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Abstract 

Maladies directly related to human heart condition have emerged 

to be the leading global cause of health related human deaths. The 

mortality rate due to heart functioning can be reduced through its timely 

diagnosis and accurate assessment. Single photon emission computed 

tomography perfusion images provide a reliable tool for the assessment of 

heart disorders. Computer aided methods for better visualization and 

interpretation of single photon emission computed tomography images 

have already been used and proven to be potentially helpful for increasing 

the clinical use of such imaging technique.  

The primary objective of this thesis is to develop enhancement and 

classification techniques suitable for identifying the tracer content region 

in single photon emission computed tomography image slices. Image 

dependent methods were employed to enable an improved outcome. 

Mitigation of the effects of noise, blur and decreased contrast were 

addressed while developing enhancement algorithms. Features capable of 

identifying lower tracer content area were extracted for the purpose of 

classification.  

The performances of the developed methods were evaluated using 

different works from current literature. The comparison results indicate 
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that the proposed methods are instrumental in assisting physicians to 

arrive at a more reliable diagnostic decision.  

The images for the study were sourced from Medical trust 

hospital, Kochi, Kerala, India and image database of case studies 

published by Spectrum dynamics medical.    

The work, though complete in itself, offers a take-off point for 

further development in its scope and this has been addressed in the end.   

 

Keywords: Blind Deconvolution; Heart Perfusion; Image Quality Index; 

Morphological Processing; Single Photon Emission 

Computed Tomography; Structural Similarity Index Measure; 

Tracer.  
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Chapter 1 

 
INTRODUCTION 

 
 
 
 
 
 
 
 
This chapter introduces the subject area of this research and addresses 

the contribution of the research work. The anatomy of the heart is 

described at a fundamental level. It presents a short description of 

different cardiac imaging modalities. The organization of chapters 

included in the thesis is summed up.  
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1.1 Introduction 

The heart disease and stroke statistics update of the American Heart 

Association [1] issued in the year 2015 highlights disorders in heart 

functionality as the most significant cause of health related human deaths 

globally.  It accounts for 17.3 million deaths per year and is expected to 

grow to about 23.6 million by 2030. According to World Health 

Organisation (WHO) heart disease deaths represent 31% of all global 

deaths [2] for the year 2015, demanding for a concrete action for the 

timely treatment [3]. The high incidence of heart failure all over the world 

[4] and its lifetime risk [5] has been addressed in literature. The 

prevalence of cardiac disorders among Asian Indians is higher than 

among Europeans, Americans and other Asians [6, 7]. Cardiovascular 

diseases cause about 40% of the deaths in urban areas and 30% in rural 

areas in India [8]. Studies of the past and ongoing research report the 

incidence of heart disorders to be a leading cause of mortality in India [9]. 

Cardiac ailments affect Indian population in their most productive midlife 

years [10, 11]. 23% of deaths due to heart disorders occur before the age 

of 70 in Western population whereas in India this accounts for 52% [12]. 

A survey conducted by Neo CarDiab Care [13] says that one fifth of the 

deaths in India are from coronary heart disease and it will account for one 

third of all deaths by the year 2020. This survey reports the early 

appearance of heart disorders among Indian population than their western 

counterparts by about 10 to 15 years.  

The above statistics establishes the fact that cardiovascular diseases 

present a considerable challenge in maintaining human health and will 

burden the whole world in a few years’ time. It shows the increasing need 

for cardiac care. The mortality rate due to heart disorders can be reduced 
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if proper diagnosis is done at the right time. As a natural aftermath in 

mitigating the risks in human cardiac condition, the past few years have 

witnessed an explosive expansion in the realm of cardiac imaging. New 

technologies capable of detailing the structure and function of heart have 

emerged [14]. Cardiac imaging modalities have a well-established role in 

the timely diagnosis of cardiac ailments. They have improved the 

evaluation of subjects with known or suspected heart disease.  

1.2 Contribution of the thesis 

The main contributions of this research to the domain of cardiac 

imaging includes 

x Development of algorithms to improve the contrast and reduce 

the magnitude of noise and blur in cardiac nuclear images 

working on single photon emission principle. 

x Development of pixel intensity based features that provide 

high classification accuracy for efficient classification of such 

images into those of normal and abnormal hearts.  

1.3 Anatomy of human heart 

The heart is an important organ which controls the human blood 

circulatory system. Right atrium, right ventricle (RV), left atrium and left 

ventricle (LV) constitute the four chambers of the heart. The 

deoxygenated blood from the body drains into the heart and is pumped to 

the lungs through right sided chambers (right atrium and RV). The 

oxygenated blood from the lungs drains into the left side of the heart and 

is pumped to the body parts by the LV. The deoxygenated blood from the 

upper and lower body parts drains into the right atrium through the 
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superior vena cava and inferior vena cava respectively. The left atrium 

receives oxygenated blood from the lungs through pulmonary veins. The 

RV pumps blood into pulmonary artery and the LV to the aorta. The atria 

are connected to the ventricles through atrioventricular valves (tricuspid 

valve on the right and mitral valve on the left). These valves prevent 

backward flowing of blood from the ventricles to the atria during cardiac 

pumping.  Figure 1.1 shows the anatomy of human heart [15].  

 

 

Figure 1.1 Anatomy of human heart [15]  

The ventricles are cardiac chambers that collect blood from the 

atria and pump it out of the heart. The LV pumps oxygenated blood to the 

rest of the body. The monitoring of the left ventricular chamber is of 

primary importance in analyzing the function of heart as a pumping 

organ. The left ventricular walls are shown in figure 1.2. They are named 
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as anterior (A), septal (S), lateral (L) and inferior. IP represents the 

inferoposterior wall. The underside of the left ventricular region is the 

inferior wall. 

 

Figure 1.2 Left ventricular walls 

 Systole and diastole denote two fundamental periods of cardiac 

cycle [16]. During the ventricular systolic period of cardiac cycle the 

ventricles contract and during the diastolic period the ventricles relax and 

fill with blood. The dynamics of LV during the end systolic and end 

diastolic periods play a critical role in dictating the cardiac health [17].  

Left ventricular ejection fraction (LVEF) represents the volumetric 

fraction of blood pumped out of the LV during each cardiac cycle [18]. It 

is computed from the end systolic and end diastolic blood volumes. LVEF 

is a fundamental predictor of coronary artery diseases (CAD) [19]. A low 
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value of LVEF is an early sign of heart failure. Low LVEF value shows 

that the heart is not pumping enough blood to the body parts.    

1.4 Cardiac imaging modalities 

CAD is a major cause of premature human deaths in modern 

industrialized countries. Assessment of heart functioning using cardiac 

images has proved valuable for diagnosis of CAD. Cardiac imaging 

renders a direct visualization means to see through the functioning of 

heart. Heart disorders are identified by analyzing cardiac images. The 

most common imaging modalities used to analyze cardiac vascular 

system are X-ray, echocardiography, computed tomography, magnetic 

resonance imaging and nuclear medicine imaging. Using the right 

imaging technique has improved the outcome of cardiac procedures 

substantially. A combined approach of more than one modality is also in 

use to give a much efficient diagnostic result than using a single modality. 

1.4.1 X-ray 

Angiogram is a popular test using x-ray imaging. It uses an 

invasive diagnostic procedure [20]. During x-ray imaging test, a special 

dye or a contrast material is injected into the veins or arteries through a 

thin, flexible tube called catheter. The catheter will be moved through the 

blood vessel till it reaches the heart. Then x-ray image is taken to watch 

its progress. The x-ray image is known as coronary angiogram. Various 

arteries are studied using different catheters. After completing the test the 

catheter will be removed from the body. Coronary angiography is done in 

special laboratories called ‘cath-labs’. The image provides a radiographic 

visualization of coronary vessels [21] and detailed information about the 

heart and coronary arteries. It is conducted to find out if the coronary 
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arteries are blocked or narrowed down and it assists the doctor to assess 

the degree of narrowing. In the case of patients suspected with coronary 

atherosclerotic or heart valve disorders, coronary angiography via left 

heart catheterization is used to evaluate coronary artery anatomy [22]. It is 

also used in planning surgical treatment of the heart and used as a 

research tool for the assessment of treatment results and the progression 

or regression of coronary atherosclerosis [23]. Figure 1.3 shows an 

example of coronary angiography.      

 

Figure 1.3 An example of coronary angiography [24] 

1.4.2 Echocardiography 

Echocardiography uses ultrasound waves to image heart. 

Echocardiography makes use of the properties of sound waves to 
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differentiate tissues of varied density [25]. The speed of the wave depends 

on the density and elastic properties of the travelling medium. This 

property of the tissue is known as its acoustic density. The tissues 

comprising myocardium and blood have varied acoustic density.  When a 

sound wave travels through an interface between two tissues of varied 

acoustic density, a portion of the energy is reflected backward (the 

reflected wave), and the rest travels forward through the next tissue (the 

refracted wave). The reflected wave is received by the transducer, turned 

back into electrical energy, amplified, and displayed [26]. The recent 

advances enable the acquisition of three dimensional (3D) images which 

provide real time 3D visualizations of the heart. A cardiac ultrasound 

image [27] is shown in figure 1.4. This image shows all four chambers of 

the heart and is very useful for detecting chamber enlargement. 

There are different types of echocardiography. In transthoracic 

echocardiography the different heart views are obtained by moving the 

transducer to different chest locations [28]. Stress echocardiography is 

done to study blood flow to the heart before and after the heart is stressed. 

Doppler echocardiography [29] shows the blood flow through heart 

chambers and valves. In transesophageal echocardiography the probe is 

passed through the esophagus to get clearer heart images.  

Ventricular systolic function and valvular disease can be assessed 

with reasonable accuracy [30]. Echocardiography is particularly useful in 

the evaluation of diastolic dysfunction. 
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Figure 1.4 A cardiac ultrasound image showing all four chambers of the 

heart [27] 

1.4.3 Computed tomography 

Cardiac computed tomography, otherwise known as computed 

tomography angiography (CTA) is based on x-ray technique.  It uses the 

concept of capturing the x-ray images of a high concentration iodinated 

contrast material while it flows through the coronary arteries [31]. The 

development of recent generation computed tomography scanners, 

especially those with 64 detector rows or greater, made it feasible to 

achieve adequate resolution to accurately image coronary artery plaque 

and stenosis [32]. A narrowly collimated x-ray beam is used to irradiate a 

slice of the body. The amount of radiation transmitted is collected by a 

number of photo-multiplier tubes. The tubes and detectors are rotated 
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around the body and different views are acquired to form the image. 

Ventricular systolic function, myocardial perfusion and coronary anatomy 

can be assessed using CTA [33]. A cross-sectional image from a cardiac 

CTA showing the right and left ventricles, the interventricular septum and 

the right coronary artery is given in figure 1.5. 

 

 

Figure 1.5 A cardiac CT angiography [34] 

1.4.4 Cardiac Magnetic resonance imaging 

Cardiac magnetic resonance (CMR) imaging uses strong magnetic 

fields to image the functioning of heart. The patient is subjected to a high 

local magnetic field to align the protons in the body. These protons are 

excited by a radiofrequency pulse and detected by coils at the receiver 

[30]. MRI does not utilize any ionizing radiation.  Radio waves redirect 
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alignment of hydrogen atoms that naturally exist within the body. It does 

not cause any chemical changes in the tissues. The hydrogen atoms after 

returning to their usual alignment emit energy. This emitted energy varies 

according to the type of body tissue from which they come. The MR 

scanner captures this energy and creates a picture of the tissues scanned 

based on this information [35]. CMR is useful for studying cardiac 

anatomy and function. A four chamber view from a cardiac MR image 

showing the left and right atria and ventricles is given in figure 1.6. 

 

Figure 1.6 A CMR image [36] 

1.4.5 Nuclear imaging 

In nuclear imaging, a tracer is administered into the patient’s body 

prior to the imaging process [37]. The tracer contains radioactive isotopes. 

These isotopes reach the organs to be imaged through the blood stream. 

Due to radioactive decay of the tracer isotope, gamma rays are emitted. 
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These gamma rays are detected and the image is reconstructed from the 

detected data. Nuclear imaging is useful in myocardial viability studies, 

CAD diagnosis and left ventricular function evaluation. Myocardial 

perfusion imaging (MPI) with induced stress improves the diagnostic 

accuracy [38]. The main imaging techniques under nuclear imaging use 

single photon emission and positron emission principles.  

Echocardiography, CTA and CMR have better spatial resolution 

but nuclear imaging techniques have high sensitivity for tracer detection 

[30]. It enables the evaluation of perfusion, metabolism and neuronal 

function.   

1.4.5.1   Single photon emission computed tomography 

In single photon emission computed tomography (SPECT) 

imaging, the injected tracer emits radiation following radioactive decay 

[39, 40]. A scintillation crystal, along with multiple photomultiplier tubes, 

detects the radiation from the body. Since a single gamma ray is emitted 

per nuclear decay, a collimator is required for correct detection. The 

SPECT camera head is positioned at different angles around the body to 

acquire multiple views of the organ being imaged. The images are then 

reconstructed from the acquired data using different reconstruction 

software. Figure 1.7 shows some reconstructed slices in cardiac SPECT 

imaging [41]. 
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Figure 1.7 Cardiac SPECT image [41] 

1.4.5.2   Positron emission tomography 

Positron emission tomography (PET) imaging requires a positron-

emitting radionuclide to be injected into the human body. Positrons or 

positively charged electrons are emitted from the radioisotopes. During 

positron emission, a proton is converted into a neutron in order to 

stabilize the nucleus. A positron comes in contact with an electron and the 

mass of the two particles is turned into two 511 keV gamma rays. These 

gamma rays emitted with 180 degree angle to each other are detected 

along a coincidence line. The underlying principles of PET is based on 

the annihilation coincidence detection (ACD) of the two 511 keV gamma 

rays [42]. The principle of ACD is detailed in figure 1.8. The gamma rays 

are detected using scintillation crystals and photo multiplier tubes. The 

coincidence circuit produces output when it receives two inputs 
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simultaneously from the gamma ray detectors. The coincidence line 

provides a more accurate detection method for forming images in PET 

[43]. PET image is reconstructed from the acquired data using 

reconstruction algorithms like filtered back projection or ordered-subsets 

expectation maximization. Figure 1.9 shows some reconstructed slices in 

cardiac imaging using PET.   

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 Basic principle of ACD 
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PET imaging uses electronic collimation which results in better 

detection efficiency than SPECT imaging which uses physical 

collimation. The quality of PET image is better than SPECT image but 

the comparative cost of PET imaging is higher than that of SPECT 

imaging. For this reason, SPECT imaging is more popular among 

common population than PET imaging. The isotopes used for SPECT 

imaging have longer half-lives than PET imaging isotopes, allowing a lot 

of imaging time for performing SPECT scan. Moreover, the requirement 

of most currently available tracers in PET imaging makes it impractical 

for their widespread utilization. This limits the clinical use of PET 

imaging.   

 

 

Figure 1.9 Cardiac PET image [41] 
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1.5 Organization of the thesis 

The thesis is structured in seven chapters. 

x Chapter 1 introduces the subject area including the heart 

anatomy, various cardiac imaging modalities, a brief 

summary of the thesis and its organization in various 

chapters.  

x Chapter 2 gives a detailed explanation of the basic imaging 

principles of SPECT, conventional way of displaying 

slices in a cardiac SPECT image, a brief literature review 

mentioning the possibilities of research in the field of 

enhancement and classification of SPECT images, the 

motivation, scope and relevance of the proposed work.  

x Chapter 3 discusses a novel method for improving the 

contrast features of cardiac SPECT images. The method 

makes use of morphological processing. The relevant 

theory behind morphological processing is described. 

