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Chapter 1 

Introduction 

Over the last few years it has been increasingly realised that probabil

ity models are more realistic than deterministic models in many situations. 

There are many well known common and nontrivial areas of application for 

probability models. Queueing theory is one such area where probability 

models can effectively be used. 

The first work on waiting line (queue) was "The theory of probabilities 

and telephone conversations" by A.K. Erlang [11] who published this paper 

in 1909. This was devoted for the study of telephone traffic congestion. 

The study of queues is mainly applied in the fields of business (banks, 

supermarkets, booking offices etc.), industries (serving of automatic ma

chines, production lines storage etc.), technology (telephony, communica

tion networks, computers etc.), transportation (airports, harbours, railways, 

postal services etc.) and in every day life (elevators, restaurants, barber 

shops etc.). These are concerned with the design and planning of service fa

cilities to meet randomly fluctuating demands for service so that congestion 

is minimised and the economic balance between the cost of service and the 

cost associated with waiting for that service is maintained. 
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1.1 Queueing systems and their basic characteristics 

A system consisting of a servicing facility, a process of arrival of cus

tomers who wish to be served by the facility and the process of service, is 

called a queueing system. 

The following characteristics provide an adequate description of any 

queueing system. 

1.1.1 Arrival pattern of customers 

If the arrivals and service times are strictly according to schedule, queues 

can be avoided, but in practice this is not the case and in most situations ar

rivals are controlled by factors external to the system. Therefore, the best 

that can be done is to represent the input process in terms of random v'ari

abIes. Further characterisation is required in the form of the probability 

distribution associated with this random process. 

Arrivals may occur in batches instead of one at a time. In the event that 

more than one arrival can enter the system simultaneously, the input is said 

to occur in bulk or batch. In the bulk arrival situation not only the time 

between successive arrivals of the batches may be probabilistic but also the 

number of customers in a batch. 

If the queue is too long, a customer may decide not to enter it upon 

arrival and he is said to have balked. On the other hand, a customer may 

enter the queue, but after some time he may lose his patience and may decide 

to leave. In this case he is said to have reneged. In the event that there are 

two or more parallel waiting lines, customers may switch over from one 

to another, jockeying for position. These three situations are examples of 

queues with impatient customers. If an arrival pattern does not change with 

time, then it is called a stationary arrival pattern; otherwise, it is called non 

stationary. 



3 

1.1.2 Service pattern of servers 

The uncertainties involved in the service mechanism are the number of 

servers, the number of customers getting served at any time and the duration 

of service. Hence random variable representations of these characteristics 

seem to be essential. 

Service may also be single or in batches. There are many situations 

where a batch of customers is served by a single server. The service rate 

may depend on the number of customers waiting for service. A server may 

work faster if he sees that the queue is building up or conversely, he may 

get flustered and become less efficient. Service rate can be stationary or non 

stationary with respect to time. In bulk service system, the batches may be 

of fixed size or variable size. 

In some queueing systems, servers that become idle leave the system for 

a random period of time called vacation. These vacations may be utilised to 

perform additional work assigned to the servers. There are certain queueing 

models where the server's vacation period is the time until the accumulation 

of a certain number of customers (N -policy) or a certain amount of work 

(D-policy) or until the elapse of a certain amount of time (T -policy). 

1.1.3 Queue discipline 

Queue discipline is the rule according to which customers are selected 

for service when a queue is formed. The most common queue discipline 

is "first in first out" (FIFO) rule under which the customers are served in 

the strict order of their arrivals. Another queue discipline is "last in first 

out"(LIFO) rule by which the last arrival in the system is served first. Yet 

another queue discipline is "service in random order" (SIRO) rule according 

to which the arrivals are served randomly irrespective of their arrival to the 

system. 
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In some cases "priority" (PRI) discipline is followed. This discipline 

allows priority in service to some customers in relation to other customers 

waiting in the queue. Priority disciplines are classified as preemptive pri

ority discipline and non preemptive priority discipline. According to pre

emptive priority discipline a customer with the highest priority is allowed 

to enter service immediately suspending even the service in progress to a 

customer with lower priority. In the non preemptive case, the highest prior

ity customer goes to the head of the queue but gets into service only after 

completion of the service in progress to the customer with lower priority. 

1.1.4 System capacity 

The system may have either a limited or an unlimited capacity for hold

ing customers.The source from which the customers come may be finite or 

infinite. In some cases it is important to limit the length of the queue to 

some predetermined capacity; in other cases the capacity can be considered 

to be infinite. 

Some of the queueing processes admit the physical limitation to the 

amount of waiting room so that when the waiting line reaches a certain 

length no further customers are allowed to enter until space becomes avail

able by a service completion. Such systems with a finite limit to the max

imum queue size are called finite queueing systems. These systems can be 

viewed as having forced balking where a customer is forced to balk if he 

arrives at a time when the queue size is at its maximum limit. 

In some problems service is made up of several phases and is rendered 

by service facilities arranged in series. Queues are allowed to build up in 

front of each service facility. These intermediate queues known as buffer 

may again have finite or infinite length. 
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1.1.5 Service channels 

Queueing system may have several service channels to provide service. 

These service channels may be arranged in parallel or in series or as a more 

complex combination of both, depending on the design of the system's ser

vice mechanism. 

In parallel channels a number of channels provide identical service fa

cilities so that several customers may be served simultaneously. In case of 

series channels a customer must pass successively through the ordered chan

nels before his service is completed. Queueing models in which there exist 

a series of service stations through which each calling unit must progress 

prior to leaving the system were studied by several researchers. Such series 

queueing situations are referred to as tandem queues. 

A queueing system is called single server model when the system has 

one server only and when the system has a number of parallel servers it is 

known as multi server model. 

1.1.6 Notation 

A queueing system is represented by the notation AIBICIXIY where 

A is the interarrival time distribution, B is the service time distribution, 

C is the number of parallel servers, X is the system capacity and Y is 

the queue discipline. This is called Kendall-Lee notation. For example 

MIGIIOloolFIFO indicates a queueing system with exponential interarrival 

times, general service times, 10 parallel servers, no restriction on the max

imum number allowed in the system and first-in first-out queue discipline. 

If a queueing system is represented by AIBIC, then it is understood that the 

system capacity is infinite and the queue discipline is FIFO. 
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1.2 Methods for solving queueing models 

Queueing models can be broadly classified into Markovian queueing 

models and non-Markovian queueing models. 

1.2.1 Markovian queueing models 

Queueing models with inter-arrival time of customers and service time 

exponentially distributed are called Markovian queueing models. Marko

vian queueing models are analysed by 

1. the difference-differential equations method or 

2. the matrix-geometric algorithmic method. 

Some queueing systems are studied analytically by deriving the corre

sponding difference - differential equations and solving them by using suit

able generating functions. This method is discussed in detail by Gross and 

Harris [12], Kleinrock [17] and Saaty [32]. Neuts[28] developed what is 

called matrix-geometric algorithmic approach for studying the steady state 

queueing models. Matrix-geometric approach involves only real arithmetic 

and avoids the calculation of complex roots based on Rouche' s theorem. 

1.2.2 Non-Markovian queueing models 

The exponential assumption on probability distribution, although cer

tainly convenient, is not always realistic. There is a practical need for mod

els that do not rely on strict Markov assumptions. Queueing models having 

the interarrival times and/or service times which are not exponentially dis

tributed are known as non-Markovian queueing models. 

The techniques generally used in studying non-Markovian queues are: 
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1. Embedded Markov chain technique: This technique, introduced by 

Kendall [16], is commonly used when one among the service time and 

interarrival time is exponentially distributed while the other is not. 

2. Supplementary variable technique: Some non-Markovian models 

can be analysed by converting them into Markovian models through 

the introduction of one or more supplementary variables. This is 

known as Supplementary Variable technique. Cox[9] has analysed 

non-Markovian stochastic processes by the inclusion of supplemen

tary variables. 

1.3 Types of vacations 

Queueing systems in which server leaves for a vacation were studied by 

many researchers. The non-availability of a server at the system may be 

termed as server's vacation. In a queueing system, if the queue is empty, 

then the idle time of the server can be utilised to perform additional jobs 

or for the preventive maintenance work which can be divided into short 

segments. Sometimes maintenance work may have to be done even when 

the queue length is empty. The following are some of the commonly applied 

server vacation policies. 

1.3.1 Repeated vacations 

In some bulk service models a server, on completion of a service, will 

start service again only if the system has at leasr a certain minimum num

ber of customers required to start the service. Otherwise, the server will 

withdraw from the system for a vacation. On return after vacation period if 

the server finds less than the required number of customers he may immedi

ately take another vacation. He will continue in this manner until he finds, 

. 
! 
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upon returning from a vacation, the required minimum number of waiting 

customers. 

1.3.2 Single vacation 

The assumptions are same as those of repeated vacations except that, 

even if the server finds less than the minimum number of customers required 

for service when he returns from a vacation, he stays in the system waiting 

for the queue length to reach the minimum number for starting his next 

servIce. 

1.3.3 Exceptional first vacation 

In repeated vacations . the duration of the first vacation and the subse

quent vacations are assumed to have the same distribution. In exceptional 

first vacation, the duration of the first vacation is differently distributed from 

that of the subsequent vacations. 

1.3.4 Gated vacation 

In this vacation model, as soon as the server returns from a vacation, 

he serves only those customers who were waiting at time of his return to 

the system. The services of subsequent arrivals are deferred until after the 

next vacation. In this model when the server returns from vacation a gate 

closes behind the last waiting customer and the server will serve only those 

customers in front of the gate before leaving for another vacation. 

1.3.5 Random vacation 

A machine used to produce a variety of items, may breakdown randomly 

independent of the status of the queue. This breakdown may be regarded as 

server's vacation. 
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1.3.6 Limited service vacation 

Sometimes, after producing a specific number of items a machine ( server) 

may have to be sent for maintenance or stopped to remain idle for sometime, 

to make it fit for further production. In such cases, it is said that the machine 

(server) is allowed to take "limited service vacation". 

1.4 Relevant literature survey 

1.4.1 Queueing systems with vacation 

Analysis of queueing models with different types of vacation were done 

by several researchers. Doshi [10] provides a survey of queueing systems 

with vacations in which he attempted to provide a methodological overview 

with the objective of illustrating how the seemingly diverse mix of problems 

are closely related in structure and can be understood in a common frame 

work. 

Levy and Yechiali [22] considered an MIMIS queueing system with 

servers' vacation. The distribution of the number of busy servers and the 

mean number of units in the system were obtained by considering repeated 

vacation as well as single vacation. 

Takagi [36] studied exhaustively different types of vacation models. He 

also, analysed an MICI! queue with mUltiple server vacation which is very 

well applied to a polling model [38]. 

Ho Woo Lee [21] studied an MICI! queue with exceptional first vaca

tion and obtained the transform solution of the system size distribution by 

defining supplementary variables. 

A queueing system with single server who serves customers according 

to general bulk service rule and leaves the system for vacation was anal

ysed by Nadarajan and Subramanian [24]. Both repeated vacation and sin-
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gle vacation of server are considered. The steady state probability vector 

of the number of customers in the system and the stability condition were 

obtained, using matrix-geometric method. 

