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Abstract
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Discrete Spectrum of Non-selfadjoint Schrödinger Operators and
An Application to Ocean Acoustics

by SATHEESH KUMAR S.

Evolution of discrete spectrum of Schrödinger operator, H(z) =

− d2

dx2+V0+zV1 where V0 and V1 are compactly supported and continu-

ous on its support, is studied as z varies along a path in C. It is found

that the path traced by a discrete spectral element κ(z) of H(z) as z

moves along a path terminates, if it, at the essential spectrum [0,∞).

We have further extended this result and proved that any discrete

spectral element of the nonself-adjoint operatorH(i) = − d2

dx2+V0+iV1

is evolved from either a discrete spectral element or a resonance of

the self-adjoint Schrödinger operator H(0) = − d2

dx2 + V0. Further,

a more general case is discussed where the potential V0 and V1 sat-

isfy
∞
∫

0

xVjdx < ∞. Here it is proved that any discrete spectral el-

ement of H(i) is evolved from either a discrete element of H(0) or

a spectral singularity of H(it0) for some 0 < t0 < 1. An estimate

for lower bound of the number of discrete spectral elements of self-

adjoint Schrödinger operator is derived based on this analysis. Also

it is proved that the spectrum of a non-self adjoint Schrödinger op-

erator − d2

dx2 + V0 + iV1 with V1 > 0 (or V1 < 0) contains more discrete

elements than that of the self-adjoint operator − d2

dx2 + V0. Finally,

a new numerical scheme is devised for estimating eigenvalues of a

Schrödinger operator based on the theoretical analysis. This scheme

is implemented for underwater acoustic modelling.
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Chapter 1

Preliminaries

The preliminary definitions and results are discussed in this chap-

ter. Our work concentrates on the spectrum of non-selfadjoint

Schrödinger operators which are compact perturbations of the free

Schrödinger operator. This chapter provides basis for our work. The

references for this chapter are mainly [Dav95] and [Kat80].

1.1 Introduction

Sonar (SOund Navigation And Ranging) is an equipment designed

to use in underwater environments that uses acoustic waves to nav-

igate, detect, communicate or image other objects. Underwater

acoustic modelling plays a major role in sonar design and its perfor-

mance prediction under given oceanic conditions. The mathematical

model which describes acoustic propagation in underwater environ-

ments is the wave equation:

ρ▽ ·
(

1

ρ
▽ P

)

=
1

c2
∂2P

∂t2
(1.1)

where P is the acoustic pressure field, c = c(x, y, z, t) is the sound

speed and ρ = ρ(x, y, z) is the static density of the medium. Here

the source is assumed to be away from the medium and boundary

conditions are applied based on the environment.

Assuming that the acoustic parameters of the medium is not

varying much during the acoustic transmission (that is, c(x, y, z, t) =
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c(x, y, z)) and the source emits a harmonic signal of angular fre-

quency ω, the pressure field is taken as:

P (x, y, z, t) = P (x, y, z) exp(−iωt) (1.2)

and substituting this into Equation 1.1, we have the model in fre-

quency domain:

ρ▽ ·
(

1

ρ
▽ P

)

+ k2P = 0 (1.3)

This equation is called Helmholtz equation. Here k = ω
c

is the wave

number of the medium.

Even though this transformation reduces the dimension of the

domain by one, the equation is still not an efficient model for op-

erational use. Further simplifications are done (details can be seen in

[Boy84; Jen+11]) and the below operator,

ρ
d

dz

(

1

ρ

d

dz

)

+ k2(z),

defined in L2(0,∞) with domain {f : f, f ′, (1
ρ
f ′)′ ∈ L2(0,∞), f(0) =

0}, and its spectrum play a major role in modelling the pressure

field P . Spectral characteristics of this operator is same as that of

the Schrödinger operator in L2(0,∞) with potential −k2.

Absorption in the ocean medium makes the potential −k2 of the

operator a complex function and hence the operator is a nonself-

adjoint operator. Further the domain of the acoustic problem reduces

this potential to a compactly supported potential. These operators

are coming under the class of operators that are compact perturba-

tions of self-adjoint operators. This work concentrates on the discrete

spectrum of such class of operators.
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This chapter of the doctoral thesis contains preliminary defini-

tions and results that form the basic background for the study. Chap-

ter 2 discusses and reviews the results regarding the compact pertur-

bations of self-adjoint Schrödinger operator. Lieb-Thirring type in-

equalities and recent developments in estimate for number of bound

states are discussed in this chapter. In chapter 3, the main results ob-

tained in this study are detailed. The evolution of discrete spectrum

as the potential moves analytically is discussed and demonstrated

with an example. Chapter 4 contains application of the theoretical

study in solving Ocean acoustic propagation numerically. Finally,

the summary of work done and suggestions of future study are in-

cluded in Chapter 5

1.2 Unbounded Linear Operators

Linear operators on a Banach space or Hilbert space are in general

defined on the whole of the space. Continuous or bounded opera-

tors are such a class of operators that can be defined on the whole

space. But to study unbounded operators like differential operators

we may have to start with a more general definition for linear oper-

ator. One way to do this is to drop the requirement that the domain

equals to the whole of the space. This in turn means that we are fix-

ing the boundary condition on the differential equation which is to

be studied. Thus the domain of definition is as important as the for-

mula by which the operator is defined. The same formula defined on

two different domains (boundary conditions) leads to entirely differ-

ent spectrum for the operators.

Definition 1.2.1. A linear operator defined in a Banach space B is a

pair (A,L) consisting of a dense subspace L of B and a linear mapA :

L → B. L is the domain of the operator A and we write Dom(A) :=

L. If L̄ is a linear subspace of B and Ā : L̄ → B is a linear map such
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that L ⊆ L̄ and Ā(f) = A(f) for all f ∈ Dom(A) then Ā is called an

extension of A.

Definition 1.2.2. A complex number λ is said to be an eigenvalue

of an operator (A,L) in a Banach space B if there exists a non-zero

f ∈ L such that Af = λf . We call the non-zero f , an eigenfunction

of the operator A.

Definition 1.2.3. If A is a linear operator in B with domain L then a

complex number z is said to be a member of the resolvent set of A,

denoted by ρ(A), if the operator z − A maps L one-one onto B, and

its inverse (or resolvent) operator, denoted by R(z, A) or (z − A)−1,

is bounded. The spectrum σ(A) is defined as the complement of the

resolvent set ρ(A) in C.

So z ∈ C belongs to σ(A) if z−A does not have a bounded inverse.

That is, z − A is not either one-one or onto, or the inverse (z − A)−1

exists but is not bounded. In case if the operator z−A is not one-one,

then there exists a non-zero f ∈ Dom(A) such that (z − A)f = 0 and

hence z is an eigenvalue of A. Thus the set of eigenvalues of A is

contained in σ(A). For finite dimensional Banach spaces both these

sets are same but in other cases σ(A) is often a much larger set.

The eigenvalue of an operator is determined by not just the for-

mula by which the operator is defined; it is also dependent on the

domain of its definition. The following examples demonstrate this

fact.

Example 1.2.1. Consider an operator A defined by the formula Af =

−f ′′ defined in the Banach space B of all continuous functions on

[a, b] with domain equal to the subspace of all smooth (infinitely dif-

ferentiable) functions on [a, b]. Then each complex number λ = −κ2 is

an eigenvalue with corresponding eigenfunctions f(x) = exp(±iκx).

Example 1.2.2. Define the same formula Af = −f ′′ in the Banach

space B of all periodic continuous functions on the interval [a, b] with
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domain, the subspace of all smooth continuous periodic functions on

[a, b] then the same formula defines a different operator with count-

able spectrum.

Example 1.2.3. (Dirichlet boundary conditions) Consider the oper-

ator H given by the formula Hf = −f ′′ in the Hilbert space H =

L2(a, b) with domain LD consisting of all twice continuously differ-

entiable functions f on [a, b] for which f(a) = f(b) = 0. The eigenval-

ues of this operator can be estimated using elementary operations.

The countable eigenvalues lie on the real line and its eigenfunctions

form a Fourier orthonormal complete set in L2(a, b).

Example 1.2.4. (Neumann boundary conditions) Consider the op-

erator H given by the formula Hf = −f ′′ in the Hilbert space

H = L2(a, b) with domain LN consisting of all twice continuously

differentiable functions f on [a, b] for which f ′(a) = f ′(b) = 0. The

eigenvalues of this operator too are countable real numbers and the

eigenfunctions form a Fourier orthonormal complete set in L2(a, b).

Note that the spectral properties are similar to the operator defined

in previous example. But the spectral points are totally different. For

example, 0 is an eigenvalue of this operator but it is not for the above

operator.

Continuity or boundedness is a nice property we would like to

have for operators. In case if an operatorA defined in a Banach space

B with dense subspace is bounded then it is possible to extend the

domain to the whole space. Because if fn → f in B, the boundedness

of the operator ensures the convergence of Afn in B. Unbounded

operator does not have this property. At the same time differential

operators have a property that is close to boundedness, closedness.
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1.3 Closedness of an Operator

Definition 1.3.1. Let A be an operator in B with Dom(A) = L. Then

A is closed if whenever fn is a sequence in L with fn → f in B and

there exists g ∈ B such that lim
n→∞

Afn = g; it follows that f ∈ L and

Af = g.

There is an equivalent way of defining this. If A is an operator

in B with domain L then the graph of A = {(f, Af) : f ∈ L} is a

subspace of the Banach space B × B. It is evident that A is closed

if and only if its graph is a closed subspace of B × B. Note that the

Banach space B×B = {(f, g) : f, g ∈ B} is equipped with the norm

defined by ‖(f, g)‖2 = ‖f‖2 + ‖g‖2.
The following lemma explains the importance of the notion of

closedness and importance of knowing size of norm of an operator.

The size of norm of the resolvent operator is important in locating

the spectrum of the operator in C.

Lemma 1.1. [Dav95, p. 4] If the operator A does not have spectrum equal

to the whole of the complex plane C then A must be closed. The spectrum

σ(A) of a linear operator is closed or resolvent set ρ(A) is open. More specif-

ically, let z /∈ σ(A) and let c = ‖R(z, A)‖. Then the spectrum does not

intersect the ball {w ∈ C : |z − w| < c−1}. The resolvent operator is a

norm analytic function of z and for all z, w /∈ Spec(A).

R(z, A)− R(w,A) = −(z − w)R(z, A)R(w,A)

R(z, A)R(w,A) = R(w,A)R(z, A),
d

dz
R(z, A) = −R(z, A)2.

Initially, differential operators may be defined on simple domains

(like domain of smooth functions) where they are not closed. But

most of the time these domains can be extended to make the operator

closed.

Lemma 1.2. [Dav95, p. 6] An operator A in B with domain L is said to

be closable if it has a closed extension Ã. In this case there exists a closed
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extension A of A, called closure of A, whose domain is the smallest among

all closed extensions.

1.4 Self-adjoint Operators

Now we concentrate on operators defined in Hilbert spaces and the

concept of self-adjointness is introduced, it is a bit different from the

case of bounded operators where the domain is the whole space.

Definition 1.4.1. An operator H with dense domain L in a Hilbert

space H is symmetric if

< Hf, g >=< f,Hg >, for all f, g ∈ L.

The operatorsHD andHN in Examples 1.2.3, 1.2.4 are clearly sym-

metric because of the identity

∫ b

a

(f ′′g − fg′′)dx =
[

f ′g − fg′
]b

a
.

Lemma 1.3. [Dav95, p. 6] Every symmetric operator H is closable and its

closure is also symmetric.

Thus, without any loss of generality, symmetric operators are as-

sumed to be closed.

Definition 1.4.2. If A is a linear operator in a Hilbert space H then

the adjoint operator A∗ is defined by the condition that

< Af, g >=< f,A∗g >

for all f ∈ Dom(A) and g ∈ Dom(A∗). The domain of A∗ is defined

to be the set D of all g ∈ H for which there exists unique k ∈ H

such that

< Af, g >=< f, k >

for all f ∈ Dom(A).
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Next result talks about the existence of adjoint operator.

Lemma 1.4. [Dav95, p. 7] IfA is a closed operator with dense domain then

adjoint A∗ is also a closed linear operator with dense domain.

In fact, the closedness of the operator A makes the domain of A∗

dense, and dense domain of A makes A∗ a closed operator.

Definition 1.4.3. An operator H defined in a Hilbert space H is

called self-adjoint if its adjoint H∗ exist and H∗ = H .

This means, operator H defined in Hilbert space H is self-adjoint

if it is symmetric and Dom(H∗) = Dom(H). For a bounded opera-

tor symmetry implies self-adjointness, but for unbounded operators

symmetry need not imply that the operator is self-adjoint. But the

condition of symmetry assures that the adjoint operator can be de-

fined and its domain contains domain of the operator. That is to say

that adjoint operator of a symmetric operator H is an extension of H .

Definition 1.4.4. An operator H defined in a Hilbert space H is said

to be essentially self-adjoint if it is symmetric and its closure is self-

adjoint.

The following lemma provides method for identifying essentially

self-adjoint operators. This is useful for symmetric operators whose

eigenvalues and eigenfunctions can be determined explicitly.

Lemma 1.5. [Dav95, p. 8] Let H be a symmetric operator in a Hilbert

space H with domain L, and let {fn}∞n=1 be a complete orthonormal set in

H . If each fn lies in L and there exist λn ∈ R such that Hfn = λnfn for

every n, then H is essentially self-adjoint. Moreover, the spectrum of H is

the closure in R of the set of all λn.

Thus the operators defined in Examples 1.2.3, 1.2.4 are symmet-

ric operators with self-adjoint closure. The classical Sturm-Liouville

analysis brings out that the operator

H = − d

dx

(

p(x)
d

dx

)

− q(x)
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with p(x), p′(x), q(x) real and continuous, p(x) 6= 0 defined in L2(a, b)

(a, b are finite) with domain, the space of all smooth functions f sat-

isfying either Dirichlet or Neumann boundary conditions belongs to

the class of essentially self-adjoint operators. Later we bring out the

fact that the Laplacian operator ∆ defined in L2(Rn) with domain

C∞
c (Rn), the set of all smooth functions with compact support in Rn

is essentially self-adjoint.

There are also operators that are symmetric but not essentially

self-adjoint. The question of self-adjointness of any of their exten-

sion is addressed using the analysis with the Cayley transform and

deficiency indices.

Definition 1.4.5. If H is a symmetric operator, then

‖(H + i)f‖2 = ‖Hf‖2 + ‖f‖2 = ‖(H − i)f‖2

for all f ∈ Dom(H). Therefore there exists an isometric linear opera-

tor U = (H−i)(H+i)−1 mapping Ran(H+i) one-one onto Ran(H−i).
This operator is called Cayley transformation of H.

Lemma 1.6. [Dav95, p. 11] There exists a one-one correspondence between

symmetric extensions of H and its Cayley transform U .

Definition 1.4.6. The deficiency indices of a symmetric operator H

is defined to be the dimensions of the deficiency subspaces:

L± := {f ∈ Dom(H∗) : H∗f = ±if}

= {f ∈ H :< Hh, f >= ∓i < h, f > for all h ∈ Dom(H)}.

Theorem 1.1. [Dav95, p. 12] If H is a symmetric operator in H then

there exist self-adjoint extensions of H if and only if the deficiency indices

are equal. Moreover, the following conditions are equivalent:

1. H is essentially self-adjoint
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2. The deficiency indices of H are both zero

3. H has exactly one self-adjoint extension

Example 1.4.1. If an operator H is defined with same formula of HD

in Example 1.2.3 or HN in Example 1.2.4 with domain

Dom(H) = Dom(HD) ∩ Dom(HN)

= {f ∈ C2[a, b] : f(a) = f ′(a) = f(b) = f ′(b) = 0}.

Then this opearator has at least two self-adjoint extensions namely

HD and HN .

Symmetric but cannot be extended to self-adjoint operator: Con-

sider the operator in L2(0,∞) defined by

Hf = if ′

with domain the space C∞
c (0,∞) of smooth functions with compact

support within (0,∞). To find the deficiency indices of this opeartor

consider the equations

< Hh, f > = ∓i < h, f > for all h ∈ C∞
c (0,∞)

< h′, f > = ∓ < h, f > for all h ∈ C∞
c (0,∞).

Now assume that the derivative (in the weak sense) of f exists in

L2(0,∞) then from the above equation

∫ ∞

0

(f ∓ f ′)h = 0 for all h ∈ C∞
c (0,∞).