Adaptive selection of the size of the structuring element is 

explained in detail. 

x Chapter 4 describes the de-blurring technique suitable for 

cardiac SPECT image. The proposed blur reduction 

method uses total variation regularization. The chapter 

begins with a literature review on the available de-blurring 

techniques, followed by a description on the basic 

deconvolution techniques.  
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x Chapter 5 proposes a variance stabilization based noise 

reduction method suitable for cardiac SPECT images.  

x Chapter 6 introduces an image feature based classification 

technique suitable for cardiac SPECT for identifying 

normal and abnormal heart perfusion. Different pixel 

intensity based features used for classification are 

explained in detail.  

x The summary and conclusions based on the thesis are 

summarized in chapter 7. A brief description of the 

possible future work in the subject domain is also included 

in this chapter.   
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Chapter 2 

 
LITERATURE REVIEW AND PROBLEM 

FORMULATION  
 
 

 
 

 
 
This chapter covers the basic principles of SPECT imaging technique. 

Conventional way of displaying slices in SPECT image is explained.  A 

brief literature review and the prospective research avenues in the field of 

enhancement and classification of SPECT images are addressed. This 

chapter ends with a discussion on the motivation, scope and relevance of 

the proposed work.  
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2.1 Introduction 

MPI using SPECT can be used to assess the pumping ability of 

heart’s LV [44]. It shows how well the blood streams through the heart 

muscle. In conventional medical practice, physicians use visual inspection 

of SPECT images and quantification results of images to reach the 

diagnosis report. Quantification results are obtained from validated 

software packages like Quantitative gated SPECT (QGS) [45, 46] and 

Emory toolbox [47]. In the existing form of diagnostic practice, the visual 

interpretation of SPECT images may result in inconsistent decisions. In 

such situations improving the visual quality of images through 

enhancement techniques and classification of images into normal and 

abnormal hearts using automated methods has been sought by the 

fraternity of radiological practitioners. Image enhancement intends to 

improve the interpretability or perception of information in images for 

human viewers or to provide better input for other automated image 

processing techniques. Evolving research in the field of enhancement and 

classification of SPECT images using image processing techniques also 

aims to overcome some of the inherent clinical limitations in improving 

the quality of such types of images.  

2.2 Cardiac SPECT imaging 

Cardiac SPECT is a nuclear imaging technique used to image the 

functioning of heart. It is useful in diagnosing CAD [48]. It is used as a 

diagnostic tool for the early detection of heart failure. It provides 

assessment of perfusion, function and viability of human heart. Areas of 

abnormal perfusion can be accurately identified from the SPECT images 

of heart. Both rest and stress SPECT tests are performed if required. The 
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images showing blood flow during rest and stress conditions are 

compared to identify living and irreversibly damaged heart tissues.        

2.2.1 Basic principles 

SPECT imaging works on the combined principle of radioactive 

decay and computed tomography.  

Before MPI SPECT scan, a mild radioactive tracer is 

intravenously applied on the patient. The tracer undergoes the 

phenomenon of radioactive decay, whose magnitude is within the 

accepted limits for clinical human application. In radioactive decay the 

nucleus of an unstable atom loses energy by emission of ionizing 

radiations. Such unstable atoms which exhibit the property of radioactive 

decay are known as radionuclides or radioisotopes [49]. The desirable 

properties of an ideal tracer are [39]: 

x It should distribute in the myocardium in linear proportion to 

blood flow. 

x During scan it should provide stable retention in the myocardium. 

x It should be readily available. 

x It should have good imaging characteristics. 

 Technetium-99m is one of the most frequently used radioisotopes 

in nuclear imaging [50]. It is symbolized as 99mTc. It decays with a half-

life of about 6 hours by emitting gamma rays [49].  

The injected tracers are taken up by the heart muscles in 

proportion to blood flow. Areas of myocardium with impaired blood flow 

will have reduced tracer uptake [51]. The uptake of tracer in the heart is 

then assessed by imaging the patient with a gamma camera. The gamma 
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camera is capable of detecting small amounts of radiation emitted by the 

tracer. The detected radiations are converted into images using image 

acquisition and reconstruction algorithms. These images help the 

physicians to see if the blood flow is reduced due to narrowed arteries.  

As an added diagnostic tool, a stress/rest myocardial perfusion 

imaging study [52] is performed optionally to inspect the effect of 

physical stress on the blood flow through myocardium. In this case the 

patient’s heart is imaged using SPECT imaging principles before and after 

exercise. For the stress study the heart rate is elevated to its peak by 

asking the patient to run on a treadmill. A pharmacologically induced 

stress test is given to patients who are unable to exercise.  

2.2.2 Image acquisition 

Special detection hardware and reconstruction software are used to 

detect the emitted radiation and to reconstruct the resultant images 

respectively. The projection information required for SPECT image 

reconstruction is obtained by detecting gamma rays emitted from the 

radiopharmaceutical isotope injected in the body. This data acquisition 

can be static or dynamic. In static acquisition, data required for a single 

image is acquired in a predetermined time interval. In dynamic 

acquisition, data are acquired to reconstruct a sequence of images for a 

cardiac cycle to follow the flow of the radiotracer. Special gamma 

cameras are used for this purpose. The gamma camera is rotated around 

the patient to record gamma rays from different angles. Figure 2.1 shows 

a SPECT gamma camera system. The underlying principles of SPECT 

imaging is given in figure 2.2.  
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Figure 2.1 SPECT gamma camera system[53] 

The basic design of a gamma camera consists of a scintillation 

crystal coupled to an array of photomultiplier tubes [54] as shown in 

figure 2.3. A collimator is attached to the front of the gamma camera head 

to focus gamma rays to the scintillation crystal. There are different types 

of collimators like parallel-hole collimator, diverging multi-hole 

collimator and pinhole collimator. For imaging a large object with a small 

camera, a diverging multi-hole collimator is used. A pinhole collimator is 

used for imaging small organs with high resolution. A parallel-hole 

collimator, which is most commonly used in nuclear imaging [55, 56] 

consists of a number of holes in a lead plate. The gamma rays entering 

along the direction of the holes reach the crystal and all other rays are 

absorbed by the lead as shown in figure 2.4. The collimator helps to avoid 

obliquely incident gamma rays which may blur the image. Low energy 

high resolution collimators are usually used with 99mTc tracers [57].  
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Figure 2.2 Underlying principles of SPECT imaging 

 

 

Figure 2.3 Basic elements of a gamma camera head 
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Figure 2.4 A parallel-hole collimator attached to scintillation crystal.  

The spatial resolution, full width half maximum, depends on the 

width of the average intensity distribution from a point source placed at a 

distance d from the collimator. If Rs denotes the spatial resolution, c the 

diameter of the collimator hole, t the thickness of the collimator and b the 

distance from the back of the collimator to the scintillation crystal then 

the Rs is given by equation 2.1. 

                                           
t

bdtcRs
)( ��

                                       (2.1) 

 The most commonly used acquisition mode is step-and-shoot 

mode. ECG-gated acquisition is also possible in this mode. The camera 

moves to a position, stops and acquires data and then moves to the next 

position. Image data is not acquired during the motion of the camera. The 
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projection images are usually acquired over 180o arc on a matrix of 64*64 

or 128*128 pixels.  

2.2.3 Image reconstruction 

The gamma camera is orbited around the patient’s body to acquire 

data at regularly spaced angles. The acquired data are processed and 

stored as two dimensional reconstructed images. The process of putting 

together the acquired data from different angles to form the organ’s image 

is called image reconstruction. The reconstructed image is the discrete 

representation of a cross section of the isotope distribution within the 

organ [58]. There are reconstruction algorithms to calculate a three 

dimensional radioactive distribution from the acquired projection data 

[59]. In nuclear medicine, image reconstruction is performed using step-

by-step mathematical procedures implemented in a computer. Image 

reconstruction can be done either by analytical algorithms or iterative 

algorithms. Filtered backprojection reconstruction is an example where 

analytical algorithm method is applied and iterative reconstruction 

method uses iterative algorithms.  

2.2.3.1   Iterative reconstruction method 

 Iterative algorithms find solution by successive estimates [60]. 

The projection noise can be handled and the imaging physics can be 

modeled in an easier way in iterative reconstruction method. This makes 

it popular in nuclear medicine [61]. Figure 2.5 shows a schematic 

description of the iterative reconstruction method [62].  
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Figure 2.5 Schematic illustration of iterative reconstruction algorithm 

An initial estimate of the image, usually a simple image with 

uniform statistical distribution, is set. Then the projections that would 

have been measured for the initial image estimate is computed using a 

mathematical process called forward projection. Computed projections 

are compared with recorded projections. The image estimate is updated 

using the comparison results. This compare-and-update process is 

repeated until the comparison results fall below a specified predetermined 

level. Statistical algorithms like maximum likelihood expectation 

maximization (MLEM) [63] or ordered subsets expectation maximization 

(OSEM) [64, 65] and algebraic methods like the algebraic reconstruction 

technique (ART) [66] fall under the category of iterative reconstruction 

methods. MLEM algorithm is most frequently used in nuclear medicine 

imaging. Poisson noise is assumed to be present in the projection data and 
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a set of linear equations are solved to obtain an image with nonnegative 

pixel values in MLEM algorithm.   

2.2.3.2   Filtered backprojection method  

In filtered backprojection (FBP) method the projection dataset is 

back projected and filtered to eliminate blurring [67].  A straight line 

through the 3D object being imaged is represented by the projection row 

data. The projections are run back through the image. Back projection 

technique redistributes the count number at each point back along a line 

from which they were originally detected. To eliminate the problem of 

blurring the projections are filtered before being back projected onto the 

image matrix.  A ramp filter is usually used for filtering.   

2.2.4 Conventional slice display of cardiac SPECT images 

Three sets of image slices are reconstructed and displayed in 

cardiac SPECT images. The planes of cut for imaging are chosen to get a 

view of the heart perpendicular to the long axis of the left ventricle, a 

view of long axis heart slices in the horizontal plane and a view of long 

axis heart slices in the vertical plane. These slices are called short axis, 

horizontal long axis and vertical long axis slices respectively [68]. The 

planes are shown in figure 2.6. In the figure RV represents the right 

ventricle and LV represents the left ventricle.  

The arrangement of different slices [68] to depict cardiac 

functioning is shown in figure 2.7. The short axis slices are arranged from 

apex to base. The display starts with the apical short axis slice in the top 

left corner with progression of slices toward the heart base from left to 

right. The vertical long axis slices are displayed with septal slices on the 
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left, progressing through the mid-ventricular region to the lateral wall 

slices towards right. The horizontal long axis slices are displayed from 

inferior wall to anterior wall.   

 

 

Figure 2.6 Standardized planes of cut for reconstructed SPECT slices [68] 
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Figure 2.7 Reconstructed SPECT slices 
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Figure 2.8 shows a slice with abnormal perfusion in the real 

cardiac SPECT image in the short axis view. It is a two-dimensional (2D) 

image which shows the amount of tracer uptake in the corresponding 

plane at an instant of time in the gated heart cycle. The bright region 

represents the presence of tracer. A short axis view slice with normal 

perfusion is shown in figure 2.9.  

 

Figure 2.8 An image slice with abnormal perfusion in the short axis view 

 

Figure 2.9 An image slice with normal perfusion in the short axis view 

 



Enhancement and Classification of Cardiac SPECT Images using Pixel Intensity Based Features 
 

 

32 
 

2.3 Literature review and research potential in the field 

of enhancement of SPECT images 

Different imaging techniques are currently in use for a reliable 

assessment of heart functionality. SPECT perfusion imaging is a well-

developed technique for diagnostic assessment of coronary heart diseases. 

The technique, though initially developed in the 1950’s, has come to 

widespread use only for the past 35 years [69, 70].  Currently it represents 

about 33% of all stress perfusion imaging performed in United States and 

the percentage is growing. The extent and severity of coronary diseases 

can be assessed by the presence and extent of perfusion defects [71]. 

Cardiac SPECT images are very often used to study the functionality of 

heart. These images, notwithstanding their wide acceptance, present cases 

of bad contrast, high amount of noise and blur. One method before the 

physicians to enhance the image quality is to increase the acquisition time 

[72]. But the efficacy of this method is limited, as it requires the patient to 

remain stock-still during the acquisition period. Another method is to 

increase the dose of radioactive tracer. But in this case dosimetry 

constraints have to be carefully taken care of [73]. More powerful camera 

systems can also be used for better images [54], which demand for a 

much better financial and technical set up. These limitations present a 

potential challenge for a researcher in the image processing domain.  

From a SPECT perfusion image a nuclear medicine expert can 

differentiate between a scar, a live heart muscle that doesn’t have enough 

blood supply and a healthy heart muscle with adequate blood supply [74]. 

Due to the imaging techniques involved, images present low contrast, 

high amount of noise and blur [75, 76]. Enhancement techniques result in 
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improved images so that the nuclear medicine physicians can effectively 

distinguish areas even with low tracer content. 

Considering the practical and technical constraints posed by the 

clinical methods, software solutions are being proposed to improve the 

quality of images.  The literature describes different enhancement 

algorithms suitable for medical images, which results in modified image 

output with more visual information [77, 78]. Wang et al. [79] proposed a 

technique involving segmentation using thresholding and region growing. 

Falk et al. [80] developed a mean field annealing method for the 

enhancement of nuclear images, which demands a longer computational 

time. Rajabi et al [81] and Lyra et al [82] compared different filters for the 

enhancement of SPECT images. Many authors proposed restoration 

methods utilizing constrained de-convolution [83] and supervised blind 

de-convolution [84] in nuclear images. But this results in the introduction 

of noise in SPECT images. Yousif et al [85] proposed a combined 

approach of top-hat filtering and de-blurring for improving the quality of 

nuclear images. The deblurring stage introduces noise in SPECT image.   

The choice of a particular method, as explored in the existing 

literature, is a compromise between information suppression, change in 

contrast and extent of noise reduction. But ideally, the enhancement 

technique should preserve region boundaries and should not generate 

artefacts. There is therefore, the need for a solution which improves the 

image quality from a diagnostic perspective, while retaining the trueness 

of its information. This, in turn, would aid the attending physician to have 

a more accurate visualization on how the heart functions.  
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2.4 Literature review and research potential in the field 

of classification of cardiac SPECT images 

  The idea of computer assisted systems in cardiac diagnosis field 

has gained considerable research attention in the past few years [86-89]. 

Different classification methods are available in literature for identifying 

normal and abnormal heart functioning. They include methods using 

perfusion images [90] and bull’s eye scintigrams [91].  

The first step in cardiac image interpretation includes visual 

analysis of the perfusion images by the nuclear medicine expert. As the 

manual interpretation is a difficult task, experts prefer to use adequate 

computer aided techniques to assist judgement. With faster computation 

becoming viable, accessible and cheap, research in the field of computer 

aided diagnosis has kept its momentum going [92, 93]. Artificial 

intelligence based methods have been investigated as a way to assist 

myocardial perfusion imaging studies over the past several years. The 

development of methods based on neural network principles [94-96] and 

case-based techniques [97] have assisted myocardial perfusion planar and 

SPECT studies. A systematic validation of the diagnostic performance of 

computer aided system for the interpretation of SPECT studies has also 

been carried out in literature [98]. The use of SPECT imaging for the 

assessment of cardiac health continues to grow at a furious pace. It still 

demands for efficient tools for assisting physicians in quick 

interpretations, pinning it as a promising research domain. 

A physician uses perfusion images along with the results from 

quantification software to make a conclusion on whether the heart’s 
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pumping ability is normal or abnormal. If an image processing algorithm 

is developed which can predict the pumping ability of the heart from the 

perfusion images, it could serve as a computer assisted diagnostic tool to 

aid the physicians for making an initial interpretation of cardiac health 

without using expensive quantification software.  

