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Chapter 1

Introduction

The theory of reliability has been formulated as the science of predicting, estimating and
optimizing the probability of survival, the mean life and more generally the life distribu-
tion of components or systems. The problem of finding an appropriate model to represent
lifetime data, that of assessing the capability of a component and deriving methods for
improving the performance of a system, are of vital importance to frame up maintenance
policies as well as future planning in industry. During the past decades, the development
of reliability as a separate discipline has been rapid, mainly because of its applications in
several branches of learning, such as Biology, Medicine, Engineering, Economics, Demog-
raphy, etc.

The word reliability is used to denote the probability of a device (component, item or
organism) to perform its defined purpose adequately for a specified period of time, under
the operating conditions specified, and is often used as a measure of the capability of the
device to operate without failure when put in service. Earlier works in reliability theory
were centred around the problem of estimating reliability, based on observed data. How-
ever, recently a lot of interest has been evoked to model lifetime data and to classify the life
distributions based on certain ageing properties. Accordingly, large number of research pa-
pers have come out which examine the behaviour of the life distributions based on certain
criterion for ageing. In most of the discussions on reliability theory, the lifetime is treated
as continuous. Barlow and Proschan [16], Kalbfleisch and Prentice [75] and Lai and Xie
[85] give a comprehensive review of the topic. Comparatively much less literature on mod-
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elling is available when lifetime is discrete. However, there are some compelling reasons to
consider failure times as discrete random variables taking on non-negative integer values.
When a piece of equipment operates in cycles and the observation is the number of cycles
completed before failure, the lifetime is clearly discrete. So also is the case when the device
is monitored only in completed units of time, like how many failures have occurred at the
completion of one hour, two hours etc. The lack of accuracy of the measuring devices may
also generate discrete lives. There are occasions to prefer counts over clock time even when
the latter is available. For reliability of weapons, the number of rounds fired is more impor-
tant than the age at failure. Similar is the case with lifetime of car tyres where the number
of kilometres run before it becomes out of use is preferred to the number of days before
failure. Thus, there is a strong reason for studying reliability in discrete time. The concepts
in continuous and discrete times are the same, but the definitions and interpretations may
differ from one case to another. To derive reliability properties similar to the continuous
case, occasionally continuous distributions are discretized. But it is not necessary in such
cases that the distributional properties are the same nor the discretization process to always
produce meaningful discrete models. Thus, there are conceptual and mathematical prob-
lems in developing discrete reliability theory. Motivated by these facts, in the present work,
we intend to study the reliability properties of discrete lifetime models.

The primary concern in reliability theory is to understand the pattern in which failures
occur for different devices under varying operating environments. This is often done by
analysing the observed failure times or ages at failure with the help of a model that sat-
isfactorily represents the predominant features of the data. One direct method is to find a
probability distribution that provides a reasonable fit to the observations. Sometimes there
may exist more than one distribution that pass an appropriate goodness of fit test. Thus,
it is more desirable to find a probability model that manifest certain physical properties of
the failure mechanism. In reliability theory, some basic concepts that help in the study of
failure patterns have been developed. Two important aspects that necessitate the study of
these concepts are (a) various functions considered in this context determine the life distri-
bution uniquely, so that the knowledge of their functional form is equivalent to that of the
distribution itself and (b) it should be easier to deal with these functions than the distribu-
tion function or probability density function of the corresponding distributions. Keeping
these facts in mind, in the following, we present such basic reliability concepts and discuss
their properties and inter-relationships.
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1.1 Basic concepts

1.1.1 Hazard rate function

Let X be a non-negative integer valued random variable representing lifetime of a unit
with probability mass function f(x) = P [X = x]. Let S(x) = P [X ≥ x] be the sur-
vival(reliability) function of X. The hazard rate h(x) of X is defined as

h(x) =
f(x)

S(x)
, x = 0, 1, 2, ... (1.1.1)

It is shown that h(x) uniquely determines the distribution by the identity

S(x) =


x−1∏
t=0

(1− h(t)) : x ≥ 1

1 : x = 0.

(1.1.2)

Although, in the continuous set-up, the concept of hazard rate dates back to historical
studies in human mortality, its discrete version came up much later in the works of Barlow
et al. [17], Cox [38] and Kalbfleisch and Prentice [75] to mention a few.

In the discrete case, it is obvious from (1.1.1) that 0 ≤ h(x) ≤ 1. For various properties
of (1.1.1), we refer to Gupta [52], Shaked et al. [136], Kemp [78] and Lai and Xie [85].

The hazard rate h(x) does not satisfy properties analogous to the continuous case in
which the cumulative hazard rate H(x) satisfies the identity H(x) = − logS(x). In view
of these, Cox and Oakes [37] proposed an alternative definition of cumulative hazard rate
in the form

H∗(x) = − logS(x), (1.1.3)

which means that

H∗(x) = − log
x−1∏
t=0

(1− h(t)). (1.1.4)

If

H∗(x) =
x−1∑
t=0

h∗(t), x = 1, 2, ...,
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then H∗(x) is a cumulative hazard rate corresponding to an alternative hazard rate defined
by

h∗(x) = log
S(x)

S(x+ 1)
, x = 0, 1, 2, ... (1.1.5)

Xie et al. [145] and Kemp [78] have studied various properties and applications of both
h(x) and h∗(x) in the context of lifetime data analysis. The two functions h(x) and h∗(x)

are related through
h(x) = 1− exp[−h∗(x)]. (1.1.6)

Equation (1.1.6) shows that the monotonic behaviour of h(x) and h∗(x) are same.

Shaked et al. [136] gave the necessary and sufficient conditions for a sequence,
{h(x), x ≥ 0} to be a failure rate as follows:

Theorem 1.1.1. A function h : N = {0, 1, 2, ...} → [0, 1] is a failure rate function of some
random variable with support in N if and only if

(a) h(m) = 1 for some m ∈ N and h(x) = 1 ∀ x > m

or

(b) h(x) ∈ [0, 1) for x ∈ N and
∞∑
x=0

h(x) =∞.

1.1.2 Residual life functions

The analysis of the lifetime of a device or organism after it has attained age x is of special
relevance in reliability and survival analysis. Thus, ifX is the original lifetime with survival
function S(x), the corresponding residual lifetime after age x is the random variable Xx =

(X−x|X > x). From the definition of conditional probability we can write the distribution
of Xx as

Sx(t) =
S(x+ t+ 1)

S(x+ 1)
; t = 0, 1, 2, ...; x = −1, 0, 1, ... (1.1.7)

The mean residual life (MRL) of X is defined as

m(x) = E[X − x|X > x]

=
1

S(x+ 1)

∞∑
t=x+1

(t− x)f(t)
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=
1

S(x+ 1)

∞∑
t=x+1

S(t); x = −1, 0, 1, ... (1.1.8)

Characterizations of the distribution of X in-terms of m(x) and h(x) have been studied by
Nair and Hitha [96]. From (1.1.8),

S(x)m(x− 1)− S(x+ 1)m(x) = S(x),

which leads to the identity

h(x) =
1 +m(x)−m(x− 1)

m(x)
; x = 0, 1, 2, ... (1.1.9)

From (1.1.2)

S(x) =


x−1∏
t=0

(
m(t− 1)− 1

m(t)

)
: x ≥ 1

1 : x = 0.

(1.1.10)

Thus, the three functions h(x),m(x) and S(x) determine each other uniquely. Though
h(x) can be determined from m(x) and vice-versa, both have unique features that ensure
their necessity in reliability theory. The mean residual life function may exist even when
the hazard rate function does not exist and vice-versa. Nair and Hitha [96], Hitha and Nair
[64] and Nair and Sudheesh [104] give characterizations based on MRL function.

The variance of the residual life Xx is studied in reliability theory in various contexts.
Primarily, its role is to define ageing concepts that are weaker than some ageing criteria
based on the hazard rate and the mean residual life. Secondly, variance of residual life has
the same role as the usual variance, when estimators of mean residual life are discussed.
It is also required for studying the coefficient of variation of residual life. Assuming that
E[X2] <∞, we define the variance residual life (VRL) function as

σ2(x) = E[(X − x)2|X > x]−m2(x) (1.1.11)

=
2

S(x+ 1)

∞∑
t=x+1

∞∑
u=t+1

S(u) +m(x), x = 0, 1, 2, ... (1.1.12)

There exist inter-relationships between the reliability functions discussed so far. We have

σ2(x+ 1)− σ2(x) = h(x+ 1)
[
σ2(x+ 1)−m(x+ 1)(m(x)− 1)

]
. (1.1.13)
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Unlike the hazard rate and mean residual life functions, there is no inversion formula that
expresses the survival function in-terms of the variance residual life. Further, there are
only a few standard distributions for which σ2(x) has simple tractable forms. Therefore,
characterizations of life distributions involving σ2(x) take the form of its relationship with
other concepts. For characterization results, we refer to Hitha and Nair [64] and Nair and
Sudheesh [105].

1.1.3 Equilibrium distribution

Equilibrium distribution plays a vital role in the analysis of lifetime data. In the discrete
set-up, the equilibrium distribution for X is defined by

g(x) =
P [X > x]

µ
=
S(x+ 1)

µ
, x = 0, 1, 2, ..., (1.1.14)

where µ = E[X]. Li [89] observed that when X represents the claim size, the first order
equilibrium distribution can be interpreted as the distribution of the amount of first drop
below the initial reserve, given that there is such a drop. He also gave some properties of
the equilibrium distribution useful in connection with ruin theory.

Definition 1.1.1. The equilibrium distribution of order n of X is defined by

fn(x) =
Sn−1(x)

µn−1

, n = 1, 2, 3, ...; x = 0, 1, 2, ... (1.1.15)

with µn−1 =
∞∑
x=0

Sn−1(x+ 1) <∞, S0(x) = S(x) and µ0 = µ.

For various properties of equilibrium distribution, we refer to Nair et al. [107] and their
references.

1.1.4 Ageing classes

By the term ageing, we mean the phenomenon by which the life remaining to the unit is
affected by its current age in some probability sense. Generally, ageing is classified into
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positive ageing, negative ageing and no ageing. If the residual lifetime is decreasing when
the age is increasing, we say that the unit is ageing positively. For instance, the efficiency
of various equipments in common use or mechanical systems tend to decrease due to wear
and tear as a result of prolonged use. Naturally, the remaining lifespan decreases when the
time for which they are used is increasing. In short, the effect of ageing is to decrease the
reliability in the case of positive ageing. On the other hand there are situations in which
the performance of a unit improves with increasing age. A classical example is that of
human being whose remaining lifetime increases once they pass infancy. So also is the
case of equipments that undergo efficient preventive maintenance. In all such cases, we say
that the unit has negative ageing, which in technical terms is explained as the increase in
residual lifetime as the age is increasing. Contrast to the above two ageing categories, there
are situations in which the residual lifetime remains the same at all ages. This is described
as no-ageing property. It is well-known that only geometric distribution possesses such a
property among all discrete lifetime models. The basic reliability concepts such as survival
(reliability) function, hazard rate, mean residual life etc. form the fabric with which the
ageing characteristics are built upon.

In the discrete case, Langberg et al. [86] showed that the class of decreasing hazard
rate (DHR) life distributions is a convex class and have obtained the extreme points of this
class. They showed how to represent a discrete DHR distribution as a mixture of these
extreme points. Fagiuoli and Pellerey [44] studied different classes of life distributions and
found relationships among them. They also considered life distribution of a device subject
to shocks occurring randomly according to a Poisson process and sufficient conditions
for it to belong to different ageing classes were discussed. Gupta et al. [51] developed
statistical tools for the determination of IHR and DHR property for a wide class of discrete
distributions, making use of the ratio of two consecutive probabilities, and they applied it
to various well-known families of discrete distributions. Bracquemond et al. [24] studied
basic notions of ageing, such as IHR, IHRA and NBU, when the system lifetimes are
discrete random variables. Kemp [78] derived the relationships between various ageing
classes to which a discrete lifetime distribution and its current age distribution belong.

Here we discuss some important ageing classes that have been widely applied in the
field of reliability analysis.

Definition 1.1.2. A discrete lifetime random variable X is said to have an increasing (de-
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creasing) hazard rate (IHR/DHR) if the sequence {h(x)} is increasing (decreasing). i.e., X
is IHR (DHR) according as h(x+ 1) ≥ (≤)h(x), ∀ x = 0, 1, 2, ...

It is well-known that the IHR class of distributions is not closed under the formation of
coherent systems. The increasing hazard rate average concept was introduced in an effort
to find the class of distributions that preserves this closure property.

In discrete time case, more than one definition for IHRA and NBU classes have been
proposed in literature. We refer to Shaked et al. [136], Bracquemond et al. [24] and Roy
and Gupta [127] for more details.

Definition 1.1.3. A discrete lifetime random variable X is said to have

(a) increasing (decreasing) hazard rate average-1 (IHRA1/DHRA1) property, if [S(x)]
1
x

is decreasing(increasing) in x or equivalently, the alternative hazard rate average

H∗(x)

x
=

1

x

x−1∑
t=0

h∗(t) (1.1.16)

is increasing(decreasing) in x.

(b) increasing (decreasing) hazard rate average-2 (IHRA2/DHRA2) property, if the haz-

ard rate average
H(x)

x
=

1

x

x−1∑
t=0

h(t) is increasing (decreasing) in x.

(c) decreasing (increasing) mean residual life (DMRL/IMRL) property if the sequence
{m(x)} is decreasing (increasing) in x.

(d) new better (worse) than used (NBU1/NWU1) property if S(x + t) ≤ (≥)S(x)S(t)

for all x, t = 0, 1, 2, ...

(e) new better (worse) than used (NBU2/NWU2) property if
k−1∑
x=0

h(x) ≤ (≥)
j+k−1∑
x=j

h(x),

j = 0, 1, 2, ..., k = 1, 2, ...

(f) decreasing (increasing) variance residual life (DVRL/IVRL) property if σ2(x) is de-
creasing (increasing) in x.

(g) new better(worse) than used in expectation(NBUE/NWUE) property if m(x) ≤ (≥
)E[X] for all x = 1, 2, ...
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(h) harmonically new better(worse) than used in expectation(HNBUE/HNWUE) prop-

erty if
n∑
x=0

m(x)−1 ≥ (≤)
n

E[X]
.

and

(i) NBU-y0(NWU-y0) property if S(x + y0) ≤ (≥)S(x)S(y0) for all x = 0, 1, 2, ...,

y0 = 1, 2, ...

The NBU -y0 (NWU -y0) property requires that the lifetime after y0 is smaller (larger),
compared to the original one in probability sense. Instead of keeping y0 fixed, we can think
of the above behaviour beyond y0, giving rise to the NBU*y0 (NWU*y0) class as given
below.

Definition 1.1.4. A discrete lifetime random variable X is said to have NBU*y0 (NWU*
y0) property, if S(x+ t) ≤ (≥)S(x)S(t), x = 0, 1, 2... : t = y0, y0 + 1, ...

We have the following chain of implications among these classes.

IHR⇒ IHRA1⇒ NBU1⇒ NBUE⇒ HNBUE
⇓ ⇓ ⇓
DMRL IHRA2 NBU*y0

⇓ ⇓ ⇓
DVRL NBU2 NWU-y0

1.1.5 Stochastic orders

Recently, researchers have focused on investigation of ageing properties using stochas-
tic orders. Stochastic orders enable global comparison of two distributions in-terms of
their characteristics. In reliability studies, researchers have reliability function, hazard rate,
mean residual life, etc. for such a comparison. An excellent review on various stochastic
orders and their properties is available in Shaked and Shanthikumar [135].

Definition 1.1.5. Let X1 and X2 be two non-negative integer valued random variables
representing lifetimes of two units. Then X1 is smaller than X2 in

(a) usual stochastic order (X1 ≤st X2) if SX1(x) ≤ SX2(x), x = 0, 1, 2, ...
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(b) hazard rate order (X1 ≤hr X2) if hX1(x) ≥ hX2(x), x = 0, 1, 2, ...

(c) MRL ordering (X1 ≤mrl X2) if mX1(x) ≤ mX2(x), x = 0, 1, 2, ...

(d) likelihood ratio order (X1 ≤lr X2) if
fX1(x)

fX2(x)
is non-increasing in x over the union of

supports of X1 and X2.

and

(e) concave transform order (X1 ≤c X2) if F−1
X2
FX1(x) is concave in the support of X1

where FX1(.) and FX2(.) are the distribution functions of X1 and X2 respectively.

The definitions (a) to (d) are given in Shaked and Shanthikumar [135] and the definition
(e) is the discrete analogue of the continuous case discussed by them.

1.1.6 Odds function

The role of odds function and odds rate in the context of lifetime data analysis is of sub-
stantial interest in recent times. The motivation for consideration of these are- (a) easy to
compute and interpret, (b) estimation of these functions are relatively simpler and (c) be-
haviour of other reliability functions can be ascribed through them.

Definition 1.1.6. The odds function for failure by age x for a discrete random variable X
is defined as

ω̄(x) =
F (x)

S(x+ 1)
; x = 0, 1, 2, ...; ω̄(−1) = 0. (1.1.17)

From the definition, it follows that ω̄(∞) = ∞ and ω̄(x) is increasing. Odds function
ω̄(x) is an important tool in survival analysis for comparing a treatment group and a control
group and in developing models for survival data. We refer to Collet [36] and Kirmani and
Gupta [81] for further details. The role of odds function in discrete reliability theory has
been studied by Nair and Sankaran [103].

It is easy to prove that

F (x) =
ω̄(x)

1 + ω̄(x)
(1.1.18)
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and
h(x) =

ω̄(x)− ω̄(x− 1)

1 + ω̄(x)
x = 0, 1, 2, ... (1.1.19)

Further, h(x) is increasing implies that ω̄(x) is convex. For details, we refer to Nair and
Sankaran [103].

1.1.7 Reversed hazard rate

Let X be a discrete random variable taking values in S = {0, 1, 2, ..., b}, where b can be
∞. We denote the probability mass function and distribution function of X by f(x) and
F (x) respectively. Then the reversed hazard rate of X is defined as

λ(x) = P [X = x|X ≤ x] =
f(x)

F (x)
, x = 0, 1, 2, ..., b. (1.1.20)

The distribution of X is determined uniquely by λ(x) through the formula

F (x) =
b∏

t=x+1

(1− λ(t)). (1.1.21)

For more properties of the univariate reversed hazard rate, see Nair and Sankaran [99]. The
definition (1.1.20), when applied to the continuous case has the form λ(x) = d

dx
logF (x)

implying F (x) = exp{−
b∫
x

λ(t)dt}. This exponential representation in the continuous case

contribute to the additive property of reversed hazard rate for parallel systems. But this
property is not shared by (1.1.20) in the discrete case.

Thus, analogous to the alternative hazard rate due to Cox and Oakes [37], an alternative
reversed hazard function can be defined as

λ∗(x) = log
F (x)

F (x− 1)
, x = 1, 2, ..., b. (1.1.22)

Then the distribution of X is obtained as

F (x) = F (0) exp

[
x∑
t=1

λ∗(t)

]
, x = 1, 2, ..., b. (1.1.23)
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Note that the alternative reversed hazard rate in (1.1.22) possesses additivity for parallel
system.

It is well-known that the lack of memory property is equivalent to constancy of the
hazard rate. Analogous to the lack of memory property, Nair and Sankaran [99] defined the
univariate reversed lack of memory property in the following way.

Definition 1.1.7. The random variable X is said to satisfy the reversed lack of memory
property if

P [X ≤ t|X ≤ t+ s] = P [X ≤ 0|X ≤ s] (1.1.24)

for all t and s in S.

In the context of maintenance problems, the property (1.1.24) can be interpreted as
follows. When X represents the lifetime of a device, (1.1.24) implies that its inactivity
time (time since failure) is independent of the age of the device.

1.1.8 Reversed mean and variance residual lives

A second measure of interest in reversed time is the reversed mean residual life. Suppose
that a device has failed before attaining age t. Then the random variable tX = t−X|X < t

is the time elapsed since the device has failed, conditioned on the fact that its lifetime is
less than t and is called the reversed residual life or inactivity time of X. It is easy to see
that tX has the distribution function

tF (x) =
F (t− 1)− F (t− x− 1)

F (t− 1)
; x = 0, 1, 2, ... (1.1.25)

The mean of this distribution is called the reversed mean residual life or mean inactivity
time and is denoted by r(x). We define r(x) as

r(x) = E[x−X|X < x] =
1

F (x− 1)

x−1∑
t=1

tf(t); x = 1, 2, ..., (1.1.26)
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with r(0) = 0. Note also that r(1) = 1. The reversed hazard rate and reversed mean
residual life function are related by

λ(x) =
1 + r(x)− r(x+ 1)

r(x)
; x = 1, 2, ... (1.1.27)

For more properties of r(x), we refer to Goliforushani and Asadi [49].

Just as the mean of the reversed residual life tX, the variance of tX is also an important
function in reliability analysis, called the reversed variance residual life or variance inactiv-
ity time and is denoted by ν(x). In algebraic manipulations, different expressions for ν(x)

are employed. They are

ν(x) = V [x−X|X < x] = V [X|X < x]

= E[X2|X < x]− E2[X|X < x] (1.1.28)

and

ν(x) = E[(x−X)2|X < x]− r2(x) (1.1.29)

=
2

F (x− 1)

x∑
t=1

t∑
u=1

F (u− 1)− r(x)(r(x) + 1). (1.1.30)

In the continuous case, identities that connect the three functions λ(x), r(x) and ν(x) have
been established. The corresponding results in the discrete case are

ν(x+ 1)− ν(x) = λ(x) [r(x)(r(x+ 1)− 1)− ν(x)] (1.1.31)

and
ν(x+ 1)

r(x+ 1)− 1
+ r(x+ 1)− 1 =

ν(x)

r(x)
+ r(x). (1.1.32)

Equations (1.1.31) and (1.1.32) are employed in finding ν(x) when the others are known,
especially in characterization problems and also in the discussions on the monotonicity of
the reversed variance residual life function.



Chapter 1. Introduction 14

1.2 Multivariate reliability concepts

There are many complex devices and systems whose functioning depends on several com-
ponents that may be dependent or independent. In such a scenario, the lifetime is made
up of the lifetimes of the components that may depend on different physical properties.
The study of system reliability can be facilitated only through the joint distribution of the
component lifetimes. Thus, there is a need to extend various univariate reliability concepts
into higher dimensions. The development of concepts depends on the manner in which
a univariate notion is generalized to suit the multivariate case. There are several possible
definitions for a particular notion depending on the property that is employed in each sit-
uation. Consequently, the resulting models will also change. It is difficult to propose a
set of criteria based upon which generalization of univariate formulations have to be done
in evolving multivariate concepts. However, it may be reasonable to have a multivariate
definition which coincides with the existing definition for a single variable, when appro-
priately reduced to one dimension and the implications and chain of relationships between
multivariate concepts should follow the patterns in the univariate case.

Let X = (X1, X2, ..., Xp)
′ be a random vector taking values in Np with distribution

function F(x) = P (X ≤ x), where N = {0, 1, 2, ...} and x = (x1, x2, ..., xp)
′. The

notation (X ≤ x) means (X1 ≤ x1, X2 ≤ x2,...Xp ≤ xp). The survival function of X is
defined as

S(x) = P (X ≥ x) = P (X1 ≥ x1, X2 ≥ x2, ..., Xp ≥ xp) (1.2.1)

and the probability mass function is given by

f(x) = P [X = x]. (1.2.2)

As in the continuous case, several definitions of the hazard rate are possible in the
discrete case also. The scalar hazard rate of X is defined as (Nair and Sankaran [102])

a(x) =
f(x)

S(x)
. (1.2.3)

The scalar hazard rate fails to determine the underlying distribution uniquely. Nair and
Sankaran [102] derived the conditions under which the distribution is uniquely determined
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by the scalar hazard rate. A more popular version of the multivariate hazard rate is the
vector hazard rate due to Nair and Asha [95], which is a generalization of the bivariate
vector hazard rate proposed by Nair and Nair [97], defined as

c(x) = (c1(x), c2(x), ..., cp(x))′ (1.2.4)

where

ci(x) = P [Xi = xi|X ≥ x]

= 1−
S(x(i), xi + 1)

S(x)
(1.2.5)

with x(i) = x−{xi} . For the definitions and properties of these two hazard rates, we refer
to Nair and Sankaran [102] and Nair and Asha [95]. In the bivariate case, the two hazard
rates are related through

a(x1, x2) = c1(x1, x2)− c1(x1, x2 + 1) + c1(x1, x2 + 1)c2(x1, x2)

= c2(x1, x2)− c2(x1 + 1, x2) + c1(x1, x2)c2(x1 + 1, x2). (1.2.6)

Ageing classes based on these hazard rates can be seen in Nair and Sankaran [102] and
Nair and Asha [95].

There are several definitions for the mean residual life function in higher dimensions.
These depend on the manner in which the extension of the univariate concept is carried
over in the multivariate case. In all cases, the interest is on the lifetime of a p-component
system after the i th component has attained age xi; i = 1, 2, ..., p.

Buchanan and Singapurwalla [27] proposed a version of multivariate mean residual life in
the continuous case. In the discrete case, we can analogously define

m∗(x) =

∑∞
t1=0 ...

∑∞
tp=0 S(x1 + t1, ..., xp + tp)

S(x1, x2, ..., xp)
. (1.2.7)

However, (1.2.7) lacks any physical interpretation and moreover it fails to determine the
corresponding lifetime distribution uniquely. In order to overcome the drawbacks of (1.2.7),
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the vector MRL function is defined using the random vector

Xx = [X− x|X > x] (1.2.8)

which is the residual life of the system after it has survived age x. The survival function of
Xx is

Sx(t) =
S(x + t + e)

S(x + e)
(1.2.9)

where t = (t1, t2, ..., tp)
′ and e = (1, 1, ..., 1)′ and ti = 0, 1, 2, ... for all i = 1, 2, ..., p. The

popular definition of the multivariate mean residual life function conceives it as the mean
of the distribution (1.2.9). Thus, the multivariate mean residual life (MMRL) function is
defined as the vector

m(x) = (m1(x),m2(x), ...,mp(x))′ (1.2.10)

where

mi(x) = E[Xi − xi|X > x], i = 1, 2, ..., p; xi = −1, 0, 1, ... (1.2.11)

From (1.2.11), we have

mi(x) =
1

S(x + e)

∞∑
t1=x1+1

...
∞∑

tp=xp+1

(ti − xi)f(x)

=
1

S(x + e)

∞∑
ti=xi+1

S(x1 + 1, ..., xi−1 + 1, t, xi+1 + 1, ..., xp + 1). (1.2.12)

Also,
S(x(i) + e, xi + 2)

S(x + e)
=

mi(x)− 1

mi(x(i), xi + 1)
; i = 1, 2, ..., p, (1.2.13)

arising from (1.2.12). In the bivariate case, (1.2.10) reduces to (m1(x1, x2),m2(x1, x2))′

where

m1(x1, x2) =
1

S(x1 + 1, x2 + 1)

∞∑
t=x1+1

S(t, x2 + 1) = E[X1 − x1|X1 > x1, X2 > x2]

(1.2.14)

and
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m2(x1, x2) =
1

S(x1 + 1, x2 + 1)

∞∑
t=x2+1

S(x1 + 1, t) = E[X2 − x2|X1 > x1, X2 > x2].

(1.2.15)

A detailed study of the mean residual life vector will be carried out in Chapter 5. The
multivariate variance residual life will be introduced and studied in Chapter 6.

1.3 Present study

The discussions in the above sections reveal the necessity of studying reliability concepts
in discrete time. In the present study, our main aim is a systematic study on modelling and
analysis of lifetime data in discrete time. The thesis is organized into ten chapters. The
chapter-wise summary of work is as follows.

Chapter 1 discusses the relevance and scope of the study. We also present basic relia-
bility concepts such as survival function, hazard rate function, mean residual life function,
etc. We give definitions of some of the basic ageing classes and stochastic orders. Exist-
ing literature on reversed time reliability concepts are discussed. Finally, the multivariate
extensions of the univariate reliability concepts are presented.

In Chapter 2, we study some properties of univariate hazard rate-based ageing classes.
To be specific, we study the ageing classes namely IHR, IHR(2), IHRA, NBUHR and
NBUHRA. In many practical situations, the reliability functions exhibit non-monotone be-
haviour. The important among them are distributions where the hazard rates are bathtub-
shaped (BT) and upside-down bathtub-shaped (UBT). We study the closure properties of
discrete distributions with BT and UBT hazard rate functions. In our study, we show that
BT(UBT) hazard rate classes are not closed under the reliability operations such as for-
mation of mixtures, convolution, coherent system, etc. A result on the convergence of
BT(UBT) distributions is also presented. We study the existence of bounds on reliability
functions and moment properties. Various ageing criteria discussed in this chapter play a
fundamental role in the development of reliability theory and practice.

The processes that manifest different types of ageing behaviour necessitate models that
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can accommodate and explain the special characteristics of the given data. The limited
number of discrete BT and UBT models, proposed in the literature, are unlikely to meet
the requirements of modelling for the large number of BT(UBT) data sets that need to be
analysed using reliability concepts in discrete time (See Lai and Xie [85] for examples).
This points out to the need for criteria for determination of the shape of the hazard rates
and also for developing new models. Chapter 3 focuses on this vital problem and investi-
gates some general conditions for assessing the shape of the hazard rates. Our results also
help in generating new distributions that have simple hazard rate forms. We discuss the
general methods for constructing discrete BT and UBT distributions. Some new models
thus obtained are found to be useful in real life situations. We illustrate the applicability of
the newly derived models by fitting them to real datasets.

Often, situations arise where one has to compare the reliabilities of more than one
device. For example, when the same kind of device is produced by several manufactures,
the choice has to be made with reference to the ageing patterns of the competing devices.
Relative ageing concepts specify which of two device age faster by comparing the two on
the basis of some ageing criterion. Also, there are models in which the nature of ageing
depends on the parameter values. Thus, an analysis that reveals the relationship between
the ageing property and the model parameters is required. This becomes more important in
cases where there are critical values of the parameters which partitions one ageing feature
into another which is distinctly different. At present, it appears that there is no study
concerning the relative ageing of two devices in the discrete time domain. The objective of
Chapter 4 is to fill this gap by presenting some concepts and results that help the comparison
of the intensity of ageing among competing devices, when the lifetime is discrete. In this
chapter, we introduce specific ageing factor, relative ageing factor and ageing intensity
function into the discrete domain. The present chapter includes some results which have
no continuous counterparts, and a discussion of stochastic orders for comparing discrete
life distributions in-terms of ageing concepts.

In view of the importance and applications of the multivariate reliability concepts, rest
of the thesis is devoted to the study of multivariate reliability concepts in the discrete do-
main. In Chapter 5, we study the mean residual life function in the multivariate discrete
domain. We study the properties of multivariate mean residual life (MMRL) function and
propose ageing classes based on it. Inter-relationships between these ageing classes are
explored. Characterization results using these ageing classes are obtained.
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Chapter 6 presents a theoretical exposition of the properties of the multivariate discrete
variance residual life. It includes properties of the variance residual life, characterization
of life distributions and classes of life distributions based on the monotonic properties of
the variance residual life. As a by-product, we also get some properties, that do not seem
to have been obtained in the univariate case, by specializing our results.

In Chapter 7, the covariance residual life and its properties are discussed. A measure
of association for bivariate discrete data is proposed. Relationships with other association
measures are discussed. The application of the theoretical results for real data is provided,
by way of illustration, using the multiple tumour recurrence data of patients with bladder
cancer in Andrews and Herzberg [10].

The reversed hazard rate function has not been studied in the multivariate discrete set-
up. Chapter 8 introduces multivariate reversed hazard rate functions in the discrete case.
We present four versions of the multivariate reversed hazard rate in the discrete domain,
namely scalar reversed hazard rate, vector reversed hazard rate, alternative reversed hazard
rate and conditional reversed hazard rate. Properties of these multivariate reversed hazard
rate functions are discussed. Multivariate discrete distributions are characterized based on
them.

The Schur-constancy property is studied in the bivariate discrete domain in Chapter 9.
The aim of the present chapter is to investigate various properties of discrete Schur-constant
models. Specifically, we express the bivariate reliability functions such as bivariate scalar
hazard rate, bivariate vector hazard rate, bivariate mean residual life, etc. as functions of
the univariate reliability concepts corresponding to the baseline distribution. Using these
relationships, we study ageing phenomenon of bivariate Schur-constant models based on
univariate ageing concepts. We also study time-dependent measures in the context of dis-
crete Schur-constant models and it is shown that the dependence structure can be studied
using univariate ageing properties. The study of Schur-constant models in the bivariate dis-
crete domain is of interest because it helps us to describe the multivariate ageing concepts
in-terms of the well-studied univariate ageing concepts.

Finally, Chapter 10 presents major conclusions of the study along with a brief report on
the future work to be done.





Chapter 2

Univariate Ageing Classes Based on
Hazard Rate

2.1 Introduction

A considerable amount of literature in reliability theory is dedicated to the study of ageing
concepts, their properties, implications and applications. The term ageing represents the
phenomenon by which the residual life of a unit is affected by its current age in some
probability sense. Generally, ageing is classified into positive ageing, negative ageing and
no ageing according to whether the residual lifetime decreases, increases or remains the
same as age advances.

The basic reliability concepts such as reliability function, hazard rate, mean residual
life, etc. are usually employed for developing various ageing classes. Using these concepts,
around forty different ageing classes and their properties have been studied in the literature
of continuous lifetime. Lai and Xie [85] and Nair et al. [108] provide a comprehensive
review on this topic.

Although the relevance of lifetime in discrete units is well established, there is not as

Results in this chapter have been published in the journals “Research & Reviews: Journal of Statis-
tics”and “Communications in Statistics-Theory and Methods”(See Sankaran et al. [130] and Nair et al. [111]
)
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much work as in the continuous case that deals with discrete ageing classes in the literature.
Motivated by this, in the present chapter, we study different ageing classes in discrete time
and derive some new properties. While discussing different ageing classes, one can group
together those based on hazard rate, functions of residual life, reliability function and reli-
ability functions in reversed time, etc. In the present work, we study various ageing classes
based on hazard rate.

The rest of the chapter is organized as follows. The ageing classes using monotone hazard
rate are studied in Section 2.2. The inter-relationships among various stochastic orders and
the ageing classes are established. In Section 2.3, we study increasing (decreasing) haz-
ard rate of order 2 classes. The increasing (decreasing) hazard average classes are studied
in Section 2.4. Section 2.5 deals with new better(worse) than used in hazard rate classes.
Bathtub and upside-down bathtub hazard rate classes are discussed in Section 2.6. Section
2.7 presents the major conclusions of the study.

2.2 Monotone hazard rate classes

These classes of life distributions are defined by the nature of the monotonicity of the
hazard rate. In the sequel, we use the term increasing (decreasing) in the sense of non-
decreasing (non-increasing). Recall from Definition 1.1.2 that a discrete lifetime random
variable X is said to have IHR (DHR) property if the sequence {h(x)} is increasing (de-
creasing) in x. There are several equivalent conditions for X to be IHR (DHR). The fol-
lowing conditions are direct to verify (Bracquemond et al. [24]).

Proposition 2.2.1. X has IHR (DHR) property if and only if one of the statements holds.

(a) Sx(t) =
S(x+ t+ 1)

S(x+ 1)
is decreasing (increasing) in t, ∀ x = 0, 1, 2, ...

(b) The sequence {logS(x)} is concave (convex) or {S(x)} is log concave (log convex).

(c) (S(x+ 1))2 ≥ (≤)S(x)S(x+ 2), ∀ x = 0, 1, 2, ....

Remark 2.2.1. The condition (a) implies that the residual life distribution is stochastically
decreasing (increasing) in t.
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Now, we prove a proposition connecting monotonicity of h(x) and various stochastic
orders given in Definition 1.1.5.

Proposition 2.2.2. X is IHR (DHR) if and only if one of the following orders holds.

(a) X ≥hr (≤hr)(X − x|X > x), ∀ x = 0, 1, 2, ...

(b) X ≥c (≤c)Y, where Y is a geometric random variable with distribution function
FY (x) = 1− qx, x = 0, 1, 2, ...

(c) (X − x|X > x) ≥st (≤st)(X − y|X > y), ∀ x, y = 0, 1, 2, ... : x ≤ y.

(d) (X − x|X > x) ≥hr (≤hr)(X − y|X > y), ∀ x, y = 0, 1, 2, ... : x ≤ y.

Proof. We have,

X ≥hr (≤hr)(X − x|X > x) ⇐⇒ h(t) ≤ (≥)h(t+ x+ 1), ∀ t, x = 0, 1, 2, ...

⇐⇒ X is IHR(DHR).
When Y is geometric,

F−1
Y (u) =

log(1− u)

log q
.

Thus,

X ≥c Y ⇐⇒ F−1
Y FX(x) is convex.

⇐⇒ log(1− FX(x))

log q
is convex.

⇐⇒ log(1− FX(x))− log(1− FX(x+ 1)) is increasing in x.

⇐⇒ log
S(x+ 2)

S(x+ 1)
is decreasing in x.

⇐⇒ X is IHR.

The proof for DHR class is similar. The proof for (c) is obvious from Proposition 2.2.1. To
prove (d), we consider probability mass function of (X − x|X > x), given by

f(t+ x+ 1)

S(x+ 1)
, t = 0, 1, 2, ...
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and the survival function
S(t+ x+ 1)

S(x+ 1)
, t = 0, 1, 2, ....

Accordingly, the hazard rate function of (X − x|X > x) becomes

hx(t) =
f(t+ x+ 1)

S(t+ x+ 1)
= h(t+ x+ 1).

Similarly, for (X − y|X > y), the hazard rate function is

hy(t) = h(t+ y + 1).

Then,

(X − x|X > x) ≥hr (X − y|X > y) ⇐⇒ h(t+ y + 1) ≥ h(t+ x+ 1) , x ≤ y

⇐⇒ X is IHR.
The proof for DHR class is similar. �

We now illustrate the above result with the help of two distributions, one possessing
IHR property and the other has DHR property.

Example 2.2.1. Let X be distributed as Waring distribution(Nair et al. [107]) with survival
function specified by

S(x) =
(m)x

(m+ n)x
; m,n > 0; x = 0, 1, 2, ... (2.2.1)

and (b)x = b(b+ 1)(b+ 2)...(b+ x− 1), denotes the Pochhammer symbol.
It is easy to verify that the hazard rate function given by

h(x) =
n

m+ n+ x
; x = 0, 1, 2, ... (2.2.2)

is decreasing. Thus, the distribution is DHR. From (1.1.7), we obtain the survival function
of residual life random variable Xx = [X − x|X > x] as

Sx(t) =
Γ(x+m+ n+ 1)Γ(x+ t+m+ 1)

Γ(x+m+ 1)Γ(x+ t+m+ n+ 1)
; x, t = 0, 1, 2, ... (2.2.3)
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and the hazard rate function as

hx(t) =
n

x+ t+m+ n+ 1
; x, t = 0, 1, 2, ... (2.2.4)

From (2.2.2) and (2.2.4), we get

hx(t)

h(t)
=

t+m+ n

x+ t+m+ n+ 1
< 1.