1.4.2 Control policies for a single server system 

Much of the recent research in queueing theory has been concerned with 

optimisation. Yadin and Naor [40] obtained the optimal value the queue size 

has to attain in order to turn on a single server, assuming that the policy is to 

turn on the server when the queue size reaches a certain number, N, and turn 

him off when the system is empty. This is called N -policy. Heyman [13] 

also considered similar policies and showed the optimality of the policy 

under certain conditions. Balachandran [4] and Balachandran and Tijms [5] 

considered the D-policy, which activates the server when the cumulative 

service times of customers in the queue first reach (or exceed) a threshold 

D. Heyman [14] introduced another policy, called T -policy in which server 

takes a vacation of T time units after the completion of each busy period. 

The above optimal policies were compared in several studies by em

ploying different cost functions. Balachandran and Tijms [5] proved that the 

D-policy is superior to N -policy for exponentially distributed service times, 

with decreasing failure rates and for some cases with increasing failure rates, 

by employing a cost function based on the mean workload. Heyman [14] 

proved that N -policy is superior to T -policy by using a cost function based 

on the expected queue length. Artalejo [1] showed that the T -policy is the 

worst among the three under the above two cost structures and that the re

lation between the optimum Nand D policies depends on the cost function 

employed. 

Lee and Srinivasan [20] studied the control policies for an MXIGll 

queueing system and derived the mean waiting time of an arbitrary cus

tomer. Also they presented the procedure to find the stationary optimal pol-
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icy under a linear cost structure. 

Takagi [37] studied time-dependent behaviour of M I G 11 vacation model. 

Also Takagi [39] considered a finite capacity MIGI1 queueing model with 

set up time under N -policy and derived certain system characteristics. A 

Poisson input queue, under N -policy with a general startup time was anal

ysed by Medhi and Templeton [23]. 

1.4.3 Tandem queues 

In queueing problems such as assembling of parts in a factory, under

going medical check up in a clinic, or driving through several traffic inter

sections, service is made up of several phases and is rendered by facilities 

arranged in series. Queueing models in which there exist a series of service 

stations, through which each calling unit must progress prior to leaving the 

system, were studied by several researchers. 

A queueing model involving tandem queues with finite waiting room in 

between the two servers was discussed by Neuts [26]. The study of blocking 

in two or more units in service with general service time distribution without 

intermediate buffer was considered by Avi-ltzhak and Yadin [2]. Clarke [8] 

investigated a tandem queueing model where in two servers are placed in 

series and each customer will receive service from one and only one server. 

Nadarajan and Audsin Mohana Dhas [25] studied a model consisting of two 

units land 2 connected in series with a finite intermediate waiting room. 

The customers in the buffer are served according to a general bulk service 

rule with exponential times. Unit 2 is in the upstate and downstate, follow

ing exponential distribution. 



12 

1.5 Author's contribution 

In this thesis the analysis of some queueing models that are related to 

the well known' N -policy' has been developed and presented. 

In chapter 2, an M I M 11 queueing model under a new operating policy, 

called modified N -policy, is considered as follows: The server on becom

ing idle waits until N units accumulate for service. ie, his vacation period 

ends at the arrival of Nth unit. These N units are served together as a batch 

unlike in the usual N -policy to minimise customer impatience and subse

quent arrivals are served in single. Here it is assumed that arrival process 

is Poisson and both batch service and single service are exponentially dis

tributed with different service rates. Steady state probabilities are obtained. 

Some measures of effectiveness are computed. Optimal N value is calcu

lated. Some numerical illustrations are provided. Laplace transforms of the 

time dependent probabilities are obtained. Also waiting time distribution is 

derived. 

In chapter 3, an MICI1 queueing model under modified N-policy is 

considered. ie, the arrival process is a Poisson process and both types of 

services are arbitrarily distributed. By using embedded Markov chain tech

nique, both departure time and arbitrary time probabilities are computed. 

Some measures of effectiveness are obtained and optimal N value is inves

tigated. Also waiting time distribution is derived. 

Chapter 4 analyses an MICI1 queueing model under two different op

erating policies. In model 1, the operating policy is the usual N -policy, but 

with random N and in model 2, a system similar to the one described in 

chapter 3 is considered with the only difference that N is not deterministic 

but random. In both models the size of the queue at which initial service 

starts will be determined by the outcome of a random experiment. For these 

two models, steady state distributions are derived. Some measures of perfor-
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mance of the system are computed and the optimal distribution of N from a 

given class of distributions is investigated. 

Chapter 5 is partly devoted for the transient analysis of an M I M 11 queue 

under the usual N -policy. Here transient state (time dependent) probabili

ties in terms of Bessel functions are obtained. Also the output distribution 

(distribution of time between successive departures) in the steady state un

der N -policy is derived. 

The last chapter analyses "Tandem queue with two servers". Here we 

assume that the first server is a specialised one. He will be activated only 

after the accumulation of N units in the system. At the arrival of the Nth 

unit, he starts giving service one at a time till none is left before him. ie., 

N -policy is the operating policy for this server unit. After being served by 

this specialised server, a customer will go to the second server unit. If the 

server is busy at that time he will have to wait till his turn for service comes. 

Otherwise he can join service directly. After being served by the second 

unit he leaves the system. It is assumed that the second server unit is always 

available and there is a finite capacity waiting room between the two servers. 

The arrival process to the first server is assumed to be a Poisson process and 

service time distributions of both servers are assumed as exponential. Here 

the infinitesimal generator matrix has been obtained in block partitioned 

tridiagonal form and so the steady state probability vectors are obtained in 

matrix geometric form. Also the stability condition is established. 
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Chapter 2 

Modified N-policy for the MIMll queue 

N -policy for queues has been investigated by several researchers. In a 

queueing system, under N -policy, the server will be on vacation until N 

units accumulate for service for the first time after becoming idle. As soon 

as N units accumulate in the system, he starts service, one at a time, till the 

system becomes empty. The server will be turned on again when the queue 

size reaches the number N. The process continues in this fashion. 

In this chapter, a modified version of the N-policy for an MIMl1 queue

ing system is considered. This modified policy is defined as follows: The 

server on becoming idle waits until N units accumulate for service. These 

I\~ units are served in a single batch and subsequent arrivals during the busy 

period initiated by this batch receive single service. Service time distribu

tion for bulk service is different from that of single service. 

The above problem is motivated by some real life situations in which 

when a server becomes idle, he is turned off. The fixed cost of getting him 

back to serve may turn out to be very high. Hence service commences only 

after a certain number (here N) units queue up. These units are served 

in bulk unlike in the usual N -policy to reduce customer impatience. If 

N is taken too large, cost associated with waiting time of the customers, 

who have reached during the vacation period, will increase tremendously, 

whereas if N is taken very small, there will be a large number of busy cy

cles so that the setup cost associated with the starting of busy period will 
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increase. Hence a trade off between these two is called for. 

Let the arrival process form a Poisson process of rate A and the service 

times obey the exponential distributions with parameters /-Ll or /-L2 according 

as the services are in single or in batch. Since the expected service time for 

a bulk service may be more than that of a single service, it is assumed that 

J.L2 < J.Ll. Since the number of customers who are arriving during the batch 

service is the determining factor of system stability, it is also assumed that 

PI = ~ < 1. 
J.Ll 

2.1 Notations 

Let X (t) be the number of units in the system at time t. 

o if the server is idle at t 

Define Y (t) = 1 if a single service is taking place at t 

2 if a batch service is taking place at t 

Then {(X ( t), Y ( t) ), t > O} is a continuous time Markov process with 

the state space 

S = {(i,O)IO < i < N -I} U {(i, 1)li > I} U {(i,2)li > N} 

Let Pij (t) be the probability that the system is in state (i, j) at time t 

and qij = limt-too Pij ( t) . 

This chapter is presented as follows. In section 2.2, the Markov chain 

{ (X ( t), Y ( t) ); t > O} is analysed to get the stationary behaviour. Some 

measures of effectiveness are also computed in this section. In section 2.3, 

the optimal N value is investigated, convexity of the cost function is estab

lished and some numerical illustrations are provided. In section 2.4, waiting 

time distribution is derived and expected waiting time in the queue is com

puted. Section 2.5 is devoted to the transient or time dependent behaviour 
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of the system. 

2.2 Steady state analysis 

Clearly Pij(t) satisfy the following system of Kolmogrov differential 

equations: 

for 1 < n < N - 1 - - (2.1b) 

P~l(t) = -(,X + 111)Pn1 (t) + 111 Pn+l,1(t) 

+ 112PN+n,2(t) + 'x(1 - dln)Pn-1,1(t) for n > 1 (2.1c) 

P~+n,2(t) = -(,X + 112)PN+n,2(t) + 'x(1 - dOn)PN+n- 1,2(t) 

+ 'xdonPN-1,O(t) for n > 0 (2.1d) 

where bij is the Kronecker delta. Then the steady state probabilities qij 

satisfies the following system of equations. 

(2.2a) 

for 1 < n < N-1 - - (2.2b) 

0= -(,X + I1dqnl + 111qn+l,1 + 112QN+n,2 + 'x(1 - bln)Qn-l,l for n > 1 

(2.2c) 

0= -('x+112)QN+n,2+,X(1-don)QN+n-l,2+'xbOnQN-l,o for n > 0 (2.2d) 

(2.2b) gives: 

for 1 < n < N - 1 - - (2.3a) 
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(2.2d) gives: 

( ,\ ) n+ 1 for n > 0 qN +n,2 = ,\ + 112 qoo (2.3b) 

(2.2a) gives: 
,\2 

qu = [Ill('\ + 1l2)]qOO (2.3c) 

Using (2.3b), (2.2c) can be written as 

2 ( ,\ ) ,\ ) - 112 ( ,\ ) n+ 2 (E - 1 + - E + - qnl = - ,\ qoo 
III III III + 112 

for n > 2 

which is a non-homogeneous linear differential equation of order 2 and E 

is the right shift operator. The general solution to this equation is 

,\ 1!:1. ( A ) n+2 . 
_ A(_)n B _ 1-'1 ~ qoo 

qnl - + ( A ) 
III r A+I-'2 

where r (E) = E2 - (1 + ;1) E + ;1 and A, B are arbitrary constants. Hence 

Since 2::~=1 qnl < 1, B = O. Therefore 

(2.3d) 

Choose A in such a way that this result holds for n = 1 also. Substituting 

the value thus obtained for A in (2.3d), it is found that 

,\n+l 1 1 

qnl = ,\ _ III + 112 [Ill - (,\ + 1l2)n]qOO for n > 1 (2.3e) 
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Substituting (2.3a), (2.3b), and (2.3e) in the normalising condition E~:Ol qnO+ 

L~=l qnl + E~=o qN+n,2 = 1, we get 

J-L2(J-Ll - A) 
qoo = ----'--~-----'---

AJ-Ll + N J-L2(J-Ll - A) 
(2.3f) 

Lemma 2.2.1. Average queue size when the server is busy is 

L = A2[AJ-L2 + J-Ll(J-Ll - A)] 
J-L2(J-Ll - A)[AJ-Ll + N J-L2(J-Ll - A)] 

Proof We have 

Lemma 2.2.2. The expected duration h of a busy period is given by 

h = J-Ll 
J-L2 (J-Ll - A) 

Proof. Since the expected duration of a busy period for an ordinary M 1 M 11 

queue with arrival rate A and service rate J-L is Jl~-\' 

J-Ll 

D 

Lemma 2.2.3. Mean length of a busy cycle, B = (J1:1 -\) + f'!. 
Jl2 JlI - A 

Proof. Since successive busy and idle periods constitute a busy cycle, 

D 
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2.3 Determination of optimal N 

Here we investigate that value of N which minimises a suitably defined 

cost function. The following important costs are included in the cost func

tion, which is denoted by FMod-N. 

i) Cl: Waiting time cost per customer per unit time when the server is 

busy. 

ii) C2: Unit time service cost associated with batch service. 

iii) C3: Unit time service cost associated with single service. 

iv) C4: Cost towards waiting per unit time until service starts after an idle 

period. 

v) J<: Fixed cost for commencement of each busy period, that is, the set 

up cost. 

