

A Generic Software Architecture for a Domain
Specific Distributed Embedded System

G. Santhosh Kumar, Rameetha K and K Poulose Jacob

Department of Computer Science, Cochin University of Science and Technology, Kerala, INDIA
email: {san, rameetha, kpj}@cusat.ac.in

Abstract—In this paper, we have evolved a generic software

architecture for a domain specific distributed embedded system.
The system under consideration belongs to the Command,
Control and Communication systems domain. The systems in
such domain have very long operational lifetime. The quality
attributes of these systems are equally important as the
functional requirements. The main guiding principle followed in
this paper for evolving the software architecture has been
functional independence of the modules. The quality attributes
considered most important for the system are maintainability
and modifiability. Architectural styles best suited for the
functionally independent modules are proposed with focus on
these quality attributes. The software architecture for the system
is envisioned as a collection of architecture styles of the
functionally independent modules identified.

Index Terms—Software Architecture, Distributed Embedded
System, Architectural Style, Domain Specific Architecture

I. INTRODUCTION

SOFTWARE architecture has emerged as an area of immense
interest among researchers and software practitioners.

This has resulted in several approaches to deal with
architecture definition, description and analysis, architectural
styles and domain specific architectures [1] [2]. With the
proliferation of embedded systems in the market such as
mobile phones and PDAs, more focus has been laid on
systematic and architecture based solutions for embedded
system software. The objective of our study is to arrive at a
robust architecture for the embedded software. Embedded
systems are generally long drawn systems with an active life
span of over 20 years. Therefore, the software architecture
should result in a system that is highly maintainable and
modifiable. The complexity of the software that goes into the
embedded system has grown manifold over the years [3].
Therefore it is essential to follow quality software architecture
to ensure that the complex software meets the functional and
performance goals. The software architecture of the system is
evolved by organizing the application logic as a composition

of modules (functional components) and the definition of their
interfaces (connectors) [4]. The architecture is evolved for a
class of systems wherein variations to specific systems can be
effected by addition/ deletion/ variation of existing
components in the generic architecture.

II. PROBLEM DOMAIN
 The problem domain is a distributed embedded system used
in military applications. These systems have been following
custom coded functionality, optimized for speed and other
performance parameters with very little thought to long term
maintainability and modifiability [5]. The use of state of art of
technology - software architecture- for such real time
embedded applications are inadequate.

 The embedded computer system is mostly heterogeneous and
distributed, because modern systems are often composed of
existing subsystems, having their own control software and
processors [6]. Furthermore, systems must be easily
maintainable, scalable and adaptable, to support ever
changing functional specifications and evolution of computer
hardware.

 The system under study is an integrated one comprising of
various types of environmental sensors, data acquisition and
data processing hardware interfaced to the sensors, application
specific embedded processors, general purpose embedded
processors, standard communication interface between the
embedded processors, display units and console station for
operator interaction. The embedded processors communicate
over dedicated links and/or over bus using standard
communication protocols.

A general operational scenario is described. The system sense
the external environment through the array of sensors, carry
out necessary preprocessing on the input data stream,
performs application specific detailed data processing so as to
extract the required information from the data, and displays
the information to the operator in the form of various
graphical displays. The operator is capable of configuring the
system into the required mode of operation by way of the
human machine interface. A simplified block diagram of the
system is as shown in Figure 1.

Fig. 1. Block diagram of distributed embedded system.

 The first step in the design of software for the domain is
software architecture design. The quality of the final system is
heavily dependent on the quality of the architecture. The
embedded systems are usually heavily constrained in both
hardware and software due to the stringent functional and
performance requirements. Therefore it is very essential to
prioritize the requirements taking into view the concerns of all
the stakeholders of the system. The quality attributes are of
critical importance in defining the software architecture.
Therefore the stakeholders have to arrive at a consensus
regarding the most essential quality attributes. The degree to
which the system meets the quality attributes often determines
the success or failure of the system [7].

III. ARCHITECTURAL QUALITY ATTRIBUTES
The embedded system considered in our problem is

expected to be operational for a long period of time. The
architecture business cycle of the system defined by the
system stakeholders consider maintainability and modifiability
as the most important quality attributes.

Maintainability of the system can be defined as the measure
of the relative cost of modifying the architecture to
accommodate new functionality [8]. It is a function of locality
of change and abstraction level of the software.