Thus, X ≤hr (X − x|X > x). Now consider

logS(x+ 1)− logS(x+ 2) = log

[
(m)x+1

(m+ n)x+1

(m+ n)x+2

(m)x+2

]
= log

[
x+m+ n+ 1

x+m+ 1

]
,

which is decreasing in x. Thus,
log [S(x)]

log q
is concave implying that X ≤c Y.

Similarly,
Sx+1(t)

Sx(t)
=

(x+m+ n+ 1)(x+ t+m+ 1)

(x+m+ 1)(x+ t+m+ n+ 1)
≥ 1.

The last inequality holds since
x+m+ n+ 1

x+m+ 1
is decreasing in x. Thus, (X−x|x > x) ≤st

(X − y|X > y).

Finally,
hx+1(t)

hx(t)
= 1− 1

x+m+ n+ t+ 2
< 1,

yielding (X − x|X > x) ≤hr (X − y|X > y).

Example 2.2.2. LetX follow the negative hyper-geometric distribution with survival func-
tion

S(x) =

(
k + n− x
n− x

)
(
k + n

n

) ; x = 0, 1, 2, ..., n; k > 0. (2.2.5)

The hazard rate function of X is given by

h(x) =
k

k + n− x
, x = 0, 1, 2, ..., n (2.2.6)

which is increasing in x. Hence the distribution is IHR. The survival function and hazard



Chapter 2. Univariate Ageing Classes Based on Hazard Rate 26

rate function of the residual life are calculated as

Sx(t) =
Γ(n− x)Γ(k + n− t− x)

Γ(k + n− x)Γ(n− t− x)
; x = 0, 1, 2, ..., n; t = 0, 1, 2, ..., n− x− 1 (2.2.7)

and

hx(t) =
k

k + n− t− x− 1
; x = 0, 1, 2, ..., n; t = 0, 1, 2, ..., n− x− 1. (2.2.8)

Thus, we obtain
hx(t)

h(t)
=

k + n− t
k + n− t− x− 1

> 1

implying (X − x|X > x) ≤hr X.
Now consider

logS(x+ 1)− logS(x+ 2) = log

[(
k + n− x− 1

n− x− 1

)(
k + n− x− 2

n− x− 2

)]

= log

[
1 +

k

n− x− 1

]
,

which is increasing. Thus, X ≥c Y. As in the previous example, it is easy to verify that

Sx+1(t)

Sx(t)
=

(k + n− x− 1)(n− t− x− 1)

(n− x− 1)(k + n− t− x− 1)
≤ 1

and

hx+1(t)

hx(t)
=

1

k + n− t− x− 2
+ 1 > 1,

implying (X − x|x > x) ≥st (X − y|X > y) and (X − x|X > x) ≥hr (X − y|X > y).

Next result is helpful in finding the monotonicity of h(x) based on the nature of equi-
librium random variable XE.

Proposition 2.2.3. The random variable X has IHR (DHR) property if and only if one of
the following statements holds;

(a) X ≥lr (≤lr)XE.

(b) X ≥lr (≤lr)(XE − x|XE > x), ∀ x = 0, 1, 2, ...
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(c) (X − x|X > x) ≥lr (≤lr)(XE − y|XE > y), ∀ x, y = 0, 1, 2, ... : x ≤ y.

(d) XE ≥lr (≤lr)(XE − x|XE > x), ∀ x = 0, 1, 2, ..., where XE is the equilibrium
random variable corresponding to X.

Proof. We now prove the result for IHR class. The proof for DHR class is similar.
From the definition of probability mass function of XE, we have

X ≥lr XE ⇐⇒ S(x+ 1)

µf(x)
is decreasing in x.

⇐⇒ S(x+ 1)

S(x)

S(x)

f(x)
is decreasing in x.

⇐⇒ 1− h(x)

h(x)
is decreasing in x.

⇐⇒ h(x) is increasing in x.
⇐⇒ X is IHR.

To prove (b), the survival function of XE is

SE(x) =
∞∑
u=x

S(u+ 1)

µ
, x = 0, 1, 2, ...

Then the survival function of XE − x|X > x is

SE,x(t) =

∞∑
u=t+x+1

S(u+ 1)

∞∑
u=x+1

S(u+ 1)
; t, x = 0, 1, 2, ...

which gives the probability mass function

fE,x(t) =
S(x+ t+ 2)
∞∑

u=x+1

S(u+ 1)
.

Now,
X ≥lr (XE − x|XE > x)
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⇐⇒ fE,x(t)

fX(t)
is decreasing in t.

⇐⇒ S(x+ t+ 2)

S(t)− S(t+ 1)
,

is decreasing in t.
⇐⇒ h(t) is increasing in t.
⇐⇒ Xis IHR .

Now, to prove (c), we have,

(X − x|X > x) ≥lr (XE − y|XE > y)

⇐⇒ S(x+ 1)

f(t+ x+ 1)

S(t+ y + 2)
∞∑

u=y+1

S(u+ 1)
,

is decreasing in t.

⇐⇒ S(t+ y + 2)

f(t+ x+ 1)
,

is decreasing in t.

⇐⇒
t+y+1∏

u=t+x+1

(1− h(u))

h(t+ x+ 1)
, (2.2.9)

is decreasing in t.

Now using (2.2.9), we get,

1− h(t+ y + 2)

h(t+ x+ 2)
<

1− h(t+ x+ 1)

h(t+ x+ 1)
,

and hence,

h(t+ x+ 1)− h(t+ x+ 2)

h(t+ x+ 2)h(t+ x+ 1)
<
h(t+ y + 2)− h(t+ x+ 2)

h(t+ x+ 2)
. (2.2.10)

The above inequality holds only when X has IHR property. To prove this, if possible
suppose that (2.2.10) is valid and X is DHR. Then the left hand side of (2.2.10) is positive,
but the right hand side will be negative. This is not possible. Hence our assumption that X
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is DHR is wrong. Thus, X is IHR. To prove (d), we have,
XE ≥lr (XE − x|XE > x)

⇐⇒

S(x+ t+ 2)
∞∑

u=x+1

S(u)


S(t+ 1)

is decreasing in t.

⇐⇒ S(x+ t+ 2)

S(t+ 1)
is decreasing in t.

⇐⇒ X is IHR .

�

Example 2.2.3. Consider the Waring distribution in Example 2.2.1. We have seen that the
distribution is DHR. From(2.2.1), we calculate the probability mass function as

f(x) = S(x)− S(x+ 1) =
n (m)x

(m+ n)x+1

; x = 0, 1, 2, ... (2.2.11)

It can be easily verified that

S(x+ 1)

f(x)
=
m+ x

n
,

is increasing in x. Hence X ≤lr XE. Again, consider

S(x+ t+ 2)

f(x)
=

Γ(m+ n+ t+ 1)Γ(m+ t+ x+ 2)

nΓ(m+ t)Γ(m+ n+ t+ x+ 2)
,

which is increasing in t, implyingX ≤lr (XE−x|XE > x).Now, to show that (X−x|X >

x) ≤lr (XE − y|XE > y), consider

S(t+ y + 2)

f(t+ x+ 1)
=

Γ(m+ n+ t+ x+ 2)Γ(m+ t+ y + 2)

nΓ(m+ n+ t+ y + 2)Γ(m+ t+ x+ 1)
,

which is increasing in t.
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Lastly, to show that XE ≤lr (XE − x|XE > x), we evaluate

S(x+ t+ 2)

S(t+ 1)
=

Γ(m+ n+ t+ 1)Γ(m+ t+ x+ 2)

Γ(m+ t+ 1)Γ(m+ n+ t+ x+ 2)
,

which is increasing in t.

Example 2.2.4. The probability mass function of negative hyper-geometric distribution in
Example 2.2.2 is given by

f(x) =

(
−1

x

)(
−k
n− x

)
(
−1− k
n

) ; x = 0, 1, 2, ..., n. (2.2.12)

We have
S(x+ 1)

f(x)
=
n− x
k

,

which is a decreasing function in x implying X ≥lr XE. Similarly,

S(x+ t+ 2)

f(x)
=

(
k+n−t−x−2
n−t−x−2

)(
k+n−x
n−x

)
−
(
k+n−x−1
n−x−1

) ,
S(t+ y + 2)

f(t+ x+ 1)
=

(
k+n−t−y−2
n−t−y−2

)(
k+n−t−x−1
n−t−x−1

)
−
(
k+n−t−x−2
n−t−x−2

)
and

S(x+ t+ 2)

S(t+ 1)
=

(
k+n−t−x−2
n−t−x−2

)(
k+n−t−1
n−t−1

)
are all decreasing functions in t implying X ≥lr (XE − x|XE > x), (X − x|X > x) ≥lr
(XE − y|XE > y) and XE ≥lr (XE − x|XE > x).

The concepts based on residual life can be expressed in-terms of odds function. The
residual odds function is given by

ω̄x(t) =
1

Sx(t+ 1)
− 1;x, t = 0, 1, 2, ... (2.2.13)
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which gives

Sx(t+ 1) =
1

1 + ω̄x(t)
. (2.2.14)

We can easily prove that

ω̄x(t) =
1 + ω̄(x)

ω̄(x+ t+ 1)− ω̄(x)
. (2.2.15)

Now we prove a result connecting the odds function and hazard rate.

Proposition 2.2.4. The distribution of X has IHR (DHR) property if and only if the odds
function of the residual life ω̄x(t) is increasing (decreasing) in t.

Proof. The proof follows from the identity

ω̄x(t) =
1

Sx(t+ 1)
− 1

and Proposition 2.2.1 above. �

The IHR (DHR) family of distributions possesses several interesting properties as listed
below.

(a) The h(x) and h∗(x) are related by (1.1.6). It follows that h(x) is increasing (de-
creasing) if and only if h∗(x) is increasing (decreasing). Thus, monotonic property
of h(x) and h∗(x) are equivalent.

(b) If X is DHR, then its distribution function is concave. This follows from the fact that
the cumulative hazard rate is concave whenever X is DHR and S(x) = e−H

∗(x) is
decreasing in x. Also, if H∗(x) is concave, so is F (x).

(c) If F (x) is concave, then it is log concave. Further if f(x) is log convex, the distri-
bution is DHR and hence F (x) is log concave. Log concavity of S(x) corresponds
to IHR class. It becomes apparent that the log concave class of distributions contain
the concave class which in turn contains the DHR distributions.

(d) We say that X has increasing (decreasing) likelihood ratio property, denoted by ILR
(DLR) if f(x) is log concave (log convex). We can easily see that ILR (DLR)⇒ IHR
(DHR).
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To prove this, we note that X is ILR implies
f(x+ 1)

f(x)
is decreasing or g(x)− g(x+

1) ≥ 0, where g(x) =
f(x+ 1)

f(x)
.

Now,

1

h(x+ 1)
− 1

h(x)
=

S(x+ 1)

f(x+ 1)
− S(x)

f(x)
.

= g(x+ 1)− g(x) + g(x+ 1)[g(x+ 2)− g(x)] + ...

≤ 0,

whenever X is ILR. Thus, h(x + 1) ≥ h(x) and X is IHR. The proof for DLR is
similar. However, the converse of the above need not be true.

(e) Sometimes, it is enough to know the values of hazard rates at time zero to ascertain
whether X is IHR (DHR) by employing the following result that involves a new
ordering.

Definition 2.2.1. We say that X is less than Y in the initial hazard rate (X ≤h(0) Y )

if hX(0) ≥ hY (0).

Then we have X is IHR (DHR) ⇐⇒ Xx2 ≤h(0) Xx1 ; 0 ≤ x1 ≤ x2.

(f) If X has IHR property, then the residual life Xx has also IHR property. This is
obvious from the relation between hazard rates of X and Xx.

(g) Two important properties associated with discrete models in insurance, finance, reli-
ability, queuing, etc. are convolution and mixing. Pavlova et al. [119] and Hu et al.
[67] have discussed these aspects with necessary proofs and counter examples.

(h) Gupta et al. [51] studied IHR (DHR) property using the concept

η(x) =
f(x)− f(x+ 1)

f(x)
.

They have shown that if ∆η(x) > (<)0, then X is IHR (DHR) and if ∆η(x) = 0, X

is geometric or uniform with f(x) = f(0) or as

f(x) =
cx

1 + c+ c2 + ...+ cm
: x = 0, 1, 2, ...,m.

In the last two cases X is IHR.
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(i) Let Yn be the random variable possessing equilibrium distribution of order n of X .
Then if Yn is IHR (DHR), then Yn+1 is IHR (DHR) for every n. But the converse need
not be true (see Nair et al. [107]). Consequently, Y0 = XE is IHR (DHR) whenever
X is IHR (DHR).

The reliability bounds for IHR and DHR classes in discrete set-up are discussed in
Sengupta et al. [134].

2.3 Increasing (decreasing) hazard rate of order 2

The concept of increasing (decreasing) hazard rate of order 2 (IHR(2)/DHR(2)) was in-
troduced in the continuous case using the notion of stochastic dominance. In the discrete
case, Fagiuoli and Pellerey [44] proposed (IHR(2)/DHR(2)) classes, following the nota-
tions of Abouammoh and Ahmed [3]. In this section, we study some properties of IHR(2)
(DHR(2)) in discrete time.

Analogous to the continuous case, we say that among two discrete random variables
X1 and X2 with distribution functions F1(x) and F2(x), X1 has stochastic dominance of
the first order over X2, denoted by X1 ≤SD1 X2, if,

F1(x) ≤ F2(x), ∀ x = 0, 1, 2, ... (2.3.1)

Similarly, stochastic dominance of order 2 (X1 ≤SD2 X2) is defined as

x∑
t=0

F1(t) ≤
x∑
t=0

F2(t), ∀ x = 0, 1, 2, ... (2.3.2)

and that of order 3 (X1 ≤SD3 X2) as

x∑
t=0

t∑
u=0

F1(u) ≤
x∑
t=0

t∑
u=0

F2(u), ∀ x = 0, 1, 2, ... (2.3.3)

Sometimes, instead of using the distribution function, the survival function is used to define
X1 ≤S̄D2

X2 as
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∞∑
t=x

S1(t) ≥
∞∑
t=x

S2(t) (2.3.4)

and X1 ≤S̄D3
X2 as

∞∑
t=x

t∑
u=0

S1(u) ≥
∞∑
t=x

t∑
u=0

S2(u), (2.3.5)

where S1(x) and S2(x) are the survival functions of X1 and X2 respectively. Since SD1 is
equivalent to S1(x) ≥ S2(x), it is easy to see that

SD1 ⇒ SD2 ⇒ SD3. (2.3.6)

SD1 ⇒ S̄D2 ⇒ S̄D3.

In the sequel, we denote the various types of dominance relations byX1 ≤SD1 X2, X1 ≤SD2

X2, X1 ≤SD3 X2, etc. In defining IHR(2) (DHR(2)), the requirement is that the residual
life Xx2 has stochastic dominance of order 2 over Xx1 .

Definition 2.3.1. The random variable X is said to have increasing(decreasing) hazard rate
of order 2 if for every fixed x, the sum

ax(t) =
x+t∑
u=x

S(u)

S(x)
, (2.3.7)

is decreasing (increasing) in t.

From Proposition 2.2.2,

(X − x|X > x) ≥st (X − y|X > y), ∀ x, y = 0, 1, 2, ...;x ≤ y ⇐⇒ X is IHR.

X1 ≤SD1 X2 ⇐⇒ X1 ≥st X2

and
X1 ≤SD1 X2 ⇒ X1 ≤SD2 X2.

Now, we have X is IHR ⇒ X is IHR(2). Similarly, we can prove that X is DHR⇒ X

is DHR(2). Thus, the notion of IHR(2) (DHR(2)) is weaker than that of IHR(DHR). The
properties of the IHR(2) class and its application are open problems.
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2.4 Increasing(decreasing) hazard rate average

As mentioned in Section 1.1, the hazard rate average class can be defined in two ways
(Definition 1.1.3). From Definition 1.1.3, we have the following result for IHRA1(DHRA1)
classes.

Definition 2.4.1. Let X1 and X2 be random variables with distribution functions FX1(x)

and FX2(x) respectively. We say that X1 is smaller than X2 in star order, denoted by

X1 ≤∗ X2, if F−1
X2
FX1(x) is star shaped in x, or

F−1
X2
FX1(x)

x
is decreasing in x = 0, 1, 2, ...

Proposition 2.4.1. X is IHRA1 if and only if X ≤∗ Y where Y is a geometric random
variable with parameter q and ≤∗ is the star shaped order.

Proof. The distribution function of Y is FY (x) = 1− qx. Hence,

F−1
Y (x) =

log(1− x)

log q
.

X ≤∗ Y ⇐⇒ log(1− F (x))

x log q
is decreasing in x.

⇐⇒ −H∗(x)

x
is decreasing in x.

⇐⇒ H∗(x)

x
is increasing in x.

⇐⇒ X is IHRA1.

�

The following properties of IHRA1(DHRA1) classes can be seen in Roy and Gupta
[126].

(a) X is IHR(DHR)⇒ X is IHRA1(DHRA1).

(b) IHRA1(DHRA1)⇒ IHRA2(DHRA2). But the converse is not true.

For more properties of IHRA(DHRA) classes, we refer to Roy and Gupta [126], Khalique
[79] and Bracquemond and Gaudoin [23]. Brown and Rao [25] have discussed the re-
lation between IHRA1 class of distributions and the first passage time distribution of a
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Markov chain. The bounds of survival function for IHRA2(DHRA2) classes were studied
by Sengupta and Jammalamadaka [133].

2.5 New better than used in hazard rate

The new better (worse) than used in hazard rate NBUHR (NWUHR) class arises when the
hazard rate of a new item is less(more) than that of a used one at any age.

Definition 2.5.1. A discrete random variable X is NBUHR(NWUHR) if

h(x) ≥ (≤)h(0), ∀ x = 0, 1, 2, ... (2.5.1)

The following observations are direct from definition 2.5.1.

(a) NBUHR is equivalent to the NBUFR class given in Abouammoh and Ahmed [3], for
which S(x+ 1) ≤ S(x)S(1), since

S(x+ 1)

S(x)
≤ 1− f(0) ⇐⇒ 1− h(x) ≤ 1− h(0).

Note that X is NBUHR⇐⇒ S(x+ 1) ≥ S(x)S(1).

(b) h(x) ≥ (≤)h(0) ⇐⇒ h∗(x) ≥ (≤)h∗(0). Hence both h(x) and h∗(x) produce the
same NBUHR(NWUHR) class of distributions.

(c) IHRA(DHRA)⇒ NBUHR(NWUHR).

We have the following results for NBUHR(NWUHR) class of distributions.

Proposition 2.5.1. The mixtures of NWUHR class of distributions are NWUHR.

Proof. To prove this, let X be distributed with survival function S(x; θ), where θ is contin-
uous with distribution function G(θ). The mixture distribution has survival function S(x)

where S(x) =
∫
θ

S(x|θ)dG(θ). When X is NWUHR, we have
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S(x)S(1) =
∫
θ

S(x|θ)dG(θ)
∫
θ

S(1|θ)dG(θ).

≤
∫
θ

S(x|θ)S(1|θ)dG(θ).

=
∫
θ

S(x+ 1|θ)dG(θ) = S(x+ 1).

So that S(x) is NWUHR. �

There are two different ways in which NBUHR can be introduced as a partial order.
The first one uses the following definition.

Definition 2.5.2. Two discrete random variables X1 and X2 are ordered with respect to
initial failure rate h(0), (X1 ≤h(0) X2) if hX1(0) ≥ hX2(0).

The above definition reads as Xx ≤h(0) X, which means that hx(0) ≥ hX(0) or h(t) ≥
h(0), ∀ t = 1, 2, ... since hx(t) = h(x+ t). Thus, Xx ≤h(0) X ⇐⇒ X is NBUHR.

The second is in-terms of the s-order (Abouammoh [2]) which says that X1 ≤s X2

if ∆F−1
X2

(FX1(x)) ≤ ∆F−1
X2

(FX1(y))|y=0. When FX2(.) is geometric, we can prove that
X1 ≤s X2 ⇐⇒ X1 is NBUHR. Thus, ≤h(0) offers a comparison between the hazard rate
of residual life distribution with the original distribution, while the second compares the
baseline distribution with the geometric law. Reversing the inequalities, we have Xx ≥h(0)

X ⇐⇒ X is NWUHR and X1 ≥s X2 ⇐⇒ X1 is NWUHR.

A weaker class of life distributions can be obtained if we use the averages of the hazard
rate.

Definition 2.5.3. The lifetime random variable X is said to have a new better (worse) than
used in hazard rate average (NBUHRA/NWUHRA) if,

h(0) ≤ (≥)
1

x

x−1∑
t=0

h(t). (2.5.2)

Remark 2.5.1. X is NBUHRA (NWUHRA)⇐⇒ H(0) ≤ (≥)
H(x)

x
.

When h∗(x) is used, we have a different class of life distributions.

Definition 2.5.4. (Khalique [79]) A discrete random variable X is said to have new better
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(worse) than used in hazard rate average-1(NBUHRA-1/NWUHRA-1) if

h∗(0) ≤ (≥)
1

x

x−1∑
t=0

h∗(t) (2.5.3)

or equivalently
S(1)x ≥ (≤)S(x), ∀ x = 1, 2, ... (2.5.4)

Proposition 2.5.2. X has NBUHRA-1⇒ X has NBUHRA.

Proof. X is NBUHRA-1⇐⇒ h∗(0)− H∗(x)

x
≤ 0.

Since the arithmetic mean is not less than the geometric mean, we have

log

[
1

x

x−1∑
t=0

(1− h(t))

]
≥ 1

x

x−1∑
t=0

log(1− h∗(t))

⇒ log(1− H(x)

x
) ≥ −H

∗(x)

x
.

Also,

log(1− h(0)) = −h∗(0).

So that
log(1− h(0))− log(1− H(x)

x
) ≥ H∗(x)

x
− h∗(0) ≥ 0.

The last inequality means that
H∗(x)

x
≥ h∗(0) and hence X is NBUHRA-1. By way of

implication, we note that

NBUHR⇒NBUHRA and IHRA1⇒NBUHRA1⇒NBUHRA.

�

Example 2.5.1. Consider the Waring distribution in Example 2.2.1. We have seen that the
hazard rate function given by,

h(x) =
n

m+ n+ x
; x = 0, 1, 2, ...; m,n > 0, (2.5.5)
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is decreasing and hence h(0) is greater than h(x) for x = 1, 2, ... Thus, X is NWUHR.
Now

1

x

x−1∑
t=0

h(t)− h(0) = −
n

(
x−

x−1∑
t=0

m+ n

m+ n+ x

)
(m+ n)x

≤ 0

for x = 1, 2, ... Hence X is NWUHRA.

Example 2.5.2. Let X be distributed as the discrete Weibull II distribution (Stein and
Dattero [137]) with hazard rate function

h(x) =
( x
m

)β−1

; x = 0, 1, 2, ...,m. (2.5.6)

The distribution is IHR for β > 1. Clearly, X is NBUHR. Now

1

x

x−1∑
t=0

h(t)− h(0) =

∑x−1
t=0

(
t
m

)b−1

x
≥ 0

for x = 0, 1, 2, ...,m. Hence X is NBUHRA also.

2.6 BT and UBT hazard rate classes

Among non-monotone hazard rate functions, those with bathtub-shape (BT) and upside-
down bathtub-shape (UBT) have been extensively discussed for continuous lifetime in the
review on the subject in Lai and Xie [85] and Nair et al. [108]. Compared to this, the work
on BT and UBT hazard rate models for discrete time is much less.

BT models represent hazard rates which is decreasing initially, then remain constant and
thereafter increasing. Illustration of how such models arise in practice and their justification
in the case of biological organisms and mechanical devices are provided in Marshall and
Olkin [91]. Jiang [71], Noughabi et al. [117], Noughabi et al. [118], Bebbington et al.
[19] and Almalki and Nadarajah [7] present a variety of discrete life distributions that
represent real data possessing BT hazard rate functions. On the other hand, UBT models
have an increasing hazard rate initially, followed by one with constant and then a decreasing
hazard rate. Component hardening in mechanical systems and age selection for health
may influence the occurrence of decreasing hazard rate at longer lives. Jazi et al. [70]
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and Hussain and Ahmad [68] discuss discrete models that adequately describe lifetime
datasets with UBT hazard rates. The existence and the usefulness of discrete models in
describing BT and UBT hazard rates point out to the need of a detailed study of such
classes of distributions. To the best of our knowledge, various properties of the BT and
UBT hazard rate classes of discrete distributions relevant to reliability analysis have not
been investigated so far. The present section makes an attempt in this direction.

We now focus on the monotonicity of hazard rate and MRL to study the properties
of BT and UBT hazard rate classes of distributions. To be more specific, we investigate
whether BT (UBT) hazard rates, describing the pattern of ageing, is closed with respect
to the reliability operations such as convolutions, formation of series and parallel systems,
mixtures, residual life and equilibrium distributions. We also study existence of moments
and obtain bounds on reliability functions and moments of BT (UBT) hazard rate models,
which are of special interest.

Let X be a discrete random variable taking values in {0, 1, 2, ...b, b ≤ ∞} with prob-
ability mass function f(x), survival function S(x) and the hazard rate function h(x) as
defined in (1.1.1).

Definition 2.6.1. We say that the hazard rate of X is BT (UBT) or equivalently, X has
a BT(UBT) distribution if there exist integers 1 ≤ x0 ≤ x1 < ∞, such that h(x) is
decreasing (increasing) in [0, x0] = (0, 1, 2...x0), a constant in [x0, x1] = (x0, x0 +1, ..., x1)

and increasing (decreasing) in [x1, b] = (x1, x1 + 1, ..., b). The points x0 and x1 at which
h(x) changes its shape are called the change points of h(x).

Frequently, it is enough to consider models in which there is only one change point.
i.e., the case when x0 = x1. In this case, we have only one change point x0. Throughout
our study, we consider BT(UBT) distributions with single change point only. By virtue of
(1.1.6), if X is BT (UBT) in-terms of h(x), it is BT (UBT) in the sense of h∗(x) also, but
with a different change point obtained from (1.1.6).
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2.6.1 Closure properties

Now, we examine whether the BT or UBT property of hazard rate function is preserved
under various reliability operations mentioned in the introduction.

2.6.1.1 Convolution

In reliability analysis, convolution of lifetimes has important applications. While maintain-
ing the working of a system, it is customary to replace a failed component by a spare. Then
the lifetime of the component is obtained by adding the lifetimes of the original and spare.
Such an operation is an essential activity in the formulation of maintenance policies.

Proposition 2.6.1. The convolution of two BT hazard rate distributions need not be a BT
hazard rate distribution.

Proof. Let X be distributed with survival function

S(x) = qax+ b
2
x2+ c

3
x3 , x = 0, 1, 2, ...; q = e−1; b < 0; a, c > 0; b ≥ −2

√
ac. (2.6.1)

The corresponding hazard function is

h(x) = 1− S(x+ 1)

S(x)
= 1− qa+ b

2
(2x+1)+ c

3
(3x2+3x+1) (2.6.2)

and accordingly h(x+ 1)− h(x) has a zero at

x0 =

(
− b

2c
− 1

)
, b < 0, c > 0. (2.6.3)

We take the change point as the integer part of x0. Since

h(x0 + 1)− h(x0) = 1− q > 0

and
h(x0)− h(x0 − 1) = 1− q−2c < 0,

h(x) is BT. ( For the parameter values a = 0.855, b = −0.1 and c = 0.01, we have the BT
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Figure 2.1: Hazard rate functions of convolutions

shape for (2.6.2) with change point x0 = 4).

Consider the convolution of X with itself. For the same parameter values, the hazard
rate function of the convolution is UBT as seen in Figure 2.1a. The survival function and
hence the hazard rate of the convolution is algebraically too complex to prove the result
analytically. �

Proposition 2.6.2. The convolution of two UBT hazard rate distributions need not be UBT
hazard rate distribution.

Proof. Consider a sequence of hazard rates,

h(0) = 0.01, h(1) = 0.02, h(2) = 0.6 and h(x) = 0.4, x ≥ 3.

Obviously, the corresponding distribution has UBT hazard rate with change point x = 2.

The hazard rate of the convolution of the distribution with itself is not UBT as seen in
Figure 2.1b.

�
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2.6.1.2 Mixtures

Consider two discrete lifetimes X1 and X2 with survival functions S1(x) and S2(x) and
hazard rate functions k1(x) and k2(x). Then the mixture ofX1 andX2 has survival function

S(x) = αS1(x) + (1− α)S2(x), 0 ≤ α ≤ 1 (2.6.4)

and hazard rate
h(x) = p(x)k1(x) + (1− p(x))k2(x), (2.6.5)

where
p(x) =

αS1(x)

αS1(x) + (1− α)S2(x)
.

Proposition 2.6.3. The mixture of two BT (UBT) hazard rate distributions need not be BT
(UBT) hazard rate distribution.

Proof. Take S1(x) as (2.6.1) which has BT hazard rate at the parameter values a = 0.855, b =

−0.1 and c = 0.01. Also, let

S2(x) =
exp

[
−a

2
x2
]

(1 + bx)
c
b

, x = 0, 1, 2, ...; a, b, c > 0; a+ c > 0, (2.6.6)

which is the discretized version of the Hjorth [65] model. It has hazard rate function of the
form

k2(x) = 1−
(

1 + bx

1 + b+ bx

) c
b

exp
[
−a

2
(2x+ 1)

]
. (2.6.7)

At a = 0.06, b = 0.23 and c = 4.54, we have a BT form for k2(x).

When a mixture of the form

S(x) = 0.6S1(x) + 0.4S2(x) (2.6.8)

is taken, the corresponding h(x) (calculated from (2.6.5)) at the above parameter values,
where S1(x) and S2(x) are survival functions of BT hazard rate distributions, is initially
decreasing, then increasing, again decreasing and finally increasing as shown in Figure
2.2a. Thus, the hazard rate of S(x) is not BT- shaped.
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Figure 2.2: Hazard rate functions of mixtures

To prove the result for UBT hazard rate models, we consider

S1(x) =

[
1− c

(x
a

)b] 1
c

, x = 0, 1, 2, ...; a, b > 0; c < 0. (2.6.9)

With a = 1.81, b = 1.184 and c = −0.35, the corresponding hazard rate function

k1(x) = 1−

[
1 + c(x+1

a
)b

1 + c
(
x
a

)b
] 1
c

(2.6.10)

is UBT.

As a second UBT hazard rate distribution, we take

S2(x) =
1

1 + cxα1
, x = 0, 1, 2, ...; c, α1 > 0. (2.6.11)

The hazard function
k2(x) = 1− 1 + c(x+ 1)α1

1 + cxα1
(2.6.12)

is UBT-shaped at the parameter values α1 = 1.1 and c = 0.03. Forming the mixture by
taking α = 0.5, the hazard function is decreasing as seen in Figure 2.2b. Hence it is not
UBT-shaped. �
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2.6.1.3 Series and parallel systems

Consider a series system with n components whose lifetimes are independent with survival
functions SX1(x), SX2(x), ...SXn(x).

Proposition 2.6.4. If the component hazard rates of a series system are BT (UBT)-shaped
with a common change point x0, the system hazard rate is also BT (UBT)-shaped with the
same change point.

Proof. The survival function of the system is

S(x) = SX1(x)SX2(x)...SXn(x).

Then
S(x+ 1)

S(x)
=
SX1(x+ 1)

SX1(x)
...
SXn(x+ 1)

SXn(x)
.

Hence the alternative hazard rate in (1.1.15) obeys the relationship

h∗(x) = h∗X1
(x) + h∗X2

(x) + ...+ h∗Xn(x).

So that

h∗(x+ 1)− h∗(x) = [h∗X1
(x+ 1)− h∗X1

(x)] + ...+ [h∗Xn(x+ 1)− h∗Xn(x)].

Since the components have BT (UBT) hazard rate with same change point x0, x0 is a
zero of each of the terms on the right and so is of h∗(x + 1) − h∗(x). This proves the
proposition. �

Remark 2.6.1. If the component hazard rates of a series system have BT(UBT) hazard rate
distribution with different change points, the system hazard rate need not be BT(UBT)-
shaped.

Example 2.6.1. Consider two lifetime random variables X1 and X2 with hazard rate func-
tions defined as

hX1(x) =


5

x+ 10
: x = 0, 1, 2, ..., 24

1− 24

x
: x = 25, 26, ...
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Figure 2.3: Hazard rate functions of series system

and

hX2(x) =


1

x+ 5
: x = 0, 1, 2, ..., 9

1− 9

x
: x = 10, 11, ...

Clearly hX1(x) and hX2(x) are BT-shaped with respective change points 25 and 10.
Using (1.1.2), we evaluate the survival functions SX1(x) and SX2(x) of X1 and X2 respec-
tively. The survival function corresponding to min(X1, X2) is given by

S(x) = SX1(x)SX2(x),

from which we can evaluate the hazard rate function numerically. Figure 2.3a shows the
hazard rate function. From the figure, we see that the hazard rate function is not BT-
shaped. Thus, the BT property of hazard rate is not closed under the formation of series
system when change points of the component-hazard rates are different.
For the UBT case, consider the hazard rate functions as

hX1(x) =


1− 5

x+ 10
: x = 0, 1, 2, ..., 24

24

x
: x = 25, 26, ...
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and

hX2(x) =


1− 1

x+ 5
: x = 0, 1, 2, ..., 9

9

x
: x = 10, 11, ...

The above hazard rates are UBT-shaped with respective change points 25 and 10. The
hazard rate of min(X1, X2) is shown in Figure 2.3b. It is not UBT-shaped. Thus, the UBT
shape of hazard rate is not closed under formation of series system when change points of
the component-hazard rates are different.

Proposition 2.6.5. If the component hazard rates of a parallel system are BT-shaped, the
system hazard rate need not be BT-shaped.

Proof. Consider a parallel system consisting of two independent components with common
hazard function

h(x) = 1− exp[−(a+ bx+ cx2)], x = 0, 1, 2, ...; a, c > 0; b ≥ −2
√
ac. (2.6.13)

The corresponding survival function is

S(x) = exp

(
−1

6
x(6a+ (x− 1)(3b+ c(2x− 1)))

)
, x = 0, 1, 2, ... (2.6.14)

For the parameter values

a = 1.32, b = −4.09, and c = 3.795,

the hazard function is BT-shaped.

Now, the survival function of the system is given by

S2(x) = 2S(x)− S2(x)

= 2 exp
(
−1

6
x(6a+ (x− 1)(3b+ c(2x− 1)))

)
− exp

(
−1

3
x(6a+ (x− 1)(3b+ c(2x− 1)))

)
and the corresponding hazard function is given by

h(x) =
e−2(a+x(b+cx))

(
1− 2 exp

(
1
6
(x+ 1)(6a+ x(3b+ 2cx+ c))

))
2 exp

(
1
6
x(6a+ (x− 1)(3b+ 2cx− c))

)
− 1

+ 1 (2.6.15)
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Figure 2.4: Hazard rate function of parallel system

Table 2.1: Hazard rate function of a parallel system with UBT hazard rate components.

x 0 1 2 3 4 5 6
System hazard rate 0.16 0.3928 0.5063 0.4819 0.3916 0.3950 .3970

For the parameter values

a = 1.32, b = −4.09, and c = 3.795,

the system hazard function is increasing as seen in Figure 2.4. �

Proposition 2.6.6. If the component hazard rates of a parallel system are UBT-shaped, the
system hazard rate need not be UBT-shaped.

Proof. Consider a parallel system of two components with a common sequence of hazard
rates as

h(0) = 0.4, h(1) = 0.5, h(2) = 0.55, h(3) = 0.5, and h(x) = 0.4 for x = 4, 5, ...

Clearly, the hazard rate sequence is UBT-shaped. Now consider the hazard function corre-
sponding to the system. Values of the hazard rate function are tabulated in Table 2.1, for
some values of x. From the table, we see that the system hazard rate is not UBT-shaped as
the function is again increasing slightly from the point 4. �

Table 2.2 presents the closure properties of discrete BT(UBT) hazard rate distributions.
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Table 2.2: Reliability operations on BT and UBT hazard rate classes

Domain of distribution Distribution class
Reliability operation

Coherent system Convolution Mixture
Continuous BT hazard rate Not Closed Not Closed Not Closed

Discrete BT hazard rate Not Closed Not Closed Not Closed
Discrete UBT hazard rate Not Closed Not Closed Not Closed

The continuous analogues of BT hazard rate distributions are given. The closure properties
of continuous UBT distributions are yet to be studied.

2.6.2 Residual life distribution

In the following, we discuss how the property of BT(UBT) hazard rate, of a distribution is
carried to its residual life distribution.

Proposition 2.6.7. If X is BT (UBT) with change point x0, then the distribution of Xt =

X − t|X > t is also BT (UBT) with change point x0 − t, provided x0 > t.

Proof. The proof follows from the fact that the hazard rate of Xt is h(x+ t+ 1). �

2.6.3 Equilibrium distribution

The following proposition gives a necessary and sufficient condition for the BT (UBT)
hazard rate of an equilibrium distribution, in-terms of mean residual life.

Proposition 2.6.8. If Yn is the random variable representing the equilibrium distribution of
order n in (1.1.15) of the baseline random variable X, then Yn is BT (UBT) with change
point x0 if and only if the mean residual life of Yn−1 is BT (UBT)-shaped with the same
change point.

Proof. When Yn is the equilibrium random variable of order n of X, then the hazard rate
hn(x) of Yn and the mean residual life mn−1(x) of Yn−1 are related by (Nair et al. [107])

hn(x) =
1

mn−1(x)
(2.6.16)
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Thus,

hn(x+ 1)− hn(x) =
mn−1(x)−mn−1(x+ 1)

mn(x)mn−1(x)

and the result follows from the fact that the zeroes of the left and right sides are identical
and they have the same behaviour. �

2.6.4 Bounds and moments

In this section, we derive some bounds on the reliability function and moments of BT and
UBT distributions.

Proposition 2.6.9. If X is BT (UBT) then X ≤st (≥st)Y, where Y is a geometric random
variable with parameter q = 1 − h(x0) where h(x) is the hazard rate of X and x0 is the
change point of the hazard rate.

Proof. Assume that X is BT with change point x0. Then h(x) ≥ h(x0) for all x in the
support of X. This gives

SX(x) =
x−1∏
t=0

(1− h(t)) ≤
x−1∏
t=0

(1− h(x0))

= qx, q = 1− h(x0)

Thus, X ≤st Y. The proof of the UBT case is obtained by reversing the inequalities. �

Proposition 2.6.10. For a BT distribution, moments of all order exist.

Proof.
X ≤st Y ⇐⇒ E[X(r)] ≤ E[Y (r)],

where X(r) = X(X − 1)...(X − r + 1). Thus,

E[X(r)] ≤ r!