2.5 Motivation 

Accurate and timely diagnosis of heart functioning disorders can 

help in reducing related human mortality. Recent advances in cardiac 

imaging modalities allow more accurate quantification and analysis of 

cardiovascular system. Among these modalities nuclear imaging 

techniques play an important role. Both SPECT and PET come under 

nuclear imaging techniques. Due to the lower cost and better availability 

of tracers, cardiac SPECT imaging is more popular, though PET imaging 

provides high quality images. Methods assisting better diagnostic 

visualization and interpretation of SPECT images are extremely important 

for increasing the clinical use of SPECT imaging.  

Most of the enhancement methods, described in literature, focus 

on one or the other quality of the image. The advantage is that the focused 

quality is improved but the disadvantage is that some other quality may 

get affected. For example the region boundaries may get affected while 

reducing noise or some artefacts may get generated while improving 

contrast. This presents itself a substantial case for the development of 

enhancement techniques to improve the image quality, while retaining the 

trueness of its information. Moreover the pixel intensity distribution is 

different for different slices of SPECT image depending on the tracer 

content. An enhancement technique which works well for a high tracer 



Enhancement and Classification of Cardiac SPECT Images using Pixel Intensity Based Features 
 

 

36 
 

content slice may not give satisfactory result for a low tracer content slice. 

In an effort to address these issues, the thesis proposes image dependent 

methods to enable an improved outcome in SPECT image enhancement.  

Most of the classification algorithms described in literature uses 

the results from some quantification software even for initial diagnosis. 

The thesis proposes a classification method using features extracted from 

the reconstructed SPECT images without using any quantification 

software.    

2.6 Scope and relevance 

Heart disease is a major health issue which is constantly on the 

rise all over the world with a pattern of incidence dominating in certain 

geographical locations [99]. The current estimates by Shraddha et al. 

[100] indicate that mortality rate due to heart disorders tops the list in the 

number of deaths in India due to non-communicable diseases. Heart 

disorders are expected to be the fastest growing of human health maladies 

by 2015 [101]. Figure 2.10 shows that the incidence has gone up 

significantly for people in the age group 20-69 and projects the alarming 

situation in the Indian population.   

Smoking, diabetes, hypertension, abdominal obesity, psychosocial 

stress, unhealthy diet, and physical inactivity contribute to the risk factors 

[102]. Some of the challenges that face cardiac care in India are 

inadequate healthcare infrastructure, lack of accessibility to modern 

facilities and the high price tagged for efficient and effective diagnosis 

and treatment.  
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Figure 2.10 Number of cases of heart ailments in different age groups 

among Indian population 

Cardiac SPECT is a widely used imaging technique for effective 

diagnosis of heart disorders. In the existing form of diagnostic practice, 

the visual interpretation of SPECT images may result in inconsistent 

decisions. In such situations, improving the visual quality of images 

through enhancement techniques and classification of images into normal 

and abnormal hearts using automated methods has been sought by the 

fraternity of radiological practitioners. Existing classification algorithms 

use some quantification software results for identifying normal and 

abnormal heart functioning. This demands more from the financial side of 

the patient. The scope of this work is to improve the quality of cardiac 

SPECT images by improving contrast, reducing noise and reducing blur 

without compromising on its information content.  Separate contrast 

improvement, denoising and deblurring algorithms are developed so that 

they can be used independently or in combination, depending on the 
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quality need of the SPECT image. The work also aims at identifying 

normal and abnormal heart functioning from the images itself without 

using any quantification software. The images are classified into those of 

normal and abnormal hearts. The intent of this effort is to facilitate a more 

well-informed interpretation of images by the cardiologist. Application of 

these techniques would add value to the existing image processing 

techniques in medical imaging, leading to a more accurate and 

accomplished diagnosis of cardiac maladies and therefore contribute to 

the upkeep and well-being of the whole society. 

The thesis proposes three independent enhancement techniques 

and one classification technique. The novelty of the enhancement 

techniques presented in the thesis is that all the three methods work 

equally well on all types of SPECT image slices (normal and abnormal 

perfusion short axis and long axis slices). The developed algorithms 

involve steps to analyze each slice and the parameters are chosen 

accordingly. The quality of the image is enhanced retaining their data 

integrity. The novelty of the classification phase is that the proposed 

features mimic the visual features that are being used by a physician to 

identify heart functioning. Then a neural network classifier is employed to 

reflect the decision of human brain.       

2.7 Database used 

 Cardiac SPECT images were obtained from Medical Trust 

Hospital, Kochi, India. The images were captured using GE machine. 

Around 100 images were collected for experimental analysis. The results 

were verified by the nuclear medicine physicians, Dr. Kuruvila Varkey of 
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Bharat Scan centre, Kottayam, India and Dr. Shamily Goerge of Medical 

Trust hospital, Kochi, India.  

 Sample images were also sourced from the image database of case 

studies published by Spectrum dynamics medical [103].  

 For all the experiments included in the thesis grey scale images 

were used. 
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Chapter 3 

 

ENHANCEMENT OF CONTRAST IN 
CARDIAC SPECT IMAGES 

 
 
 

 

 
An image processing technique based on morphological processing has 

been developed for improving the contrast features of cardiac SPECT 

images. The method utilizes the concept of adaptive technique in 

morphological processing.  The approach is unique in its use of adaptive 

neighbourhood for the processing of different image regions. Qualitative 

and quantitative evaluations prove the effective performance of the 

proposed algorithm in enhancing cardiac SPECT images.  
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3.1 Introduction 

The application of radioactive isotopes for imaging human body 

parts developed into nuclear imaging technology, including SPECT and 

PET [104]. A cardiac SPECT image provides a visual representation of 

the heart functioning [105, 106].  Both gray scale and color images can be 

generated by cardiac SPECT systems. A nuclear medicine physician 

visually analyses the SPECT images and interprets them, guided by the 

variations in color intensity (in the case of color images) or gray scale 

intensity (in the case of gray scale images). Differences in intensity in 

image parts corresponding to various levels of radioactive uptake in the 

organ results in image contrast. Visual inspection and interpretation of 

SPECT images is a challenging task as there is random scattering of 

photons during the image reconstruction process which affects its 

contrast. The amount of radiopharmaceutical determines the major 

component of image contrast. Recognizing even a gradual change in gray 

scale intensity, aids in the interpretation of images and helps in 

identifying small defects and leads to better inter-observer agreement. 

Contrast improvement is being used in the field of medical image 

enhancement to improve its visual appearance so that pixel intensity 

changes can be easily identified [107].   

The main function of contrast enhancement is to improve the 

interpretability of information contained in the image for a human 

observer. Contrast enhancement makes it easier to separate the dark and 

bright areas in the image. In the case of cardiac SPECT images the 

functioning of the heart is analyzed by looking into the pattern of bright 

area with respect to the dark area. So contrast improvement employing the 

correct methods helps in the true interpretation of SPECT images.  
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3.2 Literature survey 

  The literature describes different algorithms for medical image 

enhancement, which resulted in modified image output with more visual 

information [78]. Histogram equalization [108, 109] was a popular 

technique to perform contrast enhancement. The method was simple and 

effective in changing the brightness of the image to provide a global 

enhancement. But visual artefacts got introduced in the enhanced image 

which led to incorrect interpretation of images.  

 In brightness preserving bi-histogram equalization [110], the 

image was divided into two sub images and histogram equalization was 

applied individually. The mean brightness of the image was preserved, 

thus providing a natural enhancement effect. 

 Ibrahim et al. [111] proposed a brightness preserving dynamic 

histogram equalization method to obtain the enhanced image with mean 

intensity almost equal to the mean intensity of the input image. Brightness 

preserving dynamic fuzzy histogram equalization method developed by 

Sheet et al. [112] was a modification of brightness preserving dynamic 

histogram equalization technique which improved the brightness 

preserving and contrast enhancement abilities at a low computational 

complexity. Images were represented and processed in the fuzzy domain.    

  Another method to enhance the local contrast of an image is by 

the use of adaptive histogram equalization [113]. In contrast limited 

adaptive histogram equalization (CLAHE), the contrast of an image was 

enhanced by applying contrast limited histogram equalization on small 
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data regions called tiles rather than the entire image [114]. The resulting 

neighbouring tiles were then stitched back smoothly using bilinear 

interpolation. By limiting the contrast in the homogeneous region, noise 

amplification was avoided. Shome et al. [115] used CLAHE to enhance 

diabetic retinopathy images.  

 Ahmed et al. [116] developed a method for enhancing an image 

using three steps. Median filtering was employed to reduce noise, unsharp 

mask filtering was used to sharpen edges and CLAHE was used to 

enhance contrast.    

 Edgar et al. [117] proposed a method to overcome the problem of 

over enhancement produced by simple histogram equalization. With mean 

as threshold, the image histogram was divided into two sub-histograms 

and their cumulative distribution functions were replaced with two 

smooth sigmoids. The method performed well in terms of contrast 

enhancement and brightness preservation.   

  A technique which automatically extracted nuclear boundaries by 

segmentation using thresholding and region growing has been explained 

by Wang et al. [79]. Falk et al. proposed a method for the enhancement of 

noisy nuclear images using mean field annealing [80]. In both these 

methods, the work was accomplished on planar images. A similar method 

was proposed by Wang et al. [118] for the enhancement of gated cardiac 

nuclear images. It used a combination of mean field annealing and 

gradient edge detection and the work was done on images in gray scale. 

Mean field annealing gave good results on planar images but demands for 

a longer computational time when it comes to the reconstructed SPECT 

slices.   
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Hanan et al. [119] employed a method suitable for the 

enhancement of medical images including nuclear images. The method 

used median filtering for removing noise, unsharp mask filter to sharpen 

the edges and CLAHE for contrast improvement. The method improved 

the visual quality of the image.  

In the histogram of a normal perfusion slice the pixel intensities 

corresponding to tracer content region is clearly visible and it is possible 

to enhance that particular region. For abnormal perfusion slices the 

histogram varies very much for different slices. So histogram based 

methods generally do not give satisfactory results for a SPECT image 

which contains different slices.       

3.3 Preliminary concepts in morphology 

Morphological image processing [120] is an important tool for 

image enhancement. It involves the use of mathematical morphology for 

describing quantitatively the geometrical information of image objects. 

Morphology was introduced in the late 1960s [121] and since then it has 

been used in the field of image processing for various applications. 

Mathematical morphology is expressed in terms of set theory. In 

mathematical morphology, the image and the objects in the image are 

treated as sets. An image A is represented by a two dimensional set of 

pixels in a rectangular format where, A(i,j) is a pixel at coordinate (i, j) in 

the image A. In morphological image processing the image is processed 

by a series of morphological operations using another set known as a 

structuring element which exploits the geometrical information in the 

image. The structuring element S is also represented by a two dimensional 

set of pixels. The basic morphological operations are dilation, erosion, 
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opening and closing. The dilation of a binary image A by the structuring 

element S, where A and S are members of the two dimensional integer 

space Z2, is given in equation (1) and equation (2). 
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The erosion of A by S is given in equation (5). 

                                  > @^ `ASzSA z � 4                                              (5) 

The opening and closing of set A by the structuring element S is defined 

in equation (6) and equation (7) respectively. 

                                 � � SSASA �4 R                                                  (6) 

                                 � � SSASA 4� x                                                  (7) 

The dilation of the gray scale image A, with domain DA, by the 

structuring element S, with domain DS, is given in equation (8). 

                                � �� � max, MqpSA  �                                                (8) 
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 Mmax is the maximum value of f(p-x,q-y) + S(x,y)/(p-x),(q-y) € DA ;(x,y) 

€ DS  

The erosion of the gray scale image A, with domain DA, by the structuring 

element S, with domain DS, is given in equation (9).  

                                    � � min),( NqpSA  4                                               (9) 

  Nmin is the minimum value of f(p+x,q+y) - S(x,y)/(p+x),(q+y) € DA ;(x,y) € 

DS 

3.4 Proposed method 

Cardiac SPECT images in gray scale were considered while 

developing methods for contrast improvement. The basic block diagram 

showing different stages in the proposed method is given in figure 3.1.  

 

 

 

 

 

 

 

 

Figure 3.1 Block diagram showing the basic stages in the proposed 

method 
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 The main stages in the proposed method are selection of the size 

of the structuring element suitable for each slice adaptively and 

morphological processing of each slice with the corresponding structuring 

element. 

3.4.1 Adaptive selection of the size of structuring element 

The whole image itself is divided into many slices, Tgi, each with 

lower dimension. Each slice shows the distribution of tracer in a heart 

region at a specific time in a given view. Each slice is then processed 

morphologically by using structuring elements. The structuring element 

keeps moving through the slice and on its way, operates on pixels in a 

predefined neighbourhood. If the size of this neighbourhood area is 

chosen as the same for every slice throughout the image, certain intricate 

portions may not be processed as required. Since cardiac nuclear images 

depict the pumping action of heart, the nature of the image slices will be 

different depending on the amount of tracer present. In order to prevent 

over enhancement and under enhancement of image regions, the size of 

the structuring element is chosen adaptively. The slices are processed 

using structuring elements whose sizes depend on their own nature. 

Figure 3.2 shows the steps in determining the size of structuring element.  

An analysis of pixels is made for each slice to get an idea about 

the amount of tracer content and the size of the structuring element is 

chosen accordingly, to give a better result. Analysis is done using binary 

thresholding. Each slice is converted into a binary image. The output 

binary image has values of 1 (white) for all pixels in the input image with 

intensity greater than a given level (for representing the presence of 
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tracer) and 0 (black) for all other pixels. Figure 3.3 shows the original 

image and the image after binary thresholding. 

The binary thresholded image is analyzed to get an estimate of the 

pixel count corresponding to the tracer content region. The size of the 

structuring element is chosen such that the slices with lower pixel count 

are processed in a bigger neighbourhood. This helps in enhancing even 

the smaller features in the image. At the same time over enhancement of 

slices with higher tracer region is taken care of by choosing smaller 

neighbourhood. 

 

 

 

 

 

 

 

Figure 3.2 Steps in determining the size of structuring element 

Algorithm: 

For a grey scale image with intensity values in the range from 0 to 

255, 159 is chosen as the threshold value to convert it into a binary image. 

To fix this threshold, short axis and long axis slices of 15 patient cases 

were analyzed to get the pixel values at blood flow region, myocardial 

region without blood flow and background. After converting those patient 
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case images to binary, the number of pixels in the normal and abnormal 

perfusion slices was analyzed to fix the number threshold. 

Step 1: Read the SPECT image. 

Step 2: Read the first slice. 

Step 3: Check the intensity values of each pixel. 

Step 4: If the intensity value is greater than the threshold, change the pixel 

value to 1; otherwise 0. This binary image gives the tracer content 

region. 

Step 5: Check the number of pixels in the tracer content region. 

Step 6: If the number is greater than the number threshold, fix a smaller 

size for the structural element; otherwise fix a bigger size.  

Step 7: Read next slice and go to Step 3.  

3.4.2 Morphological processing 

Opening and closing are morphological operations that operate on 

features smaller than the size of the structuring element. Morphological 

processing is carried out in two stages as shown in figure 3.4.  

In the first stage a morphologically opened image slice, denoted 

by Tgi-o, is subtracted from the original image slice to get pixels, denoted 

by Tgi-th, that are removed by opening, as in equation (10) and (11).  

                                       � � SSTT giogi �4 �                                            (10) 

                                         ogigithgi TTT �� �                                            (11) 

 This process extracts light features that are smaller than the structural 

elements. These pixels are then added to the original image slice to 

enhance the contrast. 
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Figure 3.3 SPECT image slices and binary thresholded image slices 
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Figure 3.4 Morphological processing 

 

 In the second stage the original image slice is subtracted from a 

morphologically closed image, denoted by Tgi-c, to get pixels which 

represent intensity troughs in the image slice, denoted by Tgi-bh.  