Modifiability of the system can be defined as the ease with
which the system can be modified to meet the change
requirements[8]. As the system is put into operation, it is sure
to encounter change requirements mostly from the operational
point of view. Also as the technology become obsolete, the
system may be required to adapt to new operating
environments. The ability of the system to incorporate these
modifications with ease and without compromising on
functionality or performance is a very important quality
attribute for systems having long life span.

IV. SOFTWARE ARCHITECTURE BASED DESIGN PROCESS

The focus of our work is to find out a most suitable
architecture for the problem conforming to the above
mentioned quality attributes. The Architecture based design
process, which has its foundation on iterative functional
decomposition of systems, is expected to uphold the required
quality attributes. The method is based on three foundations –
The decomposition of the system into functional subsystems
to the required level of abstraction, the realization of the
functional, quality and business requirements of the system
through choice of suitable architectural style and the use of
software templates [9]. The architecture can be abstracted and
reusable units can be identified. The collection of the reusable
architecture components forms the domain specific repository
for the system. The developing organization can use this
repository effectively for future systems. Specific
architectures can be instantiated easily from this repository.

The Command, Control and Communication system is
iteratively partitioned into functionally independent systems
and subsystems. At each level of iteration the decomposed
subsystems have well defined functional responsibility. The
partitioning can be carried out to the required level of
abstraction. The guiding principles for the functional
decomposition are: -

Each subsystem
 -is a functional unit with well-defined responsibility
 -exports functionality to other modules
 -imports functionality from other modules [4].

Following these guidelines, the system is partitioned into

seven subsystems. These subsystems can be iteratively
decomposed into subsystems.

The subsystems are
1. Sensor – Data Acquisition
2. Data Preprocessing
3. Data Analysis
4. Display Processing
5. Supervisory Control
6. Human Machine Interface
7. Communication

Each subsystem has an independent, well-defined

responsibility. The complexity of the software in each of the
subsystem vary. These factors force us to think of different
architectural styles to suit the embedded software in each of
the subsystems. The subsystems can be categorized into two:
Hardware intensive subsystems and Software intensive
subsystems.

The first two subsystems, Sensor–Data Acquisition and
Data Preprocessing are hardware intensive. The software
volume is comparatively less in these subsystems. The
software work on custom hardware. However, the
performance requirements of the software in these subsystems
are more stringent due to the necessity of handling high data
rates and synchronization with the hardware. The hardware

used in these subsystems is application specific and often the
software has to provide custom interface to the hardware

The next four subsystems - Data Analysis, Display
Processing, Supervisory Control and Human Machine
Interface and Communication subsystems are software
intensive and work on general purpose embedded processors.
The software has to perform various information extraction
algorithms, complex signal processing algorithms,
optimization processing etc. to extract the information from
the data captured by the sensors.

V. PROPOSED ABSTRACT SOFTWARE ARCHITECTURE

The abstract software architecture for the system is the

collection of the architectural styles defined for the
subsystems. A class of concrete architecture style for each of
the subsystems is proposed. The software architecture is
described in terms of components and connectors
encapsulated by virtue of their functional responsibility.
Details of control flow, synchronization constructs and inter
component communication protocols are not assumed. These
may be carried out at a finer level of abstraction, when the
abstract architecture is instantiated into software architecture
for a specific problem.

The architecture of the entire system is a simple and
powerful structure in which the system is iteratively
decomposed into functional subsystems and suitable
architecture styles. The functional, business and quality
requirements of the system can be validated using this
method. The architecture can be iteratively decomposed to a
level wherein the software templates corresponding to each of
the lowest level modules can be specified.

The subsystems identified during the Architecture based
design process are explained in detail in the subsequent
sections. The functional requirements of the system and the
best suited architectural styles are identified. The
architecture style is illustrated using collaboration
diagrams.

A. Sensor – Data Acquisition
The Sensor Data Acquisition subsystem is the front end of

the system where the sensors receive input data from external
environment. The data may be from a single sensor, an array
of homogeneous sensors or from an array of heterogeneous
sensors. The data stream is sampled at the required rate and
made ready for the subsequent data processing subsystems.
The processing function in this subsystem is controlled by the
availability of the data from the sensors

The Pipe and Filter style architecture style is proposed for
this system[2]. The system has an explicit linear data flow
from source to destination. This architecture is the most
suitable one to process data streams. The data gets
transformed in the filters and between filters the data flows
through Pipes.

