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PREFACE

Chaos is a subject oftopical interest and, studied in great detail in relation to its

relevance in almost all branches of science, which include physical, chemical,

and biological fields. Chaos in the literal sense signifies utter confusion, but the

scientific community has differentiated chaos as deterministic chaos and white

noise. Deterministic chaos implies the complex behaviour of systems, which

are governed by deterministic laws. Behaviour of such systems often become

unpredictable in the long run. This unpredictability arises from the sensitivity of

the system to its initial conditions. The essential requirement for ‘sensitivity to

initial condition’ is nonlinearity of the system. The only method for

determining the future of such systems is numerically simulating its final state

from a set ofinitial conditions.

Synchronisation and control are two aspects of chaotic dynamics. During the

last decade there took place extensive studies leading to remarkable

developments in the field of synchronisation of chaotic systems. Similarly

control of chaotic lasers has also been an important topic of research.

Synchronisation and control of chaotic semiconductor lasers assume great

significance because of their potential use in communication systems and in

designing high power sources. Semiconductor lasers because of their attributes

such as compactness, reliability, low cost, efficiency, direct modulation

capability and, above all, their characteristic output wavelength that fall in the



minimum loss and dispersion window of optical fibers, are ideal candidates for

the above applications.

Various methods have been employed for achieving synchronisation and

control of chaos. The methods used are different types of couplings such as

uni-directional coupling, bi-directional coupling and feedback methods such as

proportional feedback, variable feedback and occasional proportional feedback.

Variants of these schemes are also in use. The emphasis in our studies was on

the aspects of synchronisation and control of chaotic semiconductor lasers

employing various types of coupling and feedback schemes.

Various aspects of our studies and, the results and conclusions are presented in

eight chapters.

Chapter 1 outlines the general aspects of chaos in dynamical systems and

provides a review of the relevant literature. Various mathematical tools and

quantitative measures used in the characterisation of chaotic systems are

described briefly. Different routes taken by a system to enter into chaotic

regime are also discussed. The conditions necessary for chaos to occur in

dynamical systems and the identifying characteristics of a chaotic system also

are briefly described. Further, this chapter also delineates general characteristics

of lasers and chaos in lasers with specific reference to semiconductor lasers.

The mechanisms by which semiconductor lasers undergo transitions to the

chaotic regime are also discussed.



Chapter 2 deals with synchronisation of chaotic systems in general. The

different methods of synchronisation like drive response scheme, coupling

scheme and feedback methods are described with the help of schematic

diagrams. Various types of synchronisation in chaotic systems such as complete

synchronisation, generalised synchronisation, phase synchronisation, lag

synchronisation, exact synchronisation, practical synchronisation, partial

synchronisation and almost synchronisation are reviewed. Special emphasis has

been laid on the synchronisation aspects in chaotic laser systems. The different

methods adopted for the synchronisation of chaotic Nd:YAG lasers, CO2 lasers

and semiconductor lasers are detailed. Control of chaos in dynamical systems

with reference to laser systems is also discussed.

Chapter 3 covers a brief description of the laser model that we used for our

numerical studies and its general dynamical properties. This chapter contains.

descriptions of rate equations governing the dynamics of directly modulated.

semiconductor lasers. Effects of modulation depth, modulation frequency, and.­

nonlinear gain reduction factor on the output dynamics are explained. The

period doubling route taken by this system to enter chaotic regime and the"

reverse period doubling route to enter stable regime are described. The.

parameter values that are used for our numerical studies are included at the end

of this chapter.

iii



Chapter 4 contains descriptions on the results of our numerical study on the use

of uni-directional and bi-directional coupling schemes for synchronisation of

two directly modulated chaotic semiconductor lasers and the types of

synchronisation that could be achieved. Coupling schemes are described using

schematic diagrams. Results ofthe studies on the effect of coupling strength on

the output dynamics also are discussed. Bi-directional coupling scheme can

give exact synchronisation between the two lasers whereas the uni-directional

coupling can induce only practical synchronisation. The bi-directional coupling

can provide synchronisation over a wider range of coupling strength compared

to the uni-directional coupling. In addition. bi-directional coupling could

achieve control over the synchronised chaotic outputs ofthe two semiconductor

lasers and suppress the double peak nature of its output for large values of

coupling strengths.

In'Chapter 5 we present the results of numerical study of synchronisation of

two chaotic semiconductor lasers using a variable feedback technique. In this

method one of the lasers that are to be synchronised operate as the drive system

and the other operate as the response system for synchronising it with the drive.

The difference between the output of the response system and that of the drive

system is calculated at each time step. A feedback current that is proportional to

a small fraction ofthis difference is fed to the input ofthe response system. The

range of feedback fraction value for which the two lasers are synchronised and

the type of synchronisation achieved are investigated. The results of this study

show that the variable feedback method can induce exact synchronisation

iv



between the two lasers only when the value of feedback fraction is higher than a

critical value.

Chapter 6 contains the results of the numerical study on the use of the various

techniques discussed above, for use in secure communication system using two

directly modulated chaotic semiconductor lasers. The best method for coupling

for this application is investigated. The results indicate that uni-directional

scheme and variable feedback scheme cannot provide proper recovery of the

encoded message. For achieving this purpose a new scheme called Proportional

Integral scheme was. therefore, devised. Using this technique analog and digital

messages are transmitted and recovered successfully.

ln Chapter 7 we present the results of the numerical study of synchronisation

of one-dimensional and two-dimensional arrays of chaotic directly modulated

semiconductor lasers. Eight different linear arrays are simulated numerically

with the number ofelements varying from three to ten. Different methods such.

as open loop coupling, closed loop coupling, global coupling and nearest

neighbour coupling are used for synchronisation of one- dimensional array,

with different number of elements. The results show that there is strong

dependence of the synchronisation and output dynamics of the array elements

on the number of elements in an array and also on the type of coupling used.

Open loop coupling is the least effective in synchronising an array of directly

modulated semiconductor lasers. Closed loop coupling is found to be very

sensitive to the number of elements present in an array. This scheme could



achieve synchronisation between the chaotic outputs for low values of coupling

strengths and control over the synchronised chaotic outputs for higher coupling

strengths only for arrays having even number of elements. No synchronisation

or control of chaos could be achieved using this scheme with odd number of

elements in the array. Global coupling scheme is effective in synchronising all

the elements in arrays with even and odd number of elements. This scheme is

also effective in controlling the chaotic outputs and. the coupling strength

needed for synchronising the outputs decreases as the number of elements in

the array increases. In the nearest neighbour coupling scheme the outer and

inner laser pairs get synchronised separately, but does not synchronise with

each other even for large coupling values for eg in the case of an array with

four elements, first and fourth lasers will get synchronised with each other.

Similarly the second and third lasers will also get synchronised separately.

However there is no observable synchronisation between the first and second

or, first and third or, second and fourth lasers and, the third and fourth lasers in

the array. In the case of one-dimensional array all these schemes except the

open loop coupling the output undergoes reverse period doubling and achieves

stable period one cycle nature for strong coupling strengths. The two

dimensional array is coupled using the nearest neighbour coupling scheme. In

this case synchronisation can be achieved between all laser pairs. For strong

coupling strengths the synchronised outputs undergo reverse period doubling

and become stable one cycle. Suppression of the double peak structure can be

obtained for higher values of coupling strengths in the case of one-dimensional

and two-dimensional arrays.
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Chapter 8 is the concluding part of the thesis and contains summary and

conclusion of the whole work. The overall outcome of this work is that. the

type of coupling or feedback that will be suitable for a particular system is to be

found out by more of a trial and error method. The particular application for

which we are using the system should also be of major concern while designing

a coupling or feedback scheme. The dependence of synchronisation properties

and other dynamical properties on the coupling strength also should be taken

into consideration while designing the scheme and its application. lt is to be

noted that the existing methods will have to be modified appropriately, when

using it for different applications.
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CHAOS AND LASERS — AN OVERVIEW

This chapter briefly describes chaos in dynamical systems and various mathematical

tools and quantitative measures used in the characterisation of chaotic systems. Related

literature on the subject has been reviewed. General characteristics of lasers and,

chaos in lasers with specific reference to semiconductor lasers also are discussed.



Chaos and Lasers
1.1 CHAOS IN DYNAMICAL SYSTEMS

Chaotic phenomena are abundant in nature and they have played important

roles in the evolutionary processes ofdynamical systems. What was considered

as unwanted noise in the past centuries has now developed into a branch of

science with its application in diverse fields such as lasers, chemical reactions,

mechanical structures, fluid dynamics, neural networks, biological rhythms,

earthquakes and share market fluctuations. Interest in the study ofchaos and its

importance grew at a rapid pace after 1963, when Lorenzl” published his

numerical work on convection model and, discussed its implications on weather

predictions. The word chaos means a state of utter confusion or disorder.

However, for the last few decades the word chaos in scientific literature is used

in the sense of ‘Deterministic Chaos’. In the present scientific scenario.

wherein nonlinearity has become the rule rather than exception, chaos has made

its presence felt in all dynamical processes extending from the swinging of a

pendulum to planetary motion, the fluctuations in ECG/EEG signals, eruption

of epidemics and many more. It is therefore not surprising that chaotic

dynamics is now considered responsible for the fluctuations in the share market

thus making its impact in economic scenario as well!

1.1.] WHAT IS A CHAOTIC SYSTEM?

Any system that develops in time in a non-trivial manner may be considered a

dynamical system. Dynamical systems are normally regulated by system



1 Chaos and Lasers
parameters and when these parameters change. the properties ofthe system also

ehangel”. Even though all dynamical systems evolve according to some

deterministic system of equations, for certain parameter values the evolution of

most of the nonlinear dynamical systems appears random and becomes

unpredictable. In other words, if the determining equations are nonlinear, then

under some conditions the solution becomes sensitive to initial conditions as

well as parametric changes and hence unpredictable.

A system whose temporal or spatial evolution seems random, but is really

detemiinistic, i.e. obeys some definite evolutionary equation, can be called a

chaotic system. By tenning a system chaotic, the implication is about the

uncertainty in the long-terrn predictability ofthat system. In a linear system, the

distance between two initially close states will be preserved or will increase

linearly during the evolution. However, in a system governed by chaotic

dynamics, this feature will be absent and the distance between the initial states

will diverge exponentially as the systems evolve. Thus the unpredictability ofa

chaotic system arises from its instability against small perturbations. This is

also called sensitive dependence on the initial conditions, which leads to an

exponential growth of any errors in specifying the initial conditions. Thus the

state of the system becomes essentially unknown after a finite time. Henri

Poincare (1854 - 1912), a prominent mathematician and theoretical astronomer

who studied the dynamical systems, was one of the first to recognise this

phenomenon. He described it as follows.
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it may happen that small difference in the initial conditions produce very

great ones in the final phenomenon. A small error in the former will produce
an enormous error in the latter. Predictions become impossible, and we have

the fortuitous phenomenon. ""‘.

1.1.2 CONDl'l‘l0.\'S NECESSARY FOR CHAOS

The conditions necessary for chaos to occur in any dynamical system are”

i) The system has at least three independent dynamical variables

ii) The equations ofmotions are nonlinear.

Such equations can be generally written as

d)?­— = F 2?, 1.1dz l .11) ( )
where /\_’=(x., xg. ....... .. xn), x., X2, ......... ..xn are dynamical variables and

I3 = (F., F2, ..... ..F,,), F1, F2, ..... ..F,, are the source functions. According to the

first condition n should be at least three. Nonlinear equations of motion for such

a system should contain some nonlinear term that couples the independent

variables. This defines a continuous time dynamical system. One can also

consider discrete time dynamical systems. Here the equations are ofthe form2?“, = F/I (1.2)
where n refers to discrete Values oftimc.
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In (1.1) and (1.2) it stands for a set of control parameters (usually one or two)

that can be varied. The asymptotic behaviour of the system depends on the

value of these parameters.

1.1.3 CHARACTERISTICS or A CHAOTIC SYSTEM

In the light of the above discussions, we can arrive at the conclusion that

chaotic dynamics would have some general characteristics. The identifying

characteristics ofa chaotic system can be described as the following

i) Chaos occurs only in nonlinear deterministic dynamical systems

ii) Chaos occurs neither because of uncontrolled external forces like

noise, nor because of large number of degrees of freedom, but

because of the inherent nonlinearity of the system that induce

sensitivity to initial conditions.

iii) There is a certain order in chaos.

Presence of chaos implies that |ong—term predictions are meaningless. but

short-term predictions can be fruitful.

1.1.4 TOOLS FOR THE STUDY OF CHAOS

The mathematical tools generally used in identifying chaotic behaviour of

dynamical systems are phase space, Poincaré section and the power speetrum"'.



1 Chaos and Lasers
0 Phase space

Phase space is the mathematical space of the dynamical variables of a

system with orthogonal coordinates representing each of the variables

needed to specify the instantaneous state of the system.

0 Poincare’ section

Poincare section is a means of simplifying phase space diagrams of

complicated systems. It is constructed by viewing the phase space

diagram stroboscopically in such a way that the motion is observed

periodically. This reconstructs the continuous time evolution of the

phase space with discrete time mapping.

0 Power spectrum

Power spectrum is defined as the Fourier transform of the

autocorrelation function of a time series. This is computed using Fourier

analysis and it displays the frequency composition of the time variation

ofthe dynamical variables

1.1.5 ROUTES T0 CHAOS

Loss of long-range coherence in time produces chaos in any system. All

nonlinear dissipative dynamical systems have one common feature. No matter



1 Chaos and Lasers:
from which initial conditions the system starts. its trajectories in phase space

converge or settle down to a subspace in the phase space. This subspace can be

called an attractor of the system. This is true for systems in the chaotic as well

nonchaotic regimes. Chaotic behaviour manifests only under certain

conditions, which depend on the parameter values of the system. There are

certain parameters called the control parameters, which govern the changes in

the behaviour of dynamical systems. When the control parameter changes, the

attractor ofthe system also undergoes some change. Usually these changes will

be small like a slight shift of the fixed point or, a small change in the form of

the attractor. However, for some critical values of the control parameter, the

attractor undergoes radical changes, which would result in sharp modifications

of the system dynamics”. Any discontinuous qualitative change in the

behaviour of a system is called bifurcation. There are several routes through

which dynamical systems enter the chaotic regime. These vary according to the

system and also the point of entry, i.e. the parameter values. The same system

can use one route for one set of parameter values and another route for another

set of parameter values. The most common routes to chaos are period

doubling, quasiperiodicity and intermitteney.

1.1.5.1 PERIOD DOUBLING

Period doubling is considered one of the most common routes to chaos, as for

example,

in the one-humped quadratic maps. This is also called Feigenbaum route to

chaos. We shall consider the common and simplest example of a chaotic
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system, the logistic equation, which is a discrete dynamical system. It can be

presented as”“"

X;,=2xX,A1—XJ :0sxs4Osxsl (LQ
This equation was originally devised by Verhulst in 1845 in the form of

differential equation for modelling population growth subject to limited

resources and was later considered in the discretised form by Robert May in

1976"‘. This equation is now widely used as a simple example of a chaotic

system. In the equation (1.4), X“ represents population in the nth year and Xml

that in the (n+l)'h year. 7t is the control parameter, which decides the dynamics

of the system. It can represent the sudden bursts of epidemics or drought or

such other incidents. For ?t<l, whatever be the initial conditions, if we start

within the boundary of 0 and 1, X,,-. asymptotically settles down to 0. This

point in the phase space is called stable fixed point, which acts as an attractor.

The interval 0 -1 can be called the basin of attraction of this attractor. On

increasing 7», this stable fixed point becomes unstable and a new tixcd point

arises depending on the value of K. At 7t=3, the stable fixed point disappears

and a new set oftwo fixed points appear i.e. for ?t=3, as n—> oo, alternate iterates

oscillate between two stable fixed points. This phenomenon where a set of 2"

fixed points in the phase space ofa system disappear and a new set of2”+' fixed

points arise is called a period doubling bifurcation or a pitchfork bifurcation.

