
Some families of bivariate distributions

and their applications

Thesis submitted to the

Cochin University of Science and Technology

for the Award of Degree of

Doctor of Philosophy

under the Faculty of Science

by

Preethi John

DEPARTMENT OF STATISTICS

COCHIN UNIVERSITY OF SCIENCE AND

TECHNOLOGY

COCHIN-682 022

April 2017

prizjohn@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)




To My Family





CERTIFICATE

This is to certify that the thesis entitled “Some families of bivariate distribu-

tions and their applications” is a bonafide record of work done by Ms.Preethi John

under our guidance in the Department of Statistics, Cochin University of Science

and Technology and that no part of it has been included anywhere previously for

the award of any degree or title.

Kochi-22 Dr. N. Unnikrishnan Nair Dr. P. G. Sankaran

April 2017 Retired Professor, Professor & Head,

Department of Statistics, Department of Statistics,

Cochin University of Cochin University of

Science and Technology. Science and Technology.





CERTIFICATE

Certified that all the relevant corrections and modifications suggested by the audi-

ence during pre-synopsis seminar and recommended by the Doctoral committee of

the candidate have been incorporated in the thesis.

Kochi- 22 Dr. P. G. Sankaran

April 2017 Professor & Head,

Department of Statistics,

Cochin University of

Science and Technology.





DECLARATION

This thesis contains no material which has been accepted for the award of any other

Degree or Diploma in any University and to the best of my knowledge and belief,

it contains no material previously published by any other person, except where due

references are made in the text of the thesis.

Kochi- 22 Preethi John

April 2017





Acknowledgements

It is with all sincerity and high regards that I express my deep sense of gratitude to

my supervising guide Dr. P. G. Sankaran, Professor and Head of the Department,

Department of Statistics, Cochin University of Science and Technology, for his

meticulous guidance, consistent encouragement and valuable suggestions through-

out my research period.

I also put in writing my obligation to my co-guide, Dr.N.Unnikrishnan Nair, Re-

tired Professor, Department of Statistics,CUSAT, Cochin, whose suggestions, in-

spiration and guidance throughout this work helped me in bringing out this thesis in

the present form.

I profoundly thank Dr. N. Balakrishna, Professor, Dr. K. C. James, Professor,

Dr. Asha Gopalakrishnan, Professor, Dr. S. M. Sunoj, Professor, Dr.G. Rajesh,

Assistant Professor and Dr. K.G. Geetha, Lecturer (Deputation), Department of

Statistics, CUSAT for their valuable suggestions and help to complete this endeav-

our. I remember with deep gratefulness all my former teachers who gave me light

in life through education. I extend my sincere thanks to all non-teaching staff of the

Department of Statistics, CUSAT for their kind cooperation.

I owe a lot to my friends and research scholars, Department of Statistics, CUSAT

who helped, inspired and encouraged me whenever it needs.

I owe my appreciation and thankfulness to Department of Science and Technology,

Government of India, for providing me financial support to carry out this work un-

der INSPIRE fellowship.

I am failing in words to express my feelings to my husband and parents for their

love, care and support. I owe everything to them.

Above all, I bow before the grace of the Almighty.

Preethi John





Contents

List of Tables xvii

List of Figures xix

1 Preliminaries 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Survival copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Archimedean copulas . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Dependence concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.1 A concordance function . . . . . . . . . . . . . . . . . . . . . 14

1.5.2 Kendall’s tau . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.3 Spearman’s rho . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.4 Tail dependence . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.5 Tail monotonicity . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Motivation and present study . . . . . . . . . . . . . . . . . . . . . 22

2 A family of bivariate Pareto distributions 27

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 A class of distributions . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Members of the family and their copulas . . . . . . . . . . . . . . . 31

2.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.1 Conditional distributions . . . . . . . . . . . . . . . . . . . . 36

2.4.2 Regression functions . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Dependence structure . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.1 Correlation coefficient . . . . . . . . . . . . . . . . . . . . . 42

xiii



Contents xiv

2.5.2 Dependence concepts . . . . . . . . . . . . . . . . . . . . . . 43

2.5.3 Dependence functions . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Inference and data analysis . . . . . . . . . . . . . . . . . . . . . . . 46

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Characterizations of a family of bivariate Pareto distributions 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Dullness property . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Bivariate income gap ratio . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Bivariate generalized failure rate . . . . . . . . . . . . . . . . . . . . 69

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Copula-based reliability concepts 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Hazard rate function of copula . . . . . . . . . . . . . . . . . . . . . 74

4.3 Mean residual quantile function . . . . . . . . . . . . . . . . . . . . 84

4.4 Analysis of bivariate exponential copulas . . . . . . . . . . . . . . . 94

4.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Modelling and analysis of negative dependent Archimedean cop-

ulas 105

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 The copula models . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.1 Spearman’s rho and Kendall’s tau. . . . . . . . . . . . . . . 110

5.3.2 Measure based on Blomqvist’s β. . . . . . . . . . . . . . . . 115

5.3.3 Tail dependence properties . . . . . . . . . . . . . . . . . . . 117

5.3.4 Local dependence measures . . . . . . . . . . . . . . . . . . 117

5.3.4.1 ψ -measure . . . . . . . . . . . . . . . . . . . . . . 118



Contents xv

5.3.4.2 θ -measure . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Distributions with various marginals . . . . . . . . . . . . . . . . . 120

5.4.1 Distributions with Pareto marginals . . . . . . . . . . . . . . 120

5.4.2 Distributions with Weibull marginals . . . . . . . . . . . . . 120

5.4.3 Distributions with exponential marginals . . . . . . . . . . . 121

5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Modelling and analysis of a positive dependent Archimedean cop-

ula 125

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 The copula model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 Dependence concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.1 Tail dependence properties . . . . . . . . . . . . . . . . . . . 130

6.3.2 Tail monotonicity . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3.3 Kendall’s tau . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Distributions with various marginals . . . . . . . . . . . . . . . . . 133

6.4.1 Distribution with Pareto marginals . . . . . . . . . . . . . . 135

6.4.2 Distribution with Weibull marginals . . . . . . . . . . . . . . 135

6.4.3 Distribution with exponential marginals . . . . . . . . . . . 135

6.4.4 Distribution with Weibull-Logistic marginals . . . . . . . . . 136

6.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7 A class of bivariate Weibull distributions and their copulas 141

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2 Bivariate Weibull family . . . . . . . . . . . . . . . . . . . . . . . . 142

7.3 Properties of the class of bivariate Weibull distributions . . . . . . . 151

7.3.1 Conditional distributions . . . . . . . . . . . . . . . . . . . . 151

7.3.2 Hazard rate function . . . . . . . . . . . . . . . . . . . . . . 151



Contents xvi

7.4 Dependence structure . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.4.1 Kendall’s tau . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.4.2 Clayton measure . . . . . . . . . . . . . . . . . . . . . . . . 153

7.4.3 Tail dependence measure . . . . . . . . . . . . . . . . . . . . 160

7.5 Inference and data analysis . . . . . . . . . . . . . . . . . . . . . . . 160

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8 Summary and future work 165

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

References 173



List of Tables

2.1 Joint density functions for various types of Pareto models . . . . . . 37

2.2 Conditional densities f ∗1 (x|y) and f ∗2 (y|x) . . . . . . . . . . . . . . 38

2.3 Conditional survival functions . . . . . . . . . . . . . . . . . . . . . 39

2.4 Clayton measure for bivariate Pareto models . . . . . . . . . . . . . 46

2.5 American football league data . . . . . . . . . . . . . . . . . . . . . 49

2.6 Cricket data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Bivariate income gap ratios . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Bivariate generalized failure rates . . . . . . . . . . . . . . . . . . . 72

4.1 Survival copulas of bivariate exponential family . . . . . . . . . . . 102

4.2 Bivariate hazard rates of the exponential family . . . . . . . . . . . 103

7.1 Generators and induced distributions . . . . . . . . . . . . . . . . . 154

7.2 Joint density function f(x, y) for bivariate Weibull models . . . . . 155

7.3 Conditional densities f ∗1 (x|y) and f ∗2 (y|x) for bivariate Weibull models156

7.4 Conditional survival functions for bivariate Weibull models . . . . . 157

7.5 Bivariate hazard rates for bivariate Weibull models . . . . . . . . . 158

7.6 Copula hazard rates for the family B∗ . . . . . . . . . . . . . . . . 158

7.7 Kendall’s tau for the copula models . . . . . . . . . . . . . . . . . 159

xvii



List of Tables xviii

7.8 Clayton measure for bivariate Weibull models . . . . . . . . . . . . 159

7.9 Tail dependent measures for the copula models . . . . . . . . . . . 160

7.10 Parameter estimates of the models using Soccer data . . . . . . . . 163

7.11 Parameter estimates of the models using Fisher Iris data . . . . . . 163



List of Figures

4.1 Graph of Kn and KC . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Plot of G1(u, v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
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Chapter 1

Preliminaries

1.1 Introduction

In recent years stochastic modelling has become a convenient technique in many

scientific studies to understand the basic characteristics of the random phenomenon

under consideration. One of the basic problems in such situations is to identify the

underlying stochastic model that is supposed to generate the observations. Gen-

erally it is not easy to isolate all the physical causes that contribute individually

or collectively to the generation of data and to mathematically account for each.

The task of determining the correct stochastic model representing the given data

becomes very difficult. A standard practice in such contexts is to ascertain the phys-

ical properties of the process generating the observations, express them by means

of mathematical equations or inequalities and then solve them to obtain the model.

There are, however, situations when the system is so complex that the response

derived from it may not be amenable to simple mathematical manipulations. One

method that can be used in such occasions is to use a general family of proba-

bility distributions, one member of which could be a possible model that fits the

data. The main reason to prefer this procedure is the desire to find the best pos-

sible approximation in a complex situation that generated the data rather than

1
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any reasonable evidence to the effect that the model explains the data generating

mechanism. When the families of distributions are chosen for modelling, it is desir-

able that (i) the family contains enough members with different structures so that

there is a member that can correspond to a given data situation, (ii) the members

of the family should have a sufficient number of parameters to impart flexibility,

(iii) there should be some simple criterion that distinguishes the various members

of the family so that the choice of a member that fits the data becomes easy and

(iv) efficient methods exist for the estimation of parameters. The above discussions

clearly reveal that the family of distributions plays a pivotal role in statistical mod-

elling. Statistical literature is abundant with various families of distributions that

are employed in statistical data analysis.

In many scientific investigations, it is the rule rather than the exception to have

multiple response variables. Multivariate data commonly arise in many scientific in-

vestigations and accordingly multivariate distributions are employed for modelling

and analysis of data. Much of the early work in the literature on the analysis

of bivariate (multivariate) data was focused on bivariate and multivariate normal

distributions as there had been a tendency to regard all distributions as normal.

However, the normal distributions are inappropriate in cases where the data exhibit

multi-modality and skewness and hence significant developments have been made

with regard to non-normal distributions. Bivariate(Multivariate) distributions with

non-normal marginals arise in many fields. In lifetime data analysis, the variables

of interest are non-negative that often have skewed marginal distributions like expo-

nential, Pareto and Weibull distributions. In reliability, multivariate lifetime data

arise when each study subject may experience several events. For example, the

sequence of tumour recurrences, the occurrence of blindness in both eyes and the
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onset of a genetic disease among family members etc. The non-normal distributions

are appropriate in such occasions. For various non-normal bivariate(multivariate)

distributions, one may refer to Kotz et al. (2002).

The importance of exponential distribution in statistical theory and applications is

established in literature. Motivated by the applicability of the distribution in the

univariate case, there have been several attempts in statistical literature to construct

exponential distribution in higher dimensions that have properties which generalize

those in the one-dimensional situation. The work in this direction was initiated by

Gumbel (1960) by presenting three different functional forms of bivariate exponen-

tial laws. Since then there have been spontaneous research on alternative forms

of exponential distributions in higher dimensions with variety of applications. See

Freund (1961), Marshall and Olkin (1967), Downton (1970), Nagao and Kadoya

(1971), Hawkes (1972), Block and Basu (1974), Paulson (1973), Friday and Patil

(1977), Tosch and Holmes (1980), Raftery (1985), Cowan (1987),Sarkar (1987),Ryu

(1993), Hayakawa (1994), Iyer et al. (2002), Regoli (2009) and Balakrishna and Shiji

(2014).

The Pareto distribution was first proposed in literature as a model for income anal-

ysis. Arnold (1985) has studied various properties of univariate Pareto distribution

and its extensions using transformations of the random variable. As in the case

of univariate Pareto distributions, mathematical simplicity and tractability have

provided a lot of interest in the theory and applications of multivariate Pareto dis-

tributions. The bivariate Pareto distribution of first kind and the second kind was

introduced by Mardia (1962). Later Lindley and Singpurwalla (1986) have intro-

duced a bivariate Pareto II distribution which has simple joint survival function

with Pareto II marginals. This distribution was further studied and generalized
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by Nayak (1987), Barlow and Mendel (1992), Sankaran and Nair (1993), Langseth

(2002), Balakrishnan and Lai (2009) and Sankaran & Kundu (2014). For various

other bivariate Pareto distributions and its generalizations, one may refer to Arnold

(1990), Arnold (1992) and Kotz et al. (2002).

In literature, Weibull distribution has been employed for modelling lifetime data of

various types of manufactured items. The distribution was first used for the analysis

of data on breaking strength of materials. The bivariate distributions with Weibull

marginals can be obtained from the bivariate exponential distributions by suitable

transformations (Marshall and Olkin (1967) and Lee (1979)). One can visualize

the ease and the usefulness of bivariate Weibull models for the analysis of lifetime

data, such as the times to first and second failures of a device, the breakdown

times of dual generators in a power plant, and the survival times of the organs in

a two-organ system in the human body. An extensive literature is now available

on the properties and applications of the bivariate and multivariate Weibull dis-

tributions; See, Lee and Thompson (1974), Clayton (1978), Lee (1979), Marshall

and Olkin (1988), Crowder (1989), Castillo and Galambos (1990), Lu and Bhat-

tacharyya (1990), Patra and Dey (1999), Kotz et al. (2002), Murthy et al. (2004)

and Rinne (2008).

Bivariate (Multivariate) data commonly arise in many scientific investigations and

accordingly we have discussed some commonly used bivariate(multivariate) distri-

butions like exponential, Pareto and Weibull that can be employed for modelling

and analysis of bivariate(multivariate)data. Measures of association often appear to

be of great importance to study the dependence among the variables. The theory of

copulas provides a flexible tool for identifying the nature and extent of dependence

in multivariate models. Thus a discussion of these aspects are needed which will be
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taken up in the next section.

1.2 Copulas

Sklar (1959) introduced the notion of copula while answering a question raised by

M. Frechet about the relationship between a multi-dimensional probability func-

tion and its lower dimensional marginals. Sklar was the person who first used the

word “copula”in a mathematical or statistical sense in the theorem which bears his

name, although similar ideas and results can be traced back to Hoeffding (1940).

Copulas were initially used in the development of the theory of probabilistic metric

spaces. Later, they were employed to define nonparametric measures of dependence

between random variables, and since then, they began to play an important role in

probability and mathematical statistics.

A copula is a function which “couples”a multivariate distribution function to its

one-dimensional marginal distribution functions. Over the past forty years, cop-

ulas have played an important role in several areas of statistics. Copulas can be

considered as a way of studying scale-free measures of dependence; and can be

used as a starting point for constructing families of bivariate distributions (Fisher

(1997)). Copulas are considered to be highly appealing in the non-Gaussian set

up as they can capture dependence more broadly than the standard multivariate

normal framework.

Let R denote the ordinary real line (−∞,∞), R̄ denote the extended real line

[−∞,∞], and R̄n denote the extended n-space R̄× R̄× ...× R̄. The unit n-cube In
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is the product I×I× ...×I where I = [0, 1]. An n-place real function F is a function

whose domain, DomF , is a subset of R̄n and whose range, RanF , is a subset of R.

Definition 1.1. Let S1, ..., Sn be nonempty subsets of R̄. Let F be a real function

of n variables such that DomF = S1 × S2 × ... × Sn and for a ≤ b(ak ≤ bk for all

k) let B = [a,b] (=[a1, b1]× ...× [an, bn]) be an n-box whose vertices are the points

c = (c1, c2, ..., cn) where each ck is equal to either ak or bk and are in DomF . Then

the F -volume of B is given by

VF (B) = Σsgn(c)F (c),

where the sum is taken over all vertices c of B, and sgn(c) is given by

sgn(c) =

 1, if ck = ak for an even number of k′s,

−1, if ck = ak for an odd number of k
′s.

The formal definition of copula is as follows:

Definition 1.2. An n-dimensional copula is a function C : [0, 1]n → [0, 1], with

the following properties:

1. C is grounded, it means that for every u = (u1, u2, ..., un) ∈ [0, 1]n, C(u) = 0

if at least one coordinate ui is zero, i = 1, 2, . . . , n,

2. C is n-increasing, it means that for every a ∈ [0, 1]n and b ∈ [0, 1]n such that

a ≤ b, the C-volume VC([a,b]) of the box [a,b] is non-negative,

3. C(1, ..., 1, ui, 1, ..., 1) = ui, for all ui ∈ [0, 1], i = 1, 2, ..., n.
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The Frechet-Hoeffding bounds for the copula are namely Mn(u) and W n(u)( su-

perscript denotes dimension of the copula rather than exponentiation), where

Mn(u) = min(u1, ..., un), Frechet-Hoeffding upper bound copula,

W n(u) = max(u1 + ...+ un − n+ 1, 0), Frechet-Hoeffding lower bound copula.

Another important copula is

Πn(u) = u1...un, product copula.

The functions Mn(u) and Πn(u) are n-copulas for all n ≥ 2 whereas the function

W n(u) is not a copula for any n ≥ 3.

Theorem 1.3. If C is any n-copula, then for every u in [0, 1]n,

W n(u) ≤ C(u) ≤Mn(u).

This theorem is called the Frechet-Hoeffding bounds inequality (Frechet (1957)).

For more details and geometrical interpretations one could refer to Mikusinski et

al. (1992).

For n = 2, the above definition reduces to the following;

Definition 1.4. A two-dimensional (bivariate) copula is a function C : [0, 1]2 →

[0, 1], with the following properties;

1. C is grounded: For all u, v ∈ [0, 1], C(u, 0) = 0 and C(0, v) = 0.
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2. C is 2-increasing: for all u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

3. For all u, v ∈ [0, 1], C(u, 1) = u and C(1, v) = v.

The importance of copulas in statistics is described in Sklar’s theorem and is perhaps

the most important result which is used in all applications of copulas.

Theorem 1.5 (Sklar’s theorem). Let F (.) be an n-dimensional distribution function

with marginals F1, ..., Fn. Then there exists an n-copula C such that for all x =

(x1, x2, ..., xn) in R̄n,

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn)). (1.1)

If F1, ..., Fn are continuous, then C is unique. Otherwise, the copula C is uniquely

determined on RanF1× ...×RanFn. Conversely, if C is an n-copula and F1, ..., Fn

are distribution functions, then the function F defined above is an n-dimensional

distribution function with marginals F1, ..., Fn.

For the proof, see Sklar (1996). One can see from Sklar’s theorem that for continu-

ous multivariate distribution functions, the univariate marginals and the multivari-

ate dependence structure can be separated and the dependence structure can be

represented by a copula.

Corollary 1.1. Let F (.) be an n-dimensional distribution function with continuous

marginals F1, ..., Fn and copula C and let F
(−1)
1 , F

(−1)
2 , ..., F

(−1)
n be the quasi-inverses

of F1, ..., Fn respectively. Then for any u in [0, 1]n,

C(u1, ..., un) = F (F
(−1)
1 (u1), ..., F (−1)

n (un)).



Preliminaries 9

Remark 1.1. The quasi-inverse of the univariate distribution function Fi is any

function F
(−1)
i with domain I such that

(i) if t is in RanFi, then F
(−1)
i (t) is any number x in R̄ such that Fi(x) = t that

is, for all t in RanFi,

Fi(F
(−1)
i (t)) = t;

and

(ii) if t is not in RanFi, then

F
(−1)
i (t) = inf{x|Fi(x) ≥ t} = sup{x|Fi(x) ≤ t}.

If Fi is strictly increasing, then there exists a single quasi-inverse which is of course

the ordinary inverse notated by F−1
i .

Sklar’s theorem can be stated in terms of random variables and their distribution

functions as follows:

Theorem 1.6. Let X1, ..., Xn be random variables with distribution functions

F1, F2, ..., Fn and joint distribution function F (.). Then there exists an n-copula C

such that (1.1) holds. If F1, F2, ...Fn are all continuous, C is unique. Otherwise, C

is uniquely determined on RanF1 ×RanF2 × ...×RanFn.

In the two-dimensional case, we have the following theorem.

Theorem 1.7. Let F be a joint distribution function with the marginals F1 and F2.

Then there exists a copula C such that for all x and y in R̄,

F (x, y) = C(F1(x), F2(y)). (1.2)
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If F1 and F2 are continuous, then the copula C is unique; otherwise it is uniquely

determined on RanF1 × RanF2. Conversely, if C is a copula, and F1 F2 are dis-

tribution functions, then the function F defined by equation (1.2) is a distribution

function with marginals F1 and F2.

Example 1.1. For the Gumbel’s bivariate exponential distribution (Gumbel (1960)),

the joint distribution function is given by

F (x, y) =

 1− e−x − e−y + e−(x+y+θxy), x ≥ 0, y ≥ 0, 0 ≤ θ ≤ 1,

0, otherwise.
(1.3)

Then the marginal distribution functions are exponentials, with quasi-inverses

F
(−1)
1 (u) = − ln(1−u) and F

(−1)
2 (v) = -ln(1−v) for u,v in I. Hence the corresponding

copula is

C(u, v) = u+ v − 1 + (1− u)(1− v)e−θ ln(1−u) ln(1−v). (1.4)

Example 1.2. Consider the bivariate distribution function (Ali et al. (1978))

F (x, y) = (1 + e−x + e−y + (1− θ)e−x−y)−1; θ ∈ [−1, 1]. (1.5)

By using the probability integral transform and algebraic methods we have

C(u, v) = uv + θuv(1− u)(1− v), θ ∈ [−1, 1], (1.6)

which is referred to as the Ali-Mikhail-Haq copula.
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1.3 Survival copulas

If we replace u by 1−u and v by 1− v in the bivariate copula C(u, v), the resulting

function is a copula denoted by Ĉ(u, v), called the survival copula or complementary

copula, satisfying

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v) (1.7)

and the joint survival function of the random vector (X, Y ) has the representation

F̄ (x, y) = Ĉ(F̄1(x), F̄2(y)).

Ĉ(u, v) is a copula that couples the joint survival function F̄ to the univariate

marginal survival functions F̄1 and F̄2.

The copula for Gumbel’s bivariate exponential distribution given in (1.4) has the

survival copula, Ĉ(u, v) =uve−θ lnu ln v. Various examples are given in Chapter 2 and

in Chapter 7.

1.4 Archimedean copulas

In empirical modelling we make use of a particular group of copulas, called Archimedean

copulas. The key characteristic of the Archimedean copulas is that all the informa-

tion about n-dimensional dependence structure is contained in a univariate genera-

tor φ and hence the Archimedean representation reduces the study of a multivariate

copula to a single univariate function. Archimedean copulas are highly appealing
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and they gained popularity due to the reason that they can produce wide ranges of

dependence properties for different choices of the generator function.

Definition 1.8. A copula C is said to be Archimedean if there exists a representa-

tion of the form

C(u, v) = φ[−1](φ(u) + φ(v)) (1.8)

where φ is a continuous, strictly decreasing function from I to [0,∞) such that

φ(1) = 0 and φ[−1] is the pseudo-inverse of φ.

The pseudo-inverse of φ is defined as follows:

φ[−1](t) =

 φ−1(t), 0 ≤ t ≤ φ(0),

0, φ(0) ≤ t ≤ ∞.

(1.9)

If φ(0) =∞, then φ[−1](t) = φ−1(t). In this case we say that φ is a strict generator

and C(u, v) is said to be a strict Archimedean copula.

For every Archimedean copula with generator φ, there exists

F̄ ∗(t) = φ−1(t) ∀ t ≥ 0, (1.10)

a univariate survival function taking values in [0,∞) with mode at 0.

Lemma 1.9. Copula C is two-increasing if and only if whenever u1 ≤ u2,

C(u2, v)− C(u1, v) ≤ u2 − u1 (1.11)

for every v in [0, 1].
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Theorem 1.10. Let φ be a continuous strictly decreasing function from I to [0,∞]

such that φ(1) = 0, and let φ[−1] denote the “pseudo-inverse” of φ defined by (1.9).

Then C(u, v) = φ[−1](φ(u) + φ(v)) is a copula if and only if φ is convex (proof see

Nelsen (2006)).

Example 1.3. Let φ(t) = ln t for t in [0, 1].Then φ−1(t) = e−t, C(u, v) = uv =

Π(u, v), say, a strict Archimedean copula.

Example 1.4. Let φ(t) = 1− t for t in [0, 1]. Then φ[−1](t) = 1− t for t in [0, 1] and

0 for t > 1; i.e., φ[−1](t) = max(1− t, 0) and C(u, v) = max(u+ v−1, 0) = W (u, v),

say. Hence W is also Archimedean.

Theorem 1.11. Let C be an Archimedean copula with generator φ. Then

1. C is symmetric; i.e., C(u, v) = C(v, u) for all u,v in [0, 1];

2. C is associative, i.e., C(C(u, v), w) = C(u,C(v, w)) for all u,v, w in [0, 1];

3. If c > 0 is any constant, then cφ is also a generator of C.

Remark 1.2. Let U and V be uniform (0,1) random variables whose joint distri-

bution function is the Archimedean copula C generated by φ in Ω, where Ω denotes

the set of continuous strictly decreasing convex functions φ from I to [0,∞] with

φ(1) = 0. Then the function KC(w) = w − φ(w)

φ′(w)
; 0 < w < 1 is the distribution

function of the random variable W ∗ = C(U, V ).

Theorem 1.12. Let C be an Archimedean copula with generator φ in Ω. Then for

almost all u,v in I,

φ
′
(u)

∂C(u, v)

∂v
= φ

′
(v)

∂C(u, v)

∂u
(1.12)

where φ
′
(.) is the derivative of φ.
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For the proof, see Nelsen (2006).

1.5 Dependence concepts

In bivariate(multivariate) set up, dependence concepts are employed to understand

the nature of association among variables. The measures of association can be

thought of as one-dimensional projections of the dependence structure onto the real

line. Scarsini (1984) defined dependence as a matter of association between X and

Y along any measurable function. That is, the more X and Y tend to cluster

around the graph of a function the more they are dependent. From this definition,

it is clear that there exists some freedom in how to define the extent to which X

and Y cluster around the graph of a function.

1.5.1 A concordance function

Two observations (x1, y1) and (x2, y2) of a pair (X, Y ) of continuous random vari-

ables are concordant if x1 > x2 and y1 > y2 or if x1 < x2 and y1 < y2, i.e., if

(x1 − x2)(y1 − y2) > 0; and discordant if x1 > x2 and y1 < y2 or if x1 < x2 and

y1 > y2, i.e., if (x1 − x2)(y1 − y2) < 0. Geometrically, two distinct points (x1, y1)

and (x2, y2) in the plane are concordant if the line segment connecting them has

positive slope, and discordant if the line segment has negative slope.