The sensor data arrive at a fast and steady rate and storage

options are limited in the data acquisition subsystem. Further,
the ensuing processing has to be carried out in real time.
Therefore the data needs to be pushed through the pipeline.
The data source pushes the data in a downstream direction.
Since the data flow follows the “push strategy” the
architecture style is refined further as Push Pipe and Filter
style based on how control is exerted on the data. The
architecture of the system during sensor data acquisition
scenario is shown in Figure 2.

The component types are Sensor (Producer), Filter and the
Sink (Consumer). The sensor component produces the data
and pushes it into an output port connected to the input end of
a pipe. The Filter component receives data from an input port
connected to the output end of a pipe, transforms the data and
puts the data onto an output port that is connected to the input
end of a different pipe. The destination or the sink component
gets the data from the input port that is connected to the output
end of a pipe and consumes the data. A filter component is a
combination of a sink and a Producer. The components in this
subsystem are usually realized in hardware with dedicated
communication links between the components.

: Timer

:Sensor A

:Sensor B

:Data Acquisit ion
Control

Data ReceiveBuffer

1: interrupt

2: interrupt

3: Data stre am A

4: Data stre am B

5: update

Fig. 2. Sensor – Data Acquisition

The Pipes or connector types in the subsystem are

procedure invocations invoked once the data is ready to be
pushed down the pipeline to the next filter component. Each
of the filter components is a black box with a well-defined
functional responsibility. This helps to ensure maintainability,
modifiability and reuse which are essential quality criteria for
the system.

B. Data Preprocessing
The data collected has to be subjected to various pre
processing functions so as to prepare the data for detailed
analysis. The processing requirements vary from one or two
stages to multiple stages depending on the complexity of the
system. Here, the data is transformed in a batch oriented
fashion. The architectural style suitable for this system is the
batch sequential data flow style. The architecture is an
ordered sequence of independent processing steps. Each
processing step operates on a predetermined data set and runs
to completion before the next processing step. The
intermediate data is stored wherever necessary. The data

preprocessing scenario while following this architecture is
shown in Figure 3.

The components of this architecture are the distinct
processing steps. They are independent software modules
having a definite responsibility.

Rx Buffer

PreProcess
Stage B

Tx Buffer PreProcess
Stage C

4: Process B

6: Process C

PreProcess
Stage A

2: Process A

1: Data In

5: Processed Data

3: Processed Data

7: Data Out

Fig. 3. Data Preprocessing

C. Data Analysis
The data from the sensor(s) after the preliminary

processing are now ready for detailed analysis so as to extract
domain specific information. Depending on the complexity of
the system, there may be multiple data analysis processors.
All of them need to access the data . The architecture of the
system therefore has to be data centered. The blackboard
architecture style is proposed for this subsystem. The data
analysis scenario following the architecture is shown in
Figure 4.

This style is characterized by two types of components. A
central data store component, that represents the system state
and stores the data to be processed, and a set of independent
components that operate on the central data store. Each of the
processing subsystem is capable of operating as a separate
independent thread of control. These subsystems are partial
solution providers and are triggered by the current state of the
data store.

Clo ck TxBuffer A

Tx Buffer B Repository

Repository
Monitor

Data Analysis
Processor A

Data Analysis
Proce ssor B

6: Updated Event

3: Data Send
2: Send Data

4: Send Data

5: Up date Status

7: Read Data

8: Read Data

Fig. 4. Data Analysis

D. Display Processing
Display processing system is responsible for the presentation

of the results of data analysis. The system is crucial in the
domain of Command, Control and Communication systems
as the operator decision making is solely dependent on the
information presented on the display. Therefore, the

subsystem has to emphasize on systematic organization of
information for easy assimilation.

The Display processing system has dual responsibility at this
level of abstraction. (1) Reception of the results of Data
Analysis and (2) Display specific processing of the data and
converting them into video objects. It can be decomposed
into distinct systems at the next level of system
decomposition.

The information to be displayed are held by various data
analysis subsystems. Not all the information from all the data
analysis subsystems needs to be displayed at the same time.
This depends on the selected mode of the system and the
current processing configuration.

Display subsystem has to follow an architecture whereby
only the information required to be displayed in the current
mode of the system is received from the Data Analysis
subsystems. The display processing scenario while
following this architecture style is shown in Figure 5.

