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a b s t r a c t

Given a graph G and a set X ⊆ V (G), the relative Wiener index of X in G is defined as
WX (G) =


{u,v}∈


X
2

 dG(u, v) . The graphs G (of even order) in which for every partition

V (G) = V1 +V2 of the vertex set V (G) such that |V1| = |V2| we haveWV1 (G) = WV2 (G) are
called equal opportunity graphs. In this note we prove that a graph G of even order is an
equal opportunity graph if and only if it is a distance-balanced graph. The latter graphs are
known by several characteristic properties, for instance, they are precisely the graphs G in
which all vertices u ∈ V (G) have the same total distance DG(u) =


v∈V (G) dG(u, v). Some

related problems are posed along the way, and the so-called Wiener game is introduced.
© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Wiener index W (G) of a (connected) graph G is defined as the sum of the distances between all pairs of vertices of
G. It was introduced in 1947 in the seminal chemical paper [1]. The index was extensively studied in the last decades;
see, for instance, the surveys [2,3] on the Wiener index of trees and hexagonal graphs. Although its main application
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is in mathematical chemistry, this natural concept appears in other areas of graph theory and applications. Note that
investigations of the Wiener index are (essentially) equivalent to the studies of the average distance in graphs; cf. [4].

A related concept was recently introduced under the name terminal Wiener index, which is defined as the sum of the
distances between all leaves in a graph [5,6]. In connection to the terminal Wiener index, the so-called terminal distance
matrices were used in the mathematical modeling of proteins and genetic codes [7,8].

In this paper we are interested in another variation of the above concept(s), the network opportunity index. When
partitioning a network topology into two equal pieces of nodes, the halves may have a very different structure, in particular
their metric properties can be very different. If we have an option to design a network in advance (say, in the situation when
two parties are competing in a commonmarket with an objective to minimize the cost of transport between all its nodes), it
seems fair to design a network in such a way that neither of the involved parties has an advantage to the other. Focusing on
a simple model of an undirected graph, the opportunity index is the largest possible difference between the relativeWiener
indices of two halves, over all partitions of its vertex set into two equal parts. We are especially interested in the so-called
equal opportunity graphs that are defined as the graphs having the opportunity index equal to 0. In graph theory equal
opportunity property yields another (metric) measure of symmetry.

Our main result asserts that equal opportunity graphs are precisely distance-balanced graphs (of even order), a class
of graphs first studied by Handa [9] in the case of partial cubes. The concept was later generalized to all graphs in [10],
where these graphs were also named distance-balanced. In particular it was observed that all vertex-transitive graphs are
distance-balanced. Symmetry properties of distance-balanced graphs were studied in depth in [11]; see also [12]. In [13]
distance-balanced graphswere characterized as the graphs inwhich all vertices have the same total distance. In the bipartite
case, distance-balanced graphs can be characterized as the extremal graphs with respect to the so-called Szeged index, a
result independently proved in [14,15]. Distance-balanced graphs with respect to different graph operations were studied
in [10,13,16]. Cabello and Lukšič [17] considered the problem,which is theminimumnumber of edges to be added to a given
graph to obtain a distance-balanced graph. They proved that the problem is NP-hard for graphs of diameter 3, but can be
solved in polynomial time for graphs of diameter 2. Finally, Miklavič and Šparl [18] extended connectivity studies of Handa
by constructing a bipartite distance-balanced graph that is neither a cycle nor 3-connected and classifying non-3-connected
bipartite distance-balanced graphs for which the minimum distance between the vertices of a 2-cut equals 3.

In the next section we formally introduce the relevant concepts and give some preliminary results. Then, in Section 3,
we prove the main result of this paper: equal opportunity graphs are precisely distance-balanced graphs of even order. We
also construct a new infinite family of such graphs. In the concluding section, we propose a new game on graphs, called the
Wiener game, which arises from a practical electricity distribution problem and is closely related to the opportunity index.

