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0.0154 and m̂ = 18.3438. . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.10 Estimated values of ψ̂r+1(t1|t2)

ψ̂r(t1|t2)

[
r+1

m−r−1

[
t1 + 1+â2t2
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Chapter 1

Introduction

The origin of the scientific word moment is basically from the discipline physics.

In mathematics, moment is a quantitative measure of the shape of a set of points.

If the points represent a probability density, then the zeroth moment is the total

probability (i.e. one), the first moment is the mean, the second central moment

is the variance, the third central moment is the skewness, and the fourth cen-

tral moment (with normalization and shift) is the kurtosis. It is closely related to

the concept of ‘moment of inertia’ in physics. Mathematically, for an univariate

continuous random variable (rv) X defined on the real line R with an absolute

continuous Cumulative Distribution Function (CDF) F (·) of any probability dis-

tribution and let t be a centering point or a reference level, then the rth moment

of X about t is given by the Riemann–Stieltjes integral

E [(X − t)r] =

∞∫
−∞

(x− t)rdF (x). (1.1)

For any positive integer r, the rth moment about zero of a probability density

function (pdf) f(.) is the expected value of Xr and is called a raw moment or crude

moment of X . For the second and higher moments, the central moment (i.e. the

1
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moments about the mean, with t being the mean) provides clearer information

about the distribution’s shape and the second central moment is the variance of

the rv X, which quantifies the amount of dispersion in the data around the mean.

Since moments are closely connected to different parameters of an underline

population, there are various types of moments of the rv X defined in the liter-

ature. For example, the rth inverse moment about zero by E(X−r) and the rth

logarithmic moment about zero by E(log(X))r etc. Among these the one which is

very popular in different applied problems such as reliability analysis, actuarial

studies and income (poverty) studies are the partial moments. Partial moments are

more appropriate than the usual conventional moments when the investigator

knows information about the occurrence of an event is only from (after) a partic-

ular reference point, say t. In such situations, (1.1) reduces to either

pr(t) =

∞∫
t

(x− t)rdF (x) (1.2)

or

lr(t) =

t∫
−∞

(t− x)rdF (x). (1.3)

(1.2) and (1.3) are generally known as Upper Partial Moment and Lower Partial

Moment denoted by UPM and LPM respectively. Partial moments are also re-

ferred to as the ‘one-sided moments’ since they use exactly one side information

(i.e. either upward or downward) from the data, about a reference level t. UPM

is popular in reliability studies whereas LPM is widely used in calculating the

moments in the reversed time (−∞, t). Lower partial moments (LPM) are also

used in portfolio theory and in areas involving financial risk, which addresses

the problem of managing risky investment policies with the object of maximizing
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returns. Further, LPM also plays an important role in the analysis of risks in in-

come (poverty) studies.

Variance is a classical measure of dispersion. Partial moments are the mea-

sures that generalize the variance. For example, r = 2 in (1.2) and (1.3) gives a

new measure called the Target Semi-Variance (TSV), TSV is a measure of dispersion

of the outcomes below the target return. A special case of the TSV arises when the

target return is the expected value. The resulting measure is called the semivari-

ance. Semivariance is a measure of dispersion of all observations that fall below

(or above) the mean or target value of a data set. Semivariance is the average

squared deviations of values that are lesser (greater) than the mean. Semivari-

ance is similar to variance; however, it only considers observations below (above)

the mean. In portfolio or asset analysis, semivariance provides a measure for

downside risk. Unlike standard deviation and variance that provide measures

of volatility, semivariance only looks at the negative (positive) fluctuations of an

asset. By neutralizing all values below (above) the mean, or an investor’s target

return, semivariance estimates the average loss that a portfolio could incur.

Upside risk is the chance that an asset or investment will increase in value

beyond your expectations. The concept of upside risk serves a number of use-

ful purposes. It can be a red flag that a particular fund or investment manager

is taking excessive risks. In other words, upside risk allows you to assess both

potential losses and gains with risk approximations. An upside risk is an out-

come better than the benchmark, while a downside risk is an outcome that is

worse than the benchmark. For example, if we lend money to someone the nat-

ural choice of benchmark outcome is that they will pay back, but there is a risk

that they won’t. In this case the risk is bad thing, and there is no outcome bet-
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ter than the benchmark outcome. The only risk is a downside one, though a

different choice of benchmark could change this. Other situations have a more

obvious upside. Suppose a company launches a new product and makes plans

for production based on an estimate of sales in the first three months. The natural

benchmark level is the estimate made and used for planning, but there is a risk

of lower sales and a risk of higher sales. The risk of lower sales is the downside,

while the risk of higher sales is the upside.

Stochastic modelling is a very popular and powerful technique in most sci-

entific studies to understand the basic characteristics of a random phenomenon.

One of the basic problems in such situations is to identify the underlying stochas-

tic model that is supposed to generate the observations. When data is the only

input material for the model selection, in-order to choose an appropriate model,

usually the analyst start with a general class of probability distributions and fi-

nally select an appropriate member from the class, which is considered to be as

the best fitted model for the corresponding data set. The term ‘best fitted model’

is a very important and relative one. Since the overall fit of the model is usually

quantified with aids of the following tools such as (i) graphical techniques which

mainly includes Probability- Probability plots (P-P plots) and Quantile- Quan-

tile plots (Q-Q plots) or (ii) statistical testing of hypothesis procedures such as

Kolmogrov-Smirnov test, Cramer-Von Moses test, Anderson-Darling test, the χ2

or likelihood ratio tests or using the (iii) informations criterion’s such as Akaike

Information Criterion (AIC), Bayesian Information Criterion (BIC), Devian Infor-

mation Criterion (DIC) or Focused Information Criterion (FIC) etc. However, the

major dilemma the analyst must face while using these techniques is that the dif-

ferent models have different tail behaviours and the sample size of the data sets

may not be sufficiently large enough to detect such differences and more over
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most of the aforementioned goodness of fit tests are at best only approximate

evaluations.

Generally it is not easy to isolate all the physical causes that contribute indi-

vidually or collectively to the generation of data and to mathematically account

for each. The task of determining the correct stochastic model representing the

given data becomes very difficult. A standard practice in such contexts is to as-

certain the physical properties of the process generating the observations, express

them by means of mathematical equations or inequalities and then solve them to

obtain the model. Characterizations of probability distributions play a vital role

in modelling and analysis of statistical data. The tool that enables the exact deter-

mination of a probability model is the ‘characterization theorem’. If for a random

variable X , there exists a family of distributions say, F such that a distribution

belongs to F implies that X has the property P . The characterization theorem

makes a conclusion that if X exhibits P then the distribution belongs to F , which

in general implies that F is the only model having this designated property P .

Thus, if the analyst is able to translate the physical characteristics of the system

in terms of different statistical measures such as Failure Rate (FR), Mean Residual

Life (MRL) function etc. and if there exist a probability model which is char-

acterized by such property, the model selection procedure can be satisfactorily

accomplished.

Multivariate data commonly arise in most of the scientific investigations and

accordingly multivariate distributions are employed for modelling and analysis

of data. Much of the early work in the literature on analysis of bivariate (multi-

variate) data was focused on bivariate and multivariate normal distributions as

there had been a tendency to regard all distributions as normal. However, nor-
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mal distribution is inappropriate in cases where the data exhibit multi-modality

or skewness and hence significant developments have been made with regard to

non-normal distributions. Bivariate (Multivariate) distributions with non-normal

marginals arise in many fields. For example in lifetime data analysis, the vari-

ables of interest are non-negative that often have skewed marginal distributions

like exponential, Pareto and Weibull distributions. In reliability, multivariate life-

time data arise when each study subject may experience several events. For in-

stance, the sequence of tumour recurrences, the occurrence of blindness in both

eyes and the onset of a genetic disease among family members etc. For various

non-normal bivariate (multivariate) distributions, one may refer to Balakrishnan

and Lai (2009).

With the wide applicability of partial moments in different fields such as risk

analysis, actuarial science, forensic science, reliability modeling, survival analy-

sis etc, the study of the same based on residual and past lifetime are of greater

interest among researchers. It has different kinds of interpretations in different

contexts. When r = 0, then p0(t) and l0(t), coincide the survival and distribu-

tion function of X respectively. Similarly when r = 1 one can relate these partial

moments with the popular risk measures such as Conditional Expected Shortfall

(CES) and Value-at-Risk (VAR) or with the income (poverty) inequality measures

such as income gap ratio, Mean Proportional Residual Income (MPRI) or mean

deprivation. For r = 2 and t = E(X) the partial moments are called upper or

lower semivariance of X . The square root of the lower semivariance can be used

to replace the standard deviation in the definition of the Sharpe ratio or in the

Markowitz criterion.

Much research on the use and applications of partial moments in higher di-
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mensions has not been reported in the literature. Motivated by these facts, the

present work is focused on deriving various characteristic properties of partial

moments of bivariate and conditional random variables and its applications in

different fields such as life-length , actuarial and income and poverty studies. An

overview of the thesis is as follows. The thesis is organized into eight chapters.

After this introductory chapter, in Chapter 2, we have pointed out the relevance

and scope of the study along with a review of literature. We have also given a

brief introduction to the concept of partial moments and their usage and inter-

pretations in different fields. The rest of the chapters are organized as follows:

In Chapter 3, we further explore the concept of BUPM in the context of life-

length studies. We prove characterizations to some important bivariate distribu-

tions such as bivariate Gumbel’s exponential and Pareto model etc. We derive

an identity for bivariate distributions when BUPM takes the form of a general

class of distributions which contains many important moment relationships, and

a generalization of the result due to Lin (2003).

There are many practical situations where the access to conditional distribu-

tions are more likely than to their joint distribution. Accordingly in Chapter 4 we

study upper partial moments in the conditional setup. It is shown that the condi-

tional upper partial moments determine the corresponding distribution uniquely.

The relationships with reliability measures such as conditional hazard rate and

mean residual life are obtained. Characterizations results based on conditional

upper partial moments for some well known bivariate lifetime distributions are

derived. A concept that has applications in economics is income gap ratio which

is used for developing indices of affluence and poverty (Sen (1988)). Character-

izations of conditional upper partial moments using income gap ratio are also
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obtained. Finally, non-parametric estimators for conditional partial moments are

introduced which are validated using simulated and real data sets.

In Chapter 5, we extend the notion of LPM to the conditional set up and study

its usefulness in the context of stochastic modeling. The relationship between var-

ious measures in reliability studies, income (poverty) studies, and risk analysis

are also proved. Apart from the concept of income gap ratio another measure of

interest that has applications in actuarial studies is the Expected Shortfall. Com-

parisons of the two bivariate returns based on Conditional Expected Shortfall us-

ing the quantile version of CLPMs are also discussed. Finally, a non-parametric

estimator for conditional LPM is proposed and has been validated through sim-

ulated and real data sets.

In most of the practical situations often the investigator cannot record the sam-

pling units with equal probability. The notion of weighted distribution intro-

duced by Rao (1965) gives a unified approach for modeling such biased sampling

situations. Motivated by this fact in Chapter 6, we investigate various properties

of partial moments in the context of bivariate weighted models. We also study

different dependence notions for weighted models using partial moments.

In many statistical models, the assumption of independence between two or

more variables is often due to convenience rather than to the problem at hand.

The study of dependence between variables can be done through copula func-

tions. Motivated by this, in Chapter 7 we aims at extending the concept of UPM

to the bivariate case based on copula function and study its various properties.

The relationship between survival copula and first-order bivariate partial mo-

ments are established. We also investigate some applications of quantile-based
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conditional upper partial moments in the context of reliability, actuarial and in-

come (poverty) studies.

Finally, in Chapter 8, we summarizes major conclusions of the present study

along with discussions on future research problems on this topic.





Chapter 2

Basic concepts and review of

literature

2.1 Introduction

In this section we present the definition and properties of partial moments, and

review its applications in different applied fields.

Definition 2.1.1. LetX : (Ω,A , P )→
(
R,B

)
be a numerical random variable that

is integrable with respect to P,where R = R∪{−∞,+∞} denotes the extended set

of real numbers and B := σ (B ∪ {{−∞} , {+∞}}) denotes the Borel σ-algebra on

R. Let n ∈ N, then we define the nth moment of X about a point t as

E [(X − t)n] =

∞∫
−∞

(x− t)ndP . (2.1)

If X is non-negative and E(Xn) is finite, then E(Xn) is called the nth raw mo-

ment and E([X − E(X)]n) the nth central moment of X .

However, there are practical situations in which the information is available

11
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only from a point t onwards or till a point t, then (2.1) modifies to the notion of

partial moments or one-sided moments. When we are interested only in the left

tail or in the right tail (losses or gains), the lower partial moments or the upper

partial moments of the distribution of a rv are of importance.

2.1.1 Upper partial moments

Let X be a non-negative continuous random variable with probability density

function f(.) and cumulative distribution function F (.). Then the rth degree Up-

per Partial Moment (UPM) about a point t is defined as

pr(t) = E[(X − t)+]r, r = 0, 1, 2, ...

=

∫ ∞
t

(x− t)rdF (x), (2.2)

where

(X − t)+ = max (X − t, 0) =


X − t if X ≥ t

0 if X < t

(2.3)

represents the amount by which X exceeds a threshold t.

The random variable (X − t)+ used in defining partial moments are mean-

ingful in the study of personal incomes. When X represents the income of an

individual and t is the tax exemption level, then (X − t)+ represents the taxable

income. The income which fall short of tax exemption level t is of no effect in

the computation of taxes and therefore treated as zero. Thus the study of partial

moments is useful in analyzing measurements that exceed a threshold level with-

out truncating the distribution at t. The quantity (X − t)+ is interpreted as the

residual life in life length studies (see Lin (2003)). In actuarial sciences, (X − t)+
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represents the financial loss incurred by an insurance company, called risks. pr(t)

is usually referred to as the rth degree stop-loss transform of the risk X and is a

standard measure of dangerousness of X (see Cheng and Pai (2003)).

In the context of risk analysis pr(t) has different meaningful interpretation (i.e.

unexpected gain). When r = 2, the measure corresponds to the Target semi-

variance (TSV). Since TSV consider only deviations of returns from a target t, it is

a more appropriate measure of risk than the traditional measure standard devia-

tion, which considers both the positive and negative deviations from the expected

return. Hence, returns above the threshold, t, are seen by investors as unexpected

gain. Further it more related with the measures expected shortfall and Value-at-

Risk (VaR).

Chong (1977) has characterized the exponential and geometric distributions

by the properties of partial means. Gupta and Gupta (1983) studied partial mo-

ments in the discrete set-up. Gupta (2007) and Sunoj (2004) obtained partial

moments and their properties in respect of length-biased and equilibrium dis-

tributions. Sankaran and Nair (2004) introduced partial moments for bivariate

case and studied characterizations of bivariate discrete models using the dis-

crete bivariate upper partial moment, also known as the bivariate factorial mo-

ments. Sunoj and Maya (2008) studied the properties of lower partial moments

in stochastic modeling. Kundu and Nanda (2010) studied some properties of par-

tial moments of the inactivity time. A study on certain reliability aspects and

applications of quantile-based partial moments is available in Nair et al. (2013b).

Nair et al. (2013b) studied the quantile-based univariate stop-loss transform, de-

riving certain characterizations to some well-known probability models and its

applications in the context of income study. Kundu and Sarkar (2017) character-
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ized some continuous distributions based on partial moments of the inactivity

time. Recently, Sunoj and Vipin (2017) studied the conditional partial moments

and obtained some characteristic properties and its usefulness in certain applied

problems.

2.1.1.1 Bivariate upper partial moments

There have been several attempts to generalize the partial moments to higher di-

mensions. Hürlimann (2002) and Sankaran and Nair (2004) defined the bivariate

version of univariate UPMs defined in (2.2) and studied their properties including

some characterizations.

Definition 2.1.2. LetX = (X1, X2) be a non-negative random vector admitting an

absolutely continuous distribution function F (t1, t2) with respect to a Lebesgue

measure in the positive octant R+
2 = {(t1, t2)|t1, t2 > 0} of the two dimensional

Euclidean space R2. Assume that E(Xr
1X

s
2) is finite for any two positive integers

r and s. Then the (r, s)th Bivariate Upper Partial Moment denoted by BUPM is

defined as

pr,s (t1, t2) = E
[
(X1 − t1)r+(X2 − t2)s+

]
, r, s = 0, 1, 2, . . .

=

∞∫
t1

∞∫
t2

(x1 − t1)r(x2 − t2)sf(x1, x2)dx1dx2. (2.4)

Hürlimann (2002) studied (2.4) in the context of actuarial studies whereas

Sankaran and Nair (2004) gave more emphasis with related to reliability anal-

ysis by mainly focusing on characterizing bivariate discrete probability models

using the discrete version of (2.4) known as bivariate factorial moments.

Let (Xi, Yi), i = 1, 2, ...n be n independent and identically distributed pairs of

lifetimes. A natural estimator of BUPM (2.4) is the empirical estimator proposed
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by Sankaran and Nair (2004), given as

p̂r,s(t1, t2) =
1

n

n∑
i=1

(Xi − t1)r(Yi − t2)sI (Xi > t1, Yi > t2) . (2.5)

The estimator (2.5) is the (r, s)th moment of the observations surviving beyond

some threshold values (t1, t2). The strong consistency and asymptotic normality

properties of the estimator (2.5) are given in Sankaran and Nair (2004).

2.1.2 Lower partial moments

The concept of risk plays an important role in many studies of economics, busi-

ness and insurance. Consider a portfolio with a random return X and assume

that individual has a target return t. An outcome larger than t is non-risky and

desirable, then the individual faces only a one-sided risk called the downside

risk that occurs when X falls short of t (Adams and Montesi (1995)). An im-

portant risk measure widely used in this context is the Lower Partial Moment

(LPM) (see Unser (2000), Sunoj and Maya (2008) and the references therein). It

provides a measure of a specified minimum return (target return) that may not

be earned by a financial investment. Lower Partial Moments (LPMs) have several

advantages over the traditional measure of risk, the variance (see Bawa (1975),

Fishburn (1977) etc). A mathematical definition of LPM is as follows. Let X be

a non-negative continuous random variable with probability density function f

and cumulative distribution function F . Then the rth univariate lower partial

moment (LPM) about a point t is defined as

lr(t) = E[(X − t)−]r, r = 0, 1, 2, ... (2.6)
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where

(X − t)− = max (t−X, 0) =


t−X if X ≤ t

0 if X > t.

(2.7)

In terms of the distribution function,

lr(t) =

∫ t

−∞
(t− x)rdF (x). (2.8)

Note that LPM is a function of the underlying distribution function and it is an

increasing function of the target return t. Differentiating (2.8) successively r times

with respect to t gives

F (t) =

(
1

r!

)
dr

dtr
(lr (t)) . (2.9)

(2.9) implies that the LPM, lr(t), determines the distribution uniquely.

Since LPMs consider only negative deviations of returns from a target t, it is

a more appropriate measure of risk than the standard deviation, which considers

both the positive and negative deviations from the expected return. Hence, re-

turns below the threshold, t, are seen by investors as loss. This (loss) threshold

level, might be the rate of inflation, the real interest rate, the return on a bench-

mark index, the risk-free rate etc. In reliability theory, the LPM is known as the rth

order partial mean inactivity time (past lifetime). Due to the importance of LPM

in many fields such as risk analysis, actuarial science, forensic science, reliability

modeling, survival analysis etc, the study of partial moments and its higher or-

ders based on past lifetime are of greater interest among researchers (see Kundu

and Sarkar (2017) and the references therein). Also, as both LPMs and poverty

indices focus on the lower part of the distribution (such as incomes of the poor),

LPM is an efficient tool to measure poverty indices in the income analysis (see
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Sunoj and Maya (2008)).

Since the both upper and lower partial moments have its own interpretation and

applications in different fields such as reliability modelling, actuarial studies and

income (poverty) studies, in the following sections we give a brief review on basic

reliability, risk and income (poverty) concepts useful in the present study.