This is the basic mechanism of period doubling route. At 7L =3.4, this set
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becomes unstable and gets replaced by a new set of 4 fixed points. This is

called a period 4 orbit. At )1. =3.569. the period becomes infinite, which means

that a particular iterate value never repeats. At this point the system becomes

chaotic. The sequence by which the above system becomes chaotic is called the

period doubling route to chaos. For 3.573 K :4, there are periodic windows

which interrupt the chaotic behaviour. These are shown in Fig 1.1

Bifurcation diagram for the logistic equation

0.9 I

0.8 ­

0.2

0.1

1 1 1D 1 1 1 1 1 1
1 1.2 1.4 1.8 1.8 2 .2 2.4 2.8 2.8 3 3.2 3.4 3.8 3.8 4

lamda

1 1 1_ l 1

Figl.l

Bifurcation diagram of the logistic equation
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After n bifurcations the length of the period becomes 2" i.e. as n

the period becomes2. Period doubling bifurcations have some

universal feature. The successive thresholds (kn) get closer and closer, as

n Fcigcnbum has quanlilicd lhcm in lL‘l'l1l.\ of luo numhcrs ll and

6 representing certain ratios. If }t,, is the point where the period 2"

bifurcates, then5n =  (1.5)
As n—>oc 6., —-> 5 = 4.66920

The second universal feature is quantified as a

an = -8., /e,._,

when an represents the size of opening of fork at the nu‘ bifurcation.”

1.1.5.2 QUASIPERIODIC ROUTE

This is also called Rucllc-Tukcns roulc lo cliuos. Thc basic mcchtinism

in this case is the Hopf bifurcation“'. Hopf bifurcation occurs when a

stable fixed point in the phase space of the system generates a limit

cycle at the critical value of the control parameter. Hopf bifurcation

introduces a new fundamental frequency into the system. Consider a

dynamical system in a steady state such as a laminar flow of a viscous

fluid. In this case the control number is the Reynolds number defined as

Re= vgo/v. where (p is the diameter of the cylinder through which the

l0
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fluid is flowing, v is the velocity of fluid flow and, v is the viscosity of

the fluid. As the Reynolds number is increased the laminar flow looses

its stability and begins to oscillate with frequency f. (Hopf bifurcation).

If the same process is repeated for two more times producing two new

fundamental frequencies I‘; and f;.. then according to Ruc|lc—Tukcns

theory the time dependent behaviour no longer remains quasiperiodic

with three frequencies but distinctly chaotic.

Fixed point Limit cycle T2 torus T’ Control
parameter‘ $S P QP, QP3Ch3O[lCBl B1 31

Fig 1.2

The schematic representation ofthe successive bifurcations

B.. B2 and B3 are the successive biftircations: S = steady state: I’ ; periodic stale

QP3 = quasiperiodic regime with two frequencies; QP3 = quasiperiodic regime with three

frequencies; SA = strange attractor.

1.1.5.3 INTERMITTENCY

This is also called Pomeau-Manneville route to chaos. The intermittent motion

of a dynamical system is characterised by alternation of bursts of apparently
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chaotic behaviour and intervals of almost periodic oscillations. This

phenomenon can be briefly explained as follows: for a value r of a control

parameter less than a critical value r,-, the dynamical system oscillates in a

regular fashion and is stable against small perturbations. When r increases

above the intermittency threshold value r,-, the time signal of the dynamical

system consists of oscillations which appear regular and resemble the stable

oscillatory behaviour for r r, but are interrupted from time to time by

abnormal fluctuations whose amplitude and directions are approximately the

same from one fluctuation to another with little dependence on r. The stable

oscillations for r r, correspond to a stable fixed point in the Poincaré map

which becomes unstable for r > r,. There are three types of transition through

intermittency, each with its own characteristics"““‘.

1.1.6 QL'ANTlTATlVE MEASURES or CHAOS

Chaotic behaviour of a system can be quantitatively characterised by several

means. Brief description of some of them is provided in this section. The most

important and commonly used measures include Lyapunov exponent.
Correlation function and Attractor dimensions.

1.1.6.1 LYAPUNOV EXPONENT

Lyapunov exponent is defined as a measure of the exponential divergence of

two initially close trajectories in the phase space of a system. The Lyapunov
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exponent, named after A.M. Lyapunov, a Russian mathematician, is a measure

of the sensitive dependence of the dynamics on the initial conditions“. This

exponent K, may be readily computed for a one-dimensional map such as the

logistic map. Ifa system is allowed to evolve from two slightly differing initial

states, x and xre, their divergence after :1 iterations may be characterised

approximately as

3(n) se"’~ (1.6)
where the Lyapunov exponent it gives the average rate of divergence per
iteration..

1.1.6.2 CORRELATION FUNCTION

Correlation function is a measure of the extent to which iterates which are ‘m’

steps apart are correlated in their evolution. For a unimodular map

x“, = f(x,,), the correlation function""' can be expressed as

N , 7C(’")=  T172-"11-"ri+rri '  <1‘
N—->7. 11:0

N

where (E): Lt  is the mean value ofx(n) . (1.13)
A/—>d. n=0

Decaying correlation is a characteristic feature ofchaotic evolution.
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1.1.6.4 ATTRACTOR DIMENSION

Dissipative dynamical systems are characterised by attraction of all trajectories

passing through a certain domain of phase space towards a geometric object in

the phase space. This object is called an attractor. The set of initial points {X0}

each of which gives rise to a trajectory that approaches a particular attractor is

called its basin of attraction. Systems in both chaotic and non-chaotic regimes

will have attractors in their phase space. Attractors of periodic motions will be

simple geometric objects such as fixed points or limits cycles, whereas those of

chaotic motions will have complicated structure. The characteristic difference

in the attractors of periodic motions and those of chaotic motions is in their

attractor dimensions. (‘onsidcr it set ofpoinls Ill u 'p‘ - tliinenmuiul spaicc. To

cover this set by hypercubes of linear dimension 3, a unit cube will contain N(a)

= 8'3 cubes, a unit square will contain N(a) = 8'2 squares of side 3 and, a unit line

segment will contain N(e) = 3" segments of length 3. In general, the dimension

d can be expressed as “"(1.14)
This is known as capacity dimension‘”‘. For an attractor, if dc is an integer then

it is called a regular attractor. On the other hand if dc is a fractional number then

the attractor is called a fractal or a strange attractor. In addition to the capacity

dimension dc, one can define a sequence of generalised dimension dq to

measure the distribution of points on the attractor.
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1.2 LASERS

One of the important impacts of the spectacular developments in optical

technology is the large scale replacement of several electronic devices by optical

devices. This exactly is an area where lasers can play pivotal roles in several

respects. The emphasis is on semiconductor lasers emitting visible light which

have application in optical data storage, optical telecommunication, bar code

scanners, laser pointers, patient positioning devices such as CT/ MRI scanners

and, many more. Study of laser chaos assumes great importance due to the

multifarious applications it commands in various scientific and technological

fields.

Since semiconductor lasers are nonlinear dynamical systems and chaos is one of

the manifestations ofthe inherent nonlinearity of any dynamical systems, chaotic

dynamics of such systems can play very significant role in their operations. The

only practical method for studying the chaotic dynamics of any system is by

simulating their determining equations numerically. Thus, understanding and

taming of chaos together make study of laser chaos an interdisciplinary subject

comprising of laser physics, nonlinear mathematics and engineering.

Laser is a very special source of light. The attractive property of this source of

light is its coherence property. This coherence is due to the stimulated emission.

ln ordinary incoherent sources of light each photon is emitted from its atom or

molecule independently of each other while in a laser, a photon which interacts
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with an excited atom can cause the atom to emit a similar photon which can

again cause the emission of another similar photon from another atom and this

process can go on repeating. This phenomenon is called stimulated emission.

This co-operative behaviour leads to the characteristic properties of lasers such

as monochromaticitiy, directionality and spatial and temporal coherence. One of

the essential conditions for the operation of a laser is the population inversion,

i.e. creation of more number of atoms in a higher energy state than that in a

lower energy state under thermal equilibrium. A medium with population

inversion can act as a light amplifier only if it can act as an oscillator. i.c. a part

of its output is to be fed back into the system so that the light oscillates inside the

medium for a considerable amount oftime before going out of the system, which

is achieved by placing the medium between a pair of mirrors. If the population

inversion is maintained with the help of an external energy source and, ifa light

quantum entering the system can cause stimulated emission of more than one

quantum before being absorbed by the mirrors or in the sample, then the system

will operate as a laser.

The first laser to be operated was a ruby laser fabricated by Maiman in 1960.

The first gas laser became operational in 1961 using He-Ne gas mixture as the

active medium. Stimulated emission in semiconductors became the focal theme

of research of several groups during late l950s and, finally in 1962, led to the

fabrication of a semiconductor laser that consisted of a forward biased Gallium

arsenide GaAs p-n junction (homostructure lasers). In a homostructure p-n

junction, since there are more number of electrons in the conduction band of the
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n type material than in the conduction band of the p type material, electrons

tend to diffuse from n to p region and holes diffuse from p to n type region.

Thus the two sides of the junction become electrically charged with n being

positively and p negatively charged. This produces an electric field, which

oppose further diffusion of charge carriers. Thus an energy level barrier of

height eV0 is produced, where V0 is the diffusion potential. lfa forward bias is

now applied to the junction, i.e. positive terminal to p region and negative

terminal to n type region, the junction barrier level height gets reduced to

e(V0 — V), where V is the forward bias potential. This makes it easier for the

carriers to surmount the junction potential barrier. Thus a large current will

flow from p to n region. In a narrow region near the junction, called the

depletion region, both electrons and holes are present simultaneously and they

become minority carriers in excess of normal concentration. At this point they

recombine either radiatively or non-radiatively. When an electron-hole

undergoes a radiative recombination, it falls back from the conduction band to

the valence band thus emitting a photon of energy hv=Eg, where EE, is the

energy difference between the conduction band and valence band and is called

the band gap energy

i.e. Eg = (E — E.) = he/}. (1.15)

where EC and E, are the energies of conduction and valence bands respectively,

h is the P|anck’s constant: 6.6256 X ll)“ J-s and

c is the velocity of light=2.99792>< 10“ m/s
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However these photons can also get absorbed through a reverse process inside

the cavity itself. This can produce an electron-hole pair. When the externally

applied current exceeds a critical value known as the threshold current, l,.,, a

condition similar to the population inversion condition in other types of lasers is

satisfied. Then the rate of photon emission is greater than the rate of photon

absorption. Now the p-n junction is able to amplify the electromagnetic

radiation and is said to exhibit optical gain. Not all seniicontluctor niuteritils uic

efficient in undergoing radiative recombination. Si and Ge are inefficient
emitters. Semiconductor materials such as Ga-As and GaAsP are better

emitters. Such doping introduces new energy levels within the energy band

either below the conduction band or above the valence band. Transitions take

place via these levels. The end faces perpendicular to the junction are polished

to provide optical feedback so that active medium itself acts as the resonator.

The output wavelength was around O.8pm and the output power \\L1s belo\\

50mw. These earlier models could not provide continuous operations at room

temperatures because of their large values of threshold current densities. For

homostructure semiconductors, thickness of the active region xx here the gain is

high is very small (0.0lpm), since carriers could not be confined to the active

region. To improve the performance of semiconductor lasers, one approach is

to sandwich a semiconductor material between two cladding layers of another

semiconductor material that has a relatively wider band gap. These types of

devices were referred to as heterostructure and double heterostructure devices

depending on whether the active region where the lasing occurs is surrounded

on one or both sides by a cladding layer of higher band gap. Now electrons and
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holes can move freely to the active region under forward bias but cannot cross

over to the other side of the potential barrier because of the higher band gap of

the cladding material. This provides carrier confinement to the active region

where they can recombine to produce optical gain Double hetcrostructurc

semiconductor lasers now in use are made of various combinations of GaAs,

AlGaAs, InGaAs, and InGaAsP. Presently with the availability of ultra low loss

dispersion tree fibers at 1.3 and 1.55 pm wavelength respectively, lnGaAsP

lasers operating in the vicinity of l.3-l.6 pm have become very important.

1.2.1 CHAOS IN LASERS

The semiclassical model of a single mode laser known as Maxwell Bloch

equation describes time dependence of electrical field E, mean polarization of

the atoms P and the population inversion D and is expressed as [4]

d—E = -105 + /«P,
dt
dP——=}/,ED—;/,P, (1.16)
dt
dD

E = 72(7+1)"72D'72/zEP

In 1975 Herman Haken“°' investigated the dynamics ofthe above equations and

reported an analogy between the instabilities shown by these equations and the

Lorenz equations” for fluid dynamics. This similarity kindled the search in

theoretical and experimental fields to find evidence of chaotic behaviour in

laser systems. ln 1982 Arecchi""” et al found out experimental evidence of
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period doubling in a Q-switched C0; laser. Gioggia and Abraham“ in I983

observed period doubling, two frequency and intennittency route to chaos in a

single mode inhomogenously broadened Xenon laser. In 1984, Klische

et. al. “"’ described chaos in solid state lasers with modulated pump beam.

Jarroja et. all in 1986 compared the results of theoretical and experimental

works in a sin."°‘gle mode inhomogenously broadened ring laser and found that

the output was chaotic. In the same year Dupertuislz" et. al. listed six

conditions that should be fulfilled by continuous wave optically pumped far­

infrared lasers to display Lorenz chaos. It was later discovered that multimode

lasers also exhibited chaotic behaviour when there is nonlinear coupling
between the different modes.

Semiconductor lasers can be made chaotic either by modulating the injection

current‘”‘ or by giving an external feedback”“‘. Tang et. al."”‘ and Winful et.

al.‘”' in 1986 studied the chaotic dynamics of semiconductor laser and its

dependence on modulation depth and modulation frequency. The dependence of

chaotic output on the modulation depth and modulation frequency was

numerically investigated by Tang et. al.”“ and it was observed that the chaotic

region was limited to a small range of parameter values. Winful et. al.“"

experimentally observed quasiperiodicity route to chaos in a modulated self­

pulsing laser. Kao et. al.”“ in 1993 investigated the period doubling

phenomenon in modulated semiconductor laser and proved that period doubling

event had a virtual Hopf precursor, which was enhanced by Langevin noise. In

practical semiconductor laser systems there is always a small power dependent
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reduction in the mode gain, represented as ENL, that is due to nonlinear

phenomenon such as spectral hole burning. The dynamic response of a

semiconductor laser is strongly affected by the nonlinear gain and therefore this

factor should be included in the rate equations that models semiconductor

lasers["‘. The normal value of SNL for lnGaAsP laser lies in the range 3- 6 X 10'

17cm}. It was shown that chaos occurred at modulation frequency around lGHz

[24]. This frequency range is of importance in optical communication systems

and directly modulated semiconductor lasers are widely used in these systems.

Chaotic behaviour of laser systems can play both constructive and destructive

roles. For most of the experimental works, a stable periodic laser output is
needed. Therefore in such fields chaotic behaviour can become undesirable and

should be controlled for producing reliable outputs. However, when it comes to

applications such as optical communication, especially secure communication,

chaos becomes a blessing. In this case it acts as a carrier and bodyguard for the

message signal that is to be transmitted. In such applications synchronisation of

lasers need much attention. ln optical amplifiers and designing of high power

optical sources, both control of chaos and synchronisation become equally

important. Semiconductor optoelectronic devices like laser diodes find

application in almost all realms of technology. Their output frequency range

that falls in the visible region and their low cost make them very much

inevitable in fiber optic communication systems and high power optical

sources. In both cases synchronisation of such lasers is very crucial. It is with
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this background in mind that we aimed our study on synchronisation and
control of chaos in semiconductor lasers.

We present a general discussion of synchronisation and control of chaos in

chapter 2. Synchronisation of lasers, especially semiconductor lasers, is also

described in this chapter. The laser model used for our studies and its

dynamical properties are discussed in chapter 3. Chapter 4 deals with the two

types of coupling; (i) a uni-directional coupling (ii) a bi-directional coupling.