                                         � � SSTT gicgi 4� �                                         (12) 

                                           gicgibhgi TTT � ��                                          (13) 

 This process extracts dark features which are then subtracted from the 

contrast enhanced image, as in equations (12) and (13) above. 
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3.5 Performance measures 

x Contrast improvement  

Factors like limited number of counts and scatter of photons 

mainly contribute to the degradation of light features in SPECT 

images when compared to the dark features. Decreased contrast 

results in poorer visibility of fine details in the image. Contrast 

enhancement of such light features helps in improving the quality 

of images to a great extent. The increase in contrast is measured 

using Michelson’s formula [122] which is considered the best 

option for the images where dark and light features take up similar 

fractions of area. Contrast is measured using equation (14). 

                                        
minmax

minmax

II
IIContrast

�
�

                              (14) 

Imax is the maximum intensity and Imin is the minimum intensity. 

Contrast improvement (CI) is calculated using equation (15). 

                         
original

originalenhanced

contrast
contrastcontrast

CI
�

                     (15) 

x Mean square error  

This indicates the mean square error (MSE) in the pixel count 

between the original image and the enhanced image that 

contributes to the tracer content region. This must give a minimum 

value to ensure that the quantitative information is preserved. 
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x Entropy difference  

Entropy is a statistical measure of randomness that can be used to 

characterize the texture of the input image [123]. In order to 

preserve quantitative information the entropy difference (ED) 

between the original image and the enhanced image must be a 

minimum value. 

x Structural similarity index measure  

Structural similarity index measure (SSIM) is used for assessing 

the quality of images. It is based on the property of human visual 

system for identifying the degradation of structural information 

[124]. SSIM value varies between 0 and 1. The higher the value, 

the more similar is the enhanced image to the original image in 

terms of structural information.   

x Peak signal to noise ratio 

Peak signal to noise ratio (PSNR) is defined as given in equation 

(16). 

                              ¸̧
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The maximum intensity in the image is Intmax . The higher the 

value of PSNR, the better is the quality of the image in terms of 

signal to noise ratio. 
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x Blur metric 

Blur metric (BM) gives the amounts of difference in blur between 

the blurred image and the de-blurred image. This measure is based 

on the discrimination between different levels of blur perceptible 

on the same image [125]. The lower the value of blur metric, the 

better is the quality of the image. 

3.6 Simulation results 

The performance of the proposed method in enhancing cardiac 

SPECT images has been evaluated qualitatively and quantitatively. 

Images from Medical trust hospital, Kochi database were used for 

experimental analysis.  

Figure 3.5 shows the SPECT image slices corresponding to low 

tracer content region and the image slices enhanced using the proposed 

method. The high tracer content region slices and the enhanced slices are 

shown in figure 3.6.  The resultant image has registered an improvement 

in terms of its contrast, without loss in information as seen in figure 3.7.  

Figure 3.8 shows a cardiac SPECT image showing normal 

perfusion and the image enhanced using proposed method. Figure 3.7 

shows a cardiac image with some abnormality and figure 3.8 shows a 

cardiac image with normal functioning. The difference lies in the amount 

of tracer content (shown by bright pixels in the image) present in the 

myocardium. It is observed that the visual quality of the output image has 

increased in both normal and abnormal perfusion cases as a result of the 

application of the proposed image dependent method. 
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Figure 3.5 Cardiac SPECT image slices (low tracer content 

region) and the corresponding enhanced slices 

using the proposed method 

 

              

Figure 3.6 Cardiac SPECT image slices (high tracer content 

region) and the corresponding enhanced slices using 

the proposed method 

Simulations were carried out to evaluate the performance of the 

proposed scheme quantitatively. Table 3.1 presents the performance 

measure values for the enhanced images shown in figure 3.7 and figure 

3.8. 
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Figure 3.7 An abnormal perfusion SPECT image and SPECT image 

enhanced using the proposed method 

Table 3.1 Performance measure values for the image enhanced using the 

proposed method 

 Normal perfusion 
image 

Abnormal perfusion 
image 

CI 0.4307 0.3799 

ED 0.0008 0.0180 

MSE 0.0031 0.0019 

SSIM 0.9558 0.9822 

PSNR 29.9103 33.3124 
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Figure 3.8 A normal perfusion SPECT image and SPECT image 

enhanced using the proposed method 

Tables 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7 show the performance 

comparison of the proposed method using morphology with other contrast 

improvement techniques in terms of CI, ED, MSE, SSIM, PSNR and BM 

respectively. Histogram equalization method [109], CLAHE [115], 

brightness preserving dynamic fuzzy histogram equalization (BPDFHE) 

[112], bi-histogram equalization using adaptive sigmoid function 

(BHEASF) [117] and CLAHE with pre-processing [119] are used for 

comparison. 40 real cardiac images, taken from 40 different patients 

under medical diagnosis in Medical trust hospital, were used to prove the 

efficiency of the proposed method in terms of the performance measures 

described in section 3.5. 17 patients had normal functioning of the heart 

and 23 patients had myocardial perfusion defects. 960 x 510 sized images, 

each with 40 slices were used for the experiments. 
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Table 3.2 Performance comparison in terms of CI 

           Method CI 

Histogram equalization 0.4281 

CLAHE 0.2503 

BPDFHE 0.2366 

CLAHE with pre-processing 0.1334 

BHEASF 0.1209 

Proposed method 0.4071 

 

Table 3.3 Performance comparison in terms of ED 

Method ED 

Histogram equalization 0.8288 

CLAHE 0.1770 

BPDFHE 0.4759 

CLAHE with pre-processing 0.0531 

BHEASF 0.5441 

Proposed method 0.0388 
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Table 3.4 Performance comparison in terms of MSE 

Method MSE 

Histogram equalization 0.7689 

CLAHE 0.0148 

BPDFHE 0.0178 

CLAHE with pre-processing 0.0075 

BHEASF 0.0082 

Proposed method 0.0013 

 

Table 3.5 Performance comparison in terms of SSIM 

Method SSIM 

Histogram equalization 0.1692 

CLAHE 0.7485 

BPDFHE 0.3861 

CLAHE with pre-processing 0.8975 

BHEASF 0.9841 

Proposed method 0.9802 
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Table 3.6 Performance comparison in terms of PSNR 

Method PSNR 

Histogram equalization 5.1720 

CLAHE 26.3131 

BPDFHE 23.8213 

CLAHE with pre-processing 25.8507 

BHEASF 32.9724 

Proposed method 31.9325 

 

Table 3.7 Performance comparison in terms of BM 

Method BM 

Histogram equalization 0.3033 

CLAHE 0.4318 

BPDFHE 0.3105 

CLAHE with pre-processing 0.4475 

BHEASF 0.3967 

Proposed method 0.3024 

 

Histogram equalization is a popular and simple contrast 

improvement technique. Since the enhanced images suffer from visual 
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artefacts, traditional histogram equalization is unfit for application in 

medical images [109]. In the case of cardiac SPECT images also, the 

results proved the same. Even though CI was more for histogram 

equalization as shown by the values in table 3.2, ED, MSE, SSIM and 

PSNR values were not satisfactory as shown in tables 3.3, 3.4, 3.5 and 

3.6. These measures show that basic information was lost by performing 

histogram equalization.  

Table 3.3 and table 3.4 show that ED and MSE values were less 

for the proposed method as compared to the other methods. CLAHE with 

preprocessing also gave comparable values. This emphasizes the 

information preserving capability of the proposed method.  

Even though BHEASF method gave the highest SSIM and PSNR 

values (0.9841 and 32.9724 respectively), ED and MSE values (0.5441 

and 0.0082 respectively) show that information was less preserved by the 

method. The proposed method gave comparable values for SSIM and 

PSNR (0.9802 and 31.9325 respectively) while giving least values for ED 

and MSE (0.0388 and 0.0013 respectively).  

The value of BM in table 3.7 reveals that a small amount of blur 

also got added to the image by all the methods. The proposed method 

added the lowest level of blur as shown by the BM values. But the added 

blur did not affect the visual quality of the image as observed in figure 

3.9. The edges of the tracer content region were clearly visible for the 

images enhanced using the proposed method.  

 



Enhancement and Classification of Cardiac SPECT Images using Pixel Intensity Based Features 
 

 

63 
 

             

             (a)                                                              (b)  

               

                 (c)                                                         (d) 

Figure 3.9 (a) Image before enhancement (b) Image enhanced using 

CLAHE (c) Image enhanced using BHEASF (d) Image 

enhanced using proposed method 

The proposed method, which uses an adaptive neighbourhood for 

the operation of structuring element, is also compared with the method 

which uses the same morphological operations and a fixed 

neighbourhood. 
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For a fixed neighbourhood of smaller size the information content 

was preserved but the amount of contrast enhancement was very less. 

Figure 3.10 shows the comparison between the proposed adaptive 

neighbourhood method and fixed neighbourhood method in enhancing 

contrast. A good amount of contrast enhancement was achieved using a 

larger neighbourhood but with a variation in the information content. The 

graph is plotted between CI and nth image for 5 images. 

 

 

Figure 3.10 Comparison of CI in images enhanced using fixed 

neighbourhood morphological processing and proposed 

adaptive neighbourhood method 

Figure 3.11, figure 3.12 and figure 3.13 show a comparison 

between the proposed adaptive neighbourhood method and fixed 

neighbourhood method in terms of ED, MSE and SSIM. The ED and 

MSE values were less for the proposed method as compared to the fixed 

neighbourhood method. The SSIM plot shows that images enhanced using 
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the proposed adaptive neighbourhood method were structurally more 

similar to the original image than the images enhanced using a larger 

fixed neighbourhood. Using adaptive selection of size of the structuring 

element, a considerably good amount of contrast enhancement was 

achieved while preserving the information content as indicated by the ED, 

MSE and SSIM values. 

 

 

Figure 3.11 Comparison of ED between original image and enhanced 

using fixed neighbourhood morphological processing and 

proposed adaptive neighbourhood method 
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Figure 3.12 Comparison of MSE in images enhanced using fixed 

neighbourhood morphological processing and proposed 

adaptive neighbourhood method 

 

Figure 3.13 Comparison of SSIM in images enhanced using fixed 

neighbourhood morphological processing and proposed 

adaptive neighbourhood method 
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Being a medical image the trueness of the enhanced image is also 

an important issue to be taken care of. Evaluation for validation of 

trueness of the enhanced image with respect to the original image was 

also done for the proposed method. A most commonly reported 

quantitative measure obtained for cardiac SPECT images is LVEF. LVEF 

value must not change as a result of enhancement. It is calculated from 

the volume of blood in the LV, which in turn, is computed from the pixel 

counts representing tracer content region. If these pixel counts for the 

enhanced image, stay the same or within a statistical acceptance value the 

method can be validated for its trueness to the original image data. The 

statistical method of ‘paired samples t test’ [126] was used to validate the 

trueness of the enhanced image. The test gave a p value which shows that 

the null hypothesis can be accepted at 5% significance level. The null 

hypothesis states that there is no significant difference between the pixel 

counts corresponding to blood flow in the images before and after 

enhancement.     

3.7 Summary 

 This chapter presented an image dependent contrast enhancement 

method for cardiac SPECT images. The type of the image region was 

analyzed and the size of the structuring element was selected. 

Morphological operation was carried out subsequently in two stages. 

Since the size of the structuring element is dependent on the image 

region, this approach helped to meet the enhancement requirements of 

different image regions. Performance evaluations of the proposed method 

with respect to improvement in contrast and retention of original image 

information were executed on real cardiac images. The effectiveness of 

the method against the existing comparable techniques was studied. The 
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experimental results prove that the method enhanced nuclear images 

retaining their data integrity with quantitative evidence of recording an 

improvement over other techniques used for comparison.  
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Chapter 4 

 

ENHANCEMENT OF CARDIAC SPECT 
IMAGES BY DEBLURRING 

  

 

This chapter proposes a total variation regularization based blur 

reduction method for the restoration of blurred cardiac SPECT images. 

This is achieved in two main stages. A maximum likelihood estimate of the 

distortion operator or the point spread function is computed from the 

image region. The number of iterations for maximum likelihood operation 

is decided by Kolmogorov-Smirnov test so that the noise added is 

minimal. Then total variation regularization filtering is performed. Pre-

filtering is also done to avoid unwanted high frequency drops. The 

algorithm is tested on real cardiac SPECT images. Quantitative and 

qualitative evaluations of the algorithm show the potential of proposed 

algorithm in reducing blur while maintaining high peak signal to noise 

ratio.  
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4.1 Introduction 

   As a nuclear medicine imaging tool, SPECT imaging enjoys a 

wide acceptance amongst medical fraternity in the diagnosis of cardiac 

diseases [127]. The distribution of blood flow to the heart muscle can be 

visually analyzed from a cardiac nuclear image [128, 129]. Of the various 

factors affecting the diagnostic accuracy of SPECT image, the movement 

of the patient while image acquisition and scattering of photons during 

detection [130], induces blur in such type of images.  

 One of the important issues to be addressed in the area of nuclear 

medicine image enhancement is image deblurring. A degradation operator 

makes an original clear SPECT image a blurred one in a SPECT imaging 

model. The system point spread function (PSF) contributes to the cause of 

degradation. In the case of SPECT imaging both the PSF and the actual 

clear image are not known. Image deblurring algorithms are defined by 

inverse filtering problems which use an estimate of the original image. 

Blind image de-convolution aims at the reconstruction of original image 

without using any prior information [131, 132]. In the case of SPECT 

images where little prior information is available, it can turn out to be 

more relevant to use blind deconvolution algorithms for estimating the 

original image from the blurred image.  

4.2 Literature survey 

 Literature presents many methods to improve the quality of 

nuclear medicine images through deblurring. There are mainly two 

categories of such methods: methods using restoration algorithms during 
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the reconstruction process, and methods where the algorithm is performed 

on the reconstructed images. The point spread function is modeled using 

the system parameters and the restoration algorithm uses this model in the 

first category [133]. The second category makes use of image processing 

techniques [134]. 

 The performances of four widely used filters were compared for 

enhancing myocardial 99mTc-sestamibi SPECT perfusion images by 

Rajabi et al. [81]. A non-negativity support constraints recursive inverse 

filtering algorithm was proposed by Kundur and Hatzinakos [135] and it 

was extended to the 3D SPECT imaging restoration context in [134]. 

Bayesian tomographic reconstruction methods incorporating structural 

information were utilized by the authors in [136] and [137]. In [138] the 

blur transfer function for a SPECT image was approximated with a two 

dimensional symmetric Gaussian function to improve the image quality. 

An analysis of blind deconvolution algorithms was presented in [139]. In 

[140] a two-step iterative shrinkage and thresholding algorithm was 

proposed, exhibiting a faster convergence rate. A deconvolution method 

suitable for nuclear imaging was derived in [141]. The method utilized 

maximum likelihood estimation with expectation maximization algorithm 

[142]. A blind deconvolution algorithm based on Lucy Richardson 

algorithm [143, 144] was presented in [145].   

 The image before blurring and the PSF are totally unknown in the 

case of SPECT images. So one solution for deblurring, is to use blind 

deconvolution. The advantage is that it is simple. But noise will get added 

to the image which we cannot afford in SPECT images. The presence of 

noise may lead to a wrong decision in computer aided diagnosis. 

Regularized filtering can be a useful tool in this scenario. The proposed 
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method combines blind deconvolution and regularized filtering 

incorporating total variation denoising.  

4.3 Blur model in SPECT imaging 

A linear space invariant image degradation model is shown in 

figure 4.1. The blurred image b(x, y) can be written as given in equation 

(1). 