This implies

f = ±f ′ =⇒ f = ce±x.
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But ex /∈ L2(0,∞). Hence the deficiency indices are respectively

dim(L+) = 0 6= 1 = dim(L−). Therefore by the above theorem H

does not have any self-adjoint extension. Whereas if the operator is

defined in L2(0, 1) with domain C∞
c (0, 1), then H has infinitely many

self-adjoint extensions.

The next theorem is important in the spectral studies of self-

adjoint operator. It allows to restrict our search for spectral elements

of self-adjoint operator to real line.

Theorem 1.2. [Dav95, p. 14] The spectrum of any self-adjoint operator H

is real and non-empty. If z /∈ R then

‖(z −H)−1‖ ≤ |Im(z)|−1. (1.4)

Moreover

(z −H)−1 = ((z −H)−1)∗. (1.5)

1.5 Spectral Theorem

Here the spectral analysis of a simple self-adjoint operator is done

initially. This operator plays an important role in the spectral analy-

sis of self-adjoint operator which is described in spectral theorem of

self-adjoint operators.

Let E be a Borel subset of Rn and let µ be a non-negative count-

ably additive Borel measure that is finite on every bounded Borel

subset of Rn. Define H := L2(E, dµ) to be the space of all measur-

able functions f : E → C such that

‖f‖ :=

[
∫

E

|f(x)|2dµ
]1/2

<∞.

Then H is a Hilbert space subject to identifying two functions on H

if they are equal almost everywhere.
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Let a : E → R be a measurable function such that the restriction

of a to any bounded subset of E is a bounded function. Define an

operator A using the formula

(Af)(x) := a(x)f(x)

in H with domain

Dom(A) =

{

f ∈ H :

∫

E

(1 + a(x)2)|f(x)|2dµ <∞
}

.

Theorem 1.3. [Dav95, p. 16] The operator A defined above is self-adjoint.

If L2
c is the set of functions f ∈ H which vanish outside some bounded

subset of E, then A is essentially self-adjoint on L2
c . The spectrum of A

equals the essential range of a, that is the set of all λ ∈ R such that

µ{x : |a(x)− λ| < ǫ} > 0

for all ǫ > 0. If λ /∈ Spec(A) then

(

(λ−A)−1f
)

(x) = (λ− a(x))−1 f(x)

for all x ∈ E and f ∈ H , and

‖(λ− A)−1‖ = [dist(λ, Spec(A))]−1 .

The following form of spectral theorem unitarily identifies any

self-adjoint operator with a multiplication operator in an L2-space.

Thus the estimation of spectrum of a self-adjoint operator reduces

to finding the unitarily equivalent multiplication operator and its es-

sential range.

Theorem 1.4. [Dav95, p. 36] Let H be a self-adjoint operator in a Hilbert

space H with spectrum S. Then there exists a finite measure µ on S × N
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and a unitary operator

U : H → L2 := L2(S × N, dµ)

with the following properties. If h : S×N → R is the function h(s, n) = s,

then the element ξ of H lies in Dom(H) if and only if h · U(ξ) ∈ L2. We

have

UHU−1ψ = hψ

for all ψ ∈ U(Dom(H)).

1.6 Spectrum of Free Schrödinger Operator

The self-adjointness of the free Schrödinger operator −∆ in L2(Rn)

and its spectrum is explained with related results. Initially the oper-

ator is defined on the space of smooth functions, then using Friedrichs

theorem it is shown that the operator can be extended to a self-

adjoint operator. The domain of this self-adjoint operator is then ex-

plained and finally the spectrum is obtained using Fourier unitary

transformation.

Definition 1.6.1. Let Ω ⊂ Rn, and C∞
c (Ω) be the space of all in-

finitely differentiable functions with compact support in Ω. Define

the Laplacian operator −∆ in the Hilbert space L2(Ω) with domain

C∞
c (Ω) using the formula

−∆f := −
n
∑

j=1

∂2f

∂xj
2 . (1.6)

The identity
∫

Ω

(∆fg − f∆g)dnx = 0
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which is followed from the theorem of Green, indicates that the

above operator is symmetric. That is,

< f,−∆g >=< −∆f, g > for all f, g ∈ C∞
c (Ω)

.

This operator is not self-adjoint, in particular it is not closed. For

example, if we consider a function f ∈ L2(Ω) that is smooth up to its

second derivative, with f and its derivatives up to the second order

vanishing at the boundary of Ω, then it is easy to construct a sequence

fn in C∞
c (Ω) such that fn → f and ∆fn → ∆f . We can prove that this

operator has a self-adjoint extension.

Definition 1.6.2. A symmetric operator H in a Hilbert space H is

said to be bounded below if there exists a real number m such that

< Hf, f > ≥ m‖f‖2

for all f ∈ Dom(H). In particular if m = 0, the operator H is called a

non-negative operator.

It is also easy to prove that the operator −∆ is non-negative. That

is

< f,−∆f >=

∫

Ω

n
∑

j=1

∣

∣

∣

∣

∂f

∂xj

∣

∣

∣

∣

2

dx ≥ 0

for all f ∈ C∞
c (Ω).

Theorem 1.5. (Friedrichs) Let H be a Hilbert space and H be a symmetric

non-negative operator in H . then H has atleast one self-adjoint extension

which is also non-negative.

Thus the symmetric operator −∆ in L2(Ω) with domain C∞
c (Ω)

has a non-negative self-adjoint extension. Let H0 be that exten-

sion. To obtain the domain of H0, we note that any function in
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g ∈ Dom(H0) has the following property

< −∆f, g >=< f,H0g > for all f ∈ C∞
c (Ω).

Now it is helpful to introduce the idea of weak derivative and

Sobolev spaces.

Definition 1.6.3. Let Ω ⊂ Rn, and let α be a multi-index. We say

that g ∈ L1
loc(Ω) (space of all functions which are integrable on any

compact subset of Ω) is the αth weak derivative Dαf of f ∈ L1
loc(Ω) if

∫

Ω

fDαϕ = (−1)|α|
∫

Ω

gϕ for all ϕ ∈ C∞
c (Ω).

A function f ∈ L2(Ω) is said to lie in the Sobolev space H m =

Wm,2(Ω) if the weak partial derivatives Dαf lie in L2(Ω) for all |α| ≤
m. The Sobolev norm of such functions are defined by

‖f‖2
H m :=

∑

|α|≤m

‖Dαf‖2.

Thus if we consider

LD := {f ∈ L2(Ω) : Df,D2f exists in L2(Ω), f = 0 on ∂Ω}

or

LN := {f ∈ L2(Ω) : Df,D2f exists in L2(Ω), Df = 0 on ∂Ω}

then by the Green’s identity −∆ is symmetric with domain LD or LN .

Also it is clear that these are self-adjoint extensions of the symmetric

operator −∆ with domain C∞
c (Ω). In case if Ω = Rn, then both ex-

tensions are the same and the operator −∆ with domain C∞
c (Rn) is

essentially self-adjoint. Domain of the essentially self-adjoint opera-

tor is the Sobolev space H 2 = W 2,2(Rn).
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Spectrum of the free Schrödinger operator

The self-adjoint operator −∆ defined in L2(Rn) is known as the free

Schrödinger operator. The spectrum of this operator can be obtained

easily if we can find the unitarily equivalent multiplication operator.

Consider the Fourier transformation U defined on L2(Rn) by

Uf(x) =

∫

Rn

f(t)e−2πi<x,t>dt.

This Fourier transformation is a unitary operator on L2(Rn) and it is

easy to see that

U(−∆f)(x) = (2π)2‖x‖2Uf(x) for all f ∈ Dom(−∆).

Or in other words −∆ on L2(Rn) is unitarily equivalent to the multi-

plication operator M defined in L2(Rn) by

Mf(x) = m(x)f(x), where m(x) = (2π)2‖x‖2.

The domain of M is given by

Dom(M) = {f ∈ L2(Rn) : mf ∈ L2(Rn)}.

Thus the spectrum of −∆ is equal to the spectrum of the multiplica-

tion operator M . That is

σ(−∆) = [0,∞).

1.7 Discrete and Essential Spectrum

Based on the properties of the spectral elements, the spectrum is sep-

arated as discrete or essential spectrum. For a closed operator it is

proven that this separation is disjoint and for self-adjoint operators

this result in a disjoint decomposition of the spectrum.
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Definition 1.7.1. LetH be an operator in the Hilbert space H and let

λ ∈ σ(H) be an isolated point of the spectrum, the Riesz projection

of H with respect to λ is defined by

P (λ,H) :=
1

2πi

∫

γ

R(z,H)dz

where γ is a counterclockwise circle centered at λ such that there is

no other point of σ(H), except λ, on or inside γ.

Since R(z,H) is an operator analytic function, Riesz projection is

well-defined and γ can be any closed contour in the resolvent set of

H enclosing λ and not containing any other spectral element of H

other than λ. The projection P (λ,H) is simply denoted by Pλ if the

underlying operator is clear. Riesz projection is indeed a projection

operator and has the following properties.

Proposition 1.1. [GGK90, p. 326] The projection defined above satisfies

the following:

1. Pλ is a projection, that is, P 2
λ = Pλ.

2. Ran(Pλ) and Ker(Pλ) are H-invariant.

3. σ(H|Ran(Pλ)) = {λ} and σ(H|Ker(Pλ)) = σ(H)\{λ}.

The above proposition reveals that the Riesz projection of H de-

composes the spectrum of H . In fact this can be stated in a more

general setting. Let σ0 ⊂ σ(H) be an isolated part of σ(H), that is,

both σ0 and σ1 = σ(H)\σ0 are closed and let γ be a closed contour in

the resolvent set of H with σ0 in its interior and separating σ0 from

σ1, then the Riesz projection Pσ0
decomposes the spectrum of H in

the sense that σ(H|Ran(Pσ0 )
) = σ0 and σ(H|Ker(Pσ0 )

) = σ1.

Definition 1.7.2. λ ∈ σ(H) is said to be a discrete eigenvalue if λ is

an isolated point of σ(H) and the Riesz projection Pλ is of finite rank.

In this case the positive integermλ = Rank(Pλ) is called the algebraic

multiplicity of λ with respect to H .
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The set of all discrete eigenvalues of an operator H is called its

discrete spectrum denoted by σd(H). It is clear from the properties of

the Riesz projection that the eigenspace of λ, Ker(λ−H), is a subspace

of Ran(Pλ). Thus the geometric multiplicity, that is the dimension of

eigenspace, of an isolated spectral element λ is always less than or

equal to its algebraic multiplicity.

Definition 1.7.3. A closed operator H in Hilbert space H is called

a Fredholm operator if it has a closed range and both its kernel and

co-kernel are finite dimensional.

If H is an operator in the Hilbert space H then its kernel Ker(H)

contains solutions of the homogeneous equationHf = 0. Or in other

words dimension of Ker(H) represents the number of degrees of free-

dom of the system represented by the model Hf = g. Co-kernel of

the operator H is the quotient space H /Ran(H). So if the dimen-

sion of co-kernel increases, it means that the range of H decreases or

the number of constraints in the system increases. Thus a system

represented by Fredholm operator has finite number of degrees of

freedom and finite number of constraints.

Definition 1.7.4. The essential spectrum, σess(H), of H is defined as

σess(H) = {λ ∈ C : λ−H is not a Fredholm operator}.

There is an important result known as Weyl’s criterion that char-

acterizes or identifies the spectral elements and essential spectral el-

ements of a self-adjoint operator. Before stating that result, it is re-

quired to introduce one more concept.

Definition 1.7.5. A sequence {fn}n∈N in a Hilbert space H is said to

be weakly converging to f ∈ H (fn → f weakly) if

< fn, g >→< f, g > for all g ∈ H .
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See that if fn → f then fn → f weakly, but the converse is not

true.

Theorem 1.6. (Weyl’s criterion) Let H be a self-adjoint operator in H .

A point λ belongs to σ(H) if and only if there exists a sequence {fn}n∈N ⊂
Dom(H) such that

1. ‖fn‖ = 1 for all n ∈ N.

2. Hfn − λfn → 0 in H as n→ ∞.

Moreover λ ∈ σess(H) if and only if in addition to the above properties

3. fn → 0 weakly in H .

The result stated next gives the direct connection between the

spectrum of an operator and that of its resolvent. It also helps to

change the focus, if necessary, from the spectrum of an unbounded

operator to that of a bounded resolvent operator.

Proposition 1.2. ([EN00, p.243, 247] and [Dav07, p. 331]) Let H be a

closed operator and let its resolvent, ρ(H), be non-empty. If a ∈ ρ(H) then,

σ(R(a,H))\{0} = {(a− λ)−1 : λ ∈ σ(H)}.

The same is true for the essential spectrum and discrete spectrum. That is,

σess(R(a,H))\{0} = {(a− λ)−1 : λ ∈ σess(H)}

and

σd(R(a,H)) = {(a− λ)−1 : λ ∈ σd(H)}.

More precisely, λ is an isolated point of σ(H) if and only if (a− λ)−1 is an

isolated point of σ(R(a,H)) and in this case the projection operators

Pλ := P (λ,H) = P
(

(a− λ)−1, R(a,H)
)

:= P(a−λ)−1 .

In particular the algebraic multiplicity of λ ∈ σd(H) and (a − λ)−1 ∈
σd(R(a,H)) are equal.
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Note that 0 ∈ σ(R(a,H)) if and only if H is not a bounded opera-

tor. Moreover if H is closed and defined on a dense subspace of H ,

then

0 ∈ σ(R(a,H)) ⇐⇒ 0 ∈ σess(R(a,H)).

Now we have the following few results that talk about the disjoint-

edness of discrete spectrum and essential spectrum and also about

the disjoint decomposition of spectrum into discrete and essential

spectrum.

Proposition 1.3. [Dav07, p. 122] If H is a closed operator and λ is an

isolated point of σ(H), then λ ∈ σess(H) if and only if Rank(Pλ) = ∞. In

particular σess(H) ∩ σd(H) = ∅.

If we consider the left shift operator on the sequence space H =

l2(N) defined by

H(ej) = ej−1.

It is easy to see that ‖H‖ = 1 and hence σ(H) is contained in the

closed unit disk. One can also verify easily that λ ∈ C with |λ| < 1

is an eigenvalue of the operator. Since spectrum is a closed set, it

follows that σ(H) = {λ ∈ C : |λ| ≤ 1}. It can be proven using

Weyl’s criterion that the essential spectrum of this operator, σess(H)

is the unit circle {λ ∈ C : |λ| = 1} and the discrete spectrum of

this operator is empty as the eigenvalues are not isolated. Thus the

spectrum of the left shift operator cannot be represented as a disjoint

union of discrete and essential spectrum.

Proposition 1.4. [GGK90, p. 373] Let H be a closed operator and let

Ω ⊂ C\σess(H) be open and connected. If Ω contains at least one resolvent

point of H , that is Ω ∩ ρ(H) 6= ∅, then σ(H) ∩ Ω ⊂ σd(H).

This result states that if Ω is a component (maximal open con-

nected subset) of C\σess(H) then either of the two happens:

1. Ω contains resolvent points of H and hence the spectral ele-

ments of H , if any, contained in Ω are discrete.
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2. Ω does not contain any resolvent point of H , that is Ω ⊂ σ(H).

The next result is a direct consequence of the previous one.

Corollary 1.6.1. Let H be a closed operator and let σess(H) ⊂ R. If

the upper and lower half planes of C contain resolvent points of H , then

σ(H) = σess(H)∪̇σd(H), where ∪̇ indicates the disjoint union. In par-

ticular, the spectrum of a self-adjoint operator H can be decomposed as

σ(H) = σess(H)∪̇σd(H).

Definition 1.7.6. Let H be closed linear operator in the Hilbert space

H . The numerical range of H is defined as

Num(H) = {< Hf, f >: f ∈ Dom(H), ‖f‖ = 1}.

Num(H) is a convex subset C containing all the eigenvalues ofH .

Furthermore, if the complement of the closure of Num(H) contains

at least one resolvent point of H then σ(H) ⊂ Num(H) and

‖R(z,H)‖ ≤ 1/dist(z,Num(H)) for all z ∈ C\Num(H).

If H is a normal operator (operator that commutes with its adjoint)

then Num(H) is the complex hull of σ(H), that is the smallest convex

set containing σ(H).

1.8 Perturbation of a Linear Operator

Definition 1.8.1. Let H0 be an operator with dense domain D in a

Hilbert space H . Let A be an operator whose domain contains D .