2.2 Some basic concepts in reliability theory - Uni-

variate case

The term ‘reliability’ corresponds to the probability that an equipment or unit will

perform the required function under the conditions specified for its operations for

a given period of time. The primary concern in reliability theory is to understand

the patterns in which failures occur, for different mechanisms and under varying

operating environments, as a function of its age. This is accomplished by iden-

tifying the probability distribution of the lifetime represented by a non-negative

random variableX . Accordingly, several concepts have been developed that help

in evaluating the effect of age, based on the distribution function of the lifetime

random variable X and the residual life. In this section, we recall the definitions

and properties of some popular reliability measures, that are used in the subse-

quent chapters.

2.2.1 Reliability function

Let a = inf{t|F (t) > 0} and b = sup{t|F (t) < 1} be such that (a, b), −∞ ≤ a < b ≤

∞ is the interval support of the rv X . The reliability function or survival function
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(sf) of a rv X , denoted by R(·) is defined as

R(t) = P (X > t) = 1− F (t),

where F (·) is the distribution function (df) of X . It gives the probability of failure

free operation for a time period greater than t.

The survival function R(.) of X can be written in terms of pr(t) as R (t) =

(−1)r

r!
drpr(t)
dtr

(see Navarro et al. (1998), Sunoj (2004)).

2.2.2 Failure rate

The failure rate also known as the hazard rate of a rvX , denoted by h(·), is defined

as

h(t) = lim
∆t→0

P [t ≤ X < t+∆t|X > t]

∆t
. (2.10)

The failure rate h(t), measures the instantaneous rate of failure at time t, given

that the component survives at least up to time t. h(t)∆t represents the approxi-

mate probability of failure in the interval [t, t+∆t), given the component survived

up to time t, provided ∆t is very small. Kotz and Shanbhag (1980) defined fail-

ure rate as the Radon Nikodym derivative with respect to Lebesgue measure on

{t : F (t) < 1}, of the hazard measure H(B) =
∫
B

dF (t)
[1−F (t)]

for every Borel set B of

the form (−∞, L), where L = inf{t : F (t) = 1}. If f(·) is the pdf of X , (2.10) can

be equivalently written as

h(t) =
f(t)

R(t)
= − d

dt
logR(t).
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h(·) uniquely determines the sf R(·) through the relationship

R(t) = exp

(
−
∫ x

0

h(u)du

)
= exp(−H(t)),

whereH(t) =
∫ x

0
h(u)du is known as cumulative hazard rate. The hazard rate and

the UPM are connected by the relation

− d

dt
log (p0(t)) = h (t) .

The concept of hazard rate is widely used for characterizing lifetime distributions.

For example, constancy of hazard rate is a characteristic property of exponential

distribution (Galambos and Kotz (1978)). A large volume of literature is available

on characterizations and other properties of hazard rate function (see, for exam-

ple, Barlow et al. (1963), Nanda and Shaked (2001), Nair and Asha (2004), Nanda

(2010), Noughabi et al. (2013) and references therein).

2.2.3 Reversed hazard rate

Barlow et al. (1963) proposed reversed hazard rate function for a rv X , denoted

by h̄(·) and is defined as

h̄(t) = lim
∆t→0

P [t−∆t < X ≤ t|X ≤ t]

∆t
.

h̄(t) measures the instantaneous rate of failure of a unit at time t, given that it

failed before time t. Thus, h̄(t)∆t gives the probability that the unit failed in an

infinitesimal interval (t −∆t, t], given that it failed before t. If the pdf f(·) exists,

the above equation can be expressed as

h̄(t) =
f(t)

F (t)
=

d

dx
logF (t).
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Keilson and Sumita (1982) shown that h̄(·) determines the CDF through the rela-

tionship

F (t) = exp

(
−
∫ b

t

h̄(u)du

)
= exp(−H̄(t)),

where H̄(t) =
∫ b
t
h̄(u)du denotes the cumulative reversed hazard rate.

Finkelstein (2002) established the relationship between h̄(·) and h(·) as

h̄(t) =
h(t)

exp
(∫ t

0
h(u)du

)
− 1

.

For more details on reversed hazard rate one can refer to Gupta and Nanda (2001),

Nanda and Shaked (2001), Nair and Asha (2004), Bartoszewicz and Skolimowska

(2004), Chandra and Roy (2005), Nair et al. (2005), Sunoj and Maya (2006), Sankaran

et al. (2007) and Kundu and Ghosh (2017) .

2.2.4 Mean residual life function

For a rv X with E(X) <∞, the Mean Residual Life Function (MRLF) denoted by

m(·), defined by Swartz (1973) as

m(t) = E(X − t|X > t). (2.11)

m(t) measures the average residual life of a component which has survived a time

t. If the df F (·) is continuous with respect to Lebesgue measure, (2.11) becomes

m(t) =
1

R(t)

∫ ∞
t

R(u)du.
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m(·) uniquely determines the underlying distribution through the relationship

R(t) =
m(0)

m(t)
exp

[
−
∫ t

0

1

m(u)
du

]
.

Model identification can be done easily by knowing the functional form of m(·).

For example, characterization of distribution using the linear form ofm(·) is avail-

able in Hall and Wellner (1981). MRLF is related to the failure rate by the equation

h(t) =
1 +m′(t)

m(t)
.

Bryson and Siddiqui (1969) proved that increasing hazard rate of a component

implies decreasing MRLF of that component. The Mean Residual Life (MRL)

function and the UPM are connected by the relation

p1(t)

p0(t)
= E (X − t|X > t) .

For more properties on m(·), one could refer to Hall and Wellner (1981), Mukher-

jee and Roy (1986), Nanda (2010), Gupta (2016a) and references therein.

2.2.5 Reversed mean residual life function

The reversed mean residual life function is an analogous concept of MRLF but

defined for the past lifetime (t−X|X ≤ t), given by

m̄(t) = E(t−X|X ≤ t).

It measures the average past lifetime of a rv which failed at time t. It is also

known as mean inactivity time or mean past lifetime in reliability. If the df F (·) is
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continuous with respect to Lebesgue measure, m̄(·) can be written as

m̄(t) =
1

F (t)

∫ t

0

F (u)du.

The reversed mean residual life time is related to reversed hazard rate through

the relationship,

h̄(t) =
1− m̄′(t)
m̄(t)

.

Like m(·), m̄(·) also uniquely determines the underlying df by the relationship

(Chandra and Roy (2001)),

F (t) = exp

(
−
∫ ∞
t

1− r̄′(u)

m̄(u)
du

)
.

For more details on reversed mean residual life function, we refer to Kayid and

Ahmad (2004), Ahmad and Kayid (2005), Gandotra et al. (2011), Kayid and Izad-

khah (2014), Kundu and Ghosh (2017) and references therein.

2.2.6 Vitality function

Kupka and Loo (1989) introduced the concept of vitality function as a Borel-

measurable function on the real line as

v(t) = E (X |X > t) =
1

R(t)

∞∫
t

uf(u)du. (2.12)

Clearly, (2.12) measures the expected life of a component, when it has survived t

units of time. The vitality function is closely related to MRLF by the relationship

v(t) = x+m(t)
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and

v′(t) = m(t)h(t),

where v′(t) is the derivative of v(t). Due to the one-to-one relationship between

m(·) and v(·), the vitality function uniquely determines the underlying distribu-

tion. Moreover, the vitality function and the UPM are connected by the relation,
p1(0)
p0(t)

= E (X|X > t).

2.3 Bivariate case

LetX = (X1, X2) be a random vector defined on R2 = (−∞,∞)×(−∞,∞). Then

joint (bivariate) df of (X1, X2) is defined as F (t1, t2) = P (X1 ≤ t1, X2 ≤ t2). It

satisfies the following properties:

(i) lim
t1→−∞

lim
t2→−∞

F (t1, t2) = lim
t1→−∞

F (t1, t2) = lim
t2→−∞

F (t1, t2) = 0,

(ii) lim
t1→∞

lim
t2→∞

F (t1, t2) = 1,

(iii) If a < b and c < d, then F (a, c) < F (b, d),

(iv) If a > t1 and b > t2, then F (a, b)− F (a, t2)− F (t1, b) + F (t1, t2) ≥ 0.

The bivariate sf of (X1, X2) is defined as R(t1, t2) = P (X1 > t1, X2 > t2). R(t1, t2)

is related to F (t1, t2) by the equation

R(t1, t2) = 1− lim
t2→∞

F (t1, t2)− lim
t1→∞

F (t1, t2) + F (t1, t2).

If F (t1, t2) is absolutely continuous and if the second order derivative exists then

the joint density function f(t1, t2) can be defined as

f(t1, t2) =
∂2R(t1, t2)

∂t1∂t2
=
∂2F (t1, t2)

∂t1∂t2
.
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2.3.1 Bivariate hazard rate

A straightforward extension of univariate hazard rate (or failure rate) to the bi-

variate case is due to Basu (1971), defined as a scalar failure rate,

k(t1, t2) =
f(t1, t2)

R(t1, t2)
.

Puri and Rubin (1974) characterized a mixture of exponential distributions by the

constancy k(t1, t2) = c for t1 > 0 and t2 > 0. However, in general k(t1, t2) does not

determine a bivariate distribution uniquely. For more properties, see Yang and

Nachlas (2001), Finkelstein (2003) and Finkelstein and Esaulova (2005).

An alternative and a more popular definition on bivariate hazard rate is due to

Johnson and Kotz (1975) who proposed a vector-valued bivariate failure rate,

h(t1, t2) = (h1(t1, t2), h2(t1, t2)),

where

hi(t1, t2) = − ∂

∂ti
logR(t1, t2), i = 1, 2,

is the instantaneous failure rate of Xi at time ti given that Xi was alive at time

ti and that X3−i survived beyond time t3−i, i = 1, 2. Unlike k(t1, t2), h(t1, t2)

uniquely determines the df (see Marshall et al. (2011) and Shanbhag and Kotz

(1987)) through the expression

R(t1, t2) = exp

[
−
∫ t1

0

h1(u, 0)du−
∫ t2

0

h2(t1, v)dv

]

or

R(t1, t2) = exp

[
−
∫ t1

0

h1(u, t2)du−
∫ t2

0

h2(0, v)dv

]
.



Chapter 2. Basic concepts and review of literature 25

Some characterizations of probability models based on h(t1, t2) can be found in

Navarro and Ruiz (2004), Kotz et al. (2007) and Navarro et al. (2007).

Some other versions of failure rate in bivariate set up are also available in litera-

ture, for example Cox (1972), Marshall (1975), Shaked and Shanthikumar (1987),

Basu and Sun (1997), Finkelstein (2003) and references therein.

2.3.2 Bivariate reversed hazard rate

Motivated with the wide applicability of bivariate failure rate due to Johnson

and Kotz (1975), Roy (2002a) proposed a vector-valued reversed hazard rate. Let

(X1, X2) be a random vector with joint df F (t1, t2) and Fi(·) denotes the marginal

df of Xi, i = 1, 2. The support of (X1, X2) be D = [0, b1] × [0, b2] where (b1, b2) is

such that F (b1, b2) < 1 then the bivariate reversed failure rate is defined as

h̄(t1, t2) = (h̄i(t1, t2), h̄i(t1, t2)),

where

h̄i(t1, t2) = lim
∆ti→0

P (ti −∆ti ≤ Xi ≤ ti|X1 ≤ t1, X2 ≤ t2)

∆ti

=
∂

∂ti
logF (t1, t2), i = 1, 2.

Here h̄1(t1, t2)∆t1, represents the probability of failure of the first component in

the interval (t1−∆t1, t1] given that it has failed before t1 and the second has failed

before t2. The interpretation for h̄2(t1, t2) is similar.
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h̄(t1, t2) uniquely determine F (t1, t2) by the relationships

F (t1, t2) = exp

− b1∫
t1

h̄1(u, b2)du−
b2∫
t2

h̄2(t1, v)dv

 (2.13)

or

F (t1, t2) = exp

− b1∫
t1

h̄1(u, t2)du−
b2∫
t2

h̄2(b1, v)dv

 . (2.14)

For more details on bivariate reversed hazard rate we refer to Sankaran and

Gleeja (2006, 2008), Asha and Rejeesh (2007, 2009), Domma (2011) and Kundu

and Kundu (2017).

2.3.3 Bivariate mean residual life function

Buchanan and Singpurwalla (1977) introduced a bivariate MRLF as

e(t1, t2) =
1

R(t1, t2)

∫ ∞
0

∫ ∞
0

P [X1 > t1 + x1, X2 > t2 + x2]dx1dx2, ti > 0, i = 1, 2.

Even if e(t1, t2) is a direct extension of univariate MRLF, it does not uniquely de-

termine the underlying distribution.

An alternative definition to bivariate MRLF is provided by Shanbhag and Kotz

(1987) and Arnold and Zahedi (1988) as follows. Let (X1, X2) be a random vector

on R+
2 = {(t1, t2)|ti > 0, i = 1, 2} with joint df F (t1, t2) and let (L1, L2) be the

vector of extended real numbers such that Li = inf{t|Fi(ti) = 1}where Fi(·) is the

df of Xi. Further let E(Xi) <∞, for i = 1, 2. The vector-valued Borel-measurable
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function m(t1, t2) on R+
2 is given by

m(t1, t2) = (m1(t1, t2),m2(t1, t2))

= (E(X1 − t1|X1 > t1, X2 > t2), E(X2 − t2|X1 > t1, X2 > t2)),

for all (X1, X2) ∈ R+
2 , ti < Li, i = 1, 2, is called the bivariate mean residual

life function. When (X1, X2) is continuous and non-negative, the components

of bivariate MRLF are given by

m1(t1, t2) = E(X1 − t1|X1 > t1, X2 > t2) =
1

R(t1, t2)

∫ ∞
t1

R(u, t2)du (2.15)

and

m2(t1, t2) = E(X2 − t2|X1 > t1, X2 > t2) =
1

R(t1, t2)

∫ ∞
t2

R(t1, v)dv. (2.16)

Unlike e(t1, t2), the bivariate MRLF m(t1, t2) uniquely determines the distribution

through the identities (Nair and Nair (1988))

R(t1, t2) =
m1(0, 0)m2(t1, 0)

m1(t1, 0)m2(t1, t2)
exp

[
−
∫ t1

0

du

m1(u, 0)
−
∫ t2

0

dv

m2(t1, v)

]

or

R(t1, t2) =
m1(0, t2)m2(0, 0)

m1(t1, t2)m2(0, t2)
exp

[
−
∫ t2

0

dv

m2(0, v)
−
∫ t1

0

du

m1(u, t2)

]
.

Similar to the relationship between failure rate and MRLF in the univariate case,

the bivariate MRLF is related to bivariate failure rate by

hi(t1, t2) =
1 + ∂

∂ti
mi(t1, t2)

mi(t1, t2)
, i = 1, 2.

For more applications of bivariate mean residual life function we refer to Sankaran
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and Nair (1993c), Roy (2002b), Nair et al. (2004) and Sunoj and Vipin (2017).

2.3.4 Covariance residual life function

An important aspect to be considered while modeling bivariate data on life times

is the dependency structure between them, which can be measured in terms of

the covariance. Since covariance between lifetimes can also be studied in terms of

their residual lives, a discussion of covariance of residual lives becomes relevant.

Based on this idea Nair et al. (2004) introduced the concept of covariance residual

life function of (X1, X2) as follows.

Let (X1, X2) be a random vector that takes values in the positive octant R+
2 =

{(t1, t2) |t1 > 0, t2 > 0} of the two dimensional space with absolutely continuous

survival function R(t1, t2) = P [X1 > t1, X2 > t2] and density function f(t1, t2)

with E(X1X2) <∞. Then following Nair et al. (2004), the product moment resid-

ual life function is

M (t1, t2) = E [(X1 − t1) (X2 − t2) |X1 > t1, X2 > t2]

and the covariance residual life of (X1, X2) will be

C (t1, t2) = M (t1, t2)−m1 (t1, t2)m2 (t1, t2)

wheremi(t1, t2), i = 1, 2 is the ith component of the BMRL vector as given in (2.15)

and (2.16).
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2.3.5 Bivariate reversed mean residual life function

A vector-valued bivariate reversed mean residual life function is proposed by

Nair and Asha (2008). Let (X1, X2) be a random vector defined on R2 with joint df

F (t1, t2) and marginal df Fi(·), i = 1, 2, E(X1, X2) < ∞ and let (a1, a2) and (b1, b2)

be vectors of real numbers such that ai = inf{t|Fi(t) > 0} and bi = sup{t|Fi(t) < 1}

then bivariate reversed mean residual life function is defined as a Borel-measurable

function

r̄(t1, t2) = (r̄1(t1, t2), r̄2(t1, t2)),

where

r̄1(t1, t2) = E(t1 −X1|(X1 ≤ t1, X2 ≤ t2) =
1

F (t1, t2)

∫ t1

a1

F (u, t2)du

and

r̄2(t1, t2) = E(t2 −X2|(X1 ≤ t1, X2 ≤ t2) =
1

F (t1, t2)

∫ t2

a2

F (t1, v)dv.

The bivariate reversed mean residual life function uniquely determines the un-

derlying distribution through the relationships

F (t1, t2) =
r̄1(b1, b2)r̄2(t1, b2)

r̄1(t1, b2)r̄2(t1, t2)
exp

(
−
∫ b1

t1

du

r̄1(u, b2)
−
∫ b2

t2

dv

r̄2(t1, v)

)

and

F (t1, t2) =
r̄1(b1, t2)r̄2(b1, b2)

r̄1(t1, t2)r̄2(b1, t2)
exp

(
−
∫ b1

t1

du

r̄1(u, t2)
−
∫ b2

t2

dv

r̄2(b1, v)

)
.
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Further, bivariate reversed mean residual life function is related to bivariate re-

versed hazard rate by

h̄i(t1, t2) =
1− ∂

∂ti
r̄i(t1, t2)

r̄i(t1, t2)
, i = 1, 2.

For more properties and results based on bivariate reversed mean residual life

function, we refer to Kayid (2006), Asha and Rejeesh (2009) and Ghosh and Kundu

(2017).

2.3.6 Bivariate vitality function

Kupka and Loo (1989) have employed a new method of measuring the phe-

nomenon of ageing with the aid of vitality function which is the expectation of

a random variable X conditioned on X > t. The properties of vitality function

and its relationship to the other ageing concepts were discussed in Section 2.2.6.

Sankaran and Nair (1991) extend the notion of vitality function to the bivariate

case and point out some of its applications in the analysis of lifetime data.

Let X = (X1, X2) be a bivariate random vector in the support of {(t1, t2)|ai ≤

ti ≤ bi}, i = 1, 2 for ai ≥ −∞ and bi ≤ +∞, with survival function R(t1, t2).

For values of ti < bi such that P [X ≥ x] > 0 and t+i = max(0, ti) satisfying

E(X+
i ) <∞, the vector-valued function,

v (t1, t2) = (v1 (t1, t2) , v2 (t1, t2)) ,

where, vi (t1, t2) = E [Xi|Xi ≥ ti, Xj ≥ tj] , i, j = 1, 2, i 6= j is called the bivariate

vitality function ofX .
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2.3.7 Bivariate variance residual life

For a rv X with E(X) <∞, the Variance Residual Life Function (VRLF) denoted

by V (·), defined as

V (t) = V ar (X − t|X > t)

See Launer (1984), Gupta et al. (1987), Gupta (1987), Sankaran and Nair (1993b)

and Gupta and Kirmani (2000). The Variance residual life function (VRLF) and

the UPM are connected by, V (t) =
p2(t)−p21(t)

p0(t)
. Unlike the MRLF, VRLF does not

determine the underlying life distribution uniquely.

Let (X1, X2) be a bivariate random vector admitting absolutely continuous

distribution function with respect to Lebesgue measure in the positive octant that

takes values in the positive octant R+
2 = {(t1, t2) |t1 > 0, t2 > 0} of the two di-

mensional Euclidean space R2 and having survival function R(t1, t2) = P [X1 >

t1, X2 > t2]. Assume that E(X2
i ) <∞, i = 1, 2. Then

V (t1, t2) = (V1 (t1, t2) , V2 (t1, t2)) ,

where, Vi (t1, t2) = E
[
(Xi − ti)2|X1 ≥ t1, X2 ≥ t2

]
−m2

i (t1, t2), i = 1, 2. is defined

as the bivariate variance residual life and Vi(t1, t2) as its components by Sankaran

and Nair (1993b).