2. Preliminaries

The graphs considered are simple and connected. The distance dG(u, v) between vertices u and v in a graph G is the
shortest path distance. For a vertex u of G the total distance DG(u) of u is DG(u) =


v∈V (G) dG(u, v). Whenever Gwill be clear

from the context we will write d(u, v) and D(u) instead of dG(u, v) and DG(u), respectively.
The r-cube Qr is the graph with V (Qr) = {0, 1}r and two vertices r-tuples u and v are adjacent if and only if they differ in

exactly one coordinate. A graph G is called a partial cube if it can be embedded as an induced subgraph into Qr such that for
each pair of vertices u, v ∈ V (G), dG(u, v) = dQr (u, v). (Note that this distance coincides with the number of coordinates in
which the r-tuples u and v differ.) We also say that G is an isometric subgraph of Qr .

TheWiener index W (G) of a graph G is defined with

W (G) =


{u,v}⊆V (G)

dG(u, v) =
1
2


u∈V (G)

DG(u).

If X ⊆ V (G) then the relative Wiener index of X in G is

WX (G) =


{u,v}∈


X
2

 dG(u, v),

where


X
2


is the set of all 2-element subsets of X .

For an edge uv of a graph G, letWuv be the set of vertices closer to u than to v, that is,Wuv = {x ∈ G : d(x, u) < d(x, v)}.
If G is bipartite, then Wuv and Wvu form a partition of the vertex set of G. A graph G is distance-balanced, if |Wuv| = |Wvu|

holds for any edge uv of G. We recall the following result (see also [19, Theorem 1] for an alternative proof).

Theorem 2.1 ([13, Theorem3.1]). Let G be a connected graph. Then G is distance-balanced if and only if |{D(x) : x ∈ V (G)}| = 1.

In other words, distance-balanced graphs are precisely the graphs in which all the vertices have the same total distance.
Let G be a graph on 2n vertices, and let V1, V2 ⊂ V (G) be n-sets of vertices of G such that V1 ∪ V2 = V (G) (note that this

implies V1 ∩ V2 = ∅). Then we say that {V1, V2} is a half-partition of G. The opportunity index of a graph G is defined as

opp(G) = max{|WV1(G) − WV2(G)| : {V1, V2} is a half-partition of G}.
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There exist graphsGwith opp(G) arbitrarily large. For instance, ifG is the corona onKn (the graph obtained from the complete
graph on n vertices by attaching a leaf to each vertex), then opp(G) = n(n − 1).

We conclude the section with a key definition: a graph G (of even order) is an equal opportunity graph if opp(G) = 0.

3. Characterization of equal opportunity graphs

Here is our main result.

Theorem 3.1. A graph G is an equal opportunity graph if and only if G is a distance-balanced graph of even order.

Proof. Suppose first that G is a distance-balanced graph G of order 2n. Let V1 and V2 be any sets of size n such that
V1 ∪ V2 = V (G). For any x ∈ V1 we can write DG(x) =


u∈V1

d(x, u) +


v∈V2
d(x, v). Summing up for all vertices x ∈ V1

we get

W (G) =


x∈V1


u∈V1

d(x, u) +


v∈V2

d(x, v)


= 2WV1(G) + 2WV1,V2(G),

where WV1,V2(G) denotes the sum of all distances d(x, y) where x ∈ V1, y ∈ V2. By applying the same reasoning for V2 we
find that

2WV1(G) + 2WV1,V2(G) = 2WV2(G) + 2WV1,V2(G)

which implies thatWV1(G) = WV2(G). We conclude that G is an equal opportunity graph.
Assume now that G is an equal opportunity graph. Then by definition, G is of even order 2n. We are going to show that

DG(x) = W (G)/n holds for any vertex x. This will imply, using Theorem 2.1, that G is a distance-balanced graph (of even
order).

Since G is an equal opportunity graph, W (X) = W (X c) holds for any X ⊂ V (G) with |X | = n, where X c denotes the
complement of X . Fixing x ∈ V (G) and summing over all half-sized subsets that contain xwe thus have

x∈X⊂V (G)
|X |=n


W (X) − W (X c)


= 0.

