is t*irreducib1e then 1 has a unique
immediate predecessor.

Proof

Let 1 be t-irreducible. Then 1 must have an
immediate predecessor, for otherwise, 1 is the join of all
elements, smaller than it, which is impossible as 1 is
t-irreducible. He further claim that the immediate
predecesssor is unique. For otherwise, 1 will be the Join oF
these Immediate predecessors of 1, which is impossible.

2.1.7 Theorem

Let every nonzero element in L is contained in
some minimal t-irreducible subsets of L. Then L is a chain
of t-irreducible elements and 0.
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Proof

Since every nonzero element of 1 belongs to some
minimal t-irreducible subsets, 1 must be a t-irreducible
element, by the theorem (2,1.4). But then by the
1emma(2.1.6) 1 has a unique immediate predecessor: 1/2
(say). If 1/2 is not the O of L , then L\{1} is a complete
sublattice of L, with minimal t-irreducible subsets,
containing every nonzero element, hence by the same
argument, 1/8 is t~irreducible and has an immediate
predecessor 1/3 (say), and so on. I? L is finite, clearly L
is lattice isomorphic to the finite chain:

C(n) = { 1,1/2,1/3,...,1/n,0 },

under usual order, for some natural number, n. Suppose L is
infinite then we can pick, t-irreducible elements 1/n, ¥or
n = 1,E,,, such that 1/(n+1) is the immediate predecessor of
1/n. Thus the infinite chain:

C = { 1,1/2,1/3,,,,, },
under usual order, is a sublattice of L. If L\C is Finite,
then L is isomorphic to either C U { D } or C U C(n), for
some natural number,n where each member of C is bigger than
every member of C(n), and hence, L is a chain of
t-irreducible elements and D. But if L\C is infinite, L\C
contains atleast one more copy of C. In this case, let
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{ L(i)€i in I }be the set of all copies of C that could be
found in L, by the same process, one after another. Thus if
L(i) is found after L(J), for i,J in I, then every member
of L(j) is greater than every member of L(i). Clearly
D = U { L(i): i in I }, is a chain. Then L\D is finite, for
otherwise, there still exists another copy of C in L, which
is not included in { L(i):i in I }, a contradiction. Thus
L\D is finite, therefore, L is either D U { D } or D U C(n),
for some n, where every member of D is greater than every
member of C(n). Thus L is a chain of t~irreducib1e elements
and D.

2.2 t—completion

2.2.1 Definitions

A subset E of L, is said to be t-complete if E is
closed for finite meet and arbitrary join operations.

A t-complete subset of L containing a given subset
is called its t~comp1etion.

2.2.2 Theorem

Every subset of L has a t-completion.

Proof

Let E be asubset of L. Let 8 be the set of all
t~comp1ete subsets of L containing E. Clearly 8 is nonempty,
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as L is in a. Let D = A {F} F is in 3}. Then E is contained
in n and if d(1),d(2),,,d(n) are in D, then d(j) e F, for
all F in B and for all J = 1,2,,,n. Since each F in B is
complete, Ad(J) e F, and hence Ad(j) é-o. Similarly d(i)
belongs to D for i in I, implies Vd(i) € D. Thus D is
t~complete and D is the t-completion of E.

2.2.3 Note

Complement of every t-complete subset of a lattice
is t—irreducible. Moreover if R is a minimal t-irreducible
subset and r G R, then the t-completion of (L\R) U {r} is L.

2.3 t-irreducible subsets in Boolean lattice

2.3.1 Theorem

Every t—irreducible element, not equal to 1 in a
Boolean lattice is a dual atom and an atom.

Proof

Let L be a Boolean lattice and 1 in L be a
t-irreducible element. Let 1' be the complement of 1 in L.
Suppose m G L and m ) 1, then m’ exists and m’ g 1’, but
m’-# 1', since m ¢ 1 E complement in a Boolean lattice is
unique]. Thus m’ < l’ and hence m'4l = 0. But then m’Vl $r1,
for otherwise, m’ = 1’. Therefore,
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(m'V1)Am = (m’4m)V(14m) = 1.

Since 1 is t~irreducihle, m‘ V 1 = 1, but then m’{ 1 ( m,
which implies, m = 1 and m’ = 0. Thus 1 is a dual atom.

Now consider an n in L such that n { 1. Then the

n‘ is such that n’ 2 1', but n’ ¢ 1', since complement is
unique. Hence n’ > 1‘. We have n’V 1 1 and hence n'A1-¥-U,
for otherwise, n’ = 1'. Then

(n' A 1) V n = (n' V n) A(1 V n) = 1 A 1 = 1.

Thus n ( 1 g n’, which implies that n = B and n’ =1.
Therefore, 1 is an atom in L. The proof of the theorem is
complete.

2.3.2 Theorem

Let 1 he a t-irreducible element in a Boolean lattice L.
If 1 ¢'1 then 1' is also t~irreducib1e.

Proof

From the theorem (2.3.1), if 1 is a t-irreducible
element, then 1 is an atom and a dual atom. In view of the
theorem (2.1.5), it is enough to prove that 1' is an atom
and a dual atom. Suppose m G-L and m { 1’ then

Mmgl/\1' =o. ...<1).
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Thus (1 V m) { 1 , since complements are unique. Then
1 V m = 1, as l is dual atom. Thus m 5 1. Therefore, from
(1), m = 14m 3 1A1’ = D. i.e., m = 0. Therefore, 1' is an
atom.

Let n in L be such that n ) 1‘. We have n V 1 = 1 ..(2)

Since complement is unique, lAn=# 0. Thus 0 { lfin 5 1. But
then l4n = 1, as 1 is an atom. Thus n 2 1. and hence n = 1,
follows from (2). Thus 1’ is a dual atom. This completes the
proof.

2.3.3 Theorem

In a Boolean lattice L, t-irreducible elements
exist if? L = L(1) or L(2) of examples (2.1.3).