(
1− h(x0)

h(x0)

)r
<∞

for every r. �

Remark 2.6.2. Proposition 2.6.9 gives an upper bound (lower bound) to the reliability of
a BT (UBT) distribution, while Proposition 2.6.10 gives the upper bound to the moments



Chapter 2. Univariate Ageing Classes Based on Hazard Rate 51

when X is BT. Geometric interpretation of Proposition 2.6.9 is that every survival function

of a BT (UBT) law lies below (above) that of a geometric distribution with mean
1− h(x0)

h(x0)
with x0 as the change point.

Proposition 2.6.11. Let {Sn(x)}, n = 1, 2, ... be a sequence of a survival functions with
BT(UBT) hazard rates with monotone sequence of change points {yn}, n = 1, 2, ... If
Sn(x) converges in distribution to S(x) then S(x) is also BT (UBT).

Proof. First observe that from the definition of the hazard rate

h(x) = 1− S(x+ 1)

S(x)
(2.6.17)

and therefore

h(x+ 1)− h(x) =
S(x+ 1)

S(x)
− S(x+ 2)

S(x+ 1)

=
S2(x+ 1)− S(x)S(x+ 2)

S(x)S(x+ 1)

Thus, h(x) is increasing (decreasing) is equivalent to S2(x + 1) − S(x)S(x + 2) ≥ (≤)0

and BT or UBT is equivalent to S2(x+ 1)−S(x)S(x+ 2) has a zero x0 > 0 and x0 <∞.

Now assume that {Sn(x)} converges to S(x). The sequence of change points {yn} is
monotonic, bounded and hence convergent. This means that we can find a subsequence
{ynk} of {yn} such that given t > 0, there exists a k0 satisfying

|ynk − x0| < ε for k ≥ k0.

Here x0 stands for the points to which {yn} converges. Since ynk ∈ (x0 − ε, x0 + ε) for a
point x > x0 + ε, we can write

S2(x+ 1)− S(x)S(x+ 2) = lim
k→∞

(
S2
nk

(x+ 1)− Snk(x)Snk(x+ 2)
)

≥ 0

as the hazard rate is increasing in [x0,∞). Similarly, by considering a point x < x0 − ε,

S2(x+ 1)− S(x)S(x+ 2) ≤ 0.
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As ε→ 0+, we must have

S2(x+ 1)− S(x)S(x+ 2) = 0

which is equivalent to h(x+ 1)− h(x) = 0 at x = x0. Then if Sn(x) are BT distributions,
S(x) also is a BT distribution. The proof of the UBT case is similar. �

We give an example to illustrate Proposition 2.6.11.

Example 2.6.2. Let

Sn(x) = exp

[
−ax− 1

2
(b+

1

n
)x(x− 1)− c

6
x(x− 1)(2x− 1)

]
;x = 0, 1, 2, ...

a, c > 0, 4ac ≥ (b+ 1
n
)2, with hazard rate function

hn(x) = 1− exp

[
−a− (b+

1

n
)x− cx2

]
.

Then hn(x) is BT-shaped. In this case Sn(x) converges in distribution to

S(x) = exp

[
−ax− 1

2
bx(x− 1)− c

6
x(x− 1)(2x− 1)

]
.

The hazard rate of S(x) is

h(x) = 1− exp
[
−a− bx− cx2

]
which is again BT with change point x0 = 1

2

(
− b
c
− 1
)

for −b > (c+ 1).

2.7 Conclusion

In the present chapter, we have studied ageing classes for discrete life distributions using
two different versions of the hazard rate. The relationships among these ageing classes
were derived. It may be noted that properties of various ageing classes based on the hazard
function, in the continuous set-up, are not directly transformed into discrete set-up. Vari-
ous ageing criteria discussed in this chapter play a fundamental role in the development of
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reliability theory and practice. We have established some properties of the class of distri-
butions with BT or UBT hazard rates, which could be useful in reliability practice. Being
general results, they can readily be applied in finding bounds for the reliability.





Chapter 3

Discrete Bathtub and Upside-Down
Bathtub Distributions

3.1 Introduction

There is enormous literature on bathtub distributions when lifetime is treated as a con-
tinuous random variable, as can be seen from the reviews and references in Rajarshi and
Rajarshi [120], Lai and Xie [85] and Nair et al. [108]. Two main topics discussed in this
connection are methods to identify and construct bathtub distributions and models that pro-
vide bathtub-shaped hazard rates. Compared to the continuous case, there are only a few
papers dealing with this subject when lifetime is discrete and that too of recent origin, pre-
senting a few models. The discrete inverse Weibull (Jazi et al. [70]), competing risks model
(Jiang [71]), modified Weibull (Noughabi et al. [117]), additive Weibull (Bebbington et al.
[19]), modified Weibull extension (Noughabi et al. [118]), the reduced modified Weibull
extension (Almalki and Nadarajah [7]) and the discrete inverse Rayleigh model (Hussain
and Ahmad [68]) appear to exhaust the current works on discrete bathtub distributions.
The work on general conditions that enable the identification of bathtub models initiated
by Glaser [47] and subsequently developed by Gupta and Warren [57]. Works of Ghitany

Results in this chapter have been accepted for publication in the journals “International Journal of Relia-
bility, Quality and Safety Engineering”and “South African Statistical Journal”(See Nair et al. [109] and Nair
et al. [110])
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[46] and Marshall and Olkin [91] in the continuous case have no counterparts in the discrete
case.

There is a large number of data sets that need to be analyzed using reliability concepts
in discrete time (See Lai and Xie [85] for examples and applications). The limited number
of models mentioned above are unlikely to meet the requirements of modeling. This points
out to the need for criteria for determination of the shape of the hazard rates and also for
developing new models. The present chapter is focused on this vital problem and investi-
gates some general conditions for assessing the shape of the hazard rates. Our results also
help in generating new distributions that have simple hazard rate forms.

A brief outline of the chapter is as follows. In Section 3.2, we present some definitions
and results that are needed in the sequel. Following this, Section 3.3, presents theorems
that enable the determination of the hazard rate shape. In Section 3.4, we demonstrate how
life distributions can be constructed with the help of the results in Section 3.3 and also
some associated results. We discuss the general procedures for construction of BT and
UBT distributions in Section 3.5. In Section 3.6, we study the newly proposed discretized
quadratic hazard model in detail. The chapter ends with the conclusions of study in Section
3.7.

3.2 Basic results

Let X be a discrete random variable taking values in S = (0, 1, 2, ..., b) , where b can be
finite or infinite, with probability mass function f(x) and survival function, S(x). Then the
hazard rate of X is given by (1.1.1). When dealing with discretized versions of continuous
distributions, generally the survival function or distribution function has a tractable form,
as in the case of bathtub distributions reviewed earlier. It is also convenient to find the
solution of the equation,

S2(x+ 1)− S(x)S(x+ 2) = 0, (3.2.1)

which will give the same change point obtained by solving the equation in h(x). However,
there are many distributions for which S(x) may not be analytically tractable. Therefore,
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as in the case of continuous random variables, where the score function
−g′(x)

g(x)
, where

g(x) is the probability density function, is employed, it is easier to deal with its discrete
analogue

η(x) =
f(x)− f(x+ 1)

f(x)
, (3.2.2)

called the score function. Thus, the ratios of the probability mass function is the only
requirement in determining the shape of h(x). Gupta et al. [51] have demonstrated the
simplicity of using η(x) for several distributions.

Instead of using the classical definition (1.1.1), one can also make use of the alternative
hazard rate proposed by Cox and Oakes [37] as given in (1.1.2). Since h∗(x) and h(x) are
related through (1.1.6), the shapes of the hazard rates will be identical in both cases. But
the change points will be different as seen from (1.1.6).

3.3 Main results

With the notations and terminology of the previous section, we present the following the-
orems. The first theorem (Theorem 3.3.1) deals with the case of unbounded support. The
case of distributions with bounded support which needed special attention is discussed in
Theorem 3.3.2.

In the sequel, we use D (I) for decreasing (increasing).

Theorem 3.3.1. Let X be a discrete random variable with support N, where b = ∞ and
f(∞) = 0. Then,

(i) if η(x) is decreasing (D), then h(x) is decreasing (D),

(ii) if η(x) is increasing (I), then h(x) is increasing (I),

(iii) if η(x) is bathtub-shaped (BT ) and f(0) = 0 (f(0) 6= 0,
η(0)

f(1)
(1− f(0)) > 1), then

h(x) is I(BT ) and

(iv) if η(x) is upside-down bathtub-shaped (UBT ) and f(0) = 0 (f(0) 6= 0,
η(0)

f(1)
(1 −

f(0)) > 1), then h(x) is D(UBT ).
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Proof. Writing C(x) =
1

h(x)
, we have

∆C(x) = C(x+ 1)− C(x) =
h(x)− h(x+ 1)

h(x)h(x+ 1)
. (3.3.1)

Also,

∆C(x) =
S(x+ 1)

f(x+ 1)
− S(x)

f(x)

=
S(x+ 1)

f(x+ 1)
− S(x+ 1) + f(x)

f(x)

=
S(x+ 1)

f(x+ 1)

(
f(x)− f(x+ 1)

f(x)

)
− 1

=
η(x)

f(x+ 1)

b∑
t=x+1

f(t)− 1

=
1

f(x+ 1)

[
b∑

t=x+1

(η(x)− η(t)) f(t) +
b∑

t=x+1

f(t)η(t)

]
− 1

=
1

f(x+ 1)

[
b∑

t=x+1

(η(x)− η(t)) f(t)− f(b)

]
. (3.3.2)

Equation (3.3.2) holds irrespective of whether b is finite or infinite. Further discussion is
with regard to the shapes of η(x).

(a) When η(x) is D, η(x) < η(t), t < x and f(b) = f(∞) = 0. Hence from (3.3.2),
∆C(x) > 0 which in turn implies h(x) > h(x+ 1) and so h(x) is D, proving (i).
The proof of (ii) is obtained by changing D to I and then reversing the inequalities.

(b) Assume that η(x) is bathtub-shaped and has exactly one zero, say x0.

Since η(x) is I in [x0, b), we must have

η(x)− η(t) < 0, x0 ≤ x < t < b

and therefore,
∆C(x) < 0⇒ h(x) < h(x+ 1).
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Thus, h(x) is I in [x0, b). This fact will be referred to as property P. When f(0) = 0, η(x)

being bathtub-shaped, it is D in [0, x0).

Now write,

a(x) = [∆C(x)]f(x+ 1)

=
b∑

t=x+1

(η(x)− η(t))f(t)− f(b), from (3.3.2).

= η(x)S(x+ 1)− [f(x+ 1)− f(b)]− f(b)

= η(x)S(x+ 1)− f(x+ 1), (3.3.3)

irrespective of whether b is finite or infinite.

Also,

∆a(x) = η(x+ 1)[S(x+ 1)− f(x+ 1)]− η(x)S(x+ 1)− [f(x+ 2)− f(x+ 1)]

= [∆η(x)]S(x+ 1). (3.3.4)

Since η(x) isD in [0, x0), by virtue of (3.3.4), a(x) is alsoD in the same interval. Since
f(0) = 0 and f(1) > 0, we have a(0) < 0 and this together with a(x) is D in [0, x0) shows
that a(x) < 0 in [0, x0).

Further, from (3.3.4),

∆h(x) = (C(x)− C(x+ 1))h(x)h(x+ 1)

=
−[∆C(x)]

C(x)C(x+ 1)
=

−a(x)

f(x+ 1)C(x)C(x+ 1)
. (3.3.5)

Hence a(x) < 0 in [0, x0) implies ∆h(x) > 0 in (0, x0). Combining this with the property
P, h(x) is I in [0, b) and the first part of (iii) is proved.

Now, we use the condition f(0) 6= 0 and
η(0)

f(1)
(1− f(0)) > 1 to infer that ∆C(0) > 0.

Hence from (3.3.3), a(0) > 0. There are two cases to distinguish; a(x0) > 0 or a(x0) < 0.

Taking a(x0) > 0, a(x) > 0 since a(x) is D in [0, x0). Thus, ∆h(x) < 0 or h(x) is D
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in [x, x0). This along with P means that h(x) is BT.
On the other hand, a(x0) < 0, there exists a point x1 in [0, x0) such that a(x) > 0 in [0, x1),

a(x1) = 0 and a(x) < 0 in (x1, x0]. Hence from (3.3.5), h(x) is BT in [0, x0] and this
combined with P shows that h(x) is BT in [0, b). Part (iv) is similarly proved. �

The following theorem addresses the case when b is finite.

Theorem 3.3.2. Let X be the random variable in Theorem 3.3.1 with b <∞. Then,

(i) if η(x) is D and f(b) = 0, then h(x) is D,

(ii) if η(x) is I, then h(x) is I,

(iii) if η(x) is BT and f(0) = 0(f(0) 6= 0,
η(0)

f(1)
(1− f(0)) > 1), then h(x) is I(BT ) and

(iv) if η(x) is UBT, f(0) = 0(f(0) 6= 0,
η(0)

f(1)
(1 − f(0)) > 1) and f(b) = 0, then h(x)

is UBT (I).

Remark 3.3.1. Theorems 3.3.1 and 3.3.2 extend the results of Gupta et al. [51] to the cases
when h(x) is BT and UBT. Their results address the case of monotonic hazard rates only.

The main problem in applying the above theorems in practice to locate BT and UBT
cases is that the computation of ∆η(x) and its solution becomes necessary. This results
in much involved algebra in many cases. To overcome this, we have the following result
which utilizes only η(x) and not its difference in the calculations. It appears that there is
no counterpart in the continuous case for this result.

Theorem 3.3.3. The random variable X has,

(i) increasing (decreasing) hazard rate if and only if h(x+ 1) ≥ (≤)η(x) and

(ii) a bathtub (upside-down bathtub) shape if and only if h(x + 1) − η(x) has a unique
zero x0 > 0 such that h(x − 1) ≥ (≤)h(x) in [0, x0) and h(x − 1) ≤ (≥)h(x) in
[x0, b).
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Proof. We have

h(x+ 1)− h(x) =
f(x+ 1)

S(x+ 1)
− f(x)

S(x)

=
f(x+ 1)(S(x+ 1) + f(x))− f(x)S(x+ 1)

S(x)S(x+ 1)

= −η(x)h(x) + h(x)h(x+ 1).

Hence,
h(x+ 1)− h(x)

h(x)
= h(x+ 1)− η(x). (3.3.6)

The identity (3.3.6) shows that h(x + 1) ≥ (≤)h(x) if and only if h(x + 1) ≥ (≤)η(x).

This proves (i). Also, h(x+ 1)− h(x) has the same zero as h(x+ 1)− η(x) which proves
(ii). �

Remark 3.3.2. Theorems 3.3.1 and 3.3.2 provide only sufficient conditions for the shape
of h(x), but Theorem 3.3.3 gives a necessary and sufficient condition. Thus, when more
than one model fits the observations, Theorem 3.3.3 provides a criteria to choose the correct
model by empirically examining the form of h(x+ 1)− η(x) in each case.

Remark 3.3.3. When X is a continuous random variable with probability density function
g(x) and survival function Ḡ(x), (3.3.6) takes the form,

1

h(x)

dh(x)

dx
= h(x)− η(x),

where h(x) =
g(x)

Ḡ(x)
and η(x) =

−f ′(x)

f(x)
. Similar conclusions can be derived from (3.3.6)

about the nature of h(x).

Remark 3.3.4. The hazard rate function h(x) appearing in (3.3.6) is not an additional input
needed to apply the theorem, since h(x) can be expressed in-terms of η(x) as,

h(x) =

x−1∏
t=0

(1− η(t))f(0)

1− f(0)
x∑
t=1

(1− η(1))(1− η(2))...(1− η(t− 1))
, x = 1, 2, ..., b (3.3.7)
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3.4 Some applications of the results

In this section, we demonstrate the usefulness of the above results in determining the be-
haviour of the hazard function and also in deriving new models. The methodology is to
extract some simple relationships between η(x) and h(x+ 1). We give three examples, one
each for distributions having monotone, BT and UBT hazard rates.

Example 3.4.1. Assume that η(x) = c h(x+ 1), where c is a constant.
Substituting in (3.3.6), we arrive at the recurrence relation,

h(x+ 1) =
h(x)

1− c h(x)
, x = 0, 1, 2, ...

Successive reduction yields the solution,

h(x) =
h(0)

1 + (c− 1)h(0)x

=
1

αx+ β
, β =

1

h(0)
> 0 and α = (c− 1), real. (3.4.1)

From Xekalaki [143], the hazard rate function is of the form (3.4.1) if and only if the
distribution of X is,

(i) geometric with f(x) =
1

β

(
β − 1

β

)x
, x = 0, 1, 2, ... (c = 1).

(ii) Waring with f(x) =

(
β − 1

α

)
x

β

(
β

α
+ 1

)
x

, x = 0, 1, 2, ... (c > 1), where (t)x = t(t +

1)...(t+ x− 1), and

(iii) negative hyper-geometric with f(x) =

(
−1

x

) 1

α
n− x


−1 +

1

α
n

 , x = 0, 1, 2, ..., n, n =

1− β
α

, integer (c < 1).
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Further special cases are when α = 1 in (iii), X has uniform distribution on (0, 1, ...β − 1)

and when β = α + 1 in (ii), the Yule distribution results. The distributions involved have
monotone hazard rates.

Example 3.4.2. Consider the relationship,

h(x+ 1)− η(x) =
αx+ β

h(x)
.

Again from (3.3.6), we have,

h(x+ 1) = h(x) + αx+ β,

leading to

h(x) =
αx(x− 1)

2
+ β(x− 1) + h(0). (3.4.2)

Since (3.4.2) can be written as,

h(x) = a1x
2 + b1x+ c1,

we have a quadratic hazard rate in which the conditions b1 < 0 and b2
1 − 4a1c1 > 0 are

imposed. Then h(x) provides a bathtub shape with change point x0 = −1

2

(
1 +

b1

a1

)
,

where x0 is taken as the positive integer part of the right side. The random variable X has
survival function,

S(x) =
x−1∏
t=0

[
1− (a1t

2 + b1t+ c1)
]
, x = 0, 1, 2, ... (3.4.3)

We call (3.4.3) the quadratic hazard rate distribution, which does not seem to have appeared
in literature. Also, (3.4.3) represents a family of distributions consisting of the geometric
when a1 = b1 = 0, the linear hazard rate distribution when a1 = 0, b1 > 0, c1 > 0

and linear hazard rate distribution with bounded support on (0, 1, ...,−c1

b1

), where −c1

b1

is a

positive integer. The converse part using the relationship between η(x) and h(x + 1), can
be easily verified from (3.4.3).

To examine whether the model is useful in practice, we have applied it to the data in
Aarset [1] pertaining to 50 lifetimes of devices by taking the first two observations 0.1
and 0.2 as zeros. The method of least squares is employed to estimate the parameters by
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Table 3.1: χ2-test for Example 3.4.2.

Class 0− 7 7− 30 30− 65 65− 71 > 71
Obs. frequencies 11 8 11 4 16
Exp. frequencies 13 8 9 5 15

minimizing

L(a1, b1, c1) =
∑
x

(
x∑
i=0

a1i
2 + b1i+ c1 −

x∑
i=0

Ŝ(i)− Ŝ(i+ 1)

Ŝ(i)

)2

,

where Ŝ(x) is the empirical survival function. The estimates obtained were,

â1 = 379× 10−7, b̂1 = −259× 10−5, ĉ1 = 443× 10−4,

and the error in estimation is Lmin = 2.4989. The model adequacy is checked using χ2

goodness of fit. The observed and expected frequencies are given in Table 3.1. The value
of χ2 statistic is 1.01 with one degree of freedom and the corresponding p-value is 0.60.

Thus, the distribution is a good fit and provides a bathtub-shaped hazard rate function
with change point x0 = 33. The plots of the survival function, hazard rate function and
cumulative hazard rate function are exhibited in Figures 3.1a-3.1c. From Figure 3.1a, it is
clear that the model fits the data well.

Example 3.4.3. Let X be distributed with survival function

S(x) =
(
1 + cx2

)−1
, x = 0, 1, 2, ...; c > 0.

Then,
f(x) = (1 + cx2)

−1 − (1 + c(x+ 1)2)
−1
,

h(x) = 1− (1 + cx2) (1 + c(x+ 1)2)
−1
, x = 0, 1, 2, ...

η(x) = 1− [1 + c(x+ 1)2]
−1 − [1 + c(x+ 2)2]

−1

[1 + cx2]−1 − [1 + c(x+ 1)2]−1 .
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Figure 3.1: Survival, hazard rate and cumulative hazard rate functions for the data in Ex-
ample 3.4.2.

To assess the behaviour of h(x), we calculate,

η(x)− h(x+ 1) =
2x+ 3

2x+ 1

[
1 + c(x+ 1)2

1 + c(x+ 2)2

]
− 1,

leading to the equation,
2cx2 + 4cx+ c− 2 = 0,

whose zeros are,

x = −1± 1

2

(
4− 2

(
1− 2

c

))1

2
.

A positive solution greater than zero exists only when c ≤ 2. As an illustration, when
c = 2

31
, the change point of h(x) is x0 = 3. Further h(x) is increasing for x = 0, 1, 2 and
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decreasing for x = 3, 4, ... Thus, h(x) has an upside-down bathtub-shape when c < 2 and
X has decreasing hazard rate in [2,∞).

As a slight point of departure, utility of the score function η(x) in comparing life dis-
tributions in-terms of the basic reliability functions will also be pointed out. Recall that
among two lifetime random variables X1 and X2, X1 is smaller than X2 in likelihood ra-

tio order, X1 ≤lr X2, if and only if
fX2(x)

fX1(x)
is increasing in x (Shaked and Shanthikumar

[135]). Let ηX1(x) and ηX2(x) be the score functions of X1 and X2 respectively.

Theorem 3.4.1.

ηX1(x) ≤ ηX2(x) for x = 0, 1, 2, ... ⇐⇒ X1 ≤lr X2

Proof.

ηX1(x) ≤ ηX2(x) ⇐⇒ 1− fX1(x+ 1)

fX1(x)
≥ 1− fX2(x+ 1)

fX2(x)

⇐⇒ fX2(x+ 1)

fX1(x+ 1)
≥ fX2(x)

fX1(x)

,

so that
fX2(x)

fX1(x)
is increasing in x and therefore X1 ≤lr X2. �

Remark 3.4.1. Since the likelihood ratio order implies both hazard rate order and reversed
hazard rate order and these two imply the mean residual life order and reversed mean resid-
ual life order, Theorem 3.4.1 gives a sufficient condition for comparing life distributions
using ηX(x) based on all these concepts.

3.5 Construction of discrete BT and UBT models

The origin of distributions with bathtub-shaped hazard rates can be traced back to the
attempts to model data on bird populations (Deevey [42]) and to bus motor failure data
in Davis [41], where monotone hazard rate distributions failed to provide reasonable fits.
Since then, there has been a continuous flow of literature on various types of bathtub dis-
tributions. In most of the work on this topic, lifetime is treated as a continuous random
variable. For a review of the literature, discussion and references on bathtub models we
refer to Rajarshi and Rajarshi [120], Lai and Xie [85] and Nair et al. [108].
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Unlike the voluminous literature in the continuous case, only a limited number of in-
vestigations have been carried out when the lifetime X is treated as a discrete random
variable.

Lai and Wang [84] proposed a discrete power distribution with

f(x) =
xα

b∑
0

xα
, x = 0, 1, 2, ..., b; α ∈ R (3.5.1)

for lifetime random variables and it was proved that h(x) is BT for α < 0. The rest of the
BT models are of recent origin. The discretized version of the inverse Weibull law was
considered in Jazi et al. [70],

S(x) = 1− q(x−1)β , x = 1, 2, ...; 0 < q < 1; β > 0 (3.5.2)

which is UBT. A special case when β = 2 is discussed in Hussain and Ahmad [68] called
inverse Rayleigh, whose hazard rate can also be UBT with change point at x = 1 or 2 for
0 < q < 0.75 and change point x0 = 2 as q → 0. A competing risks model with hazard
rate of the form,

h(x) = p+ (1− p)r1(x), (3.5.3)

where r1(x) is the hazard rate of an exponential Poisson law, was shown to have BT shape
in Jiang [71]. The discretized version of the modified Weibull distribution with reliability
function,

S1(x) = qx
β

cx, x = 0, 1, 2, ..., 0 < q < 1, β > 0, c ≥ 1 (3.5.4)

discussed in Noughabi et al. [117] possess a BT hazard rate. Another Weibull related
distribution is the discrete additive Weibull with

S2(x) = qx
α

1 qx
β

2 , x = 0, 1, 2, ...; α, β > 0, (3.5.5)

where q1 = e−λ1 , q2 = e−λ2 , λ1, λ2 > 0 presented by Bebbington et al. [19]. They have
studied the shape of the hazard rate and found that if α < 1 < β, h(x) is BT with minimum
achieved at one of the three points [tα,β], 1 + [tα,β] and 2 + [tα,β], where [tα,β] is the largest
integer contained in

tα,β =

(
α(1− α)λ1

β(β − 1)λ2

) 1
β−α

. (3.5.6)
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A similar conclusion holds for β < 1 < α. Later, Noughabi et al. [118] proposed the
discrete modified Weibull extension,

S3(x) = q
α

(
e(
x
α )β−1

)
, x = 0, 1, 2, ..., 0 < q < 1, β, α > 0, (3.5.7)

as a bathtub distribution. Yet another Weibull extension is the reduced modified Weibull
family discussed in Almalki and Nadarajah [7] with reliability function,

S4(x) = q
√
x(1+bcx), x = 0, 1, 2, ..., 0 < q < 1, b > 0, c ≥ 1. (3.5.8)

The hazard rate of this distribution is increasing if bc(c−
√

2) <
√

2− 1 and has BT shape
otherwise.

The limited number of prevailing BT distributions reviewed above appears to be insuf-
ficient to model a wide variety of data sets. If the stochastic mechanism that generates the
data is known, we need a model that is appropriate to it. Further, the observations may
sometimes suggest a BT shape through the empirical hazard rate with a known shape that
would require a distribution satisfying this particular shape. All these point out to the need
for evolving some methods of arriving at BT distributions, which do not appear to have
been considered so far. This motivates the present investigation. There is a huge literature
on the methods of such constructions in the continuous case to adopt them for discrete life-
time as well. While this is the case in some of the methods we propose, there are some
methods for which there is no counterpart in the continuous case.

3.5.1 Method using score function

In Section (3.4), we have already seen the method of construction of BT models by giving
different functional forms to the score function η(x). Here we give one more example,
which gives rise to a new model that is applicable in many real life data sets.

Example 3.5.1. Consider the identity,

h(x+ 1)− η(x) =

α− θβ

(1 + βx)(1 + β(x+ 1))

h(x)

 . (3.5.9)
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h(x+ 1)− h(x) = α +
θ

1 + β(x+ 1)
− θ

1 + βx
,

leaving the solution,

h(x) = αx+
θ

1 + βx
, θ = h(0). (3.5.10)

In order that (3.5.10) is a hazard rate, one should have α, β > 0, 0 < θ < 1. The reliability
function is

S(x) =


x−1∏
t=0

(
1− αt− θ

1 + βt

)
: x = 1, 2, 3, ...

1 : x = 0

(3.5.11)

It is seen that h(x) is BT when 0 < α <
θβ

1 + β
. The form of the hazard rate is similar to

the one in the continuous case obtained by Hjorth [65]. However, the reliability function
(3.5.11) is not the discretized version of the Hjorth model.

The expression (3.5.10) is the sum of the hazard rates of the linear hazard rate distribu-
tion and the Waring distribution. It is known that by taking the sum of hazard rates, one of
which is decreasing and another is increasing, we may have BT hazard rate. This is also
suggested as a method of deriving a new BT model. The above example can also be seen in
this context. There are several continuous distributions based on hazard rates having such
a structure, see for example Murthy et al. [93], Jaisingh et al. [69], Canfield and Borgman
[29], Xie and Lai [144], Jiang and Murthy [72], Usgaonkar and Mariappan [141] and Wang
[142]. The method of this section can be considered to these cases as well by appropriately
choosing a(x). From (3.5.10), it is easy to see that the change point x0 is the solution of
the quadratic equation

βx2 + αx+ θ,

provided that 4βθ < α2 and x0 > 0. The parameters of the model are estimated by min-
imising the discrepancy

∑(
αx+

θ

1 + βx
− Ŝ(x)− Ŝ(x+ 1)

Ŝ(x)

)2

between the model and the empirical hazard rates. Since θ = h(0), we take it as the
observed value of h(0). Thus, the only parameters to be estimated are α and β. The hazard
rate function and the reliability function can be seen in Figures 3.2a-3.2b.
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Figure 3.2: Survival and hazard rate functions for the model in Example 3.5.1.

3.5.2 Discretizing continuous bathtub distribution

Let Y be a continuous lifetime random variable with reliability function F̄ (x) = P [Y ≥ x].

If time is recorded at unit intervals, the discrete random variable X = [Y ], the largest inte-
ger contained in Y, has the reliability function S(x) = F̄ (x), x = 0, 1, 2, ... and probability
mass function,

f(x) = S(x)− S(x+ 1). (3.5.12)

When Y has a bathtub hazard rate, it may turn out that X also has a BT hazard rate. The
reliability functions S1(x) through S4(x) discussed earlier were obtained in this way. We
shall further illustrate this method with two examples, one of which renders BT and the
other UBT.

Example 3.5.2. One of the earliest bathtub models introduced by Bain [12] and Bain and
Englehardt [11] was the quadratic hazard rate model with

F̄ (x) = exp

[
−ax− bx2

2
− cx3

3

]
, x > 0, c > 0, b ≥ −(2ac)

1
2 . (3.5.13)

The reliability function and probability mass function of the corresponding discrete model
is given by

S(x) = q

(
ax+ bx2

2
+ cx3

3

)
, q = e−1;x = 0, 1, 2, ... (3.5.14)
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and
f(x) = q

(
ax+ bx2

2
+ cx3

3

) [
1− qa+ b

2
(2x+1)+ c

3
(3x2+3x+1)

]
. (3.5.15)

Accordingly,
h(x) = 1− qa+ b

2
(2x+1)+ c

3
(3x2+3x+1). (3.5.16)

The model introduced in (3.5.14) will be called discretized quadratic hazard model
and it will be denoted using DQHM(a,b,c). We study the model in detail in Section 3.6.
In Section 3.6, we show that DQHM possesses BT hazard rate for specified values of
parameters.

Example 3.5.3. The log logistic distribution (Gupta et al. [59]) of a continuous random
variable Y is specified by the reliability function

F̄ (x) = P [Y > x] =
1

1 + cxα
, x ≥ 0, c, α > 0. (3.5.17)

It is known that this distribution has a decreasing (upside-down bathtub-shaped) hazard
function, when α ≤ (>)1. In the UBT case, the change point is given by,

x0 =

(
α− 1

c

) 1
α

.

The application of the distribution in analysing survival data has been pointed out by several
authors. We refer to Gupta et al. [59] and their references for details. The integer part X of
Y has reliability function,

S(x) =
1

1 + cxα
, x = 0, 1, 2, ..., c, α > 0, (3.5.18)

probability mass function

f(x) =
1

1 + cxα
− 1

1 + c(x+ 1)α
(3.5.19)

and hazard function
h(x) = 1− 1 + cxα

1 + c(x+ 1)α
. (3.5.20)

To ascertain the use of the model, we apply it to the data on the times from remission
to relapse of 84 patients with acute non-lymphoblastic leukaemia reported in Glucksberg
et al. [48]. For the present analysis, the censored observations are omitted and the rest of 51
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Table 3.2: χ2-test for leukaemia data.

Class 0− 100 100− 150 151− 200 201− 250 251− 300 301− 400 > 400
Obs. frequencies 6 7 7 7 5 7 12
Exp. frequencies 10 5 6 5 8 6 11

observations are only utilized. We minimize the squared distance between S(x) and Ŝ(x)

to estimate the parameters of the model. This gives the estimates

α̂ = 2.33009 and ĉ = 2.78614× 10−6

and the error between the fitted values and observed survival probabilities is 0.573 for the
above α̂ and ĉ. The model adequacy is checked through the χ2-test. The observed and
expected frequencies are exhibited in Table 3.2 and the graphs of survival, hazard rate and
cumulative hazard rate functions are given as Figures 3.3a-3.3c. The χ2-value of 5.97 at 4

degrees of freedom yields a p-value of 0.20.

3.5.3 Modifying decreasing hazard rate functions

A third method that may result in BT distributions is to consider

h∗(x) =
h(x)

S(x)
, h(x) ≤ S(x), (3.5.21)

where h(x) is a decreasing hazard rate with reliability function S(x). Under the given
conditions, 0 ≤ h∗(x) ≤ 1 and

∞∑
x=0

h∗(x) =
∞∑
x=0

h(x)

S(x)
≥

∞∑
x=0

h(x) =∞,

so that h∗(x) is a hazard rate with reliability function S∗(x). Now consider,

h∗(x+ 1)− h∗(x) =
h(x+ 1)S(x)− h(x)S(x+ 1)

S(x)S(x+ 1)

=
h(x+ 1)

S(x+ 1)
− h(x)

S(x)
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Figure 3.3: Survival, hazard rate and cumulative hazard rate functions for the leukaemia
data in Example 3.5.3.

For h∗(x) to be BT, the right of above expression must be zero for a unique x0 > 0. But,

h(x+ 1)

S(x+ 1)
=
h(x)

S(x)

implies
h(x+ 1)

h(x)
=
S(x+ 1)

S(x)

or
h(x+ 1)

h(x)
= 1− h(x).
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Thus, for h∗(x) to be BT or UBT,

h(x+ 1) = h(x)(1− h(x)) (3.5.22)

must have a unique solution x0 > 0. The idea behind the modification (3.5.21) is that
initially S(x) has values close to unity to keep the decreasing nature of h(x) and hence that
of h∗(x). But as x increases, S(x) becomes closer to zero to increase the value of h(x) that
may transform h∗(x) to an increasing function, so that the overall shape of h∗(x) may be

BT. If h∗(x) does not produce a BT, then the process can be repeated with h∗∗(x) =
h∗(x)

S∗(x)
,

provided h∗(x) ≤ S∗(x) and so on. We give two examples that illustrate how the method
works in practice.

Example 3.5.4. A good share of continuous bathtub distributions are related to the Weibull
distribution as can be seen from Chapter 5 of Lai and Xie [85]. In this example, we apply
the above method to generate a BT model from the discretized Weibull I distribution.

S(x) = qx
β

, x = 0, 1, 2, ..., 0 < q < 1, β > 0 (3.5.23)

of Nakagawa and Osaki [113]. In this case,

h(x) = 1− q(x+1)β

qxβ
, (3.5.24)

so that

h∗(x) =
qx

β − q(x+1)β

q2xβ
(3.5.25)

and h(x) ≤ S(x). From Figure 3.4 representing the graph of h∗(x), it is seen that h∗(x)

can be BT.

Example 3.5.5. Let X follow the Waring (Nair et al. [107]) distribution,

S(x) =
(m)x

(m+ n)x
, x = 0, 1, 2...; m,n > 0. (3.5.26)

Then,
h(x) =

n

m+ n+ x
,
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Figure 3.4: Hazard rate function for the model in Example 3.5.4.

which is clearly decreasing.

h∗(x) =
n(m+ n)x

(m+ n+ x)(m)x
.

By virtue of the Waring expansion,

1

(x− a)
=

1

x
+

a

x(x+ 1)
+

a(a+ 1)

x(x+ 1)(x+ 2)
+ ...,

we can write

S(x) =
(m)x

(m+ n)x
= n

(m)x
(m+ n)x

[
1

m+ n+ x
+

m+ x

(m+ n+ x)(m+ n+ x+ 1)
+ ...

]
.

From this, it can be seen that h(x) ≤ S(x). Also,

h(x+ 1)− h(x)(1− h(x)) = 0

leads to
(m+ n)2 + (m+ n)x−mx− x−m(m+ n)−m = 0.

The unique solution is,

x0 =
m(m+ n) +m− (m+ n)2

n− 1

which will give a change point provided (m+n−1) < m <
(m+ n)2

m+ n+ 1
.As an illustration,

taking m = 0.46, n = 0.86, we have x0 = 4.8 which is taken as 4. Figure 3.5 shows the
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Figure 3.5: Hazard rate function for the model in Example 3.5.5

plotted hazard rate function and clearly it is UBT-shaped. The reliability function S∗(x) is
derived from (1.1.2).

3.5.4 Other methods

In this section, we discuss certain methods borrowed from the continuous case. The mixture
of a distribution with increasing hazard rate and a distribution with decreasing hazard rate
may produce a BT distribution. Let f1(x)(S1(x)) and f2(x)(S2(x)) be the probability
mass(survival) functions of two discrete lifetimes X1 and X2. Then the two-component
mixture of f1(x) and f2(x),

f(x) = αf1(x) + (1− α)f2(x), 0 ≤ α ≤ 1

has a hazard rate of the form

h(x) = p(x)h1(x) + (1− p(x))h2(x), (3.5.27)

where h1(x) and h2(x) are hazard rate functions of X1 and X2 and

p(x) =
αS1(x)

αS1(x) + (1− α)S2(x)
.

Although the expression (3.5.27) looks compact, it is difficult to prove analytically that
h(x) has a maximum or minimum.
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Table 3.3: Observed and expected frequencies for Aarset data.

Class 0− 4 5− 18 19− 50 51− 67 68− 84 > 84
Observed 9 9 8 8 9 7
Expected 7 10 7 8 10 8

A strictly convex function which satisfies 0 ≤ h(x) ≤ 1 and
∞∑
t=0

h(t) = ∞ for non-

negative integer values can be a candidate hazard rate function that is bathtub-shaped.

Example 3.5.6. The function

h(x) = 1− e−(ax2+bx+c); a, c > 0, ac ≥ b2

4
. (3.5.28)

satisfies the above conditions. The parameters are estimated by regression of − log(1 −

ĥ(x)), where ĥ(x) =
Ŝ(x)− Ŝ(x+ 1)

Ŝ(x)
is the empirical hazard rate, on a quadratic func-

tion. This method was applied to the analysis of data in Aarset [1] pertaining to 50 lifetimes
of devices by taking the first two observations 0.1 and 0.2 as zeros to obtain the estimates

â = 227.975× 10−7, b̂ = −156.645× 10−5, ĉ = 326.186× 10−4

The sum of squares of the errors between the model and empirical values is 0.041.Applying
the χ2-test, we have the observed and expected frequencies as in Table 3.3. The χ2-value
of 1.03 at 2 degrees of freedom gives a p-value of 0.59. The change point is

x0 =

[
−(b+ a)

2a

]
= 33,

the integer part of x0. See Figures 3.6a-3.6c for the reliability, hazard rate and cumulative
hazard rate functions. From (1.1.2) and (3.5.28), we arrive at a nice form for the reliability
function as

S(x) = q
ax3

3
+a−b

2
x2+

(a−3b−6c)
6

x, x = 0, 1, 2, ...

The quadratic hazard rate family of Example 3.5.2 is another distribution that obeys the
above criterion.
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Figure 3.6: Survival, hazard rate and cumulative hazard rate functions for the model in
Example 3.5.6.