Synchronisation and control of chaos and their dependence on the type of

coupling and coupling strengths are discussed in detail. Chapter 5 discusses

synchronisation of two semiconductor lasers using a variable feed back method

in a drive response scenario. In chapter 6, is presented the use of a uni­

directional coupling scheme, variable feedback scheme and a proportional

integral coupling scheme for secure communication. Both digital and analog

messages could be transmitted and successfully recovered only with the

proportional integral scheme. Chapter 7 discusses synchronisation of chaos in

an array of chaotic semiconductor lasers in which the number of elements is

varied from three to ten. Effects of different types of coupling schemes on

synchronisation of the array elements are also studied. It is observed that there

is dependence of synchronisation and other dynamical properties of the

individual laser systems on the number of elements that are present in a

particular array and the coupling strengths. With chapter 8 we conclude our

work with a note on the utility of the newly introduced schemes and

possibilities of its improvements and possible applications.
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SYNCHRONISATION AND CONTROL OF CHAOS

Different methods and types of synchronisation in chaotic systems form the subject

matter of this chapter. Classification schemes relevant to our numerical studies are

discussed in detail. Different methods adopted for synchronisation of chaotic lasers,

especially semiconductor lasers, have been discussed. Details on control of chaos in

dynamical systems with reference to laser systems also are presented.
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2.1 SYNCHRONISATION OF CHAOTIC SYSTEMS

Synchronisation of two processes literally means ‘to make one process worliat

tfie same time or at tfie same rate as tfie ot/ier process’ indicating the

occurrence of two or more events in unison. A perfect example is synchronised

swimming where the arm and leg movements are coordinated to take place in

time in unison. Similarly in a march past, the arms and legs ofthe participating

individuals swing in perfect co-ordination and unison. which is another

cxamplc oFsy'I1cln‘oi1iscd moxcmcnts. In the world oi‘ dynaunical systcnis the

concept of synchronisation implies the co-ordination of the temporal evolution

ofthe dynamical systems. The above examples involve orderly systems where

synchronisation immediately makes a sense of coordination. Synchronisation of

chaotic systems may sound too embarrassing because of the very definition of

chaos, which implies the exponential divergence or decorrelation of initially

nearby trajectories. However, it is possible to make two or more chaotic

systems to evolve in synchrony, i.e. even though two initially nearby

trajectories of each of the systems diverge exponentially with time, the

divergence will be similar in both the systems. When two chaotic systems get

synchronised with each other, they exhibit identical chaotic behaviour. Each of

the systems will wander erratically over their individual attractors but at any

given point of time. the points at which the two systems are on their attractors

will be the same. Synchronisation of chaotic systems has been dclincd

variously such as, ‘the exact equivalence of state variables’ or ‘the existence of

a proportionality of the state variables‘ etc. From a dynamical system point of
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view, synchronisation oftwo m-dimensional chaotic systems can be defined in

a quantitative perspective as existence of identical solutions; i.e. if we have two

systems x and y. each of which is m-dimensional and independently chaotic.

this can be represented as follows

(2.1)
in = f:(x,,x2,...,.. xm)

(.v. . .3’:  )yt­

where k = l,2.3....m: i.e. .\‘i’s are vectors of variables ofthe driving system in

the phase space ‘D’ and yk‘s are vectors of variables of response system in the

phase space ‘R’. If the trajectories of the drive and response systems are x (t)

and y(t), then the two systems are said to be synchronised if there exists a

transformation 3 from the trajectories ofattractor in ‘D‘ space to trajectories in

‘R’ space W‘ y(t) = 3x(t) (2.2)
Various methods have been studied for synchronisation of chaos suited for

different applications. Pecorra and Carroll ”""‘3l initiated numerous studies for

synchronisation of chaotic systems and developed efficient methods for the

same, which have been found useful for different applications. Synchronisation

has been effectively made use of for estimating unknown parameters of a

system from a single variable time series. ‘~“

K) ‘J:
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2.1.1. METHODS OF SYNCHRONISATION

In order to achieve synchronisation between two chaotic systems, there should

be some type of coupling between them. The type and form of coupling are to

be decided depending on the particular system and the application for which

synchronisation is sought for. Numerous methods have been tried by various

scientists for inducing synchronisation in almost all types of dynamical

systems, e.g. global coupling‘-"1, output feedback control“, using hliding

differentiatorsm and variants of the abovc.""‘7*” ""2 ln general, these can be

divided into two types viz. drive response scheme and coupling scheme.

2.1.1.1 DRIVE-RESPONSE SCHEME

This system consists of a driving system that is chaotic, and a response system,

a sub system of the driving system”°~’°'. The drive and response systems are

coupled uni-directionally i.e. the variables of the response system are dependent

on the drive system, but the variables of the drive system are not dependent on

those of the response system. Fig 2. represents the above system.

‘  ResponseDrive

Fig 2.1

Drive-Response scheme
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2.1.1.2 (.‘0L'PL|.’\'(.‘ S('lll-.‘.\ll-_"

The second type of coupling scheme includes two identical chaotic systems

with a provision for slight differences in the initial conditions‘“‘”‘. Coupling

between the two systems can be unidirectional or bi-directional which can be

chosen appropriately. In this coupling scheme, the direction and form of

coupling have to be chosen by trial and error and adjusted suitably. Fig 2.2 is a

schematic representation ofthe general coupling scheme.

System 1 T’ System 2

Fig 2.2

General coupling scheme

‘r Occasional coupling

Occasional coupling is a subclass of the drive-response scheme mentioned

above. As the name implies the system consists of a drive and a response

system but the coupling is given only occasionally. The response will be

influenced by the drive only for a specific interval of time called the

synchronisation phase during which the two systems get synchronised. For the

next time interval called the autonomous phase there is no coupling between the

drive and the response systems. Appropriate coupling parameter that is to be
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fed into the response system during the synchronisation phase is to be decided

according to the system and its specific application. Appropriate choice of

duration of synchronisation and autonomous phases can provide an exponential

decay of synchronisation error*“. This method can find application in the licld

of chaotic encryption where the message masked by the chaotic carrier can be

transmitted in the autonomous phase.

P
D .rive I Response_ ?Input output input output

Fig 2.3

Synchronisation phase

D ' R Il‘lVe esponse
input output input output

F in 2.4

Autonomous phase
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‘P Variable feedback

In the variable feedback scheme‘*', among the systems that are to be

synchronised one acts as the master and the other acts as its slave. A fraction

ofthe difference between the outputs ofthe master and the slave is fed back to

the input ofthe slave system. The form of feedback function and the threshold

value of the feedback fraction that can effectively synchronise the particular

system are to be chosen appropriately. This is a modification of the method

introduced by Pyragasll“ This scheme can prove to be useful when the master

and the slave are at two distant sites like communications systems where the

transmitter can act as the master and the receiver can act as the slave.

TD output
intput

Feedback

Feedback generator

intput output
Fig 2.5

Variable feedback scheme
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> Linear feedback control

This is a conventional engineering technique and is based on the concept of

stabilisation of unstable periodic orbits ofthe chaotic systems. The designing of

appropriate feedback functions demands the knowledge of the full state of the

systems. This is also called model predictive control 14"‘.

Apart from the above mentioned schemes, there are other methods such as
37}phase controlling‘ , parameter controlling‘’'‘’ and, driving two systems having

identical chaotic signals with an external source ”""‘°‘ being used
contemporarily.

2.1.2. TYPES OF SYNCHRONISATION

Synchronisation of any two dynamical systems is dependent on the state

variables and the degree of correlation among them. Depending on the degree

of correlation between the state variables of the systems, several types of

synchronisations have been identified.

2.1.2.1 GENERALISED SYNCHRONISATION

In the equation

)'(t) =3 [X(t)] (2-4)
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when the form of 3 becomes more complicated, the parameter space plot will

not show a straight line. It will appear. instead. a more complicated object. This

kind of synchronisation is called generalised synchronisation“. In this case

parameter space plot will not serve the purpose. Therefore other methods such

as mutual false nearest neighbours or calculation of synchronisation index have

to be adopted.

2.1.2.2 PHASE SYNCHRONISATION

Two chaotic systems are phase synchronised when suitably defined phases of

two systems get locked to each other, i.e.

nd).—m¢_~. = K. a constant (2.5)

while their amplitudes remain uncorrelated and sustain independent irregular

motionsl"'.

2.1.2.3 LAG SYNCHRONISATION

Two chaotic systems are lag synchronised when their corresponding state

variables coincide when shifted in timeml. Lag synchronisation can be defined

as another form of generalised synchronisation with the form of 3 defined in

terms oftemporal displacement ofthe interacting systems, i.e.

x;(t+r) = y;(t) (2.6)

3:]
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2.1.2.4 EXACT SYNCHRONISATION

To study this type of synchronisation a quantitative measure called
synchronisation error is used. Synchronisation error can be defined as the
difference between the corresponding state variables ofthe two systems i.e.
‘F. = x;(t) - yi(t). Ifthe synchronisation error exponentially converges to the
origin, then the two systems are said to be exactly synchronised “°', i.e. at a
finite time x;(t)= y;(t)

2.1.2.5 PRACTICAL SYNCHRONISATION

Two chaotic systems are said to be practically synchronised. ifthe difference

between synchronisation error converges to a neighbourhood around the origin

"“', i.e. for all time, t t‘,xi(t) y;(t) (2.7)
2.1.2.6 COMPLETE SYNCHRONISATION

Two chaotic systems can be considered as completely synchronised if, and only

if, all states of both the systems are practically or exactly synchronised“. e.g.

consider two, three dimensional chaotic systems

X (x1,x2,x3) (2.8)
Y()’i,Y2,Y3) (2-9)
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where the state variables ofthe first system are xi. X3. X3 and the state variables

of the second system are yl, yg. y3_ The synchronisation errors, 'E;. can be
defined as

'E =xi(t)—y~.(t); (210)
'E2 = X20) — Yzlt): (2-l 1)
'E3 = X3(1)— Y3(l) (2-12)

The two systems are said to be completely synchronised after a finite time ‘t’, if

all the three errors exponentially decay to 0 or to at least nearly zero values.

2.1.2.7 PARTIAL SYNCHRONISATION

Consider the above dynamical system itself where x1, x2, x3 and y., y2, y; are

the state variables and 'E., 'E2, and E; are synchronisation errors. Partial

synchronisation is defined as a condition where at least one of the states is

either practically or exactly synchronised and at least one is neither practically

nor exactly synclironisedml, i.e. at least one of the three synchronisation errors

should exponentially converge to zero at finite time and at least one should not.

2.1.2.8 ALMOST SYNCHRONISATION

This is similar to the phase synchronisation mentioned earlier. Almost

synchronisation can be defined as two systems having their phase oscillations
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correlated and amplitudes uncorrelated""‘. The phase can be suitably defined

depending on the system and its particular application.

2.2 SYNCHRONISATION OF CHAOTIC LASER SYSTEMS

Laser systems provide an excellent example of high dimensional real chaotic

systems. Important applications of high dimensional real chaotic systems are in

the field of high-speed optical communication and design of high power optical

sources. Most of the modern communication devices are opto-electronic or, all

optic.

Winful et.aI. “"1 first predicted the possibility of synchronisation of chaos in

semiconductor lasers inl990. This was followed by an experimental

verification of synchronisation in a bi-directionally coupled system of two

Nd:YAG lasers by Roy et.al.”" in 1994. It was in the same year that Sugawara

cm/. 3”‘ demonstrated experimentally that two chaotic CO3 lasers could be

synchronised by modulating the saturable absorber in the cavity of one of the

lasers with the output ofthe other. Their works signalled a breakthrough in the

field of synchronisation of chaotic lasers, since these were the first experimental

evidence of synchronisation of chaotic lasers. It was in these works that the

simple method ofa bi-directional coupling was first proposed for the purpose of

synchronisation of chaotic laser systems. The coupling was given by an overlap

of the intracavity laser fields. Study of synchronisation of semiconductor lasers

was also independently considered by Mirasso et.al.l”‘ in 1996. The following

34



2 Swzc'/zrorzisation and Control

years witnessed various developments in similar works aiming at applications

in various technological areas. Important among them are those of Lodi et.al.

'5", Hohl et.al.l55‘, Goedgbuer et.a[. '5“, Van Wiggeren et.al. “l” 5*”, and

Sivaprakasam et.al. ‘5“' in 2000. Last few years. have witnessed tremendous

progress in this area of research where chaotic semiconductor lasers made

greater impact in scientific and technological innovations.

2.3 CONTROL OF CHAOTIC SYSTEMS

Until the discovery of deterministic chaos, chaotic behaviour of non-linear

dynamical systems was mostly described as noise and hence was not given

much attention. Now that the study of chaos has become a part of general

science, scientists have started accepting its presence and they expect their

systems to show this nature sometimes somewhere in their evolutionary

process. Under such circumstances the question that evolves is that, when such

uncontrolled erratic behaviours gets into the system trajectories how can we

control it and take the system back to our desired working zone or, in other

words, how can we control chaos? There are a handful of situations where

chaos is undesirable such as arrhythmias ofthe heart, the most devastating of its

kind to fallacious decisions ofartificial intelligence systems.

The first attempt to control chaos was made by Pettini l‘’‘’' in 1988 by

introducing some suitable time dependent variations into certain parameters so

as to control chaos. Later in 1990, Ott, Grebogi and York l“" developed a more
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general method based on their observation that a chaotic attractor is composed

of an extremely dense set of unstable periodic orbits. Thus, controlling a

chaotic system becomes a process of stabilising aniy of these orbits by

continuously applying small time dependent perturbations to a variable system

parameter. The method employed is that after extracting the Poincare section,

the desired unstable periodic orbit that is to be stabilised, is selected. Now the

system is allowed to run freely on the chaotic attractor until it approaches the

desired unstable periodic orbit. At this point the driving parameter ofthe system

is suitably perturbed so that the system never leaves that orbit. Another

approach devised by Hunt'‘’” in a diode resonator circuit in 1991 did not demand

the knowledge of Poincare section. In this method the difference of the chaotic

output from a predefined reference value is calculated and is used to perturb the

driving parameter of the system. A novel method that was devised by Murali

and Lakshmananl“-‘l in I993, employs introduction of a second periodic signal

generator in series with the original so that a quasiperiodic driving occurs

which effectively suppresses chaos. Variations ofthe above methods then came

in quick succession ““"°“'J.

Control of chaos in laser systems has also attracted much attention because

laser systems can serve as models of high dimensional chaotic systems where

chaos can be undesirable and can play havoc. Roy er. al.‘°°‘ used occasional

proportional feedback for controlling chaos in Nd- YAG lasers. In 1994 a

simple feed direct feedback was used successfully by Liu cl. Ll/.“m.
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LASER MODEL AND ITS DYNAMICAL PROPERTIES

The laser model used in our studies and its general dynamical properties are described

in brief. The rate equations governing the dynamics of directly modulated semiconductor

lasers, the route taken by the system to enter the chaotic regime as also the reverse

period doubling route to enter the stable regime are described.
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3 Laser Model
3.1 LASER MODEL

The laser model used for our numerical studies and its dynamical properties are

discussed in this chapter. The laser model is a semiconductor laser with directly

modulated injection current. A semiconductor laser is a forward biased heavily

doped p-n junction fabricated from direct—gap semiconductor material. The

injected current is sufficiently large to provide optical gain. The optical

feedback is provided by mirrors, which are usually obtained by cleaving the

material along its crystal planes. The sharp refractive index difference between

the crystal and its surrounding air causes the cleaved surface to act as

reflectors“”. Semiconductor lasers are the smallest among all the conventional

lasers, their size being <lmm. Semiconductor lasers emitting long wavelengths

in the range 1.1 - 1.6 pin are of considerable interest in optical fiber

communication. The most perfect material having the above characteristics has

been identified as InGaAsP-InP combination because ofits nearly perfect lattice

match '35‘. Its active layer is composed of ln1._tGa‘AsxP..,. quaternary alloy. By

varying the mole fractions x and y, almost any wavelength in the range l.l-l.6

um can be selected. The practical semiconductor laser systems of the present

era are heterostructurc lasers in which the active region is surrounded either on

one or both sides by a material of higher band gap and lower refractive index.