Proof

If L = L(1) or LKE) of example (2.1.3) then L has
t-irreducible elements. Conversely, let L be a Boolean
lattice with t-irreducible elements and L =¢ L(1). If
L k L(1)#¢and L is a Boolean lattice then 1 is no more
t—irreducible. Let 1 in L be a t-irfeducible element. Then
by the theorem(2.3.8), 1‘ is also t~irreducible. But then by
the theorem (E.3.1) 1 and 1‘ are atoms and dual atoms in L.

Then L(2) is lattice isomorphic to a sublattice of L.
Suppose there exists m in L such that m is not in {D,1,l’,1}
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then me must be incomparable with 1 and 1’, as they are
atoms and dual atoms. By the same reason, 1Am = 1‘Jm = D and

1

1 V m = 1‘ V m = 1. But then 1<::£::>1' is isomorphic to a
U

sublattice of L, which is a contradiction to the assumtion
that L is a Boolean lattice (hence distributive). Hence
there does not exists an m not in {D,1,1’,1}. Thus L(2) is
isomorphic onto L. The proof is complete.

2.3.4 Theorem

Let X be any set with atleast two elements.Let
x,y 6 X, be such that x-¢ y. Then,

R(><,y) ={ A X: x (-.-X and y@A}

is a minimal t-irreducible subset of the Boolean lattice:
P(X) of all subsets of X.

Proof

Let S = P(X)\R(x,y), and {A(i) E i in I }CZS and
{B(j) 3 J = 1,2,,,n}, be arbitrary subsets of 5. Define
A = U {A(i)E i in I} and B = 4 { B(j) 3 J = 1,2,,,n }.
Since A(i) G S , Mi) Q: R(:<,y) and hence for each i,
either x$°A(i) or {>-:,y}CA(i). If‘ 24$ A(i), for all i in I
then :<e_A and hence A$R(x,y). And if‘ { :<,y }CA(i) For
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some i, then {x,y}C;A, and hence A ¢R(x,y). Thus arbitrary
join of members of S doesnot belong to R(x,y).

B(j)’s belong to s implies 3(3) er R(x,y), for
J = 1,..,n. Then For each J, either x ¢£B(j) or {x,y}c;B(j).
If for some j, x<=.#B(j) then ><<£B, and hence BdR(x,y).
And if {x,y}CB(J) for all j, then {x,y}CZ B, and hence
Bot R(x,y). Thus Finite meet of members of S does not belong
to R(x,y). Therefore, R(x,y) is a t—irreducib1e subset of
P(X).

It remains to show that R(x,y) is minimal. If
R(x,y) is a singleton set C only when X = {x,y}J, then
R(x,y) is clearly a minimal t-irreducible subset. Suppose
R(x,y) is not a singleton set, ~let 0 be a proper subset of
R(x,y), such that G is t-irreducible. Let T = P(X)\G. There
exists an A in T such that A is in R(x,y) also. Then 5/GSA.
Let E = A’ U { x }. Then x,y 6 E, and hence E is in S and so
in T,also. E A A = { x }. Since G is t-irreducible, { x } is
in T. Thus T contains all the singletons, as 8 contains all
singletons except {x}. Thus every subset of X can be
written as join of members of T, and hence 0 cannot be
t—irreducib1e, a contradiction.

Therefore, R(x,y) is minimal t-irreducible
subset of P(X).
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2.3.5 Theorem

If X contains atleast two points then a subset R
of P(X) is minimal t-irreducible if and only if R’ is an
ultratopology on X.

Proof

Necessary: Let R be a minimal t-irreducible subset of P(X).
Since,X contains atleast two points, P(X) is not lattice
isomorphic to L(1) of example (2.1.3). Hence X, the largest
element in P(X) is not t-irreducible. ‘By the theorem
(2.1.4), X is not in R. Let S = P(X)\R. Clearly, ¢,X E S:
and by the note (2.2.3), 5 being the complement of a
t-irreducible subset, is t—complete, i.e., S is closed for
finite meet (intersection) and arbitrary Join (union)
operations. Therefore, 8 is a topology on X. Further, let T
be a topology on X, finer than S. T, being topology, is
closed for finite intersection (meet) and arbitrary union
(join operations), and hence T’ is t—irreducible. But then
T’ is a subset of R and R is minimal t-irreducible, hence
T'= R or T'= ¢, equivalently, T = S or T = P(X). Since T is
an arbitrary topology containing 5, S is an ultratopology
on X.

Sufficiency: Let U be an ultratopology and R = P(X)\U. Then
clearly, R is t-irreducible. Suppose R is not minimal
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t—irreducib1e then there exists a proper subset G of R such
that G is t-irreducible. But then G‘ is a proper topology
strictly riner than U, a contradiction to the assumption
that U is an ultratopology. Therefore, R is minimal
t-irreducible.

8.3.6 Note

The complement of R(x,y) in the theorem (2.3.4) is
the ultratopology: T = P(X\{x}) U F(y), where F(y) is the
principal ultrafilter at y. Since , every ultratopology is
not of the form given above EFROLICH, 113, every minimal
t-irreducible subset of P(X) is not of the form R(x,y), for
some x,y in X. However, if X is finite, then every
ultrafilter on X is a principal ultrafilter, and hence every
minimal t-irreducible subset is of the Form R(x,y), for some
x,y in X.
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CHAPTER III

FUZZY FILTERS AND ULTRAFUZZY FILTERS

Let L be a complete and distributive lattice, and
X be any set. In this chapter fuzzy filters on X are defined
on the lines of definition given by A.K.KATSARAS E163 and

P.5RIVASTAVA and R.L.GUPTA E23], by taking L to be the

membership set, instead of the closed unit interval [0,1].
Ultrafuzzy filters are defined and characterized in terms of
properties of the membership lattice. Study is extended to
the case when the membership lattice is further,
complemented as well.

we denote the complement of an element a by a’,
and I is commonly used to denote an arbitrary index set with
i denoting a general element in it.