We say that A is relatively bounded with respect to H0 (Or simply

A is H0-bounded), with relative bound α ≥ 0, if there exists c < ∞
such that

‖Af‖ ≤ α‖H0f‖+ c‖f‖ for all f ∈ D .
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The operator defined by H := H0 + A in H with domain D is called

a relative bounded perturbation of H0.

If A is a bounded operator then it is clearly a relative bounded

operator with relative bound 0 and henceH0+A is a relative bounded

perturbation of H0.

Theorem 1.7. [Dav95, p. 18] Let H0 be a self-adjoint operator and let A

be symmetric and is H0-bounded with relative bound less than 1. Then the

relative bounded perturbation H := H0+A is self-adjoint with Dom(H) =

Dom(H0).

Let H0 be an operator with dense domain and A be an operator

whose domain contains the domain of H0. Let f ∈ Dom(H0), z ∈
ρ(H0) and let g := (z − H0)f then R(z,H0)g = f . If AR(z,H0) is

bounded then there exists c <∞ such that

‖AR(z,H0)g‖ ≤ c‖g‖ ⇔ ‖Af‖ ≤ c‖H0f‖+ α‖f‖ where α = c|z|.

ThusA is relative bounded with respect toH0 if and only ifAR(z,H0)

is bounded for some (in fact, for all) z ∈ ρ(H0). Using this idea,

relative compact perturbation can be defined.

Definition 1.8.2. Let B be a Banach space and let K be a bounded

operator which satisfies any of the following equivalent conditions

1. The image of any bounded subset of B under K is relatively

compact.

2. {Kfn} contains a Cauchy sequence for any bounded sequence

{fn} in B.

Then K is called a compact operator.

If K1, K2 are compact operators then α1K1 + α2K2 is compact for

any α1, α2 ∈ C. If {Kn} is a sequence of compact operators and if

Kn → K, then K is compact. Thus the space of all compact operators
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on B is a Banach subspace of the space of all bounded operators and

is denoted by S∞(B).

A compact operator on a Hilbert space H can be thought of as

the norm limit of finite rank operators. Or the Banach space S∞(H )

as the completion (or closure) of the space of all finite rank opera-

tors in the Banach space of all bounded operators. The spectrum of

a compact operator consists of non-zero discrete eigenvalues with a

possible accumulation point 0. If the Hilbert space is not finite di-

mensional then for any compact operator K on H , σess(K) = {0}.

For any K ∈ S∞(H ), we can find orthonormal sets (not necessar-

ily complete) {fn} and {gn} and a set of positive numbers {λn} with

λ1 ≥ λ2 ≥ . . . > 0 such that

Kf =
∑

n

λn < f, fn > gn, for all f ∈ H .

The positive numbers λn’s are called singular values of K and they

are precisely the eigenvalues of the square root of the positive oper-

ator K∗K.

Definition 1.8.3. Let H0 be an operator with dense domain in the

Hilbert space H and K be a compact operator on H . Then the op-

erator H := H0 +K is called a compact perturbation of H0.

Any compact perturbation of a Fredholm operator is Fredholm,

that is, if H0 is Fredholm and K is compact then H := H0 + K is

Fredholm. This property leads to the fact that essential spectrum of

an operator cannot be changed by any compact perturbation, that is

σess(H0) = σess(H0 +K).

Definition 1.8.4. Let H0 be an operator with dense domain in H

and the resolvent of H0, ρ(H0) be non-empty. An operator A is called

H0-compact or relatively compact with respect to H0 if Dom(H0) ⊂
Dom(A) and AR(z,H0) ∈ S∞(H ) for some z ∈ ρ(H0). The operator

H := H0 + A is called a relative compact perturbation of H0.
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EveryH0-compact operator isH0-bounded with relative bound 0.

Moreover if A is H0-compact and H0 is Fredholm then H := H0 + A

is Fredholm. This leads to Weyl’s theorem:

Theorem 1.8. (Weyl’s theorem)Let H = H0 + A where H0 is a closed

operator in H and A is H0-compact. Then σess(H) = σess(H0).

If H0, H are closed operators in H and suppose that ρ(H) ∩
ρ(H0) 6= ∅. Let z ∈ ρ(H) ∩ ρ(H0), then it is easy to see the identity

R(z,H)− R(z,H0) = R(z,H)(H −H0)R(z,H0)

Thus H is a relative compact perturbation of H0 if and only if

their resolvent difference is compact and hence σess(R(z,H)) =

σess(R(z,H0)). Now using Proposition 1.2 we have the following:

Proposition 1.5. Let H0, H be closed operators in H and let z ∈ ρ(H0)∩
ρ(H). If the resolvent difference R(z,H) − R(z,H0) is compact then

σess(H) = σess(H0).

IfH0 is self-adjoint andH is a relative compact perturbation ofH0

then it is shown that the resolvent, ρ(H) contains points from upper

and lower half planes of C. Using the previous theorem σess(H) =

σess(H0) ⊂ R. Now using corollory of Proposition 1.4 we have

Theorem 1.9. If H is a relative compact perturbation of a self-adjoint op-

erator H0 then

σ(H) = σess(H)∪̇σd(H).

1.9 Schrödinger Operator

In this section we consider operators defined in L2(Rn) by the expres-

sion

Hf = −∆f + V f.
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Here V is a multiplication operator with a real or complex func-

tion v(x),x ∈ Rn which is appropriately chosen to make the op-

erator a perturbation of the free Schrödinger operator discussed in

Section 1.6.

This operator and its spectral analysis have special importance in

quantum mechanics. The Schrödinger equation given by

∂f

∂t
= −iHf

plays a role in quantum mechanics equivalent to Newton’s second

law of motion in classical mechanics. This Schrödinger equation

controls the evolution of a quantum system with solution f(x, t) =

e−iHtf(x, 0). Here f represents the state of the system and the opera-

tor H , the Hamiltonian of the system. The total energy of the system,

which is equal to < Hf, f >, is divided between the kinetic energy

< −∆f, f > and the potential energy < V f, f >. The different eigen-

values, if exist, correspond to different discrete excitations of the sys-

tem. The smallest of these eigenvalues represents the ground state

energy and the corresponding eigenfunction is the ground state of

the system.

The above detailing is an over-simplified description of quantum

system and quantum theory. Our interest is to study the Schrödinger

operator rather as a mathematical tool. But here it is intended to

indicate the importance of differential operators and their spectrum

in the study of quantum theory, one of the most important scientific

theories of this century.

In this section the conditions on real potential V to make the

Schrödinger operator a self-adjoint operator are discussed. For the

case of complex potential, conditions on V so that it becomes a rel-

atively compact perturbation of the free Schrödinger operators are

discussed.
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If V is a real potential such that Hf exists in L2(Rn) for f in a sub-

space of L2(Rn), then Green’s theorem ensures the symmetry of the

operator. But the self-adjointness or the denseness of the domain

is not ensured without setting conditions on the potential. If the

multiplication function is locally integrable, a term defined below,

then one can ensure the denseness of the domain. Whereas the self-

adjointness (or essential self-adjointness) is proven if the potential

considered is −∆-bounded with relative bound zero.

Definition 1.9.1. A function V : Rn → C is said to be locally p-

integrable or said to be a member of Lp
loc(R

n) if it is p-integrable on

every bounded subset of Rn.

A function V is said to be in Lp +L∞ (Lp(Rn) +L∞(Rn)) if we can

express V as V = Vp + V∞ where Vp ∈ Lp(Rn) and V∞ ∈ L∞(Rn) (or

equivalently V∞ is measurable and bounded).

If the potential V is in L2
loc, then it is easy to see that the operator

H := −∆ + V can be defined on C∞
c (Rn), the space of smooth or in-

finitely differentiable functions with compact support in Rn, a dense

subspace of L2(Rn). In fact it can be defined on C2
c (R

n), the space

of functions which have derivative (in the weak sense) up to second

order and have compact support. Thus H can be defined on a dense

domain.

If the real potential V is in L∞(Rn) then we can make it a positive

operator by adding a sufficiently large positive number, if required,

to −∆ + V . Hence by an application of Friedrichs theorem (Theo-

rem 1.5) there exists self-adjoint extension for the operator −∆ + V .

Or otherwise, if the real V is in L∞(Rn), then the multiplication op-

erator is bounded with norm ‖V ‖L∞ and hence it is −∆-bounded

with relative bound 0. So using Theorem 1.7, −∆ + V is essentially

self-adjoint with domain equal to Dom(−∆) = H 2 =W 2,2(Rn).

The following few theorems talk about the essential self-

adjointness of the Schrödinger operator −∆ + V defined in H =
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L2(Rn) with domain C∞
c (Rn) for the case of potentials with singular-

ity.

Theorem 1.10. [Dav95, p. 157] If 0 ≤ V ∈ L1
loc, then the non-negative

Schrödinger operator defined in L2(Rn) with domain C∞
c (Rn) is essentially

self-adjoint).

The next theorem is about Schrödinger operator in L2(R3)

Theorem 1.11. ([Dav95, p. 159] and [Kat80, p. 304]) If H is defined in

L2(R3) by Hf := −∆f + V f , where the real potential V is in L2 + L∞,

then H is self-adjoint and bounded below with the same domain as the free

Schrödinger operator H0 := −∆. In addition if V (x) → 0 as |x| → ∞,

then the spectrum of H consists of σess(H) = [0,∞) and discrete spectrum

equals to a countable set of negative real numbers which accumulate at 0, if

it is infinite.

The second part of the theorem is proved by showing that V is

H0-compact if V (x) → 0 as |x| → ∞. This is true even if V is com-

plex valued, but then H is not symmetric and self-adjointness is out

of question. Even though using Theorem 1.9, it can be shown that

spectrum of H consists of σess(H) = [0,∞) and σd(H) equals to a

countable set of non-positive points in C which accumulate, if σd(H)

is infinite, to a point in [0,∞).

Even though the above theorem is of great importance its appli-

cability is limited to a smaller class of potentials compared to the

following theorem.

Theorem 1.12. [Dav95, p. 160] Let n ≥ 3, let the real potential V ∈
Lp + L∞ for some p > n/2 and let the operator H := −∆ + V be defined

on a dense subspace of L2(Rn). Then H can be extended to a self-adjoint

operator which is bounded below.

Now we turn to the case of complex valued potential V . Then the

operator H := −∆ + V is a nonself-adjoint operator. Much of the
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discussion on the topic is postponed to the next chapter, where we

review the results regarding relative compact perturbations of free

Schrödinger operators in detail. Theorem 1.11 gives the condition to

make complex potential V a relative compact perturbation of −∆ on

L2(R3). We end this section by noting a result that provides condi-

tions on complex potential V to make it a relative compact perturba-

tion of −∆ on L2(Rn).

Theorem 1.13. [DHK13a] If the complex potential V ∈ Lp(Rn) with

p ≥ 2 if n ≤ 3 and p > n/2 if n ≥ 4, then V is relatively compact with re-

spect to −∆, the operator H := −∆+V has domain equal to Dom(−∆) =

W 2,2(Rn) and its spectrum is a disjoint union of σess(H) = [0,∞) and

σd(H) equals to a countable set of discrete eigenvalues which can accumu-

late only at [0,∞).

1.10 Operator Valued Analytic Functions

In this section we refer few results from [Kat80] regarding operator

valued analytic functions. We start with defining analytic vector val-

ued functions and operator valued functions.

Definition 1.10.1. Let B be a Banach space, Ω ⊂ C an open subset

in C. A vector valued function F : Ω → B is said to be analytic or

holomorphic in Ω if it is differentiable at each point of Ω. That is, for

each z ∈ Ω there exists G(z) such that

∥

∥

∥

∥

F (z +∆z) − F (z)

∆z
−G(z)

∥

∥

∥

∥

→ 0 as ∆z → 0.

In a Hilbert space H , a function F : Ω → H is analytic if and

only if z ∈ Ω has a neighborhood in which ‖F (z)‖ is bounded and

the complex valued function < F (z), f > is analytic for each f ∈
H . This last statement is equivalent to saying that the function F is

analytic in Ω in the weak sense.
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Now we turn to the case of operator valued functions, and first

we consider bounded operator valued functions.

Definition 1.10.2. Let Ω be a complex domain, and let A be a

bounded-operator valued function. That is, for each z in Ω, A(z) be

a bounded or continuous operator from Banach space B1 to Banach

space B2. We say A to be analytic in Ω if it is differentiable at each

z ∈ Ω. That is, there exists a B(z) for each z such that

∥

∥

∥

∥

A(z +∆z)−A(z)

∆z
− B(z)

∥

∥

∥

∥

→ 0 as ∆z → 0.

Here ‖ · ‖ indicate the norm in the Banach space of all bounded oper-

ators from B1 to B2.

If the underlying Banach spaces are Hilbert, say H1 and H2, then

the bounded-operator valued functionA(z) is analytic in Ω if and only

if each z in Ω has a neighborhood in which A(z) is bounded and

< A(z)f, g > is analytic for each f ∈ H1 and g ∈ H2.

Analyticity of Unbounded Operators

Definition 1.10.3. Let A(z) be a closed operator from B1 to B2 for

each z in a complex domain. Then A(z) is said to be analytic at z0 if

there exist a Banach space B and two operator valued functionsB(z)

and C(z) which are bounded-holomorphic at z0, where eachB(z) is a

bounded operator from B to B1 and eachC(z) is a bounded operator

from B to B2, such that B(z) maps B one-one onto Dom(A(z)) and

A(z)B(z) = C(z).

A(z) is analytic in a complex domain Ω if it is analytic at each z ∈ Ω.

An important result which connects the analyticity of unbounded

operator valued function to that of bounded operator valued func-

tion is given below.
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Theorem 1.14. [Kat80, p. 367] Let A(z) be defined on a neighborhood of

z0 and let ζ ∈ ρ(A(z0)), the resolvent set of A(z0). Then A is holomorphic

at z0 if and only if ζ ∈ ρ(A(z)) and the resolvent R(ζ, z) := R(ζ, A(z)) =

(ζ−A(z))−1 is bounded-holomorphic for sufficiently small |z−z0|. R(ζ, z)
is even bounded-holomorphic in the two variables on the set of all ζ, z such

that ζ ∈ ρ(A(z0)) and |z − z0| is sufficiently small (depending on ζ).

If we have any result regarding the spectrum (for example con-

tinuity, analyticity) of a bounded-analytic operator valued function,

using the above theorem and Proposition 1.2 it can be transferred to

the case of unbounded operator valued analytic functions.

One of the important results which we make use of in our analysis

is the following.

Theorem 1.15. [Kat80, p. 370] If A(z) is holomorphic in z near z =

z0, then any finite system of eigenvalues {λj(z)}mj=1 of A(z) consists of

branches of one or several analytic functions which have at most algebraic

singularities near z = z0.

Example 1.10.1. Consider the operator valued function A(z) defined

on the extended complex plane where each A(z) is the operator on

L2(0, 1) defined by A(z) := −i d
dx

with the domain, Dom(A(z)) =

{f ∈ L2(0, 1) : f ′ ∈ L2(0, 1) and (1 + iz)f(0) = (1 − iz)f(1)}. The

eigenvalues can be found out using the equations

−i df
dx

= λf and (1 + iz)f(0) = (1− iz)f(1)

and the eigenvalues are

λn(z) = 2 arctan z + 2nπ, n = 0,±1,±2, . . . .

Thus all these eigenvalues λn(z) form a single analytic function

2 arctan z, which has a logarithmic singularity at ±i. Also we can

directly verify that at z = ±i, the operators A(±i) do not have any

eigenvalues.
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There is an important special case of holomorphic family of op-

erators A(z) which is referred as analytic family of type (A) and is

defined as follows.

Definition 1.10.4. A function A(z) defined on a complex domain Ω,

whose values are closed operators from a Banach space B1 to Banach

space B2, is said to be analytic of type (A) if (i) Dom(A(z))=D is

independent of z and (ii) A(z)f is analytic for each z ∈ Ω and for

every f ∈ D .

It is easy to see that if A(z) is analytic of type (A) then it is indeed

an analytic function in the sense of Definition 1.10.3. To see this,

convert the common domain D to a Banach space B by defining a

norm by ‖f‖B = ‖f‖B1
+ ‖A(z0)f‖B2

where z0 ∈ Ω. This is pos-

sible because A(z) is closed for each z in particular A(z0) is closed.

Now consider the operator B which sends f ∈ B to f ∈ B1; B

clearly maps B one-one onto D and is bounded since ‖f‖B1
≤ ‖f‖B.