Then the total expected cost per unit time, 

1 00 

FMod-N = CIL + (C2 + J<) B + C3 L nqnl 

n=l 

N-1 N-2 1 + C4 [ + + ... +-] 
A A A 

As a particular case, choose J-l2 = ;J..r where 0.5 < a < 1; which means that 

the expected service time for a batch of N units is less than the time needed 

for N single services. With this modification F Mod- N takes the form 
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By approximating N as a continuous variable, it can be shown that the sec-

dd · . fF . h N· 2(C2+I<)A(/11-A) ~ h· h· on envatlve 0 Mod-N WIt respect to IS N3(j.t1+(a-I)A] + A W IC IS 

a positive quantity since PI = ~ < 1. Hence FMod-N is convex in N. By 
/11 

equating the first derivative of F Mod- N to zero, it can be seen that optimal 

N value is the root of the equation 

2C4JlirJll + (a - 1).\]N3 + [2a2.\3(C1 + C3)(.\ + J-Lt) 

- C4J-LI(J-Ll + (a - 1 ).\)]N2 + 2( C2 + 1<) (.\ - J-Ll).\2 J-LI = O. (2.5) 

(2.5) is of the form y3 + py2 + qy + r = 0 and this can be reduced to 

the normal form x3 + ax + b = 0 by the substitution y = x - ~ where 

a = i(3q - p3) and b = 217 (2p3 - 9pq + 27r). 

If p, q, r are real (hence a, b are real) and b: + ~; > 0, the equation 

y3 + py2 + qy + r = 0 has exactly one real root and two conjugate imaginary 

roots and the real root is given by y = Al + A2 - ~ where 

In the case of (2.5) it can be proved that b2 /4 + a3/27 > 0 and so it has 

exactly one real root, namely, 

where 

A, = V -~ + Vb2 / 4 + a3/27, A2 = ?/-b/2 - Vb2/4 + a3/27, 

a = _~[Cl + C3 . a2.\3(.\ + J-Ll) _ ~]2 
3 C4 J-LHJ-Ll+(a-l)'\) 2 

b = C2 + [{ .\2(.\ - J-LI) + 2(-a)3/2 and b2 + a3 > O. 
C4 J-Ll+(a-l)'\ 3 4 27 
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Since N* must be an integer, substitute the integers close to H in (2.4) 

and pick the one giving lower expected cost. The notation []+ refers to the 

integer chosen in this manner. Some numerical illustrations are shown in 

the following table: 

A PI (l' Cl C2 C3 C4 I{ N* 

5 8 0.5 25 50 40 30 200 4 

10 13 0.5 30 75 45 45 250 5 

15 23 0.5 30 80 55 45 260 8 

22 30 0.6 35 80 55 55 210 6 

15 35 0.6 40 80 55 65 200 15 

20 50 0.7 45 87 62 57 220 10 

20 40 0.7 45 115 70 90 350 9 

25 40 0.75 50 130 75 75 300 8 

30 50 0.75 50 120 75 75 280 9 

40 70 .0.75 60 140 80 100 400 12 

30 65 0.8 55 165 90 80 500 13 

45 90 0.8 55 165 90 80 500 12 

50 85 0.8 60 180 90 100 500 19 

55 95 0.8 60 185 90 110 400 14 

60 100 0.8 70 200 95 125 500 14 

2.4 Waiting time distribution 

Let T represent the "time spent waiting in the queue" by an arbitrary 

customer and W (.) be the cumulative distribution function of T. 

Then W(O) = P{T = O} = P{ the arrival finds the system in state 

(N - 1,0)} = qN-l,O = qoo 

and P{O < T < t} = L(i,j)¥:(N-l,O) P{O < T < tl the arrival finds the 



system in state (i, j)} qij 

where * denotes convolution 

It can be verified that fooo 1tP{O < T < t}dt + W(O) 

expected waiting time in the queue, 
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1. Now the 



23 

[N(N - 1) A(J-Ll - J-L2) A2 
= 2A + J-LHJ-Ll - J-L2 - A) + J-Ll(A + J-L2)(J-Ll - J-L2 - A) 

A2 

(J-Ll - A)2(J-Ll - J-L2 - A)] qoo 

2.5 Transient behaviour 

Assume that the system size at time 0 is i where i < N and the server 

is not activated. ie., the initial service will start only after the accumulation 

of N - i more units. Thus PiO(O) = 1 and Pjk(O) = 0 for (j, k) =f. (i,O) 

Define the probability generating functions 

00 

G1(z, t) = L zn PnO(t) (where PnO(t) = 0 for n > N), 
n=l 
00 00 

n=l n=O 

(where Pn2 (t) = 0 for n < N) such that all these series are convergent for 

Izl ~ 1. Multiplying equation (2.1b) throughout by zn and summing over n 

from 1 to N - 1, it is seen that 

Taking Laplace transform of both sides and rearranging, we get 

G1(ZlS)= ).,z A {zi-l[l_( AZ).,)N-i]+AFOO (S)[l_( AZA)N-l]} 
s+ - z s+ s+ 

(2.6) 

where G1(Zl s) and Foo(s) are the Laplacetransforms ofG1(z, t) and Poo(t), 

respectively. MUltiplying (2.1d) throughout by zN+n(n > 0) and summing 
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over n from 0 to 00 gives 

Taking Laplace transform of both sides and substituting the value of PN -l,O( s) 

obtained from (2.6), it is found that 

_ AN -i zN Ai _ 
G3(z, s) = (A A)( A)N-O [1 + ( A) ° 1 POo(s)] (2.7) s + +!-L2 - Z S + z S + z-

Multiplying (2.lc) throughout by zn(n > 1), summing with respect to n 

from 1 to 00, adding the resulting equation and (2.la) results in 

Taking Laplace transform of both sides and rearranging, it is found that 

(2.8) 

where G3(z, s) is given by (2.7). 

Since the Laplace transform G2 ( Z , s) converges in the region I z I < 
1,Re(s) > 0 wherever the denominator of the quotient in (2.8) has zeroes 

in that region, so must the numerator. The zeroes of the denominator are 

Using Rouche's theorem, it can be proved that Zl is the only zero of the 

denominator in I z I < 1. Therefore (s + A) zf Poo ( s) = !-L2G3 (Zl' s) so that 
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Then (2.7) yields : 

Thus in (2.6), (2.7) and (2.8), each of Gi(z, s), is expressed in terms of 

Poo( s) and Poo( s) is given by (2.9). 
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Chapter 3 

Modified N-policy for the MIGll queue 

The queueing model that is being discussed in this chapter is the one 

similar to that was discussed in the previous chapter with the only exception 

that the service times are arbitrarily distributed. 

Let the arrivals form a Poisson process of rate A and both single service 

times and batch service times are independent sequences of independent 

and identically distributed random variables having arbitrary distribution 

functions Bl (.) and B2(·) with service rates J-Ll and J-L2, respectively. It is 

assumed that both service times have finite second moments. 

3.1 Notations 

Let X ( t) be the number of units in the system at time t. 

o if the server is idle at t. 

Define Y(t) 

1 if the forthcoming service is a single service or 

a single service is taking place at t according as t is 

a departure epoch or arbitrary epoch, respectively. 

2 if a batch service is taking place at t. 

Then { (X ( t), Y ( t) ) : t > O} is a continuous time stochastic process with 

thestatespaceS= {(i,O)IO < i < N-l}U{(i,l)li > 1}U{(i,2)li > N}. 

Material of this chapter will appear in Computers and Operations Research 
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Let qij and 7rij be the steady-state probabilities that the system is in state 

(i,j) at an arbitrary epoch and at a departure epoch, respectively. 

3.2 Analysis 

The embedded stochastic process {(X(ti), Y(ti))} where to = 0, t l , t2, 

t3, ... are successive times of completion of service, is a Markov chain with 

state space, {(O, 0), (1,1), (2,1), (3, 1), ... }. For the time being the exis

tence of a steady-state solution is assumed. Then the arbitrary time proba

bilities qij and departure point probabilities 7rij are connected as follows. 

100 (At)i 
For 0 < i < N - 1, qiQ = 7roo e-)"t_.,_ dt 

o z. 

le. forO < i < N - 1 

Fori > N, 

Let Q be the transition probability matrix of the embedded Markov chain 

{(X(ti), Y(ti))}. Then 

(0,0) (1,1) (2,1) 

(0,0) Co Cl C2 

(1,1) ko kl k2 

(2,1) ° ko kl 
Q= 

(3,1) ° ° ko 



where 

Cn = Pr{ n arrivals during a batch service} 

= (OO e_At(,Xt)n dB2(t) and 
lo n! 

kn = Pr{ n arrivals during a single service} 

= (OO e_At('xt)n dBI(t) 
lo n! 
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IT = {7rij} can be found as the solution to the stationary equation ITQ = IT. 

This yields: 

7roo = 7rOOCO + 7r11 ko 
i+1 

7ril = 7roo Ci + L 7rjIki-j+1 for i > 1 
j=1 

Define the probability generating functions 

00 

IT(z) = 7roo+ L 7riIZi, 

i=l 

00 

J«z) = L kizi 

i=O 

(3.1) 

(3.2) 

and C (z) = I:~o Ci zi such that all these series converge for I z I < 1. 

Multiplying (3.2) by zi, summing over i from 1 to 00, adding the resulting 

equation to (3.1), it is found that 

II( ) _ [zC(z) - J((z)] 
z - 7roo Z _ J«z) 

. 1 - PI 
Smce II(I) = 1, we have 7roo = . where PI = ,XE(XI ), P2 = 

1 - PI + P2 
AE(X2) and E(XI ), E(X2) are the expected durations of single service 

and batch service, respectively. It is assumed that E(XI ) < E(X2)' le., 

112 < 111· 



Now the expected system size at a departure point, 

L' = II'(l) = [:ZII(Z)]Z=I 

(1 - PI)[.\2012 + p~ + 2p2] + p2[.\2at + pi] 

2(1 - PI)(l - PI + P2) 
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(3.3) 

where at and a~2 are the variances of the single service and batch service, 

respecti vel y. 