3.1 Definitions:

A nonempty subset F of L(X) is said to be a fuzzy
filter if

1) oeer
11) a,b (3. F implies a A b er

and iii) a G F, b G L(X) and b 2 a, imply b Q F.
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A nonempty subset B of L(X) is said to be a fuzzy
filterbase if 1) Deg B, and ii) a,b E B implies that there
exists c in B such that c 5 a A b.

A subset B of L(X) is said to be a base for a
fuzzy filter F, if F = {a 6 L(X): a 2 b, for some b in B}.

Let x E X and 1 E L, be such that 1 #= 0. Let
s(x,1), denote the fuzzy subset defined by, for y in X,

0 if y ¢ X
s(x,l) = { 1 if y = x.

s(x,l) is called the fuzzy singleton at x.

A fuzzy filter is said to be an ultrafuzzy filter
if it is not properly contained in any other fuzzy filter.

Let a be a nonzero fuzzy subset of X. Then the
subset P(a) of L(X) defined by P(a) = {b E L(X): b 2 a}, is
a fuzzy filter on X, called the principal fuzzy filter at a.

3.2 Existence of ultrafuzzy filters

3.2.1 Theorem

Every fuzzy filterbase- B, determines a fuzzy
filter F, uniquely such that B is a base for the fuzzy
filter F.
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Proof

Let B be a fuzzy filterhase and

F = {a G L(X)% a 2 b, for some b in 8}.

Clearly, F is nonempty and U $?F, as B is a subset of F and
0¢£ 3. Further, if a,b E F, then there exists c,d in B such
that c 3 d and d g b. But then there exists an e in B such
that e 3 c A d. Thus e 5 c A d g a A b, and therefore, a Alb
belongs to F.

Trivially, for every a in F, if b in L(X) is such
that b 2 a, then b G F. Thus F is a fuzzy filter and B is a
base for F. Uniqueness is immediate from the definition
of F.

3.2.2 Theorem

Every Fuzzy filter is contained in an ultrafuzzy
filter.

Proof

Let F be a fuzzy filter and 8 be the set of all fuzzy
filters containing F. 3 is nonempty, as F belongs to it. 8
is partially ordered under set inclusion. Let {U(i)} i in I}
be a chain in a. Let u = U U(i). we claim that u is an upper
bound for the chain.
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i) Best}, since Des U(i), for each i.
ii) If a,b e U, then a Q U(i) and b 6 U(j), For

some i,j in I. Then either U(i)<2 U(j) or U(j)<3 U(1), since
U(i), U(J) belong to a chain. Let us assume that
u<1)c;u<3). Thus a,b é Utj), and hence a A b < U(j)C7U.

iii) Let a G.U and b in L(X) be such that b 3 a.
Then a is in U(i) for some i in I. But then b belongs to
that U(i) and hence b e U.

From i),ii) and iii), U is a fuzzy filter. Clearly
v is bigger than u<1) for eecniin I and U contains F. Hence
U is an upper bound For the chain. Thus we have proved that
every chain in B has an upper bound, hence by Zorn's lemma,
8 contains maximal elements. i.e., there exist ultrafuzzy
filters containing F.

3.2.3 Theorem

A Fuzzy filter U is an ultrafuzzy Filter if? a in
L(X) and aAu:# D, for all u in U, imply that a is in U.

Proof

Necessay: Let U be an ultrafuzzy filter and a in L(X) be
such that a 4»u=¢ D for all u in U. Let B = { aAu E u E-U}.
Now B is nonempty, De B and B is closed for meet operation,
since, for u,v in U, ufiv is in U and (aAu)A(aAv) = ah(uAv).

58



Thus 8 is a fuzzy filterbase and contains a, since 1 is in
U. Hence by the theorem (3.2.1), there exists a fuzzy filter
F containing B. But then U is a subset of F, since for every
u in U, u is 2 a fl u. U being an ultrafuzzy filter, this
implies that U = F. Thus a is in U.

Sufficiency: Let U beafuzzy filter containing all a in L(X)
such that a A u.¢ D, for all u in U. Suppose F is a fuzzy
filter containing U. Then for every f E F, fdu-¢ 0, for all
u in U, since u E F, also. But then by the hypothesis, f is
in U, for every f in F. Thus F is a subset of U and
Therefore, F = U. Since, F is arbitrary, U is an ultrafuzzy
filter. This completes the proof.

3.2.4 Theorem

If F is a fuzzy filter such that for all a in L(X),
either a or af (if exists), belongsto F. then F is an
ultrafuzzy filter on X.

Proof

Suppose G is a fuzzy filter containing F. Let
a G;G. Then either i) a‘ exists, or ii)a' does not exists.

Case i) By hypothesis, either a is in F or a’ is
in F. a’ cannot be in F, for otherwise, a’ will also belong
to G, which is impossible, as a é,G. Thus a is in F.
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Case ii). By hypothesis, a belongs to F. Thus
in either case, a E G implies a 6 F. Therefore, F contains
G, and hence F = G. Since G is an arbitrary fuzzy Filter
containing F, F is an ultrafuzzy filter. The proof is
complete.

3.2.5 Remark

If there exists a,b in L(X), such that a 4 b = D
and a'and b’ do not exist, then no fuzzy filter on X can
satisfy the hypothesis 0? the theorem (3.2.4). This would
imply that the hypothesis is not a necessary condition for a
Fuzzy filter to be an ultrafuzzy filter.

3.2.6 Theorem

If L is not complemented and X contains atleast
two elements, then no ultrafuzzy filter on X, satisfies the
hypothesis of theorem (3.2.4).

Proof

Let 1 in L be such that 1’ doesnot exists. Let x,y
( X be such that x ¢=y. Consider the fuzzy singletons s(x,1)
and s(y,1), of X. clearly s(x,1) and s(y,1) do not have
complements in L(X), and s(x,1) A s(y,1) = 0. Hence by the
remark (3.2.5), we have the theorem.
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3.2.7 Remark

Suppose L is not complemented and F is a fuzzy
filter on X such that for all complemented elements a in
L(X), either a or a’ is in F. This does not imply that F is
an ultrafuzzy filter on X.