3.6 Discretized quadratic hazard model

The discretized quadratic hazard model (3.5.14), introduced in Section 3.5.2, deserves a
separate study because of its interesting reliability properties. In this section, we study
the reliability properties of DQHM and propose a two stage procedure for estimating the
parameters. A real dataset has been analysed using this estimation procedure and we can
see that the model performs well.

For the model,

h(x+ 1)− h(x) = qa+ b
2

(2x+1)+ c
3

(3x2+3x+1)
(
1− qb+2c(x+1)

)
, (3.6.1)
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has a unique zero

[x0] =

[
− b

2c
− 1

]
, b < 0, c > 0, (3.6.2)

where x0 > 0 and [x0] is the integer part of x0. For x0 to be non-negative, we need−b > 2c.

Further,
h(x0 + 1)− h(x0) = 1− q > 0,

and
h(x0)− h(x0 − 1) = 1− q−2c < 0,

showing that h(x) is decreasing in [0, x0) and increasing in [x0,∞) yielding a BT shape.

Thus, the hazard rate function is BT when −b > 2c and is increasing for b > 0. The
DQHM(a,b,c) has a non-zero hazard rate at the point 0, which is not common.

The following particular cases are applicable for DQHM(a, b, c).

(a) When b = c = 0, the model reduces to geometric distribution with parameter θ = qa.

(b) When c = 0 and b > 0, it has the hazard rate function

h(x) = 1− q−(a+ b
2

+bx), (3.6.3)

which is increasing in x.

(c) When a = c = 0, we have the discretized version of Rayleigh distribution.

Theorem 3.6.1. Consider a series system consisting of n components. Let the component
lifetimes be independently distributed as DQHM(ai, bi, ci), i = 1, 2, ..., n . Then the system
lifetime is distributed as DQHM(

∑n
i=1 ai,

∑n
i=1 bi,

∑n
i=1 ci).

The proof is direct.

3.6.1 Residual life

The following theorem gives the closure property of the residual life random variable of
DQHM(a, b, c).
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Theorem 3.6.2. For DQHM(a, b, c), the residual life variable Xx is distributed as DQHM
(a1, b1, c1) with survival function

Sx(t) = qa1t+
b1
2
t2+

c1
3
t3 (3.6.4)

where, a1 = 1
6

(6a+ 6bx+ 6b+ 6c(x+ 1)2) , b1 = 2
6
(3b+ 6c(x+ 1)) and c1 = c.

The proof of the theorem follows directly from the definition of Sx(t).

3.6.2 Transformation

In this section, we study the behaviour of DQHM distribution under scale transformation.
The following theorem shows the closure of DQHM under change of scale, whose proof is
direct.

Theorem 3.6.3. Let X be a non-negative integer valued random variable and k > 0 be
a constant. Then Y = kX is distributed as DQHM(a1, b1, c1) if and only if X follows
DQHM(a,b,c), where a1 = a

k
, b1 = b

k2
and c1 = c

k3
.

3.6.3 Estimation of parameters

Suppose X1, X2, ..., Xn be a random sample from (3.5.14). We apply the maximum likeli-
hood procedure for estimating the parameters. In the present set-up, the likelihood is very
complicated and there is a possibility of multiple roots for the score equation. The conver-
gence of the estimates depends on the initial value we give. So we consider a two stage
estimation procedure, which consists of estimating the initial values of the parameters by
least square fit and then maximizing the likelihood with these estimates as starting points.
Based on the random sample from the DQHM(a,b,c), the log likelihood is given by

l[x, a, b, c] =
n∑
i=1

log[e−axi−
bx2i
2
− cx

3
i

3 (1− e−(a+ b
2

+ c
3

+(b+c)xi+cx
2
i ))]

=
n∑
i=1

(−axi −
bx2

i

2
− cx3

i

3
) + log(1− e−(a+ b

2
+ c

3
+(b+c)xi+cx

2
i )) (3.6.5)
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The score equations are

δ

δa
l[x, a, b, c] =

n∑
i=1

xi
(
−ea+xi(b+c)+

b
2

+cx2i+
c
3

)
+ xi + 1

ea+xi(b+c)+
b
2

+cx2i+
c
3 − 1

 = 0 (3.6.6)

δ

δb
l[x, a, b, c] =

n∑
i=1

x2
i

(
−
(
ea+xi(b+c)+

b
2

+cx2i+
c
3 − 1

))
+ 2xi + 1

2
(
ea+xi(b+c)+

b
2

+cx2i+
c
3 − 1

) = 0 (3.6.7)

δ

δc
l[x, a, b, c] =

n∑
i=1

x3
i

(
−
(
ea+xi(b+c)+

b
2

+cx2i+
c
3 − 1

))
+ 3x2

i + 3xi + 1

3
(
ea+xi(b+c)+

b
2

+cx2i+
c
3 − 1

) = 0. (3.6.8)

The second order derivatives are given by

δ2

δa2
l[x, a, b, c] =

n∑
i=1

1

2− 2 cosh
(
a+ b

(
xi + 1

2

)
+ c
(
x2
i + xi + 1

3

)) (3.6.9)

δ2

δb2
l[x, a, b, c] =

n∑
i=1

− (2xi + 1)2

8
(
cosh

(
a+ b

(
xi + 1

2

)
+ c
(
x2
i + xi + 1

3

))
− 1
) (3.6.10)

δ2

δc2
l[x, a, b, c] =

n∑
i=1

− (3xi(xi + 1) + 1)2

18
(
cosh

(
a+ b

(
xi + 1

2

)
+ c
(
x2
i + xi + 1

3

))
− 1
) (3.6.11)

δ2

δab
l[x, a, b, c] =

n∑
i=1

− 2xi + 1

4
(
cosh

(
a+ b

(
xi + 1

2

)
+ c
(
x2
i + xi + 1

3

))
− 1
) (3.6.12)

δ2

δac
l[x, a, b, c] =

n∑
i=1

− 3xi(xi + 1) + 1

6
(
cosh

(
a+ b

(
xi + 1

2

)
+ c
(
x2
i + xi + 1

3

))
− 1
) (3.6.13)

δ2

δbc
l[x, a, b, c] =

n∑
i=1

− (2xi + 1)(3xi(xi + 1) + 1)

12
(
cosh

(
a+ b

(
xi + 1

2

)
+ c
(
x2
i + xi + 1

3

))
− 1
) . (3.6.14)

We can see that the score equations are non-linear in a, b and c. We need to use numerical
methods to solve it. As mentioned before, we need appropriate initial values to use numer-
ical methods effectively. To obtain these initial values, we proceed as follows. Let Ŝ(x) be
the empirical survival function calculated from the sample. We propose a linear regression
model

− log(Ŝ(xi)) = axi +
bx2

i

2
+
cx3

i

3
+ εi, i = 1, 2, ..., n, (3.6.15)

where εi’s are independent and identically distributed random variables with mean 0 and
variance σ2.
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The model in (3.6.15) can be rewritten in matrix form as

y = Mθ + ε, (3.6.16)

where y = [−log(Ŝ(xi))]
′, i = 1, ..., n, θ = [a, b, c]′, and ε = [ε1, ..., εn]′. The design

matrix corresponding to the above model is given by

M =


x1

x2
1

2

x3
1

3

x2
x2

2

2

x3
2

3
... ... ...

xn
x2
n

2

x3
n

3


(3.6.17)

Estimate of θ is obtained by ordinary least square method as

θ̂ = [â, b̂, ĉ] = (M′M)−1M′y. (3.6.18)

We use these estimates as initial values for the maximization of the log-likelihood.

It is easy to see that the probability mass function satisfies the regularity condition
given by Cramér [39]. Thus, by Cramér-Huzurbazar theorem (see Lehmann and Casella
[88]), we can see that θ̂ is consistent and

√
n(θ̂ − θ) is asymptotically normal with mean

vector 0 and dispersion matrix
1√
n

I−1(θ), where I(θ) is the Fisher information matrix.

From (3.6.9)-(3.6.14) we can evaluate the observed Fisher information matrix numerically,
which gives estimate of I(θ).

We now illustrate the method with one real dataset. We compare the model performance
with other existing models.

Example 3.6.1. We consider a dataset consisting of the lifetimes of 18 electronic compo-
nents, reported in Wang [142], which was recently analysed by Almalki and Nadarajah [7]
using the discretized reduced modified Weibull(DRMW) distribution. To obtain the least
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square estimates, we form the design matrix as

M =


x1

x2
1

2

x3
1

3

x2
x2

2

2

x3
2

3
... ... ...

x18
x2

18

2

x3
18

3


and propose the model,

− log(Ŝ(xi)) = axi +
bx2

i

2
+
cx3

i

3
+ εi, i = 1, 2, ..., 18, (3.6.19)

where Ŝ(x) is the empirical survival function.

The least square estimates are

â = 532.272× 10−5, b̂ = −303.786× 10−7 and ĉ = 1.372× 10−7

Using these as initial estimates, the log likelihood is numerically maximized. The max-
imum of l is obtained as

lmax = −108.213

for the values

â = 695.067× 10−5, b̂ = −585.678× 10−7 and ĉ = 2.421× 10−7.

The survival function, hazard rate function and cumulative hazard rate function are plotted
in Figures 3.7a-3.7c.

Now, to compare the performance of DQHM with the existing models, we calculate the
Kolmogorov Smirnov distance, Akaike Information Criterion(AIC), Bayesian Information
Criterion (BIC) and Consistent Akaike Information Criterion (CAIC).
We have,

AIC = 2k − 2l[θ̂,x] (3.6.20)

where, k is the dimension of vector θ and l[θ̂,x] is the log likelihood at θ̂.
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Figure 3.7: Survival, hazard rate and cumulative hazard rate functions for the data in Ex-
ample 3.6.1.

Also,
BIC = k log n− 2l[θ̂,x] (3.6.21)

and
CAIC = AIC +

2k(k + 1)

n− k − 1
. (3.6.22)

Table 3.4 provides the measures for model adequacy. From Table 3.4, we see that the
DQHM outperforms the other four models, namely discrete reduced modified Weibull
(DRMW) due to Almalki and Nadarajah [7], discrete modified Weibull(DMW) due to
Noughabi et al. [117], discrete additive Weibull (DAddW) due to Bebbington et al. [19]
and discrete Weibull (DW) due to Nakagawa and Osaki [113].
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Table 3.4: Model adequacy of the data in Example 3.6.1

Model AIC BIC CAIC K-S
DRMW 223.9 226.5 225.6 .084
DMW 225.6 228.3 227.3 .092

DAddW 227.9 231.4 230.9 .099
DW 226.1 227.9 226.9 .137

DQHM 222.426 225.097 224.14 0.0702

3.7 Conclusion

In this chapter, we have presented some theorems that help in detecting the shape of the
hazard rate function when lifetime is treated as discrete. All the results will work out when
the probability mass function alone is known. Following this, we have discussed various
methods of construction of discrete bathtub and upside-down bathtub distributions. We
have provided examples in which the models were applied to real data and we have studied
the properties of discretized quadratic hazard model in detail. They supplement the existing
list of BT models in literature.





Chapter 4

Quantification of Relative Ageing

4.1 Introduction

As mentioned in Introduction chapter, the study of relative ageing concepts is inevitable in
situations where one has to compare reliabilities of more than one device. At present, it
appears that there is no study concerning the relative ageing of two devices in the discrete
time domain. The objective of the present chapter is to fill this gap by presenting some
concepts and results that help the comparison of the intensity of ageing among competing
devices, when the lifetime is discrete. The present chapter includes some results which have
no continuous counterparts, and a discussion of stochastic orders for comparing discrete life
distributions in-terms of ageing concepts.

The rest of the chapter is organized as follows. In Section 4.2, we introduce stochastic
ordering by ageing concepts when lifetime is treated as a discrete random variable. The
concept of specific ageing factor is discussed in Section 4.3. The relative ageing concepts
are discussed in Section 4.4. Characterizations of ageing concepts using these concepts are
presented. Section 4.5 discusses ageing intensity function in the context of discrete lifetime
data analysis. The chapter ends with a brief conclusion in Section 4.6.

Results in this chapter have been accepted for publication in “Metron”. (See Nair et al. [112])

87
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4.2 Stochastic orders

To discuss relative ageing, letX1 andX2 denote the discrete lifetimes of two devices whose
hazard rates are hX1(x) and hX2(x) and alternative hazard rates are h∗X1

(x) and h∗X2
(x)

respectively. Notice that there are some results specific to discrete case owing to alternative
ways in which various concepts can be defined.

Definition 4.2.1. The random variable X1 is ageing faster than X2 in hazard rate, written

as X1 ≤IHR X2, if
hX1(x)

hX2(x)
is increasing in x, provided hX2(x) 6= 0.

Definition 4.2.2. The random variable X1 is ageing faster than X2 in alternative hazard

rate, written as X1 ≤IHR∗ X2, if
h∗X1

(x)

h∗X2
(x)

is increasing in x.

When we look at the binary relation ≤IHR more closely, it says that the lifetime X1

is less than lifetime X2, in the sense of the hazard rate, if X1 is more IHR than X2. In

other words, if the hazard rates of X1 and X2 are such that
hX1(x)

hX2(x)
is a constant (increasing

/decreasing), then the device with lifetime X1 ages at the same rate (faster/ slower) than the
device with lifetime X2.

Looking at the properties of the stochastic order, the different cases that can occur are:
(a) hX1(x) ≥ hX2(x), for all x = 0, 1, 2, ... (b) hX1(x) crosses hX2(x) from below. Then,
it is not essential that X1 ≤IHR X2 should imply a corresponding ordering of hX1(x) and
hX2(x). This is illustrated in the following examples.

Example 4.2.1. Suppose thatX1 has geometric distribution with p =
3

4
andX2 has Waring

distribution(Nair et al. [107]) with probability mass function

f(x) =
n(m)x

(m+ n)x+1

, x = 0, 1, 2, ...; m,n > 0,

where, (m)x denotes the Pochhammer symbol. When m = 1 and n = 2, the hazard rate is

hX2(x) =
2

3 + x
, x = 0, 1, 2, ... Then X1 ≤IHR X2 and hX1(x) ≥ hX2(x).

Example 4.2.2. When hX1(x) =
1

6− x
, corresponding to the uniform distribution in [1, 5],

and hX2(x) =
2

3 + x
as in Example 4.2.1, we have hX1(x) and hX2(x) crossing at x = 3

and X1 ≤IHR X2.
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Theorem 4.2.1. X1 ≤IHR X2 and X1 ≤IHR∗ X2 are not equivalent.

Proof. To prove the assertion, take

hX1(x) = 1− e−2(x+1)−1 and hX2(x) = 1− e−4(x+1)−1, x = 0, 1, 2, ...

Then X1 ≤IHR X2. But using (1.1.6),

h∗X1
(x)

h∗X2
(x)

=
2x+ 3

4x+ 5

is decreasing in x. Thus, X1 ≥IHR∗ X2. �

Some properties of the order ≤IHR are given below.

(a) From Definition 4.2.1, we have

X1 ≤IHR X2 ⇐⇒
hX1(x+ 1)

hX2(x+ 1)
≥ hX1(x)

hX2(x)
⇐⇒ hX1(x+ 1)

hX1(x)
≥ hX2(x+ 1)

hX2(x)

and so,

X1 ≤IHR X2 and X2 ≤IHR Z ⇒
hX1(x+ 1)

hX1(x)
≥ hX2(x+ 1)

hX2(x)
≥ hZ(x+ 1)

hZ(x)

⇒ X1 ≤IHR Z.

Thus, the ordering ≤IHR is defined as partial order among equivalence classes gen-

erated by the ratio
hX2(x)

hX1(x)
.

(b) Also, we obtain

X1 ≤IHR X2 and X2 ≤IHR X1 ⇒ hX1(x) = c.hX2(x)

for some constant c > 0. Thus, both X1 ≤IHR X2 and X2 ≤IHR X1 correspond
to the equivalence class in which the proportional hazard rates model for discrete
lifetimes hold.
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(c) The partial order≤IHR can be used to define the IHR concept. Moreover,X is IHR
⇐⇒ X ≤IHR XG, where XG is the geometric random variable with probability
mass function f(x) = qxp; x = 0, 1, 2, ...

Remark 4.2.1. It can be seen that Definition 4.2.1 and the ordering with XG, given above
are analogous to Proposition 2.2(iii) and Proposition 2.1(iii), respectively in Sengupta and
Deshpande [132] in the continuous case. But the main difference is that neither Proposition
2.2(i),(ii) nor Definition 1, of Sengupta and Deshpande [132], holds in the discrete case
since − logS(x) is not the cumulative hazard rate in the discrete case.

When the hazard rate is replaced by other reliability functions, we can have similar
stochastic orders representing relative ageing. We consider only some such important rep-
resentations here.

Definition 4.2.3. A discrete random lifetime X1 is ageing faster than another random life-

time X2 in hazard rate average-1 (X1 ≤IHRA1 X2) if
logSX1(x)

logSX2(x)
is increasing in x =

1, 2, ...

Definition 4.2.4. A discrete random lifetime X1 is ageing faster than another random life-

time X2 in hazard rate average-2 (X1 ≤IHRA2 X2) if

x−1∑
0

hX1(t)

x−1∑
0

hX2(t)

is increasing in x =

0, 1, 2, ...

We interpret X1 ≤IHRA1 X2 (X1 ≤IHRA2 X2) by saying that a device with lifetime X1

has lesser life than the device with lifetime X2 if X1 is more IHRA1(IHRA2) than X2.

Since X1 has greater IHRA1(IHRA2), it ages more positively than X2. The stochastic
orderings in Definitions 4.2.3 and 4.2.4 satisfy the following properties.

(i) X is IHRA1 ⇐⇒ X ≤IHRA1 XG and
X is IHRA2 ⇐⇒ X ≤IHRA2 XG.

(ii) X1 ≤IHR X2 ⇒ X1 ≤IHRA2 X2.

(iii) X1 ≤IHR∗ X2 ⇒ X1 ≤IHRA1 X2,

since
logSX1(x)

logSX2(x)
=

∑x−1
t=0 h

∗
X1

(t)∑x−1
t=0 h

∗
X2

(t)
.
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(iv) X1 ≤IHR X2 ; X1 ≤IHRA1 X2.

To prove this, let hX1(x) = 1 − e−2(x+1)−1 and hX2(x) = 1 − e−4(x+1)−1. Then,
hX1(x)

hX2(x)
is increasing in x and so X1 ≤IHR Y. But

logSX1(x)

logSX2(x)
=

x+ 2

2x+ 3
is decreas-

ing in x.

Remark 4.2.2. Definition 4.2.3 is analogous to Proposition 2.3(iii) in Sengupta and Desh-

pande [132], but Definitions 4.2.3 and 4.2.4 are not equivalent because
x−1∑

0

h(t) 6= − logS(x)

in the discrete case.

Other stochastic orders like≤DMRL,≤NBU etc. may be considered as in Kochar and Wiens
[83] and Kochar [82].

4.3 Specific ageing factor

Consider two devices or systems, whose lifetimes follow the same distribution with survival
function S(x). One of the devices is new and the other is aged x1 units. Then, S(x2) is the

probability that the new device survives age x2 and
S(x1 + x2)

S(x1)
is the probability that the

older device aged x1 survives the same duration x2. Following Bryson and Siddiqui [26] in
the continuous case, we define the specific ageing factor in discrete case as,

A(x1, x2) =
S(x1)S(x2)

S(x1 + x2)
, (4.3.1)

which compares the survival probabilities of the two units. When A(x1, x2) ≥ 1(≤ 1),

P [X ≥ x1 +x2|X ≥ x1] < (>)P [X ≥ x2], which means that a device of age x1 surviving
for an additional lifetime x2 has lesser (greater) probability of surviving than a new unit
to survive the same lifetime x2. Thus, A(x1, x2) provides a measure of relative ageing of
an older unit in comparison with a new one. In other words, it gives the impact of having
survived x1 units of age, in the future life of the old unit. It seems that the potential of
the specific ageing factor in determining ageing patterns and relative ageing have not been
exploited in the continuous case. We give some properties of A(x1, x2).

Theorem 4.3.1. The random variableX has increasing (decreasing) hazard rate if and only
if A(x1, x2) is increasing (decreasing) in x1.
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Proof. A(x1, x2) is increasing in x1

⇐⇒ A(x1 + 1, x2)− A(x1, x2) ≥ 0.

⇐⇒ S(x1 + 1)S(x1 + x2) ≥ S(x1)S(x1 + x2 + 1)

⇐⇒ S(x1 + 1)

S(x1)
≥ S(x1 + x2 + 1)

S(x1 + x2)

⇐⇒ 1− h(x1) ≥ 1− h(x1 + x2)

⇐⇒ X is IHR.

The proof for DHR case is similar. �

Theorem 4.3.2. (i) X is NBU1(NWU1) ⇐⇒ A(x1, x2) ≥ (≤)1 for all x1, x2 =

0, 1, 2, ...

(ii) X is NBU -y0 ⇐⇒ A(y0, x2) ≥ (≤)1 for all x2 = 0, 1, 2, ...; y0 = 1, 2, ...

(iii) X is NBU*y0 (NWU*y0)⇐⇒ A(x1, x2) ≥ (≤)1 for all x1 = y0, y0 + 1, ... : x2 =

0, 1, 2, ...

The proof is a direct consequence of Definition 1.1.3: (d), (i) and Definition 1.1.4.

Remark 4.3.1. Since IHR⇒ IHRA1 ⇒ IHRA2, it follows that

A(x1, x2) is increasing in x1 ⇒X is IHRA1 ⇒ X is IHRA2.

Now since NBU1 ⇒ NBUE ⇒ HNBUE,

A(x1, x2) ≥ 1⇒ X is NBU1 ⇒X is NBUE ⇒ X is HNBUE.

We now establish the application of the measure A(x1, x2) to the data on the failure
times of 50 devices in Aarset [1], by taking the first two observations as zeros. The dis-
cretized quadratic hazard model (DQHM) introduced in Section 3.6 is a model that fits the
data with parameter values,

â = 379.89× 10−4, b̂ = −19.02× 10−4, and ĉ = 27.41× 10−6.
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Table 4.1: Goodness of fit for Aarset data.

Class Observed frequency Expected frequency
0− 4 9 8
5− 18 9 10
19− 50 8 7
51− 67 8 8
68− 84 9 10
> 84 7 7

χ2 value 0.47

Table 4.2: Values of A(x1, x2) for different x1 and x2.

x1

x2 5 10 20 30 35 45 60

4 0.9674 0.9411 0.9052 0.8901 0.8899 0.9042 0.9651
8 0.9400 0.8934 0.8339 0.8134 0.8166 0.8506 0.9818

12 0.9174 0.8556 0.7819 0.7631 0.7727 0.8323 1.0527
24 0.8755 0.7922 0.7159 0.7379 0.7871 0.9883 1.7799
36 0.8692 0.7938 0.7676 0.9043 1.0570 1.6743 4.8331
50 0.9060 0.8791 1.0167 1.5466 2.1142 4.8523 28.2104
72 1.0779 1.2825 2.4410 6.8951 13.4378 68.6268 1660.4809

The parameters are estimated by minimizing the sum of squares of deviations between
empirical survival function and S(x). The chi-square goodness of fit test gives a value of
χ2 = 0.468 and p-value 0.79 when grouped into 6 classes as shown in Table 4.1. The
data yields a bathtub-shaped hazard rate function and the change point is obtained as 34 by
considering the minimum of h(x) with the estimated values. The values of A(x1, x2) for
different x1 and x2 are shown in Table 4.2. From the table, we can see that when both x1

and x2 are small, the values of A(x1, x2)′s are less than one implying that the older device
is more reliable. But as x1 or x2 becomes large, the values of A(x1, x2)′s are greater than
one implying that the new device is more reliable.
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4.4 Relative ageing factor

An alternate approach to quantify relative ageing of a new device and an old device with
the same life distribution is to consider the identity,

P [X ≥ g(x1, x2) + x1|X ≥ x1] = P [X ≥ x2], for all x1, x2 = 0, 1, 2, ... (4.4.1)

In (4.4.1), x1 is the current age of an old device and x2 is the proposed survival time of
the old and new units. g(x1, x2) is the lifetime beyond x1 of the old device such that the
probability of survival of both the old and new units are same. We can write (4.4.1) as ,

S(x1 + g(x1, x2)) = S(x1)S(x2)

or,
H∗(x1 + g(x1, x2)) = H∗(x1) +H∗(x2), (4.4.2)

whereH∗(.) is the alternative cumulative hazard rate (Cox and Oakes [37]) given in (1.1.3).
For example, when X is distributed as discrete Weibull I with survival function

S(x) = qx
β

; x = 0, 1, 2, ...; β > 0,

the identity (4.4.1) is satisfied if

g(x1, x2) =
(
xβ1 + xβ2

) 1
β − x1.

It is assumed that the form of S(x) is determined from the data before calculating the
ageing factor in a practical situation.
We now write,

M(x1, x2) =
g(x1, x2)

x2

, (4.4.3)

and interpret it as the rate at which an old unit is losing or gaining life in relation to a new
unit with identical life distribution. Thus, M(x1, x2) provides a measure of the effect of
ageing of a device. We call M(x1, x2) as the relative ageing factor. The expressions of
M(x1, x2) of some discrete life distributions are presented in Table 4.3.
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We now discuss the properties ofM(x1, x2) and its role as a measure of relative ageing.

(i) Since H∗(0) = 0,

H∗(x1 + g(x1, 0)) = H∗(x1) +H∗(0)

H∗(g(0, x2)) = H∗(x2) +H∗(0)

implies g(x1, 0) = x1, g(0, x2) = x2 and g(0, 0) = 0.

(ii) When M(x1, x2) = 1, g(x1, x2) = x2 so that (4.4.1) becomes the lack of memory
property. Thus, M(x1, x2) = 1 represents the no-ageing property which character-
izes the geometric law. Larger values of M(x1, x2) indicate more positive ageing.

(iii) M(x1, x2) provides a measure of the extent of ageing of a device at different ages.
For example, assume that X has discrete Weibull I distribution in Table 4.3 with
shape parameter β = 2 and that a device with this distribution has survived a lifetime
of 3 units. To compare the extent of ageing of this device with a new one with
the same life distribution for a time period of 4 units, we have x1 = 3 and x2 = 4 to

yield g(x1, x2) = 2 andM(x1, x2) =
1

2
. Thus, the old unit has to work twice the time

compared to the new one to produce the same output. The former is clearly wearing
out and is therefore subject to positive ageing. In general g(x1, x2) ≤ (≥)x1 +x2 for
any x1 and fixed x2 indicates the effect of spent life.

(iv) There are some properties of M(x1, x2) that relate to the ageing concepts as shown
below.

Theorem 4.4.1. The lifetime X isNBU1(NWU1) if and only ifM(x1, x2) ≤ (≥)1.

Proof. Since H∗(x) is an increasing function,

g(x1, x2) + x1 ≤ x1 + x2 ⇒ H∗(g(x1, x2) + x1) ≤ H∗(x1 + x2)

So form (4.4.2),
H∗(x1) +H∗(x2) ≤ H∗(x1 + x2),

which is a necessary and sufficient condition for X to be NBU1. Also,

g(x1, x2) ≤ x2 ⇐⇒ M(x1, x2) ≤ 1.
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The proof of NWU1 case is obtained by reversing the inequalities. �

Remark 4.4.1. As in Theorem 4.3.2, we have

(a) M(y0, x2) ≤ (≥)1 ⇐⇒ X is NBU -y0(NWU -y0) for all x2 = 0, 1, 2, ... :

y0 = 1, 2, ... and

(b) M(x1, x2) ≤ (≥)1 ⇐⇒ X isNBU*y0(NWU*y0) for allx1 = y0, y0 +1, ... :

x2 = 0, 1, 2, ...

(v) M(x1, x2) does not depend on the lifetime spent, in the case of the geometric, dis-
cretized version of the Lomax and re-scaled beta (see Table 4.3).

Since the specific ageing factor A(x1, x2) and relative ageing factor M(x1, x2) are sim-
ilar in their purposes, a comparison of the two is required. First we observe that,

logA(x1, x2) = − logS(x1 + x2) + logS(x1) + logS(x2)

= H∗(x1 + x2)−H∗(x1)−H∗(x2),

which is different from M(x1, x2). For instance, the discrete Weibull distribution has,

M(x1, x2) =

(
xβ1 + xβ2

) 1
β − x1

x2

, (4.4.4)

whereas,

A(x1, x2) =
q(x

β
1+xβ2)

q(x1+x2)β
. (4.4.5)

Generally, the expressions forA(x1, x2) are algebraically more complex than that ofM(x1, x2).

Theorem 4.4.2. M(x1, x2) is decreasing (increasing) in x1

⇐⇒ X is IHR(DHR).

⇐⇒ H∗(x) is convex (concave).
⇐⇒ A(x1, x2) is increasing (decreasing) in x1, for all x2 = 0, 1, 2, ...

Proof. Define,
H−1
∗ (t) = inf {t : H∗(t) ≥ t} ,
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and take the smallest integer contained in t asH−1
∗ (t). SinceH∗(x) is monotone, the inverse

is unique. Also, note that g(x1, x2) = H−1
∗ (H∗(x1) +H∗(x2)) .

M(x1, x2) is decreasing in x1

⇐⇒ g(x1, x2) is decreasing inx1.

⇐⇒ H−1
∗ (H∗(x1) +H∗(x2))− x1 is decreasing in x1, from (4.4.2).

⇐⇒ H−1
∗ (t+ s)−H−1

∗ (t) is decreasing in t for all s = H∗(x2).

⇐⇒ H−1
∗ (t) is concave.

⇐⇒ H∗(x) is convex ⇐⇒ X is IHR.

The rest of the implications follows from Theorem 4.3.1. �

The M(x1, x2) function has applications in ordering life distributions on the basis of
the NBU1 property.

Definition 4.4.1. The random variable X1 is less NBU1 than the random variable X2,

denoted by X1 ≤M X2 if MX1(x1, x2) ≤MX2(x1, x2) for all x1 and a fixed x2.

We now relate the order ≤M and super additive order in H∗X1
(H−1
∗,X2

(x)), where H∗X1
(.)

is the alternative cumulative hazard rate of X1.

Theorem 4.4.3.

X1 ≤M X2 ⇐⇒ H∗X1
(H−1
∗,X2

(x1 + x2)) ≥ H∗X1
(H−1
∗,X2

(x1)) +H∗X1
(H−1
∗,X2

(x2)) (4.4.6)

Proof.

X1 ≤M X2 ⇐⇒ MX1(x1, x2) ≤MX2(x, y)

⇐⇒ gX1(x1, x2) ≤ gX2(x1, x2)

⇐⇒ H−1
∗,X1

(H∗X1
(x1) +H∗X1

(x2)) ≤ H−1
∗,X2

(H∗X2
(x1) +H∗X2

(x2))

⇐⇒ H∗X1
(x1) +H∗X1

(x2) ≤ H∗X1
[H−1
∗,X2

(H∗X2
(x1) +H∗X2

(x2))]

⇐⇒ H∗X1
(H−1
∗,X2

(t)) +H∗X1
(H∗X2

(s)) ≤ H∗X1
(H−1
∗,X2

(t+ s))

which proves the result. �

Sengupta and Deshpande [132] established that a continuous random variable Y1 is
ageing faster than Y2 in the super additive sense, if the inequality of the right hand side
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of (4.4.6) is satisfied. Thus, the function M(x1, x2) provides a stochastic order that is the
discrete analogue of the ordering given in Sengupta and Deshpande [132].

Remark 4.4.2. If X2 is NBU1, X1 ≤M X2 ⇒ X1 is NBU1.

Finally, the relative ageing factor is useful in comparing life distributions by saying
which is more positive ageing (negative ageing by reversing the inequality in (4.4.6), so
that X1 ≥M X2 is equivalent to the sub additivity of H∗X1

H−1
∗,X2

(.), leading to NWU1

class) in the sense of NBU1. For example, the discrete Weibull I distribution is less NBU1

than the discrete Lomax distribution, since,

xβ1 + xβ2 ≤
(
x1 + x2 +

x1x2

α

)β
for β > 0

Thus, the discrete Lomax distribution has more positive ageing than the discrete Weibull I
distribution.

4.5 Ageing intensity function

In order to evaluate the ageing phenomenon quantitatively, Jiang et al. [73] proposed the
ageing intensity function (AI) for continuous lifetime data. It is the ratio of the hazard rate
to a baseline hazard rate, which was chosen by the authors as the average of h(x) in [0, x].

In the discrete case, we can define the ageing intensity function in two different ways, based
on h(x) and h∗(x). We first define ageing intensity function as,

A∗(x) =
h∗(x)

H∗(x)/x
=
xh∗(x)

H∗(x)
, (4.5.1)

where h∗(x) is the alternative hazard rate. The intensity function is unity when h∗(x) is
a constant (geometric case), A∗(x) > 1 if X is IHR and A∗(x) < 1 when X is DHR.
Thus, large (small) values of A∗(x) indicate positive (negative) ageing. When h(x) is used
to define the hazard rate, one can obtain a slightly different form

A(x) =
xh(x)

H(x)
, (4.5.2)
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where H(x) =
x−1∑
u=0

h(u).

Writing A∗(x) in-terms of h(x),

A∗(x) =
x log(1− h(x))

x−1∑
0

log(1−H(t) +H(t− 1))

. (4.5.3)

Reducing (4.5.1) recursively, after writing it as,

A∗(x) = x

(
logS(x+ 1)

logS(x)
− 1

)
,

leads to
S(x) = S(1)(A∗(1)+1)(A∗(2)+1)...(

A∗(x−1)
x−1

−1),

S(1) being determined by using
∞∑
x=0

f(x) = 1. Thus, the ageing intensity function deter-

mines the distribution uniquely. This enables comparison of distributions using their ageing
intensity functions.

The monotonicity of the hazard rate function is not, in general, transferred to the AI
function. Moreover A(x) and A∗(x) need not be equal in general. In the following exam-
ples, we illustrate this using the AI function defined in (4.5.2)

Example 4.5.1. Let X has S distribution (Bracquemond and Gaudoin [23]) with hazard
rate

h(x) = p(1− πx), 0 < p < 1, 0 ≤ π < 1, x = 1, 2, ...

Then,

H(x) =
x∑
1

h(t) = px− pπ

1− π
(1− πx),

so that,

A∗(x) =
x log (q + pπx)

log
x∏
i=1

(q + πi)

and
A(x) =

(1− π)(1− πx)xp
(1− π)xp− pπ(1− πx)

, where, q = 1− p.
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Figure 4.1: Graph of AI function.

Example 4.5.2. LetX follow negative binomial distribution with probability mass function

Γ(x+ n)

Γ(x+ 1)Γ(n)
pn(1− p)x, x = 0, 1, 2, ...; 0 < p < 1.

Then X is IHR for n > 1. In particular, for n = 10 and p = 0.3, the AI function is
decreasing as shown in Figure 4.1.

Definition 4.5.1. A random variable X1 is ageing faster than X2 in ageing intensity func-

tion, written as, X1 ≤AIF X2 if,
AX1(x)

AX2(x)
is increasing in x, provided AX2(x) 6= 0.

Example 4.5.3. Let X1 has the survival function

SX1(x) = e−4x(4x+ 1), x = 0, 1, 2, ... (4.5.4)

and hazard function,

hX1(x) = 1− e4x−4(x+1)(4(x+ 1) + 1)

4x+ 1
, x = 0, 1, 2, ... (4.5.5)

Assume that X2 has the survival function,

SX2(x) = e−2x(2x+ 1), x = 0, 1, 2, .... (4.5.6)

and hazard function

hX2(x) = 1− e2x−2(x+1)(2(x+ 1) + 1)

2x+ 1
, x = 0, 1, 2, ... (4.5.7)
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Then,
AX1(x)

AX2(x)
is increasing in x. Hence, X1 ≤AIF X2 and X1 is ageing faster than X2.

The AIF concept and various ageing criteria do not have any natural implications, al-
though both are related to discrete ageing.

Theorem 4.5.1.

(i) X1 ≤AIF X2 ; X1 ≤IHR X2 and X1 ≤IHR X2 ; X1 ≤AIF X2

(ii) X1 ≤AIF X2 ; X1 ≤IHRA1 X2

(iii) X1 ≤AIF X2 ; X1 ≤IHRA2 X2

To prove the assertions, note that in Example 4.5.3, we haveX1 ≤AIF X2.But,
hX1(x)

hX2(x)
,

HX1(x)

HX2(x)
and

logSX1(x)

logSX2(x)
are decreasing in x. Using the hazard rate functions of X1 and X2

in the proof of Theorem 4.2.1,

hX1(x)

hX2(x)
=

1− e−2(x+1)−1

1− e−4(x+1)−1
(4.5.8)

is increasing. Hence,X1 ≤IHR X2 and also X1 ≤IHRA2 X2. Now the function,

AX1(x)

AX2(x)
=

e2 (e2x+3 − 1) (e4x (e (e4 − 1)x− 1) + 1)

(1 + e2) (e4x+5 − 1) (e2x (e (e2 − 1)x− 1) + 1)
, (4.5.9)

is decreasing in x. Hence X1 �AIF X2.

4.6 Conclusion

The role of relative ageing concepts is either to compare the ageing patterns of two devices
at a fixed time or to investigate whether the same device is ageing more positively (nega-
tively) at different points of time. In this chapter, we have presented some concepts and
results that lead to a quantitative assessment of which of two devices is ageing faster. Also,
the impact of spent life of a device on its residual life can also be numerically evaluated. It
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was proved that the relative ageing concepts are related to the well-known ageing classes
such as IHR, NBU, etc.





Chapter 5

Multivariate Mean Residual Life

5.1 Introduction

Among different multivariate ageing concepts, the multivariate mean residual life plays an
important role while devising techniques for obtaining optimal burn-in time. The study of
multivariate mean residual life functions in the continuous domain has been extensively
done by researchers, whereas their discrete analogues are not given much recognition. Roy
[123] defined a bivariate version of MRL in discrete case and proved that the underlying
distribution is uniquely determined by the bivariate MRL function. Nair and Nair [94]
derived a characterization result for bivariate geometric distribution, based on the local
constancy of the bivariate MRL function. However, there is lack of a systematic study
on multivariate mean residual life(MMRL) in discrete time. It may be observed from the
literature on continuous lifetime that many of the results obtained in the continuous set-up
need to be modified for the discrete counterparts. Motivated by this fact, in the present
chapter, we study the properties of (MMRL) in discrete time. We define ageing classes
based on the multivariate MRL and study the inter-relationships between them.

The rest of the chapter is organized as follows. In Section 5.2, we give the definitions
and basic results. It is shown that MMRL determines the underlying distribution uniquely.
This is followed by the study of ageing classes in Section 5.3. We characterize multivariate
lifetime distributions, based on the monotonicity of the MMRL function. Section 5.4 is

105
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devoted to study the inter-relationships between different ageing classes. The chapter ends
with a brief conclusion in Section 5.5.