Let (X1, Y1) and (X2, Y2) be pairs of random vectors with (possibly) different joint

distribution functions F1 and F2, but common marginals F ∗1 (of X1 and X2) and

F ∗2 (of Y1 and Y2). Let C1 and C2 denote the copulas of (X1, Y1) and (X2, Y2),

respectively. Then F1(x, y) = C1(F ∗1 (x), F ∗2 (y)) and F2(x, y) =
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C2(F ∗1 (x), F ∗2 (y)). Let Q denote the difference between the probabilities of concor-

dance and discordance of (X1, Y1) and (X2, Y2),

Q = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0]. (1.13)

We now have the following theorem, which demonstrates that Q depends only on

the copulas C1 and C2 (Nelsen (2006)).

Theorem 1.13. Under the conditions above,

Q = Q(C1, C2) = 4

∫∫
I2
C2(u, v)dC1(u, v)− 1. (1.14)

Some properties of Q are as follows:

(i) Q is symmetric in its arguments: Q(C1, C2) = Q(C2, C1);

(ii) Q is non-decreasing in each argument: C1(u, v) ≤ C∗1(u, v) and C2(u, v) ≤

C∗2(u, v) for all (u, v) in I2 implies Q(C1, C2) ≤ Q(C∗1 , C
∗
2);

(iii) Copulas can be replaced by survival copulas in Q, i.e., Q(C1, C2) = Q(Ĉ1, Ĉ2);

(iv) Q(M,M) = 1, Q(W,W ) = −1, Q(Π,Π) = 0, Q(M,Π) = 1/3, Q(W,Π) =

−1/3, and Q(M,W ) = 0;

(v) For any copula C, Q(C,C) ∈ [−1, 1], Q(C,Π) ∈ [−1/3, 1/3], Q(C,M) ∈ [0, 1],

and Q(C,W ) ∈ [−1, 0].

The inequality in (ii) above suggests an ordering ≺ of the set C of copulas:
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Definition 1.14. For any pair of copulas C and C∗, we say that C is less concordant

than C∗(and write C ≺ C∗) whenever C(u, v) ≤ C∗(u, v) for all (u, v) in I2 .

Remark 1.3. Let C1 and C2 be Archimedean copulas generated, respectively, by

φ1 and φ2. Then C1 ≺ C2, if
φ1

φ2

is non-decreasing on (0,1), or if φ1 and φ2 are

continuously differentiable on (0,1), and if
φ
′
1

φ
′
2

is non-decreasing on (0,1).

The two important measures of dependence (concordance) Kendall’s tau and Spear-

man’s rho provide the best alternatives to the linear correlation coefficient as a

measure of dependence for non-elliptical distributions.

1.5.2 Kendall’s tau

Kendall’s tau can capture non-linear dependences that were not possible to measure

with linear correlation. If X and Y are continuous random variables with copula

C(u, v), then the population version of Kendall’s tau has a succinct expression in

terms of Q given by

τX,Y = τC = Q(C,C) = 4

∫∫
I2
C(u, v)dC(u, v)− 1. (1.15)

The integral can be interpreted as the expected value of the function C(U, V ) of

uniform (0,1) random variables U and V whose joint distribution function is C, that

is

τC = 4E(C(U, V ))− 1.
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Example 1.5. Let copula C = Cθ be a member of the Farlie-Gumbel-Morgenstern

(FGM) family

Cθ(u, v) = uv + θuv(1− u)(1− v), θ ∈ [−1, 1].

Then τC = 2θ/9. Since τC ∈ [−2/9, 2/9], FGM copulas can only model relatively

weak dependence.

Remark 1.4. Let X and Y be random variables with an Archimedean copula C

generated by φ in Ω. The population version τC of Kendall’s tau for X and Y is

given by

τC = 1 + 4

1∫
0

φ(t)

φ′(t)
dt. (1.16)

1.5.3 Spearman’s rho

Let (X1, Y1), (X2, Y2), and (X3, Y3) be three independent random vectors with a

common joint distribution function F (whose marginals are F1 and F2) and copula

C. Then the population version of Spearman’s rho is defined to be proportional to

the difference between probabilities of concordance and discordance of the vectors

(X1, Y1) and (X2, Y3), a pair of vectors with the same marginals, but one vector has

distribution function F , while the components of the other are independent,

ρX,Y = 3(P [(X1 −X2)(Y1 − Y3) > 0]− P [(X1 −X2)(Y1 − Y3) < 0]). (1.17)
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Theorem 1.15. Let X and Y be continuous random variables whose copula is

C(u,v). Then the population version of Spearman’s rho for X and Y is given by

ρX,Y = ρC = 3Q(C,Π),

= 12

∫∫
I2
uvdC(u, v)− 3,

= 12

∫∫
I2
C(u, v)dudv − 3,

= 12

∫∫
I2

[C(u, v)− uv]dudv.

For a pair of continuous random variables X and Y , Spearman’s rho is identical to

Pearson’s product-moment correlation coefficient since

ρX,Y = ρC = 12

∫∫
I2
uvdC(u, v)− 3,

= 12E(UV )− 3,

=
E(UV )− 1/4

1/12
,

=
Cov(U, V )√

V ar(U)
√
V ar(V )

.

Theorem 1.16. Let X and Y be continuous random variables, and let τC and ρC

denote Kendall’s tau and Spearman’s rho respectively. Then

− 1 ≤ 3τC − 2ρC ≤ 1,
1 + ρC

2
≥
(

1 + τC
2

)2

,
1− ρC

2
≥
(

1− τC
2

)2

. (1.18)

Theorem 1.17. Let X and Y be continuous random variables with copula C, and

let k denote Kendall’s tau or Spearman’s rho. Then

1. k(X, Y ) = 1⇔ C(u, v) = M(u, v) = min(u, v) and
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2. k(X, Y ) = −1⇔ C(u, v) = W (u, v) = max(u+ v − 1, 0).

The proof is given in Embrechts et al. (2002). For continuous random variables all

values in the interval [−1, 1] can be obtained for Kendall’s tau or Spearman’s rho

by a suitable choice of the copula.

1.5.4 Tail dependence

The concept of tail dependence measures the dependence in the upper-right-quadrant

tail or lower-left-quadrant tail of a bivariate distribution. Tail dependence between

two continuous random variables X and Y is a copula property and this concept is

relevant for the study of dependence between extreme values. The amount of tail

dependence is invariant under strictly increasing transformations of X and Y .

Definition 1.18. Let X and Y be continuous random variables with distribution

functions F1 and F2 respectively. The coefficient of upper tail dependence is defined

as

λU = lim
u→1−

P [V > u|U > u], (1.19)

provided this limit exists. Then λU ∈ [0, 1].

The coefficient of lower tail dependence is defined as

λL = lim
u→0+

P [V ≤ u|U ≤ u], (1.20)

provided this limit exists. Then λL ∈ [0, 1].

The coefficients λU and λL can be interpreted as follows:
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1. If λU = 0, then X and Y are independent in the upper tail.

2. If λU ∈ (0, 1],then X and Y are dependent in the upper tail.

3. If λL = 0, then X and Y are independent in the lower tail.

4. If λL ∈ (0, 1],then X and Y are dependent in the lower tail.

Proposition 1.19. Let C be a copula associated with (X,Y). If lim
u→1−

1− 2u+ C(u, u)

1− u
and lim

u→0+

C(u, u)

u
exist, then λU and λL are given by

λU = lim
u→1−

1− 2u+ C(u, u)

1− u

and

λL = lim
u→0+

C(u, u)

u
.

Remark 1.5. Let C be an Archimedean copula with generator φ ∈ Ω. Then

λU = 2− 2 lim
u→1−

φ
′
(u)

φ′(φ−1(2φ(u))

and

λL = 2 lim
u→0+

φ
′
(u)

φ′(φ−1(2φ(u))
.

1.5.5 Tail monotonicity

Definition 1.20. (Lehmann (1966)). The random variables X and Y are positively

quadrant dependent(PQD) if for all (x, y) in R2,

P (X ≤ x, Y ≤ y) ≥ P (X ≤ x)P (Y ≤ y) (1.21)
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or equivalently

P (X > x, Y > y) ≥ P (X > x)P (Y > y). (1.22)

The interpretation is that X and Y are positively quadrant dependent [PQD(X, Y )]

if the probability that X and Y are simultaneously “small” is at least as great as

the case when X and Y independent.

Example 1.6. (Barlow and Proschan (1981)). In many studies of reliability, com-

ponents are assumed to have independent lifetimes however, it may be more realistic

to assume some sort of dependence among components. For example, a system may

have components that are subject to the same set of stresses or shocks, or in which

the failure of one component results in an increased load on the surviving compo-

nents. In such a two-component system with lifetimes X and Y , we may wish to

use a model in which (regardless of the forms of the marginal distributions of X

and Y ) small values of X tend to occur with small values of Y , i.e., a model for

which X and Y are PQD.

If X and Y have joint distribution function F and copula C, then (1.21) is equivalent

to

F (x, y) ≥ F1(x)F2(y) for all (x, y) in R2, (1.23)

and to

C(u, v) ≥ uv for all (u, v) in I2. (1.24)

When the continuous random variables X and Y are PQD, the joint distribution

function F or their copula C is PQD.
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Negative quadrant dependence (NQD) is defined similarly, and is equivalent to

C(u, v) ≤ uv. Thus the quantity [C(u, v) − uv] measures “local”positive (or nega-

tive) quadrant dependence at each point (u, v) ∈ I2, and thus
∫∫

I2
[C(u, v)−uv]dudv

is a measure of “average”quadrant dependence.

Theorem 1.21. If X and Y are PQD, then

3τX,Y ≥ ρX,Y ≥ 0.

Theorem 1.22. The copula C(u, v) is positive K-dependent (PKD) if and only if

KC(t) ≤ t(1− log t)

where

KC(t) = t− φ(t)

φ′(t)
; 0 < t < 1.

1.6 Motivation and present study

The multivariate distributions other than the normal distribution arise when the

marginal distributions are not normal or when properties of the joint distribution

differ from those of multivariate normal distribution. For example, when contours

of constant density are not ellipses, or conditional expectations are not linear, vari-

ances and covariances of conditional distributions are affected by the values of the

conditioning variables, the multivariate normal distribution is not appropriate. The

incompatibility of normal distribution to explain theoretically and empirically many
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data situations led to the development of other distributions. Interesting appli-

cations of various bivariate(multivariate) distributions have been discussed in the

statistical and applied literatures. For a comprehensive review, one could refer to

Kotz et al. (2002).

The bivariate (multivariate) distributions like exponential, Pareto, and Weibull dis-

tributions discussed in literature are individual in nature, each based on specified

properties so that they lack a uniform framework. The models have low flexibility

in the sense that they cannot conform to different real data situation warranting

inspection of each model separately. This motivated researchers to develop fam-

ily of bivariate(multivariate) distributions with non-normal marginals. The family

of distributions has sufficient richness in shape and other characteristics such as

dependence to deal with various modelling problems. In many statistical models,

the assumption of independence between two or more variables is often due to con-

venience rather than to the problem at hand. The study of dependence between

variables can be done through copulas. Motivated by this, in the present work we

introduce various families of bivariate distributions and study their properties. The

proposed families are useful in different data modelling situations due to their flex-

ibility and richness.

The thesis is organized into eight chapters. After this introductory chapter where

the relevance and scope of the study are discussed, in Chapter 2, we introduce a

family of bivariate Pareto distributions using a generalized version of dullness prop-

erty. Some important bivariate Pareto distributions are derived as special cases.

Distributional properties of the family are studied. The dependency structure of

the family is investigated. The proposed family contains distributions having both

positive as well as negative associations among variables. Finally, the family of
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distributions is applied to two real life data situations.

In Chapter 3, we study the characteristic properties of the family of bivariate Pareto

distributions introduced in Chapter 2. Two measures of income inequality namely

income gap ratio and mean left proportional residual income are defined in the bi-

variate case. We also introduce generalized bivariate failure rate useful in reliability

analysis. Characterizations for various members of the family of bivariate Pareto

distributions using the above concepts are also derived.

Traditionally, the modelling and analysis of lifetime data is carried out using the

survival function and concepts derived from it. The basic concepts such as hazard

rate and mean residual life function are widely employed in such situations since

they determine distribution uniquely. These concepts are extended to higher di-

mensions for the analysis of bivariate lifetime data. In Chapter 4, we propose a

variant approach by defining reliability measures directly from the copula rather

than using the distribution-based measures in modelling survival data. We discuss

the advantages of the proposed functions over the reliability measures already avail-

able in literature. Characterizations of some well known copulas using the proposed

measures are also discussed. The results of the study are applied to case of the cop-

ulas of a bivariate exponential family of distributions.

In Chapter 5, we discuss one-parameter families of Archimedean copulas suitable

for modelling negative dependent data. The distributional properties as well as

the dependence measures such as tail dependence, Kendall’s tau, Spearman’s rho

and measure based on Blomqvist’s β are discussed. The local dependence measures

such as ψ-measure and the Clayton-Oakes association measure (θ- measure) for the

copulas are also discussed. The copula models are applied to a real data set.
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In Chapter 6, we discuss a positive dependent Archimedean copula useful for mod-

elling bivariate data sets. Various properties of the copula model such as the de-

pendence structure, tail monotonicity, Kendall’s measure and measure based on

Blomqvist’s β are discussed. The proposed model is fitted to a real data. A com-

parison with other positive dependent Archimedean copula is done using Akaike’s

Information Criterion (AIC).

As already mentioned, Weibull distribution is considered as a versatile family of life

distributions. In Chapter 7, we discuss a class of bivariate Weibull distributions.

This class include some of the existing models as members. Our choice of the

marginal distributions as Weibull can lead to a copula for the proposed family. The

general form of the copula is Archimedean which is popularly used in empirical

modelling. The dependency structure of the family is investigated. Finally, the

family of distributions is applied to two real life data sets. The comparison among

the models using Akaike’s Information Criterion (AIC) is done.

Chapter 8 summarizes the thesis with major conclusions of the study along with

discussions on future research problems on this topic.





Chapter 2

A family of bivariate Pareto distributions

2.1 Introduction

Pareto distributions have been extensively employed for modelling and analysis of

statistical data under different contexts. Originally, the distribution was first pro-

posed as a model to explain the allocation of income among individuals. Later,

various forms of the Pareto distribution have been formulated for modelling and

analysis of data from engineering, environment, geology, hydrology etc. These di-

verse applications of the Pareto distributions lead researchers to develop different

kinds of bivariate(multivariate)Pareto distributions. For various properties and ap-

plications of Pareto distributions, one could refer to Arnold (1985) and Johnson et

al. (1994).

The models discussed in literature are individual in nature and are appropriate

for a particular data set that meet the specified requirements. However, when

there is little information about the data generating process, it is desirable to start

with a family of distributions and then choose a member of the family that fits

the given data. Motivated by this fact, we introduce a class of bivariate Pareto

distributions arising from a generalization of the univariate dullness property which

1Some of the works in this chapter are published in Statistica (see Sankaran et al. (2014))

27
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characterizes the Pareto law (Talwalker (1980)). It is shown that the marginal

distributions of the proposed bivariate distribution are univariate Pareto I models.

The proposed bivariate family includes some well known distributions as well as

several new models. It also imparts enough flexibility in terms of desirable properties

that are generally used in modelling problems.

The rest of the article is organized as follows. In Section 2.2, we introduce a family

of bivariate Pareto distributions. Various members belonging to the family and their

corresponding copulas are identified in Section 2.3. The distributional properties

of the family are discussed in Section 2.4. In Section 2.5, we study dependence

structure of the family of distributions. Section 2.6 discusses the inference procedure

of the parameters of the model. We then apply the proposed class of models to two

real data sets. Finally, Section 2.7 summarizes the major conclusions of the study.

2.2 A class of distributions

Let (X, Y ) be a non-negative random vector having absolutely continuous survival

function F̄ (x, y) = P (X > x, Y > y). In order to construct the proposed family of

bivariate Pareto distributions, we assume that Z is a non-negative random variable

with continuous and strictly decreasing survival function Ḡ(z) and cumulative haz-

ard function H(z) defined by H(z) = − log Ḡ(z). We require the following theorem

to construct the proposed bivariate Pareto family.

Theorem 2.1. The random variable Z satisfies the property

P (Z > log g(x, y)|Z > a log x) = P (Z > b log y) (2.1)
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for all a, b > 0, x, y > 1 and some g(x, y) > xa if and only if

H(log g(x, y)) = H(a log x) +H(b log y). (2.2)

Proof. Since H−1(t) = Ḡ−1(e−t) for all t > 0

H−1(H(a log x) +H(b log y)) = Ḡ−1(exp[−H(a log x)−H(b log y)])

= Ḡ−1(Ḡ(a log x).Ḡ(b log y)) (2.3)

or

ḠH−1(H(a log x) +H(b log y)) = Ḡ(a log x).Ḡ(b log y). (2.4)

To prove the theorem, we first assume (2.1). This is equivalent to

Ḡ(log g(x, y)) = Ḡ(a log x).Ḡ(b log y). (2.5)

Then from (2.4), we have

Ḡ(log g(x, y)) = Ḡ [H−1(H(a log x) +H(b log y))] (2.6)

which leads to (2.2).

To prove converse part, we assume (2.2). Now

P (Z > log g(x, y)|Z > a log x) =
Ḡ(log g(x, y))

Ḡ(a log x)

=
exp[−H(log g(x, y))]

exp[−H(a log x)]
= exp[−H(b log y)]

= Ḡ(b log y) = P [Z > b log y].
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This completes the proof.

We notice that g(x, y) is a function of (x, y) in R2+ = {(x, y)|x, y > 0} satisfying

the property (2.2). Further we have,

(a) g(1, y) = yb, g(x, 1) = xa,

(b) g(∞, y) =∞, g(x,∞) =∞,

(c) since H(.) is increasing and continuous, g(x, y) is also increasing and contin-

uous in x and y and

(d) it is assumed that g(x, y) satisfies the inequality
2

g(x, y)

∂g

∂x

∂g

∂y
− ∂2g

∂x∂y
≥ 0.

From properties (a) through (d) it follows that

F̄ (x, y) = [g(x, y)]−1, x, y > 1 (2.7)

which is the survival function of a random vector (X, Y ) with Pareto I marginals

F̄1(x) = x−a, x > 1 and F̄2(y) = y−b, y > 1.

This completes the procedure for constructing the family of bivariate Pareto distri-

butions based on g(x, y) arising from a property characterizing a class of univariate

distributions. We designate Ḡ(z) as the baseline distribution that corresponds to

F̄ (x, y), since the members of the family are generated through the functional equa-

tion (2.2) based on H(z), the cumulative hazard rate of Z.
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2.3 Members of the family and their copulas

We derive some members of the family along with their copulas.

1. Let Z be exponential with Ḡ1(z) = exp(−λ z), z > 0 so that H(z) = λz. Then

g(x, y) = xayb. The bivariate survival function is given by

F̄ (1)(x, y) = x−ay−b; x, y > 1; a, b > 0. (2.8)

The copula of the model (2.8) is the product copula,

Ĉ1(u, v) = uv, 0 ≤ u, v ≤ 1.

2. When Z has Gompertz distribution Ḡ2(z) = exp[−θ(eαz − 1)]; z ≥ 0;α, θ > 0

H(z) = θ(eαz − 1) and the resulting bivariate survival function is

F̄ (2)(x, y) = (xaα + ybα − 1)
−1
α ;x, y > 1, α, a > 0. (2.9)

Setting α = 1
a

= 1
b
, we obtain

F̄ (3)(x, y) = (x+ y − 1)
−a

;x, y > 1, (2.10)

the well known Mardia (1962) type I bivariate Pareto model.

The copula is

Ĉ3(u, v) = (u−
1
a + v−

1
b − 1)−a, 0 ≤ u, v ≤ 1.
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3. Take Z to be a Pareto II variable with Ḡ4(z) = (1 + βz)−α to get H(z) =

α log(1 + βz). Then we have the bivariate law

F̄ (4)(x, y) = x−a−c log yy−b, x, y > 1, a, b > 0; 0 ≤ c ≤ 1. (2.11)

The corresponding copula is,

Ĉ4(u, v) = u1− c
ab

log vv, 0 ≤ u, v ≤ 1.

4. If Z has half-logistic distribution specified by the survival function

Ḡ5(z) = 2(1 + e
z
σ )−1, z > 0, σ > 0.

The bivariate model is

F̄ (5)(x, y) = [
1

2
(xα + yβ + xαyβ − 1)]−σ;α =

a

σ
> 0, σ > 0, β =

b

σ
> 0 (2.12)

and copula of the model is

Ĉ5(u, v) = max

[
1

2

(
u
−1
σ + v

−1
σ + (uv)

−1
σ − 1

)−σ
, 0

]
, σ > 0.

5. The Burr XII distribution (Pareto IV), Ḡ6(z) = (1 + zc)−k, z > 0; c, k > 0

with H(z) = k log(1 + zc) leads to the bivariate model as

F̄ (6)(x, y) = exp[−(a log x)c − (b log y)c − (ab log x log y)c]
1
c , (2.13)
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with the copula

Ĉ6(u, v) = exp [−{(−(log u)c + (− log v)c + (− log u)c(− log v)c}
1
c ], valid for c > 1.

6. Suppose Z follows the distribution Ḡ7(z) = (2ez − 1)−σ, z > 0;σ > 0, then

H(z) = σ log(2ez − 1) and the bivariate model is

F̄ (7)(x, y) = (1 + 2xayb − xa − yb)−1, (2.14)

and the copula is

Ĉ7(u, v) =
uv

1 + (1− u)(1− v)
.

7. When Z is distributed as Weibull Ḡ8(z) = e−(λz)α α, λ > 0, z > 0

gives H(z) = (λz)α and

F̄ (8)(x, y) = exp[
−1

λ
{(λa log x)α + (λb log y)α}

1
α ]. (2.15)

The survival copula is given by

Ĉ8 (u, v) = exp
[
−{(− log u)α + (− log v)α}

1
α

]
, valid for α ≥ 1.

8. If Z has generalized exponential distribution Ḡ9(z) = p
eλz−q , z > 0;

λ > 0, 0 < p < 1, q = 1− p, we have H(z) = log
eλz − q
p

and

F̄ (9)(x, y) = (q + p−1(xaλ − q)(ybλ − q))
−1
λ . (2.16)
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The corresponding copula is,

Ĉ9 (u, v) = (q + p−1(u−λ − q)(v−λ − q))
−1
λ .

9. Taking Ḡ10(z) = (1 + eλz−1
α

)−1, α, λ > 0, the cumulative hazard function

H(z) = log(1 + α−1(eλz − 1)) provides the bivariate Pareto

F̄ (10)(x, y) = (1 + α−1(α + xaλ − 1)(α + ybλ − 1)− α)
−1
λ . (2.17)

The copula is

Ĉ10 (u, v) = (1 + α−1(α + u−λ − 1)(α + v−λ − 1)− α)
−1
λ .

Remark 2.1. The method of construction provides a class of bivariate Pareto dis-

tributions. Any Ḡ(z) which is strictly increasing and a g(x, y) satisfying conditions

(a) to (d) give rise to a bivariate Pareto model. The bivariate models 1 to 9 comprise

some simple forms that do not exhaust the members of the family.

Remark 2.2. When a = b in g(x, y), we have an exchangeable family of Pareto

distributions. Such a restriction becomes quite handy in inference problems us-

ing Bayesian approach. In that case, F̄ (1)(x, y) is the only Schur-constant model

belonging to the family.

Remark 2.3. A random variable Z1 (or its probability distribution) satisfies dull-

ness property (Talwalker (1980)) if for all x, y ≥ 1

P (Z1 > xy|Z1 > x) = P (Z1 > y). (2.18)
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It may be easy to observe that the property (2.1) reduces to the dullness property

(2.18) when Z = logZ1, g(x, y) = xy and a = b = 1.

Remark 2.4. Although the family (2.7) comprises of a large number of members,

every bivariate Pareto distribution does not belong to it. For example, the survival

function

F̄ (x, y) = x
−a
2 y

−a
2 exp[−1

2
((a log x)2 + (a log y)2)

1
2 ] x, y > 1, a > 0 (2.19)

represents a bivariate Pareto model with Pareto I marginals. If it belongs to the

family one must have

g(x, y) = x
a
2 y

a
2 exp[

1

2
((a log x)2 + (a log y)2)

1
2 ] (2.20)

that satisfies (2.2) for some cumulative hazard function H(.) of a non-negative

random variable Z, for all x, y. If (2.20) is true for all x, y, it should also hold for

H(log g(x, x)) = 2H(a log x)

or

H log(x
(
√
2+1√
2
a)

) = 2H(a log x)

or

1

2
H(

√
2 + 1√

2
t) = H(t) ; t = a log x (2.21)

for all t > 0. It is known from Kagan et al. (1973) that the functional equation

A(x) = k∗A(θx), θ > 0 ; A(0) = 0 (2.22)
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has a solution only if 0 < θ < 1 < k∗. By analogy, (2.21) is a particular case of

(2.22) with θ =
√

2+1√
2
> 1 and hence there is no admissible H(x) that satisfy (2.21).

Thus (2.19) does not belong to the proposed family (2.7).

2.4 Properties

The joint density functions of the various models are presented in Table 2.1.

2.4.1 Conditional distributions

There are two kinds of conditional distributions of interest. One is the usual

f ∗1 (x|y) = f(x,y)
a2(y)

and f ∗2 (y|x) = f(x,y)
a1(x)

where f(x, y) is the joint density function

and a1(x) and a2(y) are respectively the marginal density functions of X and Y .

These conditional density functions are given respectively in Table 2.2. The second

type of conditional distributions required in the sequel are conditional distributions

of X (Y ) given Y > y (X > x). The corresponding conditional survival functions

are P (X > x|Y > y) and P (Y > y|X > x). These are exhibited in Table 2.3.

2.4.2 Regression functions

The bivariate Pareto family (2.7) is rich enough in the sense that it contains a large

number of members that could be candidates for different data situations. The

members of the family are highly flexible in various distributional characteristics to

represent a wide variety of models.
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Table 2.1: Joint density functions for various types of Pareto models

Model type Joint density function

1 a b x−a−1 y−b−1; x, y > 1; a, b > 0.

2 a b (1 + α)xαa−1 yαb−1(xαa + yαb − 1)
−1
α −2;x, y > 1, α, a > 0.

3 x−a−c log y−1y−b−1[(a+ c log y)(b+ c log x)− c];x, y > 1, a, b > 0; 0 ≤ c ≤ a b.

4 αβ σ
4 [12(1 + xα)(1 + yb)− 1]−σ−2(1 + σ(1 + xα)(1 + yb)xα−1yβ−1;

x, y > 1, α > 0, σ > 0, β > 0.

6 2 ab
(2xayb − xa − yb)

(1 + 2xayb − xa − yb)3
xa−1yb−1;x, y > 1, a, b > 0.