Let L = [0,1] and X be any set. Let, for a fixed z
in X, F = {a E L(x)§ a 2 s(z,1)} for a fixed 2 in X. Then F
is a fuzzy Filter on X. Let a be a complemented fuzzy subset
of X. Then a A a’ = D and a V a’ = 1. i.e., for every x in
X, a(x) A a‘(x) = D and a(x)Va'(x) = 1. Thus for each x in X
either a(x) = 1 and a‘(x) = 0, or a(x) = D and a'(x) 1!

Thus, either a 2 s(z,1) or a’ 2 s(z,1). Therefore, either a
or a’ is in F. But F is not an ultrafuzzy filter, since
{a G L(x)! a 2 s(z,O.5)} is a fuzzy filter bigger than F.

3.2.8 Theorem

Let F be an ultrafuzzy filter on X, and a in L(X)
be a complemented fuzzy subset. Then either a €'F or a’ G F.

Proof

Let a’ Q F. Then we claim that a A b -Jr D for all b
in F. For if there exists b in F such that a A b = D, then

D" II b 4 ( a V a’) = (b 4a) V (b 4 a’) = b A a’.
Thus a’ 2 b, and hence a’ Q F, a contradiction. Hence the
claim.
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Let B = {ahbfi b G-F}. Then 3 is a fuzzy filterbase,
containing a. Let U be the fuzzy filter generated by B
(given by the theorem 3.2.1). Then clearly F is contained in
U, and since F is an ultrafuzzy filter, F = U. Therefore,
a 6 F. Hence the theorem.

3.2.9 Theorem

Let U be an ultrafuzzy filter on X. Then for a,b
in L(X), if a V b E-U, implies either a E U or b GIJ.

Proof

Let a,b in L(X) be such that a V b is in U. Let
a.$.U. Then we claim that b A u ¢ 0, for all u in U. For
otherwise, there exists some u in U such that b A u = 0. But

then (a V b) A u EU, would imply that
(a V b) A u = (a A u) V (b A u) = a A u G U.

Thus a is in U, as a 2 a A u, a contradiction. Therefore,
bflu ¢rD for all u in U. Consider B = { b A u: u &-U }. B is

a fuzzy filterbase containing b. Clearly the fuzzy filter N,
generated by B contains U. Thus N = U, as U is an ultrafuzzy
filter. Therefore, b G-U. Hence the theorem.

3.3 Principal fuzzy filter.
3.3.1 Therem

Let a G L(X). A principal fuzzy filter at a on X,
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is an ultrafuzzy filter iff a is a fuzzy singleton s(x,l),
for some x in X, such that 1 is an atom in L.

Proof

Necessary: Let P be the principal fuzzy filter at a. Suppose
P is an ultrafuzzy filter, then there exists a unique x in X
such that a(x) ) U. for otherwise, the fuzzy singleton
s(x,a(x)) { a, and hence the principal fuzzy filter at
s(x,a(x)), will be bigger than P, a contradiction. Further
a(x) must be an atom, for otherwise, there exists an m in L

such that D 4 m { a(x). Then again the principal fuzzy
filter at s(x,m) would be bigger than P, a contradiction.
Thus a = s(x, a(x)), where a(x) is an atom.

Sufficiency: Let 1 be an atom in L and x be a fixed element
in X. Let P be the principal fuzzy filter at s(x,l).
Suppose, U is a fuzzy filter containg P. As s(x,l) élJ, for
every u in U, s(x,1) A u = s(x, 1 A u(x)) G U. Thus
1 A u(x) ¢:D, therefore, 1 A u(x) = 1, since 1 is an atom.
Thus utx) 2 1. i.e., u 2 s(x,l). Therefore, u is in P. Hence
P = U. Since U is arbitrary, P is an ultrafuzzy filter. The
proof of the theorem is complete.

3.3.2 Remark

If a principal fuzzy filter at a fuzzy singleton
is not an ultrafuzzy filter then there exists a finer
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principal fuzzy filter. If in L, every nonzero element,
either is an atom or has an atom below it, then every
principal fuzzy filter is contained in a principal
ultrafuzzy filter. Unlike in the ordinary set theory,
principal fuzzy filterson fuzzy singletons are not maximal.
One may note that principal fuzzy filter at every fuzzy
singleton is an ultrafuzzy filter iff L = { 0,1 }.

3.4 Fuzzy filters with complemented membership lattice.

3.4.1 Theorem

If L is complemented, then for every fuzzy filter
F on X, the following are equivalent.

i) F is an ultrafuzzy filter.
ii) For a in L(X), either a is in F or a“ is in F.

iii) For a,b in L(X), if a V b E'F implies a E F or b G F.

Proof

i) implies ii): Suppose F is an ultrafuzzy filter, a G L(X)
and a’ as F. Then a /\ b -#0, for all 135- F,for otherwise, let
adb = 0 for some b in F. Then b = b8(aVa') = (hAa)V(bAa’);

(b A a’) = b A a’. which implies a’ 2 b. Hence a’ is in F, a
contradiction. Thus a A b:t.D for all b in F. Hence by
the theorem (3.2.3), a Q F. i.e.,. for all a in L(X) either
a E F or a’ Q F.