Using BVRLF and BMRLF, Gupta and Kirmani (2000) defined the residual

coefficient of variation in the bivariate case as the vector (CV1 (t1, t2) , CV2 (t1, t2)),

where,

CVi (t1, t2) =

√
Vi (t1, t2)

mi (t1, t2)
, i = 1, 2.
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2.4 Bivariate ageing classes

In this section we consider some bivariate ageing classes. A detailed study of the

various ageing classes and their properties is available in Lai and Xie (2006). Let

(X1, X2) denote a bivariate random vector with joint density function f(t1, t2) and

joint survival function R(t1, t2). Then, the random vector (X1, X2) is said to have

(i) Increasing Bivariate Hazard Rate-1 (IBHR-1) if R(t1+s,t2+s)
R(t1,t2)

is decreasing in t1,

t2 for all s > 0.

(ii) Increasing Bivariate Hazard Rate-2 (IBHR-2) if R(t1+s1,t2+s2)
R(t1,t2)

is decreasing in

t1, t2 for all s1, s2 > 0.

(iii) Decreasing Bivariate Mean Residual Life (DBMRL) ifm1 (t1, t2) is decreasing

in t1 for all t2 and m2 (t1, t2) is decreasing in t2 for all t1.

(iv) bivariate Decreasing Mean Residual Life-I (DMRL-I) if for all t ≥ 0 for which

R(t, t) > 0,

∞∫
t

∞∫
t
R(x,y)dxdy

R(t,t)
is non-increasing in t.

(v) bivariate (DMRL-II) if for all t ≥ 0 for which R(t, t) > 0,

∞∫
t

∞∫
t
R(x,x)dx

R(t,t)
is non

increasing in t.

Apart from the above definitions, for an exchangeable random vector (X1, X2),

Bassan et al. (2002) defined the bivariate ageing notions such as Bivariate Increas-

ing Failure Rate (BIFR) and Bivariate Decreasing Mean Residual Life (BDMRL).

An exchangeable random vector (X1, X2) is said to have

(vi) Bivariate IHR (BIFR) distribution in the strong sense, if and only if the ratio
R(t1+s,t2)
R(t2+s,t1)

is increasing in s for t1 < t2.

(vii) Bivariate Decreasing Mean Residual Life (BDMRL) distribution if for t1 <

t2 if E ((X1 − t1)|X1 > t1, X2 > t2) ≥ E ((X2 − t2)|X1 > t1, X2 > t2).
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2.5 Conditionally specified models

It is inherently difficult to visualise bivariate distributions. Conditional densi-

ties can be easily visualised unlike marginal or joint densities. For example, in

some human population it is reasonable to visualise the unimodal distribution

of heights for a given weight with the mode of the conditional distribution vary-

ing monotonically with the weight. In a similar way a unimodal distribution of

weights for a given height can be easily visualised with the mode varying mono-

tonically with the height. But it is not so easy to visualise the appropriate joint dis-

tributions without certain assertion. A variety of transformation are being used

to characterize the joint df. Joint characteristic function, joint moment generating

function, and joint hazard function are some among them. They are well defined

and will determine the joint df uniquely.

To determine the joint df, the knowledge of the marginals is inadequate. But

if we incorporate conditional specification instead of marginal specification or

together with marginal specification then the picture brightens. Sometimes one

could characterize joint distribution in this way, i.e. the knowledge of one marginal

density say fX1(·) and the conditional density of X2 given X1 will completely

specify the joint density function fX1X2(·) of a bivariate rv. Alternatively one may

specify the distribution solely in terms of the features of two families of condi-

tional densities. This approach is called conditional specification of the joint dis-

tribution. For works on conditionally specified models one can refer to Arnold

et al. (1999) and references therein.
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2.6 Conditional survival models

In conditionally specified bivariate distribution, joint density fX1X2(·) has been

referred with all conditionals of X1 given X2 = t2 belonging to a particular para-

metric family and all conditionals of X2 given X1 = t1, belonging to another

parametric family. In the case of bivariate survival models, component survival

i.e. on events such as {X1 > t1} and {X2 > t2} have been conditioned. For works

on conditional survival models we refer to Arnold (1995).

2.7 Proportional hazards rate model

Proportional hazards rate model, more popularly known as Cox proportional

hazards model was proposed by Cox (1972). Let X and Y be two rvs with pdfs f

and g, sfsR and Ḡ and hazard rates hX and hY respectively, thenX and Y are said

to satisfy proportional hazards rate (PHR) model if they satisfy the relationship

hY (t) = θhX(t) or equivalently Ḡ(t) = (R(t))θ,

where θ > 0, is a constant, with the pdf g(t) = θ(R(t))θ−1f(t). Proportional haz-

ards model has been used to model failure time data in reliability and survival

analysis. Studies related to PHR model could be found in Clayton and Cuz-

ick (1985), Ebrahimi and Kirmani (1996), Kundu and Gupta (2004), Nair and

Gupta (2007), Sankaran and Sreeja (2007), Dewan and Sudheesh (2009), Nair et al.

(2018a) and the references therein.

2.7.1 Conditional proportional hazards rate model

A popular model for modeling the effects of covariates on survival is the cele-

brated Cox-proportional hazards model (PHR). Let X and Y be two random vari-
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ables with the same support (0,∞) and with hazard rate functions hX = f
R

and

hY = g
Ḡ

, respectively. Then X and Y satisfy the PHR model when hY (t) = θhX(t),

for all t (see Cox (1959)). This relationship is also equivalent to G(t) = (F (t))θ , for

all t. The PHR model is extended to conditional models as follows. The random

vectors (X1, X2) and (Y1, Y2) satisfy the Conditional Proportional Hazards Rate

(CPHR) model (see Sankaran and Sreeja (2007)) when the corresponding condi-

tional hazard rate functions of (Xi|Xj = tj) and (Yi|Yj = tj) satisfy

h(Yi|Yj=tj)(ti|tj) = θi(tj)h(Xi|Xj=tj)(ti|tj),

for i, j = 1, 2; i 6= j and ti, tj ≥ 0, or equivalently Ḡi(ti|tj) = (Ri(ti|tj))θi(tj), where

Ḡi(ti|tj) = P (Yi > ti|Yj = tj) and Ri(ti|tj) = Si(ti|tj) = P (Xi > ti|Xj = tj). For

conditional survival models, CPHR model becomes

h(Yi|Yj>tj)(ti|tj) = δi(tj)h(Xi|Xj>tj)(ti|tj),

for i, j = 1, 2; i 6= j and ti, tj ≥ 0. This is equivalent to Ḡ∗i (ti|tj) = (R∗i (ti|tj))δi(tj),

where Ḡ∗i (ti|tj) = P (Yi > ti|Yj > tj) and R∗i (ti|tj) = Ri(ti|tj) = P (Xi > ti|Xj > tj).

2.8 Weighted distributions

Let X = (X1, ..., Xp) is a p-dimensional random vector with probability density

function f(x;θ) where θ ∈ Θ and Θ ∈ Rq is parameter space. Suppose that a

realization x ofX under f(x;θ) enters the investigator’s record with probability

proportional to w(x,β) > 0, so that

P (Recording|X = x)

P (Recording|X = y)
=
w (x,β)

w (y,β)
.
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Here, the recording (weight) function, w(x,β) is non-negative function with pa-

rameter representing the recording mechanism and βmay be known or unknown

parameter. Clearly, the recorded x is not an observation onX , but on a weighted

random vectorXw, with probability density function

fw (x;θ, β) =
w (x,β) f (x, θ)

E [w (X,β)]
, (2.17)

called the weighted distribution, and the corresponding mechanism of recording

observations is called weighted sampling. Weighted sampling occurs when the

usual random sample of a population of interest is not available, due to the data

having unequal probabilities of entering the sample.

The concept of weighted distributions can be traced from the studies by Fisher

(1934) on how methods of ascertainment can influence the form of distribution of

recorded observations. However, Rao (1965) identified the need for a unifying

the concept of weighted distributions and studied various sampling situations

that can be modeled by weighted distributions. These situations arise when the

recorded observations cannot be considered as a random sample from the origi-

nal distributions, such as non-observability of some events or damage occurred

to the original observation resulting in reduced value, or the adoption of a sam-

pling mechanism which gives unequal chances to the units in the original.

A mathematical definition of a weighted distribution is obtained by consid-

ering a probability space (Ω, I, P ) and a rv X : Ω → H , where H = (a, b) is an

interval on the real line with a > 0 and b(> a) can be finite or infinite. When the df

F (·) ofX is absolutely continuous with pdf f(·) and w(·), a non-negative function
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satisfying µw = E(w(X)) <∞, then the rv Xw with pdf

fw(t) =
w(t)

µw
f(t), a < t < b,

is said to have weighted distribution, corresponding to the distribution of X . The

definition in the discrete case is similar.

Depending on the selection of weight function w(·), we have different weighted

distributions. For example, when w(t) = t, then Xw is called the length-biased rv

XL with pdf,

fL(t) =
t

µ
f(t), a < t < b,

where µ = E(X) < ∞. Length-biased sampling is usually adopted when a suit-

able sampling frame is absent. In length-biased sampling items are selected at a

rate proportional to its length, so that larger values of the quantity being mea-

sured are sampled with higher probabilities. In such situations, the possible bias

due to the nature of data collection process can be utilized to connect the popula-

tion parameters to that of the sampling distribution. That is, if we know the choice

mechanism behind the biased sample, then the process of inference on population

parameters is easier. Length-biased sampling has wide variety of applications

on various topics such as reliability theory, survival analysis, population studies

and clinical trials. For a more details on various aspects of length-biased sam-

pling one can refer to Fisher (1934), Rao (1965), Neel and Schull (1966), Eberhardt

(1968), Zelen (1971), Cook and Martin (1974), Patil and Rao (1977, 1978), Eber-

hardt (1978), Sankaran and Nair (1993d), Sen and Khattree (1996), Oluyede (1999,

2000), Van et al. (2000), Sunoj (2004), Bar-Lev and Schouten (2004), Kersey and

Oluyede (2013) and Das and Kundu (2016).
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When the weight is inversely proportional to length of unit of interest, we use

w(t) = 1
x
, called inversed length-biased distribution (see Barmi and Simonoff

(2000)). Barmi and Simonoff (2000) proposed a transformation-based technique

for the density estimation of weighted distributions and used length-biased and

inverse length-biased sampling for the study.

Some of the known and important distributions in statistics and applied prob-

ability can be expressed as weighted distributions. Equilibrium distributions,

residual-life distributions, distribution of order statistics, proportional hazards

models (see Gupta and Kirmani (1990), Bartoszewicz and Skolimowska (2004))

are some of the examples and are given in Table 2.1. Thus the theory of weighted

distributions is appropriate whenever these distributions are applied. For more

details on applications and recent works of weighted distributions, we refer to

Gupta and Kirmani (1990), Jones (1991), Navarro et al. (2001), Sunoj and Maya

(2006), Di Crescenzo and Longobardi (2006), Maya and Sunoj (2008), Navarro

et al. (2014), Jarrahiferiz et al. (2016) and Sunoj and Vipin (2017).

2.8.1 Bivariate weighted distributions

The wide applicability of weighted distributions in the univariate case has moti-

vated many researchers to extend the concept of weighted distribution to higher

dimensions. Let X = (X1, X2) be a bivariate random vector in the support of

(a1, b1) × (a2, b2), bi > ai, i = 1, 2 where (ai, bi) is an interval on the real line with

absolutely continuous df F (t1, t2), and pdf f(t1, t2). By defining w(t1, t2) as a non-

negative weight function satisfying E(w(X1, X2)) <∞, Mahfoud and Patil (1982)

defined bivariate weighted distribution as the distribution of the random vector
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Table 2.1: Special cases of weighted distributions

w(t) Distribution fw(t)

1
h(t) Equilibrium distribution R(t)

E(X)

[R(t)]
θ−1

, θ > 0 Proportional hazards model θ [R(t)]
θ−1

f(t)

[F (t)]
θ−1

, θ > 0 Proportional reversed hazards model θ [F (t)]
θ−1

f(t)

f(t+x)
f(t) Residual life distribution f(t+x)

R(x)

f(x−t)
f(t) , x > t Reversed residual life distribution f(x−t)

F (x)

[F (t)]
j−1

[R(t)]
n−j

,

j = 1, 2, ..., n

Distribution of jth order statistics n!f(t)
(j−1)!(n−j)! [F (t)]

j−1
[R(t)]

n−j

[− logR(t)]
n−1 Distribution of upper record value [− logR(t)]n−1

(n−1)! f(t)

[− logF (t)]
n−1 Distribution of lower record value [− logF (t)]n−1

(n−1)! f(t)

(Xw
1 , X

w
2 )′ with pdf

fw(t1, t2) =
w(t1, t2)

E(w(X1, X2))
f(t1, t2), ai < ti < bi, i = 1, 2. (2.18)

For more properties of bivariate weighted distributions one can refer to Nair and

Sunoj (2003), Sunoj and Sankaran (2005), Navarro et al. (2006), Arnold et al. (2016),

Alavi (2017), Kayal and Sunoj (2017) and references therein.

Jain and Nanda (1995) extended the definition to the p - variate case. Let X =

(X1, X2, ..., XP )′ be a p - dimensional non-negative random vector with pdf f(x)

and Xw = (Xw
1 , X

w
2 , ..., X

w
p )′ be the multivariate weighted version of X such that

the weight function w(x)[w : X → A ⊆ R+, where R+ denotes the positive real

line] is non-negative with finite and nonzero expectation. Then the multivariate

weighted density corresponding to f(x) is given by
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fw(t) =
w(t)f(t)

E(w(X))
. (2.19)

For more recent works, see Navarro et al. (2006), Kim (2008) and Kim (2010a,b).

2.9 Quantile function

Many of the probability models used in the literature may not have a tractable

distribution function. In such cases, an alternative approach for modelling and

analysis of statistical data is through the quantile function. Quantile function has

many interesting properties that are not shared by the distribution functions. The

quantile function Q(u) of the rv X is defined as,

Q(u) = F−1(u) = inf{t : F (t) ≥ u}, (2.20)

for −∞ < t < ∞ and 0 ≤ u ≤ 1. We assume that X is a non-negative random

variable with absolutely continuous distribution function F (.) and probability

density function f(.). When F (.) is continuous, from (2.20) FQ(u) = u, where

FQ(u) represents the composite function F (Q(u)). We take Q(0) = 0 generally,

and an adjustment has to be made in the results when Q(0) > 0. The mean of the

distribution assumed to be finite, is

µ =

1∫
0

Q (p) dp

which is same as
1∫

0

(1− p) q (p) dp
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where q (u) = d
du

(Q (u)) is the quantile density function. When F (t) is strictly in-

creasing, f(t) > 0 so that the quantile density function exists by f(Q(u))q(u) = 1.

Using (2.20) Nair and Sankaran (2011) and Nair et al. (2013a,b) introduced

quantile-based univariate lower and upper partial moments and studied its use-

fulness in the context of risk analysis, lifelength and income (poverty) studies.

2.10 Copula

Sklar (1959) introduced the notion of copula to study the relationship between

a multidimensional probability function and its lower dimensional marginals.

Sklar, who first used the word “copula”in the mathematical or statistical sense

through his theorem. Copulas were initially used in the development of the the-

ory of probabilistic metric spaces. Later, the concept was used to define non-

parametric measures of dependence between random variables, and since then,

it began to play an important role in probability and mathematical statistics.

A copula is a function which “couples”a multivariate distribution function

to its one-dimensional marginal distribution functions. They provide a general

method for binding several univariate marginal distributions together to form a

multivariate distribution. Over the past forty years, copulas have played an im-

portant role in several areas of statistics. Copulas are considered to be highly ap-

pealing in the non-Gaussian setup as they can capture dependence more broadly

than the standard multivariate normal framework. Following Clayton (1978),

several families of single parameter copula models have been proposed for an-

alyzing survival data. For more discussions, the reader is referred to the books

by Joe (1997) and Nelsen (2007). Firstly, we introduce the formal definition of the
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two-dimensional copula function. The multi-dimensional definition is similar.

Consider a random vector X = (X1, X2). Suppose its marginals are continu-

ous, i.e. Fi(ti) = Pr[Xi ≤ ti] for i = 1, 2, are continuous functions. By applying the

probability integral transform to each component, U1 = F1(X1) and U2 = F2(X2)

have uniform distributed marginals. The copula of (X1, X2) is defined as the joint

cumulative distribution function of (U1, U2) namely:

C∗(u1, u2) = P [U1 ≤ u1, U2 ≤ u2] . (2.21)

The copula C∗ contains all the information on the dependence structure between

the components of (X1, X2), whereas the marginal cumulative distribution func-

tions F1(t1) and F2(t2) contain all the information on the marginal distributions.

The formula (2.21) can be rewritten using of the inverse functions F−1
i (ti) for

i = 1, 2 as

C∗(u1, u2) = P
[
X1 ≤ F−1

1 (u1) , X2 ≤ F−1
2 (u2)

]
.

A two-dimensional copula is a function C∗(u1, u2) : [0, 1] × [0, 1] → [0, 1] with

the following properties:

(i) C∗(u1, u2) is grounded, i.e., for every (u1, u2) in [0, 1]×[0, 1]→ [0, 1],C(u1, u2) =

0 if at least one coordinate is 0.

(ii) C∗(u1, u2) is two-increasing, i.e., for every a and b in [0, 1] such that a < b, the

C∗-volume VC∗([a, b]) of the box [a, b] is positive.

(iii) C∗(u1, 1) = u1 and C∗(1, u2) = u2 for every (u1, u2) ∈ [0, 1]× [0, 1].

Clearly, a copula is a function which assigns any point in the unit square [0, 1]×
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[0, 1] to a number in the interval [0, 1]. From a probabilistic point of view, a copula

function is a joint distribution whose marginal distributions are uniform. Next,

we state the famous Sklar (1959) theorem which links the univariate marginals

and the multivariate dependence structure.

Theorem 2.10.1 (Sklar). LetF (t1, t2) be a bivariate distribution function with marginals

F1(t1) and F2(t2). Then, there exists a bivariate copula C∗ such that for all (t1, t2) in R2

F (t1, t2) = C∗(F1(t1), F2(t2)). (2.22)

If F1(.) and F2(.) are both continuous, then copula C∗ is uniquely defined.

Conversely, if C∗ is a bivariate copula and F1(.) and F2(.) are probability distribu-

tion functions, then the function F (., .) defined by (2.22) is a bivariate distribution

function with marginals F1(·) and F2(·).

2.10.1 Survival copula

Let X = (X1, X2) be a non-negative random vector with continuous survival

function R(t1, t2) and marginal survival functions Ri(ti) = P (Xi > ti), i = 1, 2

which are continuous and strictly decreasing. Then the survival copula C(u, v) of

X is a mapping C(u, v) : [0, 1]× [0, 1]→ [0, 1], defined by (Nelsen (2007))

C(u, v) = R
(
R−1

1 (u), R−1
2 (v)

)
,

where R−1
1 , R−1

2 are the usual inverse of the marginal sf’s R1 and R2 respectively.

Alternatively, the joint survival function

R (t1, t2) = C (R1 (t1) , R2 (t2)) .

The survival copula satisfies the following properties
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(i) C(u, 1) = u, C(1, v) = v and C(u, 0) = 0 = C(0, v).

(ii) For every u1, u2, v1, v2 in [0, 1] such that u1 ≤ u2 and v1 ≤ v2,

C (u1, v1) + C (u2, v2)− C (u1, v2)− C (u2, v1) ≥ 0.

The survival copula C couples the joint survival function to its univariate

marginals analogous to a copula connects the joint distribution function to its

marginals.