7 a b exp[− 1
λ{(λ a log x)α + (λ b log y)α} 1

α ][(λ a log x)α + (λ b log y)α]
1
α−2

(λ a log x)α−1(λ b log y)α−1

x y
;x, y > 1, α, λ > 0; a, b > 0.

8 λ ab
p [q + (xλ a−q)(yλ b−q)

p ]−
1
λ−2[ (x

λ a−q)(yλ b−q)
λp − q]xλ a−1yλ b−1;

x, y > 1, λ > 0, 0 < p < 1; a, b > 0.
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Table 2.2: Conditional densities f∗1 (x|y) and f∗2 (y|x)

Joint
density f ∗1 (x|y) f ∗2 (y|x)
function
f1(x, y) a x−a−1 b y−b−1

f2(x, y) (1 + α)a(xaα + ybα − 1)−
1
α
−2xaα−1y(1+α)b (1 + α)b(xaα + ybα − 1)−

1
α
−2ybα−1x(1+α)a

f3(x, y) (a+ 1) (x+ y − 1)−a−2ya+1 (a+ 1) (x+ y − 1)−a−2xa+1

f4(x, y) a−1 [(a+ c log y)(b+ c log x)− c]x−c log yy−b−1 b−1[(a+ c log y)(b+ c log x)− c]x−a−c log y−1

f5(x, y) 1
4
β[1

2
(1 + xα)(1 + yβ)− 1]−σ−2 1

4
β[1

2
(1 + xα)(1 + yβ)− 1]−σ−2(1 + σ(1 + xα)(1 + yβ))

(1 + σ(1 + xα)(1 + yβ))xα−1yβ(σ+1) x(σ+1)αyβ−1)

f7(x, y) 2 b (2xayb−xa−yb)xa−1y2b

1+2xayb−xa−yb 2 a (2xayb−xa−yb)x2ayb−1

1+2xayb−xa−yb

f8(x, y) exp[− 1
λ
{(λ a log x)α + (λ b log y)α} 1

α [(λ a log x)α exp[− 1
λ
{(λ a log x)α + (λ b log y)α} 1

α

+(λ b log y)α]
1
α
−2{(λ a log x)α + (λ b log y)α} 2

α [(λ a log x)α + (λ b log y)α]
1
α
−2{[(λ a log x)α + (λ b log y)α]

2
α

−(1− α)λ](λ a log x)α−1(λ b log y)α−1x−1yb −(1− α)λ}xay−1

f9(x, y) [q + (xλ a−q)(yλ b−q)
p

]−
1
λ
−2[ (xλ a−q)(yλ b−q)

λp
− q] [q + (xλ a−q)(yλ b−q)

p
]−

1
λ
−2[ (xλ a−q)(yλ b−q)

λp
− q]p−1λ b x(1+λ)ayλb−1

p−1λ a xλa−1y(1+λ)b
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Table 2.3: Conditional survival functions

Distribution P (X > x|Y > y) P (Y > y|X > x)

F̄ (1)(x, y) x−a y−b

F̄ (2)(x, y) (xaα + ybα − 1)−
1
αyb (xaα + ybα − 1)−

1
αxa

F̄ (3)(x, y) (x+y−1y )−a (x+y−1x )−a

F̄ (4)(x, y) x−a−c log y x−c log yy−b

F̄ (5)(x, y) [12(x
α+yβ+xαyβ−1

yβ
)]−σ [12(x

α+yβ+xαyβ−1
xα )]−σ

F̄ (7)(x, y) yb

1+2xayb−xa−yb
xa

1+2xayb−xa−yb

F̄ (8)(x, y) exp[− 1
λ{(λ a log x)α + (λ b log x)α} 1

α ]yb exp[− 1
λ{(λ a log x)α + (λ b log x)α} 1

α ]xa

F̄ (9)(x, y) [q + (xλ a−q)(yλ b−q)
p ]−

1
λyb [q + (xλ a−q)(yλ b−q)

p ]−
1
λxa
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We represent the regression functions A(x) = E(Y |X = x) and B(y) = E(X|Y = y)

with suffixes corresponding to the member distributions. Accordingly for F̄ (1)(x, y),

the regression functions are constants, being the respective means. In the case of

F̄ (3)(x, y), we obtain

A3(x) = (1 +
x

a
)

and

B3(y) = (1 +
y

b
),

both linearly increasing functions. They intersect on the means (E(X), E(Y )) of

the distributions. However for F̄ (2)(x, y), the regression functions are

A2(x) =
1 + α

α

xa(1+α)

(xa − 1)1+ b−1
bα

and

B2(y) =
1 + α

α

yb(1+α)

(yb − 1)1+a−1
aα

which are non-linear in character. These functions do not intersect at the means.

All the remaining distributions also have non-linear regressions, but with different

functional forms. For instance, F̄ (4)(x, y) has

B4(y) =
b(a+ c log y)(a+ c log y − 1) + c

b(a+ c log y − 1)2

which is a logarithmic function, where as for F̄ (7)(x, y)

B7(y) =
2(1 + t)2

t
a−1
a (2t+ 1)

1
a

+1
[Bu(

1

a
+ 1,

a− 1

a
)− 1

t
Bu(

1

a
+ 1,

2a− 1

a
)]
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where u = 3−2yb

yb−2
, t = 1 − yb and Bu(p, q) =

1∫
u

zp−1(1− z)q−1dz is the incomplete

beta function. The expressions for A4(x) and A7(x) are obtained by changing a to

b, b to a and y to x.

2.5 Dependence structure

Since the bivariate distributions in the proposed family have identical marginal dis-

tributions, a crucial aspect that differentiate them in a practical situation is the

differences in the dependence or association between the constituent random vari-

ables. Thus a study of various dependence concepts and measures become crucial

when discussing family properties, as they tell us the extent to which the variables

are associated and also the nature of their relationships. There are three distinct

approaches in the study of association. The first one is through global measures

like the Pearson’s correlation coefficient, the Kendall’s tau, Spearman’s rho, Gini’s

measure and Blomqvist’s β. A second approach is to study the dependence prop-

erties. The six basic properties of positive dependence are (1) total positivity of

order 2 (2) stochastic increasing (3) right tail increasing (4) positive association

(5) positive quadrant dependence and (6) positive correlation or Cov(X, Y ) ≥ 0.

Negative dependence properties are defined as the duals of these. The implications

among these are expressed as follows:

TP2 ⇒ SI ⇒ RTI ⇒ positive association⇒ PQD ⇒ Cov(X, Y ) ≥ 0.

Finally, we have local measures of dependence, which measures the dependence

structure at specific values of x and y. These become important in survival studies
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where the duration spent in a specific state of a disease is crucial and also in eco-

nomics where income of individuals below the poverty line or above the affluence

level is of importance. We find global measures of association for various members

of the family.

2.5.1 Correlation coefficient

When (X, Y ) follow the survival function F̄ (1)(x, y), the variables have zero corre-

lation coefficient. The Mardia form F̄ (3)(x, y), has coefficient of correlation R3 = 1
a

(Kotz et al. (2002)). Since the variances of X and Y exist only when a > 2, we see

that the model exhibits a low correlation lying in (0, 1
2
).

As regards F̄ (4)(x, y), the correlation coefficient (R4) has the form

R4 = [
(a− 2)(b− 2)

a b
]
1
2 [

(a− 1)(b− 1)

c
e

(a−1)(b−1)
c E1(

(a− 1)(b− 1)

c
)− 1]

whereE1(z) =
∞∫
1

e−z t

t
dt , Rez > 0 is the exponential integral discussed in Abramowitz

and Stegun (1966). When c = 0, the distribution F̄ (4)(x, y) is the product of the

marginal distributions of X and Y which means that X and Y are independent

and hence R4 = 0. For any fixed values of a, b > 2, R4 is a decreasing function of

c. Thus as c runs through [0, ab], the correlation coefficient becomes increasingly

negative. When c = ab

R4 = (
(a− 2)(b− 2)

a b
)
1
2 [p epE1(p)− 1]

where p = (a−1)(b−1)
ab

. As a, b tend to infinity, lima,b→∞R4 = [eE1(1) − 1] which is

always negative. Thus (X, Y ) is always negatively correlated.



A family of bivariate Pareto distributions 43

All other cases involve integrals of incomplete beta function to enable an algebraic

analysis of R difficult. However, the nature of the correlation will be deduced below

using other dependence concepts.

2.5.2 Dependence concepts

While studying the dependence concepts in relation to the members of the bivariate

Pareto family, we begin with the strongest concepts in view of the implications to

others already considered. We say that a bivariate probability density function

f(x, y) is totally positive of order 2-TP2 (reverse regular of order 2-RR2) if and only

if for all x1 < x2, y1 < y2

f(x1, y1)f(x2, y2) ≥ (≤)f(x1, y2)f(x2, y1) (2.23)

(Barlow and Proschan (1975)).

In the case of the Mardia form f3(x, y) from Table 2.1, we consider the difference

f3(x1, y1)f3(x2, y2)− f3(x1, y2)f3(x2, y1)

=
a(a+ 1)

(x1 + y1 − 1)a+2

a(a+ 1)

(x2 + y2 − 1)a+2
− a(a+ 1)

(x1 + y2 − 1)a+2

a(a+ 1)

(x2 + y1 − 1)a+2
.

The sign of the above expression depends on (x1−x2)(y1−y2) which is non-negative

for all x1 < x2 and y1 < y2. Hence f3(x, y) is TP2. For the more general model

f2(x, y), the difference leads to the determination of the sign from (xaα1 −xaα2 )(ybα1 −

ybα2 ) which is positive. Thus f2(x, y) is TP2. Since TP2 ⇒ Cov(X, Y ) ≥ 0, we

deduce that in the case of f2(x, y), X and Y are positively correlated.
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The density function f4(x, y) is neither TP2 nor RR2. However F̄ (4)(x, y) is RR2 as

evidenced from

F̄ 4(x1, y1)F̄ 4(x2, y2)− F̄ 4(x1, y2)F̄ 4(x2, y1)

= x−a1 x−a2 y−b1 y−b2 (x−c log y1
1 x−c log y2

2 − x−c log y2
1 x−c log y1

2 ) ≤ 0

(2.24)

for all x1 < x2 and y1 < y2. Recall that X and Y are positive(negative) quadrant

dependent- PQD (NQD) if and only if

F̄ (x, y) ≥ (≤)F̄1(x)F̄2(y)

and that F̄ (x, y) is RR2 implies NQD. Thus F̄ (4)(x, y) possesses negative depen-

dence.

In the case of F̄ (5)(x, y), it is TP2 since the sign of the expressions on the left of

(2.24) with respect to F̄5(x, y) depends on (2xα2 + xα1 )(yβ2 − y
β
1 ) which is positive for

y1 < y2. We conclude that F̄ (5)(x, y) has positive dependence through PQD and

further that this implies positive correlation.

While considering the nature of dependence in F̄ (7)(x, y) we note that

F̄ (7)(x1, y1)F̄ (7)(x2, y2)− F̄ (7)(x1, y2)F̄ (7)(x2, y1)

= (xa1 − xa2)(yb2 − yb1)F̄ (7)(x1, y1)F̄ (7)(x2, y2)F̄ (7)(x1, y2)F̄ (7)(x2, y1)

which is positive for x1 < x2, y1 < y2;x1 > x2, y1 > y2 and negative for x1 < x2, y1 >

y2;x1 > x2, y1 < y2 . Accordingly we see that F̄ (7)(x, y) is RR2 with the consequent

implication that the distribution is NQD and the associated random variables are
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negatively correlated in the region x1 < x2, y1 > y2;x1 > x2, y1 < y2 and F̄ (7)(x, y)

is TP2, the distribution is PQD and the associated random variables are positively

correlated in the region x1 < x2, y1 < y2;x1 > x2, y1 > y2. Similar calculations

show that F̄ (9)(x, y) is PQD and hence the corresponding variables are positively

correlated.

A more interesting result emerges for the bivariate distribution F̄ (8)(x, y) when Z

has Weibull distribution. The TP2 nature of the survival function depends on α.

For example α = 1
2
, F̄ (8)(x, y) is RR2 and for α = 2, F̄ (8)(x, y) is TP2. Accordingly

the distribution can be NQD or PQD depending on values of α. Thus the random

variablesX and Y have negative correlation as well as positive correlation depending

on values of α.

2.5.3 Dependence functions

Among the various dependence functions available in literature we choose the Clay-

ton function (Clayton (1978)), which seems to be more popular. It is defined as

θ(x, y) =

F̄ (x, y)
∂2F̄ (x, y)

∂x∂y

∂F̄ (x, y)

∂x

∂F̄ (x, y)

∂y

. (2.25)

The interpretation of θ(x, y) is that when X and Y are positively (negatively)

associated θ(x, y) > (<)1 and θ(x, y) = 1 implies independence of X and Y . For

a detailed study of the measure, we refer to Oakes (1989), Anderson et al. (1992),

Gupta (2003) and Nair and Sankaran (2014 a).
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Table 2.4: Clayton measure for bivariate Pareto models

Distribution θ(x, y) dependence

F̄ (1)(x, y) 1 independent

F̄ (2)(x, y) 1 + α positive

F̄ (3)(x, y) 1 + 1
θ positive

F̄ (4)(x, y) 1− c
(a+c log y)(b+c log x) negative

F̄ (5)(x, y) 1 + 1
σ(1+x)α(1+y)β

positive

F̄ (7)(x, y) 4xayb−2xa−2yb
1+4xayb−2xa−2yb negative

The values of θ(x, y) and the nature of dependence for various models are presented

in Table 2.4. Other dependence functions mentioned in Nair and Sankaran (2010)

can be obtained in closed forms for certain bivariate Pareto models. As the nature

of dependence is similar to the one based on θ(x, y), we do not present details on

the dependence using other functions.

2.6 Inference and data analysis

The estimators of parameters of the models belonging to the family (2.7) can be

generally derived using the method of maximum likelihood. When the number of

parameters is not large, one can easily get estimates by solving likelihood equation.



A family of bivariate Pareto distributions 47

If the model involves more than three parameters, as in the case of (2.17), we need

to solve a four dimensional optimization problem which may not give unique solu-

tions. Alternatively one can use a computationally efficient two-stage estimation

procedure as suggested by Xu (1996), see also Joe (1997), Joe (2005), in this re-

spect. In the two-stage estimation procedure, the first stage involves the maximum

likelihood estimation from univariate marginals and the second stage involves the

maximum likelihood estimation of the dependent parameters keeping the univariate

parameters held fixed obtained from the first stage. It is proved that the estimators

so obtained satisfy large sample properties of the maximum likelihood estimators

(MLE).

We now apply the proposed family of distributions to two real life data sets. We

first apply the model (2.16) to the American football league data obtained from

the matches played on three consecutive week ends in 1986. The data were first

published in ‘Washington Post’ and they are also available in Csörga̋ and Welsh

(1989). In this bivariate data set, the variables X and Y are defined as follows;

X represents the game time to the first points scored by kicking the ball between

goal posts and Y represents the game time to the first points scored by moving the

ball into the end zone. These times are of interest to a casual spectator who wants

to know how long one has to wait to watch a touchdown or to a spectator who is

interested only at the beginning stages of a game. The data were first analyzed

by Csörga̋ and Welsh (1989), by converting the seconds to decimal minutes i.e 2:03

has been converted to 2.05. We have adopted the same procedure. The data are

presented in Table 2.5. We use exponential transformation to the data to make

observations larger than one. The Kendall’s tau and Spearman’s rho of the data

are 0.680 and 0.804 respectively and hence the variables X and Y are positively
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correlated.

The log-likelihood function of the model (2.16) is obtained as

l(λ, a, b, p) =

(
−1

λ
− 2

) n∑
i=1

log

(
abλ

p

((
xaλi − q

) (
ybλi − q

)
p

+ q

))
+

n∑
i=1

log

((
xaλi − q

) (
ybλi − q

)
λp

− q

)
+

(aλ− 1)
n∑
i=1

log xi + (bλ− 1)
n∑
i=1

log yi. (2.26)

We do not have an analytically closed form expressions for the estimator. Thus

one has to use the numerical method. The maximum likelihood estimates of the

parameters of the model (2.16) are obtained as â = 0.1128 , b̂ = 0.0750, p̂ = 0.991

and λ̂ = 67.913.

To test the goodness of fit, we use the bivariate version of Kolmogrov-Smirnov

(K.S.) test given in Justel et al. (1997). The K.S. statistic values are D1 = 0.1976,

D2 = 0.2085, D3 = 0.0474, D4 = 0.0237 and D5 = 0.0183 and thus D∗=0.2085

(Max(D1, D2, D3, D4, D5)). The above value is less than the value 0.2103 at 25th

percentile so that the model (2.16) is appropriate for the given data.

The second data set is taken from the official website of ESPN Cricinfo (www.stats.

espncricinfo.com). Here we consider a system consisting of two opening batsmen

who have been playing together for India since 2001. First opener has played so

far 96 Innings and Second opener has played 180 Innings so far. Both of them

together opened the Innings for India on 87 occasions. We have randomly chosen

28 Innings score cards. The data are presented in Table 2.6. The Kendall’s tau and

Spearman’s rho of the data are 0.42 and 0.55 respectively and hence the variables

X and Y are positively correlated.
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Table 2.5: American football league data

Sl.No. X Y Sl.No. X Y
1 2.05 3.98 22 10.85 38.07
2 7.78 7.78 23 0.85 0.85
3 7.23 9.68 24 7.05 7.05
4 31.13 49.88 25 32.45 42.35
5 7.25 7.25 26 5.78 25.98
6 4.22 9.48 27 1.65 1.65
7 6.42 6.42 28 2.90 2.90
8 10.40 14.25 29 10.15 10.15
9 11.63 17.37 30 3.88 6.43
10 14.58 14.58 31 10.35 10.35
11 17.83 17.83 32 5.52 11.27
12 9.05 9.05 33 3.43 3.43
13 10.57 14.28 34 2.58 2.58
14 6.85 34.58 35 8.53 14.57
15 14.58 20.57 36 13.80 49.75
16 4.25 4.25 37 6.42 15.08
17 15.53 15.53 38 7.02 7.02
18 8.98 8.98 39 8.87 8.87
19 2.98 2.98 40 0.75 0.75
20 1.38 1.38 41 12.13 12.13
21 11.82 11.82 42 19.65 10.70

The model (2.9) is applied to the data and the log-likelihood function is

l(α, a, b) =
1

α
− 2α

n∑
i=1

log
(
xaαi + yαbi − 1

)
−

n∑
i=1

log
(
xaαi + yi)

αb − 1
)

+ α(aα− 1)
n∑
i=1

log xi+

α(αb− 1)
n∑
i=1

log yi + αn log a+ αn log b+ αn log(α + 1) (2.27)

Here also we do not have an analytical closed form expressions for the estimator.

Thus one has to use the numerical method. The method of maximum likelihood
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provides the estimates of the parameters as â = 0.0178, b̂ = 0.0199 and α̂ = 2.53.

The goodness of fit of Justel et al. (1997) is applied and the test statistic value

D∗ = 0.196. This value is less than the value 0.2420 at 25th percentile, we conclude

the model (2.9) is a good fit for the given data set.

Table 2.6: Cricket data

Sl.No. X Y
1 13 16
2 23 73
3 70 60
4 82 91
5 43 11
6 23 74
7 115 96
8 24 65
9 42 77
10 25 22
11 52 81
12 65 47
13 14 2
14 17 57
15 25 13
16 23 86
17 17 6
18 9 7
19 62 41
20 48 55
21 183 219
22 39 23
23 77 74
24 63 64
25 79 64
26 28 35
27 21 40
28 83 52
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2.7 Conclusion

In this chapter we have introduced a class of bivariate Pareto distributions and

studied various distributional properties of the class. The class includes several well

known as well as new bivariate Pareto distributions. It also contains distributions

having both positive as well as negative correlations among variables. The depen-

dence structure of the class of distributions were discussed. The proposed class of

distributions was applied to two real life data situations.





Chapter 3

Characterizations of a family of bivariate

Pareto distributions

3.1 Introduction

Characterizations of probability distributions play a vital role in modelling and

analysis of statistical data. The tool that enables the exact determination of a

probability model is the characterization theorem. The characterization theorem

makes a conclusion that if X exhibits a property P∗ then the distribution belongs

to a family of distributions say, F∗. One of the problems that is usually addressed

while examining the characteristic properties of a bivariate distribution is to inves-

tigate how far the characterizations of the corresponding univariate version can be

extended to the bivariate forms. A well known characterization of the Pareto I law

is the dullness property. The bivariate version of the dullness property is employed

to characterize the family of Pareto distributions, discussed in Chapter 2.

A second concept that has applications in economics is income gap ratio which

is used for developing indices of affluence and poverty(Sen (1988)). The bivariate

generalization of the concept is proposed and characterizations using this concept

1The results in this chapter are published in Statistica (see Sankaran et al. (2015))
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are derived. Another function of interest that has applications in reliability is the

bivariate generalized failure rate. Characterizations of the family of distributions

using the generalized failure rate are also discussed. As the bivariate versions of

these functions are not unique, different versions of these concepts lead to different

bivariate Pareto distributions which are members of the family.

The rest of the chapter is organized as follows. In Section 3.2, we introduce bivariate

versions of dullness property and present characterizations using these versions.

The bivariate version of income gap ratio and related concepts in economics are

discussed in Section 3.3. The forms of these functions for various bivariate Pareto

distributions are given. Section 3.4 discusses bivariate generalized failure rate and

characterizations using the generalized failure rate are also developed. Finally,

Section 3.5 provides brief conclusions of the study.

3.2 Dullness property

We first discuss the univariate dullness property. Let Z1 be a non-negative random

variable representing the income in a population. As we have already discussed in

Remark 2.3, the distribution of Z1 is said to have dullness property if

P (Z1 > xy|Z1 > x) = P (Z1 > y) (3.1)

for all x, y ≥ 1. This means that the conditional probability that true income Z1 is

at least y times the reported value x is the same as the unconditional probability

that Z1 has at least income y. It is proved that the property (3.1) holds if and only

if the distribution of Z1 is Pareto I (Talwalker (1980)). We introduce an equivalent
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form of dullness property, since (3.1) is not helpful in practice to verify whether a

given data set follows Pareto distribution or not.

Theorem 3.1. The random variable Z1 with support [1,∞) satisfies dullness prop-

erty (3.1) if and only if

m(x) = E(Z1|Z1 > x) = µx (3.2)

for all x > 1, where µ = E(Z1) <∞.

Proof. Assume that (3.1) holds. Then we can write

Ḡ∗(xy) = Ḡ∗(x)Ḡ∗(y) for all x, y > 1, (3.3)

where Ḡ∗(x) = P (Z1 > x). Integrating (3.3) from 1 to ∞, we obtain

∞∫
1

Ḡ∗(xy) dy = Ḡ∗(x)

∞∫
1

Ḡ∗(y) dy

or
∞∫
x

Ḡ∗(t) dt

Ḡ∗(x)
= x (µ− 1). (3.4)

Since left side of (3.4) is E(Z1−x|Z1 > x), we get m(x)−x = x(µ− 1) which leads

to (3.2).

Conversely, when (3.2) holds, we obtain (3.4) and hence

Ḡ∗(x)
∞∫
x

Ḡ∗(t) dt

=
1

x(µ− 1)
. (3.5)
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Integrating (3.5), we obtain

− log

∞∫
x

Ḡ∗(t) dt =
1

µ− 1
log x+ log c

∞∫
x

Ḡ∗(t) dt = cx−
1

µ−1 (3.6)

where c is the integrating constant. Differentiating (3.6) with respect to x, we get

Ḡ∗(x) =
c

µ− 1
x−

µ
µ−1 . (3.7)

Since Ḡ∗(1) =1, we obtain c = µ− 1 and thus

Ḡ∗(x) = x−
µ
µ−1

= x−(1+ 1
µ−1

).

Then

Ḡ∗(xy) = (xy)−(1+ 1
µ−1

) = Ḡ∗(x)Ḡ∗(y),

which implies (3.1).

Corollary 3.2.1. The distribution of Z1 is Pareto I if and only if (3.2) is satisfied.

We propose bivariate versions of (3.2) and examine whether they characterize mem-

bers of the bivariate Pareto family. A natural extension of m(x) with respect to the

bivariate random vector (X, Y ) is the vector (m∗1(x, y),m∗2(x, y)) where

m∗1(x, y) = E(X|X > x, Y > y) (3.8)
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and

m∗2(x, y) = E(Y |X > x, Y > y). (3.9)

Remark 3.1. A closely related function to (m∗1(x, y),m∗2(x, y)) used extensively

in reliability analysis is the bivariate mean residual life vector (m1(x, y),m2(x, y))

defined as

(E(X − x|X > x, Y > y), E(Y − y|X > x, Y > y)) = (m∗1(x, y)− x,m∗2(x, y)− y).

(3.10)

We first observe that the joint survival function F̄ (x, y) of (X, Y ) can be determined

from (3.8) and (3.9).

The joint survival function F̄ (x, y) is obtained as

F̄ (x, y) = exp

− x∫
1

∂m∗1(t,1)

∂t

m∗1(t, 1)− t
dt−

y∫
1

∂m∗2(x,t)

∂t

m∗2(x, t)− t
dt

 (3.11)

= exp

− y∫
1

∂m∗2(1,t)

∂t

m∗2(1, t)− t
dt−

x∫
1

∂m∗1(t,y)

∂t

m∗1(t, y)− t
dt

 . (3.12)

The proof follows from Nair and Nair (1989) by using the relationship between

(m∗1(x, y),m∗2(x, y)) and bivariate mean residual life functions.

Definition 3.2. The distribution of the random vector (X, Y ) is said to have bi-

variate dullness property- 1 (BDP − 1) if for x, y > 1

P (X > xt|X > x, Y > y) = P (X > t|Y > y), t > 1

and

P (Y > ys|X > x, Y > y) = P (Y > s|X > x), s > 1. (3.13)
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Definition 3.3. The distribution of (X, Y ) satisfies bivariate dullness property -2

(BDP − 2) if for x, y > 1

P (X > xt, Y > ys|X > x, Y > y) = P (X > t, Y > s). (3.14)

The following theorems characterize bivariate Pareto distributions belonging to the

family by the bivariate dullness properties (3.13) and (3.14).

Theorem 3.4. Let (X, Y ) be a bivariate random vector as described in Section 2.2,

with µX = E(X) < ∞ and µY = E(Y ) < ∞. Denote µX(y) = E(X|Y > y) and

µY (x) = E(Y |X > x). Then the following statements are equivalent.

(a) F̄ (4)(x, y) = x−(a−c log y)y−b; x, y > 1, a, b > 1, 0 < c ≤ a b.

(b) (X, Y ) satisfies BDP − 1.

(c) m∗1(x, y) = xµX(y) and m∗2(x, y) = yµY (x).

Proof. To prove (a)⇒ (b), we have

P [X > xt|X > x, Y > y] =
(xt)−(a−c log y)y−b

x−(a−c log y)y−b
= t−(a−c log y) = P (X > t|Y > y).

The second probability identity in (3.13) can be proved similarly.