64



ii) implies iii): Let a,b G-L(X), be such that a V b is in
F. Suppose egg F. Then by ii) a’ belongs to F. Thus a‘ and
avh are in F. Hence, a’ A (avb) = aflflb 6-F. Thus b 6 F,
since b 1 b A a’. Therefore, aVb E-F implies either a or b,
belongs to F.

iii) implies i): Let F be a fuzzy filter on X satisfying
iii) Suppose G is a ultrafuzzy filter containing F. Then,
for a in G, since ave’ = 1, and 1 6 F, by iii), either a E F
or a’ G F. But a’ cannot belong to F, since a G G, and F
is a subset G. Thus a er. Therefore, G is subset or F.
Hence F is an ultrafuzzy filter.
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CHAPTER IV

LATTICE OF FUZZY TOPOLOGIES_

4.1 Introduction

Let L be a complete and distributive lattice, and
X be any set. we know that the collection of all fuzzy
subsets of X, denoted by L(X), is a complete and
distributive lattice. The smallest and the largest element
in any lattice is commonly denoted by O and 1, respectively.
we take the definition of fuzzy topology as given by
C.L.CHANG E9], but an arbitrary, complete and distributive
lattice L, replaces the membership set ED,1J. FROLICH [11]
proved that ulratopologies exists and they are of the form
P(X\{x}) U F, where x is a fixed point in X and F is an
ultrafilter on X, not containing {x}. Theorem (4.3.4), given
below, leads to a generalization of FROLICH's result.
FROLICH [11] also proved that the lattice of topologies on a
set is dually atomic. We, however prove that the lattice of
fuzzy topologies on a set, is not dually atomic, if L is
different from {D,1}.

JURIS HARTMANIS [15] proved that the lattice of
topologies on a finite set is complemented, and raised the
question about complementation in the lattice of topologies
on an arbitrary set. This problem was solved affirmatively
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by A.K.STEINER E24] and VAN ROOIJ [28], independently. We

prove that the lattice of fuzzy topologies on a set, in
general is not complemented.

In this chapter we discuss about atoms, dual atoms
and complements in the lattice of all fuzzy topologies:
(L,X). The smallest element in (L,X) is { 0,1 }, and the
largest element is L(X).

we denote an arbitrary index set by I and i as its
general member. For an element a in any lattice, a’ denote
the complement of a.

4.1.1 Definitions

A subset T of L(X) is called a fuzzy topology
Ecf. C.L.CHANG. 9] if

1) 0,1 Q T,

ii) a,b Q T implies a A b 6 T,
and iii) a(i) G'T, for i in 1, implies Va(i) Q T.

A subset B of L(X) is called fuzzy toplogical
base, if B is closed For finite meet operation and
V{b} b C B} = 1.

A subset B of L(X) is called a base for a Fuzzy
toplogy T, if every member of T, is the join of some members
of B.
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#.2 Properties of (L,X)

4.2.1 Theorem

The lattice of fuzzy topologies (L,X) on a set X,
is atomic.

Proof

The atoms in (L,X) are of the Form T(a) = {0,a,1},

for a in L(X)\{D,1}. Let S be an arbitrary fuzzy topology on

X, such that S ¢rfl. Then S = V{T(a): a 6 S\{0,1}}. Thus
(L,X) is atomic.

4.2.2 Remark

Since L is complete, {D,1}, is a sublattice of L.
Thus the set of all characteristic functions on the subsets
of X, is a sublattice of L(X). Therefore, if the subsets of X
are identified by their characteristic functions, then every
subset of X is a fuzzy subset of X, and every toplogy on X
is a fuzzy topology on X. Thus the lattice of topologies on
X is lattice isomorphic to a sublattice of the lattice of
Fuzzy topologies on X. R.VAIDYANATHASUAMY E273, and

A.K.STEINER [24], showed that the latice of toplogies in
general, is not distributive.

Hence (L,X) is not distributive.

68



4.2.3 Theorem

The lattice of Fuzzy topologies (L,X), on a set X
is tomplete.

Proof

He shall show that arbitrary meet of Fuzzy
topologies on X is a fuzzy topology. Then by the theorem (3)
EBIRKHOFF, 3, p.112], (L,X) is complete, as 1 E (L,X). Let
{T(i)E i in I}. be an arbitrary subset of (L,X). Let
T =n {T(iH 11:11}. Since o,1 (, T(i),1°or each 1, 0,1 (-.T
also. If a,b are in B then a,b are in T(i), for every
1 in 1. Then for each 1, a A b emu. Thus a A b 6 T.
Further, if { a(j) {T3 in J } is an arbitrary subset of T,
then {a(j)i J in J} is a subset of T(i) for all 1. Thus
V{a(j)} J in J} belongs to T(i), for each i. Therefore,
V{a(j)5 J in J) belongs to T. Thus T is a fuzzy topology
on X. Clearly, T = A {T(i)£ i in I}. Thus (L,X) is closed
For arbitrary meet operation. Hence the theorem.

4.3 Dual atoms in (L,X)

4.3.1 Definition

Dual atoms in the lattice of fuzzy topologies are
designated as ultrafuzzy topologies. Equivalently,
U Q (L,X), is an ultrafuzzy topology if? For any T in (L,X),
UCT implies T = U.
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4.3.2 Theorem

Let U be an ultrafuzzy topology on X. Then
i) atleast one fuzzy singleton does not belong to U,
ii) if two Fuzzy singletons: s(x,1), s(y,m) donot belong to
U, then x = y,
and iii) the set of all 1 in L, such that s(x,l)G§lh for
some x in X, is a minimal t-irreducible subset E2.1.1] of L.

Proof

1) Suppose all Fuzzy singletons belong to U. Since for a in
L(X), a = V{s(x,a(x))% x in X},and so a 6 U. Thus U = L(X),

a contradiction. Therefore, atleast one fuzzy singleton
doesnot belong to U.

ii) Let if possible s(x,l) and s(y,m) donot belong to U,
such that x ¢'y. Let S = { D,s(y,m),1 }. Then S is in (L,X).
Let T ‘U V S. Then a base for T is given by
{uAs:u£u,s£s}=uU{s<y,m/\u<y)):ueu}.
Clearly s(x,l) doesnot belong to T, since x=# y, but U g T,
a contradiction to the assumption that U is an ultrafuzzy
topology. Hence x = y, if s(x,l) and s(y,m) donot belong to
U.

