Ph.D Thesis

RARE EARTH ELEMENTS DISTRIBUTION IN THE SURFACE SEDIMENTS WITHIN THE INNER SHELF OFF THE WEST COAST OF INDIA

JAYAPRAKASH.C

DEPARTMENT OF PHYSICAL OCEANOGRAPHY SCHOOL OF MARINE SCIENCES COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY KOCHI, KERALA 682 016

MARCH 2017

RARE EARTH ELEMENTS DISTRIBUTION IN THE SURFACE SEDIMENTS WITHIN THE INNER SHELF OFF THE WEST COAST OF INDIA

Thesis submitted to

The Cochin University of Science and Technology in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

MARINE SCIENCES Under the Faculty of Marine Sciences

Bу

JAYAPRAKASH.C

Reg. No. 4859

DEPARTMENT OF PHYSICAL OCEANOGRAPHY SCHOOL OF MARINE SCIENCES COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY KOCHI, KERALA 682 016 MARCH 2017

Rare Earth Elements distribution in the surface sediments within the inner shelf off the west coast of India

Ph.D Thesis under the faculty of Marine Sciences

By

Jayaprakash.C

Department of Physical Oceanography School of Marine Sciences Cochin University of Marine Sciences Kochi, Kerala-682016 Email: jayaprakashc@hotmail.com

Supervising Guide

Dr. R. Sajeev Associate Professor, Department of Physical Oceanography, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala-682016 Email: <u>rsajeev@yahoo.com</u>

Department of Physical Oceanography, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala-682016 *March 2017*

DEPARTMENT OF PHYSICAL OCEANOGRAPHY SCHOOL OF MARINE SCIENCES COCHIN UNIVERSITY OF SCIENCE TECHNOLOGY KOCHI- 682 016

Dr. R. Sajeev Associate Professor

CERTIFICATE

I certify that this thesis, entitled "Rare Earth Elements distribution in the surface sediments within the inner shelf off the west coast of India" is an authentic record of research work carried out by Mr. Jayaprakash.C under my supervision and guidance at the Department of Physical Oceanography, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala 682 016, under the Faculty of Marine Science and no part thereof has been presented for the award of any other degree in any University/Institute. All the relevant corrections and modifications suggested by the audience during the pre-synopsis seminar and recommended by the Doctoral committee have been incorporated in the thesis.

Kochi-682016 31stMarch 2017 Dr. R. Sajeev (Research Supervisor)

Declaration

I hereby declare that the thesis entitled "Rare Earth Elements distribution in the surface sediments within the inner shelf off the west coast of India" is an authentic record of research work carried out by me under my supervision and guidance of Dr. R. Sajeev, Associate Professor, Department of Physical Oceanography, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala towards the partial fulfilment of the requirements for the award of Ph.D. degree under the Faculty of Marine Science and no part thereof has been presented for the award of any other degree in any University/Institute.

Kochi-682016 March 31st 2017.

(Jayaprakash.C)

Dedicated to my parents and family......

ACKNOWLEDGEMENT

The author is highly thankful to Sri. V. Devdas, Deputy Director General & HOD, M&CSD, GSI, Mangalore, for the logistic and technical support extended during this work. I am also thankful to the participants of item no.082 of GSI for the data used in this paper. Thanks are due to Dr. Thomas Mathai, Deputy Director General (Retd.) for his valuable suggestions and guidance, Shri. A.C. Dinesh, Director, M&CSD, Mangalore for permitting to use the software developed by him for statistical analysis of the data, and Shri N. Maran, Director, M&CSD, Kochi for all valuable comments and encouragement. Prof. (Dr). A.N. Balchand, Dean, School of Marine Sciences and Prof. (Dr).Chandramohan Kumar has given valuable suggestions for improving the quality of this work. The author expresses his sincere thanks to his wife, children and other family members and friend and all those who have directly or indirectly contributed for the publication of this thesis.