5.2 Basic results

As mentioned in Section 1.2, let X = (X1, X2, ..., Xp)
′ be a discrete random vector taking

values in Np. The multivariate mean residual life(MMRL) function m(x) of the random
vector X is defined as in 1.2.10.

Example 5.2.1. When X is bivariate geometric (Nair and Nair [94]) with survival function

S2(x1, x2) = qx11 q
x2
2 θ

x1x2 ; 0 < qi < 1; 1 + q1q2θ ≥ q1 + q2; xi = 0, 1, ...; i = 1, 2 (5.2.1)

we obtain

m1(x1, x2) =
1

1− q1θx2+1

and

m2(x1, x2) =
(
1− q1θ

x2+1
)
.

Note that m1(x) is independent of x2 and m2(x) is independent of x1.

Now, we discuss some basic properties of the MMRL function. The MMRL function
satisfies the following properties.

(i) mi(−1,−1, ...,−1) = 1 + µi where µi = E(Xi), i = 1, 2, ...p.

(ii) The mean residual life functions of the marginal distributions of Xi; i = 1, 2, ..., p

are derived as

mXi(xi) = E[Xi − xi|Xi > xi] = mi(−1,−1, ..., xi,−1, ...,−1).

Further, ifXi andXj are independent thenmXi(x) = mi(x1, x2, ..., xj−1,−1, xj+1..., xp)

and mXj(x) = mj(x1, x2, ..., xi−1,−1, xi+1, ..., xp).
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(iii) The vector hazard rate and the MMRL function are related as

ci(x1 + 1, x2 + 1, ..., xp + 1) = 1− mi(x)− 1

mi(x(i), xi + 1)
; i = 1, 2, ..., p. (5.2.2)

Since the univariate mean residual life function determines the corresponding distribution
uniquely, it is of interest to know if the same is true in the multivariate case.

Theorem 5.2.1. Given the multivariate mean residual life function m(x), the survival func-
tion is uniquely determined by the identity

S(x) =

x1−1∏
r=0

m1(r − 1, x2, ..., xp)− 1

m1(r, x2, ..., xp)

x2−1∏
r=0

m2(0, r − 1, x3, ..., xp)− 1

m2(0, r, ..., xp)

...

xp−1∏
r=0

mp(0, 0, ..., 0, r − 1)− 1

mp(0, 0, ..., r)
(5.2.3)

Proof. From (1.2.12), we get

mi(x)S(x+e) =
∞∑

ti=xi+1

S(x1+1, ..., xi−1+1, t, xi+1+1, ..., xp+1); i = 1, 2, ..., p (5.2.4)

so that for i = 1

m1(x1 − 1, x2, x3, ..., xp)S(x1, x2 + 1, x3 + 1, ..., xp + 1)−m1(x)S(x + e)

= S(x1, x2 + 1, x3 + 1, ..., xp + 1). (5.2.5)

This gives a recurrence relation in S(x) as

S(x + e) =
m1(x1 − 1, x2, ..., xp)− 1

m(x)
S(x1, x2 + 1, x3 + 1, ..., xp + 1). (5.2.6)

Reducing x1 successively, we obtain

S(x) =

x1−1∏
r=0

m1(r − 1, x2, x3, ..., xp)− 1

m1(r, x2, x3, ..., xp)
S(0, x2, x3, ..., xp) (5.2.7)
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Similarly from (5.2.4), for i = 2 we get

S(x) =

x2−1∏
r=0

m2(x1, r − 1, x3, ..., xp)− 1

m2(x1, r, x3, ..., xp)
S(x1, 0, x3, ..., xp). (5.2.8)

Setting x1 = 0 in (5.2.8), we get S(0, x2, ..., xp) and substituting in (5.2.7) we get

S(x) =

x1−1∏
r=0

m1(r − 1, x2, x3, ..., xp)− 1

m1(r, x2, x3, ..., xp)

x2−1∏
r=0

m2(0, r − 1, x3, ..., xp)− 1

m2(0, r, x3, ..., xp)

S(0, 0, x3, ..., xp). (5.2.9)

Now repeating the above procedure by giving values for i = 3, 4, ..., p in (5.2.4), we get
the desired result. �

Remark 5.2.1. Equation (5.2.3) is only one of the several ways in which S(x) can be
written in-terms of the mi(x) expressions. In (5.2.3), we have started with the definition of
m1(x) in-terms of S(x). On the other hand, if we begin with m2(x),

S(x) =

x2−1∏
r=0

m2(x1, r − 1, x3, ..., xp)− 1

m2(x1, r, x3, ..., xp)

x2−1∏
r=0

m3(x1, 0, r − 1, x4, ..., xp)− 1

m3(x1, 0, r, ..., xp)

...

x1−1∏
r=0

m1(r − 1, 0, ..., 0)− 1

m1(r, 0, ..., 0)
. (5.2.10)

Thus, on the whole, there can be p! expressions which are all equal to one another.
The following theorem is a characterization result in Nair and Nair [97].

Theorem 5.2.2. The multivariate mean residual life components take the form

mi(x) = ki; ki > 1; i = 1, 2, ..., p

if and only if the underlying distribution is multivariate geometric with survival function

S(x) = qx11 q
x2
2 ...q

xp
p ; 0 < qi < 1; xi = 0, 1, 2, ...; i = 1, 2, ..., p (5.2.11)

where qi =
ki − 1

ki
; i = 1, 2, ..., p.

Proof. The proof for ’if’ part is direct and the proof of ’only if’ part follows from (5.2.3).
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�

With these preliminary concepts, in the following section, we define and study ageing
classes based on multivariate mean residual life.

5.3 Ageing classes

In the univariate case, the monotonicity of the mean residual life function reflects the na-
ture of ageing of a device. It has been successfully employed in replacement problems,
comparison of life distributions, selection of models for data analysis, etc. The present
section is devoted to the study of extension of these notions in the multivariate framework.
Buchanan and Singapurwalla [27] and Zahedi [146] have proposed various approaches to
the generalization of multivariate monotone mean residual life function when the lifetimes
are continuous. The discrete versions of the Buchanan and Singapurwalla [27] definitions
are as follows.

Definition 5.3.1. A p- dimensional random vector X defined on Np is said to have

(i) multivariate decreasing(increasing) mean residual life-very weak (MDMRL/ MIMRL-

VW) if
∑∞

t=0

S(x+ t, x+ t, ..., x+ t)

S(x, x, ..., x)
is decreasing (increasing) in x.

(ii) multivariate decreasing(increasing) mean residual life-weak (MDMRL/ MIMRL-W)

if
∑∞

t1=0

∑∞
t2=0 ...

∑∞
tp=0

S(x+ t1, x+ t2, ..., x+ tp)

S(x, x, ..., x)
is decreasing(increasing) in x.

(iii) multivariate decreasing(increasing) mean residual life-strong (MDMRL/ MIMRL-S)

if
∑∞

t=0

S(x1 + t, x2 + t, ..., xp + t)

S(x1, x2, ..., xp)
is decreasing(increasing) in x1, x2,..., xp.

and

(iv) multivariate decreasing(increasing) mean residual life-very strong (MDMRL/ MIMRL-

VS) if
∑∞

t1=0

∑∞
t2=0 ...

∑∞
tp=0

S(x1 + t1, x2 + t2, ..., xp + xp)

S(x1, x2, ..., xp)
is decreasing(increasing)

in x1, x2,..., xp.
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It is easy to show that there exists a chain of implication between these four classes
given by

MDMRL− V S ⇒ MDMRL− S ⇒ MDMRL−W ⇒MDMRL− VW

Zahedi [146] remarked that the above definitions are not necessarily the natural exten-
sions of the univariate case and these do not possess the intuitive physical interpretation
of the univariate definitions. We conclude the study of these ageing classes by mentioning
the member of boundary class. A member of the boundary class of MDMRL(MIMRL)-VS
classes should satisfy

∑
t1

∑
t2

...
∑
tp

S(x + t + ∆)

S(x + ∆)
−
∑
t1

∑
t2

...
∑
tp

S(x + t)

S(x)
= 0, (5.3.1)

where ∆ ∈ Np. It is easy to verify that the multivariate geometric with independent geo-
metric marginals given in (5.2.11) satisfies the above condition. Thus, the boundary class of
MDMRL-VS and MIMRL-VS classes of distribution contains the multivariate geometric
distribution with independent marginals.

Retaining the notations and results of previous section, the ageing classes based on the
multivariate mean residual life vector are considered.

Definition 5.3.2. A p-dimensional discrete random vector X defined on Np is said to have

(i) MDMRL-1 (MIMRL-1) if

mi(x + t) ≤ (≥)mi(x), i = 1, 2, ..., p

for all x and t in Np.

(ii) MDMRL-2(MIMRL-2) if

mi(x1, x2, ..., xi−1, xi + t, xi+1, ..., xp) ≤ (≥)mi(x1, x2, ..., xp)

for i = 1, 2, ..., p and t in N.
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(iii) MDMRL-3(MIMRL-3) if

mi(x1 + t, ..., xn + t) ≤ (≥)mi(x1, ..., xn)

for all n ≤ p and t in N.

and

(iv) MDMRL-4(MIMRL-4) if

mi(x+ t, ..., x+ t) ≤ (≥)mi(x, ..., x)

for all n ≤ p and t in N.

The interpretation of (i) is that the mean residual life of a p- component device, where
the components are of different ages, decrease(increase) as the components age with dif-
ferent intensities. In (ii), the mean residual life decreases when a component is replaced by
a younger one with the same life distribution. Case (iii) results when the time moves at the
same rate for all components while initially the components are of different ages. Lastly,
when the components are of the same age as well as time moves at the same rate for all of
them, the mean residual life is decreasing(increasing) gives rise to version (iv).

We now discuss the properties of these classes. The following theorems characterize
different types of multivariate geometric distributions.

Theorem 5.3.1. A random vector X is both MDMRL-1 and MIMRL-1 if and only if
the distribution of X is multivariate geometric with independent geometric marginals in
(5.2.11).

Proof. When the distribution is (5.2.11), mi(x) =
1

1− qi
so that mi(x + t) = mi(x) or X

has MDMRL-1 and MIMRL-1. Conversely, when X has both MDMRL-1 and MIMRL-1
property, then mi(x) = ki, a constant greater than unity for all x and i = 1, 2, ..., p. Taking
ki − 1

ki
= qi, the stated distribution results on using (5.2.3). �

Theorem 5.3.2. The only discrete distribution in Np which belongs to both MDMRL-2
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and MIMRL-2 class is the multivariate geometric law(Nair and Asha [95])

S(x) =

p∏
i=1

qxii

p∏
i<j

q
xixj
ij ...q

x1x2...xp
12...p (5.3.2)

0 < q1, q2, ..., q12...p < 1; 1−
∑
qi +

∑
i<j qij + ...+ (−1)pq12...p ≥ 0.

Proof. Assume that X is MDMRL-2 and MIMRL-2. Then

mi(x1, ..., xi−1, xi + t, xi+1, ..., xp) = mi(x); i = 1, 2, ..., p

so that
mi(x) = gi(x1, ..., xi−1, xi+1, ..., xp),

a function independent of xi. Using this in (5.2.3)

S(x) = [g1(x2, ..., xp)]
x1 [g2(0, x3, ..., xp)]

x2 ... [gp(0, 0, ..., 0)]xp .

Thus, log S(x) is a linear function of x1. Similarly from (5.2.10), log S(x) is linear in x2

and so on. Equating p expressions, we see that the only general solution that satisfies all
the p equations is given by

S(x) =

p∏
i=1

qxii

p∏
i<j=1

q
xixj
ij ...q

x1x2...xp
12...p .

The conditions on the parameters are obtained from S(x1, x2, ..., xr+1) ≤ S(x1, ..., xr); r =

1, 2, ..., p. �

Theorem 5.3.3. A discrete bivariate random vector X is MDMRL-2(MIMRL-2) if and
only if ci(x1 + 1, x2 + 1, ..., xp + 1)mi(x(i), xi + 1) < (>)1; i = 1, 2, ..., p.

The proof follows directly from (5.2.2).

Corollary 5.3.1. For a discrete p-variate random vector X, the property

ci(x1 + 1, x2 + 1, ..., xp + 1)mi(x(i), xi + 1) = 1; i = 1, 2, ..., p

holds if and only if X has the survival function (5.3.2).
The proof follows from Theorem 5.3.2 and Theorem 5.3.3.
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Theorem 5.3.4. The random vector X is MDMRL-3 and MIMRL-3 if and only if X is
multivariate geometric(Nair and Asha [95]) with survival function

S(x) = q
xi1
i1

(
qi1i2
qi1

)xi2
...

(
qi1i2...ip
qi1i2...ip−1

)xip
; xi1 ≥ xi2 ≥ ... ≥ xip . (5.3.3)

where i1, i2, ..., ip are the permutations of (1, 2, ..., p).

The parameters satisfy

0 < qi1...ip ≤ ... ≤ qi1i2 ≤ q1, q2, ..., qp < 1,

qi1...ij = q123...j for j = 1, 2, ..., p

and
1−

∑
j

qj +
∑
j<k

qjk + ...+ (−1)p−1q123...p ≥ 0.

Proof. We prove the result in the bivariate case, which can be extended to the multivariate
case. In the bivariate case, (5.3.3) can be written as

S(x1, x2) =

qx2qx1−x21 ; x1 ≥ x2

qx1qx2−x12 ; x2 ≥ x1.
(5.3.4)

We now get

(m1(x1, x2),m2(x1, x2))′ =



(
1

1− q1

,
1

1− qq−1
1

)′
; x1 > x2(

1

1− qq−1
1

,
1

1− q2

)′
; x1 < x2(

1

1− q1

,
1

1− q2

)′
; x1 = x2.

(5.3.5)

Thus, for i = 1, 2

mi(x1 + t, x2 + t) = mi(x1, x2) (5.3.6)

for all x1, x2 and t taking values in N. Thus, X is both MDMRL-3 and MIMRL-3.
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Conversely, if (5.3.6) holds, we get from (5.2.2)

c1(x1 + t+ 1, x2 + t+ 1) = 1− m1(x1 + t, x2 + t)− 1

m1(x1 + t+ 1, x2 + t)

= 1− m1(x1, x2)− 1

m1(x1 + 1, x2)
by (5.3.6)

= c1(x1 + 1, x2 + 1)

which is a characterizing property of (5.3.4) ( Nair and Asha [95]), which completes the
proof. �

Now, distribution of X is both MDMRL-4 and MIMRL-4, if and only if

Ai(x+ t) = Ai(x),

where Ai(x) = mi(x, x, ..., x), i = 1, 2, ..., p. The above equation is a univariate functional
equation, from which a multivariate solution is difficult to emerge. Other interesting aspects
of the above classes are mentioned below.

(i) If X is MDMRL-l(MIMRL-l), l = 1, 2, 3, 4, each non-empty subset X has the cor-
responding property.

(ii) If X is MDMRL-l(MIMRL-l) and Y also likewise, then (X,Y) is also MDMRL-
l(MIMRL-l) provided X and Y are independent.

(iii) If X is MDMRL-l(MIMRL-l), then aX is MDMRL-l (MIMRL-l), a > 0.

(iv) X is MDMRL-1(MIMRL-1) if and only if Sx(t) is decreasing in x for all t. Taking
xi = x and/or ti = t; i = 1, 2, ..., p we have a similar characterization of the other
MDMRL classes.

For the further study, we need the definitions of multivariate IHR classes.

Definition 5.3.3. (Nair and Asha [95]) A random vector in the support of Np or its subset
is said to have
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(i) MIHR-1(MDHR-1) if for all x and t in Np

c(x + t) ≥ (≤)c(x).

(ii) MIHR-2(MDHR-2) if for all x in Np and t in N

ci(x1, x2, ..., xi−1, xi + t, xi+1, ..., xp) ≥ (≤)ci(x); i = 1, 2, ..., p.

(iii) MIHR-3(MDHR-3) if for all n ≤ p, x in Nn and t in N

ci(x1 + t, ..., xn + t) ≥ (≤)ci(x1, ..., xn).

and

(iv) MIHR-4(MDHR-4) if for all n ≤ p

ci(x+ t, x+ t, ..., x+ t) ≥ (≤)ci(x, x, ..., x).

Theorem 5.3.5. X is MIFR-l(MDFR-l)⇒X is MDMRL-l(MIMRL-l); l = 1, 2, 3, 4.

Proof. Since the proof is similar for l = 1, 2, 3, 4, we prove the result when l = 1. We
prove the result only in the bivariate case which easily extends to the multivariate case.
In the bivariate case, (X1, X2)′ is BIHR-1 if ci(x1 + t1, x2 + t2) ≥ ci(x1, x2) for all
(x1, x2)′, (t1, t2)′ ∈ N2 and i = 1, 2.

When i = 1, we get

1− S(x1 + t1 + 1, x2 + t2)

S(x1 + t1, x2 + t2)
≥ 1− S(x1 + 1, x2)

S(x1, x2)

or
S(x1 + t1 + 1, x2 + t2)

S(x1 + t1, x2 + t2)
≤ S(x1 + 1, x2)

S(x1, x2)

for all (x1, x2)′ ∈ N2. Now

m1(x1, x2) =
1

S(x1 + 1, x2 + 1)

∞∑
r=x1+1

S(r, x2 + 1)

= 1 +
S(x1 + 2, x2 + 1)

S(x1 + 1, x2 + 1)
+

S(x1 + 3, x2 + 1)

S(x1 + 2, x2 + 1)

S(x1 + 2, x2 + 1)

S(x1 + 1, x2 + 1)
+ ...
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≥ 1 +
S(x1 + t1 + 2, x2 + t2 + 1)

S(x1 + t1 + 1, x2 + t2 + 1)

+
S(x1 + t1 + 3, x2 + t2 + 1)S(x1 + t1 + 2, x2 + t2 + 1)

S(x1 + t1 + 2, x2 + t2 + 1)S(x1 + t1 + 1, x2 + t2 + 1)
+ ...

= m1(x1 + t1, x2 + t2) for all (x1, x2), (t1, t2) ∈ N2.

Similarly, when i = 2, m2(x1, x2) ≥ m2(x1 + t1, x2 + t2), which completes the proof. �

5.4 Relationships between MIMRL and MDMRL classes

The chain of implications between the different ageing classes is given by

MDMRL-1(MIMRL-1) ⇒ MDMRL-3(MIMRL-3) ⇒ MDMRL-4(MIMRL-4)
⇓

MDMRL-2(MIMRL-2)

In order to prove that there exists no other implication between these classes, we con-
sider the following examples.

Example 5.4.1. Let X be distributed as a bivariate geometric random vector with survival
function in (5.2.1). Then,

m1(x1, x2) =
(
1− q1θ

x2+1
)−1 and m2(x1, x2) =

(
1− q2θ

x1+1
)−1

.

It can be easily verified that X is both MIMRL-2 and MDMRL-2. But it is not MIMRL-4.
Thus,

MIMRL-2 ; MIMRL-4

MDMRL-2 ; MIMRL-4

Example 5.4.2. Let X follow the bivariate Waring distribution(Nair and Asha [95]) with
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survival function

S(x1, x2) =
(m)x1+x2

(m+ n)x1+x2

; m,n > 0; xi = 0, 1, 2, ...; i = 1, 2. (5.4.1)

Then
m1(x1, x2) = m2(x1, x2) =

m+ n+ x1 + x2 + 1

n− 1
.

It is easy to see that X is MIMRL-2. But X is neither MDMRL-2 nor MDMRL-4. Hence

MIMRL-2 ; MDMRL-2

MIMRL-2 ; MDMRL-4

Example 5.4.3. Let X has the bivariate version of the geometric distribution in (5.3.4),
with survival function

S(x1, x2) =

qx2qx1−x21 ; x1 ≥ x2

qx1qx2−x12 ; x2 ≥ x1,
(5.4.2)

0 < q ≤ qi < 1; x1 = 0, 1, 2, ...; 1 + q ≥ q1 + q2; i = 1, 2.

Then,

(m1(x1, x2),m2(x1, x2))′ =



(
1

1− q1

,
1

1− qq−1
1

)′
; x1 > x2(

1

1− qq−1
1

,
1

1− q2

)′
; x1 < x2(

1

1− q1

,
1

1− q2

)′
; x1 = x2.

(5.4.3)

It is MIMRL-3 and MDMRL-3. When q > q1q2, X is not MIMRL-2. Similarly, when
q < q1q2, X is not MDMRL-2.
Thus,

MIMRL-3 ; MIMRL-2

MDMRL-3 ; MDMRL-2
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Example 5.4.4. Let X be distributed with survival function

S(x1, x2) =

(
k + n− x1 − x2

n− x1 − x2

)
(
k + n

n

) ; x1 + x2 ≤ n; xi = 0, 1, 2, ..., n; k > 0 (5.4.4)

corresponding to the bivariate negative hyper-geometric distribution(Nair and Asha [95]).
Then,

m1(x1, x2) = m2(x1, x2) =
k + n− x1 − x2 − 1

k + 1
.

It can be shown that X is MDMRL-1 and it does not belong to MIMRL-2 or MIMRL-4.
Hence,

MIMRL-1 ; MIMRL-2

MDMRL-1 ; MDMRL-4

Example 5.4.5. Let m1(x1, x2) =
x1 + x2 + c

x1 + d
and m2(x1, x2) =

x1 + x2 + c

x2 + d
; c ≥ d +

1; d > 0. Now consider m1(x1, x2)−m1(x1 + 1, x2) ≥ 0 for all x2 = 0, 1, 2, ... fixed and
x1 = 0, 1, 2, ...

⇒ x1 + x2 + c

x1 + d
− x1 + x2 + c+ 1

x1 + d+ 1
≥ 0

⇒ x2 + c− d
(x1 + d)(x1 + d+ 1)

≥ 0

⇒ x2 + c− d ≥ 0 for any fixed x2.

Thus, m1(x1, x2) is non-decreasing in x1 for fixed x2 when c ≥ d. Similarly we can show
that m2(x1, x2) is non-decreasing in x2 for fixed x1 when c ≥ d. Hence, m(x) is MDMRL-
2 when c ≥ d.

Now consider m1(x, x)−m1(x+ 1, x+ 1) ≥ 0 for all x = 0, 1, ...

⇒ 2x+ c

x+ d
− 2x+ c+ 2

x+ d+ 1
≥ 0

⇒ c− 2d

(x+ d)(x+ d+ 1)
≥ 0 for all x.
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⇒ c ≥ 2d.

Similarly, we get m2(x, x)−m2(x+ 1, x+ 1) ≥ 0 for all x implies c ≥ 2d. Thus, m(x) is
MDMRL-4 for values of c and d such that c ≥ 2d and is MIMRL-4 for c < 2d.

If, in particular, we choose c = 5 and d = 3, m(x) will be both MDMRL-2 and MIMRL-4.
Thus,

MDMRL-2 ; MDMRL-4

Example 5.4.6. Consider m(x) in example 5.4.5. Then,

m1(x1, x2)−m1(x1 + 1, x2 + 1) =
x2 − x1 + c− 2d

(x1 + d)(x1 − d+ 1)
.

For this to be non-negative for all x1 and x2, c − 2d − x1 + x2 must be greater than or
equal to 0 for any values of x1 and x2. Thus, m(x) is neither MDMRL-3 nor MIMRL-3.
In the previous example, we have seen that m(x) is MDMRL-4 if c ≥ 2d and MIMRL-4 if
c < 2d.

Hence

MIMRL-4 ; MIMRL-3

MDMRL-4 ; MDMRL-3

5.5 Conclusion

In the present chapter, we have extended the concept of mean residual life function into
the multivariate discrete domain. Relationships with other multivariate reliability concepts
have been discussed. We have studied different ageing classes based on multivariate mean
residual life and derived their inter-relationships. Characterization results based on the
monotonicity of MMRL function were obtained.





Chapter 6

Multivariate Variance Residual Life

6.1 Introduction

Various characteristics of residual life such as its mean, variance, coefficient of variation,
higher moments and percentiles have been extensively studied in literature. Among these,
the variance residual life(VRL) has attracted many researchers including Dallas [40], Kar-
lin [76], Chen et al. [33], Gupta [53], Gupta et al. [58], Abouammoh et al. [4], Adatia et al.
[5], Stein and Dattero [138], Gupta and Kirmani [55, 56], Stoyanov and Al-Sadi [139],
Gupta [54] and Nair and Sudheesh [105], when lifetime is treated as a continuous random
variable. These works emphasize the importance of variance residual life as (i) a reliability
function useful in modelling lifetime data with special reference to inference procedures
and characterizations (ii) a means to classify lifetime distributions through the monotonic-
ity properties and (iii) through its relationship with the mean residual life in the same way
as the mean to the variance; see Hall and Wellner [63]. In the discrete case, the topic has
been well-studied by several authors that include Hitha and Nair [64], Roy [125], El-Arishy
[43], Sudheesh and Nair [140], Khorashadizadeh et al. [80] and Al-Zahrani et al. [6]. The
only study that appears to be made in higher dimensional discrete case is that of Roy [125]
who characterized some bivariate discrete distributions by certain simple properties of the
variance residual life. It appears that there is no systematic discussion on the concept of
multivariate variance residual life (MVRL) in the discrete domain. The objective of the
present chapter is to make a theoretical exposition of the properties of the multivariate

121
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discrete variance residual life. It includes properties of the variance residual life, char-
acterization of life distributions and classes of life distributions based on the monotonic
properties of the variance residual life. As a by-product, we also get some properties that
do not seem to have been obtained in the univariate case, by specializing our results.

The chapter is organized as follows. In Section 6.2, we present the definition and prop-
erties of the p-dimensional variance residual life function. The MVRL funtion is expressed
in-terms of MMRL function. Multivariate lifetime distributions are characterized by giving
different functional forms for MVRL function. In Section 6.3, various classes of life distri-
butions based on multivariate variance residual life are discussed. Characterization results
are obtained, based on the monotonic nature of MVRL function. The major conclusions of
the study are presented in Section 6.4.

6.2 Multivariate variance residual life

Let X be the p- dimensional random vector defined in Section 1.2. Following the same
notations in Section 1.2 for reliability functions, the ith component of variance residual life
vector σ2(x) is defined as

σ2
i (x) = E

[
(Xi − xi)2|X > x

]
−m2

i (x); xi = −1, 0, 1, 2, ...; i = 1, 2, ..., p, (6.2.1)

with mi(x) being the i th component of MMRL vector. The evaluation of (6.2.1) can be
accomplished by the formula

σ2
i (x) =

2

S(x + e)

∞∑
ti=xi+1

∞∑
ui=ti+1

S(x1 + 1, ..., xi−1 + 1, ui, xi+1 + 1, ..., xp + 1)

−mi(x)(mi(x)− 1). (6.2.2)

To prove this, we note that
E[(Xi − xi)2|X > x]

=
1

S(x + e)

∞∑
t1=x1+1

...

∞∑
tp=xp+1

(ti − xi)2f(x)
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=
1

S(x + e)

∞∑
ti=xi+1

(ti − xi)2 [S(x1 + 1, ..., xi−1 + 1, ti, xi+1 + 1, ..., xp + 1)

−S(x1 + 1, ..., ti + 1, ..., xp + 1)]

=
1

S(x + e)

∞∑
ti=xi+1

[2(ti − xi)− 1] S(x1 + 1, ..., xi−1 + 1, ti, ..., xp + 1)

=
2

S(x + e)

∞∑
ti=xi+1

(ti − xi)S(x1 + 1, ..., ti, ..., xp + 1) +mi(x)

=
2

S(x + e)

∞∑
ti=xi+1

∞∑
ui=ti+1

S(x1 + 1, ..., xi−1 + 1, ui, xi+1 + 1, ..., xp + 1)

+mi(x). (6.2.3)

Substituting (6.2.3) into (6.2.1), we have (6.2.2).

Example 6.2.1. For the bivariate geometric distribution in (5.2.1), we have

mi(x1, x2) =
(
1− qiθx3−i+1

)−1
; i = 1, 2

and
2

S(x1 + 1, x2 + 1)
=

2q1θ
x2+1

1− q1θx2+1
.

Thus, from (6.2.2), when p = 2 and i = 1, we obtain

σ2
1(x1, x2) =

q1θ
x2+1

(1− q1θx2+1)2

and similarly for i = 2,

σ2
2(x1, x2) =

q2θ
x1+1

(1− q2θx1+1)2 .

Example 6.2.2. For the bivariate Waring distribution in (5.4.1), the bivariate mean residual
life function is derived as

(m1(x1, x2),m2(x1, x2))′ =

(
m+ n+ x1 + x2 + 1

n− 1
,
m+ n+ x1 + x2 + 1

n− 1

)′
. (6.2.4)

Some calculations are required to obtain the variance residual life function. Using (6.2.2),
when i = 1 and p = 2, we write
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σ2
1(x1, x2) =

2 (m+ n)x1+x2+2

(m)x1+x2+2
∞∑

t=x1+1

∞∑
u=t+1

(m)u+x2+1

(m+ n)u+x2+1

−m1(x1, x2) [m1(x1, x2)− 1] . (6.2.5)

To evaluate the first term, we write

∞∑
t=x1+1

∞∑
u=t+1

(m)u+x2+1

(m+ n)u+x2+1

=
∞∑

t=x1+1

(m)t+x2+2

(m+ n)t+x2+1

(
1

m+ n+ t+ x2+

+
m+ t+ x2 + 2

(m+ n+ t+ x2 + 1)(m+ n+ t+ x2 + 2)
+ ...

)

=
∞∑

t=x1+1

(m)t+x2+2

(m+ n)t+x2+1

m+ t+ x2 + 2

n− 1
, by Waring expansion.

=
1

n− 1

∞∑
t=x1+1

m (m+ 1)t+x2+1

(m+ n)t+x2+1

=
m (m+ 1)x1+x2+2

(n− 1)(n− 2) (m+ n)x1+x2+1

.

Hence the first term in (6.2.5) simplifies to

2 (m+ n)x1+x2+2m (m+ 1)x1+x2+2

(m)x1+x2+2 (m+ n)x1+x2+1

=
2(m+ x1 + x2 + 2)(m+ n+ x1 + x2 + 1)

(n− 1)(n− 2)
(6.2.6)

and the second term to

m1(x1, x2) (m1(x1, x2)− 1)

=
(m+ x1 + x2 + 2)(m+ n+ x1 + x2 + 1)

(n− 1)2
. (6.2.7)

Using (6.2.6) and (6.2.7) in (6.2.5), we get

σ2
1(x1, x2) =

n(m+ x1 + x2 + 2)(m+ n+ x1 + x2 + 1)

(n− 1)2(n− 2)
. (6.2.8)
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Similarly, we can evaluate σ2
2(x1, x2) to see that

σ2
1(x1, x2) = σ2

2(x1, x2).

6.2.1 Properties of variance residual life

1. If i1, i2, ..., ir; r = 1, 2, ..., p are permutations of the integers (1, 2, ..., r), the variance
residual life of the marginal distributions of X is obtained from (6.2.2) by setting
xir+1 ... = −1 whenever r < p. In particular

σ2
i (−e) = σ2

i ,

the variance of the marginal distribution of Xi.

2. There exists a recurrence relation for σ2
i (x).Without loss of generality, we take i = 1

and state it as

σ2
1(x1 + 1,x(1)) = m1(x1 + 1,x(1))

[
σ2

1(x)

m1(x)− 1
+m1(x)−m1(x1 + 1,x(1))− 1

]
.

(6.2.9)

Proof. When i = 1, (6.2.2) can be written as

σ2
1(x) =

2

S(x + e)

∞∑
t1=x1+1

m1(t1,x(1))S(t1+1,x(1)+ep−1)−m1(x)(m1(x)−1).

Thus,

{
σ2

1(x) +m1(x)[m1(x)− 1]
}

S(x1 + 1, ..., xp + 1)

−
{
σ2

1(x1 + 1,x(1)) +m1(x1 + 1,x(1))
[
m1(x1 + 1,x(1))− 1

]}
S(x1 + 2, x2 + 1, ..., xp + 1)

= 2m1(x1 + 1,x(1))S(x1 + 2, x2 + 1, ..., xp + 1). (6.2.10)
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Dividing (6.2.10) by S(x1 + 1, ..., xp + 1) and using (1.2.13), we obtain

{
σ2

1(x) +m1(x)[m1(x)− 1]
}

−
{
σ2

1(x1 + 1,x(1)) +m1(x1 + 1,x(1))
[
m1(x1 + 1,x(1))− 1

]} m1(x)− 1

m1(x1 + 1,x(1))

= 2(m1(x)− 1),

which leads to (6.2.9). �

3. The variance residual life function can be expressed in-terms of mean residual life
function as the following theorem shows.

Theorem 6.2.1. For i = 1,

σ2
1(x) = E

[
m1(X1,x(1))(m1(X1 − 1,x(1))− 1)|X > x

]
. (6.2.11)

Proof. From (6.2.10), we can write

{
σ2

1(x) +m1(x)(m1(x)− 1)
}

S(x + e)

= σ2
1(x1 +1,x(1))+m2

1(x1 +1,x(1))+m1(x1 +1,x(1))S(x1 +2, x2 +1, ..., xp+1).

Dividing by S(x + e), we have

σ2
1(x) =

[
1−

f(x1 + 1,x(1) + ep−1)

S(x + e)

] [
σ2

1(x1 + 1,x(1)) +m2(x1 + 1,x(1))

+m1(x1 + 1,x(1))
]
−m1(x)(m1(x)− 1).

Now using (1.2.13),

σ2
1(x1 + 1,x(1))− σ2

1(x) = m2
1(x1 + 1,x(1)) +m1(x1 + 1,x(1))

−
(
σ2

1(x1 + 1,x(1)) +m2
1(x1 + 1,x(1)) +m1(x1 + 1,x(1))

)
1 +m1(x1 + 1,x(1))−m1(x)

m1(x1 + 1,x(1))
−m1(x)(m1(x)− 1)

=
f(x1 + 1,x(1) + ep−1)

S(x + e)
σ2

1(x1 + 1,x(1))−
f(x1 + 1,x(1) + ep−1)

S(x + e)(
m1(x1 + 1,x(1))(1−m1(x))

)
.
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The last expression simplifies to

σ2
1(x)S(x + e)− σ2

1(x1 + 1,x(1))S(x1 + 1,x(1) + ep−1) =
[
m1(x1 + 1,x(1))

(m1(x)− 1)] f(x1 + 1,x(1) + ep−1). (6.2.12)

Adding the above identity for values of x1,

σ2
1(x)S(x + e) =

∞∑
t1=x1+1

m1(t1,x(1))(m1(t1 − 1,x(1)) − 1)f(t1,x(1) + ep−1),

which is same as (6.2.11). �

Remark 6.2.1. In the univariate case, (p = 1)

σ2
1(x1) = E [m1(X1)(m1(X1 − 1)− 1)|X1 > x1] ,

a formula that does not seem to have appeared in literature. It can be used for obtain-
ing quick estimates of σ2

1(x1) based on the estimates of m1(x1).

4. A problem of traditional interest in modelling situations is to characterize life dis-
tributions by properties of reliability functions that enable easy identification of the
appropriate model. We give some characterization results below.

Theorem 6.2.2. A random vector X in Np has a variance residual life of the form

σ2
i (x) = pi(x(i)); i = 1, 2, ..., p (6.2.13)

for all x if and only if X follow the multivariate geometric distribution in (5.3.2).

Proof. By direct calculation,

σ2
i (x) =

a(x(i))

(1− a(x(i)))2
(6.2.14)

where

a(x(i)) = q1

p∏
j=2

q
xj
ij

p∏
j,k=2;j<k

q
xjxk
ijk ...q

x2...xp
12...p .
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This proves the ’if’ part. Now assume that (5.3.2) holds. Using (6.2.12) with suffix
1 replaced by i, we get

pi(x(i)) = mi(xi + 1,x(i))(mi(x)− 1), (6.2.15)

which cannot be true unless mi(x) = ai(x(i)), a function independent of xi. We first
consider the univariate case. Taking i = 1 and p = 1, the mean residual life of X1 is
independent of x1, say c1. Then the survival function S1(.) of X1 satisfies

S1(x1) =

x1−1∏
t=0

m1(x1 − 1)− 1

m1(x1)
=

(
c1 − 1

c1

)x1
= qx11 ; 0 < q1 < 1.

In general, Si(xi) = qxii . Similarly for p = 2 and i = 1, in the bivariate case

S2(x1, x2) =

x1−1∏
t=0

m1(t− 1, x2)− 1

m1(t, x2)
S2(0, x2) (6.2.16)

= [b1(x2)]x1 qx22 ; b1(x2) =
a1(x2)− 1

a1(x2)
; 0 < b1(x2) < 1.

Similarly working with i = 2 and p = 2, we obtain

S2(x1, x2) = [b2(x1)]x2 qx11 ; b2(x1) =
a2(x1)− 1

a2(x1)
; 0 < b2(x1) < 1. (6.2.17)

From (6.2.16) and (6.2.17), we obtain

x1 log b1(x2) + x2 log q2 = x2 log b2(x1) + x1 log q1.

The left side of the above equation can be written as

x1(log b1(x2)− log q1) = x2(log b2(x1)− log q2),

which is linear in x1 and hence right side must also be linear in x1 and similarly for
x2. The only solution in this case is

b1(x2) = q1q
x2
12
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and
b2(x1) = q2q

x1
12 , for some 0 < q12 < 1.

This gives
S2(x1, x2) = qx11 q

x2
2 q

x1x2
12 ; 0 < q1, q2, q12 < 1.

Proceeding in this fashion, we arrive at (6.2.14) by mathematical induction and the
proof is completed. �

Remark 6.2.2. The property
(
σ2

1(x), ..., σ2
p(x)

)′
= (c1, c2, ..., cp)

′ where the c’s are
independent of x is satisfied if and only if the distribution of X is specified by
(5.2.11).

Theorem 6.2.3. A bivariate random vector (X1, X2)′ in N2 has variance residual life
of the form

(
σ2

1(x1, x2), σ2
2(x1, x2)

)′
=


(c1, c2)′; x1 > x2

(c3, c4)′; x2 > x1

(c1, c4)′; x1 = x2

(6.2.18)

where ci; i = 1, 2, 3, 4 are independent of x1 and x2 if and only if its survival function
is

S(x1, x2) =


qx2qx1−x21 ; x1 ≥ x2

qx1qx2−x12 ; x2 ≥ x1; x1, x2 = 0, 1, 2, ...

0 < q < q1, q2 < 1; 1 + q ≥ q1 + q2.

(6.2.19)

Proof. We assume that the distribution of (X1, X2)′ is specified by (6.2.18). Then
the mean residual life is calculated as

(m1(x1, x2),m2(x1, x2))′ =


(k1, k2)′; if x1 > x2

(k3, k4)′; if x2 > x1

(k1, k4)′; if x1 = x2

(6.2.20)

where k1 = (1− q1)−1, k2 =

(
1− q

q1

)−1

, k3 =

(
1− q

q2

)−1

and k4 = (1− q2)−1.
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Also,

(
σ2

1(x1, x2), σ2
2(x1, x2)

)′
=



 q1

(1− q1)2
,

q

q1(1− q

q1

)2


′

; x1 > x2

 q

q2(1− q

q2

)2
,

q2

(1− q2)2


′

; x2 > x1

(
q1

(1− q1)2
,

q2

(1− q2)2

)′
; x1 = x2

(6.2.21)

showing that it is of the form stated in (6.2.19). Conversely, assuming (6.2.19), we
see from (6.2.15) with p = 2 that σ2(x1, x2) = (c1, c2)′ for x1 > x2 gives

m1(x1 + 1, x2) (m1(x1, x2)− 1) = c1

and similarly for i = 2,

m2(x1, x2 + 1)(m2(x1, x2)− 1) = c2.