Considering how many times a fixed pair of vertices appears in the above summation we then get:
2n − 2
n − 2


u≠x

d(x, u) +


2n − 3
n − 3

 
u,v≠x

d(u, v) −


2n − 3
n − 2

 
u,v≠x

d(u, v) = 0,

which can be rewritten as
2n − 2
n − 2


D(x) =


2n − 3
n − 2


−


2n − 3
n − 3

 
u,v≠x

d(u, v),

or, equivalently,
2n − 2
n − 2


D(x) =

1
n − 1


2n − 2
n − 2

 
u,v≠x

d(u, v).

It follows that (n−1)D(x) =


u,v≠x d(u, v). AddingD(x) to both sides of this equalitywe get nD(x) =


u,v d(u, v) = W (G).
Hence G is a distance-balanced graph. �

We have thus seen that equal opportunity graphs are precisely distance-balanced graphs of even order. Hence it is
desirable to know many interesting (infinite) families of such graphs. There exist non-regular distance-balanced partial
cubes, for instance, the Handa graph [9]; see also [15]. We next construct a new infinite family of (non-regular) distance-
balanced partial cubes, and so, an infinite family of equal opportunity graphs.

For any 3 ≤ s ≤ r , letQr,s be the graph obtained fromQr by removing the verticeswhich either have the first s coordinates
equal to 1 or have the first s coordinates equal to 0. For instance,Q3,3 = C6 because it is obtained fromQ3 by removing vertices
111 and 000. (A seemingly more general construction would be to first select some subset of s coordinates and then remove
the corresponding vertices; however due to the symmetry of Qr a graph isomorphic to Qr,s would be constructed.) Now we
have the following proposition.

Proposition 3.2. If 3 ≤ s ≤ r, then Qr,s is an equal opportunity graph.
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Proof. We first claim that Qr,s is a partial cube. To this end let u = u1 . . . ur and v = v1 . . . vr be arbitrary vertices of Qr,s
and suppose that u and v differ in b coordinates. To prove the claim it suffices to show that there exists a u, v-path in Qr,s of
length b.

Let i1, . . . , ia, ia+1, . . . , ib be the coordinates in which u and v differ, where i1, . . . , ia ∈ {1, . . . , s} and ia+1, . . . , ib ∈

{s + 1, . . . , r}. Let u′
= u1 . . . us and v′

= v1 . . . vs. If not all ui, i ∈ Iu,s := {1, . . . , s} \ {i1, . . . , ia}, are equal, then it is
straightforward to construct a desired u, v-path of length b in Qr,s. Hence we may assume without loss of generality that
ui = 0 for any i ∈ Iu,s (and so also vi = 0 for any i ∈ Iu,s). Then there exists at least one index i′ from {i1, . . . , ia} such that
ui′ = 0, for otherwise all the coordinates of v′ would be 0, a contradiction. But now we can easily find a shortest u, v-path
of length b in Qr,s by first changing ui′ to 1.

We have thus proved that Qr,s is a partial cube. It follows that the distance between two vertices of Qr,s is the number
of coordinates in which they differ. Since Qr,s is obtained from Qr by removing 2 · 2r−s vertices, |V (Qr,s)| = 2r

− 2r−s+1.
Moreover, by the way Qr,s is constructed, if u is an arbitrary vertex of Qr,s, then u differs in a fixed coordinate from precisely
(2r

− 2r−s+1)/2 other vertices. It follows that for any vertex u we have DQr,s(u) = r(2r
− 2r−s+1)/2. From Theorem 2.1 we

thus infer that Qr,s is distance-balanced. Theorem 3.1 now implies that Qr,s is an equal opportunity graph. �

The Fibonacci cube Γr , r ≥ 1, is obtained from Qr by removing all vertices that contain two consecutive ones, cf. [20],
while the generalized Fibonacci cube Γr(f ), where f is a given fixed binary string, is obtained from Qr by removing all vertices
that contain f as a substring [21]. Since the construction of the graphs Qr,s introduced above is of similar nature, it seems
interesting to further study this class of partial cubes.