This layer is known as the cladding layer. The cladding layer in the InGaAsP

laser consists of either lnP or InGaAsP itself with a different mole fraction. The

higher band gap helps to confine electrons to the active region where they can

successfully undergo radiative recombination to produce photons. The
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3 Laser Model
difference in refractive index confines the optical mode close to the active

region thus acting as a wave guide and helping to reduce internal losses. This in

tum reduces the threshold current density. Fig 3.1 shows the double
heterostructure laser model'”l.

Output photons+ Vl O­V l 2 3 _D p n
lnput photons

Fina]. I9

Double heterostructure semiconductor laser

Layer 1-p-type with refractive index n. and energy gap Eg. ; Layer 2- p-type with efractive

index H2 and energy gap Egg; Layer 3- n-type with refractive index n3 and energy gap Egg

In a double heterostructure laser the optical mode is confined perpendicular to

the junction plane because the cladding layers have a lower refractive index.

For this materials are selected in such a way that E_L.. and E.__.3 > Egg. ni and

n; < n3. The usefulness of a specific structure depends on its performance

characteristics and how well they match the requirements for a particular

application. InGaAsP lasers operating in the wavelength 1.3 -1.6 pm are used

mainly as light source in fiber communication systems.
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3 Laser Model
The laser model used in our studies is a single mode semiconductor laser, with

directly modulated injection current. The injection current is subjected to

sinusoidal modulation. The single mode rate equations"" for photon density S

and carrier density n can be represented as

E I n
dt =q—V—-z:—A(n—nn)S (3.1)d5’ 5—— = FA(n—n0) ——+ M1 (3.2)dt rp 2',

where n is the carrier density, S is the photon density, 1 is the injection current,

q is the electron charge, V is the active volume, re and t,, are the electron

lifetime and the photon lifetime respectively, A is the gain constant, no is the

carrier density required for transparency, [3 is the spontaneous emission factor

and r is the confinement factor.

In the above equations, a small power dependent reduction in the mode gain is

to be accommodated so as to model the dynamics perfectly. This reduction in

the mode gain occurs due to nonlinear phenomena like spectral hole burning.

Thus the rate equations‘ 2” becomes

d I
:1§=q—V——::-A(n—nU)S (3.3)dS 5
7 = rA(n — n0)(1— a,,,s)s — — + mi (3.4)I T T,P C

where am is the nonlinear gain reduction factor.
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3 Laser Model
These equations can be normalised and made dimensionless by defining the

normalised carrier density N and normalised power P.

N = — and P = —nil: SU

where 50 = Flilrzm and n,,, = no + (FA rpll is the threshold carrier density.7' ,

Thus equations 3.3 - 3.4 take the formm

d_/y_[il"L“i N {(.»\"—(>‘)}Pl 352‘ re l1,,,l (1.5) J ‘°’
dP_{i 't1v—1) ‘l
E—LTPBU_0,)(1—.eP)P—P+gvJlJ (3.6)
for the sinusoidal modulation ofthc injection current

1(z)= 1,, + ImSin(27f”t) (3.7)
where Ilh = qVn,h/re is the threshold current, 6 = no /nm, 5 = e,,.So, lb is the bias

current, Im is the modulation current and fm is the modulation frequency.

Numerical studies of these equations show that output of such lasers can show

chaotic behaviour with increase in the modulation index m=lm/llh. The route

taken by the system for reaching the chaotic state is found to be the period

doubling route. The phase diagrams at each stage of period doubling of the
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3 Laser Mode!
Output are shown in Fig 3.2 a-d, for f... = 0.8GHz. However. higher value of 5

induces suppression of chaos. The reverse period doubling route to stability is

shown in Fig 3.3 a-d. It has been proved that the practical value of cm for

lnGaAsP laser are higher than the critical value of 0.0] that is sufficient to

suppress chaos at modulation frequencies around 1 GHZ '3”. Modulation

frequency has little effect on the output dynamics.

_ G)
2

1.5D. L}.
1

05.  /
3.95 51 - 105
5 /\ (cl4.

1 fl11 2 / ‘ :1./.. \\It \  ‘lO1 1.1N N
Fig 3.2

Period doubling route to chaos with respect to modulation index m.

a) m = 0.4 b) m = 0.45 c) m = 0.49 d) m T 0.55

N - Nonnalised carrier density; P — Normalised output power
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3 Laser Model

Fig 3.3

Reverse period doubling route to stability with respect to nonlinear gain reduction factor 2

a)c=0.00l b)e=0.00l7 c):-:=0.003 d)e=0.0l3

N - Normalised carrier density; P ~ Normalised output power

The appropriate parameter values for typical semiconductor laser in the chaotic

range are shown in Table 3. l. Lyapunov exponents have been calculated '7” for

this system in their chaotic range as +1928 X 10-4.
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3 Laser Model
Table 3.1

Parameter values for semiconductor laser in chaotic regime

Parameter Value
re, electron lifetime 3ns

gmphoton lifetime 6ps5 0.692
Fm _.__,_.__.._._.  0.-.3.GH7.,. .1|]-. 26Il'lA1., 1.51”,In, 0.3 1“,13 5*l0"(-5)E 0.0001

The above study indicates that strong modulation of injection current and low

values of nonlinear gain reduction can induce chaos in the outputs of

semiconductor lasers. Thus, by reducing the nonlinear gain suppression {actor

of lnGaAsP lasers chaos can be induced in the output of such lasers, which can

be harnessed for suitable application such as chaotic encryption, designing of

high power coherent semiconductor arrays etc.
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EFFECT OF UNI-DIRECTIONAL AND Bl-DIRECTIONAL

COUPLINGS ON SYNCHRONISATION OF

TWO DIRECTLY MODULATED SEMICONDUCTOR LASERS

The results obtained in our studies on synchronisation of two directly modulated

semiconductor lasers using uni-directional and bi-directional coupling schemes are

presented. The major finding in our investigation is that bi-directional coupling scheme

could provide exact synchronisation between the two lasers and also could control

chaos. Uni-directional coupling could induce only practical synchronisation.
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Um'—DirecIionaI and Bi-Directional Coupling

4.1 INTRODUCTION

Application of an external force has been found to drive a system to the desired

states"""“. Providing a coupling between any two similar systems can

effectively induce synchronisation between them. From the preliminary studies

of dynamic evolution such as the study of two pendulums hanging from the

same rod, synchronised oscillations after an interval of time has been well

established. During the past few years several scientific groups have

concentrated their studies on the different aspects of synchronisation '7“7"‘.

Coupling in one direction (uni-directional) is found to be capable of inducing

synchronisation ‘"1. The effect of such a type of coupling has also been studied

in laser systems‘”"". Coupling in both directions (bi-directional) has been found

to be effective both in synchronisation '5'-”""' as well as in the control of chaos
[$3.84]

In this chapter we discuss the effects of these two types of couplings on

synchronisation of two directly modulated semiconductor lasers. In the uni­

directional coupling scheme, a current proportional to a small fraction of the

output of the first laser is fed to the input of the second, and the synchronisation

properties of the systems with respect to the coupling strength are studied. In

the bi-directional scheme '“5‘, a coupling current proportional to a small fraction

of the output of the first laser is given to the input of the second laser in

addition to its injection current and similarly a current proportional to a fraction

of the second laser is fed to the input of the first laser. Both lasers have their
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4 L/Iu'-[)irccII'r)I1u/ and B1—l)n'ct'/mnu/ Coupling

individual driving currents in addition to these feedback inputs. The fraction

that is fed to both the inputs is kept the same during one case study. By

changing this value. synchronisation and other dynamical properties are
studied.

4.2 UNI-DIRECTIONAL COUPLING SCHEME

Uni-directional scheme can be considered as subclass of the drive-response

scheme with no particular modification made to the feedback input. But here

the drive and response lasers are almost identical systems. The questions

addressed are: i) whether a simple feedback can induce any significant changes

in the dynamical behaviour of such systems‘? ii) what is the minimum

requirement for achieving synchronisation between such lasers‘? iii) what are

the types of synchronisation that could be achieved?

4.2.1 COUPLING SCHEME

The model system consists of two identical semiconductor lasers operating in

their chaotic regimes with starting from slightly different initial conditions. The

injection currents are sinusoidally modulated. One of the two systems runs

totally independent of the other. However the second system receives a

milliampere current proportional to a fraction of the output of the former. The

schematic representation ofthe system is presented in Fig. 4.1.
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4 Uni-Directional and Bi—DirecIi0na/ Coupling

Laser 1 ' Laser 2

Coupling generator

Fig 4.1

Uni-directional coupling scheme

1. —Input current oflaser l ; I2 —lnpuI current of laser 2 ;

P. - Output power of laser lPg — Output power of laser 2 ;

l_; -- Coupling current

The rate equations representing the dynamics of the above discussed coupled

lasers can be written as

%=l%lll%;l~~«—l‘E%;’lPf
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4 Um'—Directi'ona/ and Bi-Directional Coupling

if = l(llV'_:;l)l(1 — aP.)P. - P, + /Nll (4.2)
/,(z): 1,, T /,,,.S‘/;z(2,1z7’,,,:) (4.3)

fl- L Q- ._ (N:-0‘) "dz —lr.Jll,.i ~ {(1.5) lel
dP3_ L (N3—1)i_ _ 1?‘{z_pj[{ (l_0.) ll   (4-5)
12(:)= 1,, + ImSin(27gfmt)+ Gx 1“ (4.6)

G = (cx1>.)x10'3 (4.7)
where C is the coupling strength, N1. N3, are the (;ari'icr densities of laser 1 and

laser 2. P., P3 are the normalised power oflasers 1 and 2 and, lg; is the coupling

current given to laser 2. The relevant parameter values are given in Table 3.1.

4.2.2 NUMERICAL ANALYSIS AND RESULTS

The above equations are numerically simulated with the step size in the

picosecond range. Parameter space plots and synchronisation error plots are

49



4 Uni-Directi0na/ and Bi-Directional Coupling

used for studying the synchronisation properties. Parameter space plots are

drawn with the output powers P, and P2 along the two axes. Synchronisation

error is defined as'E = abs (P. —P2). A plot oftime evolution of'E is referred to

as the synchronisation error plots. For the study of output dynamics. the phase

diagrams with N and P are plotted along the two axes, are used.

The two outputs show no observable synchronisation till the coupling value

reaches 7. Fig 4.2a shows the parameter space plots for C < 7 and 4.2b shows

the parameter space plots for C > 7. As the coupling value reaches 7, even

though the outputs remain chaotic, there is practical synchronisation with

synchronisation error decaying to a region near the origin. Fig 4.3a shows the

synchronisation error plot for C< 7 and Fig 4.3b shows the synchronisation

error plot for C> 7. With further increase in coupling strength the output of the

second laser gets amplified and the quality of synchronisation decreases. When

coupling strength increases above 10 the systems lose synchronisation. In the

range C= 7-10, the type of synchronisation remains practical. There is no

pronounced effect of coupling on the output dynamics of individual lasers

except for the amplification of the output power of second laser. The phase

space plots ofthe two lasers show that they remain chaotic throughout the range

ofcoupling strengths. Fig 4.4a shows phase plots of laser 1 and 2 for C = 2 and

Fig 4.4b shows phase plots of laser 1 and 2 for C = 20. The absence ofa closed

loop indicates that the outputs are chaoticml. This study reveals that uni­

directional coupling between two chaotic semiconductor lasers can induce only

practical synchronisation for a small range of coupling strength.
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4 4.5 5

3 I V I I I I W I
(bl

4.5 5

Fig 4.2

Parameter space plot for uni—directional coupling for

(a)C<7 (b)C>7
P, Output power ul‘|uscrl ; I’; Oulpul pmxcr ul‘l;m'r3
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4 Um”-Directional and Bi—Directi0nal Coupling

2:. no

00  200;" L%k[[ltm[U£l£€£UJLLE£.££{LhUu1Jp£Om W
t(P3)

Fig 4.3

Synchronisation error plots for uni-directional coupling for

(a)C<7 (b)C>7

'E — Synchronisation error ; t - time in picoseond
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4 Um"-Directional and Bi-Directional Coupling

1_1 N1

1.1 N1 (b)

Fig 4.4

Phase space plots for of lasers I and 2

(a)C=2 (b)C=20
N. — Carrier density oflaser I 1 N3 — Carrier density oflaser 2 1 P._ — Output power of laser l

P; — Output power of laser 2

LII Lu
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4.3 BI-DIRECTIONAL COUPLING

A method ofbi-directional coupling has been recently employed to stabilise or

control the chaotic outputs of directly modulated semiconductor lasers "“’“”.

This scheme is used in our studies for synchronising the outputs of two such

lasers with different initial conditions‘“‘. Coupling is given by providing a

small current proportional to the output of the first laser to the input of the

second laser and similarly from the output ofthe second to the input ofthe first.

The effect of the coupling strength on synchronisation and other dynamical

properties of the two systems is studied using parameter space plots,

synchronisation error plots and phase diagrams.

4.3.1 COUPLING SCHEME

The model system used for our numerical study consists of two identical

semiconductor lasers operating in their chaotic regimes starting from slightly

different initial conditions. The injection currents are sinusoidially modulated.

A coupling current proportional to a small fraction of the output of the first

laser is fed to the input of the second laser and similarly a current proportional

to the output of the second laser is fed to the input of the first. Thus the output

power of laser 1 will influence the dynamics of laser 2 and similarly the output

power of laser 2 will influence the dynamics of laser 1. The schematic

representation ofthe bi-directionally coupled directly modulated semiconductor

laser system is presented in Fig. 4.5.
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Coupling generator

»
Laserl _j ’

Pl

—ll—­

‘ i

5 Laser 2

Coupling generator

Fig. 4.5

Bi-directional coupling scheme

l. — Input Current oflaser 1 ; lg — Input current of laser 2 ; P. — Output power oflaser l ;

P; — Output power oflaser 2; lc. — Coupling current given to laserl ; L3 — Coupling current

given to laser2

The rate equations governing the processes are as follows

[I  : [h + Inns‘!-n(2/#int)+ GI X [(5,
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4 Um'—Direcli0nal and Bi-Directional Coupling

"2“:=l%lll%:l*”~l%lPsl <4”
dpz _  (N: '"1) _ _ 1
dz -ET” (F5) (1 £P;)P; /’:+fl/Vgfl (4.12)
13(1): 1,, + /,,,5m(2z;/;,,z)+ G, x /(3 (4.13)

G. =(CxP2)x10'3 (4.14)
G2: (C><P1)xlO'3 (4.15)

4.3.2 NUMERICAL ANALYSIS AND RESULTS

The rate equations are solved numerically using the fourth order Runge-Kutta

method with parameter values as in Table 3.1 and step size in the picosecond

range. The parameter space plots with the output power P , and P2 along the two

axes and synchronisation error plot showing the time evolution of the

synchronisation error'E = abs(Pi - P3) are drawn for each value of the coupling

strength C for checking synchronisation. For low values of C the initial error

increases to very high values and remains high even in the long run. This

indicates a lack of synchronisation between P. and P2. Above the value 2 of the

coupling strength, the outputs start getting practically synchronised, i.e. as C

increases the error, even though initially grows to slightly high values, soon

decays off to near zero values within a few nanoseconds. At C = 2.6 the type of

synchronisation becomes exact with error decaying to zero. Fig 4.6a, b and c

represent the parameter space plots for C < 2, 2 < C < 2.6, C 2.6 and Fig 4.7a,

b and c represent the synchronisation error plots for C < 2, 2 < C < 2.6, C 2.6

56



4 UnI'-Direc'I((m(I/ and Bi-Direc'II'0nu/ Coupling

‘ ta)

5 P15
‘V (b)

5 P1 5B I I I I IP2 _ _ ft)4. fF_._,_..-~ —- .
;d"""-Fit!’-(H2' f#_l__,..-o-""' ‘U 1 I 1 I 10 1 2 3 4 5 P1 5

Fig.-1.6

Parameter space plots For bi-directional coupling

(a)C<2 (b)2<C<2.6 (c)C 2.6

P, — Output power of laser I ; P3 — Output power of laser 2
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mi . I“! 0!! 4;
I ' 0' h _. .|'time(pS). . ‘. .  ..y . .11. .-'|Im..l . , h.l...‘..v.L‘ Lr.|....y.|‘.