111) Let R = {1<L:s<x,1>g!-U}. From 1) we have that R is
nonempty, and uniqueness of x, follows from ii). Now suppose
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r(i)¢£ R, then s(x,r(i)) Q U, For i in 1. Thus if Vr(i) = r,
then Vs(x,r(i)) = s(x,r) 6 U, and hence r<¢ R. Therefore,
arbitrary join of members of cmplement of R, does not belong
to R. Further if r(J)e£ R, for J = 1,2,,,,..,n, then
stx, r(j)) belongs to U, for all j. Then if r = r(1)A...Ar(n)
then A s(x,r(j)) = s(x,r) &-U, and hence r¢£'R. Thus, finite
meets of members of the complement of R, do not belong to
R. Therefore, R is t-irreducible. It remains to show that R
is minimal.

Let G be a subset of R such that 0 ¢ R, and Q is
t~irreducible, then if r E R\G and if T is the smallest
fuzzy topology containing U and s(x,r), then s(x,g)<¢ T for
all g in 0, but UCLT. Thus U is not an ultrafuzzy toplogy.
a contradiction. Therefore, R is minimal t~irreducible.

4.3.3 Remark

Corresponding to every ultrafuzzy topologu U on X,

there exists a unique x in X and a minimal t~irreducible
subset R of L such that {s(x,rH r in R} (V U =
Moreover in ordinary set topology, if U is an ultratopology
on X then there exists a unique singleton { :4 } ¢ U., and
the corresponding minimal t-irreducible subset is { 1 }, as
L in this case. is {0,1}.
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4.3.4 Theorem

Let X be a set with atleast two points. Then.
ultrafuzzy topologies on X, exist iff minimal
t—irreducible subsets exist in the membership lattice.

Proof

Necessary: Suppose U is an ultrafuzzy topology, then by the
theorem (4.3.8) there exists a unique x in X, such that
{l G L: s(x,1)e§LDq is minimal t-irreducible subset in the
membership lattice L. Hence the Necessity.

Sfficiency: Let R be a minimal t-irreducible subset of L. we
have two cases: either 1 is in R or 1 is not in R.

Case i): 1 is in R. Then by the theorem (2.1.4) R = {1}. Let
x be a fixed point in X and F be an ultrafuzzy filter
E3.1.5] not containg s(x,1), equivalently, let F be an
ultrafuzzy filter containing the lattice complement of
s(x,1) in L(X). Define U(x,1) = { a in L(X) 3 a(x) i=1 },and
U = U(x,1) U F. We shall show that U is an ultrafuzzy
topology.

1) clearly 0,1 eu
ii) Let a,h 6 u. If a, b éU(x,1) then am) A b(:<) :21 and
hence a A b Gum,-1); 1+" a,b er, then a A b er, and if
a G~U(x,1) and b G;F, then a(x)Ab(x).i-1, as a(x).# 1, hence
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afib belongs to U(x,1). Thus, if a,b Q U, then aAb G U.
iii) Let {a(i): i in I} be an arbitrary subset of U. Suppose
there exists some k G I such that a(k) is in F,then Va(i) is
in F, since V a(i) 2 a(k). And if, a(i) is in U(x,1) for all
i, then a(i)(x)=¢ 1, for all i. Then Va(i)(x) ¢ 1 as 1 is
t~irreducible. Therefore, Va(i) G U(x,1). Thus in all cases,
V a(i) belongs to U.

From i),ii), and iii) U is a fuzzy topology.

To prove that U is an ultrafuzzy topology, let T be

a Fuzzy topology containing U. If Tafi U, then there exists a
in T such that a is not in U. Thus ads U(:<,1) and a at F.
Therefore, a(x) = 1 and there exists b in F, by the theorem
(3.2.3), such that a A b = 0. Now if d = b V s(x.1). then
d IV b, and hence d is in F. Thus a and d, belong to T, and
so a A d belongs to T. But

afid = a A (bVs(x,1)) = (a4b) V (aAs(x,1)) = s(K,1).

Thus, s(x,1) belongs to T. Since U(x,1) contains all Fuzzy
singletons, except s(x,1), T contains all fuzzy singleton of
X. But then from the proof of the theorem (4.3.2)(i),
T = L(X). Thus U is an ultrafuzzy topology on X.

Case ii) 1e§R. Let U(:<,R) = {a GL(XH a(:»<)gR}, where x
is a fixed point of X. we shall first show that U(x,R) is a
fuzzy topology on X.
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i) Clearly 0,1 E U(x,R).
ii) If a,b are in U(x,R),i.e., a(x), b(x) ai Fh then
a(x)Ab(x)<£ R, since R is t-irreducible. Thus aflb E U(x,R).
iii) If a(i) E U(x,r), For i in I, then a(i)(x)¢£ R, For all
i. Therefore, Va(i)(x) d;R, since R is t-irreducible. Thus
Vati) belongs to U(x,R).

From i),ii) and iii), U(x,R) is a fuzzy topology.

Let T in (L,X) be such that T contains U and
T ¢ U(x,R). Then there exists a in L(X) such that
a ti U(x,R), and a G-T. But then a(x) G-R. Let a(x) = r.
S(><,’l) €-U(:<,R), s(x,1) and as, are in T, and hence

s(x,1)Aa = s(x,a(x)) = s(x,r) Q T.

Let G = (L\R) U { r }. Since R is minimal t~irreducib1e,
from the note (2.2.3) the lattice completion of G is L. Thus
the lattice completion of {s(x,q): q in G} is
{s(x,l)% E in L}. thus T contains all fuzzy singletons,
since {s(y,i)l y in X, y ¢'x, 1 E L\{0}} C3 U(x,R), and
{s(x,q)i q in Q}c: T. Therefore, T L(X), Follows from the
proofdfthe theorem (4.3.2)(i). Thus U(x,R) is an ultrafuzzy
topology, since T is arbitrary.