There exists a link between the survival copula C and the copula C∗, given by

C(u1, u2) = u1 + u2 − 1 + C∗(1− u1, 1− u2). (2.23)

2.11 Risk measures

In the context of actuarial theory, a non-negative random variable X represents

the random amount that an insurance company pay to a policyholder, in case of

claim. The comparison of risks is generally carried out through measures such as

the Value-at-Risk (VaR) and Expected Shortfall (ES). One can easily relate partial

moments with these measures in the situation where the analyst considers both

the right and left tail behavior of the distribution of the asset returns.

2.11.1 Value-at-Risk

Among the popular risk measures existing in the literature a well-known risk

measure is the Value-at-Risk (VaR), defined as a quantile of the distribution of the

random loss at level α ∈ (0, 1) and it has become a benchmark in fields such as

economics, insurance and finance. VaR at level α indicates the maximum possible
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Figure 2.1: The Value-at-Risk as a risk measure

loss, when α percent of the left tail distribution is ignored.

Let X be a rv which denotes the return on the investment based on some arbi-

trary assets with a df F . The VaR of X at the confidence level α ∈ (0, 1) denoted

by VaRα(X) is the smallest number y such that the probability that Y = −X does

not exceed y is at least 1− α. Mathematically, V aRα(X) is the (1− α)-quantile of

Y, i.e.,

VaRα(X) = inf{x ∈ R : FX(x) > α} = F−1
Y (1− α).

In general,

VaRα(X) = L− µ,

where µ is the mean of the distribution andL is the value such that P (X ≤ L) = α.

Thus, the risk is measured as the maximum deviation from the mean when the

left tail of the distribution is ignored. This fact is graphically represented in Fig-

ure 2.1.

When the right tail of the returns are of interest, the V aRX(α) is the larger
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risk for the 100α% of the situations and gives the maximum risk, for a fixed time

horizon, for the 100α% of the cases. The main disadvantage of this function is

that the VaR does not provide information about the thickness of the upper tail of

the distribution, thus some other measures have been considered for this purpose

(see Belzunce et al. (2012b), Belzunce and Martı́nez-Riquelme (2017)).

2.11.2 Expected shortfall

A measure of risk is coherent if it simultaneously satisfies the following proper-

ties: sub-additivity, monotonicity, positive homogeneity, and translation invari-

ance (see Artzner et al. (1999) and Delbaen (2002)). As described in Acerbi and

Tasche (2002), sub-additivity may be violated by the VaR.

Although popular in financial applications, because it gives a lower bound on

the loss made in the worst percent of the cases during a prespecified period, the

VaR is therefore not a coherent measure of risk. In addition, the practical useful-

ness of the VaR is limited by the fact that it tells us nothing about the potential size

of the loss in the worst-case scenario. Even before the introduction of the VaR, the

expected value of the left tail of the returns on a risky asset has been proposed

as an alternative measure of risk. This quantity, variously known as the expected

shortfall or the tail conditional expectation or the tail conditional mean, measures

the loss that one may expect to make in the worst percent of the cases.

For a non-negative continuous rv with an absolute continuous distribution

function F, and a corresponding quantile function Q(α) as defined in (2.20), the
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α-level expected shortfall of X with 0 < α < 1 is defined by

τ (α) = E (X|X ≤ Q (α)) =
1

α

Q(α)∫
−∞

u dF (u). (2.24)

The measure (2.24) is of left tail interest. The concept can be similarly defined

for the right tail events interest as the right-spread function defined by, τ ∗X(α) =

p1 (F−1(α)) = E
[
(X − F−1 (α))+

]
=

∞∫
F−1(α)

R (u) du.

Given a random variable X , with distribution function F (.) , the stop-loss

function is defined by the first order UPM as p1 (F−1(α)) = E
[
(X − F−1 (α))+

]
=

∞∫
F−1(α)

R (u) du. It has greater importance in actuarial studies. If the random vari-

ableX denotes the random risk for an insurance company, it is very common that

the company passes a part of it to a reinsurance company. In particular, the first

company bears the whole risk as long as it is less than a fixed value t (called reten-

tion), and if X > t the reinsurance company will take over the amount X − t. The

expected cost for the reinsurance company, E[(X−t)+], is called the net premium.

As the VaR at a fixed level only gives local information about the underlying

distribution, a method to escape from this shortcoming is to consider the expected

shortfall over some quantile. Expected shortfall at probability level α is the stop-

loss premium with retention V aRX(α). Specifically,

τ ∗X (α) = E[(X − V aRX(α))+] = p1 (V aRX(α)) .

When the right tail of the events are of interest, a dual measure corresponding

to (2.24) is known by the name Conditional Tail Expectation (CTE). Denuit et al.

(2006) defines the CTE as the conditional expected loss given that the loss exceeds
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its VaR:

CTEX (α) = E [X|X > V aRX(α)] (2.25)

(2.25) is a quantitative measure for the ‘average loss in the worst 100(1 − α)%

cases’.

2.12 Income and poverty measures

The partial moments LPM and UPM have a meaningful interpretation in com-

paring income inequality and deprivation of a population. Although poverty is

studied mostly using income distributions there is equal interest in knowing the

level of affluence in a population. Since the affluence indices and upper partial

moment are mainly focusing on the upper part of the distribution, UPM’s can be

considered as a useful tool for finding the affluence level of a population. For

instance, in univariate case Sen (1988), Belzunce et al. (1998) have developed the

methodology to analyze the the inequality incomes among the rich individuals

and proposed indices for their measurement.

2.12.1 Income-gap ratio

A concept that has applications in economics is income-gap ratio which is used

for developing indices of affluence and poverty (Sen (1988)). For a non-negative

random variableX, Sen (1988) has defined a measure of income-gap ratio namely

β(t) = 1− t

E(X|X > t)
, (2.26)
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where the point t is the level above which the population is considered to be af-

fluent. Clearly, (2.26) is a measure defined in the upper part of the distribution

and therefore useful in identifying the affluence of a population.

LPMs are considered as a useful tool in poverty and income studies as both

LPMs and poverty indices are focusing on the lower part of the distribution (see

Sunoj and Maya (2008)). In income studies, if the objective is of interest is to study

about the poverty or deprivation of a population a dual measure of (2.26) can be

considered. The analogue of (2.26) in left-tail a useful index to measure the level

of poverty is the income-gap ratio, given by β∗(t) = t−X .

Abdul-Sathar et al. (2007) extended (2.26) into bivariate setup. The income-

gap ratio for the truncated random variable Xi|Xj > tj; i, j = 1, 2; i 6= j is defined

as (Abdul-Sathar et al. (2007))

βi (ti, tj) = 1− ti
vi (ti, tj)

, (2.27)

where vi (t1, t2) = E(Xi|X1 > t1, X2 > t2) is the ith component of the bivariate

vitality function defined by Sankaran and Nair (1991).

2.12.2 Mean left proportional residual income

Associated with income-gap ratio another measure useful in income studies is the

mean left proportional residual income (MLPRI) due to Belzunce et al. (1998). For

the income distribution left truncated at t, the left proportional residual income

(LPRI) is the ratio (X|X>t)
t

. the corresponding MLPRI is defined by γ(t) = E(X|X>t)
t

.

Recently, Sankaran et al. (2015) extended MLPRI to the bivariate case and studied
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its properties, as a vector

(γ1 (t1, t2) , γ2 (t1, t2)) =

(
E

(
X1

t1
|X1 > t1, X2 > t2

)
, E

(
X2

t2
|X1 > t1, X2 > t2

))
=

(
v1 (t1, t2)

t1
,
v2 (t1, t2)

t2

)
. (2.28)



Chapter 3

Some properties of bivariate upper

partial moments∗

3.1 Introduction

The bivariate extension of UPM is due to Hürlimann (2002) and Sankaran and

Nair (2004). For r, s = 0, 1, 2, . . . , (r, s)th order BUPM of a random vector (X1, X2)

is defined as (Hürlimann (2002))

pr,s (t1, t2) = E
[
(X1 − t1)r+ (X2 − t2)s+

]
, t1, t2 ∈ R.

The contents of the present chapter evolves as an extension of the work done by

Sankaran and Nair (2004) with the aim of studying and formulating new charac-

teristic properties of higher-order BUPMs (bivaraite stop-loss transforms).

The organization of the present chapter as follows. In section 3.2 we study

the relationships between the BUPMs and some important reliability measures.

∗Contents of this Chapter have been accepted as entitled ”On characterizations of some bi-
variate continuous distributions by properties of higher-degree bivariate stop-loss transforms”,
Communications in Statistics–Theory and Methods (see Nair et al. (2018b)).

51
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Section 3.3 studies about new characterization results using BUPMs. A new bi-

variate distribution is proposed by extending the characterizing identity of uni-

variate UPM due to Lin (2003) to the bivariate case. Characterization theorems

that extend the result of Abraham et al. (2007) are also established to identify the

bivariate Pareto law. Finally, to illustrate the theoretical results established in the

present chapter a real data analysis has been carried out in Section 3.4.

3.2 Some properties of BUPMs in the context of life-

length studies

The important properties of BUPMs listed by Sankaran and Nair (2004) are :

(i) p0,0 (t1, t2) = R (t1, t2)

(ii) pr,s (t1, t2) = r
∞∫
t1

pr−1,s (x1, t2)dx1 = s
∞∫
t2

pr,s−1 (t1, x2)dx2

(iii) R (t1, t2) = (−1)r+s

r!s!

∂+spr,s(t1,t2)

∂tr1∂t
s
2

, r + s > 1

(iv) pr,s(t1, t2) is decreasing in ti, i = 1, 2. and for fixed t1 and t2, pr,s(t1, t2) is

increasing in r(s).

Property (iii) shows that the partial moment pr,s determines the distribution of

(X1, X2) for any pair (r, s), r, s = 0, 1, 2, . . . (A more general definition is obtained

if r, s are positive reals, but then property (iii) does not hold) and property (ii) are

recurrence relations.

It is to be noted that the survival function of the bivariate random variable X

can be obtained from a (r, s)th order BUPM by the uniqueness theorem given in

property (iii). Moreover, the survival function can also obtained from a (r, s)th
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BUPM by p0,0(t1, t2) = −∂p1,0(t1,t2)

∂t1
= −∂p0,1(t1,t2)

∂t2
. The concepts and the results in

reliability analysis can be restated in terms of partial moments. This points out

to the usefulness of partial moments in reliability modelling. In the sequel we

present some important reliability measures using bivariate partial moments in

Table 3.2.

Apart from obtaining different reliability measures in terms of partial mo-

ments it would also worthwhile to study the relationship between partial mo-

ments and various ageing concepts useful in life length studies. Hence we es-

tablish some important ageing concepts in the bivariate case in terms of BUPMs,

given in Table 3.1.

Table 3.1: Definitions of bivariate aging classes in terms of BUPMs

Sl. No Bivariate Ageing Definition

Class

1 IBHR-1 p0,0(t1+s,t2+s)

p0,0(t1,t2)
is decreasing in t1, t2 for all s > 0

2 IBHR-2 p0,0(t1+s1,t2+s2)

p0,0(t1,t2)
is decreasing in t1, t2 for all s1, s2 > 0

3 DBMRL


p1,0(t1,t2)

p0,0(t1,t2)
is decreasing in t1 for all t2

and
p0,1(t1,t2)

p0,0(t1,t2)
is decreasing in t2 for all t1

4 BDMRL-I p1,1(t,t)

p0,0(t,t)
is decreasing in t for all t ≥ 0

5 BDMRL-II

∞∫
t
p1,1(x,x)dx

p0,0(t,t)
is decreasing in t for all t ≥ 0

6 BIFR p0,0(t1+s,t2)

p0,0(t2+s,t1)
is decreasing in s, for all t1 < t2

7 BDMRL p1,0(t1,t2)

p0,0(t1,t2)
< p0,1(t1,t2)

p0,0(t1,t2)
, for all t1 < t2
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3.3 Characterization results

Chong (1977) characterized the exponential and geometric distributions by the

property

E(X − t− s)+E (X) = E(X − t)+E(X − s)+ (3.1)

for all t, s > 0. Associated with a lifetime rv X and about a point t, Lin (2003)

pointed out that three are three kinds of residual life those are

(i) (X − t)+ as given in Stoyan and Daley (1983)

(ii) X − t|X > t (Hall and Wellner (1981))

(iii) excess life in renewal theory (see Nair and Sankaran (2010b)).

Denoting by h(x) = E(X − x)+, Lin (2003) modified Chong’s Theorem as

h(x)h(y) = αh(x+ y)

for all x, y > 0 and α > 0 a constant if and only if

F (x) = 1− b exp
(
−b x
α

)
, x ≥ 0, b = R (0) . (3.2)

We extend this and some other theorems in his paper in the Theorems 3.3.1 through

3.3.4.

Theorem 3.3.1. Let (X1, X2) be a non-negative random vector with survival function

R (x1, x2) such that E (Xi) <∞, i = 1, 2. Then the property

E
[
(Xi − ti)+|X3−i > t3−i

]
E
[
(Xi − si)+|X3−i > t3−i

]
= E [Xi|X3−i > t3−i]E

[
(Xi − ti − si)+|X3−i > t3−i

] (3.3)
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holds for all ti, si ≥ 0, i = 1, 2 if and only if

R(x1, x2) = b1b2 exp

[
−b1 x1

α1

− b2 x2

α2

− θx1x2

]
, x1, x2 ≥ 0,

0 < bi < 1, αi > 0, 0 ≤ θ ≤ b1b2

α1α2

. (3.4)

Proof. ‘if part’. When the distribution is (3.4), the conditional survival function of

X1 given X2 > t2 is

R1 (x1|X2 > t2) = b1 exp

[
−
(
b1

α1

+ θt2

)
x1

]

and hence

E
[
(X1 − t1)+|X2 > t2

]
=

b1

b1α
−1
1 + θt2

exp

[
−
(
b1

α1

+ θt2

)
t1

]
. (3.5)

Thus all the expectations in (3.3), have the similar values as in (3.5). Substitution

of these values in (3.3) proves (3.3) for i = 1 and a similar proof holds when i = 2.

‘only if part’. For this we assume (3.3) for i = 1 and write it as

∞∫
t1

R1 (x1|X2 > t2)dx1

∞∫
s1

R1 (x1|X2 > t2)dx1

=
∞∫
0

R1 (x1|X2 > t2)dx1

∞∫
t1+s1

R1 (x1|X2 > t2)dx1.

Denoting α1 (t2) =
∞∫
0

R1 (x1|X2 > t2)dx1, the last equation becomes

Ḡ (t1, t2) Ḡ (s1, t2) = Ḡ (t1 + s1, t2) , (3.6)



Chapter 3. Some properties of bivariate upper partial moments 57

where

Ḡ (t1, t2) =

∞∫
t1

R1 (x1|X2 > t2) dx1

α1 (t2)
. (3.7)

We observe that (3.6) is a Cauchy functional equation for a given t2, whose unique

continuous solution is Ḡ (t1, t2) = exp [−a1 (t2) t1] , a1 (t2) > 0. This gives

R1 (t1|X2 > t2) = b1 (t2) exp

[
− b1 (t2)

α1 (t2)
t1

]
, (3.8)

b1 (t2) = α1 (t2)a1 (t2). In the same manner taking i = 2 in (3.3) we can write the

survival function of X2 given X1 > t1 as

R2 (t2|X1 > t1) = b2 (t1) exp

[
− b2 (t1)

α2 (t1)
t2

]
(3.9)

with α2 (t1) = E (X2|X1 > t1). Setting t1 = 0

R2 (t2) = b2 exp

[
− b2

α2

t2

]
, b2 = b2 (0) , α2 = α2 (0) . (3.10)

Combining (3.8) and (3.10),

R (t1, t2) = b2 b1 (t2) exp

[
− b1 (t2)

α1 (t2)
t1 −

b2

α2

t2

]
. (3.11)

Similarly

R (t1, t2) = b1 b2 (t1) exp

[
− b2 (t1)

α2 (t1)
t2 −

b1

α1

t1

]
, b1 = b1 (0) , α1 = α1 (0) .

Equating the expressions for R (t1, t2) leads to the functional equation

b2b1 (t2) exp

[
− b1 (t2)

α1 (t2)
t1 −

b2

α2

t2

]
= b1 b2 (t1) exp

[
− b2 (t1)

α2 (t1)
t2 −

b1

α1

t1

]
.



Chapter 3. Some properties of bivariate upper partial moments 58

or equivalently

t1

(
b1

α1

− b1(t2)

α1(t2)

)
+log b2+log b1(t2) = t2

(
b2

α2

− b2(t1)

α2(t1)

)
+log b1+log b2(t1). (3.12)

Since the left (right) side is linear in t1(t2) the right (left) also must be linear in

t1(t2). This gives for some constants Ai, Bi, Ci and Di, i = 1, 2,

log b1(t2) = A1 + A2t2,
b1

α1

− b1(t2)

α1(t2)
= B1 +B2t2

log b2(t1) = C1 + C2t1 and
b2

α2

− b2(t1)

α2(t1)
= D1 +D2t1.

Substituting in the identity (3.12) and equating like terms

A2 = D1, B1 = C2 and B2 = D2.

As t2 → 0 in b1
α1
− b1(t2)

α1(t2)
, B1 = 0 and hence C2 = 0. Thus log b2(t1) is a constant for

all t1 which gives b2(t1) = b2. Similarly b1(t2) = b1. With these solutions,

exp

[
− b1

α1 (t2)
t1 −

b2

α2

t2

]
= exp

[
− b2

α2 (t1)
t2 −

b1

α1

t1

]

and (
b2

α2 (t1)
− b2

α2

)
1

t1
=

(
b1

α1 (t2)
− b1

α1

)
1

t2
.

For the last equation to hold for all t1, t2 either side must be a constant, say θ. Thus

α2 (t1) =
α2b2

b2 + α2θt1

and

α1 (t2) =
α1b1

b1 + α1θt2
.
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Substituting in (3.11) we have (3.4) to complete the proof. (The distribution (3.4)

has probability mass of 1 − bi at Xi = 0 and therefore it is distinct from the

Gumbel’s form. Also R(0, 0) = b1b2, the marginal distributions are not expo-

nential.)

Remark 3.3.1. Stoyan and Daley (1983) points out that (X − x)+ can be treated as

the residual life of a device of life length X. With this interpretation, the impor-

tance of the theorem is that the given residual lives at two smaller ages ti, si > 0,

we can compute the future residual lives atmti+nsi for all positive integers with-

out observing the latter.

Remark 3.3.2. When X1 and X2 are positive random variables we have a charac-

terization of the Gumbel’s bivariate exponential distribution

R(t1, t2) = exp

[
− t1
α1

− t2
α2

− θ t1
α1

t2
α2

]
, t1, t2 > 0. (3.13)

Remark 3.3.3. Setting t2 = 0, Theorem 1 in Lin (2003) follows for the random vari-

able X1. As a further special case assume X1 > 0 to obtain the characterization of

the univariate exponential.

Remark 3.3.4. When X1 and X2 are two risks associated with an individual or a

company, the dependence between them plays an important role in risk analysis.

We say that X1 and X2 are positively stop-loss dependent if

E
[
(Xi − ti)+|X3−i > t3−i

]
≥ E(Xi − ti)+, i = 1, 2 , t1,t2 ≥ 0

and negatively dependent if the inequality is reversed. Thus the expectations

considered in (3.3) are relevant in this context. Note that the Gumbel distribution
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in (3.13) is negatively stop-loss dependent.

Theorem 3.3.1 allows an extension to the multivariate case in which X =

(X1, X2, ..., Xn), x = (x1, x2, ..., xn), t = t1, t2, ..., tn,X(i) = (X1, ..., Xi−1, Xi+1, ..., Xn)

and similarly x(i) and t(i). The distribution has survival function

R(x) = b1b2...bnexp

[
−

n∑
i=1

bi
αi
xi −

n∑
i<j=1

bij
αij

xixj − ...
b12...n

α12...n

x1x2...xn

]
, x ≥ 0,

all b’s lying in (0, 1), α’s positive. The characteristic property is

E
[
(Xi − ti)+|X(i) > t(i)

]
E
[
(Xi − si)+|X(i) > t(i)

]
= E

(
Xi|X(i) > t(i)

)
E
[
(Xi − ti − si)+|X(i) > t(i)

]
for i = 1, 2, ..., n, and the vector inequalities are understood component-wise. We

prove the result by induction starting with n = 2 established in Theorem 3.3.1.