Also each A(z) can be regarded as an operator from B to B2 and is

denoted by C(z). The closedness of A(z) implies the closedness of

C(z) and since C(z) is defined on the entire Banach space B, C(z) is

bounded. Since C(z)f = A(z)f is analytic for every f ∈ B, it follows

that C(z) is bounded-analytic. Finally, from the construction it is ob-

vious that A(z)B = C(z) and hence A(z) is analytic in the sense of

Definition 1.10.3.
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Chapter 2

Literature Survey

Spectral analysis of nonself-adjoint operators is very much an ac-

tive topic. In particular, both Mathematicians and Physicists have

shown interest in the nonself-adjoint Schrödinger operators because

of their physical significance. Most of the research articles gener-

ated in this area are concerned with the discrete spectrum, its finite-

ness, accumulation (if infinite), rate of convergence and its bound-

edness. This chapter contains survey of some important literature

which we have come across during this study. Most of these are re-

lated to Schrödinger operators with relative compact perturbations.

This survey will be covered in two sections. Section 2.1 covers re-

sults specific to self-adjiont Schrödinger operators. The last section

is devoted for the discussion of articles pertaining to nonself-adjoint

Schrödinger operators with relative compact potentials. This section

is categorized into three, discussing the results related to (i) bound-

edness of discrete spectrum, (ii) Lieb-Thirring type inequalities and

(iii) estimate for number of eigenvalues or bound states.

2.1 Self-adjoint Schrödinger operators

Documentation of our survey starst with results given in [Bar52] for

a self-adjoint Schrödinger operator acting in L2(R3). This brief note

contains estimate for number of bound states (discrete spectrum) of
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radial wave equation

d2f

dr2
− l(l + 1)

1

r2
f + λf = V (r)f

which is obtained from the Schrödinger equation

−∆f(x) + V (x)f(x) = λf(x) for x ∈ R
3.

The above Schrödinger equation is first converted to spherical co-

ordinate system (r, θ, φ), then a solution of the form f(r)g(θ, φ) is

assumed and the equation is separated into two. The radial wave

equation is one of the two resulting equations that corresponds to ra-

dial r. The separation constant is taken as l(l + 1) and l is called the

angular momentum for physical considerations. In [Bar52], an esti-

mate of the number of bound states nl of the radial wave equation

with potential which satisfies the condition

I =

∞
∫

0

rV (r)dr <∞

is sought and this article tries to extend an earlier study which con-

cluded that nl = 0 if I < 1. The extended general result derived in

this article is

(2l + 1)nl < I.

The operator valued function

H(λ) = −∆+ λV, λ ∈ R,

where −∆ is the free Laplacian defined on L2(R3) and V is a real

valued function which belongs to the Rollnik class of functions (V is

a Rollnik function if and only if
∫

R6 |V (x)||V (y)||x− y|−2dx dy < ∞)

has been studied in [KS80] using perturbation theory. In this article,

the nature of the negative eigenvalues is studied as λ approaches a
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coupling threshold constant, say λ0. Here, λ0 is a coupling threshold

constant, means that if λ → λ0 then a negative eigenvalue of H(λ)

goes to 0 and gets absorbed in the essential spectrum. It has been

noted that the threshold behavior is very much dependent on the

dimension of the underlying configuration space Rn. For the case of

n = 3 it is proved that, if E(λ) denotes the negative eigenvalue that

get absorbed in the essential spectrum as λ→ λ0, then E(λ) behaves

as

E(λ) = O((λ− λ0)
2)

or

E(λ) = O(λ− λ0)

as λ → λ0 and E(λ) is analytic in the first case and has a square

root branch point in the second case. Several authors have studied

this threshold behavior and in [GH87] the above results have been

improved by finding out the coefficients of the first term in the ex-

pansion of E(λ) in terms of (λ− λ0).

Resonances and antibound states (negative resonance) of self-

adjoint operator in one-dimension is studied in [Sim00]. A simple

definition similar to the definition of eigenvalues is derived for res-

onances. Here the function (similar to eigenfunction) corresponding

to the resonance does not belong to L2(R) or L2(0,∞). This definition

of resonance is used in our study. A result regarding the number of

antibound state is proved in this article, the same is illustrated in our

analysis.

As we have seen earlier, if the potential V is a relative compact

perturbation (see Section 1.9 for more details) then its spectrum con-

tains the essential spectrum [0,∞) and a countable set of discrete

eigenvalues that can only accumulate at [0,∞). Several authors have

studied the rate of convergence of such a discrete spectrum. If {λj}
is the set of discrete eigenvalues then the sum

∑

j

(dist(λj, [0,∞)))γ

represents a measure for the convergence of discrete spectrum. The
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convergence of the sum for smaller values of γ indicates faster con-

vergence of λj to the essential spectrum. In the self-adjoint case, all

the discrete eigenvalues are negative real numbers and their accu-

mulation, if it happens, is towards 0. The above mentioned sum, in

this case, reduces to
∑

j

|λj|γ . Providing an estimate to this sum and

improving this estimate are important research topics in this field.

The estimate to this sum is in general referred to as the Lieb-Thirring

type inequalities as it was first derived in [LT76]. The results from

[LT76], [Lie76], [Roz76], [Cwi77] and [Wei96] suggest the existence

of a constant L(p, n) that depends only on p and n such that for po-

tentials V ∈ Lp(Rn) with p ≥ 1 if n = 1, p > 1 if n = 2 and p ≥ n
2

if

n ≥ 3,
∑

j

|λj|p−
n
2 ≤ L(p, n)

∫

Rn

V−(x)
pdx

where V−(x) = max{−V (x), 0} is the negative part of V . Estimating

sharp constant L(p, n) has also attracted several authors. There exists

a classical constant derived from Weyl’s asymptotic formula denoted

by Lcl(p, n) given by

Lcl(p, n) =
Γ(p− n

2
+ 1)

2nπn/2Γ(p+ 1)
for p ≥ n

2

such that

Lcl(p, n) ≤ L(p, n).

In [LW00], it is proven that the sharp constant for p ≥ 2 and for

n ∈ N is equal to this classical constant Lcl(p, n). For the case of 1 ≤
p < 2, improved estimate of the constant L(p, n) has been established

in [HLW00].
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2.2 Nonself-adjoint Schrödinger operators

with compact perturbation

2.2.1 Boundedness of Discrete Spectrum

In [Pav67], the spectral properties of the nonself-adjoint Schrödinger

operator on the half-line with nonself-adjoint boundary condition

has been studied. That is, a one-dimensional differential operator

Hh on L2(0,∞) is considered which is defined by the expression

Hhf = −f ′′ + V (x)f

with boundary condition

f(0)− hf ′(0) = 0

where h is a complex number, V (x) is a complex valued measurable

function that satisfies

∞
∫

0

x|V (x)|dx <∞.

If V (x) is real valued then the above condition assures that σd(Hh) is

finite and for a complex potential the finiteness of σd(Hh) is proved

in [Nai52] assuming

sup
x>0

{|V (x)|exp(ǫx)} <∞ for any ǫ > 0.

Several researchers have addressed this large disparity between the

above two conditions for self-adjoint and nonself-adjoint cases. In

[Pav67], the condition for finiteness of σd(Hh) for the case of complex

valued V (x) has been improved to

sup
x>0

{|V (x)|exp(ǫ
√
x)} <∞ for any ǫ > 0.
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It further asserts that the condition is optimal in the sense that there

exist complex potentials satisfying

sup
x>0

{|V (x)|exp(ǫxβ)} <∞ for any ǫ > 0 and for β ∈ (0, 1/2)

such that operator Hh has an infinite number of discrete eigenval-

ues. Also in the same article, a similar improvement is proved for

Schrödinger operators in L2(R3) with complex potential.

The research work by [AAD01] is one of most referred arti-

cles in the field of nonself-adjoint Schrödinger operators. The au-

thors have found bounds for complex eigenvalues of nonself-adjoint

Schrödinger operator and resonances of self-adjoint Schrödinger op-

erator. This also slightly improved the results given in [Pav67] about

the conditions on the complex potential V to have a finite discrete

spectrum. The two important results in this regard applicable for

nonself-adjoint Schrödinger operators in L2(R) are the following

Theorem 2.1. If the complex potential V ∈ L1(R) ∩ L2(R), then every

eigenvalue λ of H := −∆ + V which does not lie on the positive real line

satisfies

|λ| ≤ ‖V ‖21/4.

Theorem 2.2. Let the potential V satisfies

‖V (x)eγx‖1 <∞

for all γ ∈ R. Then the number of eigenvalues of H := −∆ + V is finite

and all the eigenvalues satisfy

|λ| ≤ 9

4
‖V ‖21.

This article also describes and illustrates two numerical tech-

niques for finding complex resonances of self-adjoint Schrödinger

operators with exponentially decaying potential.
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The case of potentials which are slowly decaying has been anal-

ysed in [DN02]. The authors have considered potentials of the form

V = W + X where W ∈ L1(R) and X ∈ L∞
0 (R) (A function X ∈

L∞
0 (R) if and only if X is bounded, measurable and lim

|x|→∞
X(x) = 0)

and found useful bounds for the discrete spectrum of the operator

H := −∆ + V defined on L2(R). They improved Theorem 2.1 and

proved the same result for the complex potential V ∈ L1(R). Another

important result proved in this article is about bounds of eigenvalues

of Schrödinger operator with potentials V ∈ Lp(R).

Theorem 2.3. If V ∈ Lp(R), p > 1 and z = −λ2 is an eigenvalue of

H := −∆+ V , where λ = λ1 + iλ2 and λ1 > 0 then

λ1 ≤ µ = kq/2(q+1)

and

|λ2| ≤
√

k2

4
λ
−2/q
1 − λ21

where k = ‖V ‖p(2/q)1/q and 1/p+ 1/q = 1.

2.2.2 Lieb-Thirring type Inequalities

Lieb-Thirring type inequalities for the case of complex valued poten-

tial are first appeared in [Fra+06]. In this article, an estimate is de-

rived for the set of eigenvalues which are lying outside a cone about

the positive real axis on the right half-plane.

Theorem 2.4. Let n ≥ 1, p ≥ n
2
+ 1 and let the complex potential V ∈

Lp(Rn) and {λj} be the eigenvalues of the operator H := −∆ + V . If

κ > 0, then for eigenvalues outside the cone {z ∈ C : Im(z) < κRe(z)}

∑

Im(λj )≥κRe(λj)

|λj|p−
n
2 ≤ C(p, n)

(

1 +
2

κ

)p ∫

Rn

|V (x)|pdx.
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This estimate is useful for discrete spectral elements which are

converging to 0. Compared to the self-adjoint case (see Section 2.1)

this result is weaker and it is evident from the conditions on γ.

The case of eigenvalues which are lying inside the cone {z ∈ C :

Im(z) < κRe(z),κ > 0} is analyzed in [LS09]. Their result provides

information about the accumulation of eigenvalues to the positive

real axis. This also contains bounds for the discrete spectrum of

nonself-adjoint Schrödinger operator on L2(Rn). Their main result

is

Theorem 2.5. Let Re(V ) ≥ 0 be a bounded function. Assume that

Im(V ) ∈ Lp(Rn), where p > n/2 if d ≥ 2 and p ≥ 1 if n = 1. Then

the eigenvalues λj of the operator H := −∆+ V satisfy the estimate

∑

j

(

Im(λj)

|λj + 1|2 + 1

)p

+

≤ C(p, n)

∫

Rn

(ImV (x))p+dx.

A more general result, in the sense that is involving all eigenval-

ues of Schrödinger operator is proved in [DHK09]. This result can

also be compared directly with the results of the self-adjoint case.

Theorem 2.6. LetH := −∆+V acting on L2(Rn), where n ≥ 1. Suppose

that V ∈ Lp(Rn) with p ≥ n/2 + 1. Then for any 0 < τ < 1,

∑

λ∈σd(H)

dist(λ, [0,∞))p+τ

|λ|n2 +τ
≤ C(p, n, τ)

∫

Rn

|V (x)|pdx.

This result too falls short of the corresponding result in the self-

adjoint case in two counts (1) the presence of τ which can not be set

to 0 as the constant C depends on τ and is not known to be bounded

as τ → 0 (2) the restriction on p compared to the self-ajoint case.

Further in [DHK13b], the Lieb-Thirring type inequalities are de-

rived for relative compact perturbation of self-adjoint operators us-

ing two different approaches. The approach based on complex anal-

ysis initially defines an analytic function whose zeros are exactly
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matching with the discrete spectral elements of the operator and de-

rives the result. This approach applied to Schrödinger operators with

relative compact perturbation yields the following results.

Theorem 2.7. Let H := −∆ + V defined on L2(Rn) with V ∈ Lp(Rn),

where p ≥ 2 if n ≤ 3 and p > n/2 if n > 4. Then for τ ∈ (0, 1) the

following holds:

1. If p ≥ n− τ then

∑

λ∈σd(H)

dist(λ, [0,∞))p+τ

|λ|n2 (|λ|+ a)2τ
≤ C(p, n, τ)a−τ

∫

Rn

|V (x)|pdx

2. If p < n− τ then

∑

λ∈σd(H)

dist(λ, [0,∞))p+τ

|λ| p+τ
2 (|λ|+ a)

n−p+3τ
2

≤ C(p, n, τ)a−τ

∫

Rn

|V (x)|pdx

Here a > 0 is such that

Re(λ) < −a⇒ ‖(λ−H)−1‖ ≤ |Re(λ) + a|−1.

Note that compared to the restrictions on p in [DHK09] this is an

improved result.

2.2.3 Number of Eigenvalues

For a self-adjoint Schrödinger operator on the half-line, it is given

that ([Bar52]) the number of eigenvalues is bounded by
∫

|x||V (x)|dx.

But for non-self-adjoint case it is proved that ([Pav61; Pav62; Pav67])

there exists a potential which is decaying at the rate of e−cxα
, c > 0,

0 < α < 1/2 but has countably infinite numebr of eigenvalues. It

is also proven that if |V (x)| ≤ Ce−cx1/2
for some C, c > 0 then the

operator has only finite number of eigenvalues. Estimate for num-

ber of eigenvalues for the case of nonself-adjoint Schrödinger with

finite descrete spectrum were analyzed by several authors and is a
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very active topic even today (see [Ste14; FLS16; Ste17]). The esti-

mate for the number of eigenvalues |σd(−∆+V )| of Schrodinger op-

erator in L2(R3) with compactly supported or exponentially decay-

ing complex potential V has been discussed in [Ste14]. In [FLS16],

the authors have considered nonself-adjoint Schrödinger operator in

L2(Rn) with exponentially decaying potential in odd dimension (n is

odd) and proved the following estimate.

Theorem 2.8. The number of eigenvalues of H := − d
dx2 + V in L2(R+)

with a Dirichlet boundary condition, counting algebraic multiplicities, sat-

isfies, for any ǫ > 0,

|σd(H)| ≤ 1

ǫ2





∞
∫

0

eǫx|V (x)|dx





2

.

Theorem 2.9. Let n ≥ 3 and be odd. Then the number of eigenvalues of

H := −∆ + V in L2(Rn), counting algebraic multiplicities, satisfies, for

any ǫ > 0,

|σd(H)| ≤ Cn

ǫ2

(
∫

Rn

eǫ|x||V (x)|n+1

2 dx

)2

where Cn depends only on n.
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Chapter 3

Discrete Spectrum of

One-Dimensional Schrödinger

Operators

This chapter contains our analysis on the discrete spectrum of

nonself-adjoint Schrödinger operator in L2(0,∞) which satisfies

Dirichlet condition at 0. Our analysis considers a holomorphic

function H(z) defined on the complex plane C whose values are

Schrödinger operators, then finds the movement of the discrete spec-

trum of H(z) as z varies in C. IfH(z0) is self-adjoint for some z0, then

the existence of min-max principles and spectral theorem make it rel-

atively easy to find the discrete spectrum which lies on the negative

real axis. In this work, our idea is to obtain the discrete spectrum

of a nonself-adjoint Schrödinger operator, say H(z1), from the dis-

crete spectrum of a self-adjoint Schrödinger operator, say H(z0), as

it evolves analytically or continuously. Section 3.1 introduces the

topic and Section 3.2 discusses the preliminary results required for

our analysis. The evolution of discrete spectrum of Schrödinger op-

erator with compactly supported complex potential is studied in Sec-

tion 3.3. The result is further extended to the case of potentials V

with
∞
∫

0

x|V (x)|dx < ∞ in Section 3.4. Though our result about po-

tentials with compact support can be deduced from Section 3.4, we

keep the analysis separate and prove the result in a different way in
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Section 3.3. Finally a simple example is provided in Section 3.5 to

illustrate the evolution of discrete spectrum.