To establish (b) ⇒ (c), we note that the first probability identity in (3.13) is same

as

F̄ (xt, y)

F̄ (x, y)
=

F̄ (t, y)

P (Y > y)
= F̄X(t|Y > y) (3.15)
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where F̄X(t|Y > y) is the conditional survival function of X given Y > y. Integrat-

ing (3.15) with respect to t over (1,∞), we obtain

1

F̄ (x, y)

∞∫
1

F̄ (x t, y) dt =

∞∫
1

F̄X(t|Y > y)dt

⇒ 1

F̄ (x, y)

∞∫
x

F̄ (u, y) du = x(−1 + E(X|Y > y))

⇒ E(X|X > x, Y > y)− x = x(−1 + E(X|Y > y))

⇒ m∗1(x, y)− x = x(−1 + E(X|Y > y))

⇒ m∗1(x, y) = xµX(y).

The expression for m∗2(x, y) can be established in a similar way.

To establish (c)⇒ (a), we have from (c) that

m∗1(t, y)− t = tµX(y)− t

and

m∗2(x, t)− t = tµY (x)− t.

Substituting the above expressions in (3.11) and (3.12) we have,

F̄ (x, y) = exp

− x∫
1

µX
tµX − t

dt−
y∫

1

µY (x)

tµY (x)− t
dt


= exp

− y∫
1

µY
tµY − t

dt−
x∫

1

µX(y)

tµX(y)− t
dt

 .
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Equating the resulting expressions, we get,

x∫
1

µX
tµX − t

dt+

y∫
1

µY (x)

tµY (x)− t
dt =

y∫
1

µY
tµY − t

dt+

x∫
1

µX(y)

tµX(y)− t
dt.

After some simplifications, we obtain,

µX
µX − 1

log x+
µY (x)

µY (x)− 1
log y =

µY
µY − 1

log y +
µX(y)

µX(y)− 1
log x

which leads to the functional equation

(
µX

µX − 1
− µX(y)

µX(y)− 1

)
log x =

(
µY

µY − 1
− µY (x)

µY (x)− 1

)
log y. (3.16)

To solve (3.16), we rewrite it as

log x
µY
µY −1

− µY (x)
µY (x)−1

=
log y

µX
µX−1

− µX(y)
µX(y)−1

. (3.17)

The right(left) side of (3.17) is a function of y(x) alone and therefore the equality

of the two sides hold good for all x, y > 1 if and only if each side must be a constant

say 1
c
. Hence

µY (x)

µY (x)− 1
=

µY
µY − 1

− c log x

and

µX(y)

µX(y)− 1
=

µX
µX − 1

− c log y. (3.18)
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Substituting (3.18) in (3.11) or (3.12), we have

− log F̄ (x, y) =

x∫
1

µX
tµX − t

dt+

y∫
1

µY (x)

tµY (x)− t
dt

=
µX

µX − 1
log x+

µY (x)

µY (x)− 1
log y

=
µX

µX − 1
log x+

(
µY

µY − 1
− c log x

)
log y.

Thus we get the survival function as

F̄ (x, y) = x
− µX
µX−1y

− µY
µY −1

+c log x
.

Taking µX = a
a−1

and µY = b
b−1

, a, b > 1, we obtain

F̄ (4)(x, y) = x−ay−(b−c log x).

Since x−c log y = y−c log x, we have (a) and the theorem is completely proved. The

parameter values a, b > 1 is required for the existence of the means.

Theorem 3.5. Setting c = 0 in Theorem 3.4, the following statements are equiva-

lent;

(a) F̄ (1)(x, y) = x−ay−b; x, y > 1, a, b > 1.

(b) (X, Y ) satisfies BDP − 2.

(c) (m∗1(x, y),m∗2(x, y)) = (xµX , yµY ).
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Proof. To prove (a)⇒ (b), we have

P (X > xt, Y > ys|X > x, Y > y) =
(xt)−a(ys)−b

x−ay−b
= t−as−b = P (X > t, Y > s).

To establish (b)⇒ (c), we note that the probability identity in (3.14) is same as

F̄ (xt, ys)

F̄ (x, y)
= F̄ (t, s). (3.19)

Integrating (3.19) with respect to t and s over (1,∞), we obtain

1

F̄ (x, y)

∞∫
1

∞∫
1

F̄ (xt, ys) dt ds =

∞∫
1

∞∫
1

F̄ (t, s) dt ds

⇒ m∗1(x, y)− x = x(−1 + E(x))

⇒ m∗1(x, y) = xµX .

The expression for m∗2(x, y) is obtained in an analogous manner.

Now we prove (c)⇒ (a). From (c), we have

m∗1(t, y)− t = tµX − t

and

m∗2(x, t)− t = tµY − t.

Substituting the above expressions in (3.11), we have

F̄ (x, y) = exp

− x∫
1

µX
tµX − t

dt−
y∫

1

µY
tµY − t

dt


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which implies

− log F̄ (x, y) =

x∫
1

µX
tµX − t

dt+

y∫
1

µY
tµY − t

dt

=
µX

µX − 1
log x+

µY
µY − 1

log y.

Taking µX = a
a−1

and µY = b
b−1

, a, b > 1, we obtain

F̄ (1)(x, y) = x−ay−b,

which completes the proof.

Remark 3.2. It may be noticed that BDP − 1 is stronger than BDP − 2.

Remark 3.3. The properties BDP −1 and BDP −2 can be interpreted in income

analysis as follows. Let X and Y be the incomes from two different sources of a

unit in a population. Assume that the incomes of X and Y are at least x and

y respectively. The average under-reporting error is proportional to the amount

by which the income exceeds the tax exemption level. The under-reporting error

in X(Y ) is a linear function of the reported income if and only if the incomes

(X, Y ) follow bivariate Pareto law. In the case of BDP − 1, the proportionality is

independent of x and y, while in BDP − 2, it is independent of x in the case of X

and independent of y in the case of Y .

Theorem 3.6. Let (X, Y ) be a non-negative exchangeable random vector with ab-

solutely continuous survival function and µ = E(X) = E(Y ) <∞. Then

(m∗1(x, y),m∗2(x, y)) = (µx+ (µ− 1)p(y), µy + (µ− 1)p(x)) (3.20)
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for some non-negative function p(.) with p(1) = 0 if and only if the survival function

of (X, Y ) is

F̄ (10)(x, y) =

(
x+ y − cxy − 1

1− c

)− µ
µ−1

; x, y > 1 (3.21)

where 0 < c < 1.

Proof. Assume that (X, Y ) has the distribution (3.21). Then

m∗1(x, y) = x+
1

F̄ (x, y)

∞∫
x

F̄ (t, y)dt

= x+
x+ y − cxy − 1

1− cy
(µ− 1)

= µx+
y − 1

1− cy
(µ− 1)

which is of the form (3.20) with p(y) = y−1
1−cy and p(1) = 0. The proof for m∗2(x, y)

is similar.

We have,

∂m∗1(t, 1)

∂t
=

∂

∂t
(tµ) = µ,

∂m∗2(x, t)

∂t
=

∂

∂t
(tµ+ p(x)(µ− 1)) = µ.

m∗1(t, 1)− t = tµ− t

and

m∗2(x, t)− t = tµ− t+ p(x)(µ− 1) = (µ− 1)(t+ p(x)).
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Conversely, if the relation (3.20) holds, from (3.12),

F̄ (x, y) = exp

− x∫
1

µ

(µ− 1)t
dt−

y∫
1

µ

(µ− 1)t+ (µ− 1)p(x)
dt


= exp

[
− µ

µ− 1
(log x+ log(y + p(x))− log(1 + p(x)))

]
=

(
x(y + p(x))

1 + p(x)

)− µ
µ−1

. (3.22)

From (3.12) and (3.20), we obtain

F̄ (x, y) =

(
y(x+ p(y))

1 + p(y)

)− µ
µ−1

. (3.23)

Equating (3.22) and (3.23) and simplifying,

xp(x)

1 + p(x)− x
=

yp(y)

1 + p(y)− y
. (3.24)

Since (3.24) holds for all x, y > 1, one should have

xp(x)

1 + p(x)− x
=

1

c
,

a constant independent of x and y, which leads to p(x) =
x− 1

1− cx
.

Substituting p(x) in (3.22), we have

F̄ (10)(x, y) =

(
x(y + x−1

1−cx)

1 + x−1
1−cx

)− µ
µ−1

; x, y > 1

=

(
x+ y − cxy − 1

1− c

)− µ
µ−1

which completes the proof.
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Remark 3.4. The distribution specified by (3.21) is a bivariate distribution with

Pareto I marginals. It contains some members of the family (2.7). When c = 0,

m∗1(x, y) = µx+ (µ− 1)(y − 1)

and

m∗2(x, y) = µy + (µ− 1)(x− 1)

which characterizes the bivariate Pareto distribution

F̄ (3)(x, y) = (x+ y − 1)
−a

;x, y > 1,

the well known Mardia (1962) type I bivariate Pareto model. Similarly when c = −1,

we have

(m∗1(x, y),m∗2(x, y)) =

(
µx+ (µ− 1)

y − 1

y + 1
, µy + (µ− 1)

x− 1

x+ 1

)
,

that characterizes the bivariate Pareto distribution

F̄ (11)(x, y) = [
1

2
(x+ y + xy − 1)]−a, x, y > 1, a > 1

which is a special case of F̄ (5)(x, y) in (2.12) when α = β = 1 so that σ = a. Finally

c = 1
q
, q > 0 gives

m∗1(x, y) = µx+
(µ− 1)q(y − 1)

q − y

and

m∗2(x, y) = µy +
(µ− 1)q(x− 1)

q − x
,



Characterizations of a family of bivariate Pareto distributions 67

provides

F̄ (12)(x, y) = (q + p−1(x− q)(y − q))−a

a special case of F̄ (9)(x, y) obtained by taking λa = λb = 1.

Remark 3.5. It is easy to see that all the bivariate distributions discussed in

Remark 3.4, including the models F̄ (3)(x, y), F̄ (5)(x, y) and F̄ (9)(x, y) do not satisfy

the dullness properties BDP − 1 and BDP − 2. The extent to which they depart

from BDP − 1 is accounted for by the terms µp(x) and µp(y).

It follows that Theorems 3.4 - 3.6 provide useful characterizations of the Pareto

distributions by the form of the bivariate mean residual life function that can be

easily deduced from the relationship (3.10).

3.3 Bivariate income gap ratio

In the context of applications in economics, two functions that are closely related

to m(x) are the income gap ratio and the left proportional residual income. For

a continuous non-negative random variable Z1 which represents the income of a

population, those with income exceeding x are deemed to be affluent or rich. We

call Z1 = x to be the affluence line. Then Ḡ∗(x) = P (Z1 > x) represents the

proportion of rich in the population. The proportion of rich, their average income

and the measures of income inequality are important indices discussed in connection

with income analysis and also for comparison between the rich and poor. Of these,
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Sen (1988) defined the income gap ratio among the affluent as

i(x) = 1− x

E(Z1|Z1 > x)
. (3.25)

The measure i(x) is used in defining indices of affluence in Sen (1988). On the

other hand, Belzunce et al. (1998) defined the mean left proportional residual

income(MLPRI) as

l(x) = E

(
Z1

x
|Z1 > x

)
= 1− 1

i(x)
. (3.26)

We propose bivariate generalizations of these concepts. For a non-negative random

vector (X, Y ), the bivariate income gap ratio is defined by the vector

(i1(x, y), i2(x, y)) = (1− x

E(X|X > x, Y > y)
, 1− y

E(Y |X > x, Y > y)
)

= (1− x

m∗1(x, y)
, 1− y

m∗2(x, y)
). (3.27)

Equation (3.27) shows that there is one-to-one relationship between (i1(x, y), i2(x, y))

and (m∗1(x, y),m∗2(x, y)), so that each determines other and the corresponding dis-

tribution uniquely. The functional forms of (i1(x, y), i2(x, y)), characterizing some

members of the family of Pareto distributions, are given in Table 3.1.

The bivariate generalization of MLPRI is proposed as the vector

(l1(x, y), l2(x, y)) =

(
E

(
X

x
|X > x, Y > y

)
, E

(
Y

y
|X > x, Y > y

))
=

(
m∗1(x, y)

x
,
m∗2(x, y)

y

)
. (3.28)
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Table 3.1: Bivariate income gap ratios

Distribution (i1(x, y), i2(x, y))

F̄ (1)(x, y)
(
µX−1
µX

, µY−1µY

)
F̄ (2)(x, y)

(
µX(y)−1
µX(y) ,

µY (x)−1
µY (x)

)
F̄ (3)(x, y)

(
(µ−1)(x+y−2)
µx+(µ−1)(y−1) ,

(µ−1)(x+y−2)
µx+(µ−1)(y−1)

)
F̄ (11)(x, y)

(
(µ−1)(x+y+xy−1)

µx(y+1)+(µ−1)(y−1) ,
(µ−1)(x+y+xy−1)

µx(y+1)+(µ−1)(y−1)

)
F̄ (12)(x, y)

(
(µ−1)(x(q−y)+q(y−1))
µx(q−y)+q(µ−1)(y−1) ,

(µ−1)(y(q−x)+q(x−1))
µx(q−y)+q(µ−1)(y−1)

)

The calculation of (l1(x, y), l2(x, y)) is easily facilitated from those of (m∗1(x, y),m∗2(x, y)).

Thus the characterizations established in Section 3.2 using (m∗1(x, y),m∗2(x, y)) can

be translated in terms of (l1(x, y), l2(x, y)).

3.4 Bivariate generalized failure rate

For a non-negative random variable Z1, the generalized failure rate is given by

r(x) = −xdlogḠ
∗(x)

dx
. (3.29)

Lariviere and Porteus (2001) and Lariviere (2006) discussed properties of r(x) and

its applications in operations management. The well known income model derived
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by Singh and Maddala (1976) is based on a relationship between r(x) and Ḡ∗(x) as

r(x) = αxβ(Ḡ∗(x))γ, α, β, γ > 0.

For a non-negative random vector (X, Y ), the bivariate generalized failure rate is

defined by the vector

(r1(x, y), r2(x, y)) =

(
−x∂ log F̄ (x, y)

∂x
,−y∂ log F̄ (x, y)

∂y

)
. (3.30)

There exists an identity connecting (r1(x, y), r2(x, y)) and (m∗1(x, y),m∗2(x, y)). Dif-

ferentiating

m∗1(x, y) = x+
1

F̄ (x, y)

∞∫
x

F̄ (t, y) dt

with respect to x and rearranging terms, we obtain

F̄ (x, y)
∂m∗1(x, y)

∂x
= (m∗1(x, y) + x)

∂F̄ (x, y)

∂x
.

This gives

r1(x, y) =
x
∂m∗1(x,y)

∂x

m∗1(x, y)− x
. (3.31)

Similarly we obtain

r2(x, y) =
y
∂m∗2(x,y)

∂y

m∗2(x, y)− y
. (3.32)

A redeeming feature of (r1(x, y), r2(x, y)) is that it allows simple analytically tractable

expression for various distributions in the bivariate Pareto family, while the other

functions can be expressed in terms of special functions only for many members. See
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Table 3.2 for expressions of (r1(x, y), r2(x, y)). It may be noted that the character-

izations developed in Section 3.2 can be transformed in terms of (r1(x, y), r2(x, y)).

3.5 Conclusion

In this chapter, we have developed characterizations of the family of bivariate Pareto

distributions discussed in Chapter 2. The well known dullness property was ex-

tended to the bivariate set up and characterizations of bivariate Pareto distributions

using this property were derived. The measures of income inequality such as income

gap ratio and mean left proportional residual income were proposed and studied in

the bivariate case. The generalized failure rate has been extended to the bivariate

set up and characterizations using this concept were derived.
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Table 3.2: Bivariate generalized failure rates

Distribution (r1(x, y), r2(x, y))

F̄ (1)(x, y)

(
a =

µX
µX − 1

, b =
µY

µY − 1

)
F̄ (2)(x, y)

(
axaα

xaα + ybα − 1
,

bybα

xaα + ybα − 1

)
F̄ (3)(x, y)

(
ax

x+ y − 1
,

by

x+ y − 1

)
F̄ (4)(x, y)

(
µX(y)

µX(y)− 1
,

µY (x)

µY (x)− 1

)
F̄ (5)(x, y)

(
σαxα(1 + yβ)

(xα + yβ + xαyβ − 1)
,

σαyβ(1 + xα)

(xα + yβ + xαyβ − 1)

)
F̄ (6)(x, y) (cac(log x)c−1(1− (b log y)c), cbc(log y)c−1(1− (a log x)c))

F̄ (7)(x, y) (1 + 2xayb − xa − yb)−1
(
axa(2yb − 1), byb(2xa − 1)

)
F̄ (8)(x, y) λα−1 {λαaα (log x)α + λαbα(log y)α}1− 1

α (aα(log x)α−1, bα(log y)α−1)

F̄ (9)(x, y)
[
pq + (xλa − q)(yλb − q)

]−1
ap
(
xλa(yλb − q), yλb(xλa − q)

)
F̄ (11)(x, y) a(x+ y + xy − 1)−1 (x(1 + y), y(1 + x))

F̄ (12)(x, y) ap [pq + (x− q)(y − q)]−1 (x(y − q), y(x− q))



Chapter 4

Copula-based reliability concepts

4.1 Introduction

The role of copulas in the analysis of lifetime data has been emphasised either im-

plicitly or explicitly during the past thirty years. This can be seen from the works

of various researchers like Georges et al. (2001), Romeo et al. (2006), Kaishev et al.

(2007), Pellerey (2008), Navarro and Spizzichino (2010) and Louzada et al. (2012).

The methodology adopted to analyse bivariate data in these works is to infer the

copula directly from the observations or by appealing to reliability functions like the

bivariate hazard rate or mean residual life based on the survival function to identify

the appropriate copula. In the present work an alternative approach is proposed

by considering bivariate copulas instead of bivariate distributions. We define the

analogues of reliability functions that are expressed in terms of copulas and study

their properties. The proposed copula functions possesses several advantages over

the usual reliability functions defined in the literature. We can generate new cop-

ulas through appropriate choices of the copula-based reliability functions and the

proposed copula functions satisfy certain properties that are not shared by their

distribution-based counterparts.

1The results in this chapter have been communicated as entitled “Modelling bivariate lifetime
data using copula”(see Nair et al. (2016))

73
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The chapter is organized as follows. In Section 4.2, we study the copula-based haz-

ard function. The mean residual function in terms of copula is introduced in Section

4.3. The proposed measures are employed to develop characterizations of various

copulas. The application of the results in case of a bivariate exponential family is

investigated in Section 4.4 and is illustrated using a real data set in Section 4.5.

Finally the study is concluded in Section 4.6.

4.2 Hazard rate function of copula

Let (X, Y ) be a non-negative random vector with survival function F̄ (x, y). There

are several ways of defining a bivariate hazard rate function. We now consider the

vector-valued failure rate function (Johnson and Kotz (1975)) defined by the vector

(h1(x, y), h2(x, y)) = O(− log F̄ (x, y)) (4.1)

where O = ( ∂
∂x
, ∂
∂y

) is the gradient operator. Thus

h1(x, y) = −∂ log F̄ (x, y)

∂x
, and

h2(x, y) = −∂ log F̄ (x, y)

∂y
. (4.2)

Now we introduce copula-based hazard rate function. From the representation given

in (4.2) for the hazard rate, we can write

A1(u, v) = h1(F−1
1 (u), F−1

2 (v)) =
−∂ log Ĉ(u, v)

∂u

du

dF−1
1 (u)

. (4.3)
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Note that

A1(u, 1) = h1(F−1
1 (u), 0) = − 1

F1(x)

∂F1(x)

∂x
= −1

u

du

dF−1
1 (u)

.

Thus from (4.3),

∂ log Ĉ(u, v)

∂u
=

A1(u, v)

uA1(u, 1)
. (4.4)

Similarly if

A2(u, v) = h2(F−1
1 (u), F−1

2 (v)),

∂ log Ĉ(u, v)

∂v
=

A2(u, v)

v A2(1, v)
. (4.5)

Thus we can write

G1(u, v) = u
∂ log Ĉ(u, v)

∂u
=
A1(u, v)

A1(u, 1)
(4.6)

and

G2(u, v) = v
∂ log Ĉ(u, v)

∂v
=
A2(u, v)

A2(1, v)
. (4.7)

From (4.6), we obtain

1∫
u

G1(p, v)

p
dp =

1∫
u

∂ log Ĉ(p, v)

∂ p
dp =

1∫
u

A1(p, v)

A1(p, 1)
dp.

Thus we get

log Ĉ(u, v)− log Ĉ(1, v) = −
1∫

u

A1(p, v)

A1(p, 1)
dp
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which leads to

Ĉ(u, v)

v
= exp[−

1∫
u

A1(p, v)

A1(p, 1)
dp] = exp[−

1∫
u

G1(p, v)

p
dp].

Similarly from (4.7), we obtain

Ĉ(u, v)

u
= exp[−

1∫
v

G2(u, p)

p
dp].

Definition 4.1. The vector (G1(u, v), G2(u, v)) is defined as the hazard rate of the

survival copula Ĉ(u, v).

We give a physical interpretation of G1(u, v) and G2(u, v) in the following manner.

Assume that there are N two-component devices with lifetimes (X, Y ), of which

m of the first components fail instantaneously after surviving the 100(u)% point

of the distribution of X given that the second component has survived 100(v)%

point of the distribution of Y . Then A1(u, v) is approximately
m

N
, when N is large.

Similarly if n of the first components fail irrespective of the lifetime Y , A1(u, 1)

is approximately
n

N
. Note that n is the number of first components exposed to

the risk of failure and m is the number exposed to the same risk given v. Thus

G1(u, v) represents a rate of failure of the first component taking into consideration

the lifetime of the second component. The interpretation of G2(u, v) is similar.

Proposition 4.2. A survival copula Ĉ(u, v) is uniquely determined by one of com-

ponents G1(u, v) or G2(u, v) by the formula

Ĉ(u, v) = v exp[−
1∫

u

G1(p, v)

p
dp] (4.8)
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or

Ĉ(u, v) = u exp[−
1∫
v

G2(u, p)

p
dp]. (4.9)

Notice that Proposition 4.2 enables a unique determination of the survival copula

from the functional form of one of the components G1(u, v) or G2(u, v). At the

same time in the distribution-based approach the survival function is determined

from h1(x, y) and h2(x, y) using the formula

F̄ (x, y) = exp

− x∫
0

h1(t, 0) dt−
y∫

0

h2(x, t) dt

 (4.10)

given in Galambos and Kotz (1978) which requires the knowledge of the forms of

both h1(x, y) and h2(x, y).

For example, the expressions h1(x, y) = λ1 + θy and h2(x, y) = λ2 + θx need to be

used in (4.10) to determine the Gumbel (1960) bivariate exponential distribution

F̄ (x, y) = exp [−λ1x− λ2y − θxy] , x > 0, y > 0, λ1, λ2 > 0, 0 ≤ θ ≤ λ1λ2.

On the other hand the corresponding Gumbel-Barnett copula

Ĉ(u, v) = uv exp [−β log u log v], 0 ≤ β ≤ 1, (4.11)

is characterized by G1(u, v) = (1− β log v).

The following proposition provides the criterion to verify whether a given function

can be the hazard rate of a copula.

Proposition 4.3. If a function G1 : I2 → [0,∞) satisfies
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(i) G1(u, v) ≥ 0

(ii) lim
u→0

1∫
u

G1(p, v)

p
dp = ∞ and

(iii) A(u2, v2)− A(u1, v2) ≥ A(u2, v1)− A(u1, v1), u2 ≥ u1, v2 ≥ v1 where

A(u, v) = exp[−
1∫

u

G1(p, v)

p
dp ],

then

Ĉ(u, v) = v exp[−
1∫

u

G1(p, v)

p
dp ]

is a survival copula with hazard rate component G1(u, v).

Proof. Since G1(u, v) =
A1(u, v)

A1(u, 1)
, we have G1(p, 1) = 1 and

Ĉ(u, 1) = exp[−
1∫

u

dp

p
] = u.

The properties Ĉ(1, v) = v and Ĉ(u, 0) = 0 are obvious. Further,

Ĉ(0, v) = v exp[−
1∫

0

G1(p, v)

p
dp ] = 0, by (ii).

Condition (iii) implies that for v2 ≥ v1,

v2[exp(−
1∫
u2

G1(p,v2)
p

dp )−exp(−
1∫
u1

G1(p,v2)
p

dp )] ≥ v1[exp(−
1∫
u2

G1(p,v1)
p

dp )−exp(−
1∫
u1

G1(p,v1)
p

dp )]
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which is the same as

Ĉ(u2, v2)− Ĉ(u1, v2)−ˆ̂C(u2, v1) + Ĉ(u1, v1) ≥ 0

and thus Ĉ(u, v) is a copula.

Example 4.1. Assume that G1(u, v) =
1 + θ (1− 2u) (1− v)

1 + θ (1− u)(1− v)
, −1 ≤ θ ≤ 1.

Writing

G1(u, v)

u
=

1

u
− θ (1− v)

1 + θ (1− u)(1− v)

and substituting in (4.8)

Ĉ(u, v) = v exp[−
1∫

u

(
1

p
− θ (1− v)

1 + θ (1− p)(1− v)

)
du]

= v exp[−(− log u− log(1 + θ (1− u)(1− v)))]

= v exp[log u(1 + θ (1− u)(1− v))].

Thus

Ĉ(u, v) = uv[1 + θ(1− u)(1− v)], (4.12)

the Farlie-Gumbel-Morgenstern (FGM) survival copula.

Remark 4.1. Proposition 4.3 enables us to generate new copulas based on func-

tional forms of G1.

In identifying the appropriate copula for a given set of observations, the usual

practice is to employ inferential techniques such as estimation of the parameters of

assumed marginal distributions and dependence parameters and then to validate the

model. Though characteristic properties of models provide unique determination
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of model Ĉ(u, v), there have been only a few attempts in this direction in copula

theory. Proposition 4.2 enables characterizations through the functional form of

(G1(u, v), G2(u, v)). The results characterizing well known copulas are given below.

Proposition 4.4. The copula hazard rate is of the form

(G1(u, v), G2(u, v)) = (B1(v), B2(u)) (4.13)

where B1(v) does not depend on u and B2(u) does not depend on v if and only if

the survival copula is Gumbel-Barnett in (4.11).

Proof. The proof of the necessary part is obtained by assuming that the copula has

the form (4.11). Then by direct calculation,

(G1(u, v), G2(u, v)) = (1− β log v, 1− β log u)

which is of the form (4.13). To prove the converse part, we assume that (4.13)

holds. Then formulas (4.8) and (4.9) lead to the functional equation

v uB1(v) = u vB2(u), (4.14)

equivalent to

u
1

B2(u)−1 = v
1

B1(v)−1 .

The solution is

u
1

B2(u)−1 = k∗ = v
1

B1(v)−1
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giving

B1(v) = 1− β log v and B2(u) = 1− β log u where β = (− log k∗)−1. (4.15)

Substituting B1(v) and B2(u) in (4.14), we recover the copula (4.11).

Remark 4.2. The value G1(u, v) = 1(G2(u, v) = 1), characterizes the product

survival copula Ĉ(u, v) = uv.