The solutions of these equations must be of the form

(m1(x1, x2),m2(x1, x2))′ = (k1, k2)′

for some constants k1 and k2, both independent of x1 and x2. Similarly, we can work
with the regions x2 > x1 and x1 = x2 to reach at (6.2.20). Substituting the values
of (m1(.),m2(.))′ in formula (5.2.3), the bivariate geometric distribution of the form
(6.2.19) is recovered. �

Remark 6.2.3. The p-variate version of (6.2.19) can be stated as in (5.3.3). The
method of proof used in Theorem 6.2.3 is applicable in this case also, but with
lengthy expressions for the mean and variance residual lives according to the var-
ious regions of the sample space required by xi1 ≥ xi2 ≥ ... ≥ xip . Note that the
variance residual life is piece-wise constant.

The following theorem characterizes life distributions using the form of relationship
between MVRL and MMRL.
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Theorem 6.2.4. A random vector X taking values in Np satisfies the property

σ2
i (x) = kimi(x) [mi(x)− 1] ; i = 1, 2, ..., p (6.2.22)

for all x if and only if the distribution of X is multivariate Waring with

S(x) =
(A0 + A2x2 + ...+ Apxp)x1

(A0 + A1 + A2x2 + ...+ Apxp)x1
...

(B0 +B3x3)x2 (C0)x3
(B0 +B2 +B3x3)x2 (C0 + C3)x3

,

(6.2.23)
xi = 0, 1, 2, ...; i = 1, 2, ..., p and negative hyper-geometric with

S(x) =

(
α0 + α1 + α2x2 + ...+ αpxp − x1

α0 + α2x2 + ...+ αpxp − x1

)
(
α0 + α1 + α2x2 + ...+ αpxp

α0 + α2x2 + ...+ αpxp

) ...

(
β0 + β1 + β3xp−2 − xp−1

β0 + β3xp−2 − xp−1

)
(
β0 + β1 + β3xp−3

β0 + β3xp−3

)
(
δ0 + δ1 − xp
δ0 − xp

)
(
δ0 + δ1

δ0

) , (6.2.24)

x1 = 0, 1, 2, ..., α0; ...;xp = 0, 1, 2, ..., δ0,

according as ki > 1 and 0 < ki < 1.

Proof. Since the proof of the theorem in the p- variate case is apparent from the
tri-variate version, we consider the latter only, for brevity. Recall that

σ2
i (x) =

2

S(x + e)

∞∑
ti=xi+1

mi(ti,x(i))S(ti+1,x(i) +ep−1)−mi(x) (mi(x)− 1) ,

(6.2.25)

i = 1, 2, ..., p. Taking p = 3, i = 1 and x = (x1, x2, x3)′, we can write the above
identity when (6.2.22) holds as

(k+1)m1(x) (m1(x)− 1)) =
2

S(x + e3)

∞∑
t1=x1+1

m1(x1, x2, x3)S(t1+1, x2+1, x3+1).
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Hence,

(k + 1)m1(x) (m1(x)− 1) S(x + e3)− (k + 1)m1(x1 + 1, x2, x3)

(m1(x1 + 1, x2, x3)− 1) S(x1 + 2, x2 + 1, x3 + 1) = 2S(x1 + 2, x2 + 1, x3 + 1)

m1(x1 + 1, x2, x3).

Dividing by S(x1 + 1, x2 + 1, x3 + 1) and invoking (6.2.11) with p = 3, we get, after
some simplifications, that

(k + 1) [m1(x)−m1(x1 + 1, x2, x3)] = 2

or

m1(x)−m1(x1 + 1, x2, x3) =
k1 − 1

k1 + 1
.

The solution of the above partial difference equation is

m1(x) = α1x1 + p1(x2, x3), α =
k1 − 1

k1 + 1
.

Likewise for i = 2 and 3, we further have from (6.2.25),

m2(x) = α2x2 + p2(x1, x3)

and
m3(x) = α3x3 + p3(x1, x2).

From (5.2.3), the survival function is written as

S(x) =

x1−1∏
r=0

α1(r − 1) + p1(x2, x3)− 1

α1r + p1(x2, x3)

x2−1∏
r=0

α2(r − 1) + p2(0, x3)− 1

α2r + p2(0, x3)

x3−1∏
r=0

α3(r − 1) + p3(0, 0)− 1

α3r + p3(0, 0)
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=

x2−1∏
r=0

α2(r − 1) + p2(x1, x3)− 1

α2r + p2(x1, x3)

x3−1∏
r=0

α3(r − 1) + p3(x1, 0)− 1

α3r + p3(x1, 0)

x3−1∏
r=0

α1(r − 1) + p1(0, 0)− 1

α1r + p1(0, 0)

=

x3−1∏
r=0

α3(r − 1) + p3(x1, x2)− 1

α3r + p3(x1, x2)

x1−1∏
r=0

α1(r − 1) + p1(x2, 0)− 1

α1r + p1(x2, 0)

x2−1∏
r=0

α2(r − 1) + p2(0, 0)− 1

α2r + p2(0, 0)
. (6.2.26)

When k > 1 and αi > 0, the terms under the product symbol can be written in-terms
of the Pocchamer symbol

(t)r = t(t+ 1)...(t+ r − 1).

Thus,

S(x) =

(
p1(x2, x3)− 1

α1

− 1

)
x1(

p1(x2, x3)

α1

)
x1

(
p2(0, x3)− 1

α2

− 1

)
x2(

p2(0, x3)

α2

)
x2

(
p3(0, 0)− 1

α3

− 1

)
x3(

p3(0, 0)

α3

)
x3

and similarly the other two equivalent forms. A complete specification of S(x) re-
quires the solution of the functions p1(x2, x3), p2(x1, x3) and p3(x1, x2), for which,
we consider

S(x1 + 1, x2 + 1, x3 + 1)

S(x1, x2, x3)
=

S(x1 + 1, x2 + 1, x3 + 1)

S(x1, x2 + 1, x3 + 1)

S(x1, x2 + 1, x3 + 1)

S(x1, x2, x3 + 1)

S(x1, x2, x3 + 1)

S(x1, x2, x3)

=
S(x1 + 1, x2 + 1, x3 + 1)

S(x1 + 1, x2, x3 + 1)

S(x1 + 1, x2, x3 + 1)

S(x1 + 1, x2, x3)

S(x1 + 1, x2, x3)

S(x1, x2, x3)

=
S(x1 + 1, x2 + 1, x3 + 1)

S(x1 + 1, x2 + 1, x3)

S(x1 + 1, x2 + 1, x3)

S(x1, x2 + 1, x3)

S(x1, x2 + 1, x3)

S(x1, x2, x3)
.
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Converting the right hand expressions in-terms of the mean residual life functions
using (6.2.11) lead to three functional equations. One of these equations has the
form

(m1(x1 − 1, x2, x3)− 1)

m1(x1, x2, x3)

(m2(x1 − 1, x2 − 1, x3)− 1)

m2(x1 − 1, x2, x3)

(m3(x1 − 1, x2 − 1, x3 − 1)− 1)

m3(x1 − 1, x2 − 1, x3)
=

(m1(x1 − 1, x2 − 1, x3 − 1)− 1)

m1(x1, x2 − 1, x3 − 1)

(m2(x1, x2 − 1, x3)− 1)

m2(x1, x2, x3)

(m3(x1, x2 − 1, x3 − 1)− 1)

m3(x1, x2 − 1, x3)

p1(x2, x3)− 1

α1

+ x1 − 1

p1(x2, x3)

α1

+ x1

p2(x1 − 1, x3)− 1

α2

+ x2 − 1

p2(x1 − 1, x3)

α2

+ x2

p3(x1, x2)− 1

α3

+ x3 − 1

p3(x1, x2)

α3

+ x3

=

p1(x2 − 1, x3 − 1)− 1

α1

+ x1 − 1

p1(x2 − 1, x3 − 1)

α1

+ x1

p2(x1, x3)− 1

α2

+ x2 − 1

p2(x1, x3)

α2

+ x2

p3(x1, x2 − 1)− 1

α3

+ x3 − 1

p3(x1, x2 − 1)

α3

+ x3

which can be rearranged into

p1(x2, x3)− 1

α1

+ x1 − 1

p1(x2, x3)

α1

+ x1

p1(x2 − 1, x3 − 1)

α1

+ x1

p1(x2 − 1, x3 − 1)− 1

α1

+ x1 − 1

=

p1(x1, x3)− 1

α2

+ x2 − 1

p1(x1, x3)

α2

+ x2

p2(x1 − 1, x3)

α2

+ x2

p2(x1 − 1, x3)

α2

+ x2 − 1

p3(x1, x2 − 1)− 1

α3

+ x3 − 1

p3(x1, x2 − 1)

α3

+ x3

p3(x1, x2)

α3

+ x3

p3(x1, x2)− 1

α3

+ x3 − 1

.
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The terms on the left side are linear in x1 and therefore the functions p1(x1, x3) and
p2(x1, x3) must be linear in x1. Similar arguments using two other equations of the
same kind reveal that p1(x1, x3), p2(x1, x3) and p3(x1, x2) should involve only linear
terms in the respective variables. This enables to write the solution of the functional
equations as

p1(x2, x3) = a0 + a2x2 + a3x3

p2(x1, x3) = b0 + b1x1 + b3x3

p3(x1, x2) = c0 + c1x1 + c2x2.

Substituting these in (6.2.26) and after renaming the constants, we get

S(x1, x2, x3) =
(A0 + A2x2 + A3x3)x1

(A0 + A2x2 + A3x3 + A1)x1

(B0 +B3x3)x2
(B0 +B3x3 +B2)x2

(C0)x3
(C0 + C3)x3

(6.2.27)

=
(B0 +B3x3 +B1x1)x2

(B0 +B3x3 +B1x1 +B2)x2

(C0 + C1x1)x3
(C0 + C1x1 + C3)x3

(A0)x1
(A0 + A1)x1

(6.2.28)

=
(C0 + C1x1 + C2x2)x3

(C0 + C1x1 + C2x2 + C3)x3

(A0 + A2x2)x1
(A0 + A2x2 + A1)x1

(B0)x2
(B0 +B2)x2

,

(6.2.29)

as required. Now assuming the above distribution for X, we have

m1(x) =
(A0 + A2(x2 + 1) + A3(x3 + 1) + A1)x1+1

(A0 + A2(x2 + 1) + A3(x3 + 1))x1+1
∞∑

t=x1+1

(A0 + A2(x2 + 1) + A3(x3 + 1))t
(A0 + A2(x2 + 1) + A3(x3 + 1) + A1)t

=
A0 + A2(x2 + 1) + A3(x3 + 1) + A1 + x1

(A1 − 1)
,

on using Waring expansion. Likewise

σ2
1(x) =

(A0 + A2(x2 + 1) + A3(x3 + 1) + A1 + x1)

(A1 − 1)(A1 − 2)

(A0 + A2(x2 + 1) + A3(x3 + 1) + x1 + 1)
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Thus, σ2
1(x) = k1m1(x)(m1(x)− 1), k1 =

A1

A1 − 2
> 1.

Using (6.2.28) and (6.2.29) in the same way, k2 =
B1

B1 − 2
> 1 and k3 =

C1

C1 − 2
>

1.

When ki < 1, α is negative. The proof runs along the same lines as in the Waring
case, except that in (6.2.26) the terms form a descending factorial expression result-
ing in a hyper-geometric function. The survival function takes the form

S(x1, x2, x3) =

(
α0 + α1 + α2x2 + α3x3 − x1

α0 + α2x2 + α3x3 − x1

)
(
α0 + α2x2 + α3x3 + α1

α0 + α2x2 + α3x3

)
(
β0 + β1 + β3x3 − x2

β0 + β3x3 − x2

)
(
β0 + β1 + β3x3

β0 + β3x3

)
(
δ0 + δ1 − x3

δ0 − x3

)
(
δ0 + δ1

δ0

)

The mean and variance residual life functions are

m1(x) =
α0 + α1 + α2(x2 + 1) + α3(x3 + 1)− x1

α1 + 1

and

σ2
1(x) =

(α0 + α1 + α2(x2 + 1) + α3(x3 + 1)− x1)

(α1 + 1)2(α1 + 2)

(α0 + α2(x2 + 1) + α3(x3 + 1)− x1 − 1)

and hence
σ2

1(x) = k1m1(x)(m1(x)− 1); k1 =
α1

α1 + 2
< 1.

This completes the proof. �

Remark 6.2.4. When ki = 1 the result corresponds to the multivariate geometric
distribution (5.3.2).

Remark 6.2.5. It is evident from Theorem 6.2.4 that the multivariate Waring distri-
bution and negative hyper-geometric distribution are characterized by a linear mean
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residual life function and a quadratic variance residual life function in x1, x2, ..., xp.

Remark 6.2.6. The results in Theorem 6.2.4 are more general than that of Roy [125]
in which he has taken p = 2 and ki = k; i = 1, 2.

5. Let X and Y be two discrete random vectors defined on Np with mean residual
lives of the ith components as mXi

(x) and mYi
(x). The corresponding variance

residual lives are denoted by σ2
Xi

(x) and σ2
Yi

(x). Then we say that X is less than Y

in multivariate mean residual life if mXi
(x) ≤ mYi

(x), for i = 1, 2, ..., p and all x

in Np and is denoted by X ≤MMRL Y. Similarly, we say that X is less than Y in
multivariate variance residual life if σ2

Xi
(x) ≤ σ2

Yi
(x), for i = 1, 2, ..., p and all x in

Np and is denoted by X ≤MVRL Y.

From Theorem 6.2.1, we see that

X ≤MMRL Y ⇒ X ≤MVRL Y.

6. Corresponding to the vector X, we can define a vector Y = (Y1, Y2, ..., Yp)
′ in Np

such that the distribution of Y is specified by the conditional probability mass func-
tions

g1(x1|Y(1) > x(1)) =
P [X1 > x1|X(1) > x(1)]

E[X1|X(1) > x(1)]

g2(x2|Y(2) > x(2)) =
P [X2 > x2|X(2) > x(2)]

E[X2|X(2) > x(2)]

...

gp(xp|Y(p) > x(p)) =
P [Xp > xp|X(p) > x(p)]

E[Xp|X(p) > x(p)]

where x(i) = x− {xi}. The above definitions are extensions to the multivariate case
of the concept of continuous bivariate equilibrium distributions discussed in Gupta
and Sankaran [60], Nair and Preeth [98] and Navarro and Sarabia [114]. Notice that
the above conditional probability mass functions lead to a multivariate distribution if
and only if

P [Yi > xi|Y(i) > x(i)]

P [Yj > xj|Y(j) > x(j)]
=
Aj(x(j))

Ai(x(i))
,

where Ai(.) and Aj(.) are survival functions. The distribution of Y is called the
multivariate equilibrium distribution of the random vector X. Denoting the mean
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residual life function of Y as

r(x) = (r1(x), r2(x), ..., rp(x))′

where
ri(x) = E[Yi − xi|Y > x]; i = 1, 2, ..., p,

we see that

ri(x) =
1

SY(x + e)

∞∑
t=x1+1

SY(t, x2 + 1, ..., xp + 1)

=

∑∞
t=x1+1

∑∞
u=t+1 S(u, x2 + 1, ..., xp + 1)∑∞

t=x1+1 S(t, x2 + 1, ..., xp + 1)
.

With the aid of (6.2.3) and (6.2.1),

σ2
1(x) +mi(x)(mi(x)− 1) = 2ri(x)(mi(x)− 1). (6.2.30)

Writing

C2
i (x) =

σ2
i (x)

mi(x)(mi(x)− 1)
,

ri(x) =
1

2

(
1 + C2

i (x)
)
mi(x); i = 1, 2, ..., p.

It may be noticed that in the discrete case, C2
i (x), i = 1, 2, ..., p enjoy properties

analogous to the coefficient of variation of the residual life when X is continuous.
For a discussion of the role of the coefficient of variation of residual life in reliability
modelling, see Gupta and Kirmani [55] and Gupta [54].

6.3 Ageing classes based on variance residual life

Multivariate life distributions can be classified using the behaviour of their variance resid-
ual lives. In the multivariate case, there can be different ways of defining their monotonic-
ity and as such we have an increasing(decreasing) multivariate variance residual life class
MIVRL(MDVRL) corresponding to each mode of definition. Following Zahedi [146] and
Nair and Asha [95], four different versions of classes are studied in this section.
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A discrete random vector X defined on Np is said to be

(i) MIVRL-1(MDVRL-1) if
σ2
i (x + t) ≥ (≤)σ2

i (x)

for all x and t in Np and i = 1, 2, ..., p.

(ii) MIVRL-2(MDVRL-2) if

σ2
i (x1, x2, ..., xi−1, xi + t, xi+1, ...xp) ≥ (≤)σ2

i (x),

for all x ∈ Np and t ∈ N and i = 1, 2, ..., p.

(iii) MIVRL-3(MDVRL-3) if

σ2
i (x1 + t, x2 + t, ..., xn + t) ≥ (≤)σ2

i (x)

for all n ≤ p; i = 1, 2, ..., p and t ∈ N.

and

(iv) MIVRL-4(MDVRL-4) if

σ2
i (x+ t, x+ t, ..., x+ t) ≥ (≤)σ2

i (x, x, ..., x)

for all x, t ∈ N and i = 1, 2, ..., p.

The interpretation of (i) is that the variance residual life of a p- component device where
the components are of different ages increase(decrease) with different intensities. In (ii) the
variance residual life increases when a working component is replaced by a younger one,
whereas in (iii), the components are initially of different ages and the variance residual life
is reckoned after the same time for all of them. Lastly in (iv), the variances are compared
after the same time when initially they are of the same age. From the definitions, it is easy
to see that

MDVRL-1(MIVRL-1) ⇒ MDVRL-3(MIVRL-3) ⇒ MDVRL-4(MIVRL-4)
⇓

MDMRL-2(MIMRL-2)



Chapter 6. Multivariate Variance Residual Life 140

Further, MDVRL-1 and MIVRL-1 are simultaneously satisfied when σ2
i (x) = ki, a con-

stant independent of x. In this case, the distribution of X is multivariate geometric in 5.2.11.
Likewise, X is both MIVRL-2 and MDVRL-2 if and only if σ2

i (x) = pi(x(i)); i = 1, 2, ..., p

so that the corresponding distribution is as in (5.3.2). The multivariate geometric distribu-
tion in 5.3.3 satisfies the property of being both MDVRL-3 and MIVRL-3. Finally, distri-
bution of X is both MIVRL-4 and MDVRL-4 is satisfied if and only if

Ai(x+ t) = Ai(x),

where Ai(x) = σ2
i (x, x, ..., x), i = 1, 2, ..., p. The above is a univariate functional equation,

from which a multivariate solution is difficult to emerge. The Waring and negative hyper-
geometric laws are respectively MIVRL-k and MDVRL-k for k = 1, 2, 3, 4 so that all the
classes are well defined.

Some properties of the MIVRL and MDVRL classes are given below.

Theorem 6.3.1. The random vector X is MIVRL-2(MDVRL-2) if and only if
σ2
i (x1, ..., xi−1, xi + 1, ..., xp) ≥ (≤)mi(x1, x2, ..., xi−1, xi + 1, xi+1, ..., xp)(mi(x)− 1) for
i = 1, 2, ..., p.

Proof. We have from (6.2.9)

σ2
1(x1 + 1,x(1))− σ2

1(x) =
m1(x1 + 1,x(1))−m1(x) + 1

m1(x1 + 1,x(1))[
σ2

1(x1 + 1,x(1))−m1(x1 + 1,x(1))(m1(x− 1))
]
.

Since the above is an identity, X is MIVRL if and only if

σ2
1(x1 + 1,x(1)) ≥ m1(x1 + 1,x(1))(m1(x)− 1).

The proof of i = 2, 3, ..., p are similar. �

Theorem 6.3.2. X is MIMRL-2(MDMRL-2)⇒X is MIVRL-2(MDVRL-2).
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Proof. Using (6.2.2), we write

σ2
1(x1 + 1,x(1))−m1(x1 + 1,x(1))(m1(x)− 1) =

2

S(x1 + 2,x(1) + ep−1)
∞∑

t=x1+2

∞∑
u=t+1

S(u,x(1) + ep−1)−m1(x1 + 1,x(1))(m1(x1 + 1,x(1))− 1)

−m1(x1 + 1,x(1))(m1(x)− 1)

=
2

S(x1 + 2,x(1) + ep−1)

∞∑
t=x1+2

m1(t,x(1))S(t+ 1,x(1) + ep−1)−m1(x1 + 1,x(1))[
m1(x1 + 1,x(1)) +m1(x)− 2

]

=
2

S(x1 + 2,x(1) + ep−1)

∞∑
t=x1+2

[
m1(t,x(1))−m1(x1 + 1,x(1))

]
+

2m1(x1 + 1,x(1))

S(x1 + 2,x(1) + ep−1)

[
∞∑

t=x1+2

S(t,x(1) + ep−1)− S(x1 + 2,x(1) + ep−1)

]
−m1(x1 + 1,x(1))(m1(x1 + 1,x(1)) +m1(x)− 2)

=
2

S(x1 + 2,x(1) + ep−1)

∞∑
t=x1+2

[
m1(t,x(1))−m1(x1 + 1,x(1))

]
S(t+ 1,x(1) + ep−1)

+m1(x1 + 1,x(1))(m1(x1 + 1,x(1))−m1(x)).

When X is MDMRL-2, m1(t,x(1)) ≤ m1(x1 + 1,x(1)) for all t ≥ x1 + 2 and also m1(x1 +

1,x(1)) ≤ m1(x). Hence the expression on the right is negative and hence by Theorem
6.4.1, X is MDVRL-2. The case of i = 2, 3, ... are similar and so is the case of MIVRL-
2. �

The above result gives only a sufficient condition for X to be MIVRL-2, besides being
the implication among the MMRL and MVRL classes. A stronger result is presented in the
next theorem.

Theorem 6.3.3. Suppose that S(x) is strictly decreasing. Then X is MIVRL-2(MDVRL-2)
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if and only if the vector Y is MIMRL-2(MDMRL-2).

Proof. Using (6.2.30), we can write for i = 1,

2
(
r1(x1 + 1,x(1))− r1(x)

)
=

2

[
σ2

1(x1 + 1,x(1)) +m1(x1 + 1,x(1))m1(x1 + 1,x(1))

2m1(x1 + 1,x(1))m1(x1 + 1,x(1))
− 1

]

=
σ2

1(x1 + 1,x(1))

m1(x1 + 1,x(1))m1(x1 + 1,x(1))
− 1. (6.3.1)

Hence,

σ2
1(x1 + 1,x(1))

m1(x1 + 1,x(1))(m1(x)− 1)

=

[
m1(x1 + 1,x(1))− 1

] [
1 + r1(x1 + 1,x(1))− r1(x)

]
m1(x)− 1

. (6.3.2)

Also, from (6.3.1),

σ2
1(x)

m1(x)(m1(x)− 1)
= 2

[
r1(x)− r1(x1 − 1,x(1)) + 1

]
. (6.3.3)

The last two equations provide

σ2
1(x)−σ2

1(x1 +1,x(1)) =
(
m1(x1 + 1,x(1))−m1(x) + 1

) [
m1(x)−m1(x1 + 1,x(1))

][
1 + r1(x1 + 1,x(1))− r1(x)

]

=

[
m1(x1 + 1,x(1))−m1(x) + 1

]
1 + r1(x)− r1(x1 − 1,x(1))

[
r1(x1 − 1,x(1))− r1(x)

]
.

On using the identity,

m1(x) = r1(x)
[
1 + r1(x)− r1(x1 − 1,x(1))

]
,

further simplification yields

σ2
1(x)− σ2

1(x1 + 1,x(1)) =
(
m1(x1 + 1,x(1))−m1(x) + 1

)
(m1(x)− r1(x)) (6.3.4)
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= m1(x)
(
m1(x1 + 1,x(1))−m1(x) + 1

) (
r1(x1 − 1,x(1))− r1(x)

)
. (6.3.5)

By (1.2.13), m1(x1 + 1,x(1))−m1(x) + 1 > 0 since S(x) is strictly decreasing. Moreover
the sign of the left side of (6.3.5) is the same as that of r1(x1−1,x(1))− r1(x). This proves
the assertion for i = 1. The same method applies to i = 2, 3, ..., p. �

Remark 6.3.1. Equation (6.3.4) reveals that X is MIVRL-2(MDVRL-2) if and only if
mi(x) ≥ (≤)ri(x). This is also equivalent to the statement

X is MIVRL-2(MDVRL-2) ⇐⇒ X ≥MMRL (≤MMRL)Y.

Example 6.3.1. Let X follow the bivariate Waring distribution in (5.4.1). We see that the
components of the variance residual life vector are equal and are increasing in x1 and x2.

Hence the distribution is MIVRL-2. Now, we evaluate the mean residual life function r(x)

of Y as

r1(x1, x2) =

∞∑
t=x1+1

∞∑
u=t+1

S(u, x2 + 1)

∞∑
t=x1+1

S(t, x2 + 1)

=

∞∑
t=x1+1

∞∑
u=t+1

(m)u+x2+1

(m+ n)u+x2+1

∞∑
t=x1+1

(m)t+x2+1

(m+ n)t+x2+1

.

After expanding the terms and simplifying with the use of Waring expansion, we get

r1(x1, x2) =
m(n− 1) (m+ 1)x1+x2+2 (m+ n)x1+x2+1

(n− 1)(n− 2)(m+ x1 + x2 + 2) (m+ n)x1+x2+1 (m)x1+x2+2

=
1

n− 2
.

Similarly, we can evaluate r2(x1, x2) to see that r1(x1, x2) = r2(x1, x2) =
1

n− 2
for

x1, x2 = 0, 1, 2, ...

It is easy to verify that mi(x1, x2) ≥ ri(x1, x2); i = 1, 2. Thus, X ≥MMRL Y.
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6.4 Conclusion

In this chapter, we have presented several properties of multivariate variance residual life
in discrete time. Multivariate lifetime distributions are characterized by giving different
functional forms for MVRL function. Also, the classification of life distributions based on
the monotonicity of the concept were discussed. The results will be useful in modelling
and analysis of multivariate discrete data, which is not much seen in reliability literature.



Chapter 7

Covariance Residual Life and Measures
of Association

7.1 Introduction

In multivariate set-up, an important aspect to be considered in modelling lifetimes is the
nature of dependence between the constituent variables. The model has to be chosen such
that it reflects the quantum and nature of association exhibited by the data. Traditionally,
covariance between the variables or some coefficients based on it are considered for this
purpose. In the case of residual lives, the appropriate concept to be chosen for determin-
ing the association becomes the covariance of residual lives. Nair et al. [106] have dis-
cussed this role and properties of this notion and Navarro et al. [115] found its application
in the context of equilibrium distributions, when the lifetimes are continuous. Sankaran
et al. [129] proposed a dependence measure between a pair of continuous lifetime variables
based on covariance residual life function. It was shown that zero covariance (correlation)
residual life implies independence between the variables. Further, they proposed a non-
parametric estimator for the dependence measure. Using that measure, they developed a
test for independence among the variables. Even though, the definitions of hazard rate,
mean residual life, etc. have been extended to the bivariate discrete case, a discussion of
the covariance residual life is elusive in literature. Accordingly, the present chapter is an
attempt to fill this gap. The importance of the work arises from the fact that in analysing

145
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bivariate discrete data, ascertaining the nature and extent of association makes the model
building easier and meaningful. Also, one can develop time-dependent measures of associ-
ation with the help of covariance residual life function. Finally, it is an essential component
of the variance-covariance matrix of the residual lives, when one studies the properties of
the bivariate mean residual life function from the data. From a practical view point also,
the discussions on covariance residual life becomes meaningful. As an instance, the time
of maximal association from the time of remission to relapse or of time of relapse and time
of death, both measured in number of months, is a familiar case in medical studies. Also
is the case of determining the genetic character of a disease by measuring the association
between lifetimes of mono-zygotic twins (Hougaard [66]). The measures of association
discussed in the sequel can be useful in this connection.

A sumary of the chapter is as follows. The product moment of residual life and co-
variance residual life are defined in the discrete domain in Section 7.2. Properties of these
functions are discussed . It is shown that zero covariance residual life implies independence
of the corresponding random variables. A measure of association for bivariate discrete data
is proposed in Section 7.3. The new measure is compared with existing dependence con-
cepts. In Section 7.4, the application of the theoretical results for real data is provided by
way of illustration. The major conclusion of the study is given in Section 7.5.

7.2 Covariance residual life and its properties

Let X be a discrete random vector taking values in Np. The covariance residual life be-
tween Xi and Xj is defined as

σij(xi, xj) = Mij(xi, xj)−mi(xi, xj)mj(xi, xj); i, j = 1, 2, ..., p; i < j, xi, xj = −1, 0, 1, ...,

(7.2.1)
where

Mij(xi, xj) = E [(Xi − xi)(Xj − xj)|Xi > xi, Xj > xj]

is the bivariate product moment of residual life (PMRL) and mi(xi, xj) denotes the i th
component of the mean residual life of (Xi, Xj)

′. Since working with any Xi and Xj is
similar, without loss of generality, we take i = 1, j = 2 in the sequel. Dropping the
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suffixes in M12(., .),

M(x1, x2) = E [(X1 − x1)(X2 − x2)|X1 > x1, X2 > x2]

=
1

S(x1 + 1, x2 + 1)

∞∑
t1=x1+1

∞∑
t2=x2+1

(t1 − x1)(t2 − x2)f(t1, t2)

=
1

S(x1 + 1, x2 + 1)

∞∑
t1=x1+1

∞∑
t2=x2+1

S(t1, t2), (7.2.2)

where S(x1, x2) is the survival function and f(x1, x2) is the probability mass function,
corresponding to (X1, X2)′.

Example 7.2.1. Let X be distributed as bivariate Waring in (5.4.1). Then

m1(x1, x2) =
m+ n+ x1 + x2 + 1

n− 1
= m2(x1, x2)

and
M(x1, x2) =

(m+ n+ x1 + x2 + 1)(m+ n+ x1 + x2)

(n− 1)2
,

giving

σ12(x1, x2) = −m+ n+ x1 + x2 + 1

(n− 1)2
.

More examples can be seen in the subsequent discussions. Some important properties
of the covariance residual life are mentioned below.

1. σ12(−1,−1) = Cov(X1, X2), the usual covariance between X1 and X2.

2. There are some identities connecting M(x1, x2) or σ12(x1, x2) and the bivariate reli-
ability functions. Changing x1 to x1 + 1 in (7.2.2) and subtracting from (7.2.2), we
get

M(x1, x2)S(x1 + 1, x2 + 1)−M(x1 + 1, x2)S(x1 + 2, x2 + 1)

=
∞∑

t2=x2+1

S(x1 + 1, t2) = S(x1 + 1, x2 + 1)m2(x1, x2). (7.2.3)
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Using (1.2.13),

M(x1, x2)m1(x1 + 1, x2)− [m1(x1, x2)− 1]M(x1 + 1, x2)

= m1(x1 + 1, x2)m2(x1, x2), (7.2.4)

a relationship connecting PMRL with the mean residual life. It also gives a recur-
rence relation connecting PMRL’s as

M(x1 + 1, x2) =
m1(x1 + 1, x2)M(x1, x2)

m1(x1, x2)− 1
− m2(x1, x2)m1(x1 + 1, x2)

m1(x1, x2)− 1
.

Changing x2 to x2 + 1 in (7.2.2), we also have

m2(x1, x2 + 1)M(x1, x2)− [m2(x1, x2)− 1]M(x1, x2 + 1)

= m1(x1, x2)m2(x1, x2 + 1). (7.2.5)

Relationships (7.2.4) and (7.2.5) can easily be converted into those involving σ12(., .)

by virtue of (7.2.1).

3. Equating the expressions for M(x1 + 1, x2 + 1) in (7.2.3) and (7.2.4), we get a
necessary condition for M(x1, x2) to be a PMRL as

m2(x1, x2)+
m1(x1, x2)− 1

m1(x1 + 1, x2)
M(x1+1, x2) = m1(x1, x2)+

m2(x1, x2)− 1

m2(x1, x2 + 1)
M(x1, x2+1).

4. In general, neither M(x1, x2) nor σ12(x1, x2) determine the distribution S(x1, x2)

uniquely. This can be seen from the survival functions

S(x1, x2) = px11 p
x2
2 ; 0 < p1, p2 < 1; x1, x2 = 0, 1, 2, ...

and

G(x1, x2) = px12 p
x2
1 ; 0 < p1, p2 < 1; x1, x2 = 0, 1, 2, ...

for which

M(x1, x2) = (1− p1)−1(1− p2)−1 and σ12(x1, x2) = 0,
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but the probability mass functions are different when p1 = 1
4

and p2 = 3
4
. However,

with some additional information on the functional form of (m1(., .),m2(., .))′ we
can determine S(x1, x2). To demonstrate this, we use (7.2.5) to write

S(x1 + 2, x2 + 1)

S(x1 + 1, x2 + 1)
=
M(x1, x2)−m2(x1, x2)

M(x1 + 1, x2)
.

Successive reduction gives

S(x1, x2) =

x1−1∏
r=0

M(r − 1, x2 − 1)−m2(r − 1, x2 − 1)

M(r, x2 − 1)
S(0, x2) (7.2.6)

and similarly,

S(x1, x2) =

x2−1∏
r=0

M(x1 − 1, r − 1)−m1(x1 − 1, r − 1)

M(x1 − 1, r)
S(x1, 0) (7.2.7)

Determining S(0, x2) from (7.2.7) and S(x1, 0) from (7.2.6) and substituting these
expressions respectively in (7.2.6) and (7.2.7) we have the representations

S(x1, x2) =

x1−1∏
r=0

M(r − 1, x2 − 1)−m2(r − 1, x2 − 1)

M(r, x2 − 1)

x2−1∏
r=0

M(−1, r − 1)−m1(−1, r − 1)

M(0, r)

S(x1, x2) =

x2−1∏
r=0

M(x1 − 1, r − 1)−m1(x1 − 1, r − 1)

M(x1 − 1, r − 1)

x1−1∏
r=0

M(r − 1,−1)−m2(r − 1,−1)

M(r, 0)

5. The following theorem characterizes the independence of random variables, which
is an extension to the result of Sankaran et al. [129] in the continuous case.

Theorem 7.2.1. The covariance residual life is zero if and only if X1 and X2 are
independent.
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Proof. When X1 and X2 are independent, it is easy to see that σ12(x1, x2) = 0.

Conversely, σ12(x1, x2) = 0 implies

M(x1, x2) = m1(x1, x2)m2(x1, x2).

Using this in (7.2.4),

[m1(x1, x2)− 1] [m2(x1, x2)−m2(x1 + 1, x2)] = 0.

Since m1(x1, x2) > 1,

m2(x1 + 1, x2) = m2(x1, x2) = m2(−1, x2). (7.2.8)

Similarly considering (7.2.5),

m1(x1, x2) = m1(x1,−1). (7.2.9)

Equations (7.2.8) and (7.2.9) yield

M(x1, x2) = m1(x1,−1)m2(−1, x2)

so that X1 and X2 are independent. �

6. Following Navarro and Sarabia [114] in the continuous case, the bivariate equilib-
rium distribution of the discrete random vector (X1, X2)′ is defined by the probability
mass function

f(Y1,Y2)(x1, x2) =
S(x1 + 1, x2 + 1)

E[X1X2]
; x1, x2 = 0, 1, 2, ... (7.2.10)

provided E[X1X2] < ∞. We designate by (Y1, Y2)′, the random vector with proba-
bility mass function (7.2.10). Consequently, the survival function of (Y1, Y2)′ is

S(Y1,Y2)(x1, x2) =

∑∞
t1=x1+1

∑∞
t1=x2+1 S(t1, t2)

E[X1X2]
. (7.2.11)
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Hence, the bivariate scalar hazard rate (1.2.3) of (Y1, Y2)′ is

aY1,Y2(x1, x2) =
S(x1 + 1, x2 + 1)∑∞

t=x1+1

∑∞
t=x2+1 S(t1, t2)

=
1

M(x1, x2)
. (7.2.12)

7. If (γ1(x1, x2), γ2(x1, x2))′ is the vector hazard rate of (Y1, Y2)′, from (1.2.5), we have

γ1(x1, x2) = 1− SY1,Y2(x1 + 1, x2)

SY1,Y2(x1, x2)

= 1− S(x1 + 2, x2 + 1)M(x1 + 1, x2)

S(x1 + 1, x2 + 1)M(x1, x2)

= 1− M(x1 + 1, x2)(m1(x1, x2)− 1)

M(x1, x2)m1(x1 + 1, x2)

=
m2(x1, x2)

M(x1, x2)
, on using (7.2.4).

Similarly,

γ2(x1, x2) =
m1(x1, x2)

M(x1, x2)
.

Thus,
σ12(x1, x2) = M(x1, x2) (1−M(x1, x2)γ1(x1, x2)γ2(x1, x2))

and
M2(x1, x2) =

m1(x1, x2)m2(x1, x2)

γ1(x1, x2)γ2(x1, x2)
.

7.3 Measures of association

An important application of the notion of covariance of residual life is in defining a measure
of association as

α(x1, x2) =
M(x1, x2)

m1(x1, x2)m2(x1, x2)
. (7.3.1)

We say that (X1, X2)′ is positively associated if α(x1, x2) > 1, negatively associated if
α(x1, x2) < 1 and not associated if α(x1, x2) = 1. In this section, we examine the justifi-
cation of α(x1, x2) as a time-dependent measure of association, its relationship with other
measures and various properties in the context of reliability analysis.
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First it is observed that

α(−1,−1) =
Cov(x1, x2)

(1 + µ1)(1 + µ2)
+ 1; µi = E[Xi], i = 1, 2,

so that
α(x1, x2) > 1 for all (x1, x2)⇒ α(−1,−1) > 1⇒ Cov(X1, X2) > 0.

Among the six commonly used positive dependence measures, total positivity of order
2, stochastic increase (SI), right tail increase (RTI), association, positive quadrant depen-
dence (PQD) and Cov(X1, X2) ≥ 0, written in the order of stringency, positive covariance
is the weakest. Thus, α(x1, x2) is a stronger condition than Cov(x1, x2) ≥ 0 and provides
a sufficient condition for the latter. From Theorem 7.2.1, α(x1, x2) = 1 implies indepen-
dence of X1 and X2.

There exist some relationships between α(x1, x2) and dependence concepts.