4.3.5 Remark

Dual atoms in (L,X) are of the Form U(x,1) U F or

U(x,R), for x in X, F is an ultrafuzzy filter not containing
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s(x,1), and R is a minimal t-rreducible subset of L. Hhen
L = {D,1}, the only minimal t-irreducible subset is { 1 }.
Thus in this case, all dual atoms (ultratopologies) are of
the Form U(x,1) U F. But when L = { 0,1 }, U(x,1)
corresponds to P(X\{x}> and F corresponds to an ultrafilter
on X, not containing { x }, which is the point
ultrfilter characterisation of ultratopologies, due to
FROLICH [11].

4.3.6 Theorem

(L,X) is dually atomic (2.1.1) if? Given any T in
(L,X), such that Ts!-'L(X), and ae T, there exists an
ultra+‘u:-zzy topology U, such that TC;.U, and a $U.

Proof

Necessary: Let (L,X) be dually atomic. Let T in (L,X) and a

in L(X) be such that a¢¢:T. Then there exists ultrafuzzy
topologies U(i) in (L,X), for i in I, such that
T = A U(i) =¢fl U(i). Clearly, T is a subset of U(i) for all
i in I, and since a $ T, there exists 1 in I such that
aé. U(i), hence the necessity.

Sufficiency: Let T in (L,X) be such that T ¢ L(X). For each
a in L(X) such that a is not in T, let U(a) be an ultrafuzzy
topology finer than T and not containing a. Then clearly
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T = A { U(a) : aesr }. Since T is arbitrary, (L,)() is
dually atomic.

4.3.7 Lemma

If (L,X) is dually atomic then for each 1 in L,
1 ¢ 0, there exists a minimal t—irreducible subset,
containing 1.

Proof

Given any 1 in L, 1 #'O, there always exists fuzzy
topology not containing the fuzzy singleton s(x,l), for some
fixed x in X [unless X is a singleton and L= {D,1}J. Then by
the theorem (4.3.6), there exists an ultrafuzzy topology U
on X such that s(x,l)e? U. Now by the theorem (4.3.8)(iii),

{m ( Li s(y,m)ahU, for y in X}
is minimal t~irreducible. Clearly 1 belongs to this minimal
t-irreducible subset, and the proof is complete.

4.3.8 Lemma

If (L,X) is dually atomic, then for every l,m in
L\{D}, there exists minimal t—irreducible subset R(l,m),
such that 1 is in R(1,m), and ma§,R(l,m).

Proof

In the light of the theorem (4.3.6), and the lemma
(4.3.7), to complete the proof, it is enough to prove that
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there exists a Fuzzy topology containing s(x,m), and not
containing s(x,l), for some fixed x in X.

Let T = {a 6 L(X): a(x) G {0,m,1}, For x in X}.
Then M = {0,m,1} is a complete, distributive sublattice of
L. Further T = M(X). and M(X) is a complete sublattice of
L(X). Thus T is a fuzzy topology on X. Clearly, s(x,m) is in

T and s(:<,l) ¢ T, For x in X. The proof is complete.

4.3.9 Lemma

If (L,X) is dually atomic then L is a chain of
t-irreducible elements and 0.

Proof

If (L,X) is dually atomic, then by the
lemma(4.3.7), every nonzero element of L is contained in
some minimal t-irreducible subset of L. Then by the theorem
(2.1.7) L is a chain of t-irreducible elements and 0.

4.3.10 Theorem

The lattice of fuzzy topologies (L,X) is dually atomic
if? either L = {D,1} or X is a singleton and L is a chain of
t~irreducible elements and zero.

Proof

Necessary: Suppose (L,X) is dually atomic. Then by the lemma
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(4.3.9), L must be a chain of t~irreducible elements and 0.
Suppose L ¢' {D,1} and X is not a singleton, then there
exists 1 in L such that 0 { 1 { 1. Let 2 be a fixed element
in X. Let a in L(X) be such that, for x in X,

1 if x ¢ 2
a(x) = {

Let T be the fuzzy topology of all constant fuzzy subsets of
X. Since X is not a singleton, T ¢ L(X). Since L(X) is
dually atomic, by the theorem (4.3.6), there exists an
ultrafuzzy topology U bigger than T and not containing a, as
a is not in T. Now, since support of a is X, and L is a
chain, a4b=# O, for all h in L(X)N{D}. Hence by the theorem
(3.2.3) a is in every ultrafuzzy filter on X. Hence U cannot
be of the form: U(x,1) U F as defined in the proof of the
therem (4.3.4). Thus U = U(x,m), for some x in X, and m in
L. But then the constant fuzzy subset Q, with membership
value m on X, does not belong to U(x,m), and hence T is not
a subset of U, a contradiction. Now by remark (4.3.5), T
does not have an ultrafuzzy topology above it, and not
containing a. Then by the theorem (4,3,b), (L,X) is not
dually atomic. Thus, if (L,X) is dually atomic, then either
X is a singleton or L = {D,1}.

Sufficiency: Suppose L = { 0,1 }. Then L(X) is lattice
isomorphic onto to the Boolean lattice P(X), and (L,X) is
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lattice isomorphic to the lattice of all toplogies on X. The
lattice of topologies is dually atomic EFROLICH,11J. Hence
(L,X) is dually atomic.

Suppose X is a singleton, and L is a chain of
t-irreducible elements and B. Let X = {x}. It may be noted
that s(x,1) in this case is the "1" of L(X). Hence every T
in (L,X), contains s(x,1). Moreover, {1} is minimal t
irreducible for every 1 in L\{D}. Thus the ultrafuzzy
topologies (dual atoms) in (L,X), are of the form

U(x,l) = {a €*L(X)% a(x) ¢rl} = {s(x,m){ m # 1}U{D}.

for each nonzero 1 in L. Thus if T G-(L,X),and T i L(X) then

T = A { U(x,l)% s(x,1)<£'T }. Therefore, (L,X) is dually
atomic.