PREFACE

Rare Earth Elements (REE) have gained attention over the last few years due to their surprisingly large applications. The discovery of rare earth elements started at the end of 18th century. The first element to be discovered was Yttrium by Finnish chemist and mineralogist Johan Gadolin. By 1947 all elements in this group of metals were discovered. REE have similarity in physical properties and oxidation numbers. They are very good conductors of electricity, are silvery-white or grey and get tarnished on exposure to air. REE are obtained mostly from natural resources. About one percentage of the metals are also produced from recycling. Its demand is ever increasing due to its wide application in high-tech sectors.

Rare-earth elements and their alloys are used in computer memory, rechargeablebatteries, precision-guided weapons, night-vision googles, vehicle catalytic converters, magnets, fluorescent lighting, and other defence technology. Rare-earth metals are key ingredients for radar systems, avionics, and satellites. Rechargeable lanthanum–nickel–hydride batteries are gradually replacing nickel– cadmium batteries in computer and communications applications. Rare earths are used for air pollution control, illuminated screens on electronic devices, and optical-quality glass. Demand for all of these products has surged over the past two decades.

Due to their high economic significance, many countries have intensified the search for these metals both in their onshore and offshore domains. China is currently supplying more than 95 % of the REE requirement of the world. Since 2005, China has been implementing restrictions on its REE export which have caused increase in the price of REE. Under this circumstance India too has paced up its exploration programme to locate new REE deposits apart from the known heavy mineral beach placer deposits containing REE along its east and west coast.

The present study intends to identify sectors of REE enrichment within the inner shelf domain along the west coast of India. Considering the availability of heavy mineral placer deposits along the beaches off Maharashtra and Kerala and their known association with REE, the inner shelf domain along west coast was selected for the study. Some of these heavy minerals contain REE in their crystal structure. The present study has helped in categorizing the west coast inner shelf based on REE content. REE content is found to be high within the inner shelf sediments along southern Kerala coast and very low in Gulf of Kutch and Gulf of Khambhat sediments.

The whole research work is partitioned into six chapters and is briefly described below.

Chapter I deals with the general introduction, crustal abundance of REE, major classes of REE deposits, REE in the offshore domains, uses of REE, current world status of REE and literature reviews. The objectives of the present work are given towards the end of this chapter.

Chapter 2 gives a detailed description about the geomorphology of the seafloor of the study area, about the materials and methods used in the present work, laboratory procedures, analytical processes and also about the statistical methods used to interpret the data.

Chapter 3 gives a broad picture about the various physiographic domains of the continental shelf, bathymetric map of the west coast up to a water depth of 100 m, and a detailed description about the surface sediment distribution within the inner shelf along west coast.

Chapter 4 describes the distribution pattern of REE within the inner shelf sediments. REE distribution is elucidated under three sub-heads i.e. Distribution of REE in surface sediments off Gujarat and Maharashtra coasts, distribution of REE in surface sediments off Goa and Karnataka coasts and distribution of REE in surface sediments off Kerala coast.

Chapter 5 attempts to correlate REE with heavy mineral content of the sediments based on the available data. The role of other factors such as hinterland geology, river discharge etc., are also discussed in this chapter, in controlling REE distribution.

Chapter 6 presents the summary of the research study. It also provides information about the sectors where maximum enrichment of REE is found along the west coast. At the end of the thesis, the relevant literatures cited in various chapters are furnished.

CONTENTS

CHAPTER 1			
	INTRODUCTION	01-18	
1.1	Rare Earth Elements	01	
1.2	Crustal Abundance	04	
1.3	Major Classes of REE Deposits	06	
1.3.1	Primary Deposits	07	
1.3.1.1	Deposits associated with Carbonatites	07	
1.3.1.2	Deposits associated with Alkaline Igneous rocks	08	
1.3.2	Secondary Deposits	10	
1.3.2.1	Placer Deposits	10	
1.3.2.2	Residual Weathering Deposits	10	
1.4	REE in offshore Area	11	
1.5	Uses of Rare Earth Elements	12	
1.6	Current World Status of REE	13	
1.7	Previous works	15	
1.8	Objectives of Present study	17	
CHAPTER 2			
STUDY AREA, MATERIAL AND METHODS 19-31			
2.1	Geomorphology of the Seafloor	19	
2.2	Area of study	20	
2.3	Sample collection	20	
2.4	Grain Size Analysis	22	