For n ≥ 3, we have (n − 1) equations instead of (3.12) and all of them are solved

by same type of arguments. Similar extensions can be given to results in Theorem

3.3.2 through 3.3.5.

Theorem 3.3.2. Under the conditions on (X1, X2) in Theorem 3.3.1, (X1, X2) follows

distribution (3.4) if and only if

Er
[
(Xi − ti)+|X3−i > t3−i

]
= αr−1

i (t3−i)E
[
(Xi − rti)+|X3−i > t3−i

]
(3.14)

holds for all ti > 0, i = 1, 2 and any r > 1.

Proof. ‘if part’. Denote by

A1(t1, t2) =
E
[
(X1 − t1)+|X2 > t2

]
α1 (t2)

=

∞∫
t1

R1 (x1|X2 > t2)dx1

α1 (t2)
,
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so that A1(0, t2) = 1 and
dA

′
1

dt1
= − b1

α1(t2)
, treating t2 as a constant and b1 = F1(0).

By MacLaurin expansion

A1(t1, t2) = 1− b t1
α1(t2)

+ o (t1)

and also from (3.14)

A1(t1, t2)r = A1(rt1, t2).

Thus

A1(t1, t2) = A1

(
t1
r
, t2

)r
= A1

(
t1
rk
, t2

)rk
, r > 1

= 1− b1t1
α1(t2)rk

+ o

(
t1
rk

)

which tends to exp
[
b1t1
α1(t2)

]
as k →∞. Thus

∞∫
t1

R1 (x1|X2 > t2)dx1 = α1(t2) exp

[
− b1t1
α1(t2)

]

giving

R1 (t1|X2 > t2) = b1 exp

[
− b1

α1(t2)

]
.

Similarly

R2 (t2|X1 > t1) = b2 exp

[
− b2

α2(t1)

]
, b2 = R2(0).

The rest of the proof is the same as in Theorem 3.3.1 and accordingly (X1, X2) has

distribution (3.4).
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The ‘only if part’, follows from the expressions

Er
[
(Xi − ti)+|X3−i > t3−i

]
=

(
bi

biα
−1
i + θt3−i

)r
exp

[
−rti

(
bi
αi

+ θt3−i

)]

E
[
(Xi − tir)+|X3−i > t3−i

]
=

(
bi

biα
−1
i + θt3−i

)
exp

[
−rti

(
bi
αi

+ θt3−i

)]
and

αi (t3−i) =

(
bi

biα
−1
i + θt3−i

)
.

Remark 3.3.5. Remark 3.3.2 hold for this case also. The residual life at a higher

age can be written in terms of those of a lower one using this theorem also, but in

a different manner compared to Theorem 3.3.1.

Remark 3.3.6. The advantage of Theorem 3.3.2 over Theorem 3.3.1 is that one

needs only t1 and t2 in the former where as the latter needs t1, t2, s1 and s2 to ver-

ify the characteristic property.

Remark 3.3.7. The Theorem extends to the multivariate case to characterize R(x)

given above by the property

Er
[
(Xi − ti)+|X(i) > t(i)

]
= αr−1

i

(
t(i)
)
E
[
(Xi − rti)+|X(i) > t(i)

]
.

Theorem 3.3.3. Let (X1, X2) be a non-negative random variable with E(Xi) < ∞, i =

1, 2. Then

E
[
(Xi − ti)+|X3−i > t3−i

]
= αi (t3−i)Ri (ti|X3−i > t3−i) (3.15)
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holds for all ti > 0, i = 1, 2 and αi(t3−i) > 0 if and only if (X1, X2) has distribution

(3.4).

Proof. When the distribution is (3.4), we see from (3.5) that (3.15) holds for i = 1.

The proof is similar for i = 2. This proves ‘if’ part.

Conversely, let (3.15) be true for i = 1. Since X1 ≥ 0, we have 0 ≤ E(X1) <∞

and

E (X1) = α1 (t2)R1 (0|X2 > t2) .

This means that if E(X1) = 0, the probability of X1 is concentrated at X1 = 0

and hence (3.15) is trivially satisfied for i = 1. The case of i = 2 is similar. When

E(X1) > 0,
∞∫
t1

R1 (x1|X2 > t2)dx1 = α1(t2)R1 (t1|X2 > t2) .

This is equivalent to

d

dt1
log

∞∫
t1

R1 (x1|X2 > t2)dx1 = −[α1(t2)]−1

which solves into

R1 (t1|X2 > t2) = α1(t2) exp

[
− b1(t2)

α1(t2)
t1

]
,

the expression in (3.8). For i = 2, we have also (3.9). The rest of the proof follows

from the steps in Theorem 3.3.1.

We generalize Theorem 3.3.2 to higher order moments.

Theorem 3.3.4. Let (X1, X2) be a non-negative random vector with E(Xi
n) < ∞, i =
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1, 2. Then the property

Er
[
(Xi − ti)n+ |X3−i > t3−i

]
= E[Xn

i |X3−i > t3−i]
r−1E

[
(Xi − tir)n+ |X3−i > t3−i

]
(3.16)

for any r > 1 and integer n ≥ 2 and ti ≥ 0, i = 1, 2 if and only if (X1, X2) has survival

function

R(x1, x2) =
bn1b

n
2

(n!)2(α1α2)n−1 exp

[
−b1 x1

α1

− b2 x2

α2

− θx1x2

]
, x1, x2 ≥ 0,

bi, αi > 0, 0 ≤ θ ≤ b1b2

α1α2

, (3.17)

provided 0 <
bn1 b

n
2

(n!)2(α1α2)n−1 < 1.

Proof. When the distribution is (3.17),

Er
[
(Xi − ti)n+ |X3−i > t3−i

]
=

e
−
(
bi
αi

+θt3−i
)
tr(

bi
αi

+ θt3−i

)rn (n!)r

Er−1 [Xi|X3−i > t3−i] =
(n!)r−1(

bi
αi

+ θt3−i

)n(r−1)

and

E
[
(Xi − tir)+|X3−i > t3−i

]
=

n!(
bi
αi

+ θt3−i

)n e−( biαi +θt3−i
)
tr
.

This proves (3.16). To prove the sufficiency part, for i = 1, 2, we first note that

E
[
(Xi − ti)n+ |X3−i > t3−i

]
=

∞∫
ti

(xi − ti)nfi (xi|X3−i > t3−i)dxi

= n

∞∫
ti

(xi − ti)n−1Ri (xi|X3−i > t3−i)dxi. (3.18)
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Consider A (t1, t2) =
E[(X1−t1)n+|X2>t2]

E[Xn
1 |X2>t2]

, where t2 is fixed. Then,

Ar (t1, t2) =
E
[
(X1 − t1)n+ |X2 > t2

]r
Er [Xn

1 |X2 > t2]
=
E
[
(X1 − t1r)n+ |X2 > t2

]
E [Xn

1 |X2 > t2]

= A(t1r, t2), (3.19)

because of (3.16). Now, A(0, t2) = 1 and

dA (t1, t2)

dt1
=

−n (n− 1)

E [Xn
1 |X2 > t2]

∞∫
ti

(x1 − t1)n−2R1 (x1|X2 > t2)dx1

=
−nE

[
(X1 − t1)n−1

+ |X2 > t2
]

E [Xn
1 |X2 > t2]

,

so that

dA (t1, t2)

dt1

∣∣∣∣
t1=0

= A′ (0, t2) =
−b1 (t2)

α1 (t2)
, b1 (t2) = nE

[
Xn−1

1 |X2 > t2
]

and

α1 (t2) = E [Xn
1 |X2 > t2].

Thus A(t1, t2) admits the MacLaurin expansion

A(t1, t2) = 1− b1 (t2)

α1 (t2)
t1 + o(t1).

By virtue of (3.19), proceeding as in Theorem 2.2

A(t1, t2) = exp

[
−b1 (t2)

α1 (t2)
t1

]
.

From (3.18),
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n

∞∫
ti

(x1 − t1)n−1R1 (x1|X2 > t2)dx1 = b1 (t2)A(t1, t2) = b1 (t2) exp

[
−b1 (t2)

α1 (t2)
t1

]
.

Differentiating the last expression n times with respect to t1,

R1 (t1|X2 > t2) =
bn1 (t2)

n![α1 (t2)]n−1 exp

[
−b1 (t2)

α1 (t2)
t1

]
. (3.20)

Similarly

R2 (t2|X1 > t1) =
bn2 (t1)

n![α2 (t1)]n−1 exp

[
−b2 (t1)

α2 (t1)
t2

]
. (3.21)

Setting t2 = 0 (t1 = 0) in (3.20) ((3.21)) we find P [X1 > t1] (P [X2 > t2]) and then

R (t1, t2) =
(b1 (t2) b2 )n

(n!)2[α1 (t2)α2]n−1 exp

[
−b1 (t2)

α1 (t2)
t1 −

b2

α2

t2

]
=

(b2 (t1) b1 )n

(n!)2[α2 (t1)α1]n−1 exp

[
−b2 (t2)

α2 (t1)
t2 −

b1

α1

t1

]
(3.22)

where bi = bi(0) and αi = αi(0), i = 1, 2. Equating the two, leads to

(b1 (t2) b2 )n

(n!)2[α1 (t2)α2]n−1 exp

[
−b1 (t2)

α1 (t2)
t1 −

b2

α2

t2

]
= ‘ ‘

‘ ‘
(b2 (t1) b1 )n

(n!)2[α2 (t1)α1]n−1 exp

[
−b2 (t1)

α2 (t1)
t2 −

b1

α1

t1

]
As in Theorem 3.3.1, using the linearity of t1 and t2 on either side, we find

bn2 (t1)

[α2 (t1)]n−1 =
bn2
αn−1

2

and likewise, bn1 (t2)

[α1(t2)]n−1 =
bn1
αn−1
1

. Substituting these in (3.22) we have the reduced

form
b1 (t2)

α1 (t2)
t1 −

b2

α2

t2 =
b2 (t1)

α2 (t1)
t2 −

b1

α1

t1
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with solutions
bi (t3−i)

αi (t3−i)
= θt3−i +

bi
αi
, i = 1, 2

using the method in Theorem 3.3.2. This leads to (3.17) and the proof of the theo-

rem is complete.

Remark 3.3.8. An important observation is that Theorem 3.3.4 is valid only for

n ≥ 2 and hence Theorem 3.3.2 cannot be deduced from it.

Remark 3.3.9. The property characterizes the Gumbel’s bivariate exponential dis-

tribution if and only if
(b1b2 )n

(n!)2(α1α2)n−1 = 1

in which case X1 and X2 are positive random variables with exponential distri-

butions and bni
n!αn−1

i

= 1, i = 1, 2.

Abraham et al. (2007) have found characterization of Pareto distribution with

the sf, R(t) =
(
k
t

)a
, where t ≥ k > 0, where k, a are constants and a > r for some

positive integer r by the following property

pr(t) pr(s) = pr(1) pr(ts) for all t, s > 1.

In the following theorem we extend this property in to the bivariate case.

Theorem 3.3.5. Let (X1, X2) be a non-negative random vector in the support of [1,∞)×

[1,∞) with E(Xi) < ∞, i = 1, 2. Then (X1, X2) follows the bivariate distribution with

survival function

R (t1, t2) = b1b2t1
− b1
α1
−1
t2
− b2
α2
− log t1

θ
−1
, (3.23)
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where t1, t2 ≥ 1, b1, b2, α1, α2 > 0, 0 ≤ θ ≤ b1b2
α1α2

, b1, b2 < 1, if and only if

E
[
(Xi − ti)+|X3−i > t3−i

]
E
[
(Xi − si)+|X3−i > t3−i

]
= E [Xi|X3−i > t3−i]E

[
(Xi − tisi)+|X3−i > t3−i

]
(3.24)

for i = 1, 2 and all ti ≥ 1.

Proof. Assuming (3.23)

E
[
(Xi − ti)+|X3−i > t3−i

]
=
biti
− bi
αi
− log t3−i

θ

bi
αi

+ log t3−i
θ

. (3.25)

Setting ti = si, 0, tisi in (3.25) the property (3.24) is verified. On the other hand,

assuming (3.24), we have as before for i = 1,

Ḡ(t1, t2)Ḡ(s1, t2) = Ḡ(t1s1, t2) (3.26)

with t2 known, where

Ḡ (t1, t2) =

∞∫
t1

R1 (x1|X2 > t2) dx1

α1 (t2)
, α1 (t2) = E (X1|X2 > t2) .

The only continuous solution to (3.26) that provides a survival function is

Ḡ (t1, t2) = t1
−a1(t2).

This gives
∞∫
t1

R1 (x1|X2 > t2)dx1 = α1 (t2) t1
−a1(t2)
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and

R (x1|X2 > t2) = b1 (t2) t1
− b1(t2)
α1(t2)

−1
, b1 (t2) = a1 (t2)α1 (t2) . (3.27)

Similarly

R (x2|X1 > t1) = b2 (t1) t2
− b2(t1)
α1(t2)

−1
. (3.28)

Equations (3.27) and (3.28) lead to

R (t1, t2) = b1t1
− b1
α1
−1
b2 (t1) t2

− b2(t1)
α2(t1)

−1

= b2t2
− b2
α2
−1
b1 (t2) t1

− b1(t2)
α1(t2)

−1
, bi = bi(1), αi = αi(1). (3.29)

Arguing as before, b2(t1) = b2 and b1(t2) = b1. Thus (3.29) simplifies to

t1
− b1
α1

+
b1

α1(t2) = t2
− b2
α2

+
b2

α2(t1)

or
log t1

− b2
α2

+ b2
α1(t1)

=
log t2

− b1
α1

+ b2
α1(t2)

.

The solution of the last equation is

b3−i

α3−i (ti)
=

log ti
θ

+
b3−i

α3−i
.

Substituting into (3.29) we recover (3.23).

Remark 3.3.10. The marginal distribution of Xi is Ri (ti) = biti
bi
αi
ti−1

, ti ≥ 1 with

Ri(1) = bi, i = 1, 2. When X1 > 1 and X2 > 1, b1 = 1, b2 = 1 so that R (t1, t2) =

t1
b1
α1
−1
t2

b2
α2
− log t2

θ
−1
, which is a bivariate Pareto law with Pareto marginals.

Remark 3.3.11. The result in Theorems 3.3.1 through 3.3.6 continues to hold good

even if the support is bounded below in both the arguments.

Theorem 3.3.6. Let (X1, X2) be a random vector in the support of (0, b1)×(0, b2), b1, b2 ≤
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∞ such that E(Xr
1X

s
2) <∞ for some non-negative integer values r and s. Then the par-

tial moment of (X1, X2) satisfy

a2 (s+ 1)
∂r+s+1pr+1,s (t1, t2)

∂tr+1
1 ∂ts2

= a1 (r + 1)
∂r+s+1pr,s+1 (t1, t2)

∂tr1∂t
s+1
2

(3.30)

for all t1, t2 > 0 and positive constants a1 and a2 if and only if (X1, X2) has a survival

function of the form

R (t1, t2) = g (a1t1 + a2t2) (3.31)

where g satisfies the conditions for a bivariate survival function.

Proof. First assume that (3.31) holds. Then from the uniqueness theorem of pr,s(t1, t2)

in Sankaran and Nair (2004),

R (t1, t2) =
(−1)r+s

r!s!

∂r+spr,s (t1, t2)

∂tr1∂t
s
2

, (3.32)

we can write

(−1)r+s

(r + 1)!s!

∂r+s+1pr+1,s (t1, t2)

∂tr+1
1 ∂ts2

= a1g
′
(a1t1 + a2t2)

and
(−1)r+s

r!(s+ 1)!

∂r+s+1pr,s+1 (t1, t2)

∂tr1∂t
s+1
2

= a2g
′
(a1t1 + a2t2) .

From the last two equations (3.30) follows. To prove the ‘only if’ part we note that

(3.30) is equivalent to

a2
∂R

∂t1
= a1

∂R

∂t2
. (3.33)

To solve the partial differential equation (3.40), we set u = a1t1 + a2t2 and v = t1.

Then
∂R (t1, t2)

∂t1
=

∂

∂u
R

(
u− a2t2
a1

, t2

)
= 0
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whose general solution is of the form g(u) or R (t1, t2) = g (a1t1 + a2t2) in which

g satisfies the conditions for a bivariate survival function. This completes the

proof.

Remark 3.3.12. When r = s = 1 we have the simple case

a2
∂3p2,1 (t1, t2)

∂t21∂t2
= a1

∂3p1,2 (t1, t2)

∂t1∂t22

which is equivalent to

a2
∂p1,0

∂t1
= a1

∂p0,1

∂t2

also characterizes the distribution.

Remark 3.3.13. Some of the distributions belonging to the class (3.31) are

(a) the bivariate exponential

R (t1, t2) = e−(a1t1+a2t2), a1 > 0, a2 > 0, t1, t2 > 0

with independent marginals Ri(ti) = e−aiti with pr,s(t1, t2) = r!s!
a1ra2r

(b) the bivariate Lomax

R (t1, t2) = (1 + a1t1 + a2t2)−c, a1, a2, c > 0;

with marginals Ri(ti) = (1 + aiti)
−c and

pr,s(t1, t2) =
r!s!

ar1a
s
2 (c− 1) . . . (c− s− r)

(1 + a1t1 + a2t2)r+s−c, c > r + s

and
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(c) the bivariate re-scaled beta

R (t1, t2) = (1− a1t1 − a2t2)b, a1, a2, b > 0; 0 < t1 <
1

a1

, 0 < t2 <
1− a1t1
a2

having Ri(ti) = (1− aiti)b and

pr,s(t1, t2) =
r!s!

ar1a
s
2 (b+ 1) . . . (b+ r + s)

(1− a1t1 − a2t2)b−s−r, b > r + s.

Remark 3.3.14. The derivatives of partial moments, also known as the stop-loss

moment rates have a significant role in risk analysis and reliability modelling.

If the interest is relationships among pr,s and not their rates, we have the fol-

lowing theorem.

Theorem 3.3.7. If (X1, X2) is as in Theorem 3.3.6, the property

a1(s+ 1)pr+1,s(t1, t2) = a2(r + 1)pr,s+1(t1, t2) (3.34)

holds for all t1, t2 and non-negative integers r,s if and only if the partial moments are of

the form

pr+1,s(t1, t2) = A(a1t1 + a2t2), a1, a2 > 0. (3.35)

The survival function of (X1, X2) in the case has the form (3.31).

Proof. We have

a1(s+ 1)pr+1,s(t1, t2) = a1(s+ 1) (r + 1)

∞∫
t1

pr,s(x1, t2)dx1

and

a2(r + 1)pr,s+1(t1, t2) = a2(s+ 1) (r + 1)

∞∫
t2

pr,s(t1, x2)dx2,
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or

a1

∞∫
t1

pr,s(x1, t2)dx1 = a2

∞∫
t2

pr,s(t1, x2)dx2 (3.36)

on assuming (3.34) to be true. we can write (3.36) as

a1
∂B(t1, t2)

∂t2
= a2

∂B(t1, t2)

∂t1
, (3.37)

where

B(t1, t2) =

∞∫
t1

∞∫
t2

pr,s(x1, x2)dx1dx2. (3.38)

The partial differential equation (3.37) can be solved in the same manner as in

Theorem 3.3.6 to leave

B(t1, t2) = c(a1t1 + a2t2), a1, a2 > 0.

Also (3.38) gives

pr,s(t1, t2) = a1a2c
′′
(a1t1 + a2t2)

which is of the form (3.35). The converse part follow from the representation

(3.32).

In the following theorem we characterize bivariate exponential mixture with

independent marginals using bivariate partial moments.