We say that a discrete random vector (X1, X2)′ is weakly positive quadrant dependent
(WPQD) if

∞∑
t1=x1

∞∑
t2=x2+1

[P [X1 > t1, X2 > t2]− P [X1 > t1]P [X2 > t2]] ≥ 0. (7.3.2)

See Alzaid [8] for the definition and properties of WPQD in the continuous case. Equation
(7.3.2) is equivalent to

∞∑
t1=x1+1

∞∑
t2=x2+1

S(t1, t2) ≥
∞∑

t1=x1+1

S1(t1)
∞∑

t2=x2+1

S2(t2) (7.3.3)

where Si(ti) is the marginal survival function ofXi, i = 1, 2. Since S(x1, x2) ≤ Si(xi); i =

1, 2, (7.3.3) reduces to

S(x1 + 1, x2 + 1)M(x1, x2) ≥ S(x1 + 1, x2 + 1)m1(x1, x2)S(x1 + 1, x2 + 1)m2(x1, x2)

and

M(x1, x2) ≥ S(x1 + 1, x2 + 1)m1(x1, x2)m2(x1, x2).
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Thus,
(X1, X2)′ is WPQD⇒ α(x1, x2) ≥ S(x1, x2)

and hence the WPQD class contains both positively and negatively associated distributions
in the sense of α(x1, x2). Also,

(X1, X2)′ is PQD ⇐⇒ P [X1 > x1, X2 > x2] ≥ P [X1 > x2]P [X2 > x2]

⇒ (X1, X2)′ is WPQD.

The above results show that PQD does not imply positive dependence defined by α(x1, x2) >

1 nor that α(x1, x2) > 1 is weaker than PQD in the hierarchy of dependence concepts men-
tioned above.

The discrete analogue of the Clayton [35] measure of association is

θ(x1, x2) =
f(x1, x2)S(x1, x2)

[S(x1, x2)− S(x1 + 1, x2)] [S(x1, x2)− S(x1, x2 + 1)]
. (7.3.4)

When θ(x1, x2) > (<)1, X1 and X2 are positively (negatively) associated and θ(x1, x2) =

1 implies independence of X1 and X2.

An alternative interpretation of θ(x1, x2) is possible by expressing it in-terms of condi-
tional hazard rates. Denote ei(x1, x2) and e∗i (x1, x2) as hazard rates of Xi given Xj = xj

and Xi given Xj ≥ xj; i, j = 1, 2; i 6= j. Using the definition of conditional probability,
(7.3.4) becomes

θ(x1, x2) =
P [X1 = x1, X2 = x2]P [X1 ≥ x1, X2 ≥ x2]

P [X1 = x1, X2 ≥ x2]P [X1 ≥ x1, X2 = x2]

=
P [X1 = x1|X2 = x2]P [X1 ≥ x1|X2 ≥ x2]

P [X1 ≥ x1|X2 = x2]P [X1 = x1|X2 ≥ x2]

=
e1(x1, x2)

e∗1(x1, x2)
. (7.3.5)

A similar expression is obtained as

θ(x1, x2) =
e2(x1, x2)

e∗2(x1, x2)
. (7.3.6)

Thus, θ(x1, x2) > (<)1 if and only if ei(x1, x2) < (>)e∗i (x1, x2); i = 1, 2. Further,
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θ(x1, x2) > 1 if and only if

P [X1 > x1 + 1, X2 > x2]

P [X1 > x1, X2 > x2]
>
P [X1 > x1 + 1, X2 > x2 + 1]

P [X1 > x1, X2 > x2 + 1]
. (7.3.7)

The above inequality shows that (X1, X2)′ is right convex set increasing (RCSI). Similarly,
when θ(x1, x2) < 1, the inequality in (7.3.7) gets reversed so that (X1, X2)′ is right convex
set decreasing (RCSD).

For the equilibrium vector (Y1, Y2)′, from (7.2.10) and (7.2.11),

θY1,Y2(x1, x2) =
S(x1 + 1, x2 + 1)

∑∞
t1=x1+1

∑∞
t2=x2+1 S(t1, t2)∑∞

t2=x2+1 S(x1 + 1, t2)
∑∞

t1=x1+1 S(t1, x2 + 1)

=
M(x1, x2)

m1(x1, x2)m2(x1, x2)
= αX1,X2(x1, x2). (7.3.8)

The relationship (7.3.8) enables us to write several properties of α(x1, x2) in-terms of the
properties of the equilibrium random vector. Using (7.3.4) for (Y1, Y2)′ and (7.3.8) gives

αX1,X2(x1, x2) =
aY1,Y2(x1, x2)

γ1(x1, x2)γ2(x1, x2)

where aY1,Y2() is the scalar hazard rate of (Y1, Y2)′ and γ1(.) and γ2(.) are the components
of vector hazard rate of (Y1, Y2)′ defined in Section 7.2.
Hence, X1 and X2 are positively(negatively) associated if and only if

aY1,Y2(x1, x2) > (<)γ1(x1, x2)γ2(x1, x2).

Making use of (1.2.6), an alternative condition is that

[1− γ2(x1, x2)] [γ1(x1, x2 + 1)− γ1(x1, x2)] > (<)0.

Thus, α(x1, x2) > (<)1 if and only if either

γ1(x1, x2 + 1) > (<)γ1(x1, x2)

or
γ2(x1 + 1, x2) > (<)γ2(x1, x2).
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Remark 7.3.1. The above result means that positive(negative) association using α(x1, x2)

can be verified through only one component of the vector hazard rate of the equilibrium
distribution by showing that γi(x1, x2) is increasing(decreasing) in x3−i for all xi, i = 1, 2.

Also, association can be inferred from the monotonicity of γi(x1, x2).

We conclude this section by giving examples of some bivariate discrete distributions
and their measure of association α(x1, x2).

Example 7.3.1. Consider the Waring distribution in (5.4.1). Then

α(x1, x2) =
m+ n+ x1 + x2

m+ n+ x1 + x2 + 1

which is less than unity for all x1 and x2. Thus, X1 and X2 have negative association that
decreases with larger values of x1 and x2.

Example 7.3.2. The negative hyper-geometric law in (5.4.4) has

m1(x1, x2) =
k + n− x1 − x2 − 1

k + 1
= m2(x1, x2)

and
M(x1, x2) =

(k + n− x1 − x2 − 1)(k + n− x1 − x2)

(k + 1)2
.

Thus,

α(x1, x2) =
k + n− x1 − x2

k + n− x1 − x2 − 1
> 1,

so that X1 and X2 are positively associated.

Example 7.3.3. For the bivariate geometric distribution in (5.2.1), the mean residual life
function has components

m1(x1, x2) =
(
1− q1θ

x2+1
)−1 and m2(x1, x2) =

(
1− q2θ

x1+1
)
.

The product moment of residual life is calculated as

M(x1, x2) =
[
qx1+1

1 qx2+1
2 θ(x1+1)(x2+1)

]−1
∞∑

t1=x1+1

∞∑
t1=x2+1

qt11 q
t2
2 θ

t1t2

=
∞∑

t1=x1+1

qt11 (q2θ
t1)

x2+1

1− q2θt1
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= qx2+1
2

∞∑
t=x1+1

(
q1θ

x2+1
)t1 (1− q2θ

t1
)−1

= qx1+1
1 qx2+1

2 θ(x1+1)(x2+1)

∞∑
r=0

(q1θ
x1+1)

r

1− q2θx2+r+1
,

by expansion of (1− q2θ
t1)
−1 and rearrangement of terms.

Thus,

M(x1, x2) ≤ qx1+1
1 qx2+1

2 θ(x1+1)(x2+1)

(1− q1θx2+1) (1− q2θx1+1)

or
α(x1, x2) ≤ qx1+1

1 qx2+1
2 θ(x1+1)(x2+1) < 1.

Hence X1 and X2 are negatively associated.

7.4 Application to real data

Andrews and Herzberg [10] presented a multiple tumour recurrence data of patients with
bladder cancer. The data were obtained in a randomized clinical trial conducted by the
Veterans Administration Co-operative Urological Research Group (VACURG). All the pa-
tients had superficial bladder tumours when they entered into the trial. These tumours were
removed transurethrally and patients were assigned randomly to one of three treatments,
viz., placebo pills, pyridoxine pills or periodic instillation of a chemotherapeutic agent,
thiotepa, into the bladder. At subsequent follow-up visits, tumours noticed were removed
and the treatment was continued. The goal of the study was to determine the effect of treat-
ment on the frequency of tumour recurrence. We now consider the dataset for the patients
assigned to the thiotepa treatment group only, since our aim is to demonstrate the utility
of our discrete measures of association rather than the complete analysis of the data. Let
us denote the time (in months) to first and second recurrence of a tumour by X1 and X2

respectively. The data are given in Table 7.1.

We observe that the data contains 10 pairs of observations.When (x1i, x2i)
′; i = 1, 2, ..., 10

denote the observations, the empirical bivariate survival function can be obtained as

Ŝ(a, b) =

∑n
i=1 I[xi1 ≥ a, xi2 ≥ b]

10
, (7.4.1)
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Table 7.1: Tumour data

Patient i 1 2 3 4 5 6 7 8 9 10
X1 1 17 6 26 22 4 24 1 2 4
X2 3 19 12 35 23 16 26 27 20 24

Table 7.2: Empirical survival function

x1

x2 0 3 12 16 19 20 24 26 27 35

0 1.0 1.0 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1
1 1.0 1.0 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1
2 0.8 0.8 0.8 0.7 0.6 0.5 0.3 0.2 0.1 0.1
4 0.7 0.7 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1
6 0.5 0.5 0.5 0.4 0.4 0.3 0.2 0.2 0.1 0.1

17 0.4 0.4 0.4 0.4 0.4 0.3 0.2 0.2 0.1 0.1
22 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1
24 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1
26 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

where I[., .] is the indicator function. The estimates of the survival function are presented
in Table 7.2.

From the empirical survival function, the mean residual life functions m1(x1, x2) and
m2(x1, x2) are estimated as

m̂1(x1, x2) =
1

Ŝ(x1 + 1, x2 + 1)

∞∑
t=x1+1

Ŝ(t, x2 + 1) (7.4.2)

and

m̂2(x1, x2) =
1

Ŝ(x1 + 1, x2 + 1)

∞∑
t=x2+1

Ŝ(x1 + 1, t). (7.4.3)
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Table 7.3: Estimates of α(x1, x2)

x1

x2 0 3 12 16 19 20 24 26

0 1.2149 1.1372 1.1829 1.1643 1.3004 1.1558 1.2389 1.7407
1 1.1593 1.1846 1.2482 1.2267 1.3719 1.1666 1.0288 1.0000
2 1.1594 1.1844 1.2099 1.1240 1.1544 1.1764 1.0301 1.0000
4 1.1449 1.1666 1.0709 1.1001 1.0444 1.0500 1.0329 1.0000
6 1.0425 1.0481 1.0797 1.1124 1.0493 1.0555 1.0364 1.0000

17 1.0408 1.0457 1.0714 1.0952 1.1269 1.1428 1.0865 1.0000
22 1.0491 1.0545 1.0810 1.1034 1.1304 1.1428 1.2307 1.0000
24 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

We also estimate M(x1, x2) as

M̂(x1, x2) =
1

Ŝ(x1 + 1, x2 + 1)

∞∑
t1=x1+1

∞∑
t2=x2+1

Ŝ(t1, t2). (7.4.4)

We then estimate α(x1, x2) as

α̂(x1, x2) =
M̂(x1, x2)

m̂1(x1, x2)m̂2(x1, x2)
. (7.4.5)

The estimates of α(x1, x2) are presented in Table 7.3. From the estimates, we see that X1

and X2 are positively correlated for small and moderate values of X1 and X2, since most
of the α̂(x1, x2) values are larger than one. But for large values of X1 and X2, α̂(x1, x2) is
unity, indicating that as time advances, the influence of treatment on tumour recurrence is
gradually disappearing.

We also estimate θ(x1, x2) as

θ̂(x1, x2) =
f̂(x1, x2)Ŝ(x1, x2)[

Ŝ(x1, x2)− Ŝ(x1 + 1, x2)
] [

Ŝ(x1, x2)− Ŝ(x1, x2 + 1)
] , (7.4.6)

where f̂(x1, x2) = Ŝ(x1 + 1, x2) + Ŝ(x1, x2 + 1) − 2Ŝ(x1, x2) + Ŝ(x1 + 1, x2 + 1). The
estimates are given in Table 7.4. From the table, it follows that X1 and X2 have positive
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Table 7.4: Estimates of θ(x1, x2)

X1 1 17 6 26 22 4 24 1 2 4
X2 3 19 12 35 23 16 26 27 20 24

θ̂(x1, x2) 5 4 5 1 3 3 2 2 5 3

dependence.

7.5 Conclusion

In the present chapter, we have studied the concepts of product moment of residual life and
covariance residual life in the discrete case. A characterization result for independence of
random variables has been derived, using the covariance residual life. A new measure of
association was proposed and its properties were studied. The new measure was compared
with existing dependence concepts. The utility of these measures was illustrated through a
real dataset.





Chapter 8

Multivariate Reversed Hazard Rates

8.1 Introduction

The concept of reversed hazard rate function is employed extensively for modelling and
analysis of lifetime data in recent times. Keilson and Sumita [77], who first defined the re-
versed hazard rate in continuous time, called it as the dual hazard rate. Apart from uniquely
determining the underlying distribution, this function has been used in various contexts
such as estimation of distribution function under left censoring(Lawless [87]), analysis of
parallel systems (Marshall and Olkin [91]), definition of new stochastic orders (Shaked and
Shanthikumar [135]) and to derive repair and maintenance strategies (Marshall and Olkin
[91]). For more properties of the function in continuous and discrete set-up, we refer to
Block et al. [22], Finkelstein [45], Gupta et al. [61] and Nair and Sankaran [99].

In the continuous case, the concept of reversed hazard rate has been extended to the
multivariate case in several ways. Gürler [62] introduced a bivariate version of the reversed
hazard rate as a three component vector in the continuous case. Roy [124] defined the
bivariate reversed hazard rate as a two component vector and studied its properties. Further,
Roy [124] introduced a class of bivariate distributions using the reversed hazard rate vector.
Later, Bismi [20] introduced a scalar definition of the bivariate reversed hazard rate and

Results in this chapter have been accepted for publication in “Communications in Statistics-Theory and
Methods”. (See Sankaran et al. [131])
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used it to characterize a family of bivariate Burr distributions. Sankaran and Gleeja [128]
considered various definitions of the reversed hazard rate function in the bivariate case and
developed dependence measures using the bivariate reversed hazard rate functions.

In the discrete domain, the only study appears to be made is that of Rejeesh [121], who
defined a bivariate version of the reversed hazard rate function and provided characteri-
zation results based on it. The objective of the present study is to introduce multivariate
reversed hazard rate function in the discrete case. We present four definitions of the multi-
variate reversed hazard rate in the discrete domain and study their properties.

The chapter is organized as follows. In Section 8.2 we define the scalar reversed hazard
rate and study its properties. Section 8.3 is devoted to the study of vector reversed hazard
rate and its properties. It is followed by a multivariate version of the alternative reversed
hazard rate in Section 8.4. Section 8.5 presents the conditional reversed hazard rate and its
characteristics. The chapter ends with a brief summary in Section 8.6.

8.2 Scalar reversed hazard rate

Let X = (X1, X2, ..., Xp)
′ be a random vector taking values in Np,where N = {0, 1, 2, ...}

with distribution function F(x) = P (X ≤ x), where x = (x1, x2, ..., xp)
′. The notation

(X ≤ x) means (X1 ≤ x1, X2 ≤ x2,...,Xp ≤ xp).

Unlike the univariate case, the reversed hazard rate in the multivariate case can be
defined in more than one way. We first define the scalar reversed hazard rate.

Definition 8.2.1. The scalar reversed hazard rate of X is defined by

ρ(x) = P [X = x|X ≤ x] =
f(x)

F(x)
, (8.2.1)

where f(x) = P [X = x] is the probability mass function of X.

Obviously 0 ≤ ρ(x) ≤ 1. It is interpreted as the conditional probability that a p-
component device fails at time x given that it fails by that time.
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Example 8.2.1. Let the bivariate random vector (X1, X2)′ be distributed as bivariate uni-
form with p.m.f.

f(x1, x2) =
1

b1b2

[
1 + θ

(
1− 2x1 − 1

b1

)(
1− 2x2 − 1

b2

)]
;xi = 1, 2, ..., bi; i = 1, 2.

(8.2.2)
Then the distribution function is

F(x1, x2) =
x1x2

b1b2

[
1 + θ

(
1− x1

b1

)(
1− x2

b2

)]
, xi = 0, 1, 2, ..., bi; i = 1, 2, (8.2.3)

so that

ρ(x1, x2) =

1 + θ

(
1− 2x1 − 1

b1

)(
1− 2x2 − 1

b2

)
x1x2

[
1 + θ

(
1− x1

b1

)(
1− x2

b2

)] , xi = 0, 1, 2, ..., bi; i = 1, 2, (8.2.4)

The following results of the multivariate scalar reversed hazard rate are useful in relia-
bility modelling and analysis.

(i) The distribution of X is not uniquely determined by ρ(x). This can be verified in the
case of the bivariate distribution functions

F(x1, x2) =
x1(x1 + 1)x2(x2 + 1)

b1(b1 + 1)b2(b2 + 1)
;xi = 0, 1, 2, ..., bi; i = 1, 2 (8.2.5)

and

G(x1, x2) =
1

2

[
x1x2(x1 + 1)(x2 + 1)

b1(b1 + 1)b2(b2 + 1)
+
x1x2(x1 + 1)(x2 + 1)

c1(c1 + 1)b2(b2 + 1)

]
; c1 6= b1 (8.2.6)

Both (8.2.5) and (8.2.6) have the same ρ(x) given by

ρ(x) =
4

(x1 + 1)(x2 + 1)
. (8.2.7)

(ii) At 0p, ρ(0p) = 1, irrespective of the distribution and 0 ≤ ρ(x) ≤ 1.
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(iii) If X1, X2, ..., Xp−1 and Xp are independent random variables, then

ρ(x) =

p∏
i=1

λi(xi),

where λi(xi) is the univariate reversed hazard rate of Xi, i = 1, 2, ..., p.

We now provide the conditions under which the scalar reversed hazard rate uniquely deter-
mines its underlying distribution.

Theorem 8.2.1. For a discrete random vector X = (X1, X2, ..., Xp)
′ with bounded support,

i.e., Xi ≤ bi ; 0 < bi <∞ ; i = 1, 2, ..., p, the distribution of X is uniquely determined by

ρr(xr); r = 1, 2, ..., p (8.2.8)

where ρr(xr) is the marginal scalar reversed hazard rate of Xr = (X1, X2, ..., Xr)
′.

Proof. Since ρ1(x1) is the reversed hazard rate of X1, it is known that

F1(x1) =

b1∏
t=x1+1

(1− ρ1(t)), (8.2.9)

where Fr(xr) denotes the distribution function of Xr, r = 1, 2, ..., p

For the bivariate random vector (X1, X2)′ with probability mass function f2(x1, x2) and
distribution function F2(x1, x2), (8.2.1) gives

ρ2(x1, x2)F2(x1, x2) = f2(x1, x2).

Thus,

P [X1 = x1, X2 ≤ x2 − 1] = P [X1 = x1, X2 ≤ x2]− ρ2(x1, x2)F2(x1, x2). (8.2.10)

Taking summation from 0 to x1 with respect to X1 in (8.2.10) yields

F2(x1, x2 − 1) = F2(x1, x2)−
x1∑
t=0

ρ2(t, x2)F2(t, x2). (8.2.11)
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Setting x2 = b2 in (8.2.11), we get

F2(x1, b2 − 1) = F1(x1)−
x1∑
t=0

ρ2(t, b2)F1(t). (8.2.12)

We can find F2(x1, x2) on using the recurrence relation (8.2.11) with (8.2.12) as the starting
value, since F1(x1) is known from (8.2.9). Similarly we obtain

F3(x1, x2, x3 − 1) = F3(x1, x2, x3)−
x1∑
t1=0

x2∑
t2=0

ρ3(t1, t2, x3)F3(t1, t2, x3). (8.2.13)

Now work with x3 = b3 and determine F3(x3) from (8.2.13). Finally, we have to use
recursively

Fp(xp−1, xp − 1) = Fp(xp)−
x1∑
t1=0

x2∑
t2=0

...

xp−1∑
tp−1=0

ρp(t1, ..., tp−1, xp)Fp(t1, ..., tp−1, xp)

(8.2.14)
in the above manner to reach Fp(xp). �

Remark 8.2.1. The above theorem may not work for random vectors with unbounded
support, since in that case ρr(xr) may happen to be zero. See for example the bivariate
geometric distribution

F(x1, x2) =
(
1− q1

x1+1
) (

1− q2
x2+1

)
; x1, x2 ∈ N; 0 < q1, q2 < 1. (8.2.15)

Remark 8.2.2. The forms of the marginal distributions have to be known in computing
F(x) since the form of ρ1(x1) is assumed.

Remark 8.2.3. Since the recursive method does not apply in the continuous case, there is
no similar result in the continuous case.

Using the above theorem, we propose a characterization for the multivariate reversed
geometric distribution with independent marginals.

Theorem 8.2.2. A random vector X, 0 ≤ Xi ≤ bi; 0 < bi < ∞; i = 1, 2, ..., p satisfies
the property

ρr(xr) =
r∏
j=1

I(aij), r = 1, 2, ..., p (8.2.16)



Chapter 8. Multivariate Reversed Hazard Rates 166

if and only if X is distributed as multivariate reversed geometric with independent marginals
specified by

F(x) =

p∏
i=1

(1 + ci)
xi−bi ;xi = 0, 1, 2, ..., bi; bi, ci > 0, i = 1, 2, ..., p (8.2.17)

where

I(aij) =


cj

1 + cj
: if xj 6= 0

1 : if xj = 0

and cj’s are constants independent of x.

Proof. Assuming (8.2.17), we have

f(x) =



p∏
i=1

ci(1 + ci)
xi−bi−1 : xi 6= 0

p−1∏
r=1

cir(1 + cir)
xir−bir−1

p−r∏
j=1

(1 + cij)
−bij : xij = 0

p∏
i=1

(1 + ci)
−bi : x = 0.

(8.2.18)

where (i1, i2, ..., ip) are permutations of the integers (1, 2, ..., p) . From (8.2.17) and (8.2.18),
we have (8.2.16). Conversely, when (8.2.16) holds, we have ρ1(x1) =

c1

1 + c1

, from which
we get

F1(x1) = (1 + c1)x1−b1 .

Now using (8.2.11), we get

F2(x1, b2 − 1) =(1 + c1)x1−b1 −

{
c2

1 + c2

(1 + c1)−b1 +

x1∑
t=1

c1c2

(1 + c1)(1 + c2)
(1 + c1)t−b1

}
=(1 + c1)x1−b1(1 + c2)−1

and recursively
F2(x1, b2 −m) = (1 + c1)x1−b1(1 + c2)−m. (8.2.19)

Thus,
F2(x1, x2) = (1 + c1)x1−b1(1 + c2)x2−b2
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showing that (8.2.16) holds for p = 2. Assuming the result is true for p = r, positive
integer,

Fr(x1, ..., xr−1, xr − 1) = Fr(xr)−
c1

1 + c1

· · · cr
1 + cr

∑
· · ·
∑

F(xr−1, xr). (8.2.20)

Setting xr = br − 1,

Ft(x1, ..., xr−1, br − 1) = Fr−1(xr−1)

(
cr

1 + cr

)
and hence

Fr(x1, .., xr−1, br −m) = Fr−1(xr−1)

(
cr

1 + cr

)−m
giving

Fr(xr) = (1 + c1)x1−b1 ...(1 + cr)
xr−br .

The result now follows by induction. �

Remark 8.2.4. When the conditions of Theorem 8.2.2 are satisfied, the univariate reversed
hazard rate of Xi is

λi(xi) =
ci

1 + ci
; i = 1, 2, ..., p.

For a comparison of the scalar reversed hazard rate with scalar hazard rate in the multivari-
ate case, see Nair and Sankaran [102].

Remark 8.2.5. When the variables in X are unbounded, there does not exist a multivariate
distribution with constant scalar reversed hazard rate ρr(xr) as in the above theorem. This
follows from the fact that there is no univariate distribution with support N and constant
reversed hazard rate. Also, there is no similar result in the continuous case as there is no
constant reversed hazard rate on the positive real line.

8.3 Vector reversed hazard rate

The multivariate reversed hazard rate can also be viewed as a vector quantity and is defined
as

δ(x) = (δ1(x), δ2(x), ..., δp(x))′ , (8.3.1)
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where
δi(x) = P [Xi = xi|X ≤ x], i = 1, 2, ..., p.

The vector (8.3.1) means that the i th component of the multivariate reversed hazard rate is
the conditional probability that component i of a p- component device fails at age xi when
it is known that the device cannot survive beyond x.

Since
P [Xi = xi] = F(x)− F(x1, x2, ..., xi−1, xi − 1, xi+1, ..., xp)

we write (8.3.1) as

δi(x) = 1− F(xi−1, xi − 1,x∗i )

F(x)
(8.3.2)

where xi = (x1, x2, ..., xi)
′ and x∗i = (xi+1, ..., xp)

′, i = 1, 2, ..., p−1. In the bivariate case

δ(x1, x2) = (δ1(x1, x2), δ2(x1, x2))′

with
δ1(x1, x2) = 1− F(x1 − 1, x2)

F(x1, x2)
(8.3.3)

and
δ2(x1, x2) = 1− F(x1, x2 − 1)

F(x1, x2)
(8.3.4)

We have from (8.3.2),

F(xi−1, xi − 1,x∗i ) = (1− δi(x))F(x)

= (1− δi(x)) [(1− δi(xi−1, xi + 1,x∗i ))F(xi−1, xi + 1,x∗i )]

= (1− δi(x)) · · · (1− δi(xi−1,∞,x∗i ))Fp−1(xi−1,x
∗
i ) (8.3.5)

The distribution function on the right hand side is (p−1) dimensional. Successive reduction
can be achieved in the same manner, reaching finally at a one-dimensional marginal distri-
bution function. Thus, when the limit of δi(x) as each of the arguments tends to infinity is
finite, one can arrive at the expression for F(x) in-terms of δ(x). Thus,

F(x) =
∞∏

t1=x1+1

(1− δ1(t1, x2, ..., xp))
∞∏

t2=x2+1

(1− δ2(∞, t2, x3, ..., xp)) · ··
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∞∏
tp=xp+1

(1− δp(∞,∞, ..., tp)) . (8.3.6)

In view of (8.3.6) we have the following theorem.

Theorem 8.3.1. The distribution of X is uniquely determined by δ(x).

Remark 8.3.1. Since we can begin with any one of the δi(x) in the reduction process
indicated above, there are p! different forms in which F(x) can be written in-terms of δ(x).

Remark 8.3.2. The bivariate form of (8.3.6), which is quite useful in theoretical work, is
given by

F(x1, x2) =
∞∏

t1=x1+1

∞∏
t2=x2+1

(1− δ1(t1, x2)) (1− δ2(∞, t2)) (8.3.7)

=
∞∏

t1=x1+1

∞∏
t2=x2+1

(1− δ2(x1, t2)) (1− δ1(t1,∞)) , x1, x2 = 0, 1, 2, ... (8.3.8)

Example 8.3.1. Consider the bivariate discrete uniform distribution of Example 8.2.1.
Then,

δ1(x1, x2) = 1−
(x1 − 1)x2

[
1 + θ

(
1− x1 − 1

b1

)(
1− x2

b2

)]
x1x2

[
1 + θ

(
1− x1

b1

)(
1− x2

b2

)]

=

1 + θ

(
1− x2

b2

)(
1− 2x1 − 1

b1

)
x1

[
1 + θ

(
1− x1

b1

)(
1− x2

b2

)] . (8.3.9)

Similarly, δ2(x1, x2) is obtained as,

δ2(x1, x2) =

1 + θ

(
1− x1

b1

)(
1− 2x2 − 1

b2

)
x2

[
1 + θ

(
1− x1

b1

)(
1− x2

b2

)] . (8.3.10)

When prescribing models with specified functional forms of δ1(x) and δ2(x), it may be
noted that they cannot be chosen arbitrarily. There exists a consistency condition for the
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hypothesized bivariate reversed hazard rate. We have

ρ(x1, x2) =
f(x1, x2)

F(x1, x2)
=

F(x1, x2)− F(x1, x2 − 1)− F(x1 − 1, x2) + F(x1 − 1, x2 − 1)

F(x1, x2)
.

(8.3.11)
Writing

F(x1 − 1, x2 − 1)

F(x1, x2)
=

F(x1 − 1, x2 − 1)

F(x1, x2 − 1)

F(x1, x2 − 1)

F(x1, x2)

= (1− δ1(x1, x2 − 1)) (1− δ2(x1, x2)) .

Substituting the above in (8.3.11) , we get

ρ(x1, x2) = δ1(x1, x2)− δ1(x1, x2 − 1) + δ1(x1, x2 − 1)δ2(x1, x2). (8.3.12)

Similarly, from

F(x1 − 1, x2 − 1)

F(x1, x2)
=

F(x1 − 1, x2 − 1)

F(x1 − 1, x2)

F(x1 − 1, x2)

F(x1, x2)
,

ρ(x1, x2) = δ2(x1, x2)− δ2(x1 − 1, x2) + δ1(x1, x2)δ2(x1 − 1, x2). (8.3.13)

Note that (8.3.12) or (8.3.13) is an identity connecting scalar and vector reversed hazard
rates. Thus, the consistency condition is

δ1(x1, x2)− δ1(x1, x2 − 1) + δ1(x1, x2 − 1)δ2(x1, x2) = δ2(x1, x2)− δ2(x1 − 1, x2)

+ δ1(x1, x2)δ2(x1 − 1, x2).

Remark 8.3.3. Unlike scalar reversed hazard rate, the vector reversed hazard rate provides
the univariate reversed hazard rates as particular cases. That is

λi(xi) = δi(∞,∞, ..., xi,∞, ...,∞), i = 1, 2, ..., p. (8.3.14)

Remark 8.3.4. Being conditional probabilities, 0 ≤ δi(x) ≤ 1 and hence unlike the multi-
variate hazard functions in continuous time, the range of δi(x) is limited to the unit inter-
vals, whereas in the continuous case there is no such limitation to the values of the hazard
rate components.
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Theorem 8.3.2. The multivariate vector reversed hazard rate is of the form

δ(x) =

(
c1

1 + c1

,
c2

1 + c2

, ...,
cp

1 + cp

)′
, ci > 0, i = 1, 2, ..., p (8.3.15)

if and only if the distribution of X is multivariate reversed geometric in (8.2.17).

The proof is direct. A more general result in this connection is presented in the next
theorem, which is a direct consequence of (8.3.2).

Theorem 8.3.3. The random variables X1, X2, ..., Xp are independent if and only if

δ(x) = (λ1(x1), λ2(x2), ..., λp(xp))
′ .

A bivariate distribution of interest can be obtained if we assume that the reversed hazard
rate is locally constant.

Theorem 8.3.4. The bivariate vector reversed hazard rate is of the form δ(x) = (α1(x2), α2(x1))′ ,

if and only if the distribution is specified by

F(x1, x2) = (1− α1)b1−x1(1− α2)b2−x2k
(b1−x1)(b2−x2)
1 , xi = 0, 1, 2, ..., bi (8.3.16)

where α1 = α1(b1), α2 = α2(b2) and
[
1− (1− α1)kb11

] [
1− (1− α2)kb21

]
+ k1 ≥ 0, 0 <

k1 ≤ 1; 0 < α1, α2 < 1.

Proof. Under the given conditions, (8.3.7) and (8.3.8) lead to

F(x1, x2) = (1− α1(x2))b1−x1 (1− α2)b2−x2 (8.3.17)

= (1− α1)b1−x1 (1− α2(x1))b2−x2 . (8.3.18)

This implies (
1− α1(x2)

1− α1

) 1
b2−x2

=

(
1− α2(x1)

1− α1

) 1
b1−x1

(8.3.19)

for all xi = 0, 1, 2, ..., bi; i = 1, 2. Equation (8.3.19) means that each of the expressions in
(8.3.17) and (8.3.18) is a constant, say k1. Hence

(1− α1(x2)) = (1− α1) kb2−x21 .
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Inserting the above value in (8.3.17), we have (8.3.16). Conversely assuming (8.3.16), we
obtain

δ1(x1, x2) = 1− F(x1 − 1, x2)

F(x1, x2)
= 1− (1− α1)kb2−x21

and similarly
δ2(x1, x2) = 1− (1− α2)kb1−x11

Thus, δ(x1, x2) is of the given form, which completes the proof. �

A concept of relevance in this context is the multivariate reversed lack of memory prop-
erty, which is an extension of (1.1.24). Since this is transparent from the bivariate case, we
only discuss the bivariate property and its implications.

Definition 8.3.1. (Rejeesh [121]) A discrete bivariate random vector X = (X1, X2)′ with
support 0 ≤ Xi ≤ bi; bi < ∞; i = 1, 2 is said to possess the bivariate reversed lack of
memory property if

P [X1 ≤ x1, X2 ≤ x2|X1 ≤ x1 + t1, X2 ≤ x2 + t2]

= P [X1 ≤ 0, X2 ≤ 0|X1 ≤ t1, X2 ≤ t2] (8.3.20)

for all (x1, x2)′ and (t1, t2)′ in the set A = {(y1, y2)′|yi = 0, 1, 2, ..., bi; i = 1, 2} .

An equivalent condition for (8.3.20) is

F(x1 + t1, x2 + t2)F(0, 0) = F(x1, x2)F(t1, t2). (8.3.21)

We see that for left censored data, (8.3.20) is the analogue of the lack of memory property
(LMP). The physical interpretation of (8.3.20) is that if x+t = (x1 +t1, x2 +t2)′ represents
the number of cycles of operations of two components of a device before they fail, then
the right hand side represents the probability that a new equipment with two components
fails before it completes the first cycle given that the components fail before it completes
t = (t1, t2)′ cycles. Thus, the expected time elapsed since failure is independent of the age
of the components whenever the reversed lack of memory property is satisfied.

Theorem 8.3.5. (Rejeesh [121]) The random vector X = (X1, X2)′ satisfies bivariate re-
versed lack of memory property if and only if X is distributed as the bivariate reversed
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geometric distribution with

F(x) = (1 + c1)x1−b1(1 + c2)x2−b2 ; xi = 0, 1, 2, ..., bi; bi, ci > 0; i = 1, 2. (8.3.22)

The reversed lack of memory property 8.3.20 holds only for independent random vari-
ables, which is much restrictive. A weaker version is stated below which could be useful
in certain modelling problems.

Definition 8.3.2. A discrete random vector (X1, X2)′ with support in the set A is said to
have bivariate local reversed lack of memory property if it satisfies

P [Xi ≤ xi|Xi ≤ xi + ti, Xj ≤ xj] = P [Xi ≤ 0|Xi ≤ ti, Xj ≤ xj] (8.3.23)

for all xi, xj, ti and xi + ti in the set A. Equivalent conditions are given by

F(x1 + t1, x2)F(0, x2) = F(x1, x2)F(t1, x2) (8.3.24)

and

F(x1, x2 + t2)F(x1, 0) = F(x1, x2)F(x1, t2). (8.3.25)

The physical interpretation of (8.3.23) is similar to that of the univariate reversed lack of
memory property, for a system with two components, based on the conditional distribution
of Xi given Xj ≤ xj; i, j = 1, 2; i 6= j.

Theorem 8.3.6. The following statements are equivalent;

(i) (X1, X2)′ has local reversed lack of memory property,

(ii) (X1, X2)′ is distributed as (8.3.16),

(iii) The bivariate vector reversed hazard rate is of the form (α1(x2), α2(x1))′ where
αi(xj) is independent of xi; i, j = 1, 2; i 6= j.

Proof. The equivalence of (ii) and (iii) follows directly from Theorem 8.3.4. For proving
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the equivalence of (i) and (iii), we put t1 = 1 in (8.3.24). Thus, we obtain

F(x1 + 1, x2)

F(x1, x2)
=

F(1, x2)

F(0, x2)
,

which implies that
δ1(x1 + 1, x2) = δ1(1, x2),

for all x1 and x2 in the support of (X1, X2)′. Hence δ1(x1, x2) must be independent of x1.

Similarly by putting t2 = 1 in (8.3.25), we can show that δ2(x1, x2) is independent of x2.

Thus, we see that (i) implies (ii) . Conversely, when (iii) holds, using (8.3.7) and (8.3.8),
the joint distribution can be written as

F(x1, x2) = (1− α1(x2))(b1−x1) (1− α2(b1))(b2−x2) (8.3.26)

= (1− α2(x1))(b2−x2) (1− α1(b2))(b1−x1) (8.3.27)

Thus, F(x1, x2) will satisfy both (8.3.24) and (8.3.25). Hence (i) and (iii) are equivalent.
�

Remark 8.3.5. For a comparison of the vector reversed hazard rate with vector hazard rate,
see Nair and Asha [95].

8.4 Alternative reversed hazard rate

Reasons, similar for introducing the alternative reversed hazard rate mentioned in Chapter
1, in the univariate case, also hold in the multivariate case. The univariate alternative
reversed hazard rate (1.1.22) allows extension to the multivariate case. In the bivariate
case, the alternative reversed hazard rate (Rejeesh [121]) is defined as,

δ∗(x) = (δ∗1(x), δ∗2(x))′

where
δ∗1(x1, x2) = log

F(x1, x2)

F(x1 − 1, x2)
(8.4.1)

and
δ∗2(x1, x2) = log

F(x1, x2)

F(x1, x2 − 1)
. (8.4.2)
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There is no physical interpretation to δ∗1(.) and δ∗2(.). However, like the univariate reversed
hazard rate, the alternative reversed hazard rate possesses additivity for parallel systems.
Moreover, using this definition we can determine the properties of vector reversed haz-
ard rate also, as the components of the alternative reversed hazard rate are related to
(δ1(x), δ2(x))′ through

δ1(x) = 1− exp{−δ∗1(x)} and δ2(x) = 1− exp{−δ∗2(x)}. (8.4.3)

Theorem 8.4.1. The alternative reversed hazard rate function is of the form

δ∗(x) = (log(1 + c1), log(1 + c2), ..., log(1 + cp))
′ , ci > 0, i = 1, 2, ..., p (8.4.4)

if and only if the distribution of X is multivariate reversed geometric in (8.2.17).

The proof follows from (8.4.3) and Theorem 8.3.2.

There has been attempts from early days in multivariate distribution theory to define
bivariate distributions that can be expressed in-terms of the marginals,(see Morgenstern
[92], Cambanis [28], etc). We derive a new family of bivariate discrete distributions using
the properties of (δ∗1(x), δ∗2(x))′ .