2.5	Sample Processing	23
2.6	Cumulative frequency curves	23
2.7	Statistical parameters in grainsize analysis	24
2.7.1	Mean	24
2.7.2	Mode	25
2.7.3	Standard deviation (SD)	25
2.7.4	Skewness (Sk)	27
2.7.5	Kurtosis (K _G)	28
2.8	Bivariate Plot	29
2.9	Chemical analysis	30
2.10	Software's used	30
CHAPTER 3		
	BATHYMETRY AND SEDIMENTOLOGY	32-49
3.1	Introduction	32
3.2	Physiographic Domains	33
3.2.1	Inner-shelf	34
3.2.2	Mid-shelf	34
3.2.3	Outer-shelf	34
3.3	Bathymetry of the Arabian Sea	35
3.4	Surface sediment distribution	36
3.5	Surface sediment distribution along Gujarat coast	37
3.6	Surface sediment distribution along Maharashtra coast	39
3.7	Surface sediment distribution along Goa and Karnataka coast	41
3.8	Surface sediment distribution along Kerala coast	43
3.9	Bivariate Plots	45
3.10	Conclusion	49
CHAPTER 4		
	DISTRIBUTION OF REE IN THE SEAFLOOR	50-89
	SEDIMENTS	
4.1	Distribution of REE in Surface Sediments off Gujarat and	50
	Maharashtra coast	

4.2	Distribution of LREE in Surface Sediments off Gujarat and	50
	Maharashtra coast	
4.3	Distribution of HREE in Surface Sediments off Gujarat and	55
	Maharashtra coast	
4.4	Distribution of REE in Surface Sediments off Goa and	59
	Karnataka coast	
4.5	Distribution of LREE in the Surface Sediments off Goa	61
	andKarnataka coast	
4.6	Distribution of HREE in the Surface Sediments off Goa and	66
	Karnataka coast	
4.7	Distribution of REE in Surface Sediments off Kerala coast	72
4.8	Distribution of LREE in Surface Sediments off Kerala coast	73
4.9	Distribution of HREE in Surface Sediments off Kerala coast	76
4.10	Comparison with Post Archaean Australian Shale (PAAS)	81
4.11	Conclusion	84
	CHAPTER 5	
	ROLE OF HEAVY MINERALS IN THE DISTRIBUTION OF	90-101
	REE	
5.1	Introduction	90
5.2	Heavy minerals as source of REE	92
5.2.1	Gujarat and Maharashtra Inner shelf	92
5.2.2	Goa and Karnataka Inner shelf	95
5.2.3	Kerala Inner shelf	97
5.3	Conclusion	98
CHAPTER 6		
	SUMMARY AND CONCLUSION	102-108
	BIBLIOGRAPHY	113-136
	List of Publications	137

LIST OF FIGURES

Fig. 2.1	Surface sediment sample locations within the inner shelf	21
Fig. 2.2	Cumulative probability curve	24
Fig. 2.3	Well sorted sediments	26
Fig. 2.4	Moderately Sorted Sediments	26
Fig. 2.5	Poorly Sorted Sediments	26
Fig. 2.6	Curves for Normal, Positive and Negative Skewness	28
Fig. 2.7	Curves for Normal, Leptokurtic and Platykurtic Sediments	29
Fig. 3.1	Exclusive Economic Zone (EEZ) of India	33
Fig. 3.2	The bathymetric map of Arabian Sea	36
Fig. 3.3	The sediment distribution map within the inner shelf off	39
	Gujarat	
Fig. 3.4	The sediment distribution map within the inner shelf off	41
	Maharashtra	
Fig. 3.5	The sediment distribution map within the inner shelf off	42
	Goa and Karnataka	
Fig. 3.6	The sediment distribution map within the inner shelf off	45
	Kerala	
Fig. 3.7	Mean Vs SD	47
Fig. 3.8	Mean Vs Skewness	47
Fig. 3.9	Mean Vs Kurtosis	47
Fig. 3.10	SkewnessVs Kurtosis	47
Fig. 3.11	SD VsSkewness	48
Fig. 3.12	SD Vs Kurtosis	48
Fig. 3.13	Median Vs SD	48
Fig. 3.14	Median Vs Mean	48
Fig. 4.1	Contour Map showing distribution of REE in the surface	51
	sediments within the inner shelf off Gujarat and Maharashtra	
L		