3.1 Introduction

We consider the operator valued analytic function

H(z) = − d2

dx2
+ V0 + zV1 (3.1)

defined on the complex plane C, where V0, V1 are real valued

bounded measurable functions vanishing sufficiently rapidly as

|x| → ∞. H(z) is a Schrödinger operator in L2(0,∞) with domain

Dom(H(z)) = {f ∈ L2(0,∞) : f ′, f ′′ ∈ L2(0,∞), f(0) = 0}. In this

work, continuous evolution of the discrete spectrum of H(z) is stud-

ied as z varies along a continuous path in C. In particular, as z varies

along the imaginary line from 0 to i, the evolution of the discrete

spectrum of the self-adjoint operator H(0) = − d2

dx2 + V0 is of special

interest to us.

The distribution of the discrete spectrum of selfadjoint

Schrödinger operator has been studied extensively, the same is

not the case with non-selfadjoint Schrödinger operator. The spectral

theorem and min-max principles for the selfadjoint case play major

role in its theoretical development, whereas such tools are not avail-

able for non-selfadjoint operators. Each non-selfadjoint problem

needs to be studied separately. Our effort to extract some informa-

tion on the discrete spectrum of the non-selfadjoint Schrödinger

operator

H(i) = − d2

dx2
+ V0 + iV1 (3.2)

using the discrete spectrum of corresponding self-adjoint

Schrödinger operator

H(0) = − d2

dx2
+ V0 (3.3)
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is quite a different approach and we intend to prove the following

result.

Theorem 3.2. If V0 and V1 are such that
∫∞

0
x|Vj(x)|dx <∞, j = 0, 1 and

let κ1 be in the discrete spectrum of H(i) then there exist (1) t0 (0 ≤ t0 <

1), (2) a real number κ0, a member in the discrete spectrum or a spectral

singularity of the operator H(it0) and (3) a continuous path κ(t) such that

κ(0) = κ0, κ(1) = κ1 and each κ(t), 0 < t ≤ 1, is a discrete eigenvalue of

the operator H(i(t0 + t)).

3.2 Potentials with Compact Support

We assume initially, that V0 and V1 are bounded, continuous (except

for finite number of jump discontinuity) and compactly supported

real functions, then it follows from [AAD01] that the spectrum of the

operatorH(z) consists of the essential spectrum σess(H) = [0,∞) and

a finite number of discrete eigenvalues. Further H(z) is an operator

valued analytic function (in fact an analytic function of type (A), see

Section 1.10) and hence from [Kat80, p. 370], the finite system of

eigenvalues ofH(z0) are branches of one or several analytic functions

that have at most algebraic singularities near z = z0. Also it follows

from [Kat80] that if κ(z) = −λ2(z), with Re(λ(z)) > 0, is a member of

the discrete spectrum of H(z) and is analytic at z, then its derivative

κ′(z) =

〈

V1φ(z, ·), φ̄(z, ·)
〉

〈

φ(z, ·), φ̄(z, ·)
〉 =

∫∞

0
V1(x)φ

2(z, x)dx
∫∞

0
φ2(z, x)dx

(3.4)

where φ(z, ·) is the normalized eigenfunction of H(z) corresponding

to κ(z).

Before proceeding, it is desirable to state few results which are

useful in our discussion.

Lemma 3.1. [San79, p. 136] Let the differential equation x′ = f(t,x, λ),

t a scalar variable, x = (x1, x2, . . . , xn) and λ = (λ1, λ2, . . . , λν) be given,
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where f(t,x, λ) and ∂f/∂xi are defined and continuous in some domain B

contained in Rn+ν+1. If (t0,x0, λ0) belongs to B, then there exist positive

numbers r and p such that

1. Given any λ such that ‖λ − λ0‖ ≤ p, there exists a unique solution

x = x(t, λ) of the given differential equation, defined for |t− t0| ≤ r

and satisfying x(t0, λ) = x0.

2. The solution x = x(t, λ) is a continuous function of t and λ.

Lemma 3.2. [HS74, p. 169] Let W ⊂ E be open in R
n and suppose

f : W → E has Lipschitz constant K. Let y(t), z(t) be solutions to

x′ = f(x) (3.5)

on the closed interval [t0, t1]. Then for all t ∈ [t0, t1] :

|y(t)− z(t)| ≤ |y(t0)− z(t0)| exp(K(t− t0)).

Lemma 3.1 talks about the continuity of the solution of dif-

ferential equation with respect to the coefficient parameters, and

Lemma 3.2 is about the continuity with respect to the initial condi-

tions. Combining both we will have the following result for a second

order linear differential equation.

Lemma 3.3. Let the second order linear differential equation x′′+pn(t)x
′+

qn(t)x = rn(t) be given. pn(t), qn(t), and rn(t) be continuous on [a, b]

and pn → p, qn → q, and rn → r uniformly on [a, b]. Let xn(t) be the

solution of the differential equation on [a, b] satisfying the initial conditions:

xn(a) = αn, x′n(a) = βn. Also assume that αn → α and βn → β. Then

xn → x uniformly on [a, b], where x(t) is the solution of the differential

equation satisfying x(a) = α, x′(a) = β.
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3.3 Evolution of the Discrete Spectrum

Consider any path in the complex plane C traced by z starting from 0,

then each of the discrete spectral element of H(z) moves in the com-

plex plane until it ceases to exist as a discrete spectrum member. And

it follows from [Kat80] that this movement is analytic except for iso-

lated points of algebraic singularities. If z varies along the real line,

then H(z) is a family of self-adjoint operators and the discrete eigen-

values, if exist, move on the negative real axis and all are simple (see

Lemma 3.4). Let κ0 be an eigenvalue ofH(0) and as z varies from 0 to

∞ over the positive real line, the eigenvalue κ(z) starts moving con-

tinuously (analytically) from κ0 and if we further assume V1 is posi-

tive on its support then at some ζ > 0 the path traced by κ(z) termi-

nates (if we choose a large ζ > 0 for which V0+ζV1 ≥ 0, then the entire

discrete spectrum of H(z) disappears). On the other hand as z varies

along the negative real axis, κ(z) moves further to negative side and

remains as analytic function since its derivative
∫∞

0
V1φ

2(z, x)dx > 0,

φ(z, x) is the normalized real eigenfunction corresponding to κ(z).

As z varies along the imaginary axis starting from 0, then the dis-

crete eigenvalues start moving along/opposite to the imaginary axis

direction as analytic functions are conformal wherever derivative is

non-zero. More precisely, if V1 ≥ 0, then as z moves in the posi-

tive imaginary axis, κ(z) also moves with tangent along the positive

imaginary axis. For small values of imaginary z = it, the eigenvalue

can be approximated as κ(z) = κ(0) + it
∫ a

0
V1φ

2(z, x)dx, where [0, a]

is the support of Vj, j = 0, 1.

In general, as z varies over a continuous path in the complex

plane, the eigenvalue κ(z) also moves continuously until it ceases to

be an eigenvalue. The function κ(z) is analytic except at those points

where it meets one or more such functions determined by the dis-

crete spectrum ofH(z) or in other words the algebraic multiplicity of

κ(z) exceeds one. The following lemma characterizes this situation
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and it is an elementary result.

Lemma 3.4. All the discrete eigenvalues of H(z) are of geometric multi-

plicity one. And an eigenvalue κ(z) = −λ2(z) with eigenfunction φ(z, x)

is not simple if and only if

∫ ∞

0

φ2(z, x)dx = 0.

Proof. First it is observed that if κ(z) = −λ2(z), with Re(λ(z)) > 0,

is an eigenvalue of H(z) and the support of V (z) = V0 + zV1 is [0, a],

then the corresponding eigenfunction φ(z, x) satisfies:

φ(z, x) = b e−λ(z)x, for x ≥ a (3.6)

for some non-zero b.

Let φ1(z, x), φ2(z, x) be two eigenfunctions corresponding to κ(z),

then there exist non-zero b1 and b2 such that, φ1(z, x) = b1e−λ(z)x and

φ2(z, x) = b2e−λ(z)x for x ≥ a. Thus φ(z, x) = b2φ1(z, x) − b1φ2(z, x) is

the unique solution of the differential equation

−d
2φ(z, x)

dx2
+ V (z)φ(z, x) = −λ2(z)φ(z, x)

on [0, a] satisfying the condition φ(z, a) = 0 and φ′(z, a) = 0, prime

denotes derivative with respect to x. Thus φ(z, x) = 0 or the geomet-

ric multiplicity of κ(z) is one.

Now suppose κ(z) = −λ2(z) is not simple. Then (H(z) +

λ2(z))2ψ(z, x) = 0 and (H(z) + λ2(z))ψ(z, x) 6= 0 for some ψ(z, x) 6= 0

in Dom(H(z)). Since the geometric multiplicity of −λ2(z) is one,

(H(z) + λ2(z))ψ(z, x) = cφ(z, x) (3.7)
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for some c 6= 0, where φ(z, x) is the normalized eigenfunction ofH(z)

corresponding to κ(z) = −λ2(z). So we also have

(H(z) + λ2(z))φ(z, x) = 0. (3.8)

From ( 3.7) and ( 3.8),

c

∫ ∞

0

φ2(z, x)dx =

∫ ∞

0

d

dx
(ψ(z, x)φ′(z, x)− φ(z, x)ψ′(z, x))dx = 0.

Conversely assume that

∫ ∞

0

φ2(z, x) = 0.

Since φ(z, x) = be−λ(z)x is on [a,∞), the function ψ(z, x) =

1
2λ(z)

bxe−λ(z)x is a solution of (H(z) + λ2(z))ψ(z, x) = φ(z, x) on

[a,∞). Extend the function ψ(z, x) as a unique solution of (H(z) +

λ2(z))ψ(z, x) = φ(z, x) on [0, a] satisfying the conditions, which

makes ψ and ψ′ continuous at x = a. Thus we have a function ψ(z, x)

on [0,∞) such that ψ′(z, x), ψ′′(z, x) are in L2(0,∞) and it satisfies

Equation 3.7. Repeating the same process as before we arrive at

∫ ∞

0

d

dx
(ψ(z, x)φ′(z, x)− φ(z, x)ψ′(z, x))dx =

∫ ∞

0

φ2(z, x)dx = 0.

=⇒ ψ(z, a)φ′(z, a) = 0 =⇒ ψ(z, a) = 0

This proves the existence of a function ψ in the domain of H(z), such

that (H(z) + λ2(z))ψ(z, x) 6= 0 and (H(z) + λ2(z))2ψ(z, x) = 0.

Next it is shown that if the curve traced by the discrete eigenvalue

κ(z) of H(z) as z traces a curve in the complex plane terminates, then

it terminates at the essential spectrum [0,∞) of H(z).

Theorem 3.1. Let z = γ(t) be a path in C and let κ0 be an eigenvalue of

H(γ(0)). As z moves along the path γ(t) starting from γ(0), the eigenvalue
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traces a continuous path in C, say κ(γ(t)) starting from κ0. Assume that

this path terminates at t1 and let γ(t1) = ζ . Then κ(ζ) = lim
t→t1−

κ(γ(t)) ≥
0.

Proof. Let us take κ(z) = −λ2(z). Since z → ζ , through a path in

C, we can find a sequence zn in the path with zn → ζ and hence

−λ2(zn) → −λ2(ζ). Since −λ2(zn) is an eigenvalue of H(zn), we have

Re(λn(z)) > 0 ⇒ Re(λ(ζ)) ≥ 0. Assume that Re(λ(ζ)) > 0, we will

derive a contradiction.

For x ≥ a, H(zn) + λ2(zn) = − d2

dx2 + λ2(zn) and hence the correspond-

ing eigenfunction is φ(zn, x) = b(zn)e
−λ(zn)x. Without loss of general-

ity we choose b(zn) = 1. Thus for x ≥ a, φ(zn, x) = e−λ(zn)x → e−λ(ζ)x

uniformly.

On [0, a], φ(zn, x) is the solution of the differential equation

−d
2φ(zn, x)

dx2
+ (V0 + znV1 + λ2(zn))φ(zn, x) = 0

satisfying the conditions

φ(zn, a) = e−λ(zn)a and φ′(zn, a) = −λ(zn)e−λ(zn)a.

Therefore using Lemma 3.3, φ(zn, x) → φ(ζ, x) uniformly on [0, a],

where φ(ζ, x) satisfies the differential equation

−d2φ(ζ, x)
dx2

+ (V0 + ζV1)φ(ζ, x) = −λ2(ζ)φ(ζ, x) (3.9)

on [0, a] and φ(ζ, a) = e−λ(ζ)a, φ′(ζ, a) = −λ(ζ)e−λ(ζ)a. Since φ(zn, 0) =

0 for all n, φ(ζ, 0) = 0. Thus we have proved that φ(zn, x) → φ(ζ, x)

in L2(0,∞), φ(ζ, 0) = 0 and satisfy the differential Equation 3.9. And

hence −λ2(ζ) is an eigenvalue of H(ζ), a contradiction.

If κ1 is a discrete spectrum member of H(i) = − d2

dx2 + V0 + iV1. As

z := it moves from i to 0 (that is, t from 1 to 0) along the imaginary

axis, κ1 evolves continuously (analytically except for those points
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mentioned in Lemma 3.4) to trace a path κ(t) in C and the above

result ensures that either of the two possibilities occur:

1. κ(t) reaches the negative real line at κ(0) = κ0, a discrete eigen-

value of the self-adjoint operator H(0) = − d2

dx2 + V0.

2. κ(t) reaches [0,∞) at κ0, a spectral singularity of H(it0), 0 ≤
t0 < 1.

This proves the statement of Theorem 3.2 for compact potentials. But

for compactly supported potentials a more general result is possible.

We have the following definitions ([AAD01]):

Definition 3.3.1. Let κ = −λ2 be a complex number and there exists

a function φ(x) which satisfies the following conditions:

−φ′′(x) + V (x)φ(x) = −λ2φ(x), on [0,∞)

φ(0) = 0

φ(x) = e−λx + o(|eλx|), as x→ ∞.

Then if Re(λ) < 0, κ is a resonance of the operator H =

− d2

dx2 + V defined on the domain {f ∈ L2(0,∞) : f ′, f ′′, V f ∈
L2(0,∞) and f(0) = 0}. If Re(λ) = 0, then κ is a spectral singularity.

For compactly supported potentials, a perturbation of the poten-

tial gives rise to a same order of variation in the resonances of the

Schrödinger operator ([Agm98]). That is to say that the resonances

of H(z) move continuously with respect to z, provided H(z) is not

the free Schrödinger operator for any z (see Section 3.5). Thus we

have the following:

Corollary 3.1.1. Let V0 6= 0, then for any discrete eigenvalue κ1 of H(i),

there exists a discrete eigenvalue, or a spectral singularity or a resonance κ0

of the self-adjoint operator H(0) such that κ1 is continuously evolved from

κ0 as z varies along the imaginary line from 0 to i. That is, there exists a
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continuous path κ(t) such that κ(0) = κ0, κ(1) = κ1 and each κ(t) is a

discrete eigenvalue, or a spectral singularity or a resonance of the operator

H(it).

In fact, if U 6= 0, V 6= 0 are two compactly supported, complex

continuous (except for jump discontinuity) functions on [0,∞), then

any discrete eigenvalue of HV = − d2

dx2 + V is evolved from a discrete

eigenvalue, spectral singularity, or a resonance of HU = − d2

dx2 + U .

This follows immediately from a similar analysis on the operator val-

ued analytic function H(z) = − d2

dx2 +U + z(V −U). If V is a multiple

of U , then it can happen that U + z(V −U) = 0 for some 0 ≤ z ≤ 1. In

this situation consider a different path so that the potential changes

from U to V without taking 0 on that path (see Section 3.5).

Corollary 3.1.2. Let M = max {|V1(x)| : x ∈ [0, a]}, κ0 be a discrete

eigenvalue of the self-adjoint operator H(0) = − d2

dx2 + V0. Let γ be a path

in R, say γ(t) = t, and κ(t) be the path traced by discrete eigenvalue or

spectral singularity or resonance of H(t) with κ(0) = κ0 as t varies over

the real line starting from 0. Then for |t| < |κ0|/M , κ(t) remains to be a

discrete eigenvalue of H(t). In particular, if κ0 is the discrete eigenvalue of

H(0) nearest to 0 then

|σd(H(t))| ≥ |σd(H(0))|

for real t with |t| < |κ0|/M .