The application of Foster's theorem in a fashion similar to that of section 

5.1.4 of [12] shows that the embedded Markov chain is ergodic and hence 

possesses stationary distribution when PI = .\E(XI) = .\I/-LI < 1 provided 

E(XI) < E(X2). Now consider the following lemmas. 

Lemma 3.2.1. Average queue size when the server is busy is given by 

£ = (L' - 1 + 1l"OO)E(XI) + .\(1 - 1l"00) E(Xr) + .\1l"00 E(Xi) 
2 2 

where £' is given by (3.3) and E(Xl) is the second row moment of ..,Yi . 

Proof 

00 00 
L = L(i - l)qil + L(i - N)qi2 

i=l i=N 

00 i {OO -AU(.\ )i-i 
= ~ ~(i - l)1TjJ Jo e (i _ ~)! [1 - BJ(u)] du 

{OO t e-AU .\(.\u)N-I 
+ ?roo lo lo (N _ I)! .\(t - u)(l - B2(t - u)) dudt 

00 {oo 
= L Kjl lo [(j - 1) + .\u](l - Bl(u)) du 

j=l 0 

{OO 100 .\2e-AU (.\u)N-l 
+ ?roo lo U (N _ I)! (t - u)(l - B2(t - u)) dtdu 



since f' u2 dB(u) = 2 f" u(l - B(u)) duo 

Thus 

Hence the proof. 

Lemma 3.2.2. Expected duration of a busy period, 
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o 

Proof Let HI (.) and H2 (.) be the CDFs of the busy periods generated by a 

single customer and a batch of N customers, respectively. Then 

H2{x) = l' Pr(given first service time = t, busy period generated by all 

arrivals occurring during the time < x - t) dB2(t) 

{X 00 (At)n 
H2(x) = lo L e-At ----;! H;n(x - t) dB2(t) 

o n=O 

le. (3.4) 

where H;n(x) is the n-fold convolution of HI(X). Let Hi(S) and Bi(S) be 

the Laplace-Stieltjes transformation (LSTs) of Hi (t) and Bi (t), respectively. 

Taking LSTs of both sides of (3.4), it is found that 

H2(S) = B2(S + A - AHI(S)) 
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Hence the mean length of the busy period generated by a batch of N units 
d - E(X2). d - E(Xl) 

= - ds H2(S) Is=o = 1 _ PI' smce [ds HI (s)]s=o = -1 _ AE(Xl) from sec-

tion 5.1.7 of [12]. 
E(X2) 

Thus [1 = . Hence the lemma. 0 
1 - PI 

Mean length of the busy cycle is given by 

If the costs Cl, C 4 and K, which are stated in the previous chapter are the 

only costs considered, the unit time cost function FM od-N assumes the form 

By treating N as continuous, it can be shown that the second derivative of 

FMod- N with respectto N is 

which is greater than zero since PI = ~ < 1. Hence FMod- N is convex in 
J.Ll 

.v. 
Equating the first derivative of FMode-N to zero, the following cubic 



equation is obtained; 

2C4J.L~(J.LI - -\)2 N 3 + [4C4AJ.LIJ.L2(J.LI - -\) - C4J.L~(J.LI - -\)2]N2 

+ [2C4A2 J.Li - 2C4AJ.LIJ.L2(J.LI - A)]N 
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= 2I{,-\2J.L~(J.LI - A)2 + C4-\2J.Li 

By a procedure similar to the one used in the case of (2.5) in chapter 2, here 

also it can be proved that b: + ~; > 0 and hence this equation has exactly 

one real root, namely, 

* _ [ 1 [ 4-\J.LI]] + _ [ ]+ N - Al + A2 + -6 1 - ( -\) - H 
J.L2 J.LI -

where 

Al = 3 -b/2 + 

-[(A2 (2b + I{-\2) 
4C4 C4 

3 
A2 = -b/2-

and b = __ 1_[1 + 2AJ.LI ]3 _ I{ -\2 
108 P2(J.LI - A) C4 

Since N* must be an integer, substitute the integers close to H in (3.5) and 

choose the one giving the lower expected cost. Some numerical illustrations 

are given in the following table. It provides optimal N values corresponding 

to various input parameter values. 

A J.LI J.L2 C4 I{ N* 

5 20 15 20 100 5 

10 25 20 25 150 8 

12 25 23 30 125 8 

15 35 30 40 200 10 
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,\ /-Ll /-L2 C4 K N* 

15 50 40 50 225 10 

10 50 45 30 150 8 

5 60 30 50 300 5 

30 60 50 50 250 16 

20 80 55 60 350 13 

25 60 40 70 400 15 

30 100 50 70 400 17 

40 100 80 80 500 21 

45 50 40 60 450 17 

50 60 40 70 250 16 

50 75 70 65 200 18 

3.3 Waiting time distribution 

Let T be the random variable representing the time spent waiting in 

the queue by an arbitrary customer and W(t) be its cumulative distribution 

function. Then 

W(O) = Pr{T = O} = Pr{the arrival finds the system in state(N - 1,O)} 

= qN-l,O = qoo 

and Pr{ 0 < T < t} 

L Pr{O < T < tl the arrival finds the system in 
(i,j)i=(N -1,0) 

state (i, j) }qi,j 
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_ N-l rt e-AU A(AU)N-i-2 . 
-~Jo (N-i-2)! duqzo 

z=O 

+ ~ lt (b*(i-N)(t - ) 100 b2(u + Y) d ) d . 
~ 1 Y * 1 B ( ) u Y qz2 
. 0 0 - 2 U 
z=N 

+ ~lt (b*(i-l)(t - ) 100 b1(u + Y) d ) d . 
~ 1 Y * 1 B ( ) u Y qzl 
i=l 0 0 - 1 U 

where bi(t) = :tBi(t) for i = 1,2 and b;j(.) is the j-fold convolution of 

bi (·). Then with itself E(T) = 0 . qoo + Jooo t it Pr{O < T < t}. 



Chapter 4 

Random N-policies for the MIGll queue 

In a queueing model under N -policy, the server takes a vacation until a 

fixed number, N of customers accumulate for service since the completion 

of the last busy period. But there arise some practical situations where, upon 

emptying the queue, the server decides on a random number N of customers 

to accumulate before he is activated. Hence, the number N may vary with 

different cycles. This policy is called the random N -policy. 

In this chapter, an MICI! queue under two types of random N -policies 

are considered. In Model 1 an MICI! queue, under the random N-policy 

described above, is analyzed. This model was earlier studied by Chatschik 

Bisdikian [7], who obtained the Z-transform of the queue size and Laplace

Stieltjes transform (LST) of the waiting time of a customer under both FIFO 

and LIFO service disciplines. For the same model that is being discussed 

in this chapter, we have computed the average queue size and mean length 

of a busy period. Also the optimal distribution of N from a given class of 

distributions is investigated. In Model 2, the operating policy is the modified 

N-policy considered in the previous chapters with the only difference that 

N is not deterministic, but random. Here steady state distribution is derived. 

Some measures of performance of the system are computed and the optimal 

distribution of N from a given set of distributions is enquired. 
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4.1 Model1 

Let the arrival process be Poisson of rate A and service times of cus

tomers be independent and identically distributed (iid) random variables 

following an arbitrary distribution with mean service time 1 and variance 
J1. 

(J2. Also it is assumed that p = ~ < l. 
Here, following a busy period, the server remains idle until N customers 

accumulate in the queue. Once N units are accumulated, service starts one 

at a time till the system becomes empty. Contrary to the classical N -policy, 

here N is assumed to be a random variable taking a finite number of values, 

say 1,2,· .. rn, with probabilities Pr,P2, ... ,Pm, respectively. Let Bk be the 

expected length of a busy period that starts with k customers and Nk be the 

expected number of customers served in such a busy period. In [13], it is 

shown that 

k 
Bk = , 

jL(l - p) 
k 

k = 0,1, ... and Nk = , 
. 1-p 

k = 0,1,· ... 

Hence for this model, mean length of a busy period 

Since the idle time of the server is k / A, where the initial service starts only 

on arrival of k units, the mean length of an idle period is f ~ Pk. 
k=l 

Therefore mean length B of a busy cycle is 

Let Wand L be the mean wait in the system and mean number in the sys

tem, respectively. To obtain L, W will be found first and then use Little's 
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theorem. Let Wk and Lk be the mean wait in the system and mean number 

in the system for an MICll queue that starts each busy period with k > 1 

customers. In [13], it is shown that Lk = LMIGll + k;l where LMIGll is 

given by the Pollaczek -Khinchine equation 

By Little's theorem, Wk = L;. Now W is the average taken over the waiting 

times of all customers. If this average is formed by combining the waiting 

times of those customers that were served in a busy period that starts with k 

customers, noting the contribution to the sum of all the waiting times from 

this subset is proportional to both the average number of customers served 

in these busy periods and how often these busy periods occured, it is found 

that 

where W Mlcll = LMIGld A is the average waiting time of a customer in the 

system for an ordinary MICll queue. ie, 

(4.1) 

Applying Little's theorem to (4.1) yields 

1 (l:~=l k2Pk ) 
L = L Mlcll + -2 l:m k - 1 

k=l Pk 

Let Cl be the holding cost per customer per unit time and K be the fixed 

cost for activating the server. By considering these two costs only, the per 

unit time average cost of running the system, denoted by F N, assumes the 
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form 

Now we are investigating the optimal distribution of N (distribution which 

minimizes FN ) from a given set of distributions. For this purpose the fol

lowing three cases are being considered. 

Case 1: N uniformly distributed. 

Herepk = ! for 1 < k < m. Then 

F C[L · m-I] 2I<>..(p->..) Cl IF· . 
N = 1 MICll + 3 + m + l)p· ear Y N IS convex III m. 

Hence if m* is the optimal value ~or m, m* satisfies the relations 

FN(m*) < FN(m* + 1) and FN(m*) < FN(m* - 1) 

The first relation yields: 

6K>'g- - >.) < (m' + l)(m' + 2) 
lP 

The second relation yields: 

*( * ) 6KA(JL - A) 
m m +1 < C 

lP 

Combining (4.3) and (4.4), we get 

(4.3) 

(4.4) 

6I{ >"(11. - >..) 
m*(m* + 1) < C < (m* + l)(m* + 2) (4.5) 

lP 

Some numerical illustrations are provided below. 
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m* 1 2 3 4 5 6 7 8 9 10 

m*(m* + 1) 2 6 12 20 30 42 56 72 90 110 

(m* + l)(m* + 2) 6 12 20 30 42 56 72 90 110 132 

From the above table, for a given value of 6I< ~I-'-),) , the corresponding value 
11-' 

for m* will be obtained. For example, if 

6I{>"(J-L - >..) = 25, m* = 4 
C1J-L 

. 6K >"(J-L - >..) 
and If C = 56, m* has two values, namely 6 and 7. 