0 2000 4000 6000 8000 10000 1 2000

(b I' |
I0. ]
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time (p8)

0 2000 4000 6000 0000 10000 120001 I I I r lE _(C ‘9- 1
OUL_ J _ _ _ time (pS
0 2000 4000 6000 0000 10000 12000

Fig 4.7

Synchronisation error plot for

(a)C<2 (b)2<C<2.6 (c)C 2.6
'E — Synchronisation error
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4 Um’-Directional and Bi-Directional Coupling

As C is increased further above 2.6 the output dynamics of the two lasers

changes. The phase diagrams in Fig. 4.8a-d indicate that the systems undergo a

reverse period doubling with a period four cycle at C‘=6: a period two cycle at

C=9; and a period one cycle at C: I 7.

gm
0_ ,211 N1 1 1.1 N1

Fig 4.8

Phase plots of lasers for coupling strength

(a) C=2.6 (b)C=6 (c)C=9 (d)C= 17

N. —Carrier density oflaserl ; N3 —Carrier density oflaser2 ; P. — Output power oflaser 1

P3 — Output power of laser 2
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4 Um'—DirectianaI and Bi—Direct1'ona1 Coupling

For coupling values l to 17. the time series of P. and P3 slums a double peak

structure, which is a manifestation of relaxation oscillation. For C values above

18 this second peak inside a single modulation period almost disappear,

simultaneously with an increase in the output power. The time series of the

outputs P1 and P; for C = 2 and C = 20 are shown in Fig 4.9a and b. The time

series of output P] at C = 20 shows the increase in the output power.

e[—-~~ —« Ar] (3) 8- ~-  --«
P1|

,__,___l 1
|l[!‘|[l|‘ll“|lf‘ll5lilll!|r it ‘
lllllllllllllllllllllllrlllltlll
:ll*‘|il|ll.* ll  ~ ‘

T elps)
0 zooo .2000 6000 0 2000 4000 eooo

Fig 4.9

Time series of output powers of lasers I and 2 for

(a)C=2 (b)C=20
P. — Output power of laser 1 ; P2 — Output power of laser 2
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For C = 18 to 25 the suppression of double peak that is cxident from the

defonnation ofthe phase plot becomes more pronounced and when C = 26. the

phase diagrams become a single closed curve without the notch that was

present for low values of C (Fig 4.10). This confirms the suppression of the

double peak structure.

55:50; . . 1 1 . . . . I
0.9995 1 1.0005 1.001 1.0015 1.002 1.0025 1.003 1.0035 1.004 1.0045

N

Fig 4.10

Phase space plots of laser I and laser 2 for coupling strength C = 26

N —Carrier density of the lasers P —— Output power of the lasers
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A reverse period doubling route to stability, suppression of the double peak,

and high increase in the output power are apparent hcrc. Above all, there is

synchronisation between the two outputs at all these stages of the system

dynamics. With the introduction of the CF; in the above equations for making

the coupling bi-directional we achieve synchronisation, reverse period doubling

and suppression of the second peak together with an amplification of the output

power

The double peak within a single modulation period has been explained as a

manifestation of relaxation oscillation, which gets damped by an increase in e,

the term governing nonlinear gain reduction“. In this situation the double peak

structure and period doubling are suppressed by an increase in 1:, but at the cost

of the output power. However, our method, based on the results obtained,

shows a definite advantage as it provides an alternate method for suppressing

the chaotic nature and the second peak together with an increase in the output

power‘’‘‘“‘.

To check the stability of the synchronised state, we perturb the system after it

achieves synchronisation. When the error becomes low such that the system

can be considered in synchronisation, P; and P2 are in such a way that the

synchronisation error is made as large as it was in the beginning. This is done

for each value of coupling strength and the corresponding error plots are taken.

For values of C less than 2, since the system never achieves synchronisation,

artificial perturbation is not applied. Above the threshold a perturbation is
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4 Um’-Directional and Bi-Directional Coupling

applied when the two outputs are in synchronisation. The corresponding error

plots are shown in Fig 4.1 la and b. For low values of C, where the system

outputs are chaotic, the perturbation grows to slightly high values but

eventually decays to almost zero within an interval of about 20 nanoseconds.

For higher values of C. this interxal gets reduced to around one or two

nanoseconds. This shows that the stability of the synchronised states increase

with increasing values of C. Thus by choosing appropriate coupling values, we

can choose among chaotic synchronisation. suppression of chaos. or high gain

outputs. All these results are summarised in Table 4.] showing the different

coupling values and the corresponding dynamics ofthe systems.Ob - - - I
0.5

0.4

llltu . [ingest0 2000 4000 6000 8000 10000 12000
Fig 4.! l 21

Error vs corresponding time with perturbation for coupling strength

forC=6

'E —Synchronisation error

63



4 Um'—Direcli'orial and Bi”-Directional Coupling

0.30.25“ ­
0.1- 40.05 ‘

0 2000 ‘ 4000 6000 8000 10000 12000
Fig4.llb

Error vs corresponding time with perturbation for coupling strength

for C = 20

'E —Synehronisation error

The above study shows that bi-directional coupling is more effective in

inducing synchronisation between two directly modulated semiconductor

lasers. Bi-directional coupling can synchronise the two outputs for lower values

of coupling strength than the uni-directional coupling scheme. Uni-directional

coupling can result only in practical synchronisation whereas bi-directional

scheme can provide exact synchronisation between the two outputs. In addition

bi-directional scheme can control the chaotic outputs and bring them to stability

for strong coupling strengths together with suppression of double peaks in the

outputs and output amplification.
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Table 4.1

Coupling strength and the corresponding dynamics

Coupling strength i
C Dynamics i Synchronisation
1,2 Chaotic No

3 to 5 I Chaotic I Yes6 Four cycle Yes
7,8 Four cycle Yes

9 to 16 Two cycle Yes
17 to 25 One cycle Yes
26 One cycle Yes
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VARIABLE FEEDBACK METHOD FOR SYNCHRONISATION

OF TWO DIRECTLY MODULATED SEMICONDUCTOR

LASERS

The results of our studies on synchronisation of two directly modulated semiconductor

lasers using the variable feedback method are presented in this chapter. The results

indicate that there is a critical value feedback fraction that can induce synchronisation

between the two lasers. The type of synchronisation that could be achieved is exact.
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5 Variable feedback
5.1 INTRODUCTION

A very important characteristic of semiconductor lasers is its unique output

wavelength that matches with the optimal perfomiance of the optical fibers and

that is one of the reasons why it remains a subject for active discussion and

intense research. Feedback methods are widely used for the control and

synchronisation of two or more chaotic systems. Some of the methods currently

in use are the following

1) Giving a proportional feedback from another system””‘

2) Occasional proportional feedback from another system”‘”’

3) Self- feedback for intensity noise control"“"

4) Varying self feed back‘‘“-’‘‘'.

A variation of the method 4 mentioned above‘‘‘”, introduced by Ali for

synchronisation of two logistic maps‘'’‘’‘ is the variable feedback method. This

method was later studied in detail by Morgu|'“". This is the method adopted in

our study“"‘ for synchronisation of two chaotic semiconductor lasers.

5.2 VARIABLE FEED BACK SCHEME

We employed a drive response scheme where one of the two lasers is taken as

the drive laser and the other as the response laser. The drive and response

lasers are identical semiconductor lasers. Both these systems operate in their
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chaotic regime. but start from slightly different initial conditions. Outputs of the

drive laser and response laser are fed to a feedback generator where a fraction

of the difference between these two outputs (i.e. the synchronisation error) is

generated. A feedback current proportional to a small fraction of this value is

fed to the input of the response laser in addition to its input current. This

scheme is numerically implemented and studied. The feedback function defined

at each step will be different since the outputs are chaotic and different from

each other. The schematic representation is shown in Fig 5.1

)1'?’ Laserl 51‘

Feedback generator

lm

Laser 2
17

Fig 5.1

Variable feed back scheme

1, and [3 are the input currents of lasers 1 and 2 ; P. and P; are the outputs of lasers l and 2 ;

In, is feedback current
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5  Variable feedback

The rate equations governing the dynamics ofthe system represented in Fig 5.1

can be written as

%=l%lil>’il"”"l‘iY‘$$’}'*l <5“

‘-2? =  — a°.)R — R + WH (5.2)
1,(z) = 1,, + ImSin(27gfmt) (5.3)
div, _ 1 12 (N, — 5)dz “”=‘i (1—6)iP’i ‘S-4’
:i;2=[;1;]H(—(1%(1—a%)B -P2 MMH (5.5)
1, (z) = 1,, + 1,,,sm(2:_zf,,,:)+ G x 1,,, (5.6)

where G is the feedback function defined as

G = r (P1-P2)xl0'3 (5.7)
5.2.1 NUMERICAL ANALYSIS AND RESULTS

The above rate equations are solved numerically using fourth order Runge­

Kutta method. The time step used in the calculations is in the picosecond

range. The appropriate value of feedback fraction ‘r’ that can effectively induce
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5 Variablefeedback
synchronisation between the two systems is to be decided by trial and error

method. The relevant parameters are given in Table 3.1.

The value of ‘r’ is slowly increased from 0 and synchronisation is checked at

each value. For checking the synchronisation between the two systems,

parameter space plot and the synchronisation error plot are used. The parameter

space plot contains P1 along the x axis and P2 along the y axis. The

synchronisation error is defined as the difference between the two outputs, i.e.

'E = abs(P.-Pg). Synchronisation error is plotted against the corresponding time

in the synchronisation error plot. Synchronisation error plots reveal the time

evolution ofthe synchronisation error.

Results of our study indicate that there is a critical value of the feedback

fraction above which the two systems synchronise with each other. Below this

value the two outputs remain uncorrelated with each other. This critical value

of the feedback fraction ‘r’ is found to be 7. Fig 5.2a, b shows the parameter

space plots for ‘r’ below and above this critical value. The two systems achieve

synchronisation above the critical value, the synchronisation type being the

‘exact’. For low values of ‘r’, the synchronisation error initially grows to higher

values and never decays off. But as ‘r’ becomes 7 the synchronisation error,

even though initially grows to some higher values, soon decays off to zero. Fig

5.3 a, b shows the synchronisation error plots before and after achieving

synchronisation.

7|



5 Variable feedback
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Fig 5.2

Parameter space plot oflaser I and 2 for

a) I‘ < 7 b) r 7
P.-output power oflaser 1 ; P2-output power oflaser 2
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5 Variable feedback
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Synchronisation error plots for

a) r < 7 b) r 7
'E - synchronisation error

These results indicate that for synchronising similar semiconductor lasers with

slightly different initial conditions the variable feedback method is more

effective than the uni-directional method. However. compared to the bi­

directional coupling scheme, which can suppress the chaotic fluctuation of the

laser output the variable feedback method is not effective in controlling chaos.
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5 Variab/efeedback
The usefulness of a method, anyhow, depends on the effectiveness of that

method for the particular application for which it is used. On this basis it is

reasonable to assume that the variable feedback scheme will be appropriate for

applications in the field of chaotic communication systems, where the drive

response scheme is the most suitable one.
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CHAOTIC ENCRYPTION USING LONG WAVELENGTH

DIRECTLY MODULATED SEMICONDUCTOR LASERS

A new feedback function called the Proportional-integral (P-I) feedback is

introduced for synchronising two chaotic direct current modulated long

wavelength semiconductor lasers and is applied to the secure communication

system. Encoding of the message is achieved by direct amplitude modulation at

the output of the transmitter. The message is decoded at the receiving end by

synchronising it with the transmitter employing the (P-I) function optimised for the

semiconductor lasers.



6 Chaotic Encryprion

6.1 INTRODUCTION

The communication system has undergone revolutionary changes from the days

of Graham Bell and today is almost considered synonymous with a measure of

human progress and civilization. Every form of life on earth has its own mode

of communication. Human beings communicate with each other through the

medium of language as well as gestures. With the territorial development ofthe

world, the need for distant communication became inevitable and in the present

world scenario the need for secret communication is increasing. A conventional

communication system consists of a transmitter, a receiver. and a transmission

channel. The transmitter should have a message generator and a carrier wave

generator. The receiver should contain a decoder for the process of decoding

the messages from the received composite signal. Encryption is the process by

which a message, either electronic or optical signal, is transmitted

confidentially to a receiver. To accomplish this the carrier signal should play

the role a masking signal.

6.2 CHAOTIC ENCRYPTION

The distinctive features ofa secure communication system are

i) ability of the carrier signal to shield the message from
eavesdroppers.

ii) easy separation of the masking signal at a distant site (receiver end)

without any loss of the information.
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6 Chaolic Enc'r_t'pn'ori

Messages can be encoded and decoded by various methods. Encoding is the

process of mixing the carrier and message signals and decoding refers to the

filtering of the carrier from the message. In the conventional methods that use

noise signals for masking, the messages can be easily decoded by using suitable

noise filters thus making the message amenable for tapping orjamming. In this

context it becomes very essential to develop a method of communication.

particularly in matters connected with national security. safe conveyance of

secure scientific data etc. that is tamper proof and can maintain its

confidentiality until it reaches the intended hands. Chaos can play significant

role in this respect. The necessary characteristics of a message carrier are

matched in full by the unpredictability and possibility of synchronisation of a

chaotic system, which makes it an ideal choice to act as a carrier for message

encryption. When the carrier/' masking signal is chaotic the use of conventional

filters for decoding will not be fruitful since these are signals generated by

some detenninistically evolving dynamical systems.

When the carrier signal is chaotic, the nonlinear interactions between the carrier

and message generators will result at times in characteristics of the transmitted

signal which bear no resemblance at all with the combining frequencies. This

would result in difficulties in retrieving the original message frequency. At the

receiver end the filtering unit should identify and replicate the chaotic signal for

proper unmasking ofthe encoded message. For this purpose the receiver should

get perfectly synchronised with the transmitter and therefore chaotic

synchronisation assumes much imp0rtance“”""". Several methods have been
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6 Chaotic Encryption

proposed for achieving chaotic encryption such as chaotic masking‘””"””, chaos

shift keyingl“-9’-’°“‘ '°” and chaotic modulationl'°‘“°‘”.

Semiconductor lasers and Erbium doped fiber lasers are the most efficient

optical sources in the present day communication systems. Secure

communication wherein the message is hidden and transmitted has been
l""""-“""’”’r""'. Semiconductor lasersachieved with various types of such lasers

emitting radiation in the long wavelength region (1.3 -1.5 pm) are very useful in

optical communication systems since they can provide large bandwidth for

transmission in contrast to electronic systems. Minimum loss and dispersion of

radiation in this wavelength window is a characteristic feature of optical fibers.

They also allow a higher bandwidth compared to their electronic counterparts.

Hence a combination of semiconductor lasers and optical fibers can serve as a

very effective tool in long distance communication. In this chapter we are

discussing the synchronisation of chaotic long wavelength directly modulated

semiconductor lasers and their application in secure communication"'”.

6.3 MESSAGE ENCODING AND DECODING

Encoding and decoding of the message is shown in Fig. 6.1. The

transmitter end is equipped with a message generator, carrier chaos

generator (drive) and a modulator that adds the message on to the chaotic

carrier waveform. A semiconductor laser is used as the chaos generator,

which also acts as the drive for the response at the receiver end.
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Fig 6.1

Encoding and decoding scheme

The message encoding is done by a simple amplitude modulation at the

transmitter output. The message is added to the chaotic carrier wave, i.e.

P,,m=P,,+Pm, where Pm. is the transmitted signal, P” is the transmitter laser

output and Pm is the message signal amplitude. The chaos generator at the

receiver end, which is a semiconductor laser, is similar to the one at the

transmitter end. The function of this diode laser is to act as the response

system. which will try to generate chaotic waveform similar to the carrier

wave. Also, there is a feedback function generator. A part of the

received signal is fed to the input ofthc feedback generator together with

a fraction of the chaotic output of the response laser diode. A feedback

current is generated here, which is fed to the input of the response laser

diode as a feedback current ll}, in addition to its drive current. This
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6 Chaotic Encryption

controls the receiver dynamics and tries to synchronise it with the

dynamics of the drive at the transmitter. After the two systems are

synchronised, a simple difference between the amplitude of the received

signal and the output of the receiver will provide the decoded message.