Proof. As t varies from 0 through the real line, the discrete eigenvalue

κ(t) starts from the negative real number κ0 and moves analytically

as a discrete eigenvalue of H(t) until it reaches 0. Assume that at

t = t0 it reaches 0. Then

0 = κ0 + lim
t→t0

∫ t

0

∫ a

0

V1(x)φ
2(s, x)dx ds

⇒ |κ0| ≤M |t0|
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here φ(s, ·) represents the normalized eigenfunction of H(s) corre-

sponding to κ(s).

Hence κ(t) remains to be an eigenvalue of H(t), if t ∈ R is such

that |t| < |κ0|/M .

It immediately follows that if κ0 is the discrete eigenvalue of H(0)

nearest to 0, then for real t with |t| < |κ0|/M ,

|σd(H(t))| ≥ |σd(H(0))|.

It is been observed in the beginning of this section that as z moves

along the imaginary line starting from 0, each of the discrete eigen-

values of H(z) starts moving in or opposite to the direction of imagi-

nary axis. So one would expect, in general, a better estimate than the

previous result.

Conjecture. If V1 > 0 (or V1 < 0) on [0, a], the support of V0 and V1,

then each of the discrete eigenvalue of the self-adjoint operator H(0)

continuously evolves to a discrete eigenvalue of H(it) for any t ∈ R.

In particular

∣

∣

∣

∣

σd

(

− d2

dx2
+ V0 + iV1

)∣

∣

∣

∣

≥
∣

∣

∣

∣

σd

(

− d2

dx2
+ V0

)∣

∣

∣

∣

where the discrete eigenvalues are counted according to multiplicity.

3.4 A More General Case

In this section we assume that V0, V1 are bounded real measurable

functions satisfying

∫ ∞

0

x|Vj(x)|dx <∞, j = 0, 1. (3.10)
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Here the operator H(z) = − d2

dx2 + V0 + zV1 is a compact perturbation

of the free Schrödinger operator and hence its spectrum consists of

essential spectrum σess = [0,∞) and a countable number of discrete

eigenvalues which can only accumulate to a point in the essential

spectrum [0,∞). The spectral analysis of Schrödinger operator on

the half-line with potential satisfying condition (3.10) has been car-

ried out by several authors (see [Pav67] and references therein). Our

approach is similar to the one in the previous section.

We start with presenting information required for our analysis. It

is known that if a complex potential V (x) has the property stated in

(3.10), then the equation

− y′′ + V (x)y = −λ2y, Re(λ) ≥ 0 (3.11)

has a unique solution φ(λ, x) satisfying the condition φ(λ, x) eλx → 1

as x → ∞. The function φ(λ, x) also satisfies ([AM59; Pav67]) the

following estimates

|φ(λ, x)− e−λx| ≤ K e−Re(λ)x

∫ ∞

x

t|V (t)|dt, Re(λ) ≥ 0, (3.12)

|φx(λ, x) + λ e−λx| ≤ K e−Re(λ)x

∫ ∞

x

|V (t)|dt, Re(λ) ≥ 0. (3.13)

The famous Arzelà-Ascoli theorem (see [Rud76]) which is used in

the proof of Theorem 3.2 is stated below.

Arzelà-Ascoli theorem Consider a sequence of continuous func-

tions {fn}n∈N defined on a compact subset of RN . If this sequence is

uniformly bounded and equicontinuous, then there exists a subsequence

{fnk
}k∈N that converges.

Now we prove Theorem 3.2.

Proof. It is sufficient to prove the statement of Theorem 3.1 in this
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more general case of potentials. That is, if a sequence zn → ζ in

C and discrete eigenvalue κ(zn) = −λ2(zn) of H(zn) converges to

κ(ζ) = −λ2(ζ), then κ(ζ) is either a discrete eigenvalue or a spectral

singularity of the operator H(ζ).

Suppose φ(zn, x) be the corresponding unique eigenfunction

that satisfies Equations 3.12, 3.13 and φ(zn, x)e
λ(zn)x → 1. Since

|φ(zn, x)| ≤ |φ(zn, x)− e−λ(zn)x|+ e−Re(λ(zn))x and Re(λ(zn)) > 0, it fol-

lows from the estimate (3.12) that {φ(zn, x)} is a uniformly bounded

sequence. In similar lines estimate (3.13) ensures that {φx(zn, x)}
is uniformly bounded or the sequence {φ(zn, x)} is equicontinuous.

Therefore by Arzelà-Ascoli theorem φ(zn, x) → φ(ζ, x) uniformly on

any compact subset of [0,∞) and we will have φ(ζ, x)eλ(ζ)x → 1,

−φ′′(ζ, x) + (V0(x) + ζV1(x))φ(ζ, x) = −λ2(ζ)φ(ζ, x), φ(ζ, 0) = 0.

Thus if Re(λ(ζ)) > 0 then κ(ζ) is an eigenvalue otherwise (that is,

if Re(λ(ζ)) = 0) it is a spectral singularity.

The following result can be proved the same way as it is done in

the previous section.

Corollary 3.1.3. Let M = sup {|V1(x)| : x ∈ [0,∞)}, κ0 be a discrete

eigenvalue of the self-adjoint operator H(0) = − d2

dx2 + V0. Let γ be a path

in R, say γ(t) = t, and κ(t) be the path starting at κ0 traced by discrete

eigenvalues, or spectral singularities or resonances of H(t) as t varies over

the real line starting from 0. Then for |t| < |κ0|/M , κ(t) remains to be a

discrete eigenvalue of H(t). In particular, if κ0 is the discrete eigenvalue of

H(0) nearest to 0 then

|σd(H(t))| ≥ |σd(H(0))|

for real t with t < |κ0|/M .



56 Chapter 3. Discrete Spectrum of Schrödinger Operators

3.5 An Example

In this section we demonstrate the continuous movement of reso-

nances and discrete spectrum of Schrödinger operators with poten-

tials that are constant on their support. Consider the potential V

defined on [0,∞) by

V =







−k2 on [0, 1]

0 elsewhere.
(3.14)

Let κ = −λ2 be an eigenvalue of the Schrödinger operator H =

− d2

dx2 +V with domain Dom(H) = {f : f, f ′, f ′′ ∈ L2(0,∞), f(0) = 0},

then there exists φ such that Hφ = −λ2φ, φ(0) = 0, and φ, φ′, φ′′ ∈
L2(0,∞). All these conditions imply that Re(λ) > 0 and

f(λ) = λ sin(
√
k2 − λ2) +

√
k2 − λ2cos(

√
k2 − λ2) = 0 (3.15)

which is the characteristic equation for the eigenvalue problem of

the given operator. Also note that the spectral singularities and reso-

nances of the given Schrödinger operator are also obtained from the

above equation. They are κ = −λ2 where λ satisfies the characteris-

tic equation (other than ±k) with Re(λ) = 0 (spectral singularity)and

Re(λ) < 0 (resonance).

If the value of V on [0, 1] is real, then the operator is a self-adjoint

operator and all its eigenvalues are real and complex resonances ex-

ist in symmetric pairs. Consider a complex value −k2 + ζ(t) on [0, 1]

for the potential V , where ζ(t) is a continuous path in C. By Theo-

rem 3.1, as tmoves over the real line the eigenvalues or resonances of

the operator move continuously in the complex plane and an eigen-

value moves to the resonance set through the positive real axis [0,∞)

(which is the essential spectrum of the operator) and vice versa.

In particular, if we assume the value −k2 + t (k2 is real) for V on

[0, 1], as t varies over the real line the eigenvalues analytically move
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over the negative real axis until they touch 0 and move to the reso-

nance set. A complex pair of symmetric resonances traces a pair of

symmetric curves until they meet at the real axis and at this meeting

point f ′(λ) = 0. That is

(λ+ 1)

[

sin(
√
k2 − λ2)− λ√

k2 − λ2
cos(

√
k2 − λ2)

]

= 0. (3.16)

This gives either λ = −1 or

√
k2 − λ2 sin(

√
k2 − λ2)− λ cos(

√
k2 − λ2) = 0.

The above expression along with the characteristic equation f(λ) = 0

implies that k = 0 and exp(λ) = 0. Thus the symmetric complex

resonances meet in R at −λ2 = −1 and at this point characteristic

equation becomes

tan(
√
k2 − 1) =

√
k2 − 1. (3.17)

That is, a pair of complex resonances meet at −1 as t varies over

real line and at this meeting point the potential takes the value

−k2 + t = −(θ2 + 1) on [0, 1], where θ is a solution of the equation

tan θ = θ. Each interval [nπ, (2n + 1)π/2] for n = 0, 1, 2, . . . contains

a solution θn of tan θ = θ. But as −k2 + t → −1 = −(θ20 + 1) it can

be seen that the only real resonance (antibound state) of the operator

reaches −1. As t moves further to the negative side, different com-

plex symmetric pairs of resonances move symmetrically with respect

to the real axis and meet at −1 as the value of the potential on [0, 1]

becomes −k2+t = −(θ2n+1), n = 1, 2, . . .. This is shown in Figure 3.1.

This figure is zoomed about −1 and is shown in Figure 3.2. These fig-

ures show the movement of few symmetric pairs of resonances as the

potential takes the value −0.5 + t on [0, 1], t varies from 0 to the neg-

ative side of the real line. The movement of the symmetric curve is

restricted in these figures and is shown up to their meeting point −1
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on the real line. As tmoves further to the negative side, this symmet-

ric pair of resonances once met at −1 keep moving in real line, one

towards the negative side and the other towards the positive side.

The resonance moving towards the positive side meets the positive

real axis at 0 and re-bounces back as an eigenvalue. This is illustrated

in Figure 3.3. The potential at which it meets the real axis is obtained

from the characteristic equation by substituting λ = 0 in it and the

corresponding potential is −[(2n + 1)π/2]2, for n = 0, 1, 2, . . .. Thus

we have the following:

Proposition 3.1. Let n ∈ N. If the potential V is a real constant, say −k2,

on its support [0, 1] and [(2n − 1)π/2]2 < k2 ≤ [(2n + 1)π/2]2 then the

above Schrödinger operator has exactly n eigenvalues. IfKn = θ2n+1 where

θn is the root of tan θ = θ in the interval [nπ, (2n + 1)π/2] then the above

Schrödinger operator has exactly n−1 antibound states if [(2n−1)π/2]2 <

k2 < Kn and n+ 1 antibound states if Kn ≤ k2 ≤ [(2n+ 1)π/2]2.

Theorem 3.2. Let V be a real potential with compact support [0, 1]. Sup-

pose that there exists m < n such that −[(2n − 1)π/2]2 < V < −[(2m −
1)π/2]2 on [0, 1]. Then

m < |σd(H)| < n

where H = − d2

dx2 + V is the self-adjoint Schrödinger operator.

Proof. This is an immediate consequence of Theorem 3.1 and Propo-

sition 3.1.

If the potential is constant on the support [0, 1], then Theorem 2.8

provides the following estimate

|σd(H)| < |V |2
ǫ2

(

eǫ − 1

ǫ

)2

where V is the constant value on the support. The minimum value

of
1

ǫ2

(

eǫ − 1

ǫ

)2
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can be found out numerically, ≈ 2.38436418. Thus the estimate re-

duces to

|σd(H)| < 2.38436418 |V |2.

But if V is real and constant, we can use the result for a self-adjoint

operator and obtain a better estimate

|σd(H)| <
∞
∫

0

xV−(x)dx =
|V |
2
.

Whereas Theorem 3.2 gives us

|σd(H)| = integer part of

(

1

π

√

|V |+ 1

2

)

.

Or for a potential V which is continuous and bounded on its support

[0, 1],
1

π

√

min(V−) +
1

2
< |σd(H)| < 1

π

√

max(V−) +
1

2

where min(V−),max(V−) are minimum and maximum of the negative

part of V on its support [0, 1]. Thus it is easy to see that if the variation

of potentials on its support is minimal then Theorem 3.2 provides

better estimate.

Now we go back to the example and demonstrate the evolution

of eigenvalues or resonances as the imaginary part of −k2 continu-

ously moves and traces vertical lines in the complex plane. For an

example, the value of the potential on [0, 1] is initially taken as −22.

By Proposition 3.1, the corresponding self-adjoint Schrödinger oper-

ator has one eigenvalue and two antibound states on the real line.

Consider these bound and antibound states and the symmetric pair

of complex resonances that are close to the origin. The evolution of

these eigenvalues and resonances of this operator as −k2 varies from

−22 to −22 + 250i or −22 − 250i are shown in Figure 3.4. It is ob-

served that the eigenvalue of the self-adjoint operator remains to be
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FIGURE 3.1: Evolution of resonances of the given
Schrödinger operator as the value of −k2 starts at
−0.5 and decreases further. The blue curve repre-
sents the real resonance which moves right and be-
comes −1 at −k2 = −1 = −(θ20 + 1), θ0 = 0 is the
first non-negative solution of tan θ = θ. The black,
red, green and magenta curves are the evolution of
the four sets of symmetric resonances close to the ori-
gin. Each of these meet the real axis at −1 as −k2 takes
−(θ21+1),−(θ22+1),−(θ23+1) and −(θ24+1) respectively
where θn is the solution of tan θ = θ in the interval

[nπ, (2n+ 1)π/2], n = 1, 2, 3, 4
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FIGURE 3.2: A zoomed version of the Figure 3.1 about
the origin.

an eigenvalue as the imaginary part of −k2 varies from 0 to the pos-

itive or negative side. The same thing happens to one of the real

resonances (which is less than −1). Whereas the other resonance (on

the right side of −1) traces a curve which crosses [0,∞) and changes

to an eigenvalue as the imaginary part varies from 0 to 250 or −250

(see Figure 3.5 which is a zoomed version of Figure 3.4 about the ori-

gin). One of the complex resonances changes its status to eigenvalue

and the other remains to be a resonance as the imaginary part of −k2

changes from 0 to the positive or negative side.

Finding resonance for positive potential. It is evident from Equa-

tion 3.15 that if the value of k is zero or for the free Schrödinger op-

erator, there is no eigenvalue or resonance in the complex plane. As

the value of −k2 varies from nonzero to zero, all the eigenvalues and

resonances of the operator diverge to ∞. Thus to find evolution of

resonances or eigenvalues of Schrödinger operators as the potential

changes from U 6= 0 to another V 6= 0, one should choose a path so

that for any z in the path, H(z) does not become the free Schrödinger
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FIGURE 3.3: Evolution of resonance into eigenvalue of
the Schrödinger operator. The black curves (solid and
dashed) indicate the evolution of two complex sym-
metric resonances that meet at −1 as the real poten-
tial decreases to −(θ2 + 1), where θ satisfies tan θ = θ.
Then they separate out and move in opposite direc-
tions along the real axis. The one (blue curve) mov-
ing to the positive direction meets the positive real axis
at 0, as potential takes the value −[(2n + 1)π/2]2 and
bounces back as an eigenvalue which moves further
to the negative side as potential decreases further. The
other (red dashed line) that moves to the negative di-
rection continues as a real resonance (antibound state).
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FIGURE 3.4: The evolution of the negative eigen-
value (≈ −15.42901680), two antibound states (≈
−0.01187978,−3.48239885) and a pair of complex res-
onances (≈ 35.73924059 +16.82276560i, 35.73924059 −
16.82276560i) of the self-adjoint operator with poten-
tial equals to −22 on its support [0, 1] as the imaginary
part of the potential varies from 0 to 250 and to −250
on the support [0, 1]. The dashed curve corresponds
to the variation from 0 to −250. The eigenvalue (blue
curve) remains to be an eigenvalue, one of the neg-
ative resonance (black curve) remains as a resonance
while the other resonance (red curve) crosses [0,∞)
and moves to discrete spectrum. One resonance in the
pair of complex resonances crosses [0,∞) and moves
to the discrete spectrum while the other remains to be
a resonance as the imaginary part varies from 0 to the

positive side or to the negative side.
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FIGURE 3.5: A zoomed version of Figure 3.4 about the
origin. The evolution of the negative resonance on the
right side of −1 as the imaginary part varies from 0
to positive or negative values. The resonance crosses
[0,∞) and moves to the discrete spectrum of the cor-

responding Schrödinger operator.

operator. For example, consider the variation of −k2 in Equation 3.14

from −0.5 to 1. If we choose the path along the real line, then at

0 the corresponding operator reduces to free Schrödinger operator.