IJ-L 
However, for large m*, (4.5) can be approximated as 

so that 

( * 1)2 6I{ >"(J-L - >..) m + ~ -----.,;~-~ 

C1J-L 

m*~ 
6I{ >"(J-L - >..) 
----...;...-1 

C1J-L 

Case 2: Distribution of N unimodal and symmetric with respect to a maxi-

mum. 

Here we assume that m = 2n + 1, an odd number. Then 

k 
Pk = P2n-k+2 = (n + 1)2 for k = 1,2, ... n + 1 

and 
n(7n + 8) K >"(J-L - >..) 

FN = Cl [LMIGll + 12(n + 1)] + (n + 1)J-L 

Clearly FN is convex in n. If n* is the optimal value for n, then 
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These two relations yield 

7n*2 + 7n* + 1 < 12I{~Jl- -\) < 7(n* + 1)2 + 7(n* + 1) + 1 (4.6) 
IJl 

Some numerical illustrations are shown below. 

n* 1 2 3 4 5 6 7 8 9 10 

7n*' + 7n* + 1 15 43 85 141 211 295 393 505 631 771 

7(n* + 1)2 + 7(n* + 1) + 1 43 85 141 211 295 393 505 631 771 925 

By using the above table, for a given value of 12I<~~~-A), the corresponding 

value for n* can be computed. For example, if 12I<~(I-'-A) = 375, n* = 6 so 
11-' 

that m* = 13. 

However, for large n* (4.6) gives an approximate value for n*, namely 

21 + 336I< A(I-'-A) 
Gll-' n * ~ --'--------

14 
1 
2 

Case 3 :Distribution of N symmetric with respect to a minimum. 

As in case 2, here also we assume that m = 2n + 1, an odd number. 

Then 
n-k+2 

Pk=P2n-k+2=( 1)2 fork=1,2,···n+1. 
n+ +n 

and 
F - C (L n(9n2 + 25n + 8)) I{-\(Jl- -\) 

N - 1 MICll + 12(n2 + 3n + 1) + (n + l)Jl . 

Obviously FN is convex in n. If n* is the optimal value of n, then 
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From the above two relations, it is obtained that 

n*(n* + 1)[9n*4 + 36n*3 + 22n*2 -17n* - 8] 12I{)..(/1-)..) 
~~--~~~~----77--~----~--~< ----~--~ 
(n*2 + 3n* + 1)((n* - 1)2 + 3(n* - 1) + 1) - CI /1 

(n* + 1)(n* + 2)[9(n* + 1)4 + 36(n* + 1)3 + 22(n* + 1)2 - 17(n* + 1) - 8] < -
- [(n* + 1)2 + 3(n* + 1) + 1](n*2 + 3n* + 1) 

A 12I{ )"(Jl - )..) A 
n* < C < n*+I 

IJl 
le. (4.7) 

Some numerical illustrations are shown in the following table. 

n* 1 2 3 4 5 6 7 8 9 10 

A* n 10.5 52.14 105.65 177.28 267 374.78 500.6 644.5 806.34 986.23 

An '+1 52.14 105.65 177.28 267 374.78 500.6 644.5 806.34 986.23 1184.14 

From the above table, for a given value of 12K ~(/J->"), the corresponding 
1/J 

value for n * will be obtained. 

4.2 Model2 

Here an MICI1 queue under modified N -policy, with random N, is con

sidered. Thus following a busy period, the server remains idle until N units 

accumulate in the queue and these N units are served together as a batch 

and the subsequent arrivals are taken into service one by one. Here, unlike 

in chapter 3, it is assumed that N is not deterministic, but a non-degenerate 

random variable. 

Let the arrivals form a Poisson process of rate ).. and service in single 

have independent and identically distributed random duration following an 

arbitrary distribution with mean service time ~ and variance o}. Let the ran

dom variable N take the values 1,2,··· ,m with probabilities Pl, P2, ... Pm, 

respectively. Assume that the service time of a batch of k units (1 < k < m) 

is also arbitrarily distributed with mean service time :k and variance O}k for 



1 ~ k < m and /-Ll > /-L2 > /-L3 ••• > /-Lm· 

Following notations are used in this model. 

x (t) - Number of units in the system at time t. 

o if the server is idle at t. 
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1 if the forthcoming service is a single service or a single 

Y(t) = service is taking place at t, according as t is a departure 

epoch or an arbitrary epoch, respectively. 

2 if a batch service is taking place at t. 

IfY(t) = 2, define Z(t) = Number of units that are being served at t. 

((X(t) , Y(t), Z(t))lt > O} is a stochastic process with the state space 

{(i,O)IO < i < m -I} U {(i, l)li > I} U {(i,2,j)li > l,j < i} 

In particular, the embedded stochastic process {(X ( ti)' Y ( ti) ) } where to = 
0, tll t2, t3,· .. are the successive times of completions of service is a Markov 

chain with the state space S = {( 0, O)} U {( i, 1) I i > 1}. 

Let 7rij and qij (qi2j) be the steady state probabilities that the system is in 

state (i, j)( ( i, 2, j)) at a departure epoch and an arbitrary epoch, respec

tively. Assume that the steady state solution exists. Then the departure 

point probabilities 'lrij and general time probabilities qij (qi2j) are related as 

follows: 

For 0 ~ i < m - 1, 

i 
'lroo IT le, qiO = T (1 - Pk) for 0 < i < m - l. 

k=l 
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For i > 1 and j < i, 

j-l 100 It e-Au 'x('xU)j-1 
qi2j = 7rOOPj IT (1- Pk) ( . ')' [1 - Bj(t - u)]e-A(t-u) 

o 0 )-z. 
k=l 

['x(t - u)]i- j 
(i _ j)! du dt 

and 
i {OO e-Au('xu)i-k 

qil = L 7rkl lo (i _ k)! [1 - B(u)] duo 
k=l 

where B j ( .) and B ( .) are the distribution functions of the service times of 

a batch of j units and a single unit, respectively. Let Q be the transition 

probability matrix of the embedded Markov chain {(X ( ti)' Y ( ti) ) }. 

Then 

where 

(0,0) (1,1) (2,1) 

(0,0) Co Cl C2 

(1,1) ko kl k2 

(2,1) 0 ko kl 

Q= (3,1) 0 0 ko 

eo· • 

Cn = Pr{ n arrivals during a batch service} 

m 100 e-At(At)n 
= L ,dBk(t)Pk 

o n. 
k=l 

(3,1) 

C3 

k3 

k2 

kl 

100 e-At('xt)n 
and kn = Pr{ n arrivals during a single service} = ,dB(t) 

o n. 

IT = {7rij} can be found as the solution to the stationary equation ITQ = IT. 



This yields : 

7roo = 7rOOCo + 7ruko 
HI 

7ril = 7rOOCi + L 7rjl ki-j+l for i > l. 
j=1 
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(4.8) 

(4.9) 

Define the probability generating functions IT (z) = 7roo+ 2:::'1 7ril zi , C (z) = 

2::0 Ci zi and J«z) = 2:::'0 kizi such that all these series converge for 

Izl < l. 
Multiplying (4.9) by zi, taking summation over i from 1 to 00, adding 

the resulting equation and (4.8), it can be found that 

IT( ) = [zC(z) - J«z)] 
z 7roo z _ J«z) . 

Then II(l) = 1 gives 7roo = 1- +Efff where P = ~ and Pk = AI/-lk P k=l PkPk J.l 

Now the expected system size at a departure epoch, 

L' = II'(l) = [:z II(Z)]z=1 

(1 - p) 2::;;=1 (..\20"~k + p~ + 2pk)Pk + (..\20"1- + p2) 2::;;=1 PkPk 

2(1 - p)(l - P + 2::;;=1 PkPk) 

Expected queue size at an arbitrary time point when the server is busy is 

given by 

00 m 00 

i=1 j=1 i=j 
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where E(X2) and E(XJ) are the second raw--moments of single service time 

and batch service times containing j units, respectively. The application of 

Foster's theorem in a fashion similar to that of section 5.1.4 of [12] shows 

that the embedded Markov chain is ergodic and hence possesses stationary 

distribution when p = AI J-L < 1 provided J-Lk < J-L for k > 1. 

Since by Lemma 3.2.2 of chapter 3, the expected duration of a busy 

period that starts with k customers·is El~;), the expected duration of a busy 

period for this model is I:~=l E(~;Pk. Thus we have 

Lemma 4.2.1. The expected duration of a busy period is I:~=l E(~JPk 
"m _ Pk/J1.k 
L-k=l - I-p' 

Since the idle time of the server in a model where the initial service 

starts only with the arrival of the kth unit is k I A, the expected idle time of 

the server for this model is ± I:~=l kpk. Hence we have 

Lemma 4.2.2. Mean length of a busy cycle, 

B = ~ Pkl J-Lk + ~ ~ k 
~ 1- A ~ Pk· 
k=l P k=l 

Now, W, the expected total waiting time of all those customers who 

have reached the system during an idle period 

m 

= L E (Waiting time of all those customers who have reached 
k=l 

during an idle period given that the idle period ends at 

the arrival of the kth unit)Pk 

m k-l j m k(k _ 1) 
=LLAPk=L 2A Pk 

k=l j=l k=2 

If the costs I{ and C4 , that have been already stated in the previous chapters, 

are the only costs considered, the per unit time cost function for this model, 
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denoted by FM od-N assumes the fonn 

1 
FMod-N = I{ B +C4 W 

= I{ ['£;;:l~k/Pk + ~ I: kPk] -1 + ~; I:k(k -l)pk (4.10) 
P k=l k=2 

Now we investigate the optimal fonn of the distribution of N from the same 

three types of distributions that have been considered in Model 1. Also as a 

particular case, it is assumed that J-Lk = -!!k; 0.5 < a < 1 for 1 < k < m. 

This means that expected service time of a batch consisting of k units is less 

than the time required for k single services. 

Case 1 : N uniformly distributed. 

Since N is discrete unifonn, Pk = ! for 1 < k < m. 

Then 
2A(J-L - A) m2 - 1 

FMod-N = I{(m + 1)[J-L + (a _ I)A] + C4 6A 

Clearly FMod-N is convex in m. Hence if m* is the optimal value for m, 

FMod-N(m*) < FMod-N(m* + 1) and FMod-N(m*) < FMod-N(m* -1) 

These two relations yield: 

I{ A2 (J-L - A) 
m*(m*+I)(2m*-I) < 12 C4 [J-L + (a -1)A] < (m*+I)(m*+2)(2m*+1) 

(4.11) 

Some numerical illustrations are provided in the following table. 

m* 1 2 3 4 5 6 7 8 9 10 

m*(m· + 1)(2m* -1) 2 18 60 140 270 462 728 1080 1530 2090 

(m· + l)(m* + 2)(2m· + 1) 18 60 140 270 462 728 1080 1530 2090 2772 

From the above table, we see that for given values of C4 , I{, a, A and J-L the 



corresponding value for m* can be obtained. For example, if 

m* =4. 