This shows that the receiver gets synchronised only with the chaotic part

of the received modulated signal. Decoding of the message is successful

only when perfect synchronisation is achieved.

The transmitter and the receiver are two identical semiconductor lasers

operating in their chaotic regime starting from slightly different initial

conditions. Synchronisation of such lasers has been achieved. as

discussed in the previous chapters, using uni-directional coupling, bi­

directional coupling and variable feedback, of which uni-directional

coupling and variable feedback can be used for the purpose of chaotic

encryption. ln the present study a simple addition of the message to the

carrier is employed for masking the signal‘””. This method has been

successfully employed“‘~”~"“‘ for chaotic encryption, where a fraction of

the received modulated signal is fed into the input of the receiver for

synchronising the response laser in the receiver with the drive in the

transmitter i.e. the feedback fraction is proportional to the received signal

amplitude. This scheme is similar to the uni-directional coupling scheme.

The transmitter and receiver are two similar semiconductor lasers with a

feedback given to the input of the one that is chosen as the receiver. The
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rate equations modeling the transmitter and receiver system can be

represented as follows

III’ : lhll‘ + [I71/I‘

dN,_L _ 1 1,.) ‘(NH -5)
7—(:)ll,,,))—~tt »t M lrtl

dP,.,._ L (/v;L_—1) _ _ + J“
7  ow " ""”~”’"n ”i "”t‘ll
1,.‘ (r) = 1,,” +  Si:z(22_2f,,m z)+ G x

where In, is a milliampere current given to the receiver as an additional

input, G is a control function which modifies the feedback current lib.

Nu--(N Pu-’Prc are output powers of the
l_,, /W

are the carrier densities,
I .ltransmitter and receiver, u «L are driving currents are the bias

1 In-at are the modulation currents and -/um-~./um are thecurrents, um-v

modulation frequencies of the transmitter and receiver lasers respectively.

The parameter values are so adjusted that the above equations represent

lnGaAsP lasers in the chaotic region. The values are given in Table 3. 1.
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6 Chaotic Encryption

The form of the control function that can synchronise a particular system

is to be suitably chosen by trial and error.

The uni—directional and variable feedback methods are tried for achieving

synchronisation between the transmitter and the receiver using the

received composite signal. The synchronisation is checked with the

parameter space plot with P.,along )(—axis and Pm along Y-axis.

It is found that the uni-directional coupling scheme is not efficient enough

for achieving synchronisation between the transmitter and receiver. Even

though the variable feed back scheme could provide exact
synchronisation between the transmitter and the receiver, for
improvement of the quality of the recovered signal the synchronisation

technique is modified by optimising the feedback function so that perfect

synchronisation is achieved. This new scheme incorporates a feedback,

which consists of a fraction of the synchronisation error (the difference in

amplitudes of the received signal and the receiver output) and an integral

function of it. This scheme is hereafter referred to as P-I (i.e.
Proportional-Integral) scheme. This function, due to its characteristic

nature, would induce faster convergence of the synchronisation error to

Z€l'0.

The appropriate fonn of this feedback function for the present system is

found as
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6 C haolic Encryption

G=R+fm) (OD
where R = ’(P~- ‘ '1) (6.8)

/e

f(R) = L e"1dI‘E 0 (6.9)
The upper limit of f(R) is R, which in turn is a function ofthe normalised

powers P” and PW.
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Fig 6.2

Parameter space plot for

3) G =r"Pu b) G=r"(Pu - Prc) C) G=f(P..-.. Pu‘)
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6 Chaotic Encryption

Fig 6.2 a, b, c shows the parameter space plot for G =rXP., , G=r><(P., ­

Pm), and G=f(P.,, Pm) ,(P-I scheme). Fig 6.3 a, b, 0 shows the

synchronisation error plots for the above three feedback schemes.

6 _'_|"-' ‘_'*’_" I‘ T " '
, 4E 12 .

l
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time (p8)

Fig 6.3

Synchronisation error plot

3) G =rxPu b) G=rx(PIr ' Prt) 5) G=f(Pm PIC)

Fig 6.4a shows the original message generated at the transmitter end and

Fig 6.4b, c and d show the recovered massage at the receiver end for uni­

directional coupling, variable feedback and P-1 schemes respectively. It
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is evident that a good recovery of the message is possible by employing

the P-I scheme.

l / \ / l$90.02; \ / \ / \._  (a) -II u ~ ,  / . 7de  \_Z/ ' _1 V /_ l. 2
I

l

0.r %—
0 ‘ . l l ‘.
40 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Fig 6.4

Original and recovered analog messages

21) Original message

Message recovered using b) O =r><P., c) G=r><(P., - Pm) d) G=f(P.,, Pm)

Similarly Fig 6. 5 a shows the original square wave message and Fig 6.5

b, c and d show the corresponding recovered messages for uni-directional
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6 Chaotic Encryption

coupling, variable feedback and P-I scheme respectively. It is obvious

that the P-I feedback scheme provides better recovery of the encrypted

message.

.._.  ...,..  ..u.:_ ... .‘0 .2 0.4 0.6 0.8 1 1.2
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time 4

Fig 6.5

Original and recovered digital messages

b) Original message

Recovered using b) G =r><P., c) G=rX(P,, — P“) d) G=f(P.,, Pm)
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6 Chaotic Encryption

Proper filtering of this message can provide perfect reproduction of the

original message. Fig 6.6 shows the filtered recovered message using P-l

scheme.o.4l (a) ­o.3l ­0.2 - l0.1 i J ­0 I I0 0.2 0.4 0.6 0.8 10.4 '  ­0.3 - ­0.2 - ‘0.1 r L 10 g A 10 0.2 0.4 0.6 0.8 1
Fig 6.6

Frequency spectra of

(a) filtered message (b)original message

Proper masking ofthe message is a critical need for the application of this

method in secure communication. The amplitude and frequencies of the

message signal have to be chosen appropriately so that the chaotic carrier

properly masks them. For ensuring proper masking of the message in the

chaos of the carrier, the message amplitude is restricted to < 12% of the

maximum of the transmitter output amplitude. For the same reason the
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6 Chaotic Encryption

modulation index, m = f,.,.55,,g.,/f..,., (ratio of frequency of message to

modulation frequency of the transmitter) should also be <l. However

while using the present scheme the transmitted signal does not show any

kind of periodic behaviour. Fig 6.7a shows the transmitter output without

any message and Fig 6.7b and c show the transmitted signal with analog

and digital messages respectively. It is clear from these figures that the

transmitted signal does not reveal the fact that it contains any sort of

periodic signal in it. This ensures that simply any intruder cannot

distinguish it from an ordinary chaotic signal. Only by properly

synchronising the receiver with the transmitter the message can be

decoded. For this purpose the system parameters should match. If this is

achieved secure communication will be possible using another

transmission scheme. For this, a key can be assigned to a predefined set

of receivers that are eligible for reception. The key can be given in the

form of initial conditions and as the system parameters of the transmitter.

This can facilitate better synchronisation of the receiver. Work in this

direction will be useful to decide whether providing a key to predefined

receivers can induce better recovery of messages.

These results show that proper recovery of the received message demands

perfect synchronisation and, for the achievement of a perfect

synchronisation the feedback function is a very important factor. It is not

only the feedback function but also the parameter values of the transmitter
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Fig 6.7

Time series of

a) Transmitter output without message ; b) Transmitted signal with analog

message 1 C) Transmitted signal with digital message

and the receiver systems that are very crucial in this respect. The

parameter values ofthe transmitter and receiver systems should match for

the purpose of proper recovery. These can save the message from

intruders. This would ensure that any outsider who simply gets into the
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6 Chaotic Encryption

transmission channel would not be able to decode the message. The level

of security that can be provided by this method is to be investigated more

thoroughly. However, it is proved that the method is useful for long

wavelength directly modulated semiconductor lasers, which are the

commonly used sources in the optical communication systems. Since

optical fibers render minimum loss and dispersion to these radiations, this

can definitely prove to be useful for secure long distance communication

through optical fibers. The level of security that can be offered by this

scheme and the effect of a time delay in the synchronisation of the

receiver with the transmitter need further investigation.
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SYNCHRONISATION AND CONTROL OF CHAOS IN

ONE-DIMENSIONAL AND TWO-DIMENSIONAL ARRAYS OF

DIRECTLY MODULATED SEMICONDUCTOR LASERS

In this chapter we present the results of the numerical study of synchronisation of one­

dimensional and two-dimensional arrays of chaotic semiconductor lasers. Eight different

arrays are simulated numerically with the number of elements in the array varying from

three to ten. Results of the numerical study on open loop coupling, closed loop

coupling, global coupling and, nearest neighbour coupling indicate that the

synchronisation and output dynamics of the array elements are strongly dependent on

the number of elements in the array and also on the type of coupling used.
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7 One and Two Dimensional Array

7.] INTRODUCTION

Array of coupled systems has generated considerable interest because of the

wide variety of phenomena this can exhibit such as spatiotemporal chaos,

autowaves, spiral waves, synchronisation and, formation of synchronised

clusters. These have proved the importance of such systems for various

applications such as image processing modelling population dynamics and,

production of synchronised stochastic dynamics“”"“’. Coupled arrays of

semiconductor lasers are modelled according to this principle and is one of the

accepted methods for the production of high power outputs. The outputs of the

elements of the array are to be synchronised to achieve high power coherent

lasers. Dynamics of an array of lasers, especially semiconductor lasers, have

been studied extensively“"“”‘. Until now there were only limited studies on

coupled arrays of chaotic lasers‘“- """2“‘. Winful eta/. '5” have done numerical

simulation of an array of three chaotic semiconductor lasers, and Ten'y, et.al.

"22’ have experimentally investigated three chaotic Nd:YAG lasers. Both these

investigations were based on a linear array with nearest neighbour coupling

whereas Ojalvo""" et. al. investigated on an array based on global coupling

with the help of an external mirror.

Our studies were concerned with the synchronisation of one-dimensional and

two-dimensional array of semiconductor lasers. The array elements numbering

three to ten are studied individually with respect to different types of coupling

schemes each for a range of coupling strengths in the one-dimensional arrays.

92



7 One and Two Dimerixional Array

The general schematics ofdiffcrcnt coupling schemes considered in this chapter

is given as a chart below. For each coupling schemes we have added the

numerical results. In the two-dimensional array four elements are incorporated

with nearest neighbour coupling.

ARRAY

One-dimclnsional array Two-dimensio al array

Open loop Closed loop Global Nearest neighbour
coupling coupling coupling coupling

7.2 ONE-DIMENSIONAL ARRAY

This array is designed in such a way that the number of elements, type of

coupling and the coupling strength can be varied. In this set up we have tried

the open loop coupling, closed loop coupling, global coupling and nearest

neighbour coupling. To study the effect of these coupling schemes. each of
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7 One and Two Dimensional Array

these models are simulated for a range of coupling strengths for arrays with

different number of elements ranging from three to ten.

7.1.1 OPEN LOOP COUPLING SCHEME

We consider an array of semiconductor laser whose elements are coupled

uni-directionally such that each element is influenced by the output of the

previous element. The array elements are numbered from 1 to 10 continuously.

The coupling fraction is kept a constant for all the array elements. The

schematic representation of open loop coupling scheme is shown in Fig 7.1.

I  . _ . . . . . -__ 9
6

input output  U’ feedback
Fig 7.1

Open loop coupling scheme
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7 One and Two Dimensional Array

The coupling is given in the fomi of a coupling current proportional to a

fraction ofthe output oflascr l to the input ol‘ laser 2. Similarly from the output

of laser 2 to the input of laser 3 and so on until the last element. which receives

a coupling current proportional to the output of its previous element. Thus the

last element in the array will be influenced by the dynamics of all the preceding

elements indirectly.

The rate equations governing the dynamics of the above system can be

represented as

%=l:llllf%l=~i—l‘l*_:S’ltl
dP,_l (N,—1) _ ,1] 77
;—£z_—lJH—(l7S)(l‘&P.)/J.”/°.+,57V.J (A-—)

l

I

_J

/,(:)=1h + /,,,sm(2;;;;,,i) (7.3)

dpl = [LJHW T ')(1— self; - P2 +  0.5)(1-6)

12 (z) = 1h + /,,,sm(2a_/;,,z)+ G2!“ (7.6)
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7 One and Two Dimensional Array

dp" =[ij[{(—N4—‘-)(1~aP,.)R.— ,.+/SN.” (7.8)
1" (1) = 1,, + 1,,,sm(2;;r,,,z)+ CHIC" (7.9)

G,. = (cxp,,..)x1o"

where C is the coupling strength and n is the number of elements.

The parameter values are so fixed that in the uncoupled case the individual

lasers operate in their chaotic regimes. The parameter values are those given in

Table 3.1.

7.1.1.1 NUMERICAL ANALYSIS AND RESULTS

The above sets of equations are solved numerically by fourth order Runge~

Kutta method. Eight different arrays with number of elements varying from 3 to

10 are studied where the coupling strength is increased in steps of 1 for each

array. Synchronisation is checked using parameter space plots and
synchronisation error plots. The results of the above study reveal that

synchronisation and other dynamical properties of the array elements are
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dependent on the number of elements present in an array and also on the

coupling strength.

As the coupling strength is increased. the systems show a rise in the amplitudes

of the laser outputs till the coupling value of 7 is reached for all the elements

except the first. The output amplitude of the first laser remains unchanged

throughout the range of coupling strengths. The increase in amplitude is more

for the last laser in an array. All the elements in the array achieve

synchronisation simultaneously at a coupling value of 8. The optimal

synchronisation is achieved between the first and the second element in the

array. Fig 7.2a shows the synchronisation error plots between all pairs of lasers

in an array with four elements for C = 8 and, Fig 7.2b shows the parameter

space plots between all pairs of lasers in an array with four elements for C = 8.

The type of synchronisation is practical. This synchronisation is maintained for

a small range of coupling strengths (7-1 1).

With further increase in coupling strength synchronisation is lost between the

elements but the output amplitude increases gradually as C goes beyond 1 1. 1t

can be said that there is no observable synchronisation for C‘ > l l. The output

amplitude steadily increases when the coupling strength increases from 7-11;

however, the increase of amplitude occurs at a much slower rate than in the

range of coupling strengths where there is no synchronisation between the

outputs. Throughout the range of coupling strengths the outputs remain
chaotic.
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7 One and Two Dimensional Array

Fig 7.2a

Synchronisation error plots between all pairs of lasers

in an open loop coupled array with 4 elements for C = 8

‘E ,, , — synchronisation error between lasers x and y, where x and y are positions of elements in

an anay.
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7 One and Two Dimensional Array

10 ll]P2 P3

P

Hg 7 2b 532l~3>f[.-*1-5 "-"fl"~"4' EN
Parameter space plots between all pairs of lasers in an upcn loop coupled array

with 4 elements for C = 8

P1, P2, P3, P4 — output powers of lasers l,2,3,4

G\8§3,g‘
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One and Two Dinienxionul Arru_\'

Table 7.1

Dynamical properties of open loop coupled array

—$3 4 5 6 7 I3 9 10'
nosync no sync nosync nosync nosync nosync no sync
chaotic chaotic chaotic chaotic chaotic chaotic Lchaotic
nosync nosync nosync nosync nosync nosynclnosync
chaotic chaotic chaotic chaotic chaotic chaotic chaotic]
no sync nosync nosync nosync no sync nosync '
chaotic chaotic chaotic chaotic chaotic lchaotic

1

no sync no sync no sync no sync no sync '
chaotic chaotic chaotic chaotic chaotic
no sync nosync no sync no sync
chaotic chaotic chaotic chaotic
no sync no sync no sync no sync
chaotic chaotic chaotic chaotic
p- sync p- sync p- sync p- syn
chaotic chaotic chaotic chaotic
p-sync p»sync p-sync p-synchaotic chaotic chaotic chaotic J
p-sync p- sync p- sync p— sync
chaotic chaotic chaotic chaotic5 !, + J
p- sync p- sync I p- sync . p- sync li  I l
Wc_h_a_ot_I~cv Wi_cl_12_iotic _ chaotic f chaotic _ _ _ _‘p- sync no sync r no sync ' no sync ‘
chaotic chaotic chaotic chaotic
no sync nosync no sync no sync
chaotic chaotic chaotic chaotic
no sync no sync no sync no sync
chaotic chaotic chaotic chaotic
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7 One and Two Dimensional A rray

There is no significant dependence of synchronisation or other dynamical

properties on the number of elements in an array. For n=3 to 7, the range of

coupling strengths for which the array elements are synchronised and the type

of synchronisation achieved between the array elements remains the same.