Theorem 3.3.8. The ratio

pr,s(t1, t2)

pr−1,s−1(t1, t2)
= K;K > 0 (3.39)
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if and only if (X1, X2) has density function

f(t1, t2) =

(
K

rs

) ∞∫
0

∞∫
0

exp [−λ1t1 − λ2t2] dµ, (3.40)

for all t1, t2 ≥ 0 and positive integers r, s, where µ is a probability measure on the set[
λ1λ2 =

(
K
rs

)
, λ1, λ2 > 0

]
.

Proof. When (3.39) holds

pr,s (t1, t2) = Kpr−1,s−1 (t1, t2) .

Differentiating with respect to t1(t2), r(s) times, we have

∂r+s

∂tr1∂t
s
2

pr,s(t1, t2) = K
∂r+s

∂tr1∂t
s
2

pr−1,s−1(t1, t2)

which can be written as

R (t1, t2) =
rs

K
f(t1, t2)

Now from Theorem 1 in (Puri and Rubin (1974)), f(t1, t2) has solution (3.40). By

direct calculation f(t1,t2)
R(t1,t2)

= rs
K

so that (3.40) implies (3.39).

3.4 Application

In this section we illustrate the use of the characterization theorem in carrying out

a preliminary diagnostic check to see whether a given set of observations follow

the Gumbel’s bivariae exponential distribution. IfX1andX2 are positive, for r = 2

in Theorem 3.3.2, the ratios

αr−1
i (t3−i)E

[
(Xi − 2t1)+|X3−i > t3−i

]
E2
[
(Xi − t1)+|X3−i > t3−i

] , i = 1, 2 (3.41)
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Table 3.3: First failure times of transmission pumps (X1, X2) on DQG-66A Cater-
pillar Tractors

Tractor Number X1 X2

1 1641 850

2 5556 1607

3 5421 2225

4 3168 3223

5 1534 3379

6 6367 3832

7 9460 3871

8 6679 4142

9 6142 4300

10 5995 4789

11 3953 6310

12 6922 6310

13 4210 6378

14 5161 6449

15 4732 6949

are unity ensures that (X1, X2) follows Gumbel’s bivariate exponential distribu-

tion. Accordingly for a given random sample, if the estimates of (3.41) for all t1, t2

has only small fluctuations around unity the data provides reasonable support

to the assumed model. We consider the data in Table 3.3 on first failure times

of transmission (X1) and the transmission pump (X2) on DQG-66A Caterpillar

tractors reported in Barlow and Proschan (1976). Using the same data, Ebrahimi

and Zahedi (1989) have shown that the failure times (X1, X2) do not follow a bi-

variate Gumbel’s exponential distribution based on a goodness of fit test for the

distribution against the alternative that (X1, X2) is bivariate new better than used

in expectation.
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When the points are (x1i, x2i) , i = 1, 2 . . . , n the partial moments are estimated

by

p (ai, t3−i) =
1

n

n∑
i=1

(
(x1i − ai)+|X2i > t2

)
I (x1i > ai) ,

where ai = 0, ti, 2ti and I(x1i > ai) = 1 or 0 according as x1i > ai or not. The

above estimators are unbiased and consistent. The estimates of various functions

are presented in Table 3.4 through Table 3.6 for admissible values of (t1, t2).

Table 3.4: Estimated values of αi (t3−i)

t2\t1 1500 1600 1800 2000 2200 2500 3000

800 5129.4 5027.13 4917.73 4917.73 4917.73 4917.73 4917.73

1500 5020 4917.73 4917.73 4917.73 4917.73 4917.73 4917.73

2000 4649.6 4547.33 4547.33 4547.33 4547.33 4547.33 4547.33

3000 4288.2 4185.93 4185.93 4185.93 4185.93 4185.93 4185.93

4000 2919.6 2919.6 2919.6 2919.6 2919.6 2919.6 2919.6

5000 1665.2 1665.2 1665.2 1665.2 1665.2 1665.2 1665.2

6000 1665.2 1665.2 1665.2 1665.2 1665.2 1665.2 1665.2

Table 3.5: Estimated values of E
[
(Xi − 2ti)+|X3−i > t3−i

]
t2\t1 1500 1600 1800 2000 2200 2500 3000

800 2317.73 2146.53 1826.53 1509.67 1229 846.867 371.333

1500 2317.73 2146.53 1826.53 1509.67 1229 846.867 371.333

2000 2147.33 1989.47 1696.13 1405.93 1151.93 809.8 371.333

3000 1985.93 1841.4 1574.73 1311.2 1083.87 781.733 371.333

4000 1319.6 1212.93 999.6 789.4 615.4 393.267 116.2

5000 665.2 598.533 465.2 335 241 138.867 61.4667

6000 665.2 598.533 465.2 335 241 138.867 61.4667
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Finally, the ratios (3.41) computed from the above estimates given in Table

3.7 shows that all the values depart substantially from unity. Thus we conclude

that the observations do not support the distribution as Gumbel’s bivarite expo-

nential, reaffirm the conclusion made by Ebrahimi and Zahedi (1989) based on a

different method.

Table 3.7: Estimated values of
αr−1
i (t3−i)E[(Xi−2t1)+|X3−i>t3−i]

E2[(Xi−t1)+|X3−i>t3−i]

t2\t1 1500 1600 1800 2000 2200 2500 3000

800 0.902527 0.86412 0.79671 0.732134 0.666617 0.550272 0.33994

1500 0.887871 0.846624 0.79671 0.732134 0.666617 0.550272 0.33994

2000 0.889875 0.847435 0.798806 0.735975 0.674227 0.567496 0.366203

3000 0.892954 0.849293 0.802541 0.742263 0.685526 0.591228 0.394119

4000 0.857547 0.829445 0.760002 0.671276 0.589196 0.456308 0.194825

5000 0.815864 0.777972 0.682722 0.559482 0.462142 0.334162 0.231314

6000 0.815864 0.777972 0.682722 0.559482 0.462142 0.334162 0.231314



Chapter 4

Some properties of conditional upper

partial moments in the context of

stochastic modeling∗

4.1 Introduction

LetX = (X1, X2) be a non-negative random vector admitting an absolutely con-

tinuous distribution function F (x1, x2) with respect to a Lebesgue measure. Also

let (X|A ) denote the conditioned random variable, where the conditioning event

A is treated in two ways. First, is of the type (X1|X2 = t2) (commonly known as

conditionally specified models) and the second event is of the type (X1|X2 > t2)

(commonly known as conditional survival models). In order to justify the prac-

tical importance and usefulness of these two types of conditioning, consider the

following examples given in Gupta (2008).

(i) Suppose that a system consisting of two components with survival times

∗Contents of this chapter have been published as entitled “Some properties of conditional
partial moments in the context of stochastic modelling”, Statistical Papers, DOI:10.1007/ s00362
-017-0904-x (see Sunoj and Vipin (2017)).

79
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(X1, X2) which are dependent. The first type of conditioning pertains to

the situation in which first component is still working given that the second

fails at the time t2; while second type can be related to a situation where first

component is working given that the second is also working after the point

t2.

(ii) (Danish twins data): Let (X1, X2) denote the survival times of twins. Then

the first type of conditioning pertains to the life length of twin 1 when twin

2 dies at age t2 while the second pertains to the situation where we are in-

terested in the life length of twin 1 when twin 2 is still alive at age t2 (see

Hougaard (2000)).

(iii) Let (X1, X2) denote the survival times of a couple. In the insurance business,

in order to determine the premium on a particular policy, it is important to

know whether the other spouse has died or is surviving at a particular time.

The organization of the present chapter is as follows. In Section 4.2 we intro-

duce the concept of upper partial moments under two types of conditioning and

study its properties. The Section 4.3 deals with the characterizations of bivariate

distributions based on two types of upper partial moments. In Section 4.4, char-

acterization results based on conditional upper partial moments and measures in

income studies are proved. We propose a nonparametric estimator for the partial

moment in Section 4.5. Sections 4.6 and 4.7 presents the results of a simulation

study along with applications to real datasets.

4.2 Conditional upper partial moments

In this section, we propose and study the two types conditional upper partial

moments (i.e upper partial moment for conditional specified and conditional sur-
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vival models) and its properties in the context of stochastic modelling.

4.2.1 Upper partial moments of conditionally specified models

In this section, we consider upper partial moments based on conditioning of first

type for the random variables (X1|X2 = t2) and (X2|X1 = t1) and study its prop-

erties.

Definition 4.2.1. LetX = (X1, X2) be a non-negative random vector admitting an

absolutely continuous distribution function F with respect to a Lebesgue measure

in the positive octant R+
2 = {(x1, x2)|x1, x2 > 0} of the two dimensional Euclidean

space R2. Assume that E(Xr
1X

s
2), r, s = 0, 1, 2, ... is finite. Then for i, j = 1, 2 and

i 6= j, the conditional upper partial moment of the first kind is defined as

φr(ti|tj) = φrXi|Xj(ti|tj) = E
[
(Xi − ti)r+|Xj = tj

]
, r = 0, 1, 2, ...

=

∫ ∞
ti

(xi − ti)rfi(xi|tj)dxi, (4.1)

where (Xi − ti)+ is defined as in (2.3) and fi(xi|tj) = fXi|Xj(xi|tj).

For convenience, we always assume that X1 and X2 have finite moments of

any degree. Then for i, j = 1, 2 and i 6= j, the conditional upper partial moment

of the first type, φr(ti|tj) has the following properties, (i) φ1
Xi|Xj(0|tj) = φ1(0|tj) =

E (Xi|Xj = tj), (ii) Both φr(ti|tj) are of decreasing nature and both are continuous

in ti ≥ 0 and (iii) as ti →∞ , φr(ti|tj)→ 0.

Let the conditional survival functions for the first type of conditioning are

defined by Si(ti|tj) = P (Xi > ti|Xj = tj). Then (4.1) will be,

φr(ti|tj) = r

∫ ∞
ti

(xi − ti)r−1Si(xi|tj)dxi. (4.2)
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Also, from (4.1), we have φ0(ti|tj) = Si(ti|tj). Further, we can easily relate φr(t1|t2)

and φr(t2|t1) with conditional failure rates of X1|X2 = t2 and X2|X1 = t1 defined

by hi(ti|tj) = − ∂
∂ti

lnSi(ti|tj), i, j = 1, 2, i 6= j as

φr(ti|tj) =

∫ ∞
ti

(xi − ti)rhi(xi|tj) exp {−Hi(xi|tj)} dxi,

where Hi(.|tj) denotes the conditional cumulative failure (hazard) function corre-

sponding to hi(ti|tj). On the other hand, from (4.2), we have

hi(ti|tj) = − ∂

∂ti
lnφ′1(ti|tj),

where φ′1(ti|tj) = ∂
∂ti
φ1(ti|tj).

Let r(t1, t2) = (r1(t1|t2), r2(t1|t2)) denote the vector valued conditional mean

residual life function for the random variables (X1|X2 = t2) and (X2|X1 = t1),

where ri(ti|tj) = E (Xi − ti|Xi > ti, Xj = tj) = 1
Si(ti|tj)

∫∞
ti
Si(xi|tj)dxi . Then

φ1(ti|tj) = ri(ti|tj)Si(ti|tj).

Also, we have ri(ti|tj) =
(
− ∂
∂ti

lnφ1(ti|tj)
)−1

.

In the following theorem we show that the conditional upper partial moments

determine the corresponding conditional distributions uniquely.

Theorem 4.2.1. The conditional partial moment φr(ti|tj), i, j = 1, 2; i 6= j determines

the corresponding conditional distribution uniquely using the relationship

r!(−1)rSi(ti|tj) =
∂r

∂ti
r

(φr(ti|tj)) .
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Proof. Let the conditional survival function defined in (4.2), Si(ti|tj) be absolutely

continuous. Differentiating (4.2) with respect to ti, r times, we obtain the required

form (see Gupta and Gupta (1983)).

Recurrence relationships are generally useful for finding higher order mo-

ments using its preceding moments, as it does not require direct computation

which often needs large number of steps. Also, it provides the functional rela-

tionship between two consecutive moments. Based on this idea, in the following

theorem we obtain a recurrence relationship satisfied by the conditionally spec-

ified upper partial moments, that gives the nature of relationship between two

consecutive conditional upper partial moments.

Theorem 4.2.2. The conditional partial moment φr(ti|tj), i = 1, 2; i 6= j satisfies the

recurrence relationship given by, ∂
∂ti
φr(ti|tj) + rφr−1(ti|tj) = 0.

Proof. From (4.2), we have

φr−1(ti|tj) = (r − 1)

∫ ∞
ti

(xi − ti)r−2Si(xi|tj)dxi.

Taking logarithm on both sides of (4.2), we get

ln[φr(ti|tj)] = ln

[
r

∫ ∞
ti

(xi − ti)r−1Si(xi|tj)dxi
]
.

Differentiating with respect to ti, we obtain the required relationship.

4.2.1.1 Upper partial moments for the minimum and maximum

The distributions of maximum and minimum of the random variables X1 and X2

are of much importance in reliability studies and survival analysis. For exam-

ple, maximum of all component’s lifetimes gives the total lifetime of the parallel

system and for the series system, the minimum gives the total lifetime. We define
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the upper partial moments for minimum and maximum of two random variables.

Consider a two component system with lifetimes (X1, X2) with probability den-

sity function f . Let T1 = min(X1, X2) and T2 = max(X1, X2) denote the random

variables of minimum and maximum, respectively. Gupta and Gupta (2001) de-

fined the density function of T1 and T2 as

fT1(u) = fX2(u)P (X1 > u|X2 = u) + fX1(u)P (X2 > u|X1 = u) (4.3)

and

fT2(u) = fX1(u)P (X2 < u|X1 = u) + fX2(u)P (X1 < u|X2 = u) (4.4)

Then the upper partial moments of minimum and maximum can be defined as

follows

lr(t) = E [(T1 − t)+]r =

∫ ∞
t

(u− t)rfT1(u)du

and

hr(t) = E [(T2 − t)+]r =

∫ ∞
t

(u− t)rfT2(u)du,

where (Ti − t)+; i = 1, 2 is defined as in (2.3). Now the following theorem is

immediate.

Theorem 4.2.3. The upper partial moments of minimum and maximum lr(t) and hr(t)

are connected by the relation

hr(t) + lr(t) = pr (t) + qr (t) , (4.5)

where pr(t) and qr(t) are the univariate upper partial moments for the random variables

X1 and X2 as defined in (1.1).

Proof. From (4.3) and (4.4) we have fT1(u) + fT2(u) = fX1(u) + fX2(u), from which

the expression given in (4.5) is immediate.
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From Gupta (2016b) we have,

P (T2 > x2|T1 = x1) =

∫∞
y
fX1,X2(x1, u)du+

∫∞
y
fX1,X2(u, x1)du

fT1(x1)

In this case, the conditional partial moment will be,

φr(t) =

∫ ∞
t

(x2 − t)rfT2>x2|T1=x1(x2|x1)dx2 (4.6)

Example 4.2.1. Let (X1, X2) follows the bivariate density, f(x1, x2) = e−(x1+x2) , x1 >

0, x2 > 0, with fT2>x2|T1=x1 (x2|x1) = ex1−x2 . Then from (4.6), it follows that

φr(t) = Γ (r + 1)ex1−t. Here the two upper partial moments satisfies the relation

lr(t) + hr(t) = 2e−tΓ (r + 1), and the ratio hr(t)
lr(t)

is of convex nature.

4.2.2 Upper partial moments of conditionally survival models

From the reliability point of view, it is more important to study the conditional

distributions of the random variables X1|X2 > t2 and X2|X1 > t1, usually known

as conditionally survival models. Now we define the conditional partial moment

of second kind as follows.

Definition 4.2.2. LetX = (X1, X2) be a non-negative random vector admitting an

absolutely continuous distribution function F with respect to a Lebesgue measure

in the positive octant R+
2 = {(x1, x2)|x1, x2 > 0} of the two dimensional Euclidean

space R2. Assume that E(Xr
1X

s
2) is finite. Then the conditional partial moment of

the second kind is defined as

ψr(ti|tj) = ψrXi|Xj>tj(ti|tj) = E
[
(Xi − ti)r+|Xj > tj

]
, r = 0, 1, 2, ...

=

∫ ∞
ti

(xi − ti)rf ∗i (xi|tj)dxi; i, j = 1, 2; i 6= j. (4.7)
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We always assume that X1 and X2 have finite moments of any degree. Also,

ψr(ti|tj) has the following properties, (i) ψ1
Xi|Xj(0|tj) = ψ1(0|tj) = E (Xi|Xj > tj),

(ii) Both ψr(ti|tj) are of decreasing nature and both are continuous in ti ≥ 0 and

(iii) as ti →∞ , ψr(ti|tj)→ 0.

Denoting Ri(ti|tj) = P (Xi > ti|Xj > tj) as the conditional survival function

such that R(t1, t2) = P (X1 > t1, X2 > t2), the joint survival function, then for

i, j = 1, 2 and i 6= j, (4.7) implies that,

ψr(ti|tj) = r

∫ ∞
ti

(xi − ti)r−1Ri(xi|tj)dxi. (4.8)

Also, we have ψ0(ti|tj) = Ri(ti|tj). Further, when the two events (X1 > t1)

and (X2 > t2) are independent, then ψr(ti|tj) = pr(ti), the univariate partial

moment defined in (2.2). It is easy relate ψr(t1) and ψr(t2) with the vector val-

ued conditional hazard rate function defined by h∗(t1, t2) = (h∗1(t1, t2), h∗2(t1, t2)),

where h∗i (ti, tj) = − ∂
∂ti

lnRi(ti|tj) i, j = 1, 2 and i 6= j given by h∗i (ti, tj) =

− ∂
∂ti

lnψ′1(ti|tj), where ψ′1(ti|tj) = ∂
∂ti
ψ1(ti|tj). From (4.8) we also obtain ψr(ti|tj) =∫∞

ti
(xi − ti)rh∗i (xi, tj) exp {−H∗i (xi|tj)} dxi, where H∗i (.|tj) denotes the conditional

cumulative failure (hazard) function corresponding to h∗i (t1, t2)i, j = 1, 2, i 6= j.

If we denote r∗(t1, t2) = (r∗1(t1, t2), r∗2(t1, t2)) the vector valued mean residual

life function, where

r∗i (t1, t2) = E (Xi − ti|X1 > t1, X2 > t2) =
1

R(t1, t2)

∫ ∞
ti

R(xi, tj)dxi, i, j = 1, 2, i 6= j,

then we have ψ1(ti|tj) = r∗i (t1, t2)R(t1, t2). Also, r∗i (t1, t2) =
(
− ∂
∂ti

lnψ1(ti|tj)
)−1

.

Like in the case of conditionally specified models, the conditional partial mo-
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ment ψr(ti|tj) uniquely determines the corresponding conditional distribution.

Theorem 4.2.4. The conditional partial moment ψr(ti|tj), i, j = 1, 2; i 6= j determines

the corresponding conditional distribution uniquely through relationship

r! (−1)rRi(ti|tj) =
∂r

∂tri
(ψr(ti|tj)) .

Following result is a recurrence relationship satisfied by the conditional partial

moment ψr(ti|tj).

Theorem 4.2.5. The conditional upper partial moments ψr(ti|tj), i = 1, 2; i 6= j satisfies

the recurrence relationship, ∂
∂ti
ψr(ti|tj) + rψr−1(ti|tj) = 0.

4.2.3 Examples of conditional upper partial moments

Here we provide some examples of conditional upper partial moments for certain

bivariate lifetime distributions.