Thus it is required to consider a different path to get the evolution

of the resonances. For example, if we consider the polygonal path

−0.5 → −0.5 + i → 1 + i → 1, then it may be possible to find the

evolution of the resonances. The evolution of the antibound state of

the operator with −k2 = −0.5 to a resonance of the operator with

−k2 = 1 along this path is shown in Figure 3.6.

Finding eigenvalue for potential with non-negative real part.

There does not exist any eigenvalue for self-adjoint Schrödinger op-

erator with non-negative potential. But if an imaginary part is added

to the potential then the corresponding nonself-adjoint Schrödinger

operator can have discrete eigenvalues. If we want to find out these
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eigenvalues as an evolution of some negative eigenvalues of some

self-adjoint Schrödinger operator, a similar idea explained in the

above paragraph can be employed. Here first a sufficiently negative

potential is considered and its eigenvalues are estimated. Then imag-

inary part is introduced continuously to the potential and finally the

real part of the potential is increased to the required value. For ex-

ample, consider the potential in Equation 3.14 and suppose we want

to find out one eigenvalue when −k2 takes the value 10+5i. Initially

−k2 is assumed a negative value of −10 then it is changed along the

polygonal path −10 → −10 + 5i→ 10 + 5i. The evolution of the sin-

gle discrete eigenvalue of the self-adjoint operator is shown in Fig-

ure 3.7. This method is employed in Chapter 4 for finding eigenval-

ues of depth dependent wave equation. A new numerical scheme is

formulated based on this eigenvalue estimation method and is used

for acoustic modelling (see Chapter 4 for more details).
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FIGURE 3.6: Evolution of a resonance as the value of
−k2 varies along straight lines from −0.5 to −0.5 + i
(blue curve) then to 1 + i (red curve) and finally
to 1. The antibound state (≈ −1.65056781) of the
Schrodinger operator with potential equal to −0.5 on
its support [0, 1] becomes a resonance (≈ 4.02995187 −
9.35784001i) of the the operator with potential equal to

1 on its support.
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FIGURE 3.7: Evolution of the negative eigenvalue of
the self-adjoint Schrödinger operator as the value of
−k2 in Equation 3.14 varies from −10 to −10 + 5i
and then to 10 + 5i. Initially the discrete eigenvalue
was ≈ −4.62419409, it gets evolved and becomes ≈
17.39128151 + 0.82067130i as −k2 reaches the value of

10 + 5i.
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Chapter 4

Applications - Underwater

Acoustic Modeling

Acoustic signals undergo various physical processes such as refrac-

tion, reflection, diffraction and scattering as they propagate in the

ocean medium. Modelling this propagation is important for design-

ing and performance prediction of sonars. The analysis carried out in

Chapter 3 is applied in this chapter for modelling underwater acous-

tic propagation. Here we concentrate on a numerical scheme for esti-

mating the discrete spectral elements of nonself-adjoint Schrödinger

operator. Section 4.1 gives a brief of acoustic modelling using nor-

mal mode method and the importance of finding discrete spectrum

of Schrödinger operator. Different types of normal modes and their

propagation characteristics are explained in Section 4.2. This section

also contains discussion about the existing numerical schemes and

their limitations to handle certain situations. A numerical scheme

based on our analysis on the discrete spectrum of Schrödinger op-

erator is detailed in Section 4.3. The method is illustrated with few

examples in Section 4.4 and advantages over existing methods are

brought out.
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4.1 Normal Mode Modelling

The normal mode method is a wave theory approach for modelling

acoustic field in a stratified medium where the pressure field is mod-

elled as sum of contributions from individual components called

normal modes (details can be found in [Boy84; Jen+11]). That is, con-

sider a horizontally stratified (acoustic parameters are same in each

horizontal plane or varies only in z) acoustic environment consisting

of L layers with top layer being the water column. Let the layer in-

terfaces be at depths z1 < z2 < . . . < zL−1 and z0 = 0, zL = D be

the surface and bottom boundaries, respectively. The surface bound-

ary is modelled as pressure release and the bottom is modelled as a

rigid boundary. Within each layer, the density ρl (l = 0, 1, . . . , L− 1)

is assumed to be constant and compressional sound speed cl(z) is

continuous. The sound speed cl(z) is a complex quantity, the small

imaginary part of which corresponds to the absorption loss of the

medium. The pressure field generated by a harmonic point source of

angular frequency ω located at (0, zs) in this medium is given by the

sum of normal mode contributions as,

p(r, z) =
i

4

1

ρ(zs)

∞
∑

n=1

φn(zs)φn(z)H
1
0 (κnr). (4.1)

Here ρ(zs) = ρl(zs) if zl < zs < zl+1, H
1
0 (r) is the Hankel function

of zeroth order and first kind, and (κ2n, φn(z))’s are the eigen pairs of

the depth separated wave equation

d2φ(z)

dz2
+ [k2(z)− κ2]φ(z) = 0. (4.2)

The pressure-release surface and rigid-bottom boundary condi-

tions are used to obtain φ(0) = 0, φ′(D) = 0. Here k(z) is the lo-

cal wave number ω/c(z) where c(z) = cl(z) for zl < z < zl+1,

l = 0, 1, . . . , L − 1. At each layer interface, the pressure and particle

velocity are continuous. Therefore, φ(z) and 1
ρ(z)

φ′(z) are continuous.
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A more realistic approach in ocean acoustics is to treat the bot-

tom as homogeneous acoustic half-space. That is for z > D acoustic

properties are constant and the medium is extending to infinity. Then

Equation 4.2 is for z ∈ [0,∞) or in rigorous mathematical terms, κ2 is

the discrete spectral element of the operator H = d2

dz2
+ k2(z) defined

on the Hilbert space L2(0,∞) with domain given by

Dom(H) =

{

f ∈ L2(0,∞) : f ′,

(

1

ρ
f ′

)′

∈ L2(0,∞)

}

. (4.3)

If we take k2L as the constant value of k2(z) for the homogeneous

half-space and subtract H from this constant operator to get the new

operator − d2

dz2
+V (z), V (z) = k2L−k2(z) defined on the same domain.

It is easy to see that this operator is equivalent to the Schrödinger

operator with compact support potential. In this case spectrum con-

sists of [0,∞) and a finite number of discrete eigenvalues. Thus the

summation in Equation 4.1 becomes a finite sum over this discrete

spectrum and is an approximate expression for pressure field as we

are neglecting the effect of continuous spectrum. In practice, this is

a good approximation as we are interested in long ranges and the

continuous spectrum effects are limited to short ranges.

4.2 Classification of Modes

In Equation 4.1, each component has a term that depends on the

depth and another term that depends on the horizontal range, and

is associated with a wave number κ. Depending on the wave num-

ber the mode is categorised as water trapped or leaky. If the real

part of the wave number of the mode is greater than the real part

of wave number corresponding to the compressional sound speed of

the sediment bottom, the mode is called a water trapped mode. Or

equivalently, a mode is water trapped if its phase speed, 2πf/Re(κ),

is less than the compressional sound speed of the sediment bottom.
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FIGURE 4.1: Mode function corresponding to a leaky
mode is shown. The sound speed and correspond-
ing k(z) are schematically shown. The position of the
wave number is indicated using a dotted line. Since
the wave number is less than k(z) of the sediment, it is

categorized as a leaky mode.

Otherwise the mode is termed as a leaky mode ([Jen+11]). In general,

leaky modes leak down to the sediment bottom and their contribu-

tion is limited to short ranges. The general behavior of a leaky mode

is demonstarted in Figure 4.1.

In some environments, the long-range surface duct propagation

is due to the modes that are leaky by the above definition. For ex-

ample, consider the sound speed profile (Figure 4.2) computed using

World Ocean Atlas data ([Loc+10; Ant+10]), corresponding to the ge-

ographical location (10oN , 75oE) in the Indian Ocean for the month

of January. The sound speed at the bottom is approximately 40 m/s

less than that at the surface. Hence if the immediate sediment layer

is soft (compressional sound speed ratio is near to 1), the mode that

propagates in the surface duct (if it exists) comes under the category

of leaky modes. But this mode does not leak into the sediment as

its energy is confined to the surface duct. This mode behaves like a

water trapped mode and propagates to longer ranges. A method is

presented here to accurately estimate all modes including the leaky
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modes and its relevance in these environments is illustrated.

The numerical scheme based on Airy function solutions de-

scribed in [WTC96] and its implementation ORCA is one of the ef-

ficient normal mode schemes. The numerical scheme described in

[PR84; PR85] is attractive because it can be used for general sound

speed profiles and its real wavenumber search algorithm is robust es-

pecially at low frequencies. Its FORTRAN implementation KRAKEN

and KRAKENC ([Por10]) are very popular and they are used ex-

tensively in underwater acoustic applications. The method em-

ploys Richardson extrapolation to determine the wave numbers ac-

curately. In absorptive media, either the linear perturbation theory

(KRAKEN) or a direct complex eigenvalue search algorithm (KRAK-

ENC) is utilised. In Appendix A.1, perturbation approximation is

explained for a general operator. Linear perturbation theory fails to

give accurate estimate of leaky modes and, at times, the complex

eigenvalue search fails to converge ([WTC96]). Therefore, a new

numerical scheme is proposed to estimate all the dominant modes

(modes that are propagating to longer ranges with less attenuation)

accurately and to use them to find the pressure field.

4.3 A New Numerical Approach

Our new approach is based on the analysis done in the previous

chapter on the evolution of discrete spectrum of Schrödinger opera-

tors as the potential changes analytically. Initially we find out the dis-

crete spectrum of the operator − d2

dz2
+ V (z), where V (z) = k2L − k2(z)

for z ≤ D and 0 otherwise, the domain is given in Equation 4.3.

This operator is equivalent to a Shrödinger operator with a com-

pactly supported potential. Then wave numbers are obtained as κj =
√

k2L − νj , νj ’s are the discrete spectral elements of the Schrödinger

operator. If we assume that the acoustic half-space is the sediment

bottom for the medium, then from definition, trapped modes are
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FIGURE 4.2: The sound speed profile computed using
temperature, salinity data taken from the World Ocean
Atlas corresponding to the location (10oN , 75oE), for

the month of January

obtained from discrete eigenvalues that are lying on the left half

(real part less than 0) and leaky modes from the right half (real part

greater 0) of the complex plane. This implies that leaky modes are

mostly evolved from the resonance of the corresponding self-adjoint

Schrödinger operator. Thus we use a method that is demonstrated

in the last part of Section 3.5. That is, the value of the potential on

the support [0, D] is shifted to the negative side and all the eigen-

values of the corresponding self-adjoint Schrödinger operator are es-

timated. Shifting the potential means considering a sediment with

more compressional speed. Thus how much the potential needs to

be shifted depends on the practical problem at hand. For example,

for finding the modes which are propagating in the surface duct we

need to consider a compressional speed of more than the maximum

of the sound speed in the surface duct. Then introduce the imaginary

part of the potential continuously and find the evolved eigenvalues.

Finally the real part of the potential is brought back to the original

value by increasing it continuously and the evolved eigenvalues are
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estimated. In this process, any eigenvalue crossing the positive real

axis is omitted.

A modified numerical scheme - KRAKENRQ The numerical ap-

proach followed in [PR84; PR85] (KRAKEN) initially consider the

real part of k(z) and uses Sturm sequence for isolating real eigenval-

ues of the resulting self-adjoint operator. A combination of bisection,

Newton’s and Brent’s methods are used to estimate eigenvalues of

Equation 4.2 for various discretisations. Richardson extrapolation

is used to obtain the eigenvalues that correspond to infinitesimally

small discretisation. Inverse iteration is done to estimate eigenfunc-

tions. Finally linear perturbation approximation is used to estimate

eigenvalues of the operator with complex k(z). In this approach the

leaky modes are not found as they are not evolved from these eigen-

values. To overcome this, in our modified approach, first the sound

speed of the sediment half-space is increased sufficiently (that is, de-

crease the real part of k2L) and obtain k2+(z). Find out the real eigen-

values and eigenfunctions of the operator with potential as real part

of k2+(z), as is done in KRAKEN. Then change the coefficient from

Re(k2+(z)) to k2(z) using small increment and get the evolved eigen-

pair using Rayleigh Quotient iteration. Since the imaginary part of

k2(z) or the attenuation factor is very small, we require only one in-

cremental change (that is, directly change Re(k2+(z)) to k2(z)) to get

the required eigenvalues.

The procedure is as follows: Let A be the matrix operator ob-

tained by discretising Equation 4.2 and applying the boundary con-

ditions. Let B be the real matrix obtained from the same equation

but k2(z) replaced with Re(k2+(z)), k
2
+(z) is obtained by decreasing

the real part of k2(z) sufficiently. In underwater environments and

at sonar frequencies, A is considered to be a small complex pertur-

bation of the real matrix B. Initially B is used to find its normalised

eigenfunctions, as is done in [PR84]. Let the eigenfunctions be φ0,j(z)
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for j = 1, 2, . . . , m. Using these eigenfunctions as the initial esti-

mate, Rayleigh quotient iteration is started to find the eigenvalues

and eigenfunctions of A. That is, for each j,

1. λk,j = 〈Aφk,j, φk,j〉

2. φk+1,j = (A− λk,jI)
−1φk,j

3. φk+1,j = φk+1,j/ < φk+1,j, φ̄k+1,j > .

Iterate the above steps for k = 0, 1, 2, . . .. Here the inner product

is defined as,

〈φ, ψ〉 =
L−1
∑

l=0

hl

ρl

{

1
2
φ(zl)ψ(zl)

+
Nl−1
∑

j=1

φ(zl + jhl)ψ(zl + jhl) +
1
2
φ(zl+1)ψ(zl+1)

}

,

a trapezoidal quadrature approximation to
D
∫

0

1
ρ(z)

φ(z)ψ(z)dz, hl is

the discretisation thickness andNl is the number of discretised points

in lth layer.

If some of the layers support shear waves, the coupling between

compressional and shear waves are handled in the same way as is

done in [PR85]. Here too, wavenumbers and mode functions corre-

sponding to pressure waves are estimated. The method described

above is started with a modified matrix A corresponding to the com-

pressional waves, that incorporates coupling with the shear waves.

The rest of the procedure is the same as that described in [PR84;

PR85]. The eigenvalues are estimated for finer discretisation of Equa-

tion 4.2. For each of the successive finer discretisations, the eigenval-

ues obtained in the previous step are used as an initial guess for the

complex root finding algorithm. Finally, Richardson extrapolation is

employed to accurately estimate the wave numbers. This method

is implemented in FORTRAN modifying KRAKEN and is named as

KRAKENRQ ([SK17]).



4.4. Illustration 77

4.4 Illustration

An example is presented to demonstrate the robustness of the modi-

fied approach. The environment consists of a 2197 m deep water col-

umn. The sound speed profile is shown in Figure 4.2 and the surface

layer is 50 m thick. The bottom is a soft sediment half-space hav-

ing density 1.577 g/cm3, compressional sound speed ratio 1.001 and

compressional attenuation 0.38 dB/λ. The source is at 10 m depth.

At 250 Hz, KRAKENC and KRAKENRQ yield the same results, and

KRAKEN does not yield the correct results. As frequency increases

KRAKENC becomes more and more inefficient and, at 10 kHz, only

KRAKENRQ yields the correct results. This is demonstrated below.

For comparison, wave numbers and mode functions are esti-

mated using KRAKEN, KRAKENC and KRAKENRQ. The half-

space is replaced with a 200 m sediment layer with a rigid bottom.

The layer has the same acoustic parameters as that of the half-space.