Fig. 4.2	Contour Map showing distribution of LREE in the surface	51
	sediments within the inner shelf off Gujarat and Maharashtra	
Fig. 4.3	Contour Map showing distribution of Lanthanum in the	52
	surfacesediments within the inner shelf off Gujarat and	
	Maharashtra	
Fig. 4.4	Contour Map showing distribution of Cerium in the surface	52
	sediments within the inner shelf off Gujarat and Maharashtra	
Fig. 4.5	Contour Map showing distribution of Praseodymium in	53
	thesurface sediments within the inner shelf off Gujarat	
	and Maharashtra	
Fig. 4.6	Contour Map showing distribution of Neodymium in the	53
	surface sediments within the inner shelf off Gujarat	
	and Maharashtra	
Fig. 4.7	Contour Map showing distribution of Samarium in the	54
	surface sediments within the inner shelf off Gujarat and	
	Maharashtra	
Fig. 4.8	Contour Map showing distribution of Europium in the surface	55
	sediments within the inner shelf off Gujarat and Maharashtra	
Fig. 4.9	Contour Map showing distribution of HREE in the surface	56
	sediments within the inner shelf off Gujarat and Maharashtra	
Fig. 4.10	Contour Map showing distribution of Gadoliniumin the	56
	surface sediments within the inner shelf offGujarat and	
	Maharashtra	
Fig. 4.11	Contour Map showing distribution of Terbium in the surface	57
	sediments within the inner shelf off Gujarat and Maharashtra	
Fig. 4.12	Contour Map showing distribution of Dysprosiumin the	57
	surface sediments within the inner shelf off Gujarat and	
	Maharashtra	
Fig. 4.13	Contour Map showing distribution of Holmium in the	58
	surface sediments within the inner shelf off Gujarat	
	and Maharashtra	

Fig. 4.14	Contour Map showing distribution of Erbium in the surface	58
	sediments within the inner shelf off Gujaratand Maharashtra	
Fig. 4.15	Contour Map showing distribution of Thulium in thesurface	60
	sediments within the inner shelf off Gujaratand Maharashtra	
Fig. 4.16	Contour Map showing distribution of Ytterbium in the surface	60
	sediments within the inner shelf off Gujaratand Maharashtra	
Fig. 4.17	Contour Map showing distribution of Lutetium in the surface	61
	sediments within the inner shelf off Gujarat and Maharashtra	
Fig. 4.18	Contour Map showing distribution of ΣREE in the surface	61
	sediments within the inner shelf off Goa and Karnataka	
Fig. 4.19	Contour Map showing distribution of LREE in the surface	62
	sediments within the inner shelf off Goaand Karnataka	
Fig. 4.20	Contour Map showing distribution of Lanthanumin the	62
	surface sediments within the inner shelf off Goaand Karnataka	
Fig. 4.21	Contour Map showing distribution of Cerium in the surface	63
	sediments within the inner shelf off Goa and Karnataka	
Fig. 4.22	Contour Map showing distribution of Praseodymium in the	63
	surface sediments within the inner shelf off Goa and	
	Karnataka	
Fig. 4.23	Contour Map showing distribution of Neodymium in	64
	thesurface sediments within the inner shelf off Goa and	
	Karnataka	
Fig. 4.24	Contour Map showing distribution of Samarium in the	64
	surfacesediments within the inner shelf off Goa and Karnataka	
Fig. 4.25	Contour Map showing distribution of Europium in the	66
	surfacesediments within the inner shelf off Goa and Karnataka	
Fig. 4.26	Contour Map showing distribution of HREE in the surface	66
	sediments within the inner shelf off Goaand Karnataka	
Fig. 4.27	Contour Map showing distribution of Gadolinium in the	67
	surface sediments within the inner shelf off Goaand Karnataka	
Fig. 4.28	Contour Map showing distribution of Terbium in the surface	67