The architecture style suitable for this processing is that of
independent interacting processes where the processes interact
by way of event based implicit invocation. Here, The display
processing system will broadcast the current display mode
and configuration. The data analysis subsystems that are
information providers for this mode and configuration will
respond to the event by sending data. The display is not
unnecessarily loaded with unwanted data. This architectural
style is characterized by the style of communication between
components. Rather than invoking procedures directly or
sending messages, the components announce events.
Components register interest in an event by associating a
procedure with the event. When the event is announced the
system implicitly invokes all the procedures associated with
the event.

The components in this style are modules whose interfaces
provide a collection of procedures / methods and a set of
events that it may announce. The connectors are bindings
between the event announcements and procedure / method
calls. The components that announce the event do not know
which components will be affected by the event. Also the
components cannot make assumptions regarding the order of
processing or what processing will occur as a result of its
events.

This style adopted for the display subsystem provides strong
support for modifiability and asset reuse. Display system is
most susceptible to user change requests. The architecture
style facilitates modifications/ enhancements with ease by
registering/ deregistering components. The style also upholds
the maintenance attribute by easily adding and replacing
components with minimum affect on other components in the
system.

Operator Data producer
A

Data Prod ucer
B

Data Producer
C

User Inerface Processor Display
Processor

4: Switch Mode
5: Raise mode Switch event

1: Set Conf igurati on
2: Set Mode

6: Post Data A

7: Post Data B

8: Post Data C

3: Set Mode

Fig. 5. Display Processing

E. Supervisory Control System
The supervisory control system has the role of a system

supervisor. The embedded system is capable of operating in
different modes. Each mode of operation has its associated
configuration defined by its control parameter set. The control
parameter sets corresponding to the different configurations
are provided by the user and are stored in the Human Machine
Interface subsystem. Upon selecting a particular
mode/configuration, its control parameter set needs to be
loaded into all the other concerned controllers. The
configuration needs to be pulled from the Human Machine
interface subsystem. The user provided configuration also
need to be transformed into control words which has to be
communicated to other subsystems so as to effect the
configuration.

The data flow architecture style – Pipe and filter - is
proposed. The data source here is the Human Machine
Interface subsystem and the data sink is the Supervisory
Control subsystem. When the operator changes the system
mode the data sink pulls the corresponding configuration
data from the source . Therefore the architectural style of the
subsystem is refined as “Pull variant” of Pipe and Filter
style. The Supervisory control system informs the
transformed configuration control words to the subsystem
responsible for effecting the configuration change. The
Supervisory control scenario while following this
architecture style is shown in Figure 6.

User Interface
Processor

Operator

Display
Processo r

2: Proce ss Co nfi gu rat ion

6: Switch Display mode

4: Set Display mode

5: Get mode Configuration

1: Se t configuration
3: Set mode

Fig. 6. Supervisory Control

F. Human Machine Interface
The Human Machine interface subsystem is responsible for

providing operator interaction with the system. The system is
configured and controlled through this interface. The
subsystem is also responsible for providing interface to a
variety of Input/Output devices. The I/O devices, its
dedicated hardware units, embedded processors and the HMI
control software together comprise the Human Machine
Interface system and is housed ergonomically in the operator
console.

In the system operating scenario, the operator configures
the system into the various modes by providing the control
parameters through the keyboard and other input devices. The
Human Machine interface processor processes the
configuration data, checks for its permissibility and also
maintains consistency of the configuration data. The same
data is used to generate multiple views.

 The Model View Controller architecture style is proposed
for this subsystem [2]. The Human Machine interface
scenario while following this architecture style is shown in
Figure 7.

Ope rator DisplayPage
View

UserInterface
Co ntrol le r

Model

5: Validate Configuration

1: Modify Configuration

7: Notify operator 2: Handle Modify Event

6: Update View

3: Upd ate Model

4: Updated Configuration

Fig. 7 Human Machine Interface

Following the MVC architecture, the Human Machine

Interface system is decomposed into three components. (1)
A model containing the functionality and the data (2) Multiple
views of the information to the user (3) Controller to handle
the asynchronous user inputs. In this architecture each change
in the control parameter set is propagated into the data model
thus ensuring consistency. This architecture ensures high
maintainability and modifiability due to the division of the
user interface into the MVC components.