Remark 4.3. Proposition 4.4 extends the characterization of Gumbel (1960) type

I bivariate exponential distribution given in Theorem 5.4.11 of Galambos and Kotz

(1978) to the copula (4.9). As a result, apart from the above exponential case we

can deduce that the bivariate Weibull law

F̄ (x, y) = exp[−xλ1 − yλ2 − βxλ1yλ2 ], x > 0, y > 0, 0 ≤ β ≤ 1, λi > 0, i = 1, 2

which is characterized by

(h1(x, y), h2(x, y)) =
(
(1 + βyλ2)λ1x

λ1−1, (1 + βxλ1)λ2y
λ2−1

)
with marginals as Weibull, F̄1(x) = exp[−xλ1 ] and F̄2(y) = exp[−yλ2 ].

Proposition 4.5. The components of the copula hazard rate of an Archimedean

copula satisfies

G1(u, v)

G2(u, v)
=
(v
u

) 1
θ
, −1 ≤ θ <∞, θ 6= 0 (4.16)

for all u,v in I if and only if

Ĉ(u, v) =
(
u−

1
θ + v−

1
θ − 1

)−θ
, (4.17)
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the Clayton survival copula.

Proof. We first note that for the Clayton survival copula,

G1(u, v) =
u−

1
θ

u−
1
θ + v−

1
θ − 1

and

G2(u, v) =
v−

1
θ

u−
1
θ + v−

1
θ − 1

so that (4.16) holds. To prove the converse part, we observe that (4.17) is an

Archimedean copula with generator φ(u) = θ(u
−1
θ − 1). From Theorem 1.12, for an

Archimedean copula with generator φ(.), we have

φ
′
(u)

∂Ĉ(u, v)

∂v
= φ

′
(v)

∂Ĉ(u, v)

∂u
(4.18)

for all u,v in I, where φ
′
(.) is the derivative of φ(.).

Using

G1(u, v)

G2(u, v)
=

u
1

Ĉ(u, v)

∂Ĉ(u, v)

∂u

v
1

Ĉ(u, v)

∂Ĉ(u, v)

∂v

=
u−

1
θ

v−
1
θ

,

(4.18) becomes

φ
′
(u)u

1
θ

+1 = φ
′
(v)v

1
θ

+1,

for all u, v.

The solution of the above functional equation is

φ
′
(u)u

1
θ

+1 = φ
′
(v)v

1
θ

+1 = k∗ (4.19)
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where k∗ is a constant that may depend on θ. Also k∗ is less than zero since φ

is decreasing. Solving (4.19) with the boundary condition φ(1) = 0 and setting

k∗ = −1,

φ(u) = θ(u
−1
θ − 1)

and accordingly Ĉ(u, v) is a Clayton survival copula.

Remark 4.4. Similar results can be derived for characterizing other Archimedean

copulas. For example, Gumbel-Barnett survival copula is characterized by,

G1(u, v)

G2(u, v)
=

1− log v

1− log u

and Ali-Mikhail-Haq survival copula is characterized by,

G1(u, v)

G2(u, v)
=

1− θ + θv

1− θ + θu
.

The behaviour of the hazard rate is a good indicator of the ageing patterns of the

device as well as a tool for model selection.

Definition 4.6. The lifetime (X, Y ) is said to have increasing hazard rate (IHR(x, y))

if the component h1(x, y) is an increasing function of x for a fixed y > 0 and

h2(x, y) is an increasing function of y for a fixed x > 0. The decreasing hazard rate

(DHR(x, y)) property is defined by reversing the monotonicity of hi(x, y), i = 1, 2.

In the same manner we define the monotonicity of the copula-hazard rate as follows.

Definition 4.7. The copula-hazard rate (G1(u, v), G2(u, v)) is said to be increasing

(IHR∗(u, v)) if G1(u, v) is increasing in u for a fixed v and G2(u, v) is increasing
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in v for a fixed u. By reversing the monotonicity of Gi(u, v), i = 1, 2 we have

decreasing hazard rate (DHR∗(u, v)).

We now seek the implication between IHR(x, y) and DHR∗(u, v).

Remark 4.5. We have
∂

∂x
h1(x, y) =

∂

∂F−1
1 (u)

A1(u, v) =
∂

∂u
A1(u, v)

∂u

∂F−1
1 (u)

.

Since
∂F−1

1 (u)

∂u
≤ 0,

∂h1

∂x
≥ 0⇔ ∂

∂u
A1(u, v) ≤ 0.

Thus IHR(x, y)(DHR(x, y))⇔ A1(u, v) is decreasing (increasing) in u for all v.

For many known survival copulas such as the Clayton copula, the Farlie-Gumbel-

Morngestern copula, etc., A1(u, 1) = 1 so that A1(u, v) = G1(u, v) and similarly

A2(u, v) = G2(u, v). In such cases

IHR(x, y)(DHR(x, y))⇔ DHR∗(u, v)(IHR∗(u, v)). (4.20)

Remark 4.6. In general the implication (4.20) is not true. Since

∂G1(u, v)

∂u
= u

∂2 log Ĉ(u, v)

∂u2
+
∂ log Ĉ(u, v)

∂u

a sufficient condition for IHR∗(u, v) is that log Ĉ(u, v) is increasing and convex.

4.3 Mean residual quantile function

The bivariate mean residual life is the vector (m1(x, y),m2(x, y))(Nair and Nair

(1988)) defined by

m1(x, y) = E(X − x|X > x, Y > y) =
1

F̄ (x, y)

∞∫
x

F̄ (t, y) dt (4.21)
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and

m2(x, y) = E(Y − y|X > x, Y > y) =
1

F̄ (x, y)

∞∫
y

F̄ (x, t) dt. (4.22)

The mean residual life vector m1(x, y) and m2(x, y) can be represented in the terms

of copula as

M1(u, v) = m1(F−1
1 (u), F−1

2 (v)) = − 1

Ĉ(u, v)

u∫
0

Ĉ(p, v)
dF−1

1 (p)

dp
dp; p = F1(t)

(4.23)

and

M2(u, v) = − 1

Ĉ(u, v)

v∫
0

Ĉ(u, p1)
dF−1

2 (p1)

dp1

dp1; p1 = F2(t). (4.24)

Definition 4.8. The vector (M1(u, v),M2(u, v)) given in (4.23) and (4.24) is defined

as the bivariate mean residual quantile function of (X, Y ).

We present some properties of (M1(u, v),M2(u, v)) in the following propositions.

Proposition 4.9. The survival copula Ĉ(u, v) of an absolutely continuous non-

negative random vector can be expressed in terms of (M1(u, v),M2(u, v)) as

Ĉ(u, v) =
vM1(1, v)

M1(u, v)
exp

− 1∫
u

d
dp

( pM1(p, 1))

pM1(p, v)
dp

 (4.25)

=
uM2(u, 1)

M2(u, v)
exp

− 1∫
v

d
dp1

( p1M2(1, p1))

p1M2(u, p1)
dp1

 . (4.26)

Proof. Differentiating (4.23) with respect to u, we obtain

Ĉ(u, v)
∂M1(u, v)

∂u
+ M1(u, v)

∂Ĉ(u, v)

∂u
= −Ĉ(u, v)

dF̄−1
1 (u)

du
. (4.27)
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Also

M1(u, 1) =m1(F̄−1
1 (u), 0) =

1

F̄1(x)

∞∫
x

F̄1(t) dt

=− 1

u

u∫
0

p
dF̄−1

1 (p)

dp
dp,

or

dF̄−1
1 (u)

du
=− 1

u

d(uM1(u, 1))

du
. (4.28)

Substituting (4.28) in (4.27), we get

Ĉ(u, v)
∂M1(u, v)

∂u
+ M1(u, v)

∂Ĉ(u, v)

∂u
=
Ĉ(u, v)

u

d(uM1(u, 1))

du
,

or

1

M1(u, v)

∂M1(u, v)

∂u
+

1

Ĉ(u, v)

∂Ĉ(u, v)

∂u
=

1

uM1(u, v)

d(uM1(u, 1))

du
.

Thus

∂ log Ĉ(u, v)

∂u
=

d
du

(uM1(u, 1))

uM1(u, v)
− ∂ logM1(u, v)

∂u
. (4.29)

Similarly,

∂ log Ĉ(u, v)

∂v
=

d
dv

(vM2(1, v))

vM2(u, v)
− ∂ logM2(u, v)

∂v
. (4.30)

From (4.29) we have

1∫
u

∂ log Ĉ(p, v)

∂p
dp =

1∫
u

d
dp

(pM1(p, 1))

pM1(p, v)
dp−

1∫
u

∂ logM1(p, v)

∂p
dp



Copula-based reliability concepts 87

which yields,

log Ĉ(1, v)− log Ĉ(u, v) =

1∫
u

d
dp

(pM1(p, 1))

pM1(p, v)
dp+ logM1(u, v)− logM1(1, v).

Thus

log v − log Ĉ(u, v) + log
M1(1, v)

M1(u, v)
=

1∫
u

d
dp

(pM1(p, 1))

pM1(p, v)
dp

which leads to

M1(u, v)Ĉ(u, v)

vM1(1, v)
= exp

− 1∫
u

d
dp

( pM1(p, 1))

pM1(p, v)
dp


or

Ĉ(u, v) =
vM1(1, v)

M1(u, v)
exp

− 1∫
u

d
dp

( pM1(p, 1))

pM1(p, v)
dp

 .
In a similar manner, (4.24) leads to (4.26).

Remark 4.7. By virtue of formula (4.25) or (4.26), only one of the components

of (M1(u, v),M2(u, v)) is required to determine the copula Ĉ(u, v). This is the

advantage of (M1(u, v),M2(u, v)) over the usual mean residual life function

(m1(x, y),m2(x, y)). In the case of the latter, determination of the survival function

can be accomplished only when both m1(x, y) and m2(x, y) are known through the

formula (Nair and Nair (1988))

F̄ (x, y) =
m1(0, 0)m2(x, 0)

m1(x, 0)m2(x, y)
exp

− x∫
0

dt

m1(t, 0)
−

y∫
0

dt

m2(x, t)

 .
Remark 4.8. The identity (4.25) or (4.26) can be used to determine a copula

through the functional form of either M1(u, v) or M2(u, v).
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We present a set of sufficient conditions on M1(u, v) to determine a copula.

Proposition 4.10. If a function M1 : I2 → [0,∞) is such that

(i)
d

du
(uM1(u, 1)) ≥ u∂M1(u,v)

∂u

(ii) lim
u→0

exp[−
1∫
u

∂
∂p
pM1(p, 1)

pM1(p, v)
dp] =∞ and

(iii) B(u2, v2)−B(u2, v1)−B(u1, v2) +B(u1, v1) ≥ 0 for u2 ≥ u1, v2 ≥ v1, where

B(u, v) =
M1(1, v)

M1(u, v)
exp[−

1∫
u

∂
∂p
pM1(p, 1)

pM1(p, v)
dp]

then

Ĉ(u, v) = v
M1(1, v)

M1(u, v)
exp[−

1∫
u

∂
∂p
pM1(p, 1)

pM1(p, v)
dp]

is a copula with mean residual component M1(u, v).

Proof. Condition (i) follows from the identity

G1(u, v) =
d
du
uM1(u, 1)

M1(u, v)
− u∂ logM1(u, v)

∂u
≥ 0.

Now

Ĉ(u, 1) =
M1(1, 1)

M1(u, 1)
exp[−

1∫
u

∂

∂p
log pM1(p, 1)dp] = u.

It is easy to see that Ĉ(1, v) = v and Ĉ(u, 0) = 0. Also

Ĉ(0, v) = v exp[−
1∫

0

∂
∂p
pM1(p, 1)

pM1(p, v)
dp] = 0
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by (ii).

Condition (iii) implies that for v2 ≥ v1

v2[B(u2, v2)−B(u1, v2)] ≥ v1[B(u2, v1)−B(u1, v1)]

which is equivalent to the 2-increasing property of Ĉ(u, v). Thus Ĉ(u, v) is a copula.

Remark 4.9. Empirical evidence may suggest some simple forms for M1(u, v) or

M2(u, v),which leads to the generation of new copulas.

Remark 4.10. Although the survival copula Ĉ(u, v) corresponding to a given

(M1(u, v),M2(u, v)) can be evaluated, characterization of Ĉ(u, v) cannot be accom-

plished as the information on the form of the marginals is required for the purpose.

To avoid this difficulty, we consider the vector (L1(u, v), L2(u, v)), where

L1(u, v) =
1

Ĉ(u, v)

u∫
0

Ĉ(p, v)

p
dp (4.31)

and

L2(u, v) =
1

Ĉ(u, v)

v∫
0

Ĉ(u, p1)

p1

dp1. (4.32)

Then Ĉ(u, v) is obtained from L1(u, v) and L2(u, v) as

Ĉ(u, v) = v
L1(1, v)

L1(u, v)
exp

− 1∫
u

dp

pL1(p, v)

 (4.33)

= u
L2(u, 1)

L2(u, v)
exp

− 1∫
v

dp1

p1L2(u, p1)

 . (4.34)



Copula-based reliability concepts 90

Both L1(u, v) and L2(u, v) can be evaluated from Ĉ(u, v) using (4.31) and (4.32).

However, we cannot find a meaningful reliability interpretation for (L1(u, v), L2(u, v))

in terms of residual life. However, the following properties of (L1(u, v), L2(u, v)) are

useful for the modelling and analysis of bivariate lifetime data.

Proposition 4.11. The form

(L1(u, v), L2(u, v)) = (K∗1(v), K∗2(u)) (4.35)

where K∗1(v) is independent of u and K∗2(u) is independent of v is satisfied for all

u, v if and only if Ĉ(u, v) is Gumbel-Barnett survival copula given in (4.11).

Proof. The necessary part of the theorem follows from direct calculations, using

(4.11) in (4.31) and (4.32). This gives

(L1(u, v), L2(u, v)) = (
1

1− β log v
,

1

1− β log u
),

which is of the form (4.35). We prove the converse part by assuming (4.35). Equa-

tion (4.33) yields

Ĉ(u, v) = v exp

− 1∫
u

dp

pK∗1(v)


= v exp

(
log u

K∗1(v)

)
(4.36)

and from (4.34) we have

Ĉ(u, v) = u exp

(
log v

K∗2(u)

)
. (4.37)
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On equating (4.36) and (4.37) we obtain

Ĉ(u, v) = v exp

(
log u

K∗1(v)

)
= u exp

(
log v

K∗2(u)

)
. (4.38)

This leads to the functional equation

log v

1− 1
K∗1 (v)

=
log u

1− 1
K∗2 (u)

(4.39)

which is true for all u, v. This happens if and only if (4.39) is a constant, say
1

β
,

β > 0. Thus from (4.39),we obtain

K∗1(v) =
1

1− β log v

and

K∗2(u) =
1

1− β log u
.

Substituting K∗1(v) and K∗2(u) in (4.36), we obtain the Gumbel-Barnett survival

copula.

There exist some identities connecting (G1(u, v), G2(u, v)), (M1(u, v),M2(u, v)) and

(L1(u, v), L2(u, v)). From (4.29) and (4.30), we have

G1(u, v) = [M1(u, v)]−1[
d

du
uM1(u, 1)− u∂M1(u, v)

∂u
]

and

G2(u, v) = [M2(u, v)]−1[
d

dv
vM2(1, v)− v∂M2(u, v)

∂v
].
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Differentiating (4.31), we obtain

L1(u, v)
∂Ĉ(u, v)

∂u
+ Ĉ(u, v)

∂L1(u, v)

∂u
=
Ĉ(u, v)

u

or

L1(u, v)
∂ log Ĉ(u, v)

∂u
+
∂L1(u, v)

∂u
=

1

u
.

Using the definition of G1(u, v), we get

L1(u, v)G1(u, v) + u
∂L1(u, v)

∂u
= 1. (4.40)

Similarly

L2(u, v)G2(u, v) + v
∂L2(u, v)

∂v
= 1. (4.41)

Also (L1(u, v), L2(u, v)) is related to (M1(u, v),M2(u, v)) by the identities

1

L1(u, v)

(
∂L1(u, v)

∂u
− 1

u

)
=

1

M1(u, v)

(
∂M1(u, v)

∂u
− 1

u

d(uM1(u, 1))

du

)

and

1

L2(u, v)

(
∂L2(u, v)

∂v
− 1

v

)
=

1

M2(u, v)

(
∂M2(u, v)

∂v
− 1

v

d(vM2(1, v))

dv

)
.

Proposition 4.12. The relationship Li(u, v)Gi(u, v) = 1, i = 1, 2 holds for all u, v

if and only if Ĉ(u, v) is the Gumbel-Barnett survival copula.

Proof. Proof follows from Propositions 4.4 and 4.11.
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Remark 4.11. Propositions 4.11 and 4.12 are generalizations of the characteriza-

tions of the Gumbel (1960) Type I bivariate exponential distribution given in Nair

and Nair (1988) to a wider class of distributions.

Bivariate life distributions are classified according to the monotonic nature of the

mean residual life. Zahedi (1985) proposed four definitions of decreasing mean

residual life, of which one typical definition is as follows.

We say that (X, Y ) is said to have decreasing mean residual life (DMRL(x, y)) if

for t ≥ 0

m1(x+ t, y) ≤ m1(x, y)

and

m2(x, y + t) ≤ m2(x, y).

When m1(x, y) and m2(x, y) are differentiable this is equivalent to
∂m1(x, y)

∂x
≤ 0

for y > 0 and
∂m2(x, y)

∂y
≤ 0 for x > 0.

In terms of (M1(u, v),M2(u, v)) we propose the following,

Definition 4.13. The mean residual quantile function (M1(u, v),M2(u, v)) is said

to be decreasing (DMRL∗(u, v)) if and only if ∂M1(u,v)
∂u

≤ 0 for 0 ≤ v ≤ 1 and

∂M2(u,v)
∂v

≤ 0 for 0 ≤ u ≤ 1. Similarly (M1(u, v),M2(u, v)) is said to be increasing

(IMRL∗(u, v)) if and only if ∂M1(u,v)
∂u

≥ 0 for 0 ≤ v ≤ 1 and ∂M2(u,v)
∂v

≥ 0 for

0 ≤ u ≤ 1 .

Proposition 4.14.

DMRL(x, y)⇔ IMRL∗(u, v).

IMRL(x, y)⇔ DMRL∗(u, v).
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The proof follows from

∂m1(x, y)

∂x
=

∂

∂u
m1(F̄−1

1 (u), F̄−1
2 (v))

∂u

∂F̄−1
1 (u)

=
∂

∂u
M1(u, v)

∂u

∂F̄−1
1 (u)

and the fact that
∂F̄−1

1 (u)

∂u
≤ 0.

4.4 Analysis of bivariate exponential copulas

In this section, we apply the results obtained in the previous sections to analyse the

reliability properties of the copulas of a bivariate exponential family of distributions

of Nair & Sankaran (2014 b). The family has survival function of the form

F̄ (x, y) = exp[−g(x, y)], x, y > 0 (4.42)

where

g(x, y) = H−1(H(x) +H(y))

∂g

∂x

∂g

∂y
− ∂2g

∂x∂y
≥ 0

and H(.) is the cumulative hazard function of a non-negative random variable Z

satisfying

P (Z > g(x, y)|Z > x) = P (Z > y).

The survival copula corresponding to (4.42)

Ĉ(u, v) = exp[−g(− log u,− log v)] (4.43)
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is Archimedean with generator φ(t) = H(− log t), which is taken to be convex.

Some members of the family (4.42) and the corresponding copulas are given in Ta-

ble 4.1. A computationally convenient aspect of (4.42) is that the marginals are

unit exponential so that F̄−1
1 (u) = − log u and F̄−1

2 (v) = − log v. The copula-hazard

rates of the family are presented in Table 4.2.

In view of the expressions of F̄−1
1 (u) and F̄−1

2 (v), from the definitions it follows that

for the family Ai(u, v) = Gi(u, v) and Mi(u, v) = Li(u, v), i = 1, 2.

From Remark 4.5 and Proposition 4.14 the monotonic nature of the reliability func-

tions follows.

IHR(x, y)⇔ DHR∗(u, v)

DMRL(x, y)⇔ IMRL∗(u, v).

The family (4.42) is flexible in the monotonic behaviour of their hazard rates. Type

2 for α > 2 ; types 4, 5; type 6 for −1 < θ < 0 and type 7 are DHR∗(u, v) and

type 1 for α = 1, type 6 for θ > 0 are IHR∗(u, v) and type 3 satisfies the locally

no-ageing property

P [Xi > xi+yi|Xi > xi, Xj > xj] = P [Xi > yi|Xj > xj], j = 3− i, i, j = 1, 2, i 6= j.

(4.44)

Relationship (4.44) can also be written as

vĈ(F̄1(F̄−1
1 (u) + F̄−1

1 (p)), v) = Ĉ(p, v) Ĉ(u, v)

and

uĈ(F̄2(F̄−1
2 (v) + F̄−1

2 (p)), u) = Ĉ(u, p) Ĉ(u, v)



Copula-based reliability concepts 96

for all 0 ≤ u, v, p ≤ 1.

In the case of unit exponential marginals the above equations reduce to the nice

form

vĈ(up, v) = Ĉ(p, v)Ĉ(u, v)

and

uĈ(u, vp) = Ĉ(u, p)Ĉ(u, v)

It is easy to see that the Gumbel-Barnett copula (type 3) is characterized by the

no-ageing property and also that this property is equivalent to the local constancy

of (G1(u, v), G2(u, v)) and (L1(u, v), L2(u, v)).

Notions of Bivariate IHR, takes a different approach in the Bayesian framework.

From Bassan & Spizzichino (1999) and Bassan et al. (2002), an exchangeable pair

(X, Y ) is IHR-1 (x, y) if and only if for x ≤ y

L(X − x|X > x, Y > y) ≥st L(Y − y|X > x, Y > y) (4.45)

and IHR-2 (x, y) if and only if for x ≤ y

L(X − x|X > x, Y > y) ≥hr L(Y − y|X > x, Y > y) (4.46)

where L represents the law, ≥st and ≥hr denotes the usual stochastic order and

hazard rate order defined in Shaked & Shanthikumar (2007). Answering whether

(X, Y ) has IHR-1 is simple, as the copulas of the bivariate exponential family

are Archimedean and such copulas are Schur-concave and Schur-concave copulas

are IHR-1 (Bassan & Spizzichino (1999)). Regarding (4.46) we note that it is



Copula-based reliability concepts 97

equivalent to saying that

F̄ (x+ t, y)

F̄ (y + t, x)

is increasing in t for all 0 ≤ x ≤ y.

For the exponential family

F̄ (x+ t, y)

F̄ (y + t, x)
=
Ĉ(up, v)

Ĉ(vp, u)
, p = F̄1(t). (4.47)

Logarithmic differentiation of (4.47) leads to the condition for Ĉ(u, v) to be

IHR∗-2(u, v) as

∂ log Ĉ(up, v)

∂p
≥ ∂ log Ĉ(vp, u)

∂p

for all v ≤ u.

This is the same as

G1(up, v) ≥ G2(vp, u), v ≤ u. (4.48)

Condition (4.48) holds for type 2 and type 6 and accordingly they are IHR∗-2(u, v).

In the Bayesian approach, an exchangeable pair (X, Y ) is said to be bivariate de-

creasing mean residual life (DMRL-1(x, y)) if and only if

m1(x, y) ≥ m2(x, y), x < y.

or
∞∫
x

F̄ (t, y) dt ≥
∞∫
y

F̄ (t, x) dt, x < y.
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In the exponential case this reduces to

u∫
0

Ĉ(p, v)

p
dp ≥

v∫
0

Ĉ(p, u)

p
dp, u > v.

or

L1(u, v) ≥ L2(u, v). (4.49)

4.5 Application

The application of our results in a real data situation can be accomplished in two

ways. The first is to find the copula function appropriate to the data and then use

it to explain the failure patterns through the functions and properties described

above. To illustrate this, we consider the American football league data, given in

Table 2.5.

We now apply the Type 2 copula model given in Table 4.1 to the American football

league data. The copula parameter α is estimated using the relation connecting

the Kendall’s correlation coefficient τC and the copula parameter α given in (1.16).

For the Type 2 copula model, we have τC = 1− 1

α
. The nonparametric estimate of

Kendall’s τC from the data is 0.68 and hence α̂ = 3.13.

There are different methods of multivariate goodness-of-fit tests in literature

(D’Agostino (1986), Berg (2009) or Genest et al. (2009)). We employ a method

which is based on the copula and independent of the marginal distributions.
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Let us assume that a random sample (x1, y1), ..., (xn, yn) is drawn from the distri-

bution function F (x, y). If we denote

Wi = #{(xj, yj) : xj < xi, yj < yi}/(n− 1), 1 ≤ i ≤ n

then a nonparametric estimator of KC(w) is given by,

Kn(w) =
n∑
i=1

δ(w −Wi)

n
(4.50)

where # represents the cardinality of a set, δ(t) is the distribution function of a

point mass at the origin. Genest and Rivest (1993) have shown that the empirical

distribution function Kn(w) is a
√
n-consistent estimator of KC(w). The cumulative

distribution function KC(w) and the empirical distribution function Kn(w) from the

data are plotted in Figure 4.1 and it can be seen that both are close to each other.

Let C(u, v) be the copula of a random vector (X, Y ). The statistic used to test the

hypothesis H0 : C(u, v) = C0(u, v), where C0(u, v) is a known copula is

Dn =
√
n sup

0≤w≤1
|Kn(w)−KC(w)| (4.51)

According to Saunders and Laud (1980), Dn is exactly the classical Kolmogorov

test statistic. For the level of test 0.05, L(1-0.05)=1.358, where L(r) is the limit

distribution function of the classical Kolmogorov test statistic. Since Dn value of

the copula discussed is 0.57 < 1.358, we cannot reject H0. Thus the bivariate data

set (X, Y ) can be fitted by the copula Ĉ2(u, v) with α = 3.13.

For the type 2 copula model, the expression for the bivariate hazard rate is given

in Table 4.2 and the plot of G1(u, v) is given in Figure 4.2. From the plot one may
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observe that G1(u, v) is decreasing in u for all v for α = 3.13. A similar plot will be

obtained for G2(u, v). Thus the type 2 copula model is DHR∗(u, v) for α = 3.13.

The second method for modelling the data is to directly infer the reliability functions

from the data by proposing estimators with desirable properties.

4.6 Conclusion

In the present work, we have proposed some basic definitions and results that fa-

cilitate the modelling of lifetime data through bivariate copulas, instead of the

traditional approach using bivariate distributions. We presented the vector-valued

hazard rate function of the survival copula Ĉ(u, v) of (X, Y ) and also the bivari-

ate mean residual quantile function, both derived from Ĉ(u, v) as alternatives to

(4.2) and (4.21) in modelling survival data. The advantages of the proposed func-

tions over the measures (4.2) and (4.21) are (i) the survival copula and hence the

associated bivariate distributions can be determined from the functional forms of

one of the components of the copula-based measures, whereas both components of

(4.2) and (4.21) are needed to determine F̄ (x, y) uniquely and (ii) the copula-based

functions characterize the survival copula which represents a class of distributions.