	sediments within the inner shelf off Goa and Karnataka	
Fig. 4.29	Contour Map showing distribution of Dysprosium in	69
	thesurface sediments within the inner shelf off Goa	
	andKarnataka	
Fig. 4.30	Contour Map showing distribution of Holmium in the	69
	surfacesediments within the inner shelf off Goa and Karnataka	
Fig. 4.31	Contour Map showing distribution of Erbium in the	71
	surfacesediments within the inner shelf off Goa and	
	Karnataka	
Fig. 4.32	Contour Map showing distribution of Thulium in the	71
	surfacesediments within the inner shelf off Goa and Karnataka	
Fig. 4.33	Contour Map showing distribution of Ytterbium in the surface	72
	sediments within the inner shelf off Goa and Karnataka	
Fig. 4.34	Contour Map showing distribution of Lutetium in the surface	72
	sediments within the inner shelf off Goa and Karnataka	
Fig. 4.35	Contour Map showing distribution of ΣREE in the surface	73
	sediments within the inner shelf off Kerala	
Fig. 4.36	Contour Map showing distribution of LREE in the surface	73
	sediments within the Inner shelf off Kerala	
Fig. 4.37	Contour Map showing distribution of Lanthanum in the	74
	surfacesediments within the inner shelf off Kerala	
Fig. 4.38	Contour Map showing distribution of Cerium in the surface	74
	sediments within the inner shelf off Kerala	
Fig. 4.39	Contour Map showing distribution of Praseodymium in the	76
	surfacesediments within the inner shelf off Kerala	
Fig. 4.40	Contour Map showing distribution of Neodymium in the	76
	surface sediments within the inner shelf off Kerala	
Fig. 4.41	Contour Map showing distribution of Samarium in the	77
	surfacesediments within the inner shelf off Kerala	
Fig. 4.42	Contour Map showing distribution of Europium in the	77
	surfacesediments within the inner shelf off Kerala	

Fig. 4.43	Contour Map showing distribution of Σ HREE in surface	78
	sediments within the inner shelf off Kerala	
Fig. 4.44	Contour Map showing distribution of Gadolinium in surface	78
	sediments within the inner shelf off Kerala	
Fig. 4.45	Contour Map showing distribution of Terbium in surface	79
	sediments within the inner shelf off Kerala	
Fig. 4.46	Contour Map showing distribution of Dysprosium in surface	79
	sediments within the inner shelf off Kerala	
Fig. 4.47	Contour Map showing distribution of Holmium in surface	80
	sediments within the inner shelf off Kerala	
Fig. 4.48	Contour Map showing distribution of Erbium in surface	80
	sediments within the inner shelf off Kerala	
Fig. 4.49	Contour Map showing distribution of Thulium in surface	81
	sediments within the inner shelf off Kerala	
Fig. 4.50	Contour Map showing distribution of Ytterbium in	81
	surfacesediments within the inner shelf off Kerala	
Fig. 4.51	Contour Map showing distribution of Lutetium in surface	82
	sediments within the inner shelf off Kerala	
Fig. 4.52	PAAS normalized REE in the surface sediments off Gujarat	83
	andMaharashtra	
Fig. 4.53	PAAS normalized REE in the surface sediments off Goa and	83
	Maharashtra	
Fig. 4.54	PAAS normalized REE in the surface sediments off Kerala	84
Fig. 4.55	Generalized geological map of India	85
Fig. 4.56	Contour Map showing distribution of REE in the surface	86
	sediments within the inner shelf off west coast of India	
Fig. 4.57	Contour Map showing distribution of LREE in the surface	87
	sediments within the inner shelf off West Coast of India	
Fig. 4.58	Contour Map showing distribution of HREE in the surface	88
	sediments within the inner shelf off West Coast of India	

LIST OF TABLES

Table 1.1	Properties of REE	03
Table 1.2	Crustal abundances of REE	05
Table 1.3	REE abundance of Chondrites, North American Shale	06
	Composites (NASC) and Post Archaean Australian	
	Shale (PAAS)	
Table 2.1	The sample locations, sediment type and the REE content in	109-110
	surface sediments	
Table 2.2	Standard deviation or Sorting (σ) Ranges	27
Table 2.3	Skewness (Sk) Ranges	27
Table 2.4	Kurtosis (K _G) ranges	29
Table 3.1	Grain size, statistical and other parameters of surface	111-112
	sediment samples	