When the number of elements in an array increases to more than 7 the

numerical model loses stability to give a clear picture of the synchronisation

and other dynamical behaviours. The above results are shown in Table.7.l

7.1.2 CLOSED LOOP COUPLING

A closed loop array of semiconductor lasers is designed in such a way that

each element is influenced by the output of all the other elements present in the

array. The array elements are numbered from I to l0 continuously. A closed

loop coupling scheme differs from an open loop scheme only in one respect, i.e.

the last element in the array is coupled back to the first element‘”“. The

feedback fraction that is given to all the array elements is constant. This array is

designed in such a way that a coupling current proportional to a fraction ofthe

output of the first array element is fed to the input of the second element in

addition to its conventional input. Similarly from the second element a current

is fed to the input ofthe third element. This is continued till the last element in

the array from which a current proportional to a fraction of its output is fed to

the input of the first element. Thus all the elements in the array are influenced

by all other elements indirectly. This is schematically shown in Fig.7.3.

|0l



7 One and Two Dilrlensional A rru_i'

V V
input output feedbackEa’ ................... -V  _é'

Fig.7.3.

Closed loop coupling scheme

The rate equations representing the whole system can be written as

dN,_ L (1,\_ _ (N,—‘) j7‘Ui'tZJ N‘ in-cs) ”"°’
£1- L (N.-1) _ _
dz —[TpJH(]_5)(1 61°.)R P.+/NH (7.11)
1, (1) = 1h + 1,,,5in(2,2_¢;,,z)+ 0,1“ (7.12)

d1%_ ; (N2—1)_ _
7—[rP]H (Hy) (1 aP2)P2 1°2+fi1~/2H (7.14)
12(1) = 1b + /,,,5m(2z4;,,z)+ 021% (7.15)
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7 One and Two Dimensional Array

fl/=l%llli:;.l—~t=l‘l+:‘%llPwl
W{ 1 _ iifl=t%lll‘“  «VrlJJ

In  : 1h +1InSin(2/jiul)+ GH[(',.  1
Gn=(CxPmOxlO3

where C is the coupling strength and n is the number of elements.

7.1.2.1 NUMERICAL ANALYSIS AND RESULTS

Numerical simulation of the above equations shows a strong dependence of

synchronisation and other dynamical properties on the coupling strength and

the number of elements present in an array. Accordingly, the results can be

classified into two groups‘”“‘:

i)Array5 with even number 0_/ielemems ii) .4rra_t's with odd number 0’/'

elements.

> Arrays with even number of elements

Synchronisation properties and the dynamical behaviour are the same for all

arrays with even number of elements, i.e. when n = 2,4,6.8. Consider an

array with four elements as a prototype of this class. Synchronisation and
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7 One and Two Dimensional Array

other dynamical properties ofthe array elements change considerably with a

change in the coupling strength. For coupling strengths l and 2 the first and

third elements show synchronisation as well as the second and fourth

elements show synchronisation between them. The type of
synchronisation achieved by these two pairs of lasers is exact. These

pairs are called odd pairs (1-3) and even pairs (2-4)

0 0.5 1 1.5t(DSD

1

l

0 0.5 1 1.5t(Ds>2 0 0.5 1 1.5I(psl2x 16 x 10
Fig 7.4a

Synchronisation error plots between all pairs of lasers in a

closed loop coupled array with 4 elements for C = 2

'E ,, y — synchronisation error between lasers x and y; where x and y are positions of elements in
an array.
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7 One and Two Dimensional Array

Fig. 7.4(a) shows the parameter space plots between output powers of all

pairs for C=2 and (b) shows the synchronisation error plots for the same.

However, there is no synchrony between any other laser pairs (first and

second. first and fourth, second and third, third and fourth). These pairs will

be called odd-even pairs. The output powers of all the lasers in the array

show chaotic nature.

M 1:30’:

\

0 2 4 6P1

Fig 7.4a

Parameter space plots between all pairs oflasers in a

closed loop coupled array with 4 elements for C = 2

Pl, P2, P3, P4 ~ output powers of lasers l,2.3,-l



7 One and Two Dimensional Array

As the coupling strength increases to 3, all the lasers get synchronised with

each other with the type of synchronisation being exact. The output
amplitude value also steadily increases. Fig.7.5a shows the synchronisation

error plots for output powers between all pairs of lasers at coupling strength

of 3 and Fig 7.5b shows the parameter space plots between all pairs of

lasers at coupling strength of 3. This synchronisation is maintained
throughout the range ofthe coupling strength.

err1 err2
16:5’ mi  1.5l(P5) 2 ‘ 6 0.5 i 1.5'lP5l 21,” A 1 Aerr3l err-10 5‘; o 5;ll ll0L . . 0L­0 0.5 1 1.5‘(P5l 2 o 0.5 1 151(P5l 21 ,_4 1 4err5 err6O -- 0.5:

ll

-1‘. . . . . , . . . .. . ... ...t .. . oL.. .. . .. . .o 0.5 1 1.5 (95) 2 o 0.5 1 1.5‘(P5> 2x 10‘ x 10
7.6a

Synchronisation error plots between all pairs ol‘ lasers in u

closed loop coupled array with 4 elements for C = 3

‘E t. _,. — synchronisation error between lasers x and y ; where x and y are positions ofelements in
an array.
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7 One and Two Dimensional Array

P2 '  _ ; - P34- - ‘ 42 2U . . U .0 2 4 Pl 0 2 4 PlP4 p34r Ill2 240 L 0 ­0 2 4 Pl 0 2 4 P2P4 P44 4 42* 4 2cu - - D 40 2 4 P2 n 2 4 P3
Fig7.6b

Parameter space plots between all pairs of lasers in a

Closed loop coupled array with 4 elements for C P 3

Pl, P2. P3. P4 - output powers of lasers l.2,3,4
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One and Two Dimensional Array

As the coupling strength increases to 6, the previously synchronised chaotic

signals assume synchronised four cycle nature. With further increase in C,

the dynamics undergoes a reverse period doubling i.e. at C=9. the outputs

become two cycled and at C=l7, it becomes a period one cycle. For higher

values of coupling strength, the period one cycle output is maintained “Z”.

Fig. 7.6 shows the phase diagrams ofthe array elements undergoing reverse

period doubling.
7.-—,———- — -—-.— H —— .,.W_—r N

I

1.» kn u: an

———u—~—.— —-r«~———u—

2L
I

‘I
‘I

I3., . N
0.94P 7, .I C I6F 1I II I5* II4 3I II Ial II I I2 I 1" jI - .

I.1 7 I ' .
I J. N oL~—g—-~;L=:——~z.—g  4"G, , 0.97 095 099 1 101 102 103 104 1050.9 0.9 1 1.0 10 10

Fig 7.6

Reverse period doubling route lasers in a

closed loop coupled array with 4 elements for

(a)C=3 (b)C=6 (c)C=9 (d)C= I7
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One and Two Dimensional Array

This indicates that increased coupling strengths help to induce stability to

the chaotic dynamics through a reverse period doubling route. Both

synchronisation and control of chaos are the peculiarities of arrays with

even number of elements. Together with these there is an amplification of

the output power with increase in coupling strengths.

> Arrays with odd number of elements

In the case of arrays with odd number of elements synchronisation is not

observed for any coupling strength. The outputs of all laser elements remain

chaotic throughout the range ofcoupling strengths. ln such cases the output

power gets amplified drastically even for small increase in coupling

strength thus differing from the arrays with even number of elements where

also such changes do occur, but is not significant. Consider an array with

three elements as a prototype ofthis class. Increasing the coupling strength

does not show any effect on the synchronisation property. Even at a high

enough value of C‘=l7, there is no synchronisation between elements of any

of the even pairs, odd pairs or odd-even pairs. Coupling strength does not

induce stability in this case as it could in the case of arrays with even

number of elements. The amplitude values of all the three elements are

different even though they increase steadily with increase in the coupling

strengths. When the number of elements in an array increases to more than

7 the numerical model loses stability to provide a clear picture of the

synchronisation and other dynamical behaviours.Table 7.2 depicts the

overall dynamics of closed loop coupled array.

I09



One and Two Dimensional Array

Table 7.2

Dynamical properties of closed loop coupled one-dimensional arrayn 3 4 5 6 7 8 9 10
C

_. No syn l-3,2-4 No syn I-3.2-4 No syn I-3,2-4 No syn -­
chaotic chaotic Chaotic chaotic Chaotic chaotic Chaotic

2 No syn 1-3.2-4 No syn I-3,2-4 No syn 1-3.2-4 No syn
Chaotic chaotic Chaotic chaotic Chaotic chaotic Chaotic

3 No syn All syn No syn All syn No syn All syn No syn
Chaotic chaotic Chaotic L chaotic Chaotic , chaotic Chaotic

4 No syn All syn No syn E All syn N0 syn  All syn No syn
Chaotic chaotic Chaotic chaotic Chaotic 1 chaotic Chaotic

5 No syn All syn No syn All syn No syn ' All syn No syn
chaotic chaotic Chaotic chaotic Chaotic chaotic Chaotic

6 No syn All syn No syn All syn No syn All syn No syn
Chaotic P= Chaotic P=4 Chaotic P=4 Chaotic

7 No syn All syn No syn All syn No syn All syn No syn
Chaotic P=4 Chaotic P=4 Chaotic P=4 Chaotic

8 No syn All syn No syn All syn No syn All syn No syn
Chaotic P=4 Chaotic P=4 Chaotic P74 Chaotic

9 No syn All syn No syn All syn No syn All syn No syn
Chaotic P=2 Chaotic P=2 Chaotic P=2 Chaotic

10 No syn All syn No syn All syn No syn All syn No syn
chaotic P=2 Chaotic P=2 Chaotic P=2 Chaotic

H No syn All syn No syn All syn No syn All syn No syn
Chaotic P=2 Chaotic P=2 Chaotic P=2 Chaotic

12 No syn All syn No syn All syn No syn All syn No syn
Chaotic P=2 Chaotic P=2 Chaotic P=2 Chaotic

13 No syn All syn No syn All syn No syn All syn No syn
Chaotic P=2 Chaotic P=2 Chaotic P=2 Chaotic

14 No syn All syn No syn All syn No syn All syn No syn
Chaotic P=2 Chaotic P=2 Chaotic P=2 Chaotic

15 No syn All syn No syn All syn No syn I All syn No synChaotic P=2 Chaotic P=2 Chaotic I P=2 Chaotic
16 No syn All syn No syn All syn No syn All syn No syn

Chaotic P=2 Chaotic P=2 Chaotic P=2 Chaotic
17 No syn All syn No syn All syn No syn All syn No syn

chaotic P= I Chaotic P=l chaotic P=l chaotic

110



7 One and Two Dinzerzsional Array

7.1.3 GLOBAL COUPLING SCHEME

This scheme is designed in such a way that all the elements in an array are

directly influenced by the dynamics of all other elements. The system consists

of the array elements and a feedback generator, which provides a current

proportional to a fraction ofthe total output power of the array to the inputs of

all the array elements simultaneously. The feedback current received by each of

the elements in the array will be the same. The schematic representation of this

system is depicted in Fig 7.7.

\l/ \L \/
Feedback Generator

, "W , ..... ..9_9FPPL _$feedb °k
Fig 7.7

Schematic representation ofglobal coupling scheme
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The rate equation is represented as follows

%=l%lllfil—~~—l%lP~l
g=[;][{<;§;;)>(Hma-w~.}] (7.20)
1, (7) = 1,, + l,,,Sin(2/y’,"t)+ G,l‘_' (7.21)

%=l%Jll%l~2el‘le.;:"lBl
% =  — sale — I: + ml] (7.23)
12 (1) = 1,, + 1,,,5m(2,2f,,,z)+ G219 (7.24)

d 1 (N -1)——"= — —"——l—.sPP—P 7.26dt  ( 71):: n -*-mu” ( )
/,,(r)= 1,, + /,,,sm(2z_z/;,,:)+G,,/__ (7.27)
(3,, = CxPTx 10"

where C is the coupling strength , PT is the total output power of the array

which can be represented as PT= (P; + P;  P,,). and n is the number of
elements.



7 One and Two Dinicnsionul A rray

7.1.3.1 NUMERICAL ANALYSIS AND RESULTS

The above sets of equations were numerically simulated for different values of

‘n’ and C. Global coupling can induce exact synchronisation and control over

the chaotic output for low coupling strengths. Synchronisation and control of

the chaotic output are achieved in all arrays without preference to odd or even

number of elements. As the number of elements increases, synchronisation is

achieved for lower values of coupling strengths. Thus it becomes apparent that

synchronisation is more dependent on the number of elements than on the

coupling strengths. The amplitude of the output power is dependent on both the

coupling strength and the number of elements.

For an array with four elements synchronisation between all pairs of array

elements is achieved at a coupling strength of I. Fig 7.8a show the

synchronisation error plots between all pairs of lasers for an array with four

elements for C = l and 7.8b show the parameter space plots between all pairs of

lasers for an array with four elements for C = 1.

As the coupling strength increases the output powers, which are chaotic for low

coupling strengths attain stability through a reverse period doubling route. The

output powers which are chaotic at C = 1 become periodic with a periodicity of

four at C = 2. With further increase in coupling strength at C=3 the periodicity

becomes 2 which then becomes at a single period orbit at C=6. This is

maintained at all higher coupling strengths
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7 One and Two Dimensional Array

°°3~ I .2 —”" * “ ‘.F...:‘I I ,0.02l 1:  ;Or“ 5 .0.01 1* E ;r l0 -1*
0 5000 10000‘(P5>150000 5000 10000‘<PS)15000

0 5000 1000ot(ps)15000 0 5000 10000t(ps)150001_ a 0.03 _ ~j———‘ 2.4 l :E_1.4 ;I 0.02 1: i
0l—-——-——————-—-«—~»-»-< , .. _ 0.01 '

l_1L_fi. -______l' 0
0 5000 10000*(P5)15000 0 5000 10000t(ps)15000

Fig 7.35

Synchronisation error plots between all pairs of lasers in a

Globally coupled array with 4 elements for C = l

'E ., , — synchronisation error between lasers x and y; where x and y are positions of elements in

an array.
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P2 P34 4» 42 2 /0 + A 0 ­0 2 4 P1 0 2 4 P1P4 P34 42 l 2r
00 2 4 P‘ on 2 4 P?’P4 P4 V44 42» 20 A - r0 2 4 P2 ID 2 4 P3

Fig7.8b

Parameter space plots between all pairs of lasers in a

Globally coupled array with 4 elements for C = l

Pl. P2. P3. P4 — output powers of lasers 1.2.3.4
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One and Two Dimensional Array

Table 7.3

Dynamical properties of globally coupled array

3 4 5 6 7 3 9 10
145495

(1-3)E AIIE AME AllE A|lE AIIE AME

Chaotic Chaotic Chaotic P=4 1==4 1==4 =2 2'4':':'0E
AIIE AIIE 1-3-512 AIIE AHE AIIE AIIE AHE
P= 1>=4 =4 P= =2 =2 =1 1>=1
AIIE AIIE AIIE AIIE A111-: AIIE
P=2 1>=2 =2 =1 =1 1>=1 " '­
A11 13 A11 13 All E A11 13

P=2 P=2 =1 =1 " "
AHE AIIE AIIE
P=2 =1 P=l "
AME AIIE
=1 =1 '­

AME

=g "
AME

=1.
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At C=8 the double peak nature of the synchronised output powers gets

suppressed indicating damping of relaxation oscillations. As the number of

elements in an array increases the coupling strength needed for inducing

synchronisation and control progressively diminishes. The coupling strength at

which stable one cycle output is obtained progressively decreases as the number

of elements in an array increases and when n= 10, reverse period doubling

occurs between C= 0.5 and 2. As the coupling strength increases, the output

amplitudes undergo amplification. The stability of the numerical model is not

affected by increase in the number of elements in an array, but is strongly

affected by increase in the coupling strength for all the arrays. The overall
results are shown in Table7.3

7.1.4 NEAREST NEIGHBOUR COUPLING SCHEME

L I

v T To L»
in ut out ut feedbac._P_, P E, :1:

Fig 7.9

Nearest neighbour coupling scheme
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The rate equations is summarized as follows

= £%.J[£:~;) 3 ~) —{‘z:;:M

% =  — aR)P. — P. + av.
/,(z) = 1,, + 1,,,Sin(2/gfmt)+ G,I[,|

£.i.J[L—::J—~2»{‘:rs.::‘w

if=£%)[{‘zr:;;wMNI’ _:
: lb + 1I)xSin(2/#711t)+ G2 [<'_.