On the other hand (h1(x, y), h2(x, y)) or (m1(x, y),m2(x, y)) can determine only a

particular distribution specified by F̄ (x, y).
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Figure 4.1: Graph of Kn and KC

Figure 4.2: Plot of G1(u, v)
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Table 4.1: Survival copulas of bivariate exponential family

Type φ(t) Survival copula

1 −λ log t Ĉ1(u, v) = uv

2 λα(− log t)α Ĉ2 (u, v) = exp
[
−{(− log u)α + (− log v)α}

1
α

]
, α ≥ 1

3 α log(1− β log t) Ĉ3(u, v) = uv exp [−β log u log v], 0 ≤ β ≤ 1

4 k log(1 + (− log t)c) Ĉ4(u, v) = exp [−{(−(log u)c + (− log v)c + (− log u)c(− log v)c} 1
c ], c > 1

5 log(1+t−
1
σ

2
) Ĉ5(u, v) = max

[
1
2

(
u
−1
σ + v

−1
σ + (uv)

−1
σ − 1

)
, 0
]−σ

, σ > 0

6 Bθ−1(t−θ − 1) Ĉ6(u, v) =
{

max[u−θ + v−θ − 1, 0]
}− 1

θ , θ = logC 6= 0,−1 < θ <∞
7 σ log(2

t
− 1) Ĉ7 (u, v) = uv

1+(1−u)(1−v)

8 log( t
−λ−q
p

) Ĉ8(u, v) = [q + (u−λ−q)(v−λ−q)
p

]
1
λ , p+ q = 1;λ > 0
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Table 4.2: Bivariate hazard rates of the exponential family

Type (G1(u, v), G2(u, v))
1 (1, 1)

2 [(− log u)α + (− log v)α]
1
α ((− log u)α−1, (− log v)α−1)

3 (1− β log v, 1− β log u)
4 [(− log u)c + (− log v)c + (− log u)c(1− log v)c] ((− log u)c−1(1 + (− log v)c), (− log v)c−1(1 + (− log u)c))

5
(
u
−1
σ + v

−1
σ + (u v)

−1
σ − 1

)−1

(u
−1
σ (1 + v)

−1
σ , v

−1
σ (1 + u)

−1
σ )

6
(
u−θ + v−θ − 1

)− 1
θ (u−θ, v−θ)

7 (1 + (1− u)(1− v))−1 (2 + 2u v − u, 2 + 2u v − v)
8 [p q + (u−λ − q)(v−λ − q)]−1((v−λ − q)u−λ, (u−λ − q)v−λ)





Chapter 5

Modelling and analysis of negative depen-

dent Archimedean copulas

5.1 Introduction

The modelling and analysis of statistical data using copula has been extensively

studied in literature. One could refer to Joe (1997), Nelsen (2006), Salvadori et

al. (2007), Schweizer and Sklar (2011) and McNeil et al. (2015) . A question that

usually arises in the study is the choice of the functional form of the copula. The

selection of the copula for a given data set depends on the range of dependence

among the variables. Copulas like Clayton copula and Frank copula incorporate

strong positive dependence, independence and strong negative dependence. How-

ever Gumbel copula can only incorporate positive association and independence . In

many practical situations, we may come across with large number of data sets with

negative dependence as in the case of gross domestic product and infant mortality

rate of developed countries. The analysis of such data sets is done using negative

dependent copulas. We now discuss two one-parameter families of Archimedean cop-

ulas among the twenty-two families given in Nelsen (2006) which are suitable for

1The results in this chapter have been communicated as entitled “Negative dependent
Archimedean copulas”(see Preethi and Sankaran (2017 a) )

105
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modelling negative dependent data sets. The distributional as well as dependence

properties of the chosen copulas are not studied in detail in literature. Motivated

by this fact, the properties of the corresponding copulas are studied in detail and

we have fitted the copulas to a real data set.

The rest of the chapter is organized as follows. In Section 5.2, we discuss a class

of Archimedean copulas and study their distributional properties. Section 5.3 deals

with the dependence structure of the distributions using copula theory. In Section

5.4, different bivariate distributions useful in reliability analysis are introduced. In

Section 5.5, we discuss the inference procedure of the models and then apply the

copula models to a real data set. Finally, Section 5.6 summarizes major conclusions

of the study.

5.2 The copula models

Consider two survival copula models given by

Ĉ1(u, v) =
uv

(1 + (1− u
1
β )(1− v

1
β ))

β
; 0 ≤ u, v ≤ 1, β ≥ 1 (5.1)

and

Ĉ2(u, v) = exp
(

1−
(
(1− log(u))θ + (1− log(v))θ − 1

)1/θ
)

; θ > 0. (5.2)

Note that (5.1) and (5.2) are one-parameter families of Archimedean copulas which

can be used for modelling negative dependent data.
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The generator of the Archimedean copulas (5.1) and (5.2) are respectively,

φ1(t) = log(2t
−1
β − 1), (5.3)

and

φ2(t) = (1− log(t))θ − 1. (5.4)

The conditional copula densities of (5.1) and (5.2) are obtained as

∂Ĉ1(u, v)

∂u
= −v(−2 + v

1
β )(2− v

1
β + u

1
β (−1 + v

1
β ))−1−β; β ≥ 1; 0 < v < 1,

∂Ĉ1(u, v)

∂v
= −u(−2 + u

1
β )(2− v

1
β + u

1
β (−1 + v

1
β ))−1−β; β ≥ 1; 0 < u < 1,

∂Ĉ2(u, v)

∂u
=

1

u
{(1− log(u))θ−1

(
(1− log(u))θ + (1− log(v))θ − 1

) 1
θ
−1

exp
(

1−
(
(1− log(u))θ + (1− log(v))θ − 1

)1/θ
)
}; θ > 0; 0 < v < 1,

and

∂Ĉ2(u, v)

∂v
=

1

v
{(1− log(v))θ−1

(
(1− log(u))θ + (1− log(v))θ − 1

) 1
θ
−1

exp
(

1−
(
(1− log(u))θ + (1− log(v))θ − 1

)1/θ
)
} θ > 0, 0 < u < 1.

We have already discussed in Remark 1.2 that the distribution function of the

random variable W ∗ = Ĉ(U, V ) can also be derived using the generator given in

(5.3) and (5.4).
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The distribution function of W ∗ for the two copula models are given by,

KC1(w) = w

1 +
β(2− w

1
β ) log(2w

−1
β − 1)

2

 ; β ≥ 1, 0 < w < 1 (5.5)

and

KC2(w) = w

(
1 +

w
(
(1− log(w))θ − 1

)
(1− log(w))1−θ

θ

)
; θ > 0, 0 < w < 1.

(5.6)

Conway (1979) suggested a method for graphical representation of copula using a

contour diagram, which is the plot of the sets in I2 given by Ĉ(u, v) = k∗, where k∗

is a constant( see Figures 5.1 and 5.2).

Remark 5.1. The diagonal section of copula is the function δC from I to I defined

by δC(t) = C(t, t), which is non-decreasing and uniformly continuous on I.

The diagonal section of the copulas (5.1) and (5.2) are given by,

δC1(t) = t2
(

1 +
(

1− t
1
β

)2
)−β

, 0 ≤ t ≤ 1, β ≥ 1 (5.7)

and

δC2(t) = e1−(2(1−log(t))θ−1)
1/θ

, 0 ≤ t ≤ 1, θ ≥ 1. (5.8)

The plot of the diagonal section of the copulas are given in Figure 5.3 and Figure

5.4 respectively. It can be noted that the diagonal section of the copulas are non-

decreasing and uniformly continuous on I.
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Figure 5.1: Contour diagram of Ĉ1(u, v)
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Figure 5.2: Contour diagram of Ĉ2(u, v)
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Figure 5.3: Plot of diagonal section of Ĉ1(u, v)
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Figure 5.4: Plot of diagonal section of Ĉ2(u, v)

5.3 Dependence

The various global, tail and local dependence measures of the copula models are

discussed below:

5.3.1 Spearman’s rho and Kendall’s tau.

The correlation between two random variables U and V can be assessed using

Spearman’s rho and Kendall’s tau (see Nelsen (2006) and Sklar (1959)).
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Theorem 5.1. The Spearman’s rho for the copula in (5.1) is given by

ρC1 = 3 [3F2(1, 1, β; 1 + 2β, 1 + 2β;−1)− 1] (5.9)

where

pFq(a1, ..., ap; b1, ..., bq;x) =
∞∑
r=0

(a1)r...(ap)rx
r

(b1)r...(bq)rr!
;

(a)r = a(a+ 1)...(a+ r − 1), (a)0 = 1 and a1, ..., ap, b1, ..., bq are parameters.

Proof. From the definition of Spearman’s rho, we have

ρC1 = 12

1∫
0

1∫
0

Ĉ(u, v)dudv − 3

= 12

1∫
0

1∫
0

uv

(1 + (1− u
1
β )(1− v

1
β ))

β
dudv − 3.

By substituting 1− u
1
β = s, 1− v

1
β = t, we get

ρC1 = 12β2

1∫
0

1∫
0

(1− s)2β−1(1− t)2β−1

(1 + st)β
dsdt− 3

= 12β2

1∫
0

(1− t)2β−1

2β
2F1(1, β; 1 + 2β;−t)dt− 3

= 3 [3F2(1, 1, β; 1 + 2β, 1 + 2β;−1)− 1] .

It can be seen from Figure 5.5 that ρC1 increases in β for β ≥ 1 and tends to zero

as β → ∞. Since the Spearman’s ρC1 is negative, the pair (U, V ) is NQD for all

values of β ≥ 1. It may be noted that ρC1 ∈ [−0.271, 0).
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Figure 5.5: Plot of Spearman’s ρC1
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Figure 5.6: Plot of Spearman’s ρC2

For the copula model (5.2), we have no closed form analytical expression for Spear-

man’s rho. The plot of ρC2 is given in Figure 5.6. One may note that the pair (U, V )

is NQD for all values of 0 < θ < 1 as ρC2 is negative for all values of 0 < θ < 1 and

the pair (U, V ) is PQD for all values of θ ≥ 1.

Let U and V be random variables with W ∗ = Ĉ(U, V ). Now KC(w) is related to
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the population value of Kendall’s tau via

τC = 4E(W ∗)− 1 (5.10)

and

E(W ∗) =

1∫
0

{1−KC(w)}dw

paves the way for the estimation and goodness-of-fit procedures for different classes

of copulas using an empirical version of KC(w).

Theorem 5.2. The Kendall’s tau for the copula (5.1) is given by,

τC1 =
−2β

(2β + 1)2 2F1(1, 1; 2β + 2;−1). (5.11)

Proof. We have

E(W ∗) =
1

4
− β

2(2β + 1)2 2F1(1, 1; 2β + 2;−1).

Therefore from (5.10), Kendall’s measure of association between U and V is given

by,

τC1 =
−2β

(2β + 1)2 2F1(1, 1; 2β + 2;−1); β ≥ 1.

From Figure 5.7, it follows that τC1 increases in β for β ≥ 1. Since the Kendall’s

τC1 is negative, the pair (U, V ) is NQD for all values of β ≥ 1. It may be noted

that τC1 ∈ [−0.182, 0).
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Figure 5.7: Plot of Kendall’s τC1
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Figure 5.8: Plot of Kendall’s τC2
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Theorem 5.3. The Kendall’s tau for the copula (5.2) is

τC2 = −(θ − 1) (2e2Eθ(2)− 1)

θ
(5.12)

where En(z) is the exponential integral function discussed in Abramowitz and Stegun

(1966).

From Figure 5.8, we may notice that the Kendall’s tau, τC2 is negative for all values

of 0 < θ < 1 and hence the pair (U, V ) is NQD for all values of 0 < θ < 1.

5.3.2 Measure based on Blomqvist’s β.

Blomqvist (1950) proposed and studied a measure using population medians, the

measure often called as medial correlation coefficient, denoted by βC , given by,

βC = 4Ĉ(1/2,
1/2)− 1.

For the copulas (5.1) and (5.2), we have

βC1 = 4(1− 2e
0.6931
β + 2e

1.38629
β )−β; β ≥ 1

and

βC2 = 4e1−(2(1+log(2))θ−1)
1/θ

− 1; θ > 0.

Although Blomqvist’s β depends on the copula only through its value at the center

of I2, it can nevertheless often provide an accurate approximation to Spearman’s

rho and Kendall’s tau.
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Figure 5.10: Plot of Blomqvist’s βC2

We observe that for the copula model (5.1), βC1 is negative for all values of β ≥

1⇒ (U, V ) is NQD. For the copula model (5.2), βC2 is negative for 0 < θ < 1 and

positive for θ ≥ 1, therefore the pair (U, V ) is NQD for 0 < θ < 1 and PQD for

θ ≥ 1.
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5.3.3 Tail dependence properties

The notion of tail dependence is interesting in the analysis of bivariate data as it

describes the limiting proportion that one margin exceeds a certain threshold given

that other margin has already exceeded that threshold.

From Proposition 1.19, we have,

λL = lim
u→0

C(u, u)

u
= 0

and

λU = lim
u→1

1− 2u+ C(u, u)

1− u
= 0

for both the copula models (5.1) and (5.2). Therefore the copulas has neither lower

nor upper tail dependence (λL = λU = 0) and hence suitable for modelling data

characterized by weak tail dependence.

5.3.4 Local dependence measures

We discuss two local dependence measures, such as ψ-measure and the Clayton-

Oakes association measure (θ- measure) for the copulas which measures the depen-

dence structure at specific values of u and v.
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5.3.4.1 ψ -measure

The association measure ψ(x, y) is defined by Anderson et al. (1992) as

ψ(x, y) =
P (X > x|Y > y)

P (X > x)
=

F̄ (x, y)

F̄1(x)F̄2(y)
.

When X and Y are independent ψ(x, y) = 1 and large (small) values of ψ(x, y)

indicates positive (negative) association. In terms of the copula we have,

ζ(u, v) = ψ(F−1
1 (u), F−1

2 (v)) =
Ĉ(u, v)

uv
.

Consequently ζ(u, v) = 1 indicates independence and increasing (decreasing) values

of ζ(u, v) for u, v imply positive (negative) dependence. For the copula in (5.1),

ζ1(u, v) =
(

1 + (1− u
1
β )(1− v

1
β )
)−β

; β ≥ 1.

Note that ζ1(u, v) < 1 for all finite values of β ≥ 1 and hence (U, V ) is NQD.

Similarly for the copula in (5.2), we have

ζ2(u, v) =
2 exp

(
1−

(
(1 + log(2))θ + (1− log(u))θ − 1

)1/θ
)

u
; θ ≥ 0

and we may note that for 0 < θ < 1, ζ2(u, v) < 1 which implies negative association;

for θ = 1, we have ζ2(u, v) = 1 which implies independence and for θ > 1, ζ2(u, v) >

1 which implies positive association.
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5.3.4.2 θ -measure

Clayton (1978) and Oakes (1989) defined the associated measure θ(x, y) as given in

(2.25). In terms of the copula we have,

ξ(u, v) = θ(F−1
1 (u), F−1

2 (v)) =
Ĉ(u, v)∂

2Ĉ(u,v)
∂u∂v

∂Ĉ(u,v)
∂u

∂Ĉ(u,v)
∂v

.

We can see that U and V are positive (negative) if ξ(u, v) > (<)1 and independent

if ξ(u, v) = 1.

For the copula (5.1),

ξ1(u, v) =
−u

1
β v

1
β + β(−2 + u

1
β )(−2 + v

1
β )

β(−2 + u
1
β )(−2 + v

1
β )

= 1− u
1
β v

1
β

β(−2 + u
1
β )(−2 + v

1
β )

(5.13)

where ξ(u, v) < 1 for all finite β ≥ 1. Hence U and V are negatively associated.

For the copula (5.2),

ξ2(u, v) = (θ − 1)
(
(1− log(u))θ + (1− log(v))θ − 1

)−1/θ
+ 1

we have negative association for 0 < θ < 1 as in this case ξ2(u, v) < 1; for θ = 1,

we have ξ2(u, v) = 1 which implies independence and positive association for θ > 1

as ξ2(u, v) > 1 in this range.

Remark 5.2. For the copula (5.1), we have ξ(u, v) < 1 and
∂2

∂u∂v
ζ(u, v) < 0,

therefore (U, V ) is hazard negative dependent (HND) for β ≥ 1 (see Asadian et al.

(2009)).
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5.4 Distributions with various marginals

Copula techniques can be used for the construction of various bivariate distributions

by assigning different marginals in F̄ (x, y) = C(F̄1(x), F̄2(y)).

5.4.1 Distributions with Pareto marginals

Suppose that the marginal distributions of X and Y are Pareto I distributions with

F̄1(x) = x−a = u and F̄2(y) = y−b = v; x > 1, y > 1, a, b > 0. By substituting for u

and v in (5.1) and (5.2) we have the survival functions with Pareto marginals.

F̄β(x, y) = x−ay−b
(((

x−a
)1/β − 1

)((
y−b
)1/β − 1

)
+ 1
)−β

; β ≥ 1 (5.14)

and

F̄θ(x, y) = exp

(
1−

((
1− log

(
x−a
))θ

+
(
1− log

(
y−b
))θ − 1

)1/θ
)

; θ > 0. (5.15)

5.4.2 Distributions with Weibull marginals

Assume that the marginal distributions of X and Y are Weibull distributions with

F̄1(x) = e
−
(
x
η1

)b1
and F̄2(y) = e

−
(
y
η2

)b2
; x, y > 0, b > 0, ηi > 0 for i = 1, 2. Then we

have the survival functions with Weibull marginals as

F̄β(x, y) = e
−
(
x
η1

)b1−( y
η2

)b2 (((
e
−
(
x
η1

)b1)1/β

− 1

)((
e
−
(
y
η2

)b2)1/β

− 1

)
+ 1

)−β
; β ≥ 1

(5.16)
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and

F̄θ(x, y) = exp

(
1−

((
1− log

(
e
−
(
x
η1

)
b1

))
θ +

(
1− log

(
e
−
(
y
η2

)
b2

))
θ − 1

)
1/θ

)
; θ > 0.

(5.17)

5.4.3 Distributions with exponential marginals

Let X and Y be exponentially distributed with F̄1(x) = e−λx and F̄2(y) = e−λy;

x, y > 0, λ > 0 . If we substitute u = e−λx and v = e−λy in (5.1) and (5.2), we

obtain survival functions with exponential marginals as

F̄β(x, y) = e−λ(x+y)
(((

e−λx
)1/β − 1

)((
e−λy

)1/β − 1
)

+ 1
)−β

; β ≥ 1 (5.18)

and

F̄θ(x, y) = exp

(
1−

((
1− log

(
e−λx

))θ
+
(
1− log

(
e−λy

))θ − 1
)1/θ

)
; θ > 0.

(5.19)

5.5 Applications

To illustrate the applicability of the copula models, we consider the Iris flower data

set which consists of 50 samples from each of three species of Iris . Four features were

measured from each sample: the length and the width of the sepals and petals, in

centimetres. The data are available on http://www.math.uah.edu/stat/data/Fisher.html.

We have considered the variables sepal length and sepal width of the species.
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Figure 5.11: Plots of Kn and KC1

The marginals of the data set are fitted by Normal [3.057, 0.43] and Normal[5.84,

0.82] with Kolmogorov-Smirnov test statistic values 0.106 and 0.089 respectively.

The copula parameter β of (5.1) and θ of (5.2) are estimated from Kendall’s tau

using Theorem 5.2 and Theorem 5.3. The estimated value of Kendall’s tau is -0.077

and therefore β = 4.9 and θ = 0.75.

Now we discuss the goodness-of-fit of our copula models to the given data. The cu-

mulative distribution function of the copulas and the empirical distribution function

Kn(w) from the data are plotted in Figure 5.11 and Figure 5.12 respectively. It can

be seen that in both cases the cumulative distribution function and the empirical

distribution function are almost identical.

Let C(u, v) be the copula of a random vector (X, Y ). To test the hypothesis

H0 : C(u, v) = C0(u, v), where C0(u, v) is a known copula, we use the statistic given

in (4.51). Under H0, for the level of test 0.05, L(1 − 0.05) = 1.358, where L(r) is

the limit distribution function of the classical Kolmogorov test statistic. We have

fitted both the copula models given in (5.1) and (5.2) for the given data. Since Dn



Modelling and analysis of negative dependent Archimedean copulas 123

0.2 0.4 0.6 0.8 1.0
W

0.2

0.4

0.6

0.8

1.0

Kn , KC2


Figure 5.12: Plots of Kn and KC2

in both cases is less than 1.358, we cannot reject H0 and the copula of (X, Y ) can

be approximated by Ĉ1(u, v) with β = 4.9 or by Ĉ2(u, v) with θ = 0.75. Now to

make a conclusion which model suits more appropriate for our data, we use the AIC

criteria given in Akaike (1987). The AIC values of (5.1) and (5.2) are -3.9 and -3.1

which indicates that the copula model (5.1) is more appropriate to our data.

5.6 Conclusion

In the present chapter, we have considered two Archimedean copulas suitable for

modelling negative dependent data. The distributional properties as well as the

dependence structure of the copulas are studied. The models can be extended

directly to multivariate set up. The applicability of the models are illustrated with

a data set.





Chapter 6

Modelling and analysis of a positive de-

pendent Archimedean copula

6.1 Introduction

In real life situations we come across a large number of data sets with positive depen-

dence and modelling of these positive dependent data sets using many well known

copulas have been discussed in literature. We now discuss a copula model which is

a member of one-parameter families of Archimedean copulas given in Nelsen (2006).

The motivation of choosing this particular copula among the twenty-two families

is that this family of Archimedean copula possesses both upper and lower tail de-

pendence and hence it can be used for modelling data with positive dependency.

Moreover, the dependence properties of this particular family are not studied in

literature. Our objective is to study such properties of the copula in detail. In

addition, we apply this copula model to a real data set.

The rest of the chapter is organized as follows. In Section 6.2, we discuss a class of

Archimedean copula and have derived the distribution function using the generator

1The results in this chapter have been accepted for publication in Journal of Applied Mathe-
matics and Statistics(see Preethi and Sankaran (2016))
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function. Section 6.3 deals with the dependence structure as well as the tail mono-

tonicity of the copula. We have derived the Kendall’s measure and also a measure

based on Blomqvist’s β. In Section 6.4, we introduce different bivariate distribu-

tions useful in reliability analysis. Section 6.5 discusses the inference procedure of

the copula model. We then apply the proposed model to a real data set. Finally,

Section 6.6 summarizes the major conclusions of the study.

6.2 The copula model

As we have already defined in (1.8), a copula C(u, v) is said to be Archimedean if

there exists a representation of the form

C(u, v) = φ[−1](φ(u) + φ(v)) (6.1)

where φ is a continuous, strictly decreasing function from I to [0,∞) such that

φ(1) = 0 and φ[−1] is the pseudo-inverse of φ. φ is called the generator of C(u, v).

From (1.10), we have that, for every Archimedean copula with generator φ, there

exists F ∗(t) = 1− φ−1(t).

If we choose the generator as

φθ(t) =

(
1

t
− 1

)θ
, θ ∈ [1,∞) (6.2)

then the univariate cumulative distribution function is obtained as

F ∗θ (t) =
1

1 + t−
1
θ

, t > 0.
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From (6.2), we obtain the one-parameter Archimedean copula as,

Cθ(u, v) =

1 +

((
1

u
− 1

)θ
+

(
1

v
− 1

)θ) 1
θ

−1

; θ ∈ [1,∞). (6.3)

The copula density is

cθ(u, v) =


( 1
u
−1)

θ
( 1
v
−1)

θ
(
( 1
u
−1)

θ
+( 1

v
−1)

θ
) 1
θ
−2
(
θ+(θ+1)

(
( 1
u
−1)

θ
+( 1

v
−1)

θ
)1/θ
−1

)
(u−1)u(v−1)v

((
( 1
u
−1)

θ
+( 1

v
−1)

θ
)1/θ

+1

)3 ; 0 < u, v < 1,

0 otherwise.

(6.4)

The conditional copula densities are given by,

cv|u(u, v) =
∂C(u, v)

∂u

=

(
1
u
− 1
)θ−1

((
1
u
− 1
)θ

+
(

1
v
− 1
)θ) 1

θ
−1

u2

(((
1
u
− 1
)θ

+
(

1
v
− 1
)θ)1/θ

+ 1

)2 ; 0 < v < 1

and

cu|v(u, v) =
∂C(u, v)

∂v

=

(
1
v
− 1
)θ−1

((
1
u
− 1
)θ

+
(

1
v
− 1
)θ) 1

θ
−1

v2

(((
1
u
− 1
)θ

+
(

1
v
− 1
)θ)1/θ

+ 1

)2 ; 0 < u < 1.

The survival copula is given by,

Ĉ(u, v) = u+v−1+Cθ(1−u, 1−v) =
1((

u
1−u

)θ
+
(

v
1−v

)θ)1/θ

+ 1

+u+v−1; 0 < u, v < 1.
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The distribution function of W ∗ = C(U, V ) is given by;

KC(w) = w − φ(w)

φ′(w)

=

(
1
w
− 1
)
w2

θ
+ w

=
w(θ − w + 1)

θ
; 0 < w < 1.

The density function of W ∗ is;

k(w) =
d

dw
KC(w) =

θ − 2w + 1

θ
; 0 < w < 1.

This function can be employed to check whether the proposed copula model is a

good fit for the data by plotting the cumulative distribution function KC(w) and

the empirical distribution function Kn(w) from the data, as seen in Section 6.5.

Let Cθ1(u, v) and Cθ2(u, v) be members of family (6.3) with parameters θ1 and θ2

and with generators φθ1(t) and φθ2(t) respectively. Note that
φθ1(t)

φθ2(t)
=
(

1
t
− 1
)θ1−θ2 .

If θ1 ≤ θ2, then we have
φθ1(t)

φθ2(t)
is non-decreasing in t on (0,1) and hence C1 ≺ C2.

Hence this family is positively ordered (see Remark 1.3).

The diagonal section is,

δ(t) =
1

21/θ
((

1
t
− 1
)θ)1/θ

+ 1

, 0 < t < 1.

The contour diagram and the plot of the diagonal section of copula are given in

Figure 6.1 and in Figure 6.2 respectively.
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Figure 6.1: Contour diagram of Cθ(u, v)
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Figure 6.2: Plot of diagonal section of Cθ(u, v)
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6.3 Dependence concepts

To measure the dependence or association between random variables there are vari-

ety of methods available and it is the copula which can capture the distribution-free

or scale-invariant nature of the association between random variables. Here we

discuss the tail dependence properties, tail monotonicity and Kendall’s tau for the

copula model (6.3).

6.3.1 Tail dependence properties

For the copula (6.3), the lower and upper tail dependence are respectively obtained

as:

λL = lim
u→0

C(u, u)

u
= lim

u→0

1

u

(
21/θ

((
1
u
− 1
)θ)1/θ

+ 1

) = 2−1/θ

and

λU = lim
u→1

1− 2u+ C(u, u)

1− u
= lim

u→1

1

21/θ
(
( 1
u
−1)

θ
)1/θ

+1
− 2u+ 1

1− u
= 2− 21/θ.

