Synthesis and characterization of $\gamma - Fe_aO_a - a$ magnetic tape material

M R ANANTHARAMAN, K SESHAN, D K CHAKRABARTY and H V KEER

Department of Chemistry, Indian Institute of Technology, Powai, Bombay 400 076, India.

MS received 20 February 1981

Abstract. Acicular FeC₂O₄. 2H₂O was precipitated from glycerol and starch media. Thermal decomposition of this oxalate in dry and moist nitrogen yielded primarily FeO and Fe₃O₄ respectively. Characterization was attempted through DTA, TG, x-ray diffraction, TEM and magnetization studies. It was found that the oxalate can be completely decomposed to Fe₃O₄ in moist nitrogen (PH₂O \sim 35 torr) at 775 K and then oxidised by dry air to acicular γ -Fe₂O₃ at 575 K. The resulting material has saturation magnetization (\sim 70 emu/g), coercive field (\sim 300 Oe) and squareness ratio (\sim 0.60-0.65), which values art comparable with those of the commercial samples.

Keywords. γ -Fe₂O₃; magnetic tape materials; synthesis of γ -Fe₂O₃; magnetization.

1. Introduction

Single domain acicular γ -Fe₂O₃ is an important material used as recording medium in applications such as magnetic tapes and other information storage devices like drums and discs. The present annual demand for this oxide is about 25 MT and is met through import (Patil 1977). Considering this growing demand it is imperative to intensify import substitution efforts through setting up viable production units, for which the necessary competence and infrastructure presumably exists in our country, optimizing conditions for the existing preparative conditions and developing new cheaper methods of synthesis. Commercially γ -Fe₂O₃ is manufactured through the reaction route

However, an alternative method via thermal decomposition of ferrous oxalate dihydrate, $FeC_2O_4 \cdot 2H_2O$, has shown more promise. Venkatesh Rao *et al* (1974) observed that the hydrated oxalate containing traces of moisture can be decomposed in air under the ambient of its own gaseous products at 575 K to give $\gamma \cdot Fe_2O_3$. However the decomposition is highly exothermic so that local oxidative heating leads to unavoidable contamination with α -Fe₂O₃. In this paper it will be shown that proper manipulation of experimental conditions can give a high yield of tape-quality material with appropriate physical and magnetic characteristics. Since only spherical particles result from aqueous solutions, results of precipitation of the oxalate from other new media such as glycerol and starch have been discussed.

2. Experimental

For the synthesis of $FeC_0Q_4 \cdot 2H_0Q_1$, aqueous solution method of Bevan and Brown (1966) was modified in the sense that equal volumes of glycerol and water or saturated solution of starch and water were employed as precipitating media. For characterization, DTA, TG, x-ray diffraction, TEM and hysteresis loop tracer techniques were employed. DTA curves were recorded in UHP nitrogen and in the presence of moisture on a Mettler thermal analyser using \sim 100 mg of the sample at a heating rate of 8°/min and a gas flow rate of 150 ml min. Isothermal decomposition studies were made by passing a slow stream of UHP nitrogen containing moisture, over the sample placed in a tubular furnace and held at selected temperatures. The products were identified by x-ray powder diffraction using CoK_{α} ($\lambda = 1.79021$ Å) radiation on a Philips diffractometer PW 1501. The magnetic characteristics such as saturation magnetization (σ_s), remanent magnetization (σ_s) and coercive field (H_c) were measured on a hysteresis loop tracer described by Likhite et al (1965). TEM photographs on a Philips EM 301 unit determined the size and acicularity of $FeC_2O_4 \cdot 2H_2O_4$ and γ -Fe₂O₃ particles.

3. Results and discussion

3.1 Decomposition of $FeC_2O_4 \cdot 2H_2O$ (glycerol medium)

Seshan (1980) has reported DTA, TG, DTG curves for $FeC_2O_4 \cdot 2H_2O$ in air and in UHP nitrogen and concluded that (i) α -Fe₂O₃ results on heating in air, (ii) primarily FeO in dry nitrogen and (iii) primarily Fe₃O₄ in moist nitrogen. The step (iii) involving formation of Fe₃O₄ is crucial; in dry conditions water vapour escapes quickly and is unavailable for reaction, while in the presence of high partial pressure of water vapour, dehydration and subsequent steps occur at higher temperatures at which formation of α -Fe₂O₃ is facilitated. In order to determine optimum partial vapour pressure of water (P_{H2O}) the samples were maintained at 520, 570 and 620 K respectively for 30 min each in a flowing gas atmosphere of appropriate mixtures of nitrogen and water vapour. Table 1 summarizes the results of the decomposition. It will be noted that at 570 K the decomposition to γ -Fe₂O₃ gets completed (corresponding to 56% mass loss). The values of $\sigma_{\rm E}$, $H_{\rm c}$ and $\sigma_{\rm r}/\sigma_{\rm g}$ under PH₂O = 30 and 35 torr compare favourably with those of standard commercial samples ($\sigma_{\rm g} = 74$ emu/g, $H_{\rm c} = 270$ Oe, $\sigma_{\rm r}/\sigma_{\rm g} = 0.65$).