4. Opportunity index and Wiener game

Given a graph G it is interesting to know what its opportunity index is. Loosely speaking, the bigger the difference, the
less metric-symmetric the graph is. When a graph is a model for a real-life problem (say in economy, location theory, or
social choice phenomena) then the network opportunity measures the unfairness or social inequality of a given topology.
Thus, in many situations the design of equal opportunity networks is highly desirable.

Let us present an example from distribution networks. Consider a network that consists of nodes connected by
transmission lines. Each node is a source of items as well as a distribution center which supplies customers and the other
nodes of the network with items. Some of the items transmitted between the nodes are lost: the loss rate is proportional
to the number of transmission lines on a shortest path between two nodes. We assume that all sources and distribution
centers have the same capacity and the same customer demand, respectively.

The customers are served by two distribution companies, say A and B, such that each company is allowed to control half
of the nodes of the grid. The company A (resp. B) can use only the items obtained from the sources that belong to A (resp.
B). In order to make a selection of the nodes fair, A and B alternate taking turns choosing a node. The goal of a company
is to minimize the losses on transmission lines. If nodes are considered as vertices with nodes being adjacent if there is a
transmission line between them, we have to minimize the sum of distances between vertices of A (or B) in the underlying
graph of a network.

An example of the above concept would be an electrical grid that consists of high-voltage transmission lines that connect
intermittent energy sources. An intermittent energy source is a source of energy that is not continuously available due to
some factor outside direct control, e.g., wind turbines and solar power stations. An intermittent energy source supplies
individual customers. Moreover, since the variability of production from a single source can be high, it exchanges electrical
energy with the other intermittent energy sources of the grid.

These examples initiate an introduction of the game played on vertices of a graph, which we call the Wiener game. (For
more on combinatorial games; see the survey [22].) This game is played on a connected graph G of even order. Vertices are
chosen, one at a time, by two players—player A and player B. Player A starts the game and the players alternate by taking
turns choosing a vertex from G until all the vertices have been selected. Let VA and VB be the sets of vertices selected by
players A and B, respectively. Since the order of G is even, |VA| = |VB|. The goal of both players is to make

{u,v}∈


VA
2

 dG(u, v) and


{u,v}∈


VB
2

 dG(u, v)

as small as possible, respectively. Assuming that both were playing optimally and that sets VA were selected by the two
players, we set WA(G) =


{u,v}∈


VA
2

 dG(u, v) and WB(G) =


{u,v}∈


VB
2

 dG(u, v). We say that player A (resp. B) wins the

game ifWA(G) < WB(G) (resp.WB(G) < WA(G)), otherwise the game is a draw.
Note that |WA(G)−WB(G)| ≤ opp(G), and in practical situations, the playerwhowins the game, oftenwants tomaximize

|WA(G)−WB(G)|. This yields another (difficult) problem of making the advantage as big as possible and determine its value.
Note that this difference can be arbitrarily large. For instance, WA(K1,2n−1) − WB(K1,2n−1) = opp(K1,2n−1) = n − 1. Of
course, opp(G) is in general only an upper bound for this difference. Anyway, studying opp(G) for arbitrary graphs Gmay be
of independent interest. Also studying lower bounds for |WA(G)−WB(G)| and finding classes of graphs on which this lower
bound is always positive (graphs on which the game can never be a draw) will be interesting. From a complementary point
of view, graphs G in which |WA(G) − WB(G)| = 0 for some half-partition {A, B} of G are interesting in the sense that a fair
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half-partition of their nodes can be achieved. Again finding optimum strategies for each player in special classes of graphs
is challenging.

The following observation is a direct consequence of Theorem 3.1.

Corollary 4.1. If G is a distance-balanced graph of even order, then the Wiener game on G is a draw, regardless of the strategy
used by either of the players.

In fact, we can even allow the first player to first choose half of the vertices and the second player is left with the other
half, and the game will still be a draw.

To conclude the paper we propose a further study of the Wiener game and the opportunity index.
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