4.2.3.1 Bivariate exponential distribution - Gumbel Type I

Suppose (X1, X2) has a bivariate Gumbel Type I exponential distribution. Then

for some 0 ≤ θ ≤ 1,

f(x1, x2) = e−(x1+x2+θx1x2) [(1 + θx1) (1 + θx2)− θ] , x1 ≥ 0, x2 ≥ 0, 0 ≤ θ ≤ 1,

(4.9)

with conditional densities fi(xi|xj) = e−xi(1+θxj) [(1 + θx1) (1 + θx2)− θ] (see Bal-

akrishnan and Lai (2009)) and f ∗i (xi|xj) = e−xi(1+θxj) (1 + θxj). The conditional

upper partial moments (4.1) and (4.7) are respectively given by

φr(ti|tj) =
Γ (r + 1)

(1 + θtj)
r+1 e

−ti(1+θtj) [(1 + θt1) (1 + θt2) + rθ] , i = 1, 2; i 6= j
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and

ψr(ti|tj) =
Γ (r + 1)

(1 + θtj)
r e
−ti(1+θtj), i = 1, 2; i 6= j.

4.2.3.2 Bivariate exponential distribution- Gumbel Type II

This model is a special case of Farlie-Gumbel-Morgenstern’s bivariate distribu-

tions with marginal distributions which are both standard exponential. The joint

density function is

f(x1, x2) = e−x1−x2
[
1 + α

(
2e−x1 − 1

) (
2e−x2 − 1

)]
, x1, x2 > 0, |α| < 1.

(4.10)

The conditional densities are given by

fi(xi|xj) = e−xi
[
1 + α

(
2e−x1 − 1

) (
2e−x2 − 1

)]
and

f ∗i (xi|xj) = e−xi
{
α
(
2e−x1 − 1

) (
e−x2 − 1

)
+ 1
}
.

Then we have,

φr(ti|tj) =
Γ (r + 1)

2r e2ti

[
α
(
2e−tj − 1

)
+ 2reti

(
1− α

(
2e−tj − 1

))]
, i = 1, 2; i 6= j

and

ψr(ti|tj) =
Γ (r + 1)

2r e2ti

[
α
(
e−tj − 1

)
+ 2reti

(
1− α

(
e−tj − 1

))]
, i = 1, 2; i 6= j.
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4.2.3.3 Bivariate Pareto Type I

A bivariate distribution with joint density function (Mardia (1962))

f(x1, x2) = (α+1)α(θ1θ2)α+1(θ2x1 + θ1x2 − θ1θ2)−(α+2), xi ≥ θi > 0, i = 1, 2, α > 0.

(4.11)

is called a bivariate Pareto distribution of the first kind. Then we have

fi(xi|xj) = (α + 1) θi
α+1θj

(θjxi + θixj − θ1θ2)−(α+2)

(xj − θj)−(α+1)
, i = 1, 2; i 6= j

and

f ∗i (xi|xj) = α θj
(θjxi + θixj − θ1θ2)−(α+1)

(θixj − θ1θ2)−α
, i = 1, 2; i 6= j

respectively. The corresponding conditional upper partial moments will be

φr (ti|tj) =
Γ (α− r + 1)Γ (r + 1)(α + 1)θα+1

i θ−rj
Γ (α + 2)(tj − θj)−(α+1)

(θjti + θitj − θ1θ2)r−α−1 ,

where i = 1, 2; i 6= j, α− r > −1, r > −1 and α > −2 and

ψr (ti|tj) =
Γ (α− r)Γ (r + 1)αθ−rj
Γ (α + 1)(θitj − θ1θ2)−α

(θjti + θitj − θ1θ2)r−α , i = 1, 2; i 6= j,

where α > r, r > −1 and α > −1.

4.2.3.4 Bivariate Lomax distribution

Consider a bivariate Lomax distribution with survival function (Sankaran and

Nair (2004))

R(x1, x2) = (1 + a1x1 + a2x2)−b ; x1, x2 > 0, a1, a2 > 0, b > 1. (4.12)
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Then fi(xi|xj) = ai(b+1)(1+a1x1+a2x2)−(b+2)

(1+ajxj)
−(b+1) and f ∗i (xi|xj) = aib

(1+a1x1+a2x2)−(b+1)

(1+ajxj)
−b . Then

for i = 1, 2; i 6= j, the corresponding conditional upper partial moments are given

by

φr(ti|tj) =
(b+ 1)Γ (b+ 1− r)Γ (r + 1)

Γ (b+ 2)
a−ri (1 + ajtj)

b+1(1 + a1t1 + a2t2)r−(b+1),

where b+ 1 > r and b > 2 and

ψr(ti|tj) =
bΓ (b− r)Γ (r + 1)

Γ (b+ 1)
a−ri (1 + ajtj)

b(1 + a1t1 + a2t2)r−b,

where b > r and b > −1.

4.2.3.5 Conditional proportional hazard models

The random vectors (X1, X2) and (Y1, Y2) satisfy the conditional proportional haz-

ard rate (CPHR) model (see Sankaran and Sreeja (2007)) when the corresponding

conditional hazard rate functions of (Xi|Xj = tj) and (Yi|Yj = tj) satisfy

h(Yi|Yj=tj)(ti|tj) = θi(tj)h(Xi|Xj=tj)(ti|tj), (4.13)

for i, j = 1, 2; i 6= j and ti, tj ≥ 0, or equivalently Ḡi(ti|tj) = (F̄i(ti|tj))θi(tj), where

Ḡi(ti|tj) = P (Yi > ti|Yj = tj) and F̄i(ti|tj) = Si(ti|tj) = P (Xi > ti|Xj = tj). For

conditional survival models, CPHR model becomes

h(Yi|Yj>tj)(ti|tj) = δi(tj)h(Xi|Xj>tj)(ti|tj), (4.14)

for i, j = 1, 2; i 6= j and ti, tj ≥ 0. This is equivalent to Ḡ∗i (ti|tj) = (F̄ ∗i (ti|tj))δi(tj),

where Ḡ∗i (ti|tj) = P (Yi > ti|Yj > tj) and F̄ ∗i (ti|tj) = Ri(ti|tj) = P (Xi > ti|Xj > tj).
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The corresponding upper partial moments then becomes

φr(ti|tj) = θ(tj)E
[
(Xi − ti)r(Si(Xi|tj))θi(tj)−1

]
, i, j = 1, 2, i 6= j

and

ψr(ti|tj) = δi(tj)E
[
(Xi − ti)r(Ri (Xi|tj))δi(tj)−1

]
, i, j = 1, 2, i 6= j.

Suppose (X1, X2) and (Y1, Y2) be two random vectors with their corresponding

CUPMs φr (ti|tj) and φ∗r (ti|tj) satisfying the CPHR model (4.13) for i, j = 1, 2, i 6=

j. Then, it follows that

hYi|Yj (ti|tj) = θi (tj)hXi|Xj (ti|tj) ⇔
∂

∂ti

(
ln Ḡi(ti|tj)

)
= θi (tj)

∂

∂ti
(lnSi (ti|tj))

⇔ ∂

∂ti

(
ln

(
∂r

∂trj
φ∗r (ti|tj)

))
= θi (tj)

∂

∂ti

(
ln

(
∂r

∂trj
φr (ti|tj)

))
⇔ ∇r+1

1 (φ∗r (ti|tj))
∇r

1 (φ∗r (ti|tj))
= θi (tj)

∇r+1
1 (φr (ti|tj))
∇r

1 (φr (ti|tj))
,

(4.15)

where ∇r+1
i , i = 1, 2 denotes the (r + 1)th partial derivative of the function with

respect to ti defined by ∇r+1
i = ∂r+1

∂tr+1
i

, i = 1, 2.

Similarly for i, j = 1, 2 and i 6= j, the CPHR model (4.14) can be restated in

terms of the second type of conditional upper partial moments as follows

hYi|Yj>tj (ti|tj) = θi (tj)hXi|Xj>tj (ti|tj)⇔
∇r+1

1 (ψ∗r (ti|tj))
∇r

1 (ψ∗r (ti|tj))
= θi (tj)

∇r+1
1 (ψr (ti|tj))
∇r

1 (ψr (ti|tj))
.
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4.3 Characterizations of bivariate distributions based

on conditional upper partial moments

In this section, we prove some characterization theorems based on conditional

upper partial moments

Theorem 4.3.1. The condition φr(ti|tj) = ψr(ti|tj), i, j = 1, 2; i 6= j, holds if and only if

the joint distribution of (X1, X2) is the product of two independent exponential random

variables with probability density function

f(x1, x2) = e−λ1x1−λ2x2 , λ1, λ2, x1, x2 > 0. (4.16)

Proof. Assume that the condition φr(ti|tj) = ψr(ti|tj), i = 1, 2, holds true. Dif-

ferentiating it with respect to ti, r times and using Theorem (4.2.1) and Theo-

rem (4.2.4), we get Si(ti|tj) = Ri(ti|tj). Now talking logarithm on both sides

and differentiating with respect to ti, we have hi(ti|tj) = h∗i (ti|tj), implies that

Ri(ti|tj) = e−λiti , i = 1, 2, and therefore (4.16).

Theorem 4.3.2. LetX = (X1, X2) be a non-negative random vector admitting an abso-

lutely continuous distribution function F (x1, x2). Then the relationship

φr(ti|tj)
φr−1(ti|tj)

=
ψr(ti|tj)
ψr−1(ti|tj)

= r, for i, j = 1, 2 and i 6= j (4.17)

holds true if and only if (X1, X2) follows (4.16) with λi = 1, i = 1, 2.

Proof. First consider the conditional specified case. Note that (4.17) implies

φr(ti|tj) = r φr−1(ti|tj).
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By virtue of definition, we have

r

∫ ∞
ti

(xi − ti)r−1Si(xi|tj)dxi = r(r − 1)

∫ ∞
ti

(xi − ti)r−2Si(xi|tj)dxi (4.18)

Differentiating (4.18) with respect to ti, r − 1 times and after some algebraic sim-

plification, we have, hi (ti|tj) = 1. Now using the formula

fi(xi|xj) = hi(xi|xj) exp

{
−
∫ xi

0

hi(u|xj)du
}
, (4.19)

completes the first part of the proof.

To prove the conditional survival case, from (4.17) we have

ψr(ti|tj) = r ψr−1(ti|tj)

and equivalently

r

∫ ∞
ti

(xi − ti)r−1Ri(xi|tj)dxi = r(r − 1)

∫ ∞
ti

(xi − ti)r−2Ri(xi|tj)dxi (4.20)

Differentiating (4.20) with respect to ti, r−1 times and after some algebraic simpli-

fication, we have, hi∗ (ti|tj) = 1. Now using the formula for vector valued failure

rate by Johnson and Kotz (1975)

R (x1, x2) = exp

[
−
∫ x1

0

h1 (u, x2) du−
∫ x2

0

h2 (0, u) du

]
(4.21)

and

R (x1, x2) = exp

[
−
∫ x1

0

h1 (u, 0) du−
∫ x2

0

h2 (x1, u) du

]
(4.22)

we obtain the required form. The necessary part is straightforward.
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In the following theorem we characterize bivariate distribution with Pareto

conditionals given in Arnold (1987) using the ratio of two consecutive upper par-

tial moments of the first type.

Theorem 4.3.3. For i, j = 1, 2 and i 6= j, the ratio of two consecutive conditional upper

partial moments satisfies the relationship,

φr+1(ti|tj)
φr(ti|tj)

= A ti +Bi(tj);A > 0, (4.23)

where Bi(tj) is function of tj only, if and only if (X1, X2) follows bivariate distribution

with Pareto conditionals given in Arnold (1987) with the joint pdf

f (x1, x2) = K1(1 + a1x1 + a2x2 + bx1x2)−m, K1, a1, a2, b > 0, m > 2, x1, x2 > 0

(4.24)

Proof. Suppose that (4.23) holds true. Then, φr+1(ti|tj) = φr(ti|tj)(Ati + Bi(tj))

differentiating both sides of with respect to ti, r times and on simplification, we

obtain, hi(ti|tj) =
Ati+Bi(tj)

C
, where, C = (1 +A) (r + 1). The remaining part of the

proof is similar to the proof of Theorem 4.1 in Sunoj and Linu (2012). Using the

relation hi(ti|tj) =
fi(ti|tj)
Si(ti|tj) = −f(t1,t2)

∂
∂tj

R(t1,t2)
, we have

f (t1, t2) = mi(tj)[Ati +Bi(tj)]
−(C+A)

A , C 6= 0 (4.25)

Proceeding in the same way as in the proof of Theorem 4.1 given in Sunoj and

Linu (2012) we finally get,

f (t1, t2) = m2(0)[B2(0)]
−(C+A)

A

[
1 +

At1
B1(0)

+
At2
B2(0)

+ δAt1t2

]−(C+A)
A

where, δ = a constant, which is in the form of bivariate Pareto given in (4.24),

with K1 = m2(0)[B2(0)]
−(C+A)

A , a1 = A
B1(0)

, a2 = A
B2(0)

, b = δA and m = A+C
A

.
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To prove the converse part, using (4.1) the conditional partial moment φr(ti|tj)

for the density (4.24), will be

φr(ti|tj) =
(m− 1) (1 + aiti + ajtj + btitj)

r−m+1

(1 + ajtj)
1−m(ai + btj)

r B (r + 1,m− r − 1)

So that φr+1(ti|tj)
φr(ti|tj) = r+1

m−r−2

[
ti +

1+ajtj
ai+btj

]
, which is of the form (4.23). Hence the proof.

Theorem 4.3.4. For i, j = 1, 2 and i 6= j, the ratio of two consecutive conditional upper

partial moments satisfies the relationship,

φr+1(ti|tj)
φr(ti|tj)

=
r + 1

Ai +Btj
;Ai, B > 0 (4.26)

if and only if (X1, X2) follows bivariate distribution with exponential conditionals given

in Arnold and Strauss (1988) with the joint pdf

f (x1, x2) = K2 exp (−λ1x1 − λ2x2 − θx1x2) , K2, λ1, λ2, θ, x1, x2 > 0. (4.27)

Proof. Suppose the relationship (4.26) holds true. Then we have,

φr+1(ti|tj) =
r + 1

Ai +Btj
φr(ti|tj) (4.28)

Differentiating both sides of (4.28) with respect to ti, r + 1 times and rearranging

we have

hi (ti|tj) = Ai +Btj (4.29)

We have the relation,

hi(ti|tj) =
fi(ti|tj)
Si(ti|tj)

=
−f (t1, t2)
∂
∂tj
R (t1, t2)

(4.30)
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From (4.29) and (4.30), we get

−∂ R (t1, t2)

∂tj
(Ai +Btj) = f (t1, t2)

Differentiating both sides with respect to ti, we have

(Ai +Btj) =
−∂ log f (t1, t2)

∂ti

Integrating both sides with respect to ti yield

log f (t1, t2) = − (Ai +Btj) ti +mi (tj) .

Equivalently

f (t1, t2) = e−(Ai+Btj)ti+mi(tj). (4.31)

Equating for i = 1, j = 2 and i = 2, j = 1 in (4.31), we obtain

e−(A1+Bt2)t1+m1(t2) = e−(A2+Bt1)t2+m2(t1). (4.32)

As t1 → 0 in (4.32), we have

em1(t2) = e−A2t2+m2(0). (4.33)

Similarly as t2 → 0 in (4.32), we get

em2(t1) = e−A1t1+m1(0) (4.34)

Using the expression of em1(t2), the joint pdf f(t1, t2) in equation (4.31) for i = 1

becomes

f (t1, t2) = e−(A1+Bt2)t1e−A2t2+m2(0) (4.35)
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Hence, the joint pdf f(t1, t2) in (4.35) becomes

f (t1, t2) = em2(0)e−(A1t1+A2t2+Bt1t2), (4.36)

which is in the form of equation (4.27) with K2 = em2(0), λ1 = A1, λ2 = A2 and

θ = B.

To prove the converse part, for the density (4.27) the conditional partial mo-

ment will be of the form

φr(ti|tj) =
Γ (r + 1)

(1 + θtj)
r e
−ti(1+θtj)

and
φr+1(ti|tj)
φr(ti|tj)

=
r + 1

λi + θtj
, i, j = 1, 2, i 6= j.

Hence the proof.

Theorem 4.3.5. For i, j = 1, 2 and i 6= j, the relationship

ψ1(ti|tj) ψ1(si|tj) = ψ1(ti + si|tj) (4.37)

holds true if and only if (X1, X2) follows (4.16) with λi = 1, i = 1, 2.

Proof. Suppose (4.37) holds. Then, for i, j = 1, 2 and i 6= j we have

∫ ∞
ti

Ri(xi|tj)dxi
∫ ∞
si

Ri(xi|tj)dxi =

∫ ∞
ti+si

Ri(xi|tj)dxi.

Differentiating both sides with respect to si , we get

∫ ∞
ti

Ri(xi|tj)dxi Ri(si|tj) = Ri(si + ti|tj).
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Differentiating both sides with respect to ti , we obtain

Ri (ti|tj)Ri (si|tj) = − ∂

∂ti
(Ri(ti + si|tj)) .

⇒ Ri (ti|tj) Ri (si|tj) = f ∗i (ti + si|tj).

Substituting si = 0 gives, h∗i (ti, tj) = 1. Now using (4.21) and (4.22), reduces to

R (x1, x2) = exp [−(x1 + x2)] ,

which proves the theorem. Since for the density (4.16) with λi = 1, i = 1, 2, the

first conditional partial moment is of the form ψ1(ti|tj) = e−ti , for i, j = 1, 2 and

i 6= j, the proof of converse part is straightforward.

In the following theorem we characterize bivariate exponential Gumbel Type

I given in (4.9) using the ratio of two consecutive conditional upper partial mo-

ments.

Theorem 4.3.6. The ratio of two consecutive conditional upper partial moments of the

second type satisfies the condition

ψr+1(ti|tj)
ψr(ti|tj)

=
r + 1

1 +Btj
, i, j = 1, 2; i 6= j, −1 ≤ B ≤ 1, (4.38)

if and only if (X1, X2) follows bivariate exponential Gumbel Type I in (4.9).

Proof. From (4.38), we have, ψr+1(ti|tj) = r+1
1+Btj

ψr(ti|tj). Differentiating both sides

of equation with respect to ti, r+1 times and on simplification, we have, hi∗ (ti|tj) =

1+Btj . Now using the formula for vector valued failure rate by Johnson and Kotz

(1975) defined in (4.21) and (4.22) we have,

R(x1, x2) = exp {− (x1 + x2 +Bx1x2)} ,



Chapter 4. Some properties of conditional upper partial moments 99

which is in the form of the joint reliability function of the pdf (4.9) with θ = B.

Now using the expression of ψr(ti|tj) given in the section 4.2.3.2, the proof of the

converse part is straightforward.

Theorem 4.3.7. For i, j = 1, 2 and i 6= j, the ratio of two consecutive conditional upper

partial moments satisfies the relationship

ψr+1(ti|tj)
ψr(ti|tj)

= K (ti +Bi(tj)) ; K > 0 (4.39)

if and only if (X1, X2) follows bivariate distribution with Pareto conditionals with the

joint survival function given by

R (x1, x2) = (1 + a1x1 + a2x2 + bx1x2)−m; a1, a2,m, x1, x2 > 0; 0 < b ≤ (m+ 1) a1a2.

(4.40)

Proof. Suppose (4.39) holds. Then, ψr+1(ti|tj) = K (ti +Bi(tj))ψr(ti|tj). Differen-

tiating both sides r + 1 times with respect to ti and on some simplification, we

obtain

h∗i (t1, t2) =
(r + 1) (K + 1)

K (ti +Bi(tj))
. (4.41)

Using (4.21) and (4.22) we get

R(x1, x2) =

{
x1 +B1 (0)

B1 (0)

x2 +B2 (x1)

B2 (x1)

}−c
(4.42)

and

R(x1, x2) =

{
x1 +B1 (x2)

B1 (x2)

x2 +B2 (0)

B2 (0)

}−c
, (4.43)

where c = (1+K)(r+1)
K

. Now the characterization follows from Roy (1989).

Conversely, for the density given in (4.40), using (4.8) we have,

ψr(ti|tj) =
Γ (r + 1) Γ (m− r)

Γ (m+ 1)

m(1 + ajtj)
m

(ai + btj)
r (1 + aiti + ajtj + btitj)

r−m
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and ψr+1(ti|tj)
ψr(ti|tj) = r+1

m−r−1

[
ti +

1+ajtj
ai+btj

]
, which is of the form (4.39). Hence the proof.