%’i*[%.)[{‘é.”:;3’<~+a>P 3%)]

1. (r) = I. + I..Sz'n(2nf,..r)+ 0.1.,‘
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Gn = CX(Pn-l +P.1-.)><10'“

where C is the coupling strength, n is the position of an element in the array.

7.1.4.1 NUMERICAL ANALYSIS AND RESULTS

The above set of equations is numerically simulated for number of elements

varying from 3 to 10 each for a range of coupling strengths. The results show

that synchronisation and other dynamical properties are dependent on the
number of elements.

As the coupling strength is increased the outer lasers get synchronised first and

later, with further increase in the coupling strength. the inner lasers gets

synchronised with each other but there is no synchronisation between the outer

pairs with the inner pairs. For example, in an array with 4 elements when C = 5.

the first and the fourth elements in the array get synchronised with the type of

synchronisation being exact. Similarly the second and the third lasers get

synchronised exactly but there is no synchronisation between first (1-2), (1-3),

(2-4) and (3-4) pairs. Fig.7. l 0a show the synchronisation error plots between all

pairs of lasers for an array with four elements for C = 5 and 7.l0b show the

parameter space plots between all pairs of lasers for an array with four elements

forC = 5.
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0 J x 10‘ 0 ‘ x 10‘0 1 time (ps) 2 0 1 lime (ps) 2
2TE“ I1 ‘ I’ l

I0 'x 10‘ x 10'0 1 time (ps) 2 0 1 lime (ps) 2

Fig. 7.l0a

Synchronisation error plots between all pairs of lasers in a

nearest neighbour coupled array with 4 elements for C  5

‘E X, ,. — synchronisation error between lasers x and y ; where x and y are positions of elements in

an array.
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2 P35 ._,-1' Eu ,-' f4 42 2­0 00 2 4 P1 0 2 4 P15 .P4 5} I.N ‘EH22 2[0 00 2 4 P1 0 2 4 B P25 6 ­P4 P44 £1 ' ' 12i 20 00 2 4 5 P3 U 2 4 5 P3
Fig 7.lOb

Parameter space plots between all pairs of lasers in 21

Nearest neighbour coupled array with 4 elements for C =5

P1. P2, P3, P4 — output powers of lasers l.2,3.4
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7 One and Two Dilnensirmal Array

The coupling value at which synchronisation occurs is lower when the number

of elements in an array is odd. For example When n = 5, (1-5) and (2-4) pairs

gets exactly synchronised at C = I, however there is no synchronisation

between any other pairs. The amplitude ofthe inner pairs shows a slightly more

amplification of the outputs than for outer pairs. In arrays with odd numbers the

central laser without a pair will show slightly greater amplitude than all the

outer pairs. The results are in perfect agreement with those of Winful et. al.”‘’'

and Terry et. al.“"‘.

As the coupling strength is increased, for C<3 the outputs of all the lasers show

chaotic nature. As C becomes 4 the output of the elements start undergoing a

reverse period doubling route and attains stable one cycle nature at C = 10. This

is true for arrays with odd or even number of elements. When the number of

elements in an array is increased beyond 7, the numerical model looses stability

for even numbers and for n = 9 only the 1-7 lasers show slight synchronisation

and, no other pairs show any sort of synchronisation. The outputs of all the

lasers undergo reverse period doubling and become stable one cycle at around

C = 10 for both the arrays with even number of elements and odd number of

elements. The overall results are shown in Table 7.5.
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One and Two Dimensional Array

Dynamical properties of nearest neighbour coupled one-dimensional

Table 7.5

array

1 “' 3 4 5C 6 7 8 9 I0
;I I-3 E No Syn 1-5, 2 At; No Syn I-7.2-6.3-5 E __ No Sync __Chaotic Chaotic Chaotic Chaotic Chaotic Chaotic

2 1-3. E No Syn I-5. 2-4 E No Syn I-7.2-6.3-5e No Sync
Chaotic Chaotic Chaotic Chaotic Chaotic ! Chaotic

3 1-3 E 1-4.2-3 E I-5. 2-4 E No Syn I-7.2-6.3-Se No SyncChaotic Chaotic P~4 Chaotic Chaotic Chaotic

4 I-3. E l-4,2-3 E I-5,2-4 E No Syn I-7,2-6.3-5 E ‘ No SyncP~4 P=8 P=4 P~4 P=4 P~4
5 1-3 E 1-4,2-3 E 1-5, 2-4 E l-6,2-5,3-4 E I-7.2-6.3-5 E No SyncP=4 P=4 P=2 P=2 P=2 P=2

1-3. E l-4,2-3 E 1-5, 2-4 E l-6,2-5.3-4 E I-7,2-6,3—5 E No Sync6 P=2 P=2 P=2 P=2 P=2 P=2
7 1-3. E I-4,2-3 E 1-5, 2-4 E 1-6,2-5,3-4 E I-7,2-6,3—5 E No SyncP=2 P=2 P=2 P=2 P=2 P=2

I-7,2-6.

8 1-3. E 1-4,2-3 E 1-5, 2-4 E I-6,2-5,3-4 E 3-5 E No Sync
P=2 P=2 P=2 P=2 P=2 P=2

9 I-3. E I-4,2-3 E I-5. 2-4 E I-6.2-5.3-4 E I-7.2-6.3-5 E} | No SyncP=2 P=2 P=2 P~ I P=l I P=2
I-3. E I-4,2-3 E 1-5, 2-4 E I-6.2-5.3-4 E I-7.2-6.3-5 E No Sync'0 P=2 P=t P=l P=| P=l P=l
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7 One and Two Dimensional Array

7.2 TWO-DIMENSIONAL ARRAY

This scheme refers to a set of four lasers arranged in two dimensions or in a

matrix format with nearest neighbour coupling. This scheme can also be

described as a bi-directionally coupled closed loop system. Coupling is given

in milliampere current which is proportional to a fraction of the total power

generated by its two nearest neighbours. The schematic is given in Fig 7.11.

The difference between this scheme and the above mentioned nearest neighbour

coupling scheme is that in this scheme all the elements in the array will receive

coupling from the nearest two neighbours as it is a closed system while in the

other the outer two lasers will be coupled only to one nearest neighbour.

Fig 7.11

Two dimensional array with nearest neighbour coupling
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7 One and Two Dimensional Array

The governing rate equation can be represented as follows,

5‘2’#=£iJ[(%J=~»»—{‘Zt1§’}H»]

% =  — ea. )P.. — P.. +  (7.38)
1, , (z) = 1,, + I,,,Sin(2/gfmt)+ 0,,/H (7.39)

dzw=[:1[m—~wmazsw

1,2 (t) = 1,, + 1”, sm(2nf,,,z)+ 0,21% (7.42)

div=[:Jn1—~mmw

12,(z)= 1,, + l,,,Sz'n(2/y‘mt)+ 02,1“ (7.45)

can=m[n%J»~uwa:;w
= ;;)(1— era: )3: ~  + /ME (7.47)
122 (z) = 1b + ImSz’n(2nfmt)+ on  (7.48)
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G11: CX(P21+P12) X104

G; = Cx(P.,+P22) x10'3

G21: CX(Pn+P22) X103

on = CX(P21+P12) xlo“

where C is the coupling strength and PH. . the output power of the array

elements with x , y denoting the position ofthe elements in the array.

7.2.1 NUMERICAL ANALYSIS AND RESULTS

The above sets of equations are numerically simulated for different values of

C. As the coupling strength is increased to 2 all the lasers get synchronised with

each other. With further increase in C, the outputs undergo reverse period

doubling and attains a stable one period output at C = 9. The exact

synchronisation achieved at C= 2 is maintained for all coupling strengths. Fig

7.l2a shows the synchronisation error plots between the array elements for C‘

>2 and Fig 7.12b shows the parameter space plots between the array elements

for C > 2. The output amplitudes increase with increase in the coupling

strengths. Dependence of the synchronisation and the dynamical properties are

represented in Table 7.6.
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7 One and Two Dimensional Array
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Fig 7.|2a

Synchronisation error plots between all pairs of lasers in a

two dimensional array with nearest neighbour coupling (‘ = 2

'E ‘k, ,1 — synchronisation error between lasers xk and yl '. where xk and yl are positions of

elements in an array arranged in matrix fonnat



7. -. ='- One and Two Dimensional Array
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Fig 7. I 2b

Parameter space plots between all pairs of lasers in an

two dimensional array with nearest neighbour coupling C =2

P1, P2, P3, P4 — output powers oflasers l,2.3.4
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Table 7.6

Dynamical properties ofncarcsl neighbour coupled two-dimensional array

C Synchronisation W Dynamical Property

I No Syn All Chaotic
2 All ES)/n A|lCha0tic
3 All ESyn All P=4

(I 1-l2)-P (12-22)-No

(I I-2|)-I’ (2!-22)-No4 All P=4
(I I-22)-E

(I2-2|)-E

(I I-I2)-E (12-22)-No
E (ll—2I)-F. ’ (2l-22)-No I5 I 1 4 All P = 4

(I I-22)-No

Two i6 A|lESyn AllP=2
7 1 All ESyn All P=2

*7” “W” ‘x.n:3<,T; " ‘ All P —.
9 All E Syn All P - I
I0 Al|ESyn A|lP=|
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SUMMARY AND CONCLUSION

This part of the thesis contains a summary of the work carried out, the results obtained

and some suggestions regarding scope for continued research in the field of chaos in

semiconductor Iasers.
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The overall focus of our work presented here is on the synchronisation and the

control of chaos in directly modulated semiconductor lasers with respect to

different coupling schemes.

The results of our studies on the use of uni-directional and bi-directional

coupling schemes for synchronisation of two directly modulated chaotic

semiconductor lasers reveal that both uni-directional coupling and bi­

directional coupling can induce synchronisation. The uni-directional coupling

scheme induces practical synchronisation between the output powers of the two

lasers for a small range of coupling strengths. However, this practical

synchronisation cannot be improved to exact synchronisation by increasing the

coupling strength. Increase in coupling strength can only increase the output

amplitudes ofthe second laser, which will desynchronise the two outputs.

Bi-directional coupling scheme. on the other hand. induces exact

synchronisation between the two lasers for relatively low coupling strengths

and stability of the synchronised laser outputs for higher coupling strengths. In

addition, this method effectively amplifies the synchronised output powers and

suppresses the double peak in the Outputs. which is a manifestation of

relaxation oscillations. These results indicate that bi-directional coupling can

prove to have far reaching effects on the dynamical properties of chaotic

semiconductor lasers. By varying the coupling strength we can suppress chaos

and the double peak and achieve synchronisation between the two outputs

together with a high increase in the output powers. The range of the coupling
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strengths has to be chosen according to whichever application for which the

semiconductor laser system is to be used.

The variable feedback method is used for synchronising two chaotic directly

modulated semiconductor lasers in the drive-response scenario. Our results

indicate that this method can give exact synchronisation for a wide range of

coupling strengths and can prove to be more useful compared to the

unidirectional coupling scheme, which also works in a drive-response scenario.

This method can be more effective than the uni-directional coupling in areas

communication systems where bi-directional coupling scheme cannot be used.

where the receiver cannot be coupled back to the transmitter.

We then focussed our attention on the application of the variable feedback

method in synchronising the semiconductor lasers used as the transmitter and

receiver in a secure communication system. It was found that even though

effective synchronisation could be achieved between the lasers without the

message in the received signal, this was lost once the message was encoded on

to the transmitted signal. Therefore. the feedback function is to be modified

appropriately by introducing an integral part to the feedback function. This

Proportional-Integral scheme could effectively synchronise the transmitter and

receiver and properly unmask the encoded message. Using this method both

analog and digital messages could be successfully transmitted and retrieved.
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The last section of this work was focussed on an equally important application

of semiconductor lasers, i.e. array oflasers. In this case we employed different

methods of coupling such as the open loop coupling, global coupling and

nearest neighbour coupling for synchronising our system of array of chaotic

semiconductor lasers. In addition we introduced a closed loop coupling

scheme. The results of our study indicate that synchronisation and dynamical

properties are dependent on the coupling strength and also on the number of

elements that are present in the array.

Open loop coupling was the least effective in this group and is similar to the

uni-directional coupling scheme described above. This method helps only in the

amplification of succeeding elements in an array and, as the coupling strength

and number of array increase, there is no synchronisation or control of the

outputs.

The closed loop scheme is very sensitive to the number of elements in an array.

It is found that closed loop coupling can induce synchronisation and control

only when there is an even number of elements in the array. In arrays with an

odd number of elements this method significantly amplifies the chaotic output

powers without synchronising them.

Global coupling scheme is effective in inducing synchronisation and controlling

the chaotic outputs. This method is sensitive to increase in coupling strength

and also to the increase in the number of elements in an array. Because all the
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array elements are directly influenced by all other outputs.. this is an example

of collective interaction. Increase in the number of elements in an array does

not affect the stability of this system but increase in coupling strength will

strongly affect the stability. Therefore, whatever be the number of elements in

a particular array, the choice of coupling strength should be restricted within a

small range. However, this will not reduce the types of behaviours that can be

expected from an array, since synchronisation and control of chaos can be

achieved even for small coupling strengths in the case of arrays with even or

odd number of elements.

In the case of nearest neighbour coupling scheme. synchronisation is achieved

only between the outer pairs of lasers. Even higher ofcoupling strengths could

not induce synchronisation between any of the outer and inner pairs of lasers.

However, increase in the coupling strength can induce stability cab be achieved

through reverse period doubling for the array elements. The dynamics is

weakly dependent on the number of elements in an array, in that

synchronisation and stability can be achieved for relatively lower values of

coupling strengths in the case of arrays with odd number of elements. This

scheme is the least effective in providing amplification ofthe output powers.

The overall outcome ofthis study indicates that when the number of elements

in an array is small any one of the closed loop coupling. nearest neighbour

coupling or the global coupling. can be used depending on whether the number

is odd or even. When the number of elements is odd either the global or the
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nearest neighbour coupling can be used and the range of coupling strength is to

be chosen depending on the desired dynamics. However. when the number of

elements in an array is even, closed loop coupling ean be used and in this case

closed loop coupling can prove to be the best since this can provide exact

synchronisation between all pairs of lasers for a wide range of coupling

strengths. When the number of elements is odd global coupling would be the

choice with special note on the coupling strength. Thus the choice of coupling

scheme and number of elements depend on the particular choice ofapplication.

As our concluding remarks we would like to add a note on the possibility of

future investigations in this direction. Other types of feedback functions can be

used and the effectiveness of these methods on synchronisation can be studied.

In the field of secure communication the level of security of the encoded

message signal can be investigated and for improving the level of security

methods like using cascaded systems or hyper chaotic systems as the message

transmitter‘”*""" can. be employed Coherence of the amplified synchronised

outputs can be studied and effect of each of the coupling schemes on coherence

properties can be investigated. Effect of parameter mismatch on
synchronisation properties ofthe current model can be im'estigated"‘“”.
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