G. Communication
The subsystems carry out their functions with the help of

an effective communication backbone. The components
building up the system were broadly classified as hardware
intensive and software intensive subsystems. The role of
communication subsystem in this domain is two dimensional.
The communication within and between hardware intensive
subsystems is by way of dedicated communication channels.
The emphasis of these systems on performance constraints is
very high and these systems cannot afford overheads
involved while following standard interfaces. Software

intensive subsystems communicate by way of standard Bus
network. A dedicated embedded processor assumes the role
of the bus controller in such systems.

The Bus controller follows a hierarchically organized
layered architecture style within. The operating system
dependent functions, Low level utilities for bus control, Bus
control software and the application level utilities provided for
communicating with other embedded processor connected
over the Bus follow an “Onion skin” model.

The embedded processors connected over the bus use Call
and Return architecture style for communicating with each
other.

VI. GENERIC SOFTWARE ARCHITECTURE OF THE SYSTEM
The software architecture of the system is derived by
systematic organization and representation of the architecture
styles of the constituent subsystems. At the topmost level the
subsystems identified during the first level of functional
decomposition along with data and control interfaces are
represented. This forms the high-level software architecture.
(Figure 8) Each of these components are exploded
subsequently and the internal architecture confirming to its
style is represented. This is continued to the required level of
abstraction. Hierarchical organization of these representations
forms the software architecture of the system.

Fig. 8. High level Software Architecture

VII. CONCLUSION

We have proposed a domain specific reference architecture

for distributed embedded systems. The significance of the
proposed architecture is in partitioning the system into
functionally independent modules following the Architecture
Based Design method guidelines. The methodology can be
applied to decompose the system iteratively to the required
level of abstraction. The modules are mapped onto suitable
architectural styles that realize the functional, quality and
business requirements of the system. These components form
abstraction of the system, which can be reused across systems
in the domain. They form the constituent elements of a
software architecture repository in the domain of distributed
embedded systems. It can be used necessary variation when
building specific products. ABD methodology can be applied
until the system is decomposed into concrete components and
software templates. The component architecture style and
software templates and have to be logged into the domain
specific repository for future reference.

In the next phase of the work we are planning to build a
prototype system instantiating the proposed architecture

REFERENCES

[1] Len Bass P Clements and R. Kazman, Software Architecture in

Practice. Addison Wesley, 1998.
[2] Mary Shaw and David Garlan, Software Architecture: Perspectives on

an emerging discipline. Prentice Hall, 2002.
[3] Nenad Medvidovic, “Software Architectures and Embedded Systems: A

match made in Heaven?” , IEEE Software, Sept/Oct 2005.
[4] Gerd Frick, Barbara Scherrer, and Klaus D.Muller-Glaser., “Designing

the Software Architecture of an Embedded System with UML 2.0”,
Proceedings of the UML 2004 Workshop on Software Architecture
Description & UML, October 11-15, 2004, Lisbon, Portugal.

[5] Michael W DaBose, “A layered software architecture for Hard Real
Time Embedded Systems”, Doctoral Thesis, Naval Postgraduate
School., Monterey, California, March 2002. http://handle.dtic.mil/ 100.2/
ADA401651

[6] H. Kopetz, Real-Time Systems: Design principles for distributed
embedded systems, Kluwer Academic Publishers, 1997.

[7] S. Jarzabek, B. Yang, S. Yoeun, “Addressing quality attributes in
domain analysis for product lines”, IEEProc-Software, Vol. 153, No.2,
April 2006.

[8] Henrik Baerbak Christensen, “Using Software Architectures for
Designing Distributed Embedded Systems”, Technical Report,
University of Aarhus, Denmark. http://www.cfpc.dk/publications/

[9] Felix Bachmann, Len bass, Gary Chastek, Patrich Donohow, Fabio
Peruzzi, “The Architecture Based Design Method”, Technical Report
CMU/SEI, Jan. 2000 http://www.sei.cmu.edu/publications/ documents/
00.reports/00tr001.html

	INTRODUCTION
	Problem domain
	Architectural Quality Attributes
	Software Architecture based design process
	Proposed Abstract Software Architecture
	Sensor – Data Acquisition
	Data Preprocessing
	Data Analysis
	Display Processing
	Supervisory Control System
	Human Machine Interface
	Communication

	Generic Software Architecture of the system
	Conclusion