The copula possess both upper and lower tail dependence. The values of λL and

λU are special cases of the Clayton-Gumbel survival (BB1) copula family given in

Joe and Hu (1996).
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6.3.2 Tail monotonicity

Let X and Y be continuous random variables with the copula given in (6.3). Then

we have

C(u, v)

u
=

1

u

(((
1
u
− 1
)θ

+
(

1
v
− 1
)θ)1/θ

+ 1

) , (6.5)

v − C(u, v)

1− u
=

v − 1((
1
u
− 1
)θ

+
(

1
v
− 1
)θ)1/θ

+ 1

1− u
, (6.6)

and

∂c(v|u)

∂u
=

(1−u)θ−2( 1
u)

θ+2
(
( 1
u
−1)

θ
+( 1

v
−1)

θ
) 1
θ
−2
(

2( 1
u
−1)

θ
(
u
(
( 1
u
−1)

θ
+( 1

v
−1)

θ
)1/θ

+u−1

))
((

( 1
u
−1)

θ
+( 1

v
−1)

θ
)1/θ

+1

)3 −

(1−u)θ−2( 1
u)

θ+2
(θ−2u+1)( 1

v
−1)

θ
(
( 1
u
−1)

θ
+( 1

v
−1)

θ
) 1
θ
−2
((

( 1
u
−1)

θ
+( 1

v
−1)

θ
)1/θ

+1

)
((

( 1
u
−1)

θ
+( 1

v
−1)

θ
)1/θ

+1

)3

.

(6.7)

We observe that
∂C(u, v)

∂u
≤ C(u, v)

u
for almost all u and hence LTD(Y |X), and

similarly we can prove LTD(X|Y ). It can also be observed that
∂C(u, v)

∂u
≥

v − C(u, v)

1− u
for almost all u which implies RTI(Y |X) and it can also be shown

that Ĉ(u, v) is RTI(X|Y ). Thus Ĉ(u, v) is RTI and C(u, v) is LTD(refer Nelsen

(2006)).

It may be noted that
∂c(v|u)

∂u
< 0 for all values of θ ∈ [1,∞), therefore C(u, v) in

(6.3) is positively regression dependent.

Remark 6.1. As the copula described in (6.3) is left tail decreasing (LTD), the

cumulative distribution function F ∗θ (.) is DFR (refer Avérous and Dortet-Bernadet

(2004)).
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6.3.3 Kendall’s tau

As already mentioned, Spearman’s rho and Kendall’s tau are considered to be the

measures of degree of monotonic dependence between U and V , whereas Pearson’s

correlation measures only the linear dependence.

Theorem 6.1. The Kendall’s tau for the copula in (6.3) is given by,

τCθ = 1− 2

3θ
. (6.8)

Proof. Let U and V be random variables with W ∗ = Cθ(U, V ). We have

E(W ∗) =
1

2
− 1

6θ
.

Therefore from (5.10), Kendall’s measure of association between U and V is given

by,

τCθ = 1− 2

3θ
.

Since the Kendall’s τCθ is positive, the pair (U, V ) is PQD for all values of θ ∈ [1,∞).

The τCθ value lies in the interval [0.33,1) which means that the copula in (6.3)

accounts for both weaker and strong positive dependence. The plot of Kendall’s τCθ

is given in Figure 6.3.

For the copula in (6.3), the measure based on Blomqvist’s β is obtained as

βC =
4

21/θ + 1
− 1.
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Figure 6.3: Plot of Kendall’s τCθ

The values of βC is positive ⇒ (U, V ) is PQD.

Remark 6.2. As the copula described in (6.3) is PQD, the cumulative distribution

function F ∗θ (.) is new worse than used (NWU) (refer Avérous and Dortet-Bernadet

(2004)).

We have no closed form analytical expression for Spearman’s ρCθ . The plot of ρCθ

is given in Figure 6.4 and the plot of the Archimedean copula is given in Figure 6.5.

6.4 Distributions with various marginals

Copula techniques can be used for the construction of various bivariate distribu-

tions with given marginals. We now construct bivariate distribution functions with

Pareto, Weibull, exponential and Weibull-Logistic marginals.
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Figure 6.5: Plot of Archimedean copula Cθ(u, v)
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6.4.1 Distribution with Pareto marginals

If the marginal distributions of X and Y are Pareto I distributions with F1(x) =

1− x−a = u and F2(y) = 1− y−b = v; x > 1, y > 1, a, b > 0, then the distribution

function of (X, Y ) is given by,

F (x, y) =
1((

1
xa−1

)θ
+
(

1
yb−1

)θ)1/θ

+ 1

; θ ∈ [1,∞). (6.9)

6.4.2 Distribution with Weibull marginals

Assume that the marginal distributions of X and Y are Weibull distributions with

F1(x) = 1 − e−
(
x
η1

)b1
and F2(y) = 1 − e−

(
y
η2

)b2
; x, y > 0, b > 0, ηi > 0 for i = 1, 2.

Substituting u = 1−e−
(
x
η1

)b1
and v = 1−e−

(
y
η2

)b2
in (6.3), we get a class of bivariate

distributions with Weibull marginals.

The distribution function of (X, Y ) is given by

F (x, y) =
1( 1

e(
x
η1 )

b1

−1

)θ

+

(
1

e(
y
η2 )

b2

−1

)θ
1/θ

+ 1

; θ ∈ [1,∞). (6.10)

6.4.3 Distribution with exponential marginals

Let X and Y be exponentially distributed with F1(x) = 1 − e−λx and F2(y) =

1 − e−λy; x, y > 0, λ > 0. Then we obtain a class of bivariate distributions with
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exponential marginals as

F (x, y) =
1((

1
eλx−1

)θ
+
(

1
eλy−1

)θ)1/θ

+ 1

; θ ∈ [1,∞). (6.11)

6.4.4 Distribution with Weibull-Logistic marginals

Let X be distributed as Weibull with F1(x) = 1 − e−(xq )
n

, x, q, n > 0 and Y be

distributed as logistic with F2(y) = 1

e−
y−s
h +1

, −∞ < y < ∞, h > 0. We obtain a

class of bivariate distributions with Weibull-Logistic marginals as

F (x, y) =
1((

e−
y−s
h

)θ
+

(
1

1−e−(
x
q )
n − 1

)θ)1/θ

+ 1

; θ ∈ [1,∞). (6.12)

6.5 Applications

We now apply the proposed copula model (6.3) to a real life data from American

football league, given in Table 2.5. The copula parameters are estimated using the

relation connecting the Kendall’s correlation coefficient τCθ and the copula parame-

ter given in (6.8). The estimated value of Kendall’s τCθ is 0.68 and hence the copula

parameter value θ =2.09. The confidence limits for Kendall’s τCθ and for the copula

parameter θ based on 1000 bootstrap re-samples are [0.505, 0.821] and [1.35, 3.75]

respectively.

The cumulative distribution function KCθ(w) and the empirical distribution func-

tion Kn(w) from the data are plotted in Figure 6.6. We can see that both are
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Figure 6.6: Plot of Kn and KCθ

almost identical. Let C(u, v) be the copula of a random vector (X, Y ). To test the

hypothesis H0 : C(u, v) = Cθ(u, v), we use the statistic given in (4.51).

For the level of test 0.05, L(1−0.05) = 1.358. Since Dn value of the copula discussed

is 0.403 < 1.358, we cannot reject H0 and the copula of (X, Y ) can be approximated

by Cθ(u, v). The marginals of the data set can be fitted by Weibull(1.39, 9.98) and

Weibull(1.16, 14.18) with Kolmogorov-Smirnov test statistic values 0.083 and 0.115

respectively.

To illustrate the applicability of the model in (6.12) we consider the Iris flower data

set which consists of 50 samples. The data are available on http://www.math.uah.edu

/stat/data/Fisher.html. We have considered the variables sepal length and petal

width of the species. The marginals of the data set follow Weibull(7.45, 6.208) and

Logistic(1.22, 0.46). The copula parameter θ is estimated as 1.6. We use the bi-

variate version of Kolmogrov-Smirnov (K.S.) test given in Justel et al. (1997) to

test the goodness of fit. Since the K.S. statistic value D∗ is 0.15 which is less than

the tabled value 0.16 at first percentile, the model (6.12) is fit for the given positive
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dependent data.

Let us consider a one-parameter Archimedean copula of the form,

Cβ(u, v) =
β

log (−eβ + eβ/u + eβ/v)
; β ∈ (0,∞) (6.13)

with the generator

φβ(t) = eβ/t − eβ. (6.14)

The univariate cumulative distribution function F ∗β (t) that corresponds to φ is given

by,

F ∗β (t) = 1− log(eβ + t)−β.

We have, the ratio of derivatives

φ
′

β1
(t)

φ
′
β2

(t)
=
β1

β2

exp

(
β1 − β2

t

)
.

It can be seen that if β1 ≤ β2,
φ
′

β1

φ
′
β2

is non-decreasing on (0,1) and hence C1 ≺ C2.

The copula family (6.13) is also positively ordered.

The distribution function of W ∗ is given by,

KCβ(w) = w − φ(w)

φ′(w)

=
w
(
β + w

(
−eβ− β

w

)
+ w

)
β

; 0 < w < 1.

Theorem 6.2. The Kendall’s tau for the copula in (6.13) is given by,

τCβ =
1

3

(
1 + 2β + 2eββ2 (CoshIntegral [β]− SinhIntegral [β])

)
. (6.15)



Modelling and analysis of a positive dependent Archimedean copula 139

2 4 6 8 10
β

0.4

0.5

0.6

0.7

0.8

0.9

τCβ

Figure 6.7: Plot of Kendall’s τCβ

where SinhIntegral [z] gives the hyperbolic sine integral function and similarly

CoshIntegral [z] gives the hyperbolic cosine integral function.

Since the Kendall’s τCβ is positive, the pair (U, V ) is PQD for all values of β ∈

(0,∞). The plot is given in Figure 6.7.

The copula parameter β is estimated as 1.7 using the relation connecting the

Kendall’s τCβ and the copula parameter. The cumulative distribution function

KCβ(w) and the empirical distribution function Kn(w) in Figure 6.8 can be seen as

almost identical and the Dn value is 0.394 < 1.358. The copula of (X, Y ) can also

be approximated by Cβ(u, v).

Now we compare the above two models to make a conclusion among the models

which suits more appropriate for our data. The choice of our copula which suits best

for the above positive dependent data can be made by using Akaike Information

Criterion (AIC) given in Akaike (1987). A smaller relative AIC represents a better

model fit. We have computed the AIC values of two models and they are -36.52 and
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-24.011 respectively. This indicates that the copula model given in (6.3) is more

appropriate for the data.

6.6 Conclusion

In this chapter we have considered a one-parameter family of Archimedean copula.

The dependence structure of the model has been studied. It is shown that the

copula suits for a positive dependent data set. The model can be extended directly

to multivariate set up and the applicability of the model is illustrated with a data

set.



Chapter 7

A class of bivariate Weibull distributions

and their copulas

7.1 Introduction

The Weibull distribution has been used successfully in many applications due to its

flexible shape and ability to model a wide range of failure time data. The model

can be derived theoretically as a form of extreme value distribution, governing the

time to occurrence of the “weakest link” of many competing failure processes. For

more properties and applications of bivariate Weibull distributions one could refer

to the extensive literature discussed in the introductory chapter.

As discussed in Chapter 1, if any one of the distributions discussed in literature fails

to pass the test of adequacy, the whole process needs to be initiated afresh with

another model. Thus it is appropriate to start with a flexible family of distributions

having enough members that can accommodate different data situations. Further,

when there is very little prior information about the data generating mechanism,

it is appropriate to begin with a family of distributions which is quite flexible in

1The results in this chapter are published in American Journal of Mathematical and Manage-
ment Sciences ”(see Preethi & Sankaran (2017))
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the desired characteristics. Motivated by this fact, we introduce a class of bivari-

ate Weibull distributions in the sense that the marginals are univariate Weibull

distributions.

The rest of the article is organized as follows. In Section 7.2, we introduce a family

of bivariate Weibull distributions. Various members belonging to the family are

identified. The distributional properties of the family are discussed in Section 7.3.

In Section 7.4, we study the dependence structure of the family of distributions.

In Section 7.5 we discuss the inference procedure and apply the proposed class of

models to real data sets. Finally, Section 7.6 summarizes the major conclusions of

the study.

7.2 Bivariate Weibull family

Suppose (X, Y ) is a non-negative random vector having absolutely continuous sur-

vival function F̄ (x, y) = P (X > x, Y > y). In order to construct the proposed

family of bivariate Weibull distributions we require the following characterization

theorem.

Theorem 7.1. Assume that Z is a non-negative random variable with continu-

ous and strictly decreasing survival function Ḡ(z) and cumulative hazard function

H(z) = − log Ḡ(z). Then the random variable Z satisfies the property

P (Z > g(x, y)α|Z > xα) = P (Z > yα) (7.1)
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for all x, y, α > 0 if and only if

g(x, y) = [H−1(H(xα) +H(yα))]
1
α . (7.2)

Proof. By assuming (7.2), we obtain,

P (Z > g(x, y)α|Z > xα) =
P (Z > g(x, y)α)

P (Z > xα)

=
Ḡ(g(x, y)α)

Ḡ(xα)

=
Ḡ [H−1(H(xα) +H(yα))]

Ḡ(xα)
. (7.3)

Note, that the relationship H(z) = − log Ḡ(z) provides,

H−1(t) = Ḡ−1(e−t), t > 0.

Thus,

H−1(H(xα) +H(yα)) = Ḡ−1(exp[−(H(xα) +H(yα))])

= Ḡ−1(Ḡ(xα).Ḡ(yα)) (7.4)

or

Ḡ[H−1(H(xα) +H(yα))] = Ḡ(xα).Ḡ(yα). (7.5)

By substituting (7.5) into (7.3), we have (7.1).
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To prove the converse part we assume (7.1). This is equivalent to,

Ḡ(g(x, y)α) = Ḡ(xα).Ḡ(yα)

= Ḡ [H−1(H(xα) +H(yα))]. (7.6)

Using (7.4) and (7.5), (7.6) leads to (7.2). This completes the proof.

Theorem 7.2. The distribution of the random vector (X, Y ) taking values on

R2+ = {(x, y)|x > 0, y > 0} is bivariate Weibull with survival function of the

form,

F̄ (x, y) = exp[−g(x, y)α], x > 0, y > 0, α > 0 (7.7)

if and only if there exists a bivariate function g(x, y) satisfying,

g(x, y) = [H−1(H(xα) +H(yα))]
1
α (7.8)

and

(1− α) + αg(x, y)α

g(x, y)

∂g

∂x

∂g

∂y
− ∂2g

∂x∂y
≥ 0 (7.9)

where H(.) is the cumulative hazard function of non-negative random variable Z

satisfying (7.1).

Proof. To prove if part, we assume (7.8). As H(x) is strictly increasing, H−1(x) is

also strictly increasing and, therefore, g(x, y) is strictly increasing and also contin-

uous in each of the variables x and y. Further, H(0) = 0 and H(∞) = lim
x→∞

H(x) =

∞, give lim
(x,y)→(0,0)

g(x, y) = 0 and lim
(x,y)→(∞,∞)

g(x, y) =∞. Thus,

lim
x→0

g(x, y) = [H−1(H(yα))]
1
α = y
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and

lim
y→0

g(x, y) = [H−1(H(xα))]
1
α = x.

Thus we obtain,

F̄ (x, 0) = F̄1(x) = e−[H−1(H(xα))] = e−x
α

and

F̄ (0, y) = F̄2(y) = e−[H−1(H(yα))] = e−y
α
.

Conversely, let (X, Y ) be distributed as in (7.7). The time-transformed exponential

model is given by the following.

F̄ (x, y) = W [R(x) +R(y)], x, y > 0 (7.10)

where W (.) is a continuous strictly positive and decreasing convex survival function,

and R : [0,∞)→ [0,∞) is continuous, strictly increasing function satisfying R(0) =

0 and R(∞) = ∞. From (7.7) and (7.8), it can be proved that (7.7) is a time

transformed exponential model with R(z) = H(zα), the cumulative hazard function

of some random variable Z and W (z) = exp[−H−1(z)] is a survival function.

Substituting R(z) = H(zα) and W (z) = exp[−H−1(z)] in (7.10), we have,

F̄ (x, y) = exp[−H−1(H(xα) +H(yα))] = exp[−g(x, y)α].

Let A∗ be the class of univariate distributions satisfying the property (7.1). By

choosing different functional forms of g(x, y) satisfying (7.2), we get a class of bi-

variate distributions which is denoted by B∗. Since the marginal distributions of
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all bivariate distributions are Weibull, we refer the class B∗ as a family of bivariate

Weibull distributions. The family of Archimedean copulas in our discussion also

satisfies all the properties of the time-transformed exponential model.

The marginal survival functions of (7.7) are identical, given by F̄1(x) = e−x
α

and

F̄2(y) = e−y
α
. The survival copula corresponding to (7.7) is as follows.

Ĉ(F̄1(x), F̄2(y)) = Ĉ(u, v) = exp[−g(−(log u)
1
α ,−(log v)

1
α )α] (7.11)

with

g((− log u)
1
α , (− log v)

1
α ) = [H−1(H(− log u) +H(− log v))]

1
α .

Then,

H(− log Ĉ(u, v)) = H(− log u) +H(− log v).

If we set φ(t) = H(− log t), then,

Ĉ(u, v)) = φ−1(φ(u) + φ(v)), 0 < u, v < 1, (7.12)

where φ(.) is a continuous, strictly decreasing function and φ(1) = H(0) = 0. If we

take φ(.) to be convex, then we have an Archimedean survival copula with generator

φ(.). From the above conclusions, we have the following result.

Theorem 7.3. Let Ḡ(.) be a continuous strictly decreasing survival function on

(0,∞) with cumulative hazard function H(.). If we choose the bivariate survival
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function as exp[−g(x, y)α] having Weibull marginals, then the survival copula so

obtained is Archimedean with generator,

φ(t) = − log Ḡ(− log t) = H(− log t)

provided φ(.) is convex. Conversely, a survival function can be generated by Ḡ(.)

via. a bivariate Archimedean copula where Ḡ(.) is such that φ is convex and if the

copula represents a bivariate Weibull law, then the survival function is of the form

exp[−g(x, y)α].

We designate Ḡ(z) as the baseline distribution corresponding to F̄ (x, y). The dif-

ferent choices of the baseline distribution Ḡ(.) as exponential, Weibull, Lomax,

Gompertz and Burr provide bivariate Weibull distributions with Weibull marginals.

The copulas satisfy the conditions given in equations (7.8) and (7.9) with φ(t) =

H(− log t) as convex. We now list various bivariate distributions in class B∗ by

choosing H(z) and g(x, y).

Type I

Let Ḡ1(z) = exp[−λz], z > 0, λ > 0, then H(z) = λz, we have g(x, y) = (xα + yα)
1
α .

The bivariate distribution is the independent Weibull distribution,

F̄ (1)(x, y) = exp[−xα − yα], x, y > 0. (7.13)

The survival copula is the product copula

Ĉ1(u, v) = uv, 0 ≤ u, v ≤ 1.



A class of bivariate Weibull distributions and their copulas 148

Type II

When Ḡ2(z) = exp [−(λz)a] , z > 0, a, λ > 0, represents the Weibull distribution,

then, H (z) = (λz)a and g (x, y) = (xaα + yaα)
1
aα giving,

F̄ (2) (x, y) = exp
[
− (xaα + yaα)

1
a

]
. (7.14)

The following survival copula is valid for a ≥ 1.

Ĉ2 (u, v) = exp
[
−{(− log u)a + (− log v)a}

1
a

]
.

Type III

When Z has Lomax distribution Ḡ3(z) = (1 + βz)−a, z > 0, a, β > 0, we have

H(z) = a log(1 + βz) and g(x, y) = x+ y + βxy. Then,

F̄ (3)(x, y) = exp [−xα − yα − βxαyα], 0 ≤ β ≤ 1 (7.15)

and the copula is,

Ĉ3(u, v) = uv exp [−β log u log v],

usually referred to as the Gumbel-Barnett family in literature.

Type IV

When Ḡ4(z) = exp[−(e
z
θ − 1)θ]; z > 0, θ ≥ 1, giving H(z) = (e

z
θ − 1)θ; θ ≥ 1,

then,

F̄ (4)(x, y) =

(
1 +

((
−1 +

(
e−x

α)−1/θ
)θ

+
(
−1 +

(
e−y

α)−1/θ
)θ) 1

θ

)−θ
; θ ≥ 1

(7.16)
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and the copula

Ĉ4(u, v) =

(
1 +

((
u
−1
θ − 1

)θ
+
(
v
−1
θ − 1

)θ) 1
θ

)−θ
; θ ≥ 1.

TypeV

When Ḡ5(z) = 1 − (1 − exp(−z))θ; z > 0, θ ≥ 1 and H(z) = − log[1 − (1 −

exp(−z))θ]; θ ≥ 1, then the corresponding bivariate survival function is as follows.

F̄ (5)(x, y) = 1−
((

1− e−x
α)θ

+
(
1− e−y

α)θ − (1− e−x
α)θ(

1− e−y
α)θ) 1

θ
; θ ≥ 1

(7.17)

and the copula is

Ĉ5(u, v) = 1−
(

(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ
) 1
θ
; θ ≥ 1.

Type VI

If Z follows the Gompertz distribution Ḡ6(z) = exp
[
−B (Cz−1)

log C

]
, z ≥ 0, B, C > 0,

then H(z) = B(Cz−1)
log C

, so that,

F̄ (6)(x, y) = (eθx
α

+ eθy
α − 1)−

1
θ (7.18)

which is the gamma fraility model derived by Bjarnason and Hougaard (2000) with

the parameter λ = 1. The survival copula is

Ĉ6(u, v) = max[(u−θ + v−θ − 1)−
1
θ , 0]

where θ = logC 6= 0 and −1 < θ < ∞, which is the well known Clayton survival
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copula used in survival analysis.

Type VII

Let Ḡ7(z) = exp [−θ ((z + 1)a − 1)] , z ≥ 0, a > 0, θ > 0. Then we have H(z) =

θ [(z + 1)a − 1] which leads to the bivariate Weibull,

F̄ (7) (x, y) = exp
[
1− {(xα + 1)a + (yα + 1)a − 1}

1
a

]
(7.19)

with copula

Ĉ7 (u, v) = max
[
1− ((1− log u)a + (1− log v)a − 1)

1
a , 0
]
.

Type VIII

If Ḡ8(z) = (2ez − 1)−σ, σ > 0, we have H(z) = σ log(2ez − 1). Thus,

F̄ (8)(x, y) = 2[1 + (2ex
α − 1)(2ey

α − 1)]−1 (7.20)

and

Ĉ8(u, v) =
uv

1 + (1− u)(1− v)
.

It is known from (1.10) that for every Archimedean copula with generator φ, there

exists F̄ ∗(z) = φ−1(z), a univariate survival function taking values in [0,∞) with

mode at 0. From our earlier relationship φ(z) = H(− log z) we have,

F̄ ∗(z) = exp[−H−1(z)].
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The survival function F̄ ∗(z) corresponding to the various types of models discussed,

and their generators are given in Table 7.1.

7.3 Properties of the class of bivariate Weibull

distributions

The marginal distributions of the family of distributions are univariate Weibull

distributions. The joint density functions of the various models in B∗ are presented

in Table 7.2.

7.3.1 Conditional distributions

The conditional densities f ∗1 (x|y) = f(x,y)
a2(y)

and f ∗2 (y|x) = f(x,y)
a1(x)

, where f(x, y) is the

joint density function and a1(x) and a2(y) are, respectively, the marginal density

functions of X and Y are exhibited in Table 7.3. The conditional survival functions

P (X > x|Y > y) and P (Y > y|X > x) are given in Table 7.4.

7.3.2 Hazard rate function

As already discussed in Chapter 4, one of the basic concepts useful for the analysis

of lifetime data is hazard rates, which provides more information than the survival

function about the pattern of failure. We use the bivariate vector-valued hazard

rate given in (4.1).
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The random vector (X, Y ) has increasing (decreasing) hazard rate, IHR (DHR) if

−∂ log F̄ (x, y)

∂x
is an increasing ( a decreasing) function of x. We observe that,

h1(x, y) =
∂(g(x, y)α)

∂x
(7.21)

and

h2(x, y) =
∂(g(x, y)α)

∂y
. (7.22)

The hazard rates for the bivariate Weibull models are given in Table 7.5. From

Table 7.5, it follows that the members of the family have an IHR or DHR property

depending on the parameter values.

The copula hazard rates as defined in (4.6) and (4.7) for the B∗ class of distributions

are given in Table 7.6.

7.4 Dependence structure

To study the association between the two random variables, we use the numerical

measure Kendall’s tau and the local dependence measure say the Clayton-Oakes

measure, which give the dependence structure at specific values of x and y and,

also, the tail dependence properties of the family B∗.

7.4.1 Kendall’s tau

We present the Kendall’s tau in terms of copula as it is computationally easy to

obtain this dependence measure. The Kendall’s tau of the bivariate distributions
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are given in Table 7.7. For type I model, the variables are independent, but for types

III and VIII models the measure is negative. It can be noticed in Table 7.7 that

for type II model, the measure is positive. However, for types VI and VII models,

the association measure is positive, negative or zero depending on the parameter

values.

We have the following proposition discussing reliability properties.

Proposition 7.4. A distribution in B∗ or the corresponding survival copula is PQD

(LTD(Y |X),PKD, stochastically increasing) if and only if Ḡ(.) is new better than

used (increasing failure rate, increasing failure rate average,strongly unimodal).

The proof follows from Averous and Dortet-Bernadit (2005).

The type II bivariate Weibull distribution is PQD as the baseline Weibull distribu-

tion is new better than used (NBU) for α > 1.

Remark 7.1. Type VII distribution is RTI(Y |X) ⇔ h1(x, y) ≤ 1 ⇔ Z is IHR

for θ > 0, a ≥ 1, 0 < α ≤ 1.

7.4.2 Clayton measure

The values of θ(x, y) and the nature of dependence for various models are presented

in Table 7.8. From the table it can be seen that for type I model, the variables

X and Y are independent. For types II and IV models, X and Y have positive

association and for type VIII model, the variables are negatively associated. It is

to be noted that for types VI and VII models, the variables X and Y are positively

or negatively associated or independent based on the parameter values.
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Table 7.1: Generators and induced distributions

Model type φ(z) F̄ ∗(z)

I −λ log z exp(− z
λ
), λ > 0, z > 0.

II λa(− log z)a exp(− z
1
a

λ
), a ≥ 1, λ > 0, z > 0.

III a log(1− β log z) exp[1−ez/a
β

], 0 ≤ β ≤ 1, a > 0, z > 0.

IV (z
−1
θ − 1)θ (1 + z

1
θ )−θ, θ ≥ 1, k > 0, z > 0.

V − log[1− (1− z)θ] 1− (1− e−z) 1
θ , θ ≥ 1, z > 0.

VI Bθ−1(z−θ − 1) (1 + θz
B

)−
1
θ θ ≥ −1, θ 6= 0, z > 0.

VII θ[(1− log z)a − 1] exp[1− ( z
θ

+ 1)
1
a ], a > 0, z > 0.

VIII σ log(2
z
− 1) 2

1+e
z
σ
, σ > 0, z > 0.
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Table 7.2: Joint density function f(x, y) for bivariate Weibull models

Model type f(x, y)

I α2xα−1yα−1e−x
α−yα ;x, y, α > 0.