Theorem 8.4.2. The alternative reversed hazard function is of the form

(δ∗1(x), δ∗2(x))′ = (λ∗1(x1)c1(x2), λ∗2(x2)c2(x1))′

where ci(xj) is a non-negative function of xj only, i = 1, 2; i 6= j and λ∗i (xi) is the
univariate alternative reversed hazard rate of Xi, i = 1, 2 if and only if

F(x1, x2) = F1(x1) [F2(x2)]1+k logF1(x1) ; 0 ≤ k ≤ 1; x1, x2 = 0, 1, 2, ... (8.4.5)

or

F(x1, x2) = F2(x2) [F1(x1)]1+k logF2(x2) ; 0 ≤ k ≤ 1; x1, x2 = 0, 1, 2, ... (8.4.6)

Proof. The alternative reversed hazard rate of (8.4.5) is obtained by employing (8.4.1) as

δ∗1(x1, x2) = λ∗1(x1)[1 + k logF2(x2)] (8.4.7)
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and
δ∗2(x1, x2) = λ∗2(x2)[1 + k logF1(x1)], (8.4.8)

which are of the required form in the theorem. On the other hand, when δ∗1(x) and δ∗2(x)

are of the stated form, we use (8.4.3), (8.3.7) and (8.3.8) to arrive at the functional equation

[F1(x1)]c1(x2)−1 = [F2(x2)]c2(x1)−1

or
[F1(x1)]

1
c2(x1)−1 = [F2(x2)]

1
c1(x2)−1 . (8.4.9)

The solution of (8.4.9) is

[Fi(xi)]
1

c3−i(xi)−1 = c, a constant, i = 1, 2

or
c3−i(xi) = 1 + k logFi(xi), k = (log c)−1.

This leads to

F(x1, x2) = [F1(x1)]c1(x2) F2(x2)

=F2(x2) [F1(x1)]1+k logF2(x2) ,

which is same as (8.4.5). �

Remark 8.4.1. Equation (8.4.5) defines a family of bivariate discrete distributions with
marginals F1(x1) and F2(x2). Thus, substituting appropriate marginal distributions, we can
realize the bivariate model. Alternatively, if one knows the forms of the marginal alternative
reversed hazard rates λ∗1(x1) and λ∗2(x2), F(x1, x2) is determined. In modelling problems,
it is not difficult to capture the marginal distributions or the marginal reversed hazard rate
which makes the identification of the bivariate model easier.

Example 8.4.1. Let Xi, i = 1, 2 be discrete random variables with distribution functions

Fi(xi) = (1 + ci)
xi−b1 ;xi = 0, 1, 2, ..., bi; i = 1, 2. (8.4.10)
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Then using (8.4.5) we can obtain the bivariate distribution function as

F(x1, x2) = (1 + c1)x1−b1
[
(1 + c2)x2−b2

]1+k(x1−b1) log(1+c1)
;xi = 0, 1, 2, ..., bi; i = 1, 2,

(8.4.11)
which is a new family of bivariate reversed time distribution.

8.5 Conditional reversed hazard rate

A fourth definition of multivariate reversed hazard rate is based on the conditional distribu-
tions. In the bivariate case, the conditional reversed hazard rate is defined as the vector

ξ(x) = (ξ1(x), ξ2(x))′ , (8.5.1)

where

ξ1(x) =
P (X1 = x1|X2 = x2)

P (X1 ≤ x1|X2 = x2)
and ξ2(x) =

P (X2 = x2|X1 = x1)

P (X2 ≤ x2|X1 = x1)
. (8.5.2)

The interpretation is similar to the univariate reversed hazard rate with the change that it is
conditioned on the eventX2 = x2(X1 = x1) in the case of ξ1(x) (ξ2(x)). Thus, ξ1(x) is the
probability that a two-component device with failure times X1 and X2, the first component
fails at time x1 when the lifetime of the second component is x2. ξ2(x) can be similarly
interpreted.

Example 8.5.1. Consider the bivariate discrete uniform distribution given in Example
8.2.1.
The conditional hazard rate vector is

(ξ1(x), ξ2(x))′ =

[
1 + θ

(
1− 2x1 − 1

b1

)(
1− 2x2 − 1

b2

)]
1 + θ

(
1− x1

b1

)(
1− x2

b2

) (
1

x1

,
1

x2

)′
, (8.5.3)

xi = 0, 1, 2, ..., bi; i = 1, 2.
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Working as in the univariate case, we have the conditional distributions

P [X1 ≤ x1|X2 = x2] =
∞∏

t=x1+1

(1− ξ1(t, x2)) (8.5.4)

and

P [X2 ≤ x2|X1 = x1] =
∞∏

t=x2+1

(1− ξ2(x1, t)) . (8.5.5)

The last two equations determine the joint distribution function of (X1, X2)′ provided that

P [X1 ≤ x1|X2 = x2]

P [X2 ≤ x2|X1 = x1]
=
A1(x1)

A2(x2)
, (8.5.6)

where A1(.) and A2(.) are distribution functions. Notice that when X1 and X2 are indepen-
dent, ξi(x1, x2) = λi(xi), i = 1, 2.

We now define the conditional reversed lack of memory property as follows

Definition 8.5.1. A discrete bivariate random vector X = (X1, X2)′ with support 0 ≤
Xi ≤ bi; bi < ∞; i = 1, 2 is said to possess the conditional reversed lack of memory
property if

P [Xi ≤ xi|Xi ≤ xi + ti, Xj = xj] = P [Xi ≤ 0|Xi ≤ ti, Xj = xj], (8.5.7)

for all (xi, x
′
j), i, j = 1, 2; i 6= j, in the set A and ti in {0, 1, 2, ..., bi} , i = 1, 2, such that

xi + ti ∈ A. (8.5.7) can be equivalently expressed as

P [Xi ≤ xi + ti|Xj = xj]P [Xi ≤ 0|Xj = xj] =

P [Xi ≤ xi|Xj = xj]P [Xi ≤ ti|Xj = xj]; i, j = 1, 2; i 6= j. (8.5.8)

Theorem 8.5.1. The following statements are equivalent;

(i) (X1, X2)′ have conditional reversed lack of memory property,

(ii) (X1, X2)′ have the joint probability mass function

f(x1, x2) = k(1 + c1)x1−b1(1 + c2)x2−b2k
(x1−b1)(x2−b2)
1 ;xi = 0, 1, 2, ..., bi, (8.5.9)
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i = 1, 2; 0 < k1 ≤ 1.

(iii) The conditional reversed hazard rate is of the form ξ(x1, x2) = (ξ1(x2), ξ2(x1))′.

Proof. We prove that (i)⇒ (ii)⇒ (iii)⇒ (i). We first establish that (i) implies (ii). From
(8.5.8), for ti = 1 we get

P [Xi ≤ xi|Xj = xj] =
P [Xi ≤ 0|Xj = xj]

P [Xi ≤ 1|Xj = xj]
P [Xi ≤ xi + 1|Xj = xj]; i, j = 1, 2; i 6= j.

(8.5.10)
Solving the recurrence relation (8.5.10) in xi, we get

P [Xi ≤ xi|Xj = xj] = pj(xj)
bi−xi ; i, j = 1, 2; i 6= j, (8.5.11)

where pj(xj) is a function of xj only. From (8.5.11), the conditional probability mass
functions are obtained as

P [Xi = xi|Xj = xj] = qj(xj)pj(xj)
bi−xi ; i, j = 1, 2; i 6= j, (8.5.12)

with qj(xj) = 1 − pj(xj); j = 1, 2. Hence the joint probability mass function can be
expressed in two equivalent expressions as

f(x1, x2) =

q2(x2)p2(x2)b1−x1g2(x2)

q1(x1)p1(x1)b2−x2g1(x1)
, (8.5.13)

where g1(x1) and g2(x2) are the probability mass functions of X1 and X2 respectively.

Now replacing x2 with x2+1 in (8.5.13) and dividing the resulting equations by (8.5.13)
we get

f(x1, x2) =


q2(x2 + 1)p2(x2 + 1)b1−x1g2(x2 + 1)

q2(x2)p2(x2)b1−x1g2(x2)
1

p1(x1)

. (8.5.14)

From (8.5.14), we see that

p1(x1)

p1(x1 + 1)
=

p2(x2)

p2(x2 + 1)
= k1, say. (8.5.15)
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We evaluate the functional forms of p1(.) and p2(.) from (8.5.15), as

pi(xi) = kbi−xi1 pi(bi); i = 1, 2. (8.5.16)

Substituting the functional forms of p1(.) and p2(.) in (8.5.13) and after simplifying, we
have (

1− kb2−x21 p2(b2)
)
g2(x2)

p1(b1)b2−x2
=

(
1− kb1−x11 p1(b1)

)
g1(x1)

p2(b2)b1−x1
, (8.5.17)

for all (x1, x2)′ in the support of (X1, X2)′. Hence gi(.); i = 1, 2 must be of the form

gi(xi) = ai
pj(bj)

bi−xi(
1− kbi−xi1 pi(bi)

) ; i, j = 1, 2; i 6= j, (8.5.18)

where a1 and a2 are normalizing constants. Substituting (8.5.18) in (8.5.13), we obtain the
joint distribution as

f(x1, x2) = kp2(b2)b1−x1p1(b1)b2−x2k
(b1−x1)(b2−x2)
1 , (8.5.19)

where k is a constant. Putting pi(bi) = (1 + ci)
−1; i = 1, 2 we have the expression in

(8.5.9).

To prove that (ii) implies (iii), consider

P [Xi ≤ xi, Xj = xj] = k(1 + cj)
xj−bj

xi∑
t=0

(1 + ci)
t−bik

(t−bi)(xj−bj)
1

= k(1 + cj)
(xj−bj)

(
(1 + ci)k

(xj−bj)
1

)xi−bi1−
(

(1 + ci)k
(xj−bj)
1

)−(xi+1)

1−
(

(1 + ci)k
(xj−bj)
1

)−1

 .

(8.5.20)

Since
∑bi

t=0 gi(t) = 1, we have (1 + ci)
−(bi+1); i = 1, 2. Thus, (8.5.20) reduces to

P [Xi ≤ xi, Xj = xj] =
k(1 + cj)

(xj−bj)
(

(1 + ci)k
(xj−bj)
1

)xi−bi
1−

(
(1 + ci)k

(xj−bj)
1

)−1 ; i, j = 1, 2; i 6= j,

(8.5.21)
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From (8.5.19) and (8.5.21), we get

ξi(x1, x2) =
f(x1, x2)

P [Xi ≤ xi, Xj = xj]
= 1−

(
(1 + ci)k

xj−bj
1

)−1

; i, j = 1, 2; i 6= j.

Now we prove (iii) ⇒ (i). Suppose that the conditional reversed hazard rate takes the
form ξ(x1, x2) = (ξ1(x2), ξ2(x1)). Then the corresponding conditional distributions can be
determined from (8.5.4) and (8.5.5) as

P [Xi ≤ xi|Xj = xj] = (1− ξi(xj))bi−xi ; i, j = 1, 2; i 6= j. (8.5.22)

From (8.5.22), we obtain

P [Xi ≤ xi + ti|Xj = xj]P [Xi ≤ 0|Xj = xj] = (1− ξ(xj))bi−xi−ti(1− ξ(xj))bi

= (1− ξ(xj))bi−xi(1− ξ(xj))bi−ti

= P [Xi ≤ xi|Xj = xj]P [Xi ≤ ti|Xj = xj],

i, j = 1, 2; i 6= j, which implies (i). �

Remark 8.5.1. The concept of conditional reversed hazard rate does not appear to have
been discussed in the continuous case.

8.6 Conclusion

In the present chapter, we have introduced four versions of the multivariate reversed hazard
rates and studied their properties. We have determined the criterion under which the scalar
reversed hazard rate uniquely determines the underlying distribution. It has been shown
that unlike scalar reversed hazard rate, the vector reversed hazard rate uniquely determines
the distribution. The reversed lack of memory property useful in maintenance problems
has been extended to the multivariate case. The multivariate reversed geometric distri-
bution has been characterized using these multivariate reversed ageing concepts. Section
8.4 provided a general class of distributions, which can be used in reliability analysis by
choosing appropriate marginal distributions.





Chapter 9

Schur-Constant Models

9.1 Introduction

Let (X, Y )′ be a vector of non-negative random variables with absolutely continuous sur-
vival function F̄ (x, y). Then the vector (X, Y )′ have a Schur-constant distribution if F̄ (x, y)

can be written as

F̄ (x, y) = P [X ≥ x, Y ≥ y] = G(x+ y); x, y > 0, (9.1.1)

where G(.) is a convex survival function. Barlow and Mendel [14] characterized (9.1.1)
in-terms of the bivariate no-ageing property

P [X > x+ t|X > x, Y > y] = P [Y > y + t|X > x, Y > y] (9.1.2)

which means that the residual lifetimes of younger and older components with the same
survival history have the same distribution. In Bayesian reliability theory, (9.1.1) gives
that regardless of the ages of the components, one would bet the same amount on the next
increment in life of either component. This concept can also be explained in-terms of
the majorization order. The properties of (9.1.1) have been studied by various researchers
including Barlow and Mendel [15], Caramellino and Spizzichino [30, 31], Bassan and
Spizzichino [18], Nelsen [116], Chi et al. [34] and Nair and Sankaran [100, 101] .

183
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Recently, Castañer et al. [32] have studied properties of discrete Schur-constant models.
They have calculated mean, variance and correlation coefficient of the Schur-constant fam-
ily. Under independence of random variables, it has been shown that the components have
geometric distribution. Multivariate Schur-constant models play the same role in Bayesian
reliability as multivariate geometric distribution in the classical discrete reliability analysis.

The aim of the present chapter is to investigate various properties of discrete Schur-
constant models. Specifically, we study ageing phenomenon of bivariate Schur-constant
models using univariate ageing concepts. A criteria employed for choosing a particular
bivariate(multivariate) model for a given data set is the dependence relationship among the
variables. The scalar measures of association, time-dependent measures and dependence
concepts are commonly used in such contexts. The scalar measures like correlation coef-
ficient and Kendall’s tau have been studied in discrete case by Castañer et al. [32]. In the
present work, we study time-dependent measures of discrete Schur-constant models and it
is shown that such measures can be related to univariate ageing concepts. We also discuss
implications between time-dependent association measures and dependence concepts for
discrete Schur-constant models.

The rest of the chapter is organized as follows. In Section 9.2, we discuss basic prop-
erties of discrete Schur-constant models. Section 9.3 presents reliability characteristics of
these models. The ageing phenomenon of the models is studied. In Section 9.4, we study
the dependence structure of the models. We establish the relationships between the asso-
ciation measures and ageing classes corresponding to discrete Schur-constant models. The
chapter ends with a brief conclusion in Section 9.5.

9.2 Basic properties

Let Z be a lifetime random variable taking values in N = {0, 1, 2, ...} with convex survival
function S(x) = P [Z ≥ x] and probability mass function f(x) = P [Z = x]. Let X =

(X1, X2)′ be a bivariate random vector taking values in the support N2. The joint survival
function of X is denoted by

S(x1, x2) = P [X1 ≥ x1, X2 ≥ x2] (9.2.1)
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and the joint probability mass function is denoted by p(x1, x2). Let the scalar hazard rate
of X be denoted as a(x1, x2) and the vector hazard rate as (c1(x1, x2), c2(x1, x2))′ . The
vector MRL function is denoted by m(x) = (m1(x1, x2),m2(x1, x2))′.

Definition 9.2.1. The random vector X is said to have a Schur-constant joint survival func-
tion S(x) if for all (x1, x2)′ ∈ N2,

S(x) = P [X1 ≥ x1, X2 ≥ x2] = S(x1 + x2). (9.2.2)

The convexity of S(.) implies that

S(x+ 2)− 2S(x+ 1) + S(x) ≥ 0. (9.2.3)

The probability mass function of bivariate discrete Schur-constant model (BSM) is

p(x1, x2) = f(x1 + x2)− f(x1 + x2 + 1). (9.2.4)

Since p(.) must be non-negative, f(.) has to be a decreasing function. Thus, in order to
construct BSM, one should have a decreasing probability mass function. Some bivariate
Schur-constant models that are useful in reliability analysis are presented in Table 9.1.
Various properties of BSM are listed below.

(a) The distribution of the total lifetime T = X1 +X2 has the survival function

ST (x) = S(x)− x∆S(x). (9.2.5)

(b) The conditional distribution of X1|X1 +X2 is uniform over [0, x2].

(c) The joint distribution of M = max(X1, X2) and V = min(X1, X2) has survival
function

SM,V (m, v) = 2S(m+ v)− S(2m).

Thus, the probability that at least one of the components of the device with lifetime
represented by (X1, X2)′ survives time x is 2S(x)−S(2x) and both survives beyond
x is S(2x). Hence the bivariate reliability concepts of the Schur-constant models that
represent the two systems can be evaluated in-terms of those of the components’ lives
alone.
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(d) We can express the conditional means and variances in-terms of reliability functions
as given in the following theorem.

Theorem 9.2.1.
E[Xi|Xj = xj] =

1− h(xj)

h(xj)

and

V [Xi|Xj = xj] =
1− h(xj)

h2(xj)
(2h(xj)m(xj)− 1); i, j = 1, 2; i 6= j,

where h(xj) and m(xj), respectively, are the hazard rate and the MRL function cor-
responding to the marginal random variable Z.

Proof. We prove the result for i = 1.

E[X1|X2 = x2] =
∞∑
0

x1
(f(x1 + x2)− f(x1 + x2 + 1))

f(x2)

=
S(x2 + 1)

f(x2)
=

1− h(x2)

h(x2)

E[X2
1 |X2 = x2] =

∞∑
0

x2
1

(f(x1 + x2)− f(x1 + x2 + 1))

f(x2)

=
S(x2 + 1)

f(x2)
+ 2

S(x2 + 2)m(x2 + 1)

f(x2)

By using the relationship between m(x2) and h(x2) given in (1.1.9), we obtain

E[X2
1 |X2 = x2] =

1− h(x2)

h(x2)
+ 2

(1− h(x2))(1− h(x2 + 1))m(x2 + 1)

h(x2)

=
1− h(x2)

h(x2)
(2m(x2)− 1).

Thus,

V [X1|X2 = x2] =
1− h(x2)

h(x2)
(2m(x2)− 1)−

(
1− h(x2)

h(x2)

)2

=
1− h(x2)

h2(x2)
(2m(x2)h(x2)− 1).

�
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Remark 9.2.1. Theorem 9.2.1 helps us to write the regression equations in-terms of
the hazard rate of the marginal distribution.

9.3 Reliability properties

In this section, we relate the bivariate reliability concepts to the univariate reliability func-
tions of the marginal distribution. In the case of BSM, the scalar hazard rate of (X1, X2)′

defined in (1.2.3) can be written as

a(x1, x2) =
p(x1, x2)

S(x1, x2)
=
f(x1 + x2)− f(x1 + x2 + 1)

S(x1 + x2)

= h(x1 + x2)− h(x1 + x2 + 1)(1− h(x1 + x2)) (9.3.1)

where h(x) is the hazard rate of Z.

Definition 9.3.1. (Nair and Sankaran [102]) The random vector (X1, X2)′ possesses bi-
variate increasing(decreasing) hazard rate property (BIHR/BDHR) if h1(x1) is increasing
(decreasing) in x1 and a(x1, x2) is increasing(decreasing) in x1 and x2, where h1(x1) is the
marginal hazard rate of X1.

Now we have the following proposition connecting ageing properties of (X1, X2)′ and
Z.

Proposition 9.3.1. Z is IHR(DHR)⇐⇒ (X1, X2)′ is BIHR(BDHR).

The proof follows from (9.3.1).
For discrete Schur-constant models, the vector hazard rate components satisfy

c1(x1, x2) = c2(x1, x2) = h(x1 + x2). (9.3.2)

The following proposition is immediate.

Proposition 9.3.2. Z is IHR(DHR) ⇐⇒ (X1, X2)′ is BIHR-2(BDHR-2)

Definition 9.3.2. Suppose that (X1, X2)′ and (Y1, Y2)′ are two random vectors defined in
N2. The vector hazard rate of (X1, X2)′ is (c1(x1, x2), c2(x1, x2))′ and (Y1, Y2)′ has the
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vector hazard rate (d1(x1, x2), d2(x1, x2))′. Then (X1, X2)′ is less than (Y1, Y2)′ in bivari-
ate hazard rate ((X1, X2) ≤BHR (Y1, Y2)) if ci(x1, x2) ≥ di(x1, x2); i = 1, 2 x1, x2 =

0, 1, 2, ...

Now we discuss the relation between the univariate ordering ≤hr and the bivariate or-
dering ≤BHR, in the case of BSM.

Proposition 9.3.3. Z ≤hr Y ⇐⇒ (X1, X2)′ ≤BHR (Y1, Y2)′ where Y and (Y1, Y2)′ are
related in the same manner as Z and (X1, X2)′.

Proof.

Z ≤hr Y ⇐⇒ hZ(x) ≥ hY (x) ⇐⇒ hZ(x1 + x2) ≥ hY (x1 + x2)

⇐⇒ ci(x1, x2) ≥ di(x1, x2); i = 1, 2

⇐⇒ (X1, X2)′ ≤BHR (Y1, Y2)′

�

For the BSM, we obtain relationships for the MRL functions as

m1(x1, x2) =
1

S(x1 + x2 + 2)

∞∑
t=x1+1

S(t+ x2 + 1) = m(x1 + x2 + 1) (9.3.3)

and
m2(x1, x2) = m(x1 + x2 + 1). (9.3.4)

Like the hazard rate, the components of MRL have identical values.

Proposition 9.3.4. Z is IMRL(DMRL) ⇐⇒ (X1, X2)′ is MIMRL-1(MDMRL-1).

The proof follows from the identity mi(x1, x2) = m(x1 + x2 + 1); i = 1, 2.

The following proposition based on the bivariate MRL ordering is direct.

Proposition 9.3.5. Z ≤hr Y ⇒ Z ≤mrl Y ⇐⇒ (X1, X2)′ ≤BMRL (Y1, Y2)′.
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9.4 Dependence concepts

We examine the relationship between time-dependent measures of association and ageing
properties of bivariate discrete Schur-constant models. Time-dependent measures are of
importance in survival analysis, where identification of the age at which association is max-
imum is of special interest. One of the popular time-dependent measures is Clayton [35]
measure. In the discrete set-up, the measure is defined by (7.3.4). Dividing by S2(x1, x2),

(7.3.4) becomes

θ(x1, x2) =
a(x1, x2)

c1(x1, x2)c2(x1, x2)
(9.4.1)

which expresses θ(x1, x2) in-terms of the hazard rates. Further, by the relationship between
ci(x1, x2) and a(x1, x2) given in (1.2.6), we obtain

θ(x1, x2) =
c1(x1, x2 + 1)c2(x1, x2) + [c1(x1, x2)− c1(x1, x2 + 1)]

c1(x1, x2)c2(x1, x2)
. (9.4.2)

For BSM, (9.4.2) becomes

θ(x1, x2) =
h(x1 + x2 + 1)h(x1 + x2) + h(x1 + x2)− h(x1 + x2 + 1)

h2(x1 + x2)
. (9.4.3)

Hence, θ(x1, x2) > 1 is equivalent to

(1− h(x1 + x2)) (h(x1 + x2)− h(x1 + x2 + 1)) > 0.

Thus, X1 and X2 are positively associated if h(x1 + x2) > h(x1 + x2 + 1) which means
that Z must be strictly DHR. Similarly, θ(x1, x2) < 1 ⇐⇒ Z is strictly IHR.

When X1 and X2 are independent (θ(x1, x2) = 1) , h(x) is constant(Z is geometric)
and conversely.

Example 9.4.1. Let (X1, X2)′ have bivariate Waring distribution in (5.4.1). The distribu-
tion of Z has survival function

S(x) =
(m)(x)

(m+ n)(x)

, x = 0, 1, 2, ... (9.4.4)

and hazard rate h(x) =
n

m+ n+ x
, which is DHR.
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Then
θ(x1, x2) =

(n+ 1)(m+ n+ x1 + x2)

m(m+ n+ x1 + x2 + 1)
> 1.

Accordingly, X1 and X2 are positively associated.

Example 9.4.2. Let (X1, X2)′ have the bivariate version of Weibull-I distribution, with
survival function

S(x1, x2) = q(x1 + x2)β; x1, x2 = 0, 1, 2, ...; β > 0. (9.4.5)

The distribution of Z has survival function

S(x) = qx
β

; x = 0, 1, 2, ...; β > 0. (9.4.6)

The distribution is IHR, when β > 1. From (9.4.2), we get

θ(x1, x2) =
q(x1+x2)β

(
q(x1+x2)β − 2q(x1+x2+1)β + q(x1+x2+2)β

)
(
q(x1+x2)β − q(x1+x2+1)β

)
2

. (9.4.7)

To verify that θ(x1, x2) < 1, assume that the inequality holds. This is possible when

q(x1+x2)β
(
q(x1+x2)β − 2q(x1+x2+1)β + q(x1+x2+2)β

)
<
(
q(x1+x2)β − q(x1+x2+1)β

)2

⇐⇒
(
q(x1+x2)β−q(x1+x2+2)β

)2

+ q(x1+x2)β+(x1+x2+2)β − q2(x1+x2+1)β

<
(
q(x1+x2)β−q(x1+x2+2)β

)2

⇐⇒ 1− q(x1+x2+1)β

q(x1+x2)β
< 1− q(x1+x2+2)β

q(x1+x2+1)β

⇐⇒ h(x1 + x2) < h(x1 + x2 + 1). (9.4.8)

The inequality in (9.4.8) holds when β > 1 sinceZ is IHR in this case. Hence θ(x1, x2) < 1

and accordingly, X1 and X2 are negatively associated, when β > 1.

Bjerve and Doksum [21] defined two measures of association to study the dependence
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among two random variables. The first one measures the strength of association between
X1 and X2 as a function of X1 called correlation curve. In the discrete set-up, this measure
ρ(x1) is defined as

ρ(x1) =
σ1∆E[X2|X1 = x1]

(σ1∆E2[X2|X1 = x1] + σ2(x1))
1
2

, (9.4.9)

where σ2(x1) = V [X2|X1 = x1] and σ2
1 = V [X1].

From Theorem 9.2.1, we get

ρ(x1) =
σ1 (h(x1)− h(x1 + 1))

h(x1)h(x1 + 1)

[
σ2

1

h(x1)− h(x1 + 1)

h(x1)h(x1 + 1)
+ 2m(x1)h(x1)− 1

] 1
2

(9.4.10)

Recalling that ρ(x1) > (<)0 implies positive(negative) association, (9.4.10) provides the
following results.

Proposition 9.4.1. a) When Z is DHR(IHR) in the strict sense, ρ(x1) > (<)0 and
conversely.

b) X1 and X2 are independent (ρ(x1) = 0) ⇐⇒ X1(X2) is geometric ⇐⇒ Z is
geometric.

c) θ(x1, x2) > (<)1 ⇐⇒ Z is strictly DHR(IHR) ⇐⇒ ρ(x1) > (<)0.

A second measure of the association, suggested by Bjerve and Doksum [21] is the
conditional correlation curve defined by

ξ(x1) =
σ1∆E[X2|X1 = x1]

σ2(x1)
. (9.4.11)

For discrete Schur-constant models,

ξ(x1) =
σ1 (h(x1)− h(x1 + 1)

h(x1)h(x1 + 1)

[
1− h(x1)

h2(x1)
(2m(x1)h(x1)− 1)

] 1
2

=
σ1 (h(x1)− h(x1 + 1))

h(x1 + 1) [(1− h(x1)) (2m(x1)h(x1)− 1)]
1
2

. (9.4.12)
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Thus, (X1, X2)′ is positively(negatively) associated when ξ(x1) > (<)0. Thus, we have
the following result from (9.4.12).

Proposition 9.4.2. θ(x1, x2) > (<)1 ⇐⇒ Z is strictly DHR(IHR)⇐⇒ ξ(x1) > (<)0.

Example 9.4.3. Let (X1, X2)′ follow the Waring distribution in (5.4.1). We have already
shown that θ(x1, x2) > 1. The mean residual life of Z is given by

m(x) =
m+ n+ x

n− 1
; m > n > 1. (9.4.13)

From (9.4.10), we get
ρ(x) =

σ1

n

√
σ2

1

n
+
n+ 1

n− 1

, (9.4.14)

which is greater than zero when n > 1. Using (9.4.12), we evaluate

ξ(x) =
σ1√

(n+ 1)(m+ x)

(n− 1)(m+ n+ x)
(m+ n+ x)

, (9.4.15)

which is greater than zero when n > 1.

Instead of considering regression function, Anderson et al. [9] employed the ratio of
MRL function mi(x1, x2); i = 1, 2 in suggesting a measure of association. In the discrete
case, the measure is defined by

φ(x1, x2) =
m1(x1, x2)

m1(x1,−1)
(9.4.16)

Values of φ(x1, x2) very different from unity indicate strong association between X1 and
X2. If X1 and X2 are positively associated, φ(x1, x2) should increase for increasing values
of x2. Also, φ(x1, x2) = 1 if and only if X1 and X2 are independent and geometrically
distributed. For Schur-constant models,

φ(x1, x2) =
m(x1 + x2 + 1)

m(x1)
. (9.4.17)

A similar relation is obtained using m2(x1, x2). Hence, we obtain the following result.

Proposition 9.4.3. φ(x1, x2) > (<)1 ⇐⇒ m(x1 + x2 + 1) > (<)m(x1) ⇐⇒ Z is
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strictly IMRL(DMRL).

Another measure proposed in Anderson et al. [9] is based on the ratio of survival func-
tions. Its discrete analogue is given by

ψ(x1, x2) =
P [X1 ≥ x1|X2 ≥ x2]

P [X1 ≥ x1]
. (9.4.18)

When X1 and X2 are independent, ψ(x1, x2) = 1 and large values of ψ(x1, x2) indicate
positive association. Assuming Schur-constancy for (X1, X2)′, we obtain

ψ(x1, x2) =
S(x1 + x2)

S(x1)S(x2)
(9.4.19)

so that

ψ(x1 + 1, x2)

ψ(x1, x2)
=
S(x1 + x2 + 1)S(x2)

S(x1 + x2)S(x2 + 1)

=
1− h(x1 + x2)

1− h(x2)
(9.4.20)

From (9.4.20), we obtain the following result.

Proposition 9.4.4. ψ(x1, x2) > 1 ⇐⇒ Z is strictly DHR

From the above discussions, the following result is immediate.

Theorem 9.4.1. a) Z is strictly DHR(IHR) ⇐⇒ θ(x1, x2) > (<)1 ⇐⇒ ρ(x1) > (<

)0 ⇐⇒ ξ(x1) > (<)0 ⇐⇒ (X1, X2)′ is RCSI(RCSD) ⇐⇒ ψ(x1, x2) > (<

)1⇒ φ(x1, x2) > (<)1

b) ρ(x1) ≥ 0 ⇐⇒ X1 is stochastically increasing(SI) in X2.

c) ψ(x1, x2) > 1 ⇐⇒ (X1, X2)′ is PQD.

Example 9.4.4. For the bivariate Waring distribution in (5.4.1), we compute φ(x1, x2),

using (9.4.17), as

φ(x1, x2) =
m+ n+ x1 + x2 + 1

m+ n+ x1

> 1, (9.4.21)

agreeing with the IMRL property of Z. Now, using (9.4.19), we write

ψ(x1, x2 + 1)

ψ(x1, x2)
=

(m+ x1 + x2) (m+ n+ x2)

(m+ x2) (m+ n+ x1 + x2)
, (9.4.22)
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which is greater than one since
m+ x

m+ n+ x
is increasing in x. Thus, ψ(x1, x2) is increasing

in x2. Now,

P [X1 > x1 + 1, X2 > x2]

P [X1 > x1, X2 > x2]

P [X1 > x1 + 1, X2 > x2 + 1]

P [X1 > x1, X2 > x2 + 1]

=
(m+ x1 + x2 + 1) (m+ n+ x1 + x2)

(m+ x1 + x2) (m+ n+ x1 + x2 + 1)
> 1, (9.4.23)

implying that (X1, X2)′ is RCSI. Since RCSI implies PQD, (X1, X2)′ is PQD. To check
whether X1 is stochastically increasing(SI) in X2, consider

P [X1 > x1|X2 = x2] =
S(x1, x2)− S(x1, x2 + 1)

S(x2)− S(x2 + 1)

= −Γ (m+ x1 + x2) Γ (m+ n+ x2 + 1)

Γ (m+ x2) Γ (m+ n+ x1 + x2 + 1)
. (9.4.24)

To find the monotonicity of (9.4.24), consider the ratio

P [X1 > x1|X2 = x2 + 1]

P [X1 > x1|X2 = x2]
=

(m+ x1 + x2) (m+ n+ x2 + 1)

(m+ x2) (m+ n+ x1 + x2 + 1)
, (9.4.25)

which is greater than unity implying that P [x1 > x1|X2 = x2] is increasing in x2.

Remark 9.4.1. Among bivariate distributions, there is no direct relationship between SI
and RCSI. Further, PQD neither implies RCSI nor SI.

Remark 9.4.2. From Theorem 9.4.1, it is obvious that negative(positive) ageing is equiva-
lent to the positive(negative) association in the case of BSM.

9.5 Conclusion

In this chapter, we have discussed basic properties of discrete Schur-constant models. Reli-
ability characteristics of the models were studied. The dependence structure of the models
has been discussed. We have established the relationships between the association mea-
sures and ageing classes corresponding to the models.





Chapter 10

Conclusions and Future Study

10.1 Conclusions

There are many real life situations, in which failure times are measured in discrete time.
For example, a piece of equipment operates in cycles and the observation is the number
of cycles completed before failure, so that the lifetime is clearly discrete. The lack of ac-
curacy of the measuring devices may also generate discrete lives. There are occasions to
prefer counts over clock time even when the latter is available. There are conceptual and
mathematical problems in developing discrete reliability theory. These situations encour-
age researchers to study reliability concepts in discrete time. Motivated by these facts, in
the present work, we have studied the modelling and analysis of lifetime data in discrete
time.

In Chapter 2, we have studied ageing classes for discrete life distributions using two
different versions of the hazard rate. The relationships among these ageing classes were
derived. It may be noted that properties of various ageing classes based on the hazard
function, in the continuous set-up, are not directly transformed into discrete set-up. Various
ageing criterion discussed in this chapter play a fundamental role in the development of
reliability theory and practice. An attempt is made to establish some properties of the class
of distributions with BT or UBT hazard rates which could be useful in practice. Being
general results, they can be readily applied in finding bounds for the reliability.

197



Chapter 10. Conclusions and Future Study 198

In Chapter 3, we have presented some theorems that help in detecting the shape of
the hazard rate function when lifetime is treated as discrete. All the results will work out
when the probability mass function alone is known. Following this, we have discussed var-
ious methods of construction of discrete bathtub distributions. We have provided examples
in which the models were applied to real data and we have studied the properties of dis-
cretized quadratic hazard model in detail. These supplement the existing list of BT models
in literature.

The role of relative ageing concepts is either to compare the ageing patterns of two
devices at a fixed time or to investigate whether the same device is ageing more positively
(negatively) at different points of time. In Chapter 4, we have presented some concepts and
results that lead to a quantitative assessment of which of two devices is ageing faster. Also,
the impact of spent life of a device on its residual life can also be numerically evaluated. It
was proved that the relative ageing concepts are related to the well-known ageing classes
such as IHR, NBU, etc.

Chapters 5, 6 and 7 were devoted to the study of residual life functions in the discrete
multivariate domain. We have discussed the multivariate mean residual life function, vari-
ance residual life function and covariance residual life function. Characterizations based
on these concepts were derived. Ageing classes based on these functions were proposed
and their inter-relationships were studied. The results in these chapters are of great use for
modelling and analysis of multivariate discrete lifetime data .

In Chapter 8, we have introduced four versions of the multivariate reversed hazard rates
and studied their properties. We have determined the criterion under which the scalar re-
versed hazard rate uniquely determines the underlying distribution. Unlike scalar reversed
hazard rate, the vector reversed hazard rate uniquely determines the distribution. The re-
versed lack of memory property useful in maintenance problems has been extended to the
multivariate set-up. The multivariate reversed geometric distribution has been characterized
using these multivariate reversed ageing concepts. Section 8.4 provided a general class of
distributions, which can be used in reliability analysis by choosing appropriate marginal
distributions.

Finally in Chapter 9, we have discussed basic properties of discrete Schur-constant
models. Reliability characteristics of the models were studied. The dependence structure
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of the models has been discussed. We have established the relationship between the asso-
ciation measures and ageing classes corresponding to these models.

10.2 Future study

In Chapter 2, we have derived some new properties of discrete ageing classes based on
hazard rate function. The application and properties of IHR(2)/DHR(2) class are yet to
be studied. There is a scope for studying the properties of ageing classes based on other
reliability functions such as mean residual life, variance residual life, etc. New ageing
classes can be proposed on the basis of reliability functions such as odds function and
residual odds function, in the discrete domain.

The results in Chapter 3 mainly deals with BT and UBT hazard rate distributions. While
studying the BT and UBT distributions, models with only one change point have been
considered in the present study. However, we can extend our study to the two-change point
case by suitably modifying our results. There are other non-monotone hazard rate functions
that take forms like periodic, roller coaster, etc. Results in the present chapter need to
be modified in order to accommodate these type of hazard rate functions. Regarding the
construction methods discussed, only a few methods have been included in the discussion.
New methods using total time on test transforms, additive hazard rate models, etc. can be
developed in the discrete domain. The work in this direction will be carried out later.

We have discussed stochastic ordering by ageing concepts in Chapter 4, in which, we
have studied ≤IHR and ≤IHRA orderings, which are based on hazard rate function. In
a similar way, other stochastic orderings based on survival function, mean residual life
function, etc. can be studied. Testing procedures for differentiating positive and negative
ageing, based on the values of specific and relative ageing factors, can be developed. New
discrete lifetime models can be developed using the ageing intensity function. The rela-
tive ageing concepts in the univariate domain can be extended into higher dimensions for
comparing the efficiencies of multicomponent systems.

We have studied multivariate residual life functions in Chapters 5, 6 and 7. In the
case of multivariate mean, variance, and covariance residual lives, it is required to pro-
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pose estimation and testing procedures for dealing with real life datasets. Non-parametric
estimators of covariance residual life could be used for testing independence of random
variables. Stochastic orderings can be developed for comparing multivariate discrete life
distributions in-terms of its residual lives. Necessary and sufficient conditions for a vec-
tor to be multivariate mean residual life and variance residual life should be derived for
proposing new models based on these ageing concepts.

We have studied discrete multivariate reversed hazard rates in Chapter 8. The residual
life functions such as mean residual life, variance residual life and covariance residual life
can be introduced in the reversed time scenario also. Such a study will be complementary to
the study of reversed hazard rates. We have obtained a new family of multivariate discrete
distribution in Chapter 8. The reliability properties of the family are yet to be studied.

The reliability properties of discrete Schur-constant models were studied in Chapter 9.
These results are analogues of the results in the continuous case, given in Nair and Sankaran
[100]. There is a scope for extending the study to Schur-constant equilibrium distributions,
as in the continuous case, given in Nair and Sankaran [101].
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