However, for large value of m *, from (4.11) we get 

so that m* ~ Al + A2 - t 
where Al = 1r---b /-:-2""":+:::"""-V-;:::b:;::2 /=4=+=a::::;3:::;::/ 2=7, 

A2 = 1-b/2 - Jb2/4 + a3/27, a = -7/12 and 

b = ~(~ _ 162I{,X2(JL - ,X) ) 
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27 2 C4 [JL + (a - 1)'x] 
Case 2 : Distribution of N unimodal and symmetric with respect to a maxi-

mum. 

Under this assumption let m = 2n+ 1, odd. Then Pk = P2n-k+2 = (n~I)2 

for k = 1, 2, ... , n + 1 and 

'x(JL - ,X) C4n(7n + 8) 
FMod-N = I{ (n + I)[JL + (a - 1)'x] + 12,X 

FMod-N is convex in n. If n* is the value of n that minimises FMod-N, 

FMod-N(n*) < FMod-N(n* + 1) and FMod-N(n*) < F.~1od-N(n* - 1) 

These two relations yield: 

I(,X2( -,X) 
n*(n*+1)(14n*+I) < 12C4 [JL + (a -1)'x] < (n*+I)(n*+2)(14n*+15) 

(4.12) 

Some numerical illustrations are shown below. 

n* 1 2 3 4 5 6 7 8 9 

n*(n* + 1)(14n* + 1) 30 174 516 1140 2130 3570 5544 8136 11430 

(n* + l)(n* + 2)(14n* + 15) 174 516 1140 2130 3570 5544 8136 11430 15510 

10 

15510 

20460 
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f 2 I{ )..2(J-l - )..) . . 
From the above table, for a given value 0 1 C4 [J-l + (a _ 1) .. ]' le, gIven 

values of C4, I{, a,).. and J-l, the corresponding value for n* will be obtained. 

For example, if 
K )..2(J-l - )..) 

12 = 4000, n* = 6 so that m* = 2n* + 1 = 13. 
C 4 [JL + (a - 1),,] 

However, for large value of n*, (4.12) gives 

so that n* ~ Al + A2 - 5/14 
where Al = ~r~-=-b /-:-2-+':""'-";-;;:b:;::2 /;:::4=+=a::;3:::;::/ 2=7, 

A2 = 1-b/2 - -}b2/4 + a3/27, a = -61/196 and 

b = ~ _ 6I{ )..2(J-l - )..) 
686 7C4 [J-l + (a - 1) .. 1 

Case 3 : Distribution of N symmetric with respect to a minimum. 

Just like in case 2, assume that m = 2n + 1, odd. 

Thenpk = P2n-k+2 = (:;11t~n for k = 1,2, ... ,n + 1 and 

F )"(J-l - )..) C4n(n + 1)(9n2 + 25n + 8) 
FM od-N = 1i [( ) ] + (2 (n + 1) J-l + a-I).. 12),,( n + 1) + n) 

Here again FMod-N is convex in n. If n* is the optimal value for n, then we 

have 

FMod-N(n*) < FMod-N(n* + 1) and FMod-N(n*) < FMod-N(n* - 1) 

These two relations yield : 

? 4 3 2 2 
n*-(n* + 1)(9n* + 35n* + 23n* - 17n* - 8) < 6R)" (J-l- )..) 

(n*2 + n* - l)((n* + 1)2 + n*) - C4 [J-l + (a - 1),,] 
(n* + 1)2(n* + 2)(9n*4 + 71n*3 + 182n*2 + 170n* + 42) 

<~--~~--~~--~----~----~----~ 
- ((n* + 1)2 + n*)((n* + 2)2 + n* + 1) 

le. (4.13) 
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Some numerical illustrations are shown below. 

n· 1 2 3 4 5 6 7 8 9 10 

An' 16.8 103.42 313.84 482.72 1322.37 2228.55 3474.7 5114.8 7202.9 9793 

An'+ l 103.42 313.84 482.72 1322.37 2228.55 3474.7 5114.8 7202.9 9793 12939 

. 6RA2(p, - A) 
From the above table, for a gIven value of C4[JL + (a _ I)A]' the corre-

sponding value for n' will be obtained. For example, if C ~R)' 2 it< - ), i 1 
4JL+ a-I A 

2000, then n* = 5 and so m* = 2n* + 1 = 11. 



Chapter 5 

Transient analysis of the M\M\l queue under 

N-policy 

50 

The transient (time dependent) analysis of queueing models are quite 

complicated procedures. The derivation of the transient behaviour of even 

the MIMll model, which is the simplest among all queueing models, be

comes quite messy. The transient solution of the MIMll model postdated 

that of the basic Erlang work by nearly half a century, with the first pub

lished solution due to Lederman and Reuter [19], in which they used spectral 

analysis for the general birth-death process. In the same year, another paper 

by Bailey [3], on the solution of the problem, appeared. This was followed 

by the one by Champernowne [6]. Bailey's approach to the time-dependent 

problem was via generating functions for the partial differential equation 

and Champernowne's was via advanced combinatorial methods. It is Bai

ley's approach that has been the most popular over the years and the same 

approach is being followed in this chapter also. Recently, Parthasarathy [29] 

has provided a simple approach to the transient analysis. Syski [35] also has 

made some contribution to this. Parthasarathy and Sharafali [30] have stud

ied transient behaviour of MIMIC queue. A different approach to transient 

analysis was developed by Sharma and Shobha [33]. 

Steady state analysis of both MIMll and MICll models, under N

policy have been carried out by several researchers. In this chapter, the 
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transient behaviour of an MIMl1 queue, under N-policy is studied. Here 

the system state probabilities in finite time are obtained in tenns of Bessel 

function. Also, for the same model, the output distribution (distribution of 

time between successive departures) in the steady state is derived. 

Let the arrivals follow Poisson process of rate ,X and service times be 

exponentially distributed with rate J-L. 

5.1 Transient analysis 

Let X ( t) be the number of units in the system at time t and 

Y(t) = t if the server is idle at t 

if the server is busy at t 

Then { (X (t), Y (t)) : t > O} is a continuous time Markov process with the 

state space S = {(0,0)(1,0)··· , (N - 1,0)(1,1)(2,1)···}. Let Pij(t) 

be the probability that the system is in state (i, j) at time t. Then the 

differential-difference equations satisfied by Pij ( t) are: 

P~o(t) = -'xPoo(t) + J-LPl1 (t) (5.1) 

P~o(t) = -'xPnO(t) + ,XPn-1,o(t) for 1 < n < N - 1 (5.2) 

P{l(t) = -(,X + J-L)Pl1 (t) + J-LP21 (t) 

P;'n(t) = -(,X + J-L)PN1(t) + ,XPN-1,1(t) + J-LPN+1,1(t) 

+ ,XPN-1,O(t) 

P~l(t) = -(,X + J-L)Pn1(t) + ,XPn-1,1(t) + J-LPn+1,1(t) 

(5.3) 

(5.4) 

for 2 < n < N - 1, n > N + 1 (5.5) 
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Let it be assumed that the initial system size at time 0 is i where i < N. ie, 

the initial service will start only after the accumulation of N - i more units. 

Then PiO(O) = 1 and Pjk(O) = 0 for all other j and k. 

Define Gl(z, t) = E::/ PnO(t)zn and G2(z, t) = E~=l Pnl(t)zn such 

that the infinite series is convergent for Izl < 1. When (5.2) is multiplied 

throughout by zn and then summed with respect to n from I to N - 1, we 

get 

:t Gl (z, t) = -AGl (z, t) + AZPOO(t) + AzGl (z, t) - AzN PN-l,O(t) 

Let G\(z, s) and Fij(S) be the Laplace transforms of Gi(z, t) andPij(t) 

respectively. Then by taking Laplace transform of both sides of the above 

equation and rearranging, it is found that 

(5.7) 

MUltiplying (5.3) by z, (5.4) by zN and each of the equations in (5.5) by zn, 

adding all these equations and adding the resulting equation to (5.1), we get 

Taking Laplace transform of both sides and substituting the value of 

PN-l,O( s) obtained from (5.7), it is found that 



53 

Since the Laplace transform G2(z, s) converges in the region Izl < 1, 

Re( s) > 0, wherever the denominator has zeroes in that region, so must 

the numerator. The zeroes of the denominator are 

Using Rouche's theorem, we can easily prove that Zl is the only zero of the 

denominator in I z I < 1. Hence Zl is a zero of the numerator also. 

Thus we get 

since Zl =1= O. From this we get 

ZN(--L)N-i 
P, ( ) 1 S+A 

00 S = (s + A) - AZ["C~JN-l (5.9) 

Substituting the value of Foo( s) in (5.8), it is found that 

Since G2(z, s) = L~=l Fnl(S)Zn, from the above expression for G2(z, s) 

we get 
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and 

for n > N, since \!l\ < l. 
-- Z2 

Now we find the inverse Laplace transform of each of these terms. Con

sider 

-l-zf-n(1-- Zl)_l = -l-zf-n(l + Zl + (Zl)2 + ... ) 
AZ2 Z2 AZ2 Z2 Z2 

_ 1 (Zl)N-n[ N-n-l + N-n-2 + 2 N-n-3 + ] ---- Z2 ZlZ2 ZlZ2 ... 
A Z2 

1 (z Z )N-n 
_ 1 2. [N-n-l + N-n-2 + 2 N-n-3 + ] 
- A 2(N-n) z2 Zlz2 zlz2 ... 

z2 

1 f.-L N -n [1 Zl z; ] 
= \ ( \ ) N -n+l + N -n+2 + N -n+3 + ... 

1\ 1\ z2 z2 z2 

since ZlZ2 = x. 
Now we use the fact that 

00 (y(2)m+2k 
where Im(Y) = Lk=O k!(m+k)!' (m > --1), is the modified Bessel func-

tion of the first kind. Using this result in the above relation, we get 



55 

00 

L(N - n + 2j + 1)IN-n+2j+l(2~u)du 
j=o 

= \f.L)N-;-l e-)"t ~ ft e-IlU (A(t - u)1N - i- 1 

A ~ -0 u \N - i - 1)\ ;=0 u-

(N - n + 2j + 1)IN-n+2j+l(2~u)du (5.12) 

In the above we used the fact that 

L-l(f(S)g(S)) = Lo f(u)g(t - u)du. 