 

 

 

 

 

 

Figure 4.1 Image blurring model 

The original clear image is represented by o(x, y), the system 

transfer function or the PSF is represented by h(x, y) and n(x, y) 

represents the noise.  

                               ),(),(*),(),( yxnyxhyxoyxb �                               (1)                 

The blurred image is obtained by the convolution between the 

original image and the point spread function as in equation (1). In a noisy 

system, noise also gets added to it. 

 

Distortion 
operator   
h(x,y) 

o(x,y) 

Noise   
n(x,y) 

b(x,y) 
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4.4 De-blurring methods 

Since the blurring model involves convolution, deblurring turns 

out to be a de-convolution problem. Different approaches were proposed 

in literature in this regard including blind deconvolution, Lucy-

Richardson (LR) algorithm and least squares filtering [146, 147].  

4.4.1 Blind de-convolution 

As figure 4.1 suggests, image deblurring is an inverse problem. It 

can guarantee better results if prior information about the true image and 

the degradation factor is available and used to obtain the true image. But 

practically in most cases, including medical images, the true image and 

the degradation factor are totally or partially unknown. The problem then 

becomes blind deconvolution. So the original image f(x, y) can be found 

out by the method of blind deconvolution without using the exact 

degradation factor or point spread function.  

 It hence follows that the discrete model of equation (1) can be 

written as given in equation (2) below. 

               ¦
�

� � 
hSs

oSyxXXnsosXhXb ),();()(),()(                           (2) 

So is the support of the image and Sh is the support of PSF. The problem 

of blind deconvolution becomes finding an estimate of the true image 

from an initial guess on the image and the point spread function. 

 If a Bayesian framework is used to define blind deconvolution, all 

parameters are regarded as unknown stochastic quantities with respective 

probability distributions. The probability of the observed blurred image is 
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p(b). The probability of the true image is p(o). The likelihood function for 

the random process defined by equation (1) is denoted by p(b/o,h,n).  

4.4.2 Lucy Richardson algorithm 

A potentially better approach for image deblurring is LR 

algorithm proposed by Richardson [143] and Lucy [144]. LR algorithm is 

an iterative method that maximizes the likelihood function, assuming 

Poisson statistics [143, 144]. In [148] this was described as given in 

equation (3). 
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�                                       (3) 

Equation (3) is maximized by minimizing the log likelihood function 

given in equation (4) 

          � � � � � �> @dxdybohbohobp
yx
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!log*log*))/(log(                     (4) 

log(b!) is a constant relative to o. So minimizing equation (4) reduces to 

minimizing equation (5). 
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The function given in equation (5) is minimized by setting its derivative 

to zero. At convergence the iteration step is defined as in equation (6). 
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1^ �p

o  is the estimate of the true image at (p+1)th iteration, 
p

o
^

 is the 

estimate of the true image at pth iteration, and h* represents the conjugate 

transpose of h. The method is effective for a known initial PSF. 

4.4.3 Least square filtering 

Constrained least squares filtering is a well-established linear restoration 

approach in image processing [149]. The linear degradation model in 

figure 4.1 can be expressed in vector form as in equation (7). 

                                                 nHob �                                              (7) 

The optimality of restoration is based on a measure of smoothness. A 

criterion function defined by a smoothening operator is minimized 

subjected to the constraint as defined by equation (8). 

                                              2
2^

noHb  �                                        (8) 

Using Laplacian operator as smoothening operator, the criterion function 

is given in equation (9). 
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Equation (10) is the frequency domain solution to this optimization 

problem. 
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J   is a parameter that must be adjusted in order to satisfy the constraint. 

P(u,v) is the regularization operator.  

4.5 Proposed method 

A method has been proposed for deblurring cardiac SPECT 

images by combining blind deconvolution and regularized filtering 

incorporating total variation denoising. A maximum likelihood (ML) 

estimate of PSF is obtained using blind deconvolution principles. A better 

estimate of the original image is obtained using the estimated PSF 

through regularized total variation based least square filtering [150]. The 

block diagram of the proposed method is shown in figure 4.2. 

 

 

 

 

 

 

 

 

 

Figure 4.2 Block diagram of the proposed method 
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4.5.1 Prefiltering 

Maximum likelihood estimation algorithm is implemented using 

Discrete Fourier Transform (DFT), which may introduce ringing effect. 

Pre-filtering is done to reduce this effect. Ringing effect is caused due to 

the presence of high frequency drop-off at the edges. To remove high 

frequency drop-off, the entire image is blurred and the pixels in the region 

other than edges are replaced with that of the original image. Then a 

weighted sum of the original image and its blurred version is taken. The 

autocorrelation function of the PSF is used for determining the weighting 

array. The prefiltered image is the same as the original image in the 

region without sharp intensity changes. The prefiltered image is equal to 

its blurred version near the edges where ringing effect can occur. 

4.5.2 Maximum likelihood estimation of the PSF 

Blind image deconvolution techniques differ in the assumptions 

made on the original image and the point spread function. One method is 

to compute the maximum likelihood estimate of the PSF parameters to 

perform blind deconvolution. Maximum likelihood estimation uses the 

fundamental Bayesian principle that regards all parameters as unknown 

stochastic quantities with assigned probability distributions. The 

probability of the observed blurred image is p(b). The probability of the 

original image is p(o). The likelihood function for the random process 

defined by figure 4.1 is denoted by p(b/o,h,n). The maximum likelihood 

solution maximizes p(b/o,h,n) over o,h,n as implied below in equation 

(11).  

                    ^ ` � �nhobpnho
nho

MLMLML ,,/maxarg,,
,,

                                  (11) 
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oML, hML, nML denote the maximum likelihood estimate of the original 

image o, PSF h and noise n. 

With an initial guess on PSF and the original image, the maximum 

likelihood estimate of the PSF is obtained. The steps are given in figure 

4.3.  

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Estimation of PSF and image  

x Step 1: An initial value is assigned for the PSF. For a heart slice of 

size 120x100, an arbitrary size of 5x5 is chosen for the initial PSF 

as mentioned in equation (12) below. 
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x Step 2: An initial value is assigned for the original image. Usually 

in blind image deconvolution, the observed blurred image itself 

acts as the initial estimate of the original image as indicated in 

equation (13). 

                             ),(),(
)(^

yxbyxo
initial

                                      (13) 

x Step 3: Maximum likelihood estimate of the PSF is computed 

iteratively. Estimate of the original image, ),(
1^

yxo
p�

, and the 

estimate of PSF, ),(
1^

yxh
p�

, in (p+1)th iteration from the estimates 

in pth  iteration is given in equations (14) and (15). 
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x Non negativity constraints are applied on ),(
1^

yxo
p�

 and 

),(
1^

yxh
p�

in each iteration step. 

x The number of iteration P is decided by performing Kolmogorov-

Smirnov (KS) test. As the number of iterations increases the 

estimate of PSF ),(
^

yxh  becomes more similar to the original PSF 

h(x,y). But at the same time more noise gets introduced in the 

estimate of original image. KS test is performed on the estimates 
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of original image obtained in two consecutive iterations and 

ensured that they remain in the same continuous distribution. This 

is performed in each step and the iterations are stopped when the 

KS test fails.  

x ),(
^

yxh
P

  obtained in the Pth  iteration gives the ML estimate of the 

PSF. 

4.5.3 Total variation regularization based deconvolution 

The deconvolution algorithms discussed in section 4.4 may 

introduce noise into the image while performing de-blurring iterations. 

But total variation (TV) regularization based deconvolution is remarkably 

effective in removing blur from the image with minimum addition of 

noise [151]. TV based method is introduced by Rudin, Osher and Fatemi 

[152] which uses an L1 norm. The homogeneous regions are smoothened 

while preserving the edges. 

The TV minimization problem is defined in equation (16). 

 

                 TVo
obHo �� 2

2
min P

                                             (16) 
 

µ is the regularization parameter. 2. is the conventional vector 2 norm 

square and TV
. is the isotropic TV norm given in equation (17).  

                           ¦¦
  

� 
M

x

N

y
YXTV
oDoDo

1 1

22                                 (17) 



Enhancement and Classification of Cardiac SPECT Images using Pixel Intensity Based Features 
 

81
 

DXo and DYo, as defined in equations (18) and (19), are the spatial 

difference operators along the horizontal and vertical directions. 

                                ),(),1( yxoyxooDX ��                                      (18) 

                               ),()1,( yxoyxooDY ��                                     (19) 

TV norm of o is approximated as norm of Do. Using an intermediate 

variable u equation (16) is transformed to equation (20).  
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The augmented Lagrangian of the above mentioned problem is given in 

equation (21). 
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2Dou �  is the quadratic penalty term with rU as the regularization 

parameter. O , defined in equation (22) is the Lagrange multiplier 

associated with the constraint u=Do. u is defined in equation (23).  
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In [149] the solution to this problem is given as in equation (24). 
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^
o  is the estimate of the original image o.  

 The variance of the blurred image and the variance of the ML 

estimate of the original image obtained from the method described in 

section 4.5.2 are computed. The difference between the computed 

variances is used as the initial penalty parameter for bHo� . The ML 

estimate of PSF obtained using the method described in section 4.5.2 is 

used as H in equation (24). To avoid ringing effect introduced by DFT, 

prefiltering described in section 4.5.1 is performed prior to total variation 

regularization filtering.  

4.6 Simulation results 

This section presents the results of applying the proposed method on 

blurred cardiac SPECT images. The deblurring algorithm is directly 

applied on the blurred image, without using any denoising technique or 

contrast enhancement. There are many reasons for the presence of blur in 

cardiac SPECT images including photon scattering and movement in the 

patient created by his act of respiration. As implied by central limit 

theorem, the blurred version of an image is obtained by the convolution of 

original image with a Gaussian PSF. To evaluate the performance of the 

proposed method, cardiac SPECT images blurred using Gaussian PSF are 

used. Images degraded with different levels of blur are considered. The 

method is evaluated qualitatively by visual analysis.  The performance 

measures used for quantitative evaluation are PSNR, BM, SSIM and 

image enhancement factor (IEF).  The ratio of the squared difference 

between original image and noisy image to the squared difference 

between original image and de-noised image is taken as image 

enhancement factor.  The edge preserving capability of the enhancement 
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method is reflected in the IEF value. The higher the value of IEF, the 

better is the quality of images.    

Figure 4.4, figure 4.5 and figure 4.6 show four slices of the images 

degraded at different levels of blur and the images de-blurred using the 

proposed method.  

                

(a)                                         (b) 

Figure 4.4 (a) Cardiac SPECT image blurred using a Gaussian 

PSF with sigma=3 and (b) Deblurred image using the proposed 

method 

                  

(a)                                       (b) 

Figure 4.5 (a) Cardiac SPECT image blurred using a Gaussian 

PSF with  sigma=5 and (b) Deblurred image using the proposed 

method 
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(a) (b) 

                                               

                                         (c)                                            (d) 

Figure 4.6 (a) Cardiac SPECT image blurred using a Gaussian 

PSF with  sigma=7 (b) Deblurred image using the proposed 

method (c) Normal blurred image (d) Deblurred image 

In figure 4.6 both normal and abnormal case images are displayed. They 

differ in the amount of tracer content. The algorithm worked well in both 

cases. The images were taken from Medical trust hospital, Kochi 

database. Figure 4.7 shows the deblurred image using blind deconvolution 

and the proposed method. 

Simulations have been carried out to evaluate the performance of 

the proposed deblurring technique using TV regularization.  40 real 

cardiac images, taken from 40 different patients under medical diagnosis 

in Medical trust hospital, were used to prove the efficiency of the 

proposed method in terms of the performance measures. 17 patients had 

normal functioning of the heart and 23 patients had myocardial perfusion 
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defects. 960 x 510 images, each with 40 slices were used for the 

experiments.  The superior performance of the proposed method over 

other de-blurring techniques was also proved. Blind deconvolution, LR 

algorithm and TV regularization techniques were used for performance 

comparisons given in table 4.1, table 4.2 and table 4.3. 

 

              

(a)                                          (b) 

 

              

(c)                                        (d) 

Figure 4.7 (a) Original image (b) Blurred image (c) Deblurred 

using blind deconvolution algorithm and (d) Deblurred using 

proposed method 
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Table 4.1 PSNR, SSIM, BM and IEF values for various deblurring 

techniques applied on cardiac SPECT images blurred with a Gaussian 

PSF of sigma=3 

Performance 

measures 

Blind 

deconvolution 

LR TV Proposed 

method 

PSNR 26.6744 5.8115 5.6433 29.3377 

SSIM 0.9437 0.3582 0.3650 0.9608 

BM 0.7031 0.5940 0.6702 0.5517 

IEF 1.1038 0.0090 0.0087 2.0381 

 

Table 4.2 PSNR, SSIM, BM and IEF values for various deblurring 

techniques applied on cardiac SPECT images blurred with a Gaussian 

PSF of sigma=5 

Performance 

measures 

Blind 

deconvolution 

LR TV Proposed 

method 

PSNR 26.5755 5.8040 4.7491 29.6733 

SSIM 0.9416 0.3577 0.3372 0.9636 

BM 0.7055 0.5956 0.6628 0.5503 

IEF 1.1175 0.0094 0.0055 2.2805 
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Table 4.3 PSNR, SSIM, BM and IEF values for various deblurring 

techniques applied on cardiac SPECT images blurred with a Gaussian 

PSF of sigma=7 

Performance 

measures 

Blind 

deconvolution 

LR TV Proposed 

method 

PSNR 26.5484 5.8018 5.3674 29.7429 

SSIM 0.9410 0.3575 0.3651 0.9641 

BM 0.7061 0.5959 0.6723 0.5494 

IEF 1.1213 0.0094 0.0091 2.3397 

 

 

Both blind deconvolution and the proposed algorithm reduced blur 

present in the image and preserved the basic image information as well. 

The values in table 4.1, table 4.2 and table 4.3 prove the superior 

performance of the proposed method over blind deconvolution method. 

LR algorithm and TV regularization algorithm suit well for known 

PSF cases. But in the case of cardiac SPECT image, PSF is totally 

unknown. Though these methods reduce blur present in the image as 

shown by BM values, the basic structural information and the overall 

image quality is not preserved as indicated by the PSNR, SSIM, and IEF 

values in Table 4.1. Table 4.2 and table 4.3 display the values of 

performance measures obtained for different levels of blur. The values 

reflect the remarkable performance of the proposed algorithm as 

compared to other deblurring algorithms.  
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MPI from Spectrum dynamics medical case studies [103] were 

also used for experimental analysis. The images were blurred with three 

different levels of Gaussian blur. Deblurring techniques using blind 

deconvolution and proposed method were applied. The improved 

performance of the proposed method over blind deconvolution in 

reducing blur while retaining the structural information and overall image 

quality for different levels of blur is shown in table 4.4, table 4.5 and table 

4.6.  