II α2xαa−1yαa−1e(−xαa−yαa)1/a (−xαa − yαa)
1
a
−2
(

(−xαa − yαa)1/a − a+ 1
)

;x, y, α, a > 0.

III α2xα−1yα−1ex
α(−(βyα+1))−yα (β (xα (βyα + 1) + yα − 1) + 1) ;x, y, α > 0, 0 ≤ β ≤ 1.

IV
x−1+αy−1+αα2(

−1 + (e−xα)
1
θ

)(
−1 + (e−yα)

1
θ

)
θ

(
−1 +

(
e−x

α)−1/θ
)θ(
−1 +

(
e−y

α)−1/θ
)θ

((
−1 +

(
e−x

α)−1/θ
)θ

+
(
−1 +

(
e−y

α)−1/θ
)θ)−2+ 1

θ

(
1 +

((
−1 +

(
e−x

α)−1/θ
)θ

+
(
−1 +

(
e−y

α)−1/θ
)θ) 1

θ

)−2−θ

(
−1 + θ + 2

((
−1 +

(
e−x

α)−1/θ
)θ

+
(
−1 +

(
e−y

α)−1/θ
)θ) 1

θ

θ

)
;x, y, α > 0, θ ≥ 1.

V −
α2xα−1yα−1(1−e−xα)

θ
(1−e−yα)

θ
(
(1−e−xα)

θ
−
(
(1−e−xα)

θ
−1
)
(1−e−yα)

θ
) 1
θ
−2((

(1−e−xα)
θ
−1
)(

(1−e−yα)
θ
−1
)
−θ
)

(exα−1)(eyα−1)
;

x, y, α > 0, θ ≥ 1.

VI α2(θ + 1)xα−1yα−1eθ(x
α+yα)

(
eθx

α
+ eθy

α − 1
)− 1

θ
−2

;x, y, α > 0,−1 < θ <∞.
VII α2xα−1yα−1 (xα + 1)a−1 (yα + 1)a−1 e1−((xα+1)a+(yα+1)a−1)1/a

((xα + 1)a + (yα + 1)a − 1)
1
a
−2
(

((xα + 1)a + (yα + 1)a − 1)
1/a

+ a− 1
)

;x, y, a, α > 0.

VIII −
2α2xα−1yα−1ex

α+yα
((

2ex
α − 1

)
ey

α − exα
)

(−2exα+yα + exα + eyα − 1)3 ;x, y, α > 0.
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Table 7.3: Conditional densities f∗1 (x|y) and f∗2 (y|x) for bivariate Weibull models

Model type f ∗1 (x|y) f ∗2 (y|x)

I −αe−xαxα−1 −αe−yαyα−1

II (−αxαa−1yα(a−1)e(−xαa−yαa)1/a+yα (−xαa − yαa)
1
a
−2 −αxα(a−1)yαa−1e(−xαa−yαa)1/a+xα (−xαa − yαa)

1
a
−2(

(−xαa − yαa)1/a − a+ 1
) (

(−xαa − yαa)1/a − a+ 1
)

III −αxα−1e−x
α(βyα+1) (β (xα (βyα + 1) + yα − 1) + 1) −αyα−1ey

α(−(βxα+1)) (β (xα (βyα + 1) + yα − 1) + 1)

V ey
α
x−1+αα

(−1+exα)(−1+eyα)

(
1− e−x

α)θ(
1− e−y

α)θ ex
α
y−1+αα

(−1+exα)(−1+eyα)

(
1− e−x

α)θ(
1− e−y

α)θ((
1− e−x

α)θ − (1− e−y
α)θ (−1 +

(
1− e−x

α)θ))−2+ 1
θ
((

1− e−x
α)θ − (1− e−y

α)θ (−1 +
(
1− e−x

α)θ))−2+ 1
θ((

−1 +
(
1− e−x

α)θ)(−1 +
(
1− e−y

α)θ)− θ) ((
−1 +

(
1− e−x

α)θ)(−1 +
(
1− e−y

α)θ)− θ)
VI −α(θ + 1)xα−1eθ(x

α+yα)+yα
(
eθx

α
+ eθy

α − 1
)− 1

θ
−2 −α(θ + 1)yα−1e(θ+1)xα+θyα

(
eθx

α
+ eθy

α − 1
)− 1

θ
−2

VIII
2αxα−1ex

α+2yα
((

2ex
α − 1

)
ey

α − exα
)

(−2exα+yα + exα + eyα − 1)3 −
2αyα−1e2xα+yα

(
−2ex

α+yα + ex
α

+ ey
α)

(−2exα+yα + exα + eyα − 1)3
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Table 7.4: Conditional survival functions for bivariate Weibull models

Model type P (X > x|Y > y) P (Y > y|X > x)

I e−x
α

e−y
α

II e(−xaα−yaα)1/a+yα e(−xaα−yaα)1/a+xα

III e−x
α(βyα+1) ey

α(−(βxα+1))

VI ey
α (
eθx

α
+ eθy

α − 1
)−1/θ

ex
α (
eθx

α
+ eθy

α − 1
)−1/θ

VII e−((xα+1)a+(yα+1)a−1)1/a+yα+1 e−((xα+1)b+(yα+1)b−1)
1/b

+xα+1

VIII
2ey

α

(2exα − 1) (2eyα − 1) + 1

2ex
α

(2exα − 1) (2eyα − 1) + 1
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Table 7.5: Bivariate hazard rates for bivariate Weibull models

Model type h1(x, y) Behaviour of hazard rates

I αx−1+α increasing in x for α > 1,
decreasing in x for 0 < α ≤ 1.

II αx−1+aα(xaα + yaα)−1+ 1
a decreasing in x for α ≤ (>)1, a < 1,

increasing in x for a ≥ 1, α = 1.

III αx−1+α(1 + βyα) increasing in x for α > 1,
decreasing in x for 0 < α < 1;

0 ≤ β ≤ 1.

IV
αxα−1(e−x

α
)
−1/θ

(
(e−x

α
)
−1/θ

−1

)θ−1
((

(e−x
α
)
−1/θ

−1

)θ
+

(
(e−y

α
)
−1/θ

−1

)θ) 1
θ
−1

((
(e−xα)

−1/θ
−1

)θ
+

(
(e−yα)

−1/θ
−1

)θ)1/θ

+1

decreasing in x for α ≤ 0.5, θ ≥ 1,

increasing in x for α > 0.5, θ ≥ 1.

V
αxα−1(1−e−xα)

θ
(
(1−e−yα)

θ
−1
)(

(1−e−xα)
θ
−
(
(1−e−xα)

θ
−1
)
(1−e−yα)

θ
) 1
θ
−1

(exα−1)
((

(1−e−xα)
θ
−
(
(1−e−xα)

θ
−1
)
(1−e−yα)

θ
)1/θ
−1

) decreasing in x for α < 1, θ ≥ 1,

increasing in x for α ≥ 1, θ ≥ 1.

VI
αeθx

α
log (−1 + eθx

α
+ eθy

α
)
−(1+θ)

θ x−1+α

−1 + eθxα + eθyα
decreasing in x for α > 0, θ > 0.

VII αx−1+α(1 + xα)−1+a(−1 + (1 + xα)a + (1 + yα)a)−1+ 1
a decreasing in x for α < 1, a > 0,

increasing in x for α > 1, a > 0.

VIII
2αex

α
(−1 + 2ey

α
)x−1+α

1 + (−1 + 2exα)(−1 + 2eyα)
decreasing in x for 0 < α ≤ 1,

increasing in x for α > 1.

Table 7.6: Copula hazard rates for the family B∗

Model type (G1(u, v), G2(u, v))
I (1, 1)

II ((− log u)a + (− log v)a)
1
a ((− log u)a−1, (− log v)a−1)

III (1− β log u, 1− β log v)

IV
((
u−1/θ − 1

)θ
+
(
v−1/θ − 1

)θ) 1
θ
−1
(((

u−1/θ − 1
)θ

+
(
v−1/θ − 1

)θ)1/θ

+ 1

)−θ−1 (
u1− θ+1

θ

(
u−1/θ − 1

)θ−1
, v1− θ+1

θ

(
v−1/θ − 1

)θ−1
)

V
(
(1− u)θ −

(
(1− u)θ − 1

)
(1− v)θ

) 1
θ
−1 (

u
(
−(1− u)θ−1

) (
(1− v)θ − 1

)
, v
(
−
(
(1− u)θ − 1

))
(1− v)θ−1

)
VI (u−θ + v−θ − 1)−1(u−θ, v−θ)

VIII (1 + (1− u)(1− v))−1(2 + 2uv − v, 2 + 2uv − u)
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Table 7.7: Kendall’s tau for the copula models

Model type φ(t) Kendall’s tau Dependence

I −λ log t 0 Independent.

II λa(− log(t))a 1− 1

a
Positive .

III a log(1− β log(t)) e2/βEi

(
− 2
β

)
Negative .

VI
B
(
t−θ − 1

)
θ

θ

θ + 2
Positive for θ > 0,

Negative for −1 < θ < 0.

VII θ ((1− log(t))a − 1) −(a− 1) (2e2Ea(2)− 1)

a
Positive for a > 1,

Negative for a < 1.
VIII σ log

(
2
t
− 1
)

1 + 2
3
(1− 4 log(2)) = −0.182 Negative.

Table 7.8: Clayton measure for bivariate Weibull models

Model type θ(x, y) Dependence

I 1 Independent

II e−(−xaα−yaα)1/a − (a− 1) (−xaα − yaα)−1/a Positive

III 1− β

(βxα + 1) (βyα + 1)
Negative

IV 2 +

(θ − 1)

(((
e−x

α)−1/θ − 1
)θ

+
((
e−y

α)−1/θ − 1
)θ)−1/θ

θ
Positive

VI 1 + θ Positive for θ > 0,
Independent for θ = 0,

Negative for −1 < θ < 0.

VII 1 + (a− 1) ((xα + 1)a + (yα + 1)a − 1)
−1/a

Positive for a > 1, α ≤ (≥)1,
Independent for a = 1, α ≤ (≥ 1),
Negative for α < 1, a ≤ 1(≥ 1).

VIII 1− 1

(2exα − 1) (2eyα − 1)
Negative
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7.4.3 Tail dependence measure

The tail dependent measures of the members of the family are given in Table 7.9. We

can observe that model IV exhibits both upper and lower tail dependence, whereas

model V has upper tail dependence and model VI has lower tail dependence. The

rest of the models have neither lower nor upper tail dependence.

Table 7.9: Tail dependent measures for the copula models

Model type λU λL

I 0 0

II 0 0

III 0 0

IV 2− 2
1
θ

1
2

V 2− 2
1
θ 0

VI 0 2−
1
θ

7.5 Inference and data analysis

To apply the proposed models to real life data, the inference procedures of the

models have to be studied. The unknown parameters of the model are estimated

using the method of maximum likelihood. Based on a random sample of n pairs

(xi, yi), i = 1, ..., n the estimates of the parameters are obtained by maximising the
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likelihood function. We now apply the proposed family of distributions to two real

life data sets.

Example 7.1. The models (7.14),(7.16), (7.17), (7.18) and (7.19) are applied to the

data set from Meintanis (2007). The data represent the football (soccer) data where

at least one goal scored by the home team and at least one goal scored directly from

a penalty kick, foul kick or any other direct kick (all goals together will be called as

kick goals) by any team have been considered. The variable X represents the time

in minutes of the first kick goal scored by any team, and Y represents the first goal

of any type scored by the home team.

The marginals of the data set follow Weibull(2.12, 1) and Weibull(1.42, 1) with

Kolmogorov-Smirnov test statistic values 0.083 and 0.105, respectively. Since ana-

lytically closed form expressions are not available for the estimators, one has to use

the numerical method. The maximum likelihood estimates of the parameters of the

models (7.14),(7.16), (7.17), (7.18), and (7.19) are given in Table 7.10. From the

estimated values of the parameters given in Table 7.10, we make a conclusion that

the variables X and Y are positively correlated for the models (7.14),(7.16), (7.17),

(7.18), and (7.19).

We use the bivariate version of Kolmogrov-Smirnov (K.S.) test given in Justel et

al. (1997) to test the goodness of fit. The K.S. statistic values D∗ of the models

(7.14),(7.16), (7.17), (7.18) and (7.19) are given in Table 7.10. Since the D∗ values

are less than the tabled value at 25th percentile, the models (7.14),(7.16), (7.17),

(7.18), and (7.19) fit for the given positive dependent data.

Now we compare the above models to make a conclusion which suits more appro-

priate for our data. The choice of our model for the above positive dependent data
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can be made by using Akaike Information Criteria (AIC), given in Akaike (1987).

We have computed the AIC values which is given in Table 7.10. From Table 7.10,

we conclude that the model given in (7.17) is more appropriate for the data as a

smaller relative AIC represents a better model fit.

Example 7.2. We then consider the Iris flower data set available on http://www.math.

uah.edu/stat/data/Fisher.html. We have considered the variables sepal length

and sepal width of the three species. We made a suitable transformation to the

data points. We have also done the goodness of fit test for the marginals, and

the marginals of the transformed data set can be fitted by Weibull(7.22, 1) and

Weibull(7.45, 1) with Kolmogorov-Smirnov test statistic values 0.122 and 0.081,

respectively.

The maximum likelihood estimates of the parameters of the models (7.15) and

(7.20), and the AIC values along with the test statistic values, are given in Table

7.11. Since the test statistic values are less than the tabled value at 5th percentile,

we conclude that the models (7.15) and (7.20) fit for the given data set. As the

model given in (7.20) has less AIC value, it is more appropriate for the given data.

From the estimated values of the parameters given in Table 7.11, we conclude that

the variables X and Y are negatively correlated for the models (7.15) and (7.20).

7.6 Conclusion

We have derived a class of bivariate Weibull distributions and have studied its

distributional properties. The proposed family includes some existing bivariate

models, as well as new bivariate distributions. The family of distributions is useful
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for modelling both negative and positive dependent data structures. The proposed

class of distributions has been applied to two real life data sets.

Table 7.10: Parameter estimates of the models using Soccer data

Model type Parameter estimates Statistic value (D∗) AIC value

II α̂ = 1.705 and â = 1.36 0.125 102.57

IV α̂ = 1.58 and θ̂ = 1.145 0.140 102.89

V α̂ = 1.69 and θ̂ = 1.45 0.143 102.34

VI θ̂ = 0.787 and α̂ = 1.63 0.142 104.57

VII â = 2.50 and α̂ = 1.66 0.139 104.39

Table 7.11: Parameter estimates of the models using Fisher Iris data

Model type Parameter estimates Statistic value (D∗) AIC value

III α̂ = 7.32 and β̂ = 0.07 0.136 -324.29

VIII α̂ = 7.28 0.137 -328.47





Chapter 8

Summary and future work

8.1 Summary

In the analysis of statistical data, a fundamental problem that emerges is the iden-

tification of an appropriate model that can describe the real situation. Once we

recognize the correct model the original problem can be analysed with lesser effort,

as the properties of the model comes handy to the analyst in drawing inferences

and decisions. Owing to the availability of a large number of probability distribu-

tions at disposal, very often the selection of a particular one in a specific situation

turns out to be difficult, unless one has a reasonable basis or criteria that justifies

the choice. The identification of the appropriate distribution can be accomplished

in more than one way. A major limitation of the probability models discussed in

literature are that they are individual in nature, each based on specified properties

so that they lack a uniform framework. The models have low flexibility in the sense

that they cannot conform to different real data situation warranting inspection of

each model separately and also a different family is needed for each marginal dis-

tribution. Copulas provide generalized approaches for modelling joint distributions

and dependence aspects, in the sense that copulas contain several bivariate distri-

butions by changing the form of the marginal distributions. Thus copula models

165
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have more flexibility in terms of forms of distributions, dependence relationships,

number of parameters, and relatively easier practical implementation. They have

the advantage that the constituent marginal distributions and the copula function

can be modelled and estimated separately. Further, copulas remain invariant under

increasing and continuous transformations. There are occasions when information

about the marginal distributions are known or captured from the data on joint life-

times. In such cases the only problem of interest to the analyst is to understand

how the marginals are tied together in the joint form. Measures and concepts of

dependence assist in distinguishing the appropriate form, for which nonparametric

measures are readily available for copulas. In situations where it is difficult to de-

rive a model, families of distributions provide functionally simple approximations.

Motivated by these facts, in the present thesis, we have derived various families of

distributions useful in different data situations.

In Chapter 2, we have introduced a family of bivariate Pareto distributions using

a generalized version of dullness property. Some important bivariate Pareto distri-

butions were derived as special cases. We have studied the distributional as well as

dependence properties of the family. Finally, the family of distributions was applied

to two real life data situations.

In Chapter 3, the characterization properties of a family of bivariate Pareto distri-

butions introduced in Chapter 2 were studied. Two measures of income inequality

namely income gap ratio and mean left proportional residual income were defined

in the bivariate case. We have also introduced bivariate generalized failure rate use-

ful in reliability analysis. Characterizations, using the above concepts, for various

members of the family of bivariate Pareto distributions were also derived.

In Chapter 4, a variant approach was proposed by defining reliability functions
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directly from the copula rather than using the distribution-based measures in mod-

elling survival data. The advantages of the proposed functions over the reliability

measures were discussed. Characterizations of some well known copulas using the

proposed measures were also discussed.

In Chapter 5, we discussed a one-parameter family of Archimedean copulas which

suits for a negative dependent data. The distributional properties as well as the

dependence measures such as tail dependence, tail monotonicity, Kendall’s tau,

Spearman’s rho and measure based on Blomqvist’s β were discussed. The local de-

pendence measures such as ψ-measure and the Clayton-Oakes association measure

(θ- measure) for the copulas were discussed. We have applied the copulas to a real

data set.

In Chapter 6, we discussed a positive dependent Archimedean copula useful for

modelling positive dependent data sets. Various properties of the model like the

dependence structure, tail monotonicity, Kendall’s measure and measure based on

Blomqvist’s β were discussed. We have also introduced different bivariate distribu-

tions useful in reliability analysis. The proposed model was fitted to a real data.

A comparison with other positive dependent Archimedean copula was done using

AIC measure.

In Chapter 7, we have discussed a class of bivariate Weibull distributions. This

class includes some of the existing models as members. Our choice of the marginal

distributions as Weibull lead to a copula for the proposed family. The general form

of the copula was Archimedean. The dependency structure of the family was inves-

tigated. Finally, the family of distributions was applied to two real life data sets

and we have done comparison among the models using AIC measure to make a

conclusion, which suits more appropriate for our data sets.
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8.2 Future work

In Chapter 2, a family of bivariate Pareto distributions was derived using a general-

ized version of dullness property. The copulas of the member distributions were also

discussed. The dependence measures of these distributions as well as the reliability

properties of the models using copulas is an area to be studied. Various character-

izations of the family of bivariate Pareto distributions discussed in Chapter 3 can

be extended to the multivariate set up.

We have expressed the copula-based reliability concepts such as hazard rate and

mean residual life function in the bivariate case in Chapter 4. The methodology

can be extended to the general p-variate case, in the following way.

Let X = (X1, ..., Xp) be a vector of lifetimes with survival function

F̄ (x) = P [X1 > x1, ..., Xp > xp]

which is continuous with strictly decreasing and continuous one-dimensional marginals

F̄i(xi), i = 1, 2, ..., p. The hazard rate function of X is

(h1(x), h2(x), ..., hp(x))

where

hi(x) =
−∂ log F̄ (x)

∂xi
, i = 1, 2, ..., p. (8.1)
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Using (8.1), we obtain the multivariate copula-based hazard rate as the vector with

components

G1(u) =
A1(u)

A1(u1, 1, ..., 1)
, G2(u) =

A2(u)

A2(1, u2, 1, ..., 1)
, ..., Gp(u) =

Ap(u)

Ap(1, 1, ...1, up)

where u = (u1, u2, ..., up) and Ai(u) = hi(F̄
−1
1 (u1), ..., F̄−1

p (up)).

From

Gi(u) = ui
∂ log Ĉ(u)

∂ui
, i = 1, 2, ..., p

we arrive at

Ĉ(u) = up exp

− 1∫
u1

G1(p, u2, ..., up)

p
dp−

1∫
u2

G2(1, p, u3, ..., up)

p
dp− ...

−
1∫

up−1

Gp(1, 1, ..., p, up)

p
dp

 .
The (p − 1) components of the copula hazard rate are enough to determine Ĉ(u).

By similar calculations we can work out the result in the case of the mean residual

life function which also requires only (p − 1) components to evaluate Ĉ(u). This

idea can be employed to derive other reliability concepts such as reversed hazard

rate, mean activity time etc. in terms of copulas.

The methodology discussed in Chapter 7 for the bivariate Weibull models can be

generalized to the p-variate set up by choosing

g(x1, x2, ..., xp) = [H−1(H(xα1 ) +H(xα2 ) + ...H(xαp ))]
1
α , xi > 0, α > 0
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which provides the joint survival function as

F̄ (x1, x2, ..., xp) = exp[−g(x1, x2, ..., xp)
α], xi > 0, α > 0. (8.2)

Copula models have become one of the most widely used tools in the applied mod-

elling of multivariate data. Bayesian methods are popular in recent times to obtain

efficient estimates of the parameters. However, there has been only limited works

in Bayesian techniques in the formulation and estimation of copula models. This is

an area of research that remains to be explored.
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de l’Institut international de statistique, 23–40.

Freund, J. E. (1961). A bivariate extension of the exponential distribution. Journal

of the American Statistical Association, 56 , 971–977.

Friday, D. S., & Patil, G. P. (1977). A bivariate exponential model with applications

to reliability and computer generation of random variables. The Theory and



Bibliography 176

Applications of Reliability , 1 , 527–549.

Galambos, J., & Kotz, S. (1978). Characterizations of probability distributions.

Springer-Verlag.

Genest, C., Rémillard, B., & Beaudoin, D. (2009). Goodness-of-fit tests for copulas:

A review and a power study. Insurance: Mathematics and Economics , 44 ,

199–213.

Genest, C., & Rivest, L.-P. (1993). Statistical inference procedures for bivariate

Archimedean copulas. Journal of the American Statistical Association, 88 ,

1034–1043.

Georges, P., Lamy, A.-G., Nicolas, E., Quibel, G., & Roncalli, T. (2001). Multivari-

ate survival modelling: a unified approach with copulas. Available at Social

Science Research Network http://gro.creditlyonnais.fr/content/rd/home cop-

ulas.htm..

Gumbel, E. J. (1960). Bivariate exponential distributions. Journal of the American

Statistical Association, 55 , 698–707.

Gupta, R. C. (2003). On some association measures in bivariate distributions and

their relationships. Journal of Statistical Planning and Inference, 117 , 83–98.

Hawkes, A. G. (1972). A bivariate exponential distribution with applications to

reliability. Journal of the Royal Statistical Society. Series B (Methodological),

34 , 129–131.

Hayakawa, Y. (1994). The construction of new bivariate exponential distributions

from a Bayesian perspective. Journal of the American Statistical Association,

89 , 1044–1049.

Hoeffding, W. (1940). Masstabinvariante korrelationtheorie,schriften des mathema-

tischen instituts und des instituts fur angewandte mathematik der universitat



Bibliography 177

berlin 5. 181-233.(translated in fisher, ni and pk sen (1944). the collected works

of wassily hoeffding. new york. Springer-Verlag.

Iyer, S. K., Manjunath, D., & Manivasakan, R. (2002). Bivariate exponential

distributions using linear structures. Sankhya: Series A, 156–166.

Joe, H. (1997). Multivariate Models and Dependence Concepts. CRC Press.

Joe, H. (2005). Asymptotic efficiency of the two-stage estimation method for

copula-based models. Journal of Multivariate Analysis , 94 , 401–419.

Joe, H., & Hu, T. (1996). Multivariate distributions from mixtures of max-infinitely

divisible distributions. Journal of Multivariate Analysis , 57 , 240–265.

Johnson, N. L., & Kotz, S. (1975). A vector multivariate hazard rate. Journal of

Multivariate Analysis , 5 , 53–66.

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous Univariate Dis-

tributions. John Wiley and Sons, New York.

Justel, A., Peña, D., & Zamar, R. (1997). A multivariate Kolmogorov-Smirnov test

of goodness of fit. Statistics and Probability Letters , 35 , 251–259.

Kagan, Y., Linnik, Rao, C. R., & Ramachandran, B. (1973). Characterization

Problems in Mathematical Statistics. Wiley,New York.

Kaishev, V. K., Dimitrova, D. S., & Haberman, S. (2007). Modelling the joint dis-

tribution of competing risks survival times using copula functions. Insurance:

Mathematics and Economics , 41 , 339–361.

Kotz, S., Balakrishnan, N., & Johnson, N. L. (2002). Continuous multivariate

distributions. John Wiley and Sons, New York.

Langseth, H. (2002). Bayesian networks with applications in reliability analysis

(Unpublished doctoral dissertation). Norwegian University of Science and

Technology, Guntur, India.



Bibliography 178

Lariviere, M. A. (2006). A note on probability distributions with increasing gener-

alized failure rates. Operations Research, 54 , 602–604.

Lariviere, M. A., & Porteus, E. L. (2001). Selling to the newsvendor: An analysis

of price-only contracts. Manufacturing & Service Operations Management , 3 ,

293–305.

Lee, L. (1979). Multivariate distributions having Weibull properties. Journal of

Multivariate Analysis , 9 , 267–277.

Lee, L., & Thompson, W. (1974). Results on failure time and pattern for the series

system. Reliability and Biometry: Statistical Analysis of Lifelength, 291–302.

Lehmann, E. L. (1966). Some concepts of dependence. The Annals of Mathematical

Statistics , 1137–1153.

Lindley, D. V., & Singpurwalla, N. D. (1986). Multivariate distributions for the life

lengths of components of a system sharing a common environment. Journal

of Applied Probability , 418–431.

Louzada, F., Suzuki, A. K., Cancho, V. G., Prince, F. L., & Pereira, G. A. (2012).

The long-term bivariate survival FGM copula model: an application to a

brazilian HIV Data. Journal of Data Science, 10 , 511–535.

Lu, J. C., & Bhattacharyya, G. K. (1990). Some new constructions of bivariate

Weibull models. Annals of the Institute of Statistical Mathematics , 42 , 543–

559.

Mardia, K. V. (1962). Multivariate Pareto distributions. The Annals of Mathe-

matical Statistics , 33 , 1008–1015.

Marshall, A. W., & Olkin, I. (1967). A multivariate exponential distribution.

Journal of the American Statistical Association, 62 , 30–44.



Bibliography 179

Marshall, A. W., & Olkin, I. (1988). Families of multivariate distributions. Journal

of the American Statistical Association, 83 , 834–841.

McNeil, A. J., Frey, R., & Embrechts, P. (2015). Quantitative risk management:

Concepts, techniques and tools. Princeton university press.

Meintanis, S. G. (2007). Test of fit for Marshall–Olkin distributions with applica-

tions. Journal of Statistical Planning and Inference, 137 , 3954–3963.

Mikusinski, P., Sherwood, H., & Taylor, M. (1992). The fréchet bounds revisited.
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