4.3.11 Remark

From the theorem (4.3.1U), we see that (L,X) is
dually atomic only in the trivial cases. i.e., L = {U,1}
and X is a singleton. Thus in general (L,X) is not dually
atomic. This is a clear departure from the corresponding
results for the lattice of topologies.

4.4 Complements in (L,X)

4.4.1 Lemma

Let S,T E (L,X). Then 8 = {sAt3 s E S, t Q T} is a
base for the fuzzy topology 8 V T.
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Proof

He shall first show that B is a fuzzy topological
base. Clearly S and T are subsets of B, hence
U{b! b in B} It 1 Further, if a, b E B, then there exist
r,s in S and t, u in T, such that a = rht and b = sdu, then
ahb = (rfls) A (tAu). Since r4s &fS and tdu 6-T, aAb is in B.

Thus 8 is a Fuzzy topological base.

Since S V T is the smallest fuzzy topology
containing S and T, it is closed For Finite meet of members
from S and T. Hence B is a subset of S V T. Thus 8 generates
S V T.

4.4.2 Theorem

If L is a chain and if (L,X) is complemented, then
every 1 in L\{D.1} is a t-irrreducible elements.

Proof

Suppose there exists an 1 in L\{0,1} such that , l
is not t~irreducib1e. Since L is a chain, 1 cannot be
written as the Finite meet of members other than 1. Thus
there exist l(i) in L, 1(1) ¢‘l, for i in I such that
Vl(i) = 1. ..(1)

Let S = { U,l,1 }, where L is the constant Fuzzy
subset of X, with the membership value 1. S is a Fuzzy
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topology on X. Since (L,X) is complemented, there exists a T
in (L,X) such that T A S = { 0,1 }, and T V 5 = L(X). Thus
all fuzzy singletons of X belong to S V T. Therefore, by the
lemma (4.4.1) every fuzzy singleton can be written as
arbitrary join of members of B = {sAtI s C S and t G T}.

Let s(x,m) be a fuzzy singleton of X, where m < l.
we claim that s(x,m) is in T.

We have, either s(x,m) is in B or s(x,m) = V a(i),
for some a(i)’s in B.

Case i): s(x,m) e:B, implies there exist 5 in S
and t in T such that s(x,m) = sht. Since s is D or 1 or 1, t
is either s(x,n), where 1 A n = m, or s(x,m). Since L is a
chain, 1 A. n = m, implies 1 = m or n = m. since m < 1,
n = m. i.e., t = s(x,m) Q T.

case ii) s(x,m) = Va(i), For a(i) in B, implies
a(i) = s(x,n(i)), Tor some n(i) in L. But then Vn(i) = m.
From case i), s(x,n(i)) Q B implies s(x,n(i)) E T. Then
Vs(x,n(i)) = s(x,m) is in T, since T is a fuzzy topology.

Thus in either case, s(x,m) is in T. Hence the
claim.

Now , from (1), we have that 1(1) < l for each i.
Thus from the above argument s(x,1(i)) is in T, for each
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i in I and for each x in X. Since T is a fuzzy topology,
1 = V { s(x,l(i)) I x in X and i in I }, belongs to T. Thus
T A S is no more {D,1}, a contradiction. Hence 1 must be
t~irreducih1e. The proof of the theorem is complete.

4.4.3 Remark

From the theorem, (4.4.2), in the Fuzzy set
topology with closed unit interval ED,1] as the membership
lattice, the lattice of fuzzy topologies on a set is not
complemented.

4.4.4 Theorem

If L is a lattice of t-irreducible elements and 0,
then in (L,X), every atom has a dual atom as its complement
and vice versa. E X contains atleast two elements].

Proof

Let T(a) = {0,a,1} be an atom in (L,X). If there
exists x in X such that D < a(x) < 1, then For such an x,
consider the ultrafuzzy topology

U(x,a(x)) = { b Ql_(X) 3 btx) #-a(x) }.

Clearly, a¢$-U(x,a(x)), and hence T(a) A U(x,a(x)) = {O,1}.
Further U(x,a(x)) contains all fuzzy singletons, except
s(x,a(x)). Since s(x,1) is in U(x,a(x)), s(x,a(x)) is in
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T(a) V U(x,a(x)), as s(x,1) A a = s(x,a(x). Therefore,
T(a) V U(x,a(x)) = L(X). i.e., U(x,a(x)) is a complement of
T(a).

Suppose for all x in a(x) = 1 or 0, then pick an x
such that a(x) = 1 and y such that a(y) = 0. Such x,y exist
as a is neither 0 nor 1. Let U(x,1) = {h €'L(X)£ b(x) #'1}.
and F be an ultrafuzzy filter containing s(y,1). Let
U = U(x,1) U F. From the proof of the theorem (4.3.4), we
have that U is an ultrafuzzy topology. Since, a is not in U,
U A T(e) = { 0,1 }. Further, since all fuzzy singletons
except s(x,1) are in U(x,1) and F contains s(y,1) V s(x,1),
s(x,1) = aA(s(x,1) V s(y,1)), belongs to T(a) V U,
T(a) V U = L(X). Thus U is a complement of T(a).

Now, let U be an ultrafuzzy topology. Since,
minimal t-irreducible elements in L are singletons, by the
theorem (4.3.2), there existsa unique x in X and 1 in L,
such that s(x,l) is the only fuzzy singleton, not in U.
But then T = {0,s(x,1),1} is an atom in (L,X) and a
complement of U. Hence the teorem.

4.4.5 Note

PAUL S. SCHNARE [22] proved that complement in

the lattice of topologies is not unique. From the proof the
theorem (4.4.4), it is evident that a fuzzy topology can
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have more than one complement in the lattice of Fuzzy
topologies on a set.

4.4.6 Concluding remark

The problem of complementation in the lattice of
fuzzy topologies on a set, though solved in the negative, a
complete study of the problem with particular emphasis on
the structure of the membership set, still remains.
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