 

Table 4.4 PSNR, SSIM, BM and IEF values for various deblurring 

techniques applied on MPI Spectrum dynamics case study images blurred 

with a Gaussian PSF of sigma=3 

 PSNR SSIM BM IEF 

Blind 

deconvolution 

39.3187 0.9815 0.5087 2.3154 

Proposed 

method 

43.6679 0.9912 0.4061 3.3030 
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Table 4.5 PSNR, SSIM, BM and IEF values for various deblurring 

techniques applied on MPI Spectrum dynamics case study images blurred 

with a Gaussian PSF of sigma=5 

 PSNR SSIM BM IEF 

Blind 

deconvolution 

38.7591 0.9792 0.5196 2.1956 

Proposed 

method 

43.5654 0.9917 0.4202 3.6403 

 

Table 4.6 PSNR, SSIM, BM and IEF values for various deblurring 

techniques applied on MPI Spectrum dynamics case study images blurred 

with a Gaussian PSF of sigma=7 

 PSNR SSIM BM IEF 

Blind 

deconvolution 

38.6142 0.9786 0.5222 2.1675 

Proposed 

method 

43.5322 0.9917 0.4230 3.7260 

 

Shepp and Vardi [141] used maximum likelihood solutions to 

modify LR algorithm for nuclear imaging problems. LR algorithm is 
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performed with the PSF estimated using the method described in section 

4.5.2 and the performance was compared with that of the proposed 

method. Figure 4.8, figure 4.9, figure 4.10 and figure 4.11 show the 

performance comparison in terms of PSNR, SSIM, BM and IEF. The 

performance charts reveal that the proposed algorithm has improved the 

quality of image in comparison with LR method using ML estimate of 

PSF.     

 

 

Figure 4.8 Performance comparison between proposed method and LR 

method using ML estimate of PSF in terms of PSNR 
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Figure 4.9 Performance comparison between proposed method and LR 

method using ML estimate of PSF in terms of SSIM 

 

 

Figure 4.10 Performance comparison between proposed method and LR 

method using ML estimate of PSF in terms of BM 
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Figure 4.11 Performance comparison between proposed method and LR 

method using ML estimate of PSF in terms of IEF 

Constrained least square filtering is another popular restoration 

technique used in image processing [153]. The method can be applied for 

blur reduction with the estimated PSF. A constrained least square filtering 

is performed using the ML estimate of PSF obtained in section 4.5.2 

without incorporating the idea of total variation regularization. The 

performance comparison is given in figure 4.12, figure 4.13, figure 4.14 

and figure 4.15. The results show that the proposed algorithm has 

achieved an improvement in image quality and blur reduction over 

constrained least square filtering method using estimated PSF.   
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Figure 4.12 Performance comparison between proposed method and least 

square filtering method using ML estimate of PSF in terms of PSNR 

 

Figure 4.13 Performance comparison between proposed method and least 

square filtering method using ML estimate of PSF in terms of SSIM 

 



Enhancement and Classification of Cardiac SPECT Images using Pixel Intensity Based Features 
 

94 
 

 

Figure 4.14 Performance comparison between proposed method and least 

square filtering method using ML estimate of PSF in terms of blur metric 

 

Figure 4.15 Performance comparison between proposed method and least 

square filtering method using ML estimate of PSF in terms IEF 

4.7 Summary 

This chapter described a deblurring method suitable for cardiac 

SPECT images. Deblurring is achieved in two steps. In the first step, a 
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maximum likelihood estimate of the PSF is computed from the blurred 

image slices using blind deconvolution principles. The total variation 

based regularization is performed in the next step to get a better estimate 

of the original image slice by making use of the ML estimate of the PSF. 

Contrast is reduced by an average factor of 8 percent but the visual quality 

is not getting affected as shown by the output images. The proposed 

method resulted in better output images compared to other deblurring 

techniques as proved by the visual analysis, PSNR, SSIM, BM and IEF 

values.  
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Chapter 5 
 

ENHANCEMENT OF CARDIAC SPECT 
IMAGES BY DENOISING 

 

 
 

This chapter deals with variance stabilization based noise reduction 

method suitable for cardiac SPECT images. A variance stabilizing 

transformation is applied on the noisy image so that Poisson noised 

image is converted into an approximate additive noise distributed image. 

De-noising is achieved in the transformed domain using the filter transfer 

function that is estimated based on the local image statistics in the 

transformed domain. The image is then converted back into the original 

domain using an inverse transform. The simulation results show that the 

proposed method gives better de-noising results in terms of qualitative 

and quantitative performance measures.  
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5.1 Introduction 

 In a broad area of applications including medical imaging [154], 

astronomical imaging [155] and fluorescence microscopy [156], the 

images are corrupted by Poisson noise. Poisson noise reduction rather 

than Gaussian noise reduction is a challenging problem. This is due to the 

pixel intensity dependence nature of Poisson noise. Research is in 

progress in designing methods to reduce Poisson noise. Various methods 

have been proposed to reduce Poisson noise in images but a proven 

algorithm for a particular type of application may fail in giving good 

results for another type of application, especially in medical images which 

require high image quality for identifying unique events.  

Nuclear medicine imaging uses photons emitted by the radioactive 

material injected into the human body to form an image. SPECT image, 

that applies nuclear medicine imaging principles, is developed as a 

powerful tool in the diagnosis of cardiac ailments [157]. Cardiac SPECT 

image makes a visual inspection of cardiac blood flow possible. But due 

to the stochastic nature in the detection of photons these images are 

usually corrupted by noise. Since the process involves radioactive decay, 

the noise in SPECT image is modelled as Poisson noise [158]. 

5.2 Literature survey 

Literature presents many methods to denoise images corrupted 

with Poisson noise. Both linear and nonlinear filters were proposed for 

this purpose and it is well established that many linear filters could blur 

the image while reducing noise [120]. Non-linear filters were also used 

due to their edge preserving capabilities compared to linear filters. Due to 

its good denoising ability and computational efficiency, the median filter 
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became a popular non-linear filter [159]. The median filter replaces the 

pixel value with the median value computed from an M-by-N 

neighborhood. It is particularly useful in reducing impulse noise.  

Different attempts have been done by the researchers to reduce 

noise in nuclear images. Linear and nonlinear filters were used in the 

beginning but resulted in edge smoothing and contrast degradation [158]. 

Nonstationary filters were proposed to overcome this difficulty [160] but 

resulted in difference in texture from that of the original image.    

Various wavelet based methods are available to achieve good 

noise reduction. These methods reduced the coefficients carrying noise to 

low values [161, 162]. An application of wavelet based de-noising 

methods on SPECT images was proposed by Noubari et al. [163]. They 

used PSNR criteria to arrive at an optimum threshold value. Simulated 

SPECT images were utilized to validate the performance of the algorithm. 

This method had a shortcoming in that the noise statistics present in the 

image was not considered. In the case of SPECT images the data is 

modeled as a Poisson process since the detection involves a counting 

process. Poisson noise depends on the image intensities, but Gaussian 

noise does not. Consequently direct application of wavelet based 

thresholding techniques become unsuitable in SPECT image denoising 

scenario.  

The above problem was overcome by introducing a normalizing 

step which transforms the image statistics from Poisson to Gaussian 

[164]. Fisz transform was used as the variance normalizing stage in [165] 

and [166]. The method provided good results in low count setting. An 

adaptive Bayesian wavelet shrinkage method was performed on the 
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normalized data in [167]. Anscombe transform was used as the 

normalizing stage. The method proved well for scintigraphic images. 

Zhang et al. [168] also presented a variance stabilizing transformation 

method. Denoising techniques using total variation regularization was 

also in wide spread use for Poisson noised images [169].  

Wiener filter was considered as a good linear filter for denoising 

images with Gaussian noise distribution [170] but the visual quality of the 

image was not satisfactory in all cases due to edge smoothing. The effect 

of Wiener filtering in SPECT images was examined by Links et al. [171]. 

The results suggest that the quantization of myocardial perfusion deficits 

was improved a little by the application of Wiener filter.   

The noise in a SPECT image is Poisson noise. Consequently direct 

application of many existing denoising techniques will not give 

satisfactory results in SPECT images. In the proposed method denoising 

is done in a variance stabilized transform domain. An adaptive Wiener 

filter is utilized for denoising purpose. In the denoising stage, the edges 

may also get smoothened, which affects the quantification of tracer 

content region in cardiac SPECT images.  Extend of smoothing depends 

on the size of the denoising filter. In the proposed method the size of the 

filter is carefully chosen according to the edge information present in the 

image to prevent edge smoothing, which consequently leads to better 

results.  

5.3 Noise model in SPECT imaging 

 In SPECT imaging, a gamma camera detects the photons emitted 

by the process of radioactive decay. Due to the random nature of the 

detected photons, SPECT images suffer from a statistical noise. This can 
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be modelled by a Poisson distribution [158, 172]. Noise is a function of 

the number of detected counts, which in turn, depends on the image pixel 

intensity.  

 If O represents the SPECT image without noise, with o(i,j) be the 

(i,j)th pixel and D represents the SPECT image degraded by noise, with 

d(i,j) be the (i,j)th pixel then d(i,j) is considered to be an independent 

Poisson random variable as noted in equation (1) with 
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The distribution is given in equation (2). 
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The noise is defined in equations (3), (4), and (5) as  
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The noise is pixel value dependent [169].  

5.4 Proposed method 

 A method for reducing noise in SPECT image is introduced here. 

The image is converted into a domain with approximately stabilized 

variance using variance stabilizing transformation. This is done to reduce 

the pixel value dependency of the noise. Then a filter designed from the 

noisy image statistics is applied to reduce noise. The image is then 
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converted back to its original domain using inverse transformation. Figure 

5.1 shows the basic blocks of the proposed method.  

 

 

Figure 5.1 Steps in the proposed method 

5.4.1 Variance stabilizing transformation 

 Variance stabilizing transformations help in removing the pixel 

value dependence nature of the noise variance [164, 165, 173]. Anscombe 

transform [164] is utilized in the proposed method for variance 

stabilization. Its expression is given in equation (6). Equation (6) converts 

an image with Poisson noise to an image with asymptotically additive 

noise. D denotes the image distorted using Poisson noise with d(i,j) as the 

individual pixels and A denotes the Anscombe transformed image with 

a(i,j) as the individual pixels.  
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5.4.2 De-noising stage 

 The pumping action of the heart is displayed in a cardiac SPECT 

image using different image slices. Each image slice shows the amount of 

tracer contained in a particular region of left ventricle at an instant of 

time. Each image slice will be different depending on the pixel count 

which represents the amount of tracer contained in the heart at that time. 

Based on the nature of the image slice, a de-noising stage is proposed in 

this section using Wiener filtering. The steps in the de-noising stage are 

shown in figure 5.2. Each image slice in the Anscombe domain is 

processed separately. A suitable operating window is fixed and a pixel 

wise Wiener filter is designed based on the local image statistics. 

 Stationary Wiener filtering is a popular method to reduce noise 

with known power spectra. The stationary Wiener filter is given in 

equation (7). 

                                                nnoo
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Soo and Snn represent the power spectra of the original signal and the noise 

respectively. Instead of a stationary Wiener filter, a pixel wise Wiener 

filter is used here at the de-noising stage. The transfer function of the 

filter varies according to the statistics of the local neighbourhood in which 

filtering is applied. The size of the local neighbourhood is chosen based 

on the nature of the image slice.  
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Figure 5.2 Basic steps in the de-noising stage 

The nature of the image slice is analyzed in two contexts: based on 

the edge information and based on the tracer area information as shown in 

figure 5.3.  

x Edge information: Pixel intensity variation is observed for the 

heart image slices. The greater the variation, lesser is the 

smoothing applied by selecting a smaller sized neighbourhood 

for the application of Wiener filter. This helps in preserving 

edges.  

Image in Anscombe domain 

Image slice 

Fix a suitable size for 
the operating window 

Estimate local image 
statistics 

Pixel wise 
Wiener filter 
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x Tracer area information: Each image slice is analyzed using 

binary thresholding to get an idea about the number of pixels 

representing the presence of tracer.  A binary image is formed 

such that white pixels represent tracer content area of the 

image and black pixels represent myocardial region without 

tracer content and the background. Then an estimate of the 

number of pixels representing blood flow is made by counting 

the white pixels. The higher the pixel count, the lesser the 

noise [172]. For image slices with lower tracer area a bigger 

sized neighbourhood is chosen for better de-noising. This 

helps in improving the overall image signal to noise ratio.  

Based on the edge information and tracer area information of each 

image slice, the size N by M of the local neighborhood β, is selected as 

shown in figure 5.3. For smaller size, N and M are chosen as 3 and for 

bigger size, N and M are chosen as 5. 

 The local statistics (mean, µ and variance, 2V ) of the selected 

neighbourhood is estimated using equation (8) and equation (9).  
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Using the estimated local statistics, a pixel wise filter, W(i, j), is 

designed as in equation (10). The average of all locally estimated 

variances is 2Q . 
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Fig. 5.3 Flowchart showing the steps for choosing the size of 

neighborhood 

The image, A, in the Anscombe domain with pixels a(i,j) is then 

filtered in the selected neighborhood N by M using the corresponding 

filter W(i,j). The denoised image in the Anscombe domain is denoted by 

Image slice 

Get edge information and 
tracer area information 

Higher 
than 

average 
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window 
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F with f(i,j) as the individual pixels which is considered as an estimate of 

E{A/O}.  

5.4.3 Inverse transformation 

 The denoised image F in the Anscombe domain is converted back 

to the original domain using inverse transformation. Equation (11) gives 

the inverse of equation (6).  
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 The resulting estimate of the original image O is biased due to the 

nonlinearity of the transformation [164] as described by equations (12) 

and (13).  
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An adjusted inverse given in equation (14) is used to provide an unbiased 

asymptotic value. 
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5.5 Simulation results 

 The result of applying the proposed method on noisy cardiac 

SPECT image is presented in this section. Poisson noise was added to the 

image to obtain its noisy version. The denoising algorithm is directly 

applied on the noisy image, without using any deblurring technique or 

contrast enhancement. The performance of the proposed method was 
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evaluated qualitatively by visual analysis. PSNR, SSIM, IEF and image 

quality index (IQI) were the performance measures used for quantitative 

analysis. Image quality index is defined by modeling distortion as a 

combination of loss of correlation, luminance distortion, and contrast 

distortion [174]. The value of IQI ranges from -1 to 1. The maximum 

value 1 shows the case with the restored image equal to the original 

image.     

Figure 5.4 shows the original image slice of an abnormal case with 

low amount of tracer content, noisy image slice and image slice denoised 

using proposed method. 

 

Figure 5.4 SPECT image slice of an abnormal case with low tracer 

content 

Figure 5.5 shows four slices of the image degraded by Poisson 

noise and the denoised image using proposed method. The image slices 

belong to an abnormal cardiac subject case taken from Medical Trust 

hospital database. Figure 5.6 shows noisy image of a normal cardiac case 

from Medical Trust hospital database and the denoised image using 

proposed method. The ability of the proposed method in reducing noise is 

also verified using MPI Spectrum dynamics case study images. The noisy 
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image and the image denoised using proposed method is given in figure 

5.7.  

                     

Figure 5.5 Noisy image and image de-noised using proposed method 

     

Figure 5.6 Noisy image and denoised image for a normal cardiac case 
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Figure 5.7 MPI Spectrum Dynamics case study image with Poisson noise 

and the denoised image using proposed method 

 

The performance of the proposed method was also evaluated using 

simulated SPECT images using SIMIND software [163]. The 

reconstructed image of size 130 by 125 was used. Figure 5.8 shows the 

simulated image, noisy image and de-noised image and their respective 

image profiles. The image profile gives the set of intensity values along a 

straight line in the image. The obtained image profiles show that the 

proposed method could reduce the noise present in the noisy image.   

 The proposed de-noising method was evaluated quantitatively 

using the performance measures. The performance of the proposed 

method was also compared with the following state-of-the-art techniques: 

x Block matching and three dimensional filtering (BM3D) based on 

sparse representation in transform domain proposed by Dabov et 

al. [175] 
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x Total variation de-noising proposed by Goldstein et al. [176]  

x  Wavelet thresholding [163].  

The comparison results are given in table 5.1. The proposed 

method yielded the highest value of PSNR, SSIM, IEF and IQI 

showing that the quality of the image is improved by reducing noise 

and preserving the structural and edge information. 