Now consider 

since IAzll < A < Is + AI because Re(s) > 0 and IZll < 1. 
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= - L( )2N-i Z1. 
1 {N-1,\ 2N-n+j 

,\ j=O S +,\ Z~ 

"" "( A )([+2)N-iZ1 
00 N-1 k \ (k+2)N-n+j } 

+ 8 ~ ~ S +,\ ----=Z2~(k--[-)N-+-j+-1 

N-1,\ (/,\)2N-n+j 00 N-1 k ,\ 
= ~ "( )2N-i I-l . + """( )(l+2)N-i 
,\~ s+'\ 2N-n+2)+1 ~~~ s+,\ 

j=O Z2 k=1 j=O 1=0 

(I-l/ ,\)(k+2)N-n+j 

(2k-l+2)N -n+2j+1 
Z2 

L -1 s+>. 1 (1 z1 )-1 { 
( ....L)2N-i-1 z2N-n } 

Z2[(S + ,\) - '\zf (s~>.)N-1] - Z2 

N-1
i

t ->'(t-u)[\(t )]2N-i-1 -(>'+Jl)u 
= " e A - U (I-l) 2N-.t-1_e __ 

~ -0 (2N - i-1)!'\ U j=O u-

(2N - n + 2j + 1)I2N-n+2j+1(2~u)du 
00 N-1 k it e->.(t-u) ['\(t - u)](l+2)N-i-1 I-l (1+2)N-n-l e-(>'+Jl)U 

+ L ?= L u=o ( (l + 2) N - i-I)! ( ,\) 2 u 
k=1 )=0 [=0 

[(2k -l + 2)N - n + 2j + 1]I(2k-l+2)N-n+2j+1(2~u)du 
00 N-l k it -JlU [\(t )](l+2)N-i-l = (I-l) 2N-;n-l e->.t""" (I-l)'f _e_.:....A......:..-_u.....;....:...-__ _ 

,\ ~ ~ ~ u=o ,\ U ((l + 2)~N - i-I)! 
k=O )=0 [=0 

[(2k -l + 2)N - n + 2j + 1]I(2k-l+2)N-n+2j+l(2~u)du (5.13) 
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Similarly we get 

£-1 {( A )N-i zf (1 _ ( AZl )N)-l(l _ Zl)_l} 
S + A AZ;+l S + A Z2 

00 N-l k it -I'U [\(t )](l+l)N-i-l = (Jl) N-;-l e->.t L L L (Jl)IN/2_e _-=---A~_U..:...:.-__ 

A k=O j=O 1=0 u=o A U ((l + l)N - i-I)! 

[(2k -l + l)N + 2j + n + 1]I(2k-l+l)N+2j+n+l(2~)du. (S.14) 

Inverting (S.10) and using the results (S.12),(S.13) and (S.14), we get 

00 it -I'U [\(t )]N-i-l 
Pn1(t) = (~) N-;-l e->.t L _e - A(N __ ~ _ 1)' 

j=O u=o U z. 

(N - n + 2j + 1)IN-n+2j+l(2~u)du 
00 N-l k it -I'U [\(t )](/+2)N-i-l + (Jl) 2N-,t- 1 e->.t ~ ~ ~ (Jl)IN/2e ~A~----,-U..:....::..-__ _ 

A ~ ~ ~ u=o A U ((l + 2) N - i-I)! k=O ;=0 1=0 

((2k -l + 2)N - n + 2j + 1)I(2k-l+2)N-n+2j+l(2~u)du 

_ (1") N-;-I e-'\' f I: t r' (1")IN/2 e-Pu [A(t - U)](l+I)N-i-l 

A k=O j=O 1=0 }U=O A U ((l + l)N - Z - I)! 

[(2k -l + l)N + 2j + n + 1]I(2k-l+l)N+2j+n+l (2~u)du 

for i < n < N (S.lS) 

In a similar manner, by inverting (S .11) we get 
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Pn1(t) = (Af-~tl e->.t ~ rt e-jjU [A(t - ~)]N-i-l (n _ N + 2j + 1) 
p ~ } u=o u (N - z - I)! 

In-N+2j+l (2';>:p'u)du 

A n-2Ntl ->.t 00 N-l k rt e-jjU [A(t _ u)](l+2)N-i-l 

+ (,) , e ~ ~ ~ }.=o -;;- ((/ + 2)N - i - 1)! 

(~)IN/2((2k -l)N + 2j + n + 1)I(2k-l)N+2j+n+l(2.;>:P,u)du 

_ (>'(-~±1 e-At f I: t rt e-p• (>,(t - u))(I+1)N-H (P)INI2 

P k=O j=O 1=0 }U=O u ((l + l)N - i-I)! A 

((2k -l + l)N + 2j + n + 1)I(2k-l+l)N+2j+n+l(2.;>:P,u)du for n > N. 

(5.16) 

From (5.9) we have 

AN-i N 00 A 00 AU+l)N-i R ( ) - zl ""'( Zl )jN _ ""' U+l)N 
00 S - (s + A)N-i+l ~ S + A - ~ (s + A)U+l)N-i+l zl 

}=o }=o 
00 AU+l)N-i (pi A)U+l)N 

= E (s + A)U+l)N-i+l U+l)N 
j~ ~ 

Taking inverse Laplace transforms of both sides we get 

00 t P ("tl)N e- jjU 
Poo(t) = e-At ~ }.=o (~) J, -;;-(j + 1)N1U+l)N(2';>:p'u)du (5.17) 

Inverting both equations in (5.7) we get 
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rt ->.(t-u) >.(>.(t_u))n-l p, ( )d 
Jo e (n-l)! 00 U U for 0 < n < i 

D (t) e->.t(>.tt- i + rt ->.(t-U) >'(>'(t-U)t-1 P, ( )d 
£ nO = (n-i)! JO e (n-l)! 00 U U (5.18) 

for i < n < N - 1. 

Thus the equations (5.15), (5.16), (5.17) and (5.18) determine all time de

pendent probabilities. 

5.2 Output distribution 

The steady state probabilities qij are obtained as qiO = qoo for 0 < i < 
N -1 , 

{ 
G;(1 - pi)qOO 

qil = 
I-pNpi-N+l q 
I-p 00 

for 1 < i < N - 1 

fori> N. 

and qoo = ~(1 - p) where p = ~. 

Let T represent "time between successive departures" and 

7rij (t) = Pr{ the system is in state (i, j) at a time t since the last departure 
e->.t (>,t) i 

and T > t}. Then 7riO(t) = qoo "' for 0 < i < N - 1 and 
1,. 

"",i "e->.t(>.t)i- j -j.tt 
wj=l qJl (i-j)! e for 1 < i < N - 1 

7ril (t) = rt e->'U >.(>.ut- 1 -j.t(t-u) ->.(t-u) [>.(t_u)]i-N d 
qoo Ju=O (N-l)! e e (i-N)! U 

+ "",i e->.t(>.t)i- j -j.tt 
wj=l qjl (i-j)! e for i > N 



60 

N-l 00 

Now Pr(T > t) = L 7riO(t) + L 7ril (t) 
i=O i=l 

and Pr(T < t) = 1 - Pr(T > t). 
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Chapter 6 

Queues with two servers in series - A specialised 

server and a regular server 

Queueing models consisting of two units in series/tandem with an inter

mediate waiting room of finite capacity were studied by several researchers. 

A model with a finite waiting room in between the two service stations was 

discussed by Neuts[26]. Service station I of this model contains one server 

with general service time distribution and second service station consists of 

'c' parallel exponential servers. 

The study of blocking in two or more service stations in series with gen

eral service time distribution, without intermediate buffer was considered by 

Avi-ltzhak and Yadin[2]. Clarke[8] investigated a tandem queueing model 

wherein two servers are placed in series and each customer will receive 

service from one and only one server. The novel feature of this model is 

that a busy service unit prevents the access of new customers to servers fur

ther down the line. A departing customer may also be temporarily prevented 

from leaving by occupied service units down line. Kandasamy[15] analysed 

tandem queue with general service rule and server's vacation. Prabhu[31] 

studied transient analysis in a tandem queue. Models of related type with 

finite total number of customers were treated by Sharma[34]. 

In this chapter, we deal with a queueing model consisting of two servers 

connected in series with a finite intermediate waiting room of capacity k. 
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Here we assume that server I is a specialised server. He will activate only 

on accumulation of N units in front of him once he becomes idle due to 

absence of customers at that counter. At the arrival of the Nth unit, he starts 

service till none is left before him; ie, the service rule of server I is governed 

by N -policy. After being served by server I, the customer goes to server 11 

and joins service directly if server 11 is idle at that time. Otherwise he waits 

in the queue till his turn for service occurs. When the number of customers 

in the intermediate waiting room becomes k, the service given by server 

I will be blocked and it will restart only after one departure from server ll. 

Arrivals to server I occur according to a Poisson process of rate A and service 

provided by both servers have exponentially distributed duration with rates 

J-lI and J-l2 respectively. For this model, the steady state probability vector 

and the stability condition are obtained using matrix- geometric method. 

6.1 Steady state analysis 

Let X ( t) and Y ( t) be the number of customers queued up at time t in 

front of server I and server 11, respectively. Define 

o if server I is idle at t 

Z(t) = 1 if server I is busy at t 

2 if server I is available, but service is blocked. 

Then {(X(t), Y(t), Z(t)) / t > O} is a continuous time Markov chain with 

state space, S = {(i,j,O)/O < i < N -1,0 < j < k} 

U{(i,j, 1)/i > 1,0 < j < k - I} U {(i, k, 2)/i > I} 

To facilitate the representation of the infinitesimal generator Q of the 

continuous time Markov chain with the above state space, we define first 

the sub-matrices Ao, AI, A2 , Bi (1 < i < N - 1), Ci(O < i < 8) and 
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Di(O < i < 7). 

The matrices Ao, Al and A2 are square matrices of order k + 1, defined 

by Ao = AI where I is the identity matrix of order k + 1, 

-(A+111) 0 0 0 0 

112 - (A + Jl1 + 112) 0 0 0 

A1 = 

0 0 0 -(A + 111 + 112) 0 

0 0 0 Jl2 -(A + 112) 

and 
0 111 0 0 

0 0 111 0 

A2 = 

0 0 0 111 

0 0 0 0 

The matrices Bi (1 < i < N - 1) are of order (2k + 1) x (N + k) such that 

in Bi , (1, i + 1) th element is 112 and rest of the elements are zeroes. 

The matrices Ci (0 < i < 8) are defined by 

Co = [DO 0] ,Cl = [D2 ~] , 
o D1 (N+k)x(N+k) 0 3 (2k+1)x(N+k) 

~] , where I is the identity matrix of order k, 
(N+k)x(2k+1) 

C3 = ,C4 = [D4] [D5] 
o (N+k)x(k+1) AI (2k+1)x(k+1) 
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where I is the identity matrix of order k + 1, 

C5 = [Dl 0] , 
o D6 (2k+l}x(2k+l) 

C6 = AI where I is the identity matrix of order 2k + 1, 

C7 = [0 0] and Cs = [0 D7] . o D7 (k+l}x(2k+l) 
(2k+l}x(2k+l) 

Here '0' represents zero matrix of appropriate order. The matrices Di 

(0 < i < 7) are defined as follows: 

-A A 0 0 

o -A A 0 

Do= 

0 0 0 -A 
NxN 

-(A + JL2) 0 0 0 0 

JL2 -(A + JL2) 0 0 0 

D1 = 

o o o 
kxk 

D2 is a matrix of order k x N in which the (1, 2)th element, J-l2 is the only 

nOil-zero element. 