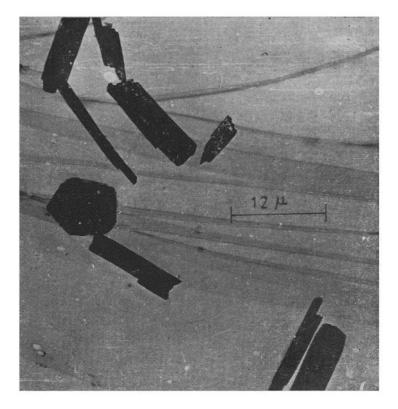


Figure 1. TEM hotograph of acicular FeC_2O_4 , $2H_2O$ (starch medium).

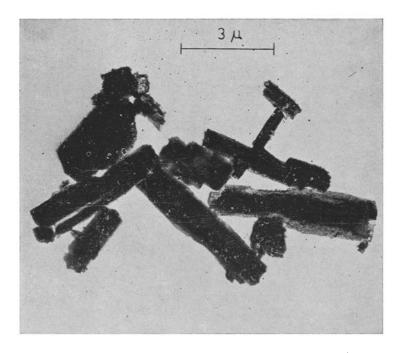
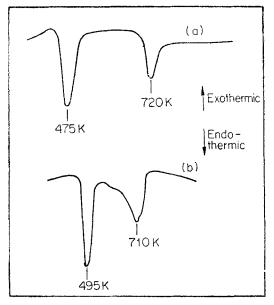


Figure 3. TEM photograph of acicular γ - Fe₂O₃.


3.2 Decomposition of $FeC_2O_4 \cdot 2H_2O$ (starch medium)

Since glycerol is costly, a cheaper starch medium was used for precipitating the acicular oxalate (figure 1). DTA curves in dry UHP nitrogen and nitrogen plus moisture (PH₂O = 35 torr) were recorded (figure 2). In the absence of moisture dehydration occurred at 720 K corresponding to primarily FeO (mass loss = 60% and non-magnetic). Similarly, in the presence of water vapour, dehydration took place at a higher temperature (~ 495 K), as expected, and decomposition to Fe₃O₄ (mass loss = 60% and strongly magnetic) occurred around 710 K. The above findings indicate that FeC₂O₄·2H₂O should be heated in nitrogen and moisture (PH₂O~ 35 torr) at least up to 775 K at which Fe₃O₄ has been completely formed. Apparently the oxidation of Fe₃O₄ to γ -Fe₂O₃ can be carried out at this stage. Therefore, dry air was introduced in the DTA apparatus for about 30 min when the temperature reached 775 K and was held constant there. An exothermic peak was observed, which corresponded to α - Fe₂O₃ (mass loss = 56% and non-magnetic). Thus it appears that this process is unsuitable for the production of γ -Fe₂O₃.

In another set of experiments, after the oxalate had been decomposed in nitrogen and moisture ($P_{H_2}O \sim 35$ torr) to Fe_3O_4 by heating up to 775 K, the DTA apparatus was steadily cooled to 575 K and dry air introduced isothermally for about 30 min. A similar exothermic peak corresponding to the same mass loss (= 56%, i. e. Fe_2O_3) was observed; however the product was highly magnetic and on analysis through x-ray and magnetic measurements was found to be γ -Fe₂O₃. Following the same heating and cooling schedule the reaction was now carried out in a reactor on a larger scale (yield ~ 10g) and

Temperature (K)	Mass loss (%)	Saturation magnetization σ_s (e.m. u./g)	Coercive field H _c (Oe)	Squareness ratio σ_{R}/σ_{s}
Рн20 = 30	torr		· · · · · · · · · · · · · · · · · · ·	
520	46	19.7	188	0.28
570	56	68.0	300	0-50
620	56	54.0	300	0-32
Рн₂о = 37	torr			
520	44	15-4	130	0-20
570	56	69-2	300	0-50
620	56	47.6	300	0.30
Рн ₂ о= 150	torr			
520	45	24.4	109	0.30
570	56	50.0	140	0.36
620	56	28.0	125	0.33

Table 1. Isothermal decomposition of $FeC_2O_4 \cdot 2H_2O$ (glycerol medium) under partial different pressures of water vapour.

Temp. increasing

Figure 2. DTA curves for FeC₂O₄· 2H₂O in (a) UHP nitrogen (b) UHP nitrogen containing water vapour (PH₂O \sim 35 torr).

the resulting product was found to have appropriate acicularity (figure 3) and magnetic characteristics ($\sigma_s = 70 \text{ emu/g}$; $H_c = 300 \text{ Oe}$; $\sigma_{\kappa}/\sigma_s = 0.60$).

4. Conclusions

Acicular ferrous oxalate dihydrate, $FeC_2O_4 \cdot 2H_2O$ can be precipitated from glycerol and starch media, decomposed completely to Fe_3O_4 in moist nitrogen $(P_{H_2O} \sim 35 \text{ torr})$ at 775 K and then oxidized by dry air to acicular γ -Fe₂O₃ at 575 K. The resulting material possesses magnetic properties comparable with those of commercial samples.

References

Bevan S C and Brown R A 1966 J. Inorg. Nucl. Chem. 28 387
Likhite S D, Radhakrishnamurty C and Sahasrabudhe P W 1958 Rev. Sci. Instrum. 36 1558
Patil S G 1977 Electronics Information and Planning 4 979
Seshan K 1980 Studies on the structural and magnetic properties of some spinel-like ferrites, Ph. D. Thesis, Indian Institute of Technology, Bombay

Venkatesh Rao, Shashimohan A L and Biswas A B 1974 J. Mater. Sci. 9 430