This approximation is used so that KRAKEN can be used to esti-

mate leaky modes. The wavenumbers are estimated using KRAKEN

and KRAKENRQ and those with phase speed between 1540 m/s and

1545 m/s (modes that propagate in the surface duct) are shown in Ta-

ble 4.1. The wavenumbers obtained using KRAKENRQ are the same

as those obtained using KRAKENC upto 10 significant digits and the

latter are not shown. The absorption coefficients (imaginary part of

the wave numbers) estimated using KRAKEN are higher by an order

or two. The mode functions corresponding to the first wave number

in the table are shown in Figure 4.3. The mode function estimated

by KRAKEN is clearly a leaky one as the mode propagates down to

the sediment, whereas the mode function estimated by KRAKENRQ

reveals that this mode has an evanescent part along with the oscilla-

tory part in the sediment (below the dotted line), hence its absorption

coefficient reduces and it propagates to longer ranges. The trans-

mission loss (TL(r, z) = 20 log |p(r, z)|) curves for a receiver depth
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of 10 m computed using these methods are compared in Figure 4.4

with the wave number integration model SCOOTER. KRAKENRQ

matches well with the reference model whereas KRAKEN over esti-

mates the transmission loss. Further, assuming a shear speed of 412

m/s for the sediment half-space, wave numbers are computed for

frequencies 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, 6000 Hz, 8000

Hz and 10000 Hz using KRAKENC and KRAKENRQ. The number of

modes with phase speed between 1540 m/s and 1550 m/s estimated

by these methods and time taken for computations are compared in

Table 4.2. As frequency increases, the performance of KRAKENC

degrades. The inefficiency of the complex root finding algorithm of

KRAKENC is reflected in the abrupt increase of the computational

time for frequencies 2 kHz or more. At 10 kHz, KRAKENC fails to

estimate any mode that propagates in the surface duct. In Figure 4.5,

the transmission loss curve for a source and receiver located at 10

m and for a frequency of 10 kHz generated using KRAKENRQ is

compared with that obtained using SCOOTER. There is very good

agreement.



4.4.
Illu

stratio
n

79

Sr. No. KRAKEN KRAKENRQ
κ α Ph. speed κ α Ph. speed

1 1.019700157 -0.1295605987E-02 1540.449235 1.019885629 -0.7825041727E-04 1540.169096
2 1.019410309 -0.1384937310E-02 1540.887229 1.019555378 -0.7789829795E-04 1540.667982
3 1.019122738 -0.1265879079E-02 1541.322030 1.019227565 -0.7706828608E-04 1541.163506
4 1.018837197 -0.1012276735E-02 1541.754002 1.018906080 -0.7447556976E-04 1541.649773
5 1.018573947 -0.6832964203E-03 1542.152468 1.018609016 -0.6266672656E-04 1542.099375
6 1.018379062 -0.4574282480E-03 1542.447587 1.018399378 -0.4435236748E-04 1542.416817
7 1.018151412 -0.5801742797E-03 1542.792465 1.018168673 -0.6649788690E-04 1542.766310
8 1.017866423 -0.5716413779E-03 1543.224427 1.017867779 -0.7361347405E-04 1543.222371
9 1.017568476 -0.5518612214E-03 1543.676286 1.017554135 -0.7466114353E-04 1543.698042

10 1.017268549 -0.5628397106E-03 1544.131418 1.017238901 -0.7478672826E-04 1544.176422
11 1.016969026 -0.6131027071E-03 1544.586203 1.016923261 -0.7500525979E-04 1544.655714

TABLE 4.1: Wave numbers with phase speed between 1540 m/s and 1545 m/s computed using KRAKEN and KRAKENRQ
for a frequency of 250 Hz. KRAKENC gives the same results as KRAKENRQ.
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Frequency
(Hz)

KRAKENC KRAKENRQ

# modes Comp.
time (sec)

# modes Comp.
time (sec)

250 20 0.066 21 0.096
500 41 0.273 42 0.434
1000 83 1.144 84 1.949
2000 166 104.78 168 8.177
4000 299 707.0 335 65.02
6000 430 2963.0 504 142.3
8000 583 4891.0 672 264.1
10000 didn’t

converge
—- 842 409.3

TABLE 4.2: Number of modes with phase speed be-
tween 1540 m/s and 1550 m/s estimated by KRAK-
ENC and KRAKENRQ and time taken for its compu-

tation for different frequencies.
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FIGURE 4.3: The portion below 2000 m depth of
the mode function corresponding to the first wave
number in Table 4.1 estimated by (a) KRAKEN and
(b) KRAKENRQ. Dotted line indicates the water-

sediment interface.
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FIGURE 4.4: Transmission loss curves computed using
KRAKENRQ and SCOOTER for a source and receiver

at 10 m, frequency 250 Hz.
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FIGURE 4.5: Transmission loss curves computed using
KRAKENRQ and SCOOTER for a source and receiver
at 10 m, frequency 10 kHz. The modes that are dom-
inant in the surface duct (phase speed between 1530

m/s and 1550 m/s) are considered.
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Chapter 5

Summary

Our research work concentrated on the discrete spectrum of non-

selfadjoint Schrödinger operator defined in L2(0,∞) with compactly

supported potential. This class of operators are coming under the

category of operators which are relative compact perturbations of

self-adjoint Schrödinger operator. The work started with an exten-

sive survey of research articles in this field. The survey on few im-

portant such articles are included in Chapter 2. These articles are

mainly concentrated on the distributions of discrete spectrum in the

complex plane. Some of these articles are concerned with the bound-

edness and finiteness of the discrete spectrum. Some others are

about convergence of discrete elements towards the essential spec-

trum [0,∞). Rate of convergence is measured using Lieb-Thirring

type inequalities and there are a number of articles discussing esti-

mate for
∑

λ∈σd(H)

dist(λ, [0,∞))p under different conditions on poten-

tial.

5.1 Theoretical Study

Chapters 3 and 4 are mainly documentation of our work. Theoreti-

cal work is covered in Chapter 3. We have considered Schrödinger

operator valued function H(z) = − d2

dx2 +V0+zV1 defined on the com-

plex plane with compactly supported V0, V1 in Section 3.3. Evolution

of discrete spectrum of H(z) as z varies in a path in C is studied.
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Our major finding is that if the path traced by a discrete spectral el-

ement κ(z) of H(z) as z moves along a path terminates, then this

terminal point lies on the essential spectrum [0,∞). We have further

extended this result and proved that any discrete spectral element of

the nonself-adjoint operator H(i) = − d2

dx2 + V0 + iV1 is evolved from

either a discrete spectral element or a resonance of the self-adjoint

Schrödinger operator H(0) = − d2

dx2 + V0 as z varies from 0 to i.

In Section 3.4, a more general case is discussed where the poten-

tial V0 and V1 satisfy
∞
∫

0

xVjdx < ∞. Here we have proved that any

discrete spectral element of H(i) is evolved from either a discrete el-

ement of H(0) or a spectral singularity of H(it0) for some 0 < t0 < 1.

An estimate for lower bound of the number of discrete spectral ele-

ments of self-adjoint Schrödinger operator is derived based on this

analysis.

An example is provided in Section 3.5 to illustrate our theoret-

ical study. Evolution of discrete spectral elements and resonances

are demonstrated for H(z) = − d2

dx2 + V0 + zV1, where V0, V1 are con-

stants on their support [0, 1]. The spectral elements or resonances are

evaluated using the characteristic equation, which is an analytic ex-

pression. A scheme for estimating complex resonance of self-adjoint

Schrödinger operator from real resonance (antibound states) of an-

other operator, with a potential whose values on its support shifted

to the negative side, is explained. In a similar way a scheme for es-

timating eigenvalues of a nonself-adjoint Schrödinger operator that

are lying on the right half-plane from the real eigenvalues of a self-

adjoint Schrödinger operator is also explained. This method is used

in Chapter 4 to devise a new numerical scheme for estimating eigen-

values of a Schrödinger operator.
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5.2 Application in Acoustic Modelling

In Chapter 4, a new numerical approach is derived for under-

water acoustic modelling through normal mode method. Normal

mode method requires estimation of eigenvalues of a nonself-adjoint

Schrödinger operator. Eigenvalues of this Schrödinger operator are

classified as those corresponding to water trapped and leaky modes.

This classification is purely based on the position of these eigen-

values. Those which are lying on the left half-plane correspond to

trapped modes and lying on the right half-plane correspond to leaky

modes. Leaky modes are evolved from the resonances of the cor-

responding self-adjoint Schrödinger operator. To estimate this, the

method described in the last paragraph of Section 3.5 is used.

This method is implemented in FORTRAN and is named as

KRAKENRQ, as it is obtained by modifying a well known nor-

mal mode implementation KRAKEN. In this implementation, wave

numbers (or eigenvalues) and mode functions (eigenfunctions) are

estimated initially without considering absorption in the acoustic

medium, that is, ignoring the imaginary part or considering the self-

adjoint operator. If the sediment half-space is a soft bottom, it is re-

placed with a harder one. That is to say that the potential is moved

further to the negative side. The real eigenvalues (or wave numbers)

of the resulting operator are estimated, then the wave numbers that

are evolved from these real wave numbers, as the potential continu-

ously changes to take the original value, are obtained. Here the evo-

lution is completed in few steps (mostly single step) as the imaginary

part is very small and at each step Rayleigh quotient iteration is used.

For better accuracy, solving the vertical wave equation is repeated

for few more, finer discretisations and Richardson extrapolation is

applied. Examples are provided to show that KRAKENRQ performs

better than the existing implementation KRAKEN and KRAKENC

and it works even at relatively higher frequencies.
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5.3 Suggestions for Future Study

The analysis on nonself-adjoint Schrödinger operators for its spectral

characteristic is an active topic. The articles covered in our survey

(Chapter 2) contains very recent works. The research work covered

under this document concentrated mainly on methods of estimating

the discrete spectral elements. Even though the numerical scheme

derived using our study to model underwater acoustic propagation

is effective, some more theoretical study is required to make it a fool-

proof numerical scheme. For example, the following questions need

to be answered.

1. What should be the discretization used in each step to estimate

an eigenvalue κ1 of H(i) which is evolved from eigenvalue κ0

of H(0)?

2. How much the value of the potential on its support need to be

shifted to the negative side to obtain all the eigenvalues? That

is, if V0, V1 are compactly supported on [0,∞) then to find out

eigenvalues of H(i) = − d2

dx2 + V0 + iV1 that are evolved from

the resonances of H(0) = − d2

dx2 + V0 how much the value of the

potential V0 on its support need to be shifted to the negative

side?

Answering these greatly improve our numerical scheme and avoid

any ambiguity in the scheme. The first question is about choosing

discretization so that we may not miss any eigenvalue, particularly if

two or more eigenvalues are collapsing to form an eigenvalue of mul-

tiplicity more than one. Lemma 3.4 proved in Chapter 3 characterizes

such a situation where two or more curves traced by eigenvalues of

H(z) meet at z. Thus
∞
∫

0

φ2(z, x)dx, φ(z, x) is the eigenfunction corre-

sponding to the eigenvalue κ(z) of H(z), can be treated as a measure

to determine the closedness of two such curves. Or if
∞
∫

0

φ2(z, x)dx is
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close to zero, then one should take special care in choosing the dis-

cretization ∆z to find the evolved eigenvalue κ(z +∆z). The second

question, to some extent, can be answered using physical considera-

tion of the problem at hand and the same is explained in Section 4.3.

But here too how much the value of V0 on its support should be

shifted to the negative side to get V ′
0 so that all the eigenvalues of

H(i) = − d2

dx2 + V0 + iV1 can be found out from the real eigenvalues of

− d2

dx2 + V ′
0 is not known.

There are further studies and extensions possible to the acoustic

modelling application. The current version of KRAKENRQ works

better than the existing model KRAKEN. The model can also be

used for relatively high frequency applications, but it is not compu-

tationally efficient at these frequencies. A modification is planned in

which k(z) is approximated as piece-wise linear and hence the eigen-

function can be obtained analytically (Airy or exponential functions).

This will improve the accuracy and computational time and an effi-

cient acoustic modelling for higher frequency applications may be

possible. Another possible area is to study the randomness in acous-

tic modelling due to random behavior of k(z). This is driven by

the physical nature of the problem. The dynamical nature of sound

speed c(z) of the ocean medium forces to treat k(z) = 2πf/c(z) as

random. Theoretical study needs to be carried out to obtain statis-

tics of discrete spectral elements and eigenfunctions of the random

Schrödinger operator with compactly supported potentials that are

drawn from an appropriate probability space.
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Appendix A

Appendix

A.1 Linear Perturbation Theory

Let H0 be a linear operator in the Hilbert space H , and (λ0, f0) an

eigenpair of H0. Let the perturbed operator H be

H = H0 + ǫH1 + ǫ2H2 + · · · (A.1)

and assume it has an eigenpair (λ, f) such that

λ = λ0 + ǫλ1 + ǫ2λ2 + · · · (A.2)

and

f = f0 + ǫf1 + ǫ2f2 + · · · . (A.3)

For a first order (linear) approximation to the eigenvalue λ, use

Hf = λf , and A.1, A.2 & A.3 to get

(H0 − λ0I)f1 = (−H1 + λ1I)f0 (A.4)

If we assume H0 is self-adjoint (so is H0 − λ0I) and if f1 satisfies A.4,

then

< f0, (−H1 + λ1I)f0 > = < f0, (H0 − λ0I)f1 >

= 0
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rearrange and solve for λ1,

λ1 =
< H1f0, f0 >

< f0, f0 >
.

A.2 Rayleigh Quotient Estimate

Let H be an operator on the Hilbert space H , and let f ∈ H and

assume f is near to some eigenfunction of H , then the best estimate

for the corresponding eigenvalue is < f,Hf > /‖f‖2. To prove this

claim, let λ = λ1 + iλ2 ∈ C and define

g(λ1, λ2) = ‖Hf − λf‖2.

And from preliminary calculus, for a minimum of g

∂g

∂λ1
= 0 =⇒

λ1 = real

(

< Hf, f >

‖f‖2
)

and
∂g

∂λ2
= 0 =⇒

λ2 = imag

(

< Hf, f >

‖f‖2
)

or

λ =
< Hf, f >

‖f‖2

. So ‖Hf − λf‖ is minimum or Hf is close to λf , if λ =

< Hf, f >/‖f‖2.

If H = H0 + ǫH1, and (λ0, f0) is an eigenpair of the operator H0,

then the Rayleigh quotient estimate for the eigenvalue of the linearly

perturbed operator H , taking f0 as an eigenfunction approximation,

is

λ =
< Hf0, f0 >

< f0, f0 >
= λ0 + ǫ

< H1f0, f0 >

< f0, f0 >
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. This is the same as the linear perturbation approximation obtained

with the additional condition of self-adjointness on the operator H0.

From this we can draw the following conclusion. If the linear pertur-

bation approximation fails, then the eigenfunction f0 of the unper-

turbed operator H0 is not a good estimate for the perturbed operator

H .

A.3 Inverse Iteration

Let H be an operator in the Hilbert space H , and let λ1, λ2, . . . are

its eigenvalues f1, f2, . . . are the respective eigenfunctions. Further

assume that λi 6= λj for i 6= j and that any vector f in H can be

expressed as a linear combination of the eigenfunctions. Let µ be

close to λi such that |λi−µ| < |λj−µ| for all j 6= i and let f =
∑

j ajfj

with ai 6= 0. Now

(H − µI)−1f =
∑

j

aj(λj − µ)−1fj

=
1

λi − µ

(

∑

j 6=i

aj
λi − µ

λj − µ
fj + aifi

)

(H − µI)−kf =
1

(λi − µ)k
(

∑

j 6=i

aj

(

λi − µ

λj − µ

)k

fj + aifi

)

.

Thus (H − µI)−kf , for large values of k, is approximately a multiple

of fi. Or (H−µI)−kf
‖(H−µI)−kf‖

converges to fi. This is the philosophy behind

inverse iteration.

Given an estimate µ, the eigenfunction f corresponding to the

eigenvalue λ which is closest to µ of the operator H can be found

using the following iterative process:
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Start with a vector f0 and in each step a better estimate of the

eigenfunction is obtained by solving the equation (H −µI)fk+1 = fk.
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Abstract

Acoustic modelling using normal mode approach is examined
in Indian Ocean environment with a soft sediment bottom.
Computing leaky modes is critical in modelling the acoustic
field in these environments. Normal mode programs KRAKEN
and KRAKENC are applied to these environments and their
instability in determining some of the leaky modes is pointed
out. Rayleigh quotient iteration is proposed in place of inverse
iteration in KRAKENC for determining the dominant complex
modes. This approach provides better estimate of all the
dominant modes and is found to be stable even at higher
frequencies.

2. M. N. N. Namboodiri and S. Satheesh Kumar: On continuous
movement of the discrete spectrum of Schrödinger operators
(pre-print)

Abstract

Continuous movement of discrete spectrum of the Schrödinger

operator H(z) = − d2

dx2 + V0 + zV1, with
∫∞

0
x|Vj(x)|dx < ∞, on

the half-line is studied as z moves along a continuous path in
the complex plane. The analysis provides information regard-
ing the members of the discrete spectrum of the non-selfadjoint
operator that are evolved from the discrete spectrum of the cor-
responding selfadjoint operator.
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