/11 

0 

D3= 

0 

0 

0 

/11 

0 

0 

o 
o 

/11 

o 
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(k+l)xk 

D 4 is a matrix of order N x \ k + 1) in which the \ N , l)ih element, A is the 

only non-zero element. 

o A 0 0 

o 0 A 0 

D5= 

o o o 
kx(k+l) 

D6 and D7 are square matrices of order k + 1 defined by 

-(A+/1l) 0 

/12 (-A + /11 + /12) 

o o 

o 
o 

o 
o 



and 
0 /-Ll 

0 0 

D7= 

0 0 

0 0 

0 

/-Ll 

0 

0 

o 
o 

/-Ll 

o 
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Now, the infinitesimal generator Q of the continuous time Markov chain, 

with state space defined in the beginning of this section, has the block par

titioned structure as shown below: 

0 I 2" 3 (N -1) N (N + 1) (N +2) 

0 Co C2 0 0 0 C3 0 0 

I BI C5 C6 0 0 0 0 0 

2" B2 C7 C5 C6 0 0 0 0 

3 B3 0 C7 C5 0 0 0 0 

Q = (N -1) BN - I 0 0 0 C5 C4 0 0 

N 0 0 0 0 Cs Al Ao 0 

(N + 1) 0 0 0 0 0 A2 Al Ao 
(N + 2) 0 0 0 0 0 0 A2 Al 

where 

0= ((i,O,O), (O,j,O)), ° < i < N - 1,1 < j < k 

Z = (( i, j, 0), (i, j, 1), (i, k, 2) ) ,0 < j < k - 1 for 1 < i < N - 1 

and z = (( i, j, 1), (i, k, 2) ) , 0 < j < k - 1 for i > N 

Let us denote by X the vector of steady state probabilities associated with 
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Q, such that 

XQ=O, X~=l (6.1) 

where e = (1,1,1·· .1)T. Let us partition X as X = (Xo,X 1, X 2,···) 

where X ° is a 1 x (N + k) vector, X i for 1 < i < N - 1 are 1 x (2k + 1) 

vectors and X i for i > N are 1 x (k + 1) vectors 

In the stable case, following Neuts[27], we examine the existence of a 

solution of the fonn 

X - X Ri-(N+l) 
-i --N+l , (6.2) 

For this we find from (6.1) 

(6.3) 

The matrix R is the minimal solution to (6.3). ie, R is an irreducible non

negative matrix of spectral radius, less than one. Latouche and Neuts [18] 

have proposed an iterative approach for finding the matrix R as follows: 

R(O) = 0 

R(n + 1) = -AaAlI - R2(n)A2All, n > 0 
(6.4) 

For Markov process with this type of generator, Neuts [27] obtained the 

stability condition 

(6.5) 

where the row vector 7f is defined as below: 

Consider the infinitesimal generator A = Aa + Al + A2. A is irreducible. 

Then there is a unique row vector 7f > 0 such that 

7f A = 0 and 7f e = l. - -- (6.6) 
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In this case 7r = (7ro, 7r1, 7r2··· 7rk) Hence (6.6) yields: 

JlI . 
7ri = (-)'7ro for 0 < i < k 

Jl2 
1 - Jld Jl2 

and 7ro = 1 ( / )k+l· - JlI Jl2 

Now 7r Ao§. = A and 

So (6.5) gives: 

(6.7) 

which is the required stability condition. 

We are now left with finding (Xo, X I ... X N + I). We define Q* by 

0 I 2" 3 (N -1) N (N + 1) 

0 Co C2 0 0 0 C3 0 

I B1 C5 C6 0 0 0 0 

2" B2 C7 C5 C6 0 0 0 

3 B3 0 C7 C5 0 0 0 

Q*= 

(N -1) BN - 1 0 0 0 C5 C4 0 

N 0 0 0 0 C8 A1 Aa 
(N + 1) 0 0 0 0 0 A2 A1 + RA2 

We shall prove that Q*§. = O. Since the first N rows of Q* are identical to 

the first N rows of Q, we need only prove that (last row of Q*) §. = 0, 



Now (last row of Q*) f 

= (A2 + Al + RA2)f = (1 + R)A2f + Alf 

= (1 - R)-I[(1 - R2)A2f + (1 - R)Alf] 

= (1 - R)-I[A2f + Alf - RAlf - R2 A2f] 

= (1 - R)-I[-Ao~ - RAl~ - R2 A2~] = 0 using (6.3) 
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This implies Q* f = 0 and so Q* is an infinitesimal generator. Also, the 

matrix Q* is irreducible. 

Let X* = (Ko, XI,· .. X N+l) be a solution of X*Q* = O. Then 

KoCo + X 1B1 + X 2B2 + ... + X N- 1BN- 1 = 0 

KoC2 + X lC5 + X 2C7 = 0 

X 1C6 + X 2C5 + &C7 = 0 

X 2C6 + &C5 + 2LtC7 = 0 

X N- 2C6 +XN- 1C5 +XNCs = 0 

X OC3 + X N- 1C4 + XNAl + X N+1A2 ~ 0 

XNAO + X N+1(A1 + RA2) = 0 

The vectors Xi (0 < i < N) can be expressed in terms of X N + 1 using the 

above set of equations and X N+l may be normalised by using L~o X& + 
X N +1(1 - R)-I~= 1. 



70 

References 

[1] Artalejo, J. R. (1992): A unified cost function for M\G\l queueing 

systems with removable server, Trabajos De Investigacion Operativa, 

7:95-104. 

[2] Avi-ltzhak, B. and Yadin, M. (1965): A sequence of two queues with 

no intermediate queue, Management Science, 11 :553-564. 

[3] Bailey, N. T. J. (1954): A continuous time treatment of a single queue 

using generating functions, 1. Roy. Statist. Soc. Ser., 16:288-291. 

[4] Balachandran, K. R. (1973): Control policies for a single server system, 

Management Science, 19: 1013-1018. 

[5] Balachandran, K. R. and Tijms, H. (1975): On the D-policy for the 

M\G\1 queue, Management Science, 21:1073-1076. 

[6] Champemowne, D. G. (1956): An elementary method of solution of 

the queueing problem with a single server and a constant parameter, 1. 

Roy. Statist. Soc. Ser., 18:125-128. 

[7] Chatschik Bisdikian (1994): The random N -policy, Research report, 

IBM research division, New York. 

[8] Clarke, A. B. (1977): A two server tandem queueing system with stor

age between servers, Mathematics report, 50, W. M. University, Kala-

mazoo. 



71 

[9] Cox, D. R. (1955): The analysis ofnon-Markovian stochastic processes 

by the inclusion of supplementary variables, Proc. Camb. Phil. Soc., 

51:433-441. 

[10] Doshi, B. T. (1986): Queueing systems with vacation - A survey, 

Queueing systems, 1:29-66. 

[11] Erlang, A. K. (1909): The theory of probabilities and telephone con

versations, Nyt Tidsskrift Matematik, B.20, 33-39. 

[12] Gross, D. and Harris, C. M. (1985): Fundamentals of queueing theory, 

John Wiley, New York. 

[13] Heyman, D. P. (1968): Optimal operating policies for MICI! queueing 

systems, Operations Research, 16:362-382. 

[14] Heyman, D. P. (1977): The T-policy for the MICI! queue, Manage

ment Science, 23:775-778. 

[151 Kandasamy, P. R. (1990): Matirx-geometric algorithmic approach to 

some Markovian queueing and inventory models, Ph.D. thesis, PSG col

lege of Technology, Coimbatore, India. 

[16] Kendall, D. G. (1953): Stochastic processes occuring in the theory of 

queues and their analysis by the method of imbedded Markov chains, 

Ann. Math. Statist., 24:338-354. 

[17] Kleinrock, L. (1975): Queueing systems, Volume 1, John Wiley, New 

York. 

[18] Latouche, G. and Neuts, M. F. (1980): Efficient algorithmic solutions 

to exponential tandem queues with blocking, SIAM J. Algebraic and 

Discrete Method, 1:93-106. 



72 

[19] Lederman, W. and Reuter, G. E. (1954): Spectral theory for the dif

ferential equations of simple birth and death process, Phil. Trans. Roy. 

Soc. London Ser., 246:321-369. 

[20] Lee, H. S. and Srinivasan, M. M. (1989): Control policies for the 

M X ICl1 queueing systems, Management Science, 35:708-721. 

[21] Lee, H. W. (1988): MICll queue with exceptional first vacation, Com

puters & Operations Research, 15:441-445. 

[22] Levy, Y. and Yechiali, U. (1976): An MIMI8 queue with server's 

vacations, INFOR, 14:153-163. 

[23] Medhi, J. and Templeton, J. G. C. (1992): A Poisson input queue under 

N -policy and with a general startup time, Computers & Operations 

Research, 19:35-41. 

[24] Nadarajan, R. and Subramanian, A. (1984): A general bulk service 

queue with server's vacation, Operational research in management sys

tem, Academic Pub., 127-135. 

[25] Nadarajan, R. and Audsin Mohana Dhas, D. (1989): Two units con

nected in series with general bulk service and random breakdown in unit 

11, Microelectron. Reliab., 29:761-763. 

[26] Neuts, M. F. (1968): Two queues in series with a finite intermediate 

waiting room, J. Appl. Prob., 5:123-142. 

[27] Neuts, M. F. (1978): Markov chains with applications in queueing the

ory which have matrix -geometric invariant probability vector, Advances 

in Appl. Prob., 10: 185-212. 

[28] Neuts, M. F. (1981): Matrix-geomtric solutions in stochastic models 

- an algorithmic approach, The Johns Hopkins University Press, Balti-

more. 



73 

[29] Parthasarathy, P. R. (1987): Transient solution to MIMll queue: a 

simple approach, Adv. Appl. Prob., 19:997-998. 

[30] Parthasarathy, P. R. and Sharafali, M. (1989): Transient solution for 

many-server Poisson queue - a simple approach, J. Appl. Prob., 26:584-

594. 

[31] Prabhu, N. U. (1966): Transient behaviour of a tandem queue, Man

agement Science, 13:631-639. 

[32] Saaty, T. L. (1961): Elements of queueing theory with applications, 

McGraw Hill Book Co., New York. 

[33] Sharma, O. P. and Shobha, B. (1984): A new approach to the MIMll 

queue, J. Engg. Prod., 7:70-79. 

[34] Sharma, S. D. (1974): On a continuous/discrete time queueing system 

with arrivals in batches of variable size and correlated departures, J. 

Appl. Prob., 12:115-129. 

[35] Syski, R. (1988): Further comments on the solution of MIMll queue, 

Adv. Appl. Prob., 20:693. 

[36] Takagi, H. (1987): Queueing analysis of vacation models, Part I : 

MIGI1 and Part II : MIGI1 with vacations, Tech. report TR 87-0032, 

IBM Tokyo Research Laboratory, Tokyo. 

[37] Takagi, H. (1990): Time dependent analysis of MIGll vacation mod

els with exhaustive service, Queueing Systems, 6:369-389. 

[38] Takagi, H. (1992): Analysis of an MIGll queue with multiple server 

vacations and its application to a polling model, J. Op. Res. Soc. of 

Japan, 35:300-315. 

[39] Takagi, H. (1993): MIGIIII( queues with N-policy and setup times, 

Queueing Systems, 14:79-98. 



74 

[40] Yadin, M. and Naor, P. (1963): Queueing systems with a removable 

service station, Operations Research Quarterly, 14:393-405. 


	Title
	Certificate
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References