 

 

Figure 5.8 Simulated image, noisy image and de-noised image with their 

image profiles 
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Table 5.1 PSNR, SSIM, IEF and IQI values for various de-noising 

techniques applied on cardiac SPECT images 

 

Performance 

measures 

BM3D TV de-

noising 

Wavelet 

thresholding 

Proposed 

method 

PSNR 31.2719 26.7727 33.2325 39.2309 

SSIM 0.2800 0.3553 0.8471 0.9605 

IEF 1.0078 0.8553 1.5828 6.1859 

IQI 0.2840 0.4169 0.9109 0.9234 

 

The performance of the proposed method was also compared with 

a denoising method using a fixed window Wiener filter in Anscombe 

domain. Figure 5.9, Figure 5.10, Figure 5.11 and Figure 5.12 show the 

comparison results in terms of PSNR, SSIM, IEF and IQI for 4 different 

patient cases. The plots show that the proposed method gave better 

images in terms of PSNR, SSIM, IEF and IQI.   

Figure 5.13 shows the edge maps of original image, noisy image 

and denoised images using different denoising techniques. It can be seen 

that the edge map of the proposed method is closer to the edge map of the 

original image compared to other de-noising techniques. This shows that 

edge information and other finer details were preserved by the proposed 

method. 
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Figure 5.9 Comparison between the proposed method and denoising 

method using fixed window Wiener filter in Anscombe domain in terms 

of PSNR 

 

 

Figure 5.10 Comparison between the proposed method and denoising 

method using fixed window Wiener filter in Anscombe domain in terms 

of SSIM 
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Figure 5.11 Comparison between the proposed method and denoising 

method using fixed window Wiener filter in Anscombe domain in terms 

of IEF 

 

Figure 5.12 Comparison between the proposed method and denoising 

method using fixed window Wiener filter in Anscombe domain in terms 

of IQI 
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                    (a)                                                        (b) 

        

                       (c)                                                     (d) 

         

                       (e)                                                    (f) 

Figure 5.13 (a) Edge map of the original image, (b) edge map of the noisy 

image, (c)-(f) edge map of the de-noised images using BM3D, wavelet 

thresholding, fixed Wiener filter and proposed method respectively   
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5.6 Summary 

 This chapter described a denoising method suitable for SPECT 

images corrupted with Poisson noise. The proposed method demonstrated 

better denoising abilities for SPECT images compared to other 

techniques. The delivered results gave better de-noised images compared 

to other noise reduction techniques as proved by the visual analysis, 

PSNR, SSIM, IEF and IQI values. Satisfactory preservation of edge 

details was achieved as well, as shown by the edge maps extracted from 

the images.  
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Chapter 6 

 

PIXEL INTENSITY BASED FEATURES 

FOR SPECT IMAGE CLASSIFICATION 

 

An image feature based classification technique suitable for cardiac 

SPECT image has been developed for identifying normal and abnormal 

heart perfusion. Pixel intensities that correspond to tracer content in the 

left ventricular region are analyzed and novel features are extracted. 

Further on, a feedforward back propagation neural network algorithm is 

employed for classifying cardiac SPECT images into those of normal and 

abnormal hearts using the proposed features. Simulation studies were 

conducted on real cardiac SPECT images obtained from hospital. The 

result of classification has been verified by expert nuclear medicine 

physicians.  
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6.1 Introduction 

SPECT perfusion images are very often used to visually analyze 

the distribution of blood flow to the heart muscles [105]. Cardiac 

perfusion images along with the functional parameters are usually used to 

study the functionality of heart. Left ventricular ejection fraction (LVEF), 

end diastolic volume and end systolic volume are important functional 

parameters that capture the effectiveness of human heart as an organ 

performing a pumping action [177]. These functional parameters are 

obtained using expensive quantification software [178]. A physician 

usually uses cardiac perfusion images along with the functional 

parameters for the diagnosis of cardiac ailments [179]. Perfusion 

abnormality is diagnosed visually by the appearance of relatively 

decreased uptake on different regions of perfusion images [180]. If the 

heart slices show regular blood supply throughout the heart muscles then 

a healthy heart condition can be surmised with high certainty [181].  

Detection of disorders at the right time helps in controlling its 

advancement. A due recognition to this diagnostic requirement is clearly 

visible in the recent efforts and research in the development of software 

supporting medical image analysis and interpretation [182].  The nuclear 

imaging domain of medical diagnostics in the treatment of cardiac 

disorders is no exception [183]. Computer assisted diagnosis of cardiac 

perfusion studies is of great interest for the researchers in the image 

processing discipline.  
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6.2 Literature survey 

 Cios et al. [184] classified SPECT images of a human heart into 

normal or one of several abnormal categories. The reconstructed SPECT 

images were processed using boundary extraction, region of interest 

selection and segmentation techniques. They employed C4.5 [185] and 

CLIP3 [186] machine learning algorithms for classification. The authors 

obtained an accuracy of 94% for the system using the rules generated by 

C4.5 machine learning algorithm and 81% for the system using the rules 

generated by CLIP3 algorithm.  The accuracy of CLIP3 algorithm was 

inferior, as compared to the accuracy of C4.5 algorithm. The results of 

CLIP3 algorithm got improved by incorporating fuzzy logic 

implementation. 

 Lindahl et al. [187] developed a computer based method for 

automatic detection of coronary artery disease in myocardial bull’s eye 

scintigrams. A multilayer perceptron neural network architecture [188] is 

used as classification tool. Specificity and sensitivity results show that the 

networks performed similar to or better than those of human experts.  

 Kurgan et al. [189] processed cardiac SPECT images and 

extracted features useful to generate diagnostic rules. The authors used 

heuristic and inductive machine learning approaches. Their system 

provided a set of computer assisted diagnostic rules for heart SPECT 

cases.  

  A method was proposed by Cunha [190] to classify cardiac 

SPECT images using features extracted using multi objective 

evolutionary algorithms. The method was able to give solutions with 

some features, providing relevant information to the decision maker.  
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 Szewczyk and Baszun [191] presented the possibility of using 

least squares support vector machine to the initial diagnosis of patients. 

K-fold Cross Validation, Grid-Search and Particle Swarm Optimization 

were utilized to find optimal parameters. Artificially made data and data 

taken from real database were used for testing the performance of the 

system. With particle swarm optimization they obtained a maximum 

classification accuracy of 93.58%.  

 Rafaie et al. [192] classified SPECT dataset containing the records 

of 267 patients using a combined rough set and neural network approach. 

Their method yielded an accuracy of 93% with a specificity and 

sensitivity of 85% and 95% respectively.  

 Arsanjani et al. [193] aimed to improve the diagnostic accuracy of 

SPECT image analysis by integrating quantitative perfusion and 

functional variables. They used invasive coronary angiography as the gold 

standard. Using support vector machine they obtained an accuracy of 

86%. 

 Alves et al. [194] proposed a technique where image segmentation 

and registration are integrated to automatically extract features from 

cardiac SPECT images. These features are then used to classify the 

images into those with perfusion disorders and without perfusion 

disorders. The method yielded an accuracy of 87.6%. 

 6.3 Feature extraction 

MPI using SPECT is a powerful diagnostic tool for the detection 

of coronary artery disease [195]. Quantitative evaluation of blood flow 

provides an evaluation of myocardial defects [196]. Nuclear medicine 
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physicians diagnose cardiac abnormalities by visually analysing the 

perfusion images and searching for regions with relatively decreased 

tracer uptake. In this thesis, pixel intensity based features which are 

capable of identifying lower tracer area are developed for classifying 

perfusion images with greater accuracy. 

6.3.1 Image histogram based features 

 Image pixel intensity distribution is used as the basis for extracting 

histogram based features. End systolic and end diastolic heart slices 

obtained from the reconstruction software are used for extracting features.  

6.3.1.1 Analysis of different intensity regions 

An image slice contains three different regions as shown in figure 6.1. 

The three different regions are represented by A, B and C. The brighter 

pixels are in region A. It shows the presence of radiotracer which in turn 

represents the presence of blood. The medium intensity pixels are 

contained in region B. It shows the heart muscles with less amount of 

radiotracer which in turn represents myocardium with an interrupted 

blood flow. The darker pixels which represent the background fill up 

region C. The distribution of intensities among pixels in different regions 

is analysed using image histograms [197]. Figure 6.2 shows the image 

histograms for the regions A, B and C. 

 If the image intensities are scaled in the interval (0, 1), it is 

observed that the pixels showing myocardium with blood flow have 

intensities in the range (0.5, 1). All other pixels, including those showing 

myocardium with impaired blood flow and those representing 
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background, have intensities in the interval (0, 0.5). This analysis reveals 

the possibility of segmenting the myocardium region with blood flow. 

 

Figure 6.1 A heart slice with A, B and C showing three different regions 

in the image 

 

Figure 6.2 Image histogram of regions A, B and C. In each histogram x-

axis represents the pixel intensities and y-axis represents the number of 

pixels with the corresponding pixel intensity 
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6.3.1.2 Segmentation of brighter pixel region 

  The brighter pixel region (region A) is segmented using region 

growing method [197, 198]. Based on the analysis made in section 6.3.1.1 

a threshold level is set to identify brighter pixels. The image slice is 

converted into a binary image using binary thresholding with the set level. 

All pixels with intensities greater than the set level is given a value 1 

(white pixels) and all pixels with intensities smaller than the set level is 

given a value 0 (dark pixels) in the binary image. The brighter pixel 

region is segmented from the image slice using region growing. The 

binary image obtained by the process of thresholding acts as seed point 

array for region growing process. Slices from short axis view, vertical 

long axis view and horizontal long axis view of a heart with normal 

perfusion and their corresponding segmented images are given in figure 

6.3, figure 6.4 and figure 6.5 respectively. Figure 6.6 shows a short axis 

heart slice with abnormal perfusion and the segmented slices.   

 

Figure 6.3 A slice from the short axis view of a heart with normal 

perfusion and its segmented images 
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Figure 6.4 A slice from the vertical long axis view of a heart with normal 

perfusion and its segmented images 

 

Figure 6.5 A slice from the horizontal long axis view of a heart with 

normal perfusion and its segmented images 

 

Figure 6.6 A slice from the short axis view of a heart with abnormal 

perfusion and its segmented images 
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6.3.1.3 Extraction of features 

 The segmented image represents the brighter pixels showing the 

myocardium with blood flow. Then an estimate of the number of pixels in 

the segmented region is made. The image histogram based features 

include the estimated number of pixels from the segmented systolic and 

diastolic short axis, vertical long axis and horizontal long axis slices.   

6.3.2 Gray level co-occurrence matrix based features 

 The spatial relationship of the pixels in an image is depicted by its 

gray level co-occurrence matrix (GLCM) [199]. The matrix considers the 

textural features within the image. Since GLCM characterizes texture of 

an image there is no need to process the whole image. Instead the image 

is scaled down to a lower scale to simplify further processing. The 

number of intensity values in the systolic and diastolic image slices can be 

scaled down to a lower value. In the proposed method a value of 8 is 

chosen as a safe value without information loss. If the image contains 8 

intensity levels then the size of its GLCM will be 8 by 8. The (i, j)th 

element in the GLCM matrix indicates the number of times the pixel with 

value i comes in a given spatial relationship to the pixel with value j. 

Horizontally adjacent pixel is used for analysis.  

The statistical properties of the image like contrast, correlation, 

energy and homogeneity are derived from the GLCM. Contrast gives a 

measure of intensity contrast between a pixel and its neighbour as defined 

by the spatial relationship. Correlation shows how well a pixel is 

correlated to its neighbour. The sum of squared elements in the GLCM is 

a measure of its energy and homogeneity defines how close an element is 

to the GLCM diagonal.  
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 The GLCM based features for the proposed method include the 

statistical properties like contrast, correlation, energy and homogeneity of 

the short axis perfusion image slices. The ratio between GLCM derived 

contrast from systolic and diastolic slices is also used as a feature.  

6.3.3 Intensity variation based feature 

 A cardiac SPECT image slice contains different intensity regions 

as shown in figure 6.1. The intensity variation can be categorised as 

smooth in the normal perfusion region of a heart slice. The smooth 

variations constitute the low frequency component of the image. Smooth 

variations can be separated from the details of the image in many ways. 

One popular way is decomposition using discrete wavelet transform 

[200].  10 slices from apex to base are selected from the short axis view of 

quantitative perfusion SPECT image. The approximation coefficients up 

to a single level are separated out using discrete wavelet transform. 

Daubechies wavelets are used. The smooth variation thus estimated from 

the short axis slices constitutes intensity variation based feature. 

6.3.4 Fractal based feature 

 Fractal based feature is also visible in perfusion images. Normal 

and abnormal heart apex region show a difference in the tracer content in 

the perfusion image. This difference in physical profile is identified using 

fractal dimension. 

 6.3.4.1 Fundamentals of fractals and fractal dimension 

 Euclidean geometry is used in conventional mathematics to 

describe different shapes and patterns. But describing nature by traditional 

Euclidean geometry is not easy, as nature in its microcosm and many 
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naturally observed physical objects even at macro levels cannot be 

represented by idealized shapes. This difficulty led to identifying a family 

of shapes called fractals.  Mandelbrot [201, 202] defined fractals as a 

fragmented geometric shape that can be subdivided in parts, each of 

which is a reduced copy of the whole.  

 Fractal dimension gives an indication of how a fractal fills a space 

completely, if zoomed down to finer scales [203]. Box counting method is 

the simplest method to compute fractal dimension. If the bounded set A 

contains Nr distinct copies of itself, each of which has been scaled down 

by the ratio r, then fractal dimension D is as follows 

                                    )/1log(
)log(lim

0 r
ND r

ro
                                              (1) 

  6.3.4.2 Extraction of fractal based features  

 Short axis view slice from the heart’s apex region is considered 

for extracting fractal based features. The blood flow region is segmented 

using binary thresholding. Figure 6.7 shows the short axis view slice at 

the apex region of a heart with normal perfusion and its binary 

thresholded image. Figure 6.8 depicts an abnormal perfusion heart image. 

The smallest shape that builds up the blood flow region is shown in figure 

6.9 and 6.10. 

 Comparing figure 6.9 and figure 6.10 it can be concluded that 

normal perfusion and abnormal perfusion apex regions can be picked out 

by taking scaling property of the smallest unit that builds up the tracer 

content region. Fractal dimension measures the scaling properties of 

fractals and thus the complexity of the structure. It is a number that 
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characterizes the structure. Normal perfusion apex slices have more tracer 

content region, leading to a more complex structure, than abnormal 

perfusion slices. So naturally their fractal dimension value is more. Box 

counting method is employed since it is simple and suitable for finding 

the fractal dimension of binary images.   

 

Figure 6.7 A slice from the apex region of a normal perfusion heart and 

its binary thresholded image 

 

Figure 6.8 A slice from the apex region of an abnormal perfusion heart 

and its binary thresholded image 
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Figure 6.9 Binary thresholded image for the normal perfusion case and 

the smallest shape that builds up the entire blood flow region 

 

Figure 6.10 Binary thresholded image for the abnormal perfusion case 

and the smallest shape that builds up the entire blood flow region 

6.3.5 Standard deviation of brightness 

 A normal image slice has brighter tracer content region as 

compared to the background. In an abnormal image slice, region with 

lesser tracer content is represented by medium intensity pixels. The 
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brightness values will be almost close to the mean brightness value. So 

the standard deviation of brightness for an abnormal image slice will be 

less as compared to that of a normal image slice. Standard deviation of the 

brightness for short axis and long axis slices for the perfusion image is 

taken as a feature. 

6.4 Features extracted from randomly selected images 

 A set of sample images are selected randomly from the database to 

analyse the extracted features graphically. The sample image set consists 

of 16 images. It includes 8 normal heart images and 8 abnormal heart 

images. Features defined in section 6.3 are extracted from images in the 

sample set. Image histogram based features proposed in section 6.3.1 are 

extracted from the sample set images and plotted in figure 6.11. Figure 

6.12, figure 6.13, figure 6.14 and figure 6.15 depict directly derived 

GLCM features described in section 6.3.2. The extracted GLCM features 

are contrast, correlation, energy and homogeneity. For abnormal images 

the average values of these features are the lowest. But features for 

normal image class were not linearly separated from the features of 

abnormal image class as shown in the figures. Hence these features need a 

classifier which classifies data points that are not linearly separable. The 

ratio between GLCM derived contrast feature from systolic and diastolic 

slices is also mentioned as a feature in section 6.3.2. The extracted values 

for this ratio from the sample set images are shown in figure 6.16. The 

intensity variation based features explained in section 6.3.3 for 16 images 

are plotted in figure 6.17. Figure 6.18 shows the fractal based features 

explained in section 6.3.4. The standard deviation of brightness for the 

short axis and long axis slices is plotted in figure 6.19.   
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Figure 6.11 Image histogram based features 

 

 

Figure 6.12 GLCM based feature (contrast) 
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Figure 6.13 GLCM based feature (correlation) 

 

 

Figure 6.14 GLCM based feature (energy) 
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Figure 6.15 GLCM based feature (homogeneity) 

 

 

Figure 6.16 GLCM based feature (contrast ratio) 
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Figure 6.17 Intensity variation based feature 

 

 

Figure 6.18 Fractal based features 
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Figure 6.19 Standard deviation of brightness for heart slices 

 

 The features computed according to sections 6.3.1, 6.3.2, 6.3.3, 

6.3.4 and 6.3.5 for the randomly selected images are shown in table 6.1. 

The ranges of feature values obtained for normal and abnormal heart 

images are given in the table with the mean of the feature values included. 

The mean of all the feature values are the lowest for abnormal images. In 

addition to that, the ranges of values of normal image group do not 

overlap with the ranges of values of abnormal image group. Hence these 

features can be used effectively for the classification of cardiac SPECT 

images into normal and abnormal heart images.  

 

 



Enhancement and Classification of Cardiac SPECT Images using Pixel Intensity Based Features 
 

 

136
 

 

Table 6.1 Comparison of different features obtained for normal and 

abnormal heart images 

Features  Abnormal image Normal image 

GLCM based 

contrast ratio 

Range of values 1.0283 to 1.1274 1.1885 to 

1.3655 

Mean value 1.0860 1.2696 

Histogram based 

feature 

Range of values 0.2115 to 0.4002 0.5451 to 

0.7436 

Mean value 0.3081 0.6272 

Intensity 

variation based 

feature 

Range of values 20.0832 to 

54.1392 

70.1089 to 

128.665 

Mean value 35.7322 91.0520 

Standard 

deviation of 

brightness 

Range of values 0.0111 to 0.1526 0.1802 to 

0.2795 

Mean value 0.0936 0.2303 

Fractal 

dimension 

Range of values 0.1011 to 1.0564 1.1125 to 1.514 

Mean value 0.6324 1.3528 
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6.5 Classification algorithm used 

 A classification algorithm is used to separate out SPECT images 

into normal and abnormal perfusion heart images from the extracted 

features. A neural network classifier with feed forward back propagation 

algorithm [204] is applied. The weight values are updated using 

Levenberg-Marquardt method [205, 206].  

6.5.1 Feed forward neural network 

 Artificial neural networks closely represent mathematical models 

of biological nervous system. The idea of neural networks emerged after 

describing the nets by means of propositional logic [207]. Feed forward 

network is an artificial neural network architecture commonly used in the 

field of medical image classification. Neurons are arranged in three 

different layers: input, hidden and output layers. The general structure of a 

feed forward neural network is shown in figure 6.20.  

       

    

 

 

 

 

 

Figure 6.20 Architecture of a feed forward neural network 

Input 
layer 

Hidden 
layer 

Output 
layer 
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 The classification technique consists of training and testing 

phases. The best weight and bias values are found out during the training 

phase using known input-output pairs. The unknown inputs are classified 

using the trained neural network at the testing phase. An iterative back 

propagation algorithm is used in the training phase. The training begins 

with random weights and the iterative algorithm adjusts the weights so 

that the error (difference between the actual output and the expected 

output) is minimal. Levenberg–Marquardt algorithm [205, 206] is used to 

optimize the weights. It blends the steepest descent method and Gauss-

Newton algorithm [208].      

6.6 Experimental setup 

 The experimental analyses were carried out on 100 images. The 

images were taken from 100 different patients under medical diagnosis in 

Medical Trust Hospital, Kochi, India. The database consists of 

reconstructed SPECT images obtained from a two collimator single 

photon emission computed tomography GE made device. The obtained 

results were verified with the gold standard provided by QGS developed 

by Cedars Sinai Medical Centre, Los Angeles and cross verified by the 

senior nuclear medicine physicians, Dr. Kuruvila Varkey of Bharat Scan 

Centre, Kottayam, India and Dr. Shamily George of Medical Trust 

Hospital, Kochi, India.  

x Specifications of Neural Network: The built-in function in Matlab 

was used for the experiments. 

o Number of input nodes: 9 

o Number of output nodes: 1 

o Number of hidden layers: 1 
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6.7 Performance measures 

 The ability of the algorithm to identify normal and abnormal cases 

was evaluated using sensitivity, specificity and accuracy. These are 

measured by detecting true positives (TP), true negatives (TN), false 

positives (FP) and false negatives (FN).  

TP: 

Correct classification in which abnormal perfusion case gets 

detected as abnormal. 

TN: 

Correct classification in which normal perfusion case gets detected 

as normal. 

FP: 

 Incorrect classification in which normal perfusion case gets 

detected as abnormal. 

FN: 

Incorrect classification in which abnormal perfusion case gets 

detected as normal. 

Sensitivity: 

 Sensitivity is the true positive fraction (TPF). It is the capability of 

the classification system to identify abnormal perfusion cases.  
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FNTP

TPySensitivit
�

                                  (2) 

In other words, sensitivity is defined as the ratio of the number of 

identified abnormal perfusion cases to the total number of abnormal 

perfusion cases.  

       False negative fraction (FNF) = 1 – sensitivity                     (3) 

                               
FNTP

FNFNF
�

                                            (4) 

Specificity: 

 Specificity is the true negative fraction (TNF). It is the capability 

of the classification system to identify normal perfusion cases.  

                                         
FPTN

TNySpecificit
�

                                     (5) 

 Specificity is defined as the ratio of the number of identified 

normal perfusion cases to the total number of normal perfusion cases.  

                   False positive fraction (FPF) = 1 – specificity                      (6)              

                                           
FPTN

FPFPF
�

                                            (7) 

Accuracy: 

 Accuracy is the ratio of the number of correct detection to the total 

number of cases.  

                             
FNFPTNTP

TNTPAccuracy
���

�
                               (8) 
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Receiver operating characteristics (ROC) curve: 

 ROC curve is plotted using sensitivity and specificity values 

[209]. It is a graph plotted with sensitivity along y-axis and FPF (1 – 

specificity) along x-axis as shown in figure 6.21. ROC curve for an ideal 

case with 100% sensitivity and 100% specificity passes through the upper 

left corner [210]. AUC represents the area under the curve. 

 

 

 

Figure 6.21 ROC curve 

6.8 Results and discussions 

Deciding on whether the heart is functioning normally from the 

SPECT images without using any quantification software is a challenging 

task for the physicians. The discussed method focuses on interpreting 

cardiac SPECT images as normal or abnormal without utilizing any 

quantification software.  
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Classification was performed on 100 images. The features 

extracted from 100 patients were divided randomly into training, 

validation and testing data sets. The algorithm was evaluated using 

specificity, sensitivity and accuracy.   

The method yielded a sensitivity of 98.4%, specificity of 94.7% 

and accuracy of 97%.   

The performance of the algorithm was compared with the direct 

interpretation of two practising nuclear medicine experts. The perfusion 

image slices and the end systolic and end diastolic slices were presented 

to the experts. Neither quantification results nor the results of 

classification based on the gold standard were available before the experts 

during the classification process. The experts classified each patient study 

into two categories: normal perfusion and abnormal perfusion. 

Classification was performed on 20 images. Then classification was 

performed on the same set of images using the proposed method. Table 

6.2 shows a comparison of correct detections by the proposed method and 

visual interpretations of the expert physicians.  

Figure 6.22 and Figure 6.23 respectively depict the confusion 

matrices obtained for one of the attending expert’s visual analysis based 

classification and proposed classification method. Figure 6.24 compares 

the ROC curves obtained in both the cases. Usually, classifier with the 

higher area under the ROC curve is considered better. Proposed classifier 

ROC curve had an area of 0.9375 under it whereas visual reading based 

classifier had an area of 0.8333 under it, suggesting that the proposed 

method had a better ability to discriminate normal and abnormal heart 

images. In addition, the areas under the ROC curves were compared 
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statistically using Chi-square test. The test gave a chi-square value of 

3.9543 with 1 degree of freedom with a p-value of 0.0468. This shows 

that there is a significant difference in the discriminating ability of the two 

classifiers. The higher area under the ROC curve for the proposed method 

suggests that it has a better ability to interpret normal and abnormal heart 

images. The results show that the proposed method aids the nuclear 

medicine physician to reach a more accurate decision on the cardiac 

health from the perfusion images alone.  

Classification is also done on blurred and noisy images as well to 

examine the role of pre-processing stages discussed in chapter 4 and 

chapter 5. The experiment was conducted on a sample image set with 20 

patient cases. Without using pre-processing stage, classification yields an 

accuracy of 85%. Whereas classification on the features extracted from 

the pre-processed image yields a classification accuracy of 95%. The 

accuracies are also compared statistically using Chi-square test. The test 

gives a Chi-square value of 4.500 with 1 degree of freedom with a p value 

of 0.0339 which show a significant difference between the obtained 

accuracies.  The comparison of ROC for the classifier with and without 

pre-processing is depicted in figure 6.25.  



Enhancement and Classification of Cardiac SPECT Images using Pixel Intensity Based Features 
 

 

144
 

 

Figure 6.22 Confusion matrix obtained for one of the attending nuclear 

medicine experts’ visual analysis based classification for 20 patient cases 

 

Figure 6.23 Confusion matrix obtained for proposed classification method 

for 20 patient cases 
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Figure 6.24 Comparison of the performance of proposed method against 

that of visual classification in terms of ROC curves 

 

Table 6.2 Comparison of correct detections by the proposed classification 

method and visual interpretations by two attending nuclear medicine 

experts 

 Visual 

interpretation 1 

Visual 

interpretation 2 

Proposed 

method 

TP 11/12 11/12 12/12 

FN 1/12 1/12 0/12 

TN 6/8 5/8 7/8 

FP 2/8 3/8 1/8 

Correct 

detections 

17/20 16/20 19/20 
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Table 6.3 compares the accuracy of the classifier with and without 

pre-processing stage for different number of patient cases.  The accuracy 

of the classifier is improved with the features extracted from denoised and 

deblurred images. The results in table 6.3 show that the proposed pre-

processing stages work well to improve the diagnostic accuracy for 

images by reducing noise and blur.    

 

 

Figure 6.25 ROC comparison for classifiers with and without pre-

processing stage 

 

The performance of the method proposed in the thesis was 

compared with the method described in literature by Ciecholewski [211]. 

Tracer content region estimates for end systolic and end diastolic slices 

were used by its author as features. The author used support vector 

machine in the classifier stage. The performance comparison results are 
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given in table 6.4. The classification using the features proposed in the 

thesis yielded greater accuracy as compared to the method in literature.  

Table 6.3 Comparison of classifier accuracies with and without pre-

processing stage 

Number of 

patient cases 

Classifier 

accuracy with 

pre-processing 

stage 

Classifier 

accuracy without 

pre-processing 

stage 

 

Chi-square 

test 

20 95% 85% Statistically 

different 

(p=0.0339, 

Chi-square 

value=4.500) 

50 96% 86% Statistically 

different 

(p=0.0262, 

Chi-square 

value=4.9451) 

100 97% 85% Statistically 

different 

(p=0.0066, 

Chi-square 

value=7.3871) 
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Table 6.4 Comparison of the performance of proposed method with the 

method proposed in literature 

 Features used Classifier used Obtained 

accuracy 

Method 

proposed by 

Ciecholewski 

[211] 

Tracer content 

region for end 

systolic and end 

diastolic slices 

 

Support vector 

machine 

 

92% 

Proposed 

method 

Proposed 

features 

Neural network 97% 

 

6.8 Summary 

 The proposed features assisted in improving the accuracy of 

cardiac perfusion image classification. A back propagation neural network 

with Levenberg-Marquardt optimization is employed for classification. 

The database consists of original cardiac SPECT images collected from 

Medical Trust Hospital, Kochi, India. The measures used to assess the 

performance of the proposed method are specificity, sensitivity and 

accuracy.  
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Chapter 7 

 

CONCLUSION AND FUTURE PROSPECTS 

 

 

 

 

A summary of the work discussed in earlier chapters for SPECT image 

enhancement and classification and the scope for future work in the 

subject discipline are outlined in this chapter.  
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7.1 Concluding remarks 

 The previous chapters have described the work that has been 

accomplished on the development of algorithms to enhance and classify 

cardiac SPECT images.  

 The developed algorithms for enhancement focused to improve 

contrast, reduce blur and reduce noise. Contrast enhancement, deblurring 

and denoising algorithms were developed independently. We can use a 

single algorithm or a combination of algorithms to enhance a SPECT 

image without any further modification. A method based on 

morphological processing, utilizing the advantage of adaptive window 

processing, was proposed for the purpose of improving the contrast 

features of cardiac SPECT images. Improving the contrast features helped 

to keep apart the dark and bright areas in the image. This improved the 

interpretability of tracer content information in the image. An analysis of 

the image quality was performed using visual analysis, CI, MSE, ED, 

SSIM and PSNR. A total variation regularization based method was 

discussed to reduce blur present in cardiac SPECT image. An estimate of 

the distortion operator is made for each image slice using ML approach 

and total variation regularization is performed using the estimated 

parameter. The KL test guaranteed minimal addition of noise during ML 

iterations. The method reduced blur while maintaining high PSNR. The 

performance was evaluated using visual analysis, PSNR, SSIM, BM and 

IEF. A Wiener filter denoising method in a variance stabilized domain 

was proposed in this thesis to reduce the noise present in cardiac SPECT 

images. The filter was designed based on the statistics of individual image 

slices. The quality of the denoised image was investigated using visual 
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analysis, PSNR, SSIM, IEF and IQI. All the three algorithms were found 

to be superior to the current methods in literature to which they were 

compared against.  

 Physicians identify myocardial defects by visually scanning for 

relatively decreased tracer content region in the cardiac SPECT image 

slice. The thesis explored the possibility of extracting pixel intensity 

based novel features to identify tracer content region in the heart image 

slice. Features based on image histogram, GLCM, intensity variation, 

fractal dimension and standard deviation of brightness were identified. 

The classification problem was approached by the use of a feed forward 

neural network algorithm with Levenberg-Marquardt optimization. 

Classification yielded a sensitivity of 98.4%, specificity of 94.7% and 

accuracy of 97%. The comparison results reveal that the classification 

using the proposed features aided the physicians to have a more accurate 

judgement on the cardiac health from the perfusion images.  

7.2 Proposals for future work 

 Some suggestions are listed here as a possible extension of the 

work addressed in this thesis. 

x The proposed features could be extended to rest and stress images 

to identify the nature of cardiac abnormality. 

x Ability of the proposed features in identifying normal and 

abnormal heart functioning could be analysed by employing more 

efficient classifiers. 
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