4.4 Applications of conditional upper partial moments

in income studies

The measurement and comparison of income among individuals in a society is a

problem that has been attracting the interest of a lot of researchers in economics

and statistics. The conditional partial moment is a useful tool to find some in-

dices in income and poverty studies. For instance, consider a random vector

X = (X1, X2), where X1 denotes the household income, X2 the wealth of family

and t1 denotes the level of income above which the family is considered affluent.

Then the conditional partial moment represent the average residual income be-

yond the affluence level. One can also consider similar other situations like, let

X = (X1, X2) represent two attributes of income, say income from the land and

income from the employment etc. Also, important inequality measures used in

income studies can be expressed in terms of the conditional upper partial mo-

ments. For example, income gap ratio β(t) is a popular affluence index used in

income studies to measure the intricate relationship of poverty and affluence in a

population. The monotonic behavior of the income gap ratio can be used to find

a suitable choice of model of income (see Abdul-Sathar et al. (2007) and Belzunce

et al. (1998) etc). Then the income gap ratio for the truncated random variable

Xi|Xj > tj; i, j = 1, 2; i 6= j defined by Abdul-Sathar et al. (2007) as

βi (ti, tj) = 1− ti
vi (ti, tj)

, (4.44)
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where vi (t1, t2) = E(Xi|X1 > t1, X2 > t2) is the ith component of the bivariate

vitality function defined in Sankaran and Nair (1991). In terms of the conditional

upper partial moments, we have the relationship

vi (ti, tj) = ti +
ψ1 (ti|tj)
ψ0 (ti|tj)

. (4.45)

Combining (4.44) and (4.45), we obtain

βi (ti, tj) =
ψ1 (ti|tj)

tiψ0 (ti|tj) + ψ1 (ti|tj)
. (4.46)

Further, when the two events (X1 > t1) and (X2 > t2) are independent, then

ψr(ti|tj) = pr(ti), so that

βi (ti, tj) =
p1 (ti)

ti p0 (ti) + p1 (ti)

and

βi (ti, tj) =
r (ti)R (ti)

tiR (ti) + r (ti)R (ti)
=

r (ti)

1 + r (ti)
,

where r (ti) and R (ti) are the univariate mean residual life function and univari-

ate survival function respectively (see Sunoj (2004)).

Theorem 4.4.1. For i, j = 1, 2 and i 6= j the bivariate income gap ratio satisfy the

relationship
1− βi (ti, tj)
Kβi (ti, tj)− 1

= tiBi (tj) , K > 0 (4.47)

if and only if (X1, X2) belongs to bivariate distribution with Pareto conditionals defined

in (4.40).

Proof. Let the the relationship (4.47) holds true. Then using (4.44) and on simpli-

fications, we get
ψ1(ti|tj)
ψ0(ti|tj)

=
ti +Bi (tj)

K − 1
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⇒ (K − 1)

∞∫
ti

R2 (u|tj) du = R2 (ti|tj) (ti +Bi (tj)) .

Differentiating both sides of the above equation with respect to ti and simplify-

ing we have h∗i (t1, t2) = K
ti+Bi(tj)

. The rest of the proof is similar to the proof of

Theorem 4.3.7. Converse part of the proof is direct.

In the next theorem we characterize the bivariate exponential distribution

(Arnold (1995)), with conditional density of the form

Ri(xi|xj) = exp [−xi (αxj + β)] ; i, j = 1, 2; i 6= j (4.48)

using the bivariate income gap ratio β (t1, t2) defined in (4.44).

Theorem 4.4.2. The bivariate income gap ratio satisfy the relationship

βi (ti, tj) =
1

1 + (α tj + β)ti
, i, j = 1, 2; i 6= j (4.49)

if and only if (X1, X2) belongs to bivariate exponential distribution defined in (4.48).

Proof. Suppose (4.49) holds. Using (4.44) we get h∗i (t1, t2) = αtj + β. Now using

Ri(ti|tj) = exp
{
−
∫ ti

0
h∗i (x1, x2)dx1

}
, we have the theorem. Proof of the converse

part is direct.

Corollary 4.4.1. The Gumbel Type I distribution defined in (4.9) is a particular case of

the distribution (4.48) for the values α = θ and β = 1. In this case, the bivariate income

gap ratio of the form

βi (ti, tj) =
1

1 + (θtj + 1)ti
, i = 1, 2; i 6= j

characterizes the Gumbel Type I distribution.
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Corollary 4.4.2. The bivariate income gap ratio is of the form βi (t1, t2) = 1
1+ti

, i = 1, 2

if and only if (X1, X2) follows independent exponential given in (4.16) with λi = 1, i =

1, 2.

Remark 4.4.1. The useful measure in income studies is the mean left proportional

residual income (MLPRI) due to Belzunce et al. (1998) (see section 2.12.2) can be

obtained using the CUPMs, through the relationship

(γ1 (t1, t2) , γ2 (t1, t2)) =

(
1 +

ψ1 (t1|t2)

t1ψ0 (t1|t2)
, 1 +

ψ1 (t2|t1)

t2ψ0 (t2|t1)

)
.

Since there exists one to one relationship between MLPRI, bivariate income gap

ratio and vitality function, the theorems in Section 4.4 can be useful in deriving

new characterizations to MLPRI. Hence separate statements of these results omit-

ted.

4.5 Estimator of the conditional upper partial moments

In this section we propose non-parametric estimator for the conditional partial

moment ψr(t1|t2). Let (Xi, Yi), i = 1, 2, ...n be n independent and identically

distributed pairs of lifetimes with survival function R(t1, t2). The estimators for

φr(t1|t2) and ψr(t1|t2) are respectively defined by

φ̂r(t1|t2) =
1

n

n∑
i=1

(Xi − t1)rI (Xi > t1, Yi = t2) (4.50)

and

ψ̂r(t1|t2) =
1

n

n∑
i=1

(Xi − t1)rI (Xi > t1, Yi > t2) (4.51)
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where I(.) is the usual indicator function. The estimator in (4.50) and (4.51) are the

rth sample moment of the observations fromXi > t1|Yi = t2 andXi > t1|Yi > t2 re-

spectively. Kulkarni and Rattihalli (2002) and Sankaran and Nair (2004) discussed

the unbiasedness and consistency properties of (4.51).

4.6 Simulation study and estimation of CUPMs from

the real data sets

In this section, we present the results of a simulation study and illustrate the

properties of empirical estimator ψ̂r(t1|t2) by analyzing two real data sets, (i) re-

currence time of bladder tumor given in Kulkarni and Rattihalli (2002) and (ii)

personal wealth data obtained from the website of Internal Revenue Service (IRS),

United States respectively.

4.6.1 Simulation study

To study the performance of the estimators φ̂r(t1|t2) and ψ̂r(t1|t2), we carried out a

series of 1000 simulations each of size n (n = 10, 100 and 1000) from (i) a bivariate

distribution with Pareto conditionals (4.24) given in Arnold (1987) with the joint

pdf

f (t1, t2) = K1(1 + a1t1 + a2t2 + bt1t2)−m, K1, a1, a2, b > 0, m > 2, t1, t2 > 0

for a1 = a2 = b = 1 and m = 8 and (ii) from a bivariate Gumbel’s exponential

distribution (4.9) with joint CDF

F (t1, t2) = 1− e−t1 − e−t2 + e−t1−t2−θt1t2 , t1, t2 > 0, 0 ≤ θ ≤ 1
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for θ = 0.5. The corresponding CUPMs for the above distributions will be

φr(t1|t2) =
(m− 1) (1 + a1t1 + a2t2 + bt1t2)r−m+1

(1 + a2t2)1−m(a1 + bt2)r
B (r + 1,m− r − 1)

and

ψr(t1|t2) =
Γ (r + 1)

(1 + θt2)r
e−t1(1+θt2).

The performance of the empirical estimators φ̂r(t1|t2) and ψ̂r(t1|t2) obtained from

simulation study are given in Table 4.1 and Table 4.2. The results of simulation

studies shows that bias and MSE of the proposed empirical estimators φ̂r(t1|t2)

and ψ̂r(t1|t2), decreases with increasing sample sizes.

4.6.2 Estimation of CUPMs from the real dataset

In this section, we further illustrate the performance of the non-parametric esti-

mator of ψr(t1|t2) by analyzing a real dataset.

4.6.2.1 Cancer recurrent data

The cancer recurrence data is taken from Kulkarni and Rattihalli (2002). The data

consist of observations on patients having bladder tumer when they entered the

trial. These tumors were removed and patients were given a treatment. At sub-

sequent follow-up visits any tumors found were removed and the treatment was

continued. The variables observed are X = time to first recurrence of tumor (in

months) and Y = time to second recurrence of a tumor (in months).

Table 4.3 to Table 4.6 provides the estimates of ψr(t1|t2) for different values of

r. It is easy to see that ψ̂r(t1|t2) is decreasing in t1 and t2. Further, for fixed t1 and

t2, ψ̂r(t1|t2) is increasing in r.
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Table 4.1: Performance of φ̂r(t1|t2) for bivariate Pareto model (4.24) with a1 = a2 =
b = 1 and m = 8.

r t1 t2 Bias×103 MSE×103

n = 10 n = 100 n = 1000 n = 10 n = 100 n = 1000

0

0.1 0.1 0.6419 0.6919 0.1239 23.6100 2.8046 0.5083

0.3 0.3 -7.4663 -0.8763 -0.2313 13.4921 1.2912 0.1566

0.3 1.5 -2.3663 -1.5963 0.4897 13.1766 1.3571 0.1527

1.4 1.4 -0.0803 -0.0603 0.0427 0.2056 0.0215 0.0023

1

0.1 0.1 1.2783 0.0622 0.0276 4.1906 0.4299 0.0691

0.3 0.3 0.5963 0.1932 -0.1348 1.6710 0.1850 -0.1348

0.3 1.5 -0.7759 0.1633 -0.2439 1.5532 0.1626 0.0174

1.4 1.4 0.6491 -0.0623 0.0224 0.1547 0.0067 0.0009

2

0.1 0.1 0.9346 -0.1139 -0.1630 5.3176 1.0517 0.0704

0.3 0.3 -1.3333 -0.2267 0.1245 1.5284 0.2351 0.0321

0.3 1.5 -1.5812 -0.3714 -0.0978 1.2358 0.2251 0.0262

1.4 1.4 -0.1725 0.0230 0.0473 0.1121 0.0233 0.0065

3

0.1 0.1 1.9172 -0.3117 0.1160 26.7658 6.9466 0.3874

0.3 0.3 -0.6577 -1.7043 0.0124 7.1449 1.2766 0.3186

0.3 1.5 -3.3308 -0.1636 0.1315 1.1613 0.3240 0.0388

1.4 1.4 -0.4473 0.0189 -0.3207 0.2913 0.2436 0.0450
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Table 4.2: Performance of ψ̂r(t1|t2) for bivariate Gumbel’s exponential with θ = 0.5

r t1 t2 Bias MSE

n = 10 n = 100 n = 1000 n = 10 n = 100 n = 1000

0

0.05 0.05 -0.06059 -0.06059 -0.06059 0.003671 0.003671 0.003671

0.25 0.25 -0.43022 -0.43022 -0.43022 0.185087 0.185087 0.185087

0.5 0.5 -0.82623 -0.82623 -0.82623 0.68265 0.68265 0.68265

0.75 0.75 -0.97163 -0.97163 -0.97163 0.944069 0.944069 0.944069

1 1 -0.99752 -0.99752 -0.99752 0.995049 0.995049 0.995049

1

0.05 0.05 0.166698 0.17755 0.179632 0.051788 0.037243 0.033437

0.25 0.25 0.159434 0.164419 0.165095 0.028134 0.027722 0.027393

0.5 0.5 0.040282 0.040409 0.040999 0.001837 0.001688 0.00169

0.75 0.75 0.005298 0.005261 0.005397 3.88E-05 3.12E-05 2.96E-05

1 1 0.000407 0.000378 0.000386 1.8E-07 2.98E-07 1.71E-07

2

0.05 0.05 0.272924 0.283445 0.28851 0.307852 0.140006 0.095359

0.25 0.25 0.141681 0.146492 0.146909 0.026111 0.023259 0.021915

0.5 0.5 0.022921 0.02288 0.023381 0.000745 0.000579 0.000556

0.75 0.75 0.002236 0.002151 0.002283 9.76E-06 6.88E-06 5.43E-06

1 1 0.000137 0.000122 0.000127 1.89E-08 5.78E-08 2.73E-08

3

0.05 0.05 0.710201 0.691505 0.695735 4.488793 1.705568 0.749468

0.25 0.25 0.193954 0.194968 0.196203 0.062791 0.050543 0.040409

0.5 0.5 0.019523 0.019578 0.019976 0.000966 0.000489 0.000421

0.75 0.75 0.001424 0.001329 0.001449 5.65E-06 4.60E-06 2.32E-06

1 1 6.88E-05 6.09E-05 6.19E-05 4.74E-09 1.87E-08 1.35E-08
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Table 4.3: Estimates of the conditional partial moment ψr(t1|t2) for the cancer
recurrence data when r = 0.

t1\t2 0 2 10 12 14 15 17

0 1.000000 1.000000 0.736842 0.684211 0.526316 0.368421 0.157895

2 0.789474 0.789474 0.631579 0.473684 0.473684 0.263158 0.105263

3 0.473684 0.473684 0.473684 0.421053 0.315789 0.210526 0.105263

5 0.421053 0.421053 0.421053 0.368421 0.315789 0.210526 0.105263

7 0.368421 0.368421 0.368421 0.315789 0.315789 0.210526 0.105263

9 0.263158 0.263158 0.263158 0.263158 0.263158 0.157895 0.105263

10 0.210526 0.210526 0.210526 0.210526 0.210526 0.157895 0.105263

Table 4.4: Estimates of the conditional partial moment ψr(t1|t2) for the cancer
recurrence data when r = 1.

t1\t2 0 2 10 12 14 15 17

0 7.05263 7.05263 6.10526 5.63158 5.36842 3.78947 2.42105

2 5.05263 5.05263 4.63158 4.26316 4.10526 3.05263 2.10526

3 4.26316 4.26316 4.05263 3.73684 3.63158 2.78947 2

5 3.31579 3.31579 3.21053 3 3 2.36842 1.78947

7 2.47368 2.47368 2.47368 2.36842 2.36842 1.94737 1.57895

9 1.73684 1.73684 1.73684 1.73684 1.73684 1.52632 1.36842

10 1.47368 1.47368 1.47368 1.47368 1.47368 1.36842 1.26316

4.7 Application of CUPM in data modelling

Pareto distributions have been extensively employed for modelling and analysis

of statistical data under different contexts. Originally, the distribution was first

proposed as a model to explain the allocation of income among individuals. Later,

various forms of the Pareto distribution have been formulated for modelling and

analysis of data from engineering, environment, geology, hydrology etc. These di-

verse applications of the Pareto distributions lead researchers to develop different

kinds of bivariate (multivariate) Pareto distributions. Accordingly, Mardia (1962)



Chapter 4. Some properties of conditional upper partial moments 109

Table 4.5: Estimates of the conditional partial moment ψr(t1|t2) for the cancer
recurrence data when r = 2.

t1\t2 0 2 10 12 14 15 17

0 91.2632 91.2632 87.0526 82.7895 81.4737 67.4737 54.9474

2 67.0526 67.0526 65.5789 63 62.5263 53.7895 45.8947

3 57.7368 57.7368 56.8947 55 54.7895 47.9474 41.7895

5 42.5789 42.5789 42.3684 41.5263 41.5263 37.6316 34.2105

7 31 31 31 30.7895 30.7895 29 27.4737

9 22.5789 22.5789 22.5789 22.5789 22.5789 22.0526 21.5789

10 19.3684 19.3684 19.3684 19.3684 19.3684 19.1579 18.9474

Table 4.6: Estimates of the conditional partial moment ψr(t1|t2) for the cancer
recurrence data when r = 3.

t1\t2 0 2 10 12 14 15 17

0 1717.05 1717.05 1694.32 1655.95 1649.37 1502.53 1371.37

2 1246.11 1246.11 1239.37 1221.32 1219.89 1140.21 1069.47

3 1059.32 1059.32 1055.95 1044.58 1044.16 987.737 938

5 760.263 760.263 759.842 756.474 756.474 731.842 710.421

7 541.211 541.211 541.211 540.789 540.789 532.789 525.789

9 381.947 381.947 381.947 381.947 381.947 380.474 379.053

10 319.158 319.158 319.158 319.158 319.158 318.737 318.316

introduced two types of bivariate (multivariate) Pareto models which are referred

as bivariate Pareto distributions of first kind and second kind respectively. Since

then there has been a lot of works in the form, alternative derivation of bivariate

Pareto models, their extensions, inference, characterizations and applications to

a variety of fields. Various types of bivariate(multivariate) Pareto distributions

discussed and studied in literature include those of Lindley and Singpurwalla

(1986), Arnold (1990), Sankaran and Nair (1993a), Balakrishnan and Lai (2009),

Sankaran and Kundu (2014) and Arnold (2015).
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In this section we illustrate the use of characterization theorems in ascertain-

ing whether a given set of observations follow a specified distribution. In Theo-

rem 4.3.7, we have proved that the ratios of the two consecutive CUPMs of the

second type characterizes the bivariate Pareto model (SNBP model) introduced

by Sankaran and Nair (1993a) of the form

R (t1, t2) = (1 + a1t1 + a2t2 + bt1t2)−m,

where a1, a2,m, t1, t2 > 0, 0 < b ≤ (m+ 1) a1a2 through the relationships

ψr+1(ti|tj)
ψr(ti|tj)

=
r + 1

m− r − 1

[
ti +

1 + ajtj
ai + btj

]
, i = 1, 2, i 6= j. (4.52)

where ψr (ti|tj) = ψXi|Xj>tj (ti|tj) , i, j = 1, 2, i 6= j is the rth partial moment de-

fined for the conditional survival models Xi|Xj > tj i = 1, 2, i 6= j. In particular,

for X1 and X2 are positive with r ≥ 1, the quantity

ψr+1(ti|tj)
ψr(ti|tj)

[
r + 1

m− r − 1

[
ti +

1 + ajtj
ai + btj

]]−1

i = 1, 2, i 6= j (4.53)

equal to unity ensures (X1, X2) follows bivariate Pareto model. Thus for a given

random sample, if the estimates of (4.53) for all t1, t2 has only small fluctuations

around unity it is reasonable to expect the SNBP model.

In order to illustrate the theorem, we proceed as follows. We estimates the

values of the ratio by using

ψ̂r+1(t1|t2)

ψ̂r(t1|t2)

[
r + 1

m− r − 1

[
t1 +

1 + â2t2

â1 + b̂t2

]]−1

(4.54)

for admissible values of (t1, t2). If the ratios computed from the above estimate
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are very much closed to unity, then one can conclude that the observations can

be modeled by a SNBP model. Now we illustrate the use of Theorem 4.3.7 by

using the stiffness data set (Table 4.7) given in Wichern and Johnson (1992) that

represents two different measurements of stiffness viz., ‘shock’ and ‘vibration’ of

30 boards. The first measurement (shock) involves sending a shock wave down

the board and the second measurement (vibration) is determined while vibrat-

ing the board. Recently, Sankaran and Kundu (2014) used this data set to explain

the SNBP model and observed that unlike SNBP model, the independent Pareto

marginals provides better fit. Hence, in order to estimate the quantity in the RHS

of (4.52) we also use the maximum likelihood estimates of the parameters ob-

tained by Sankaran and Kundu (2014) for the SNBP model.

The estimates of various functions are presented in Table 4.8 through Table 4.9

for admissible values of (t1, t2). Finally, the ratios 4.54 computed from the above

estimates given in Table 4.10 shows that all the values depart substantially from

unity. Thus we conclude that the observations do not support their distribution

as SNBP model, which reaffirm the conclusion made by Sankaran and Kundu

(2014).
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Table 4.7: Stiffness data

No. Shock Vibration No. Shock Vibration No. Shock Vibration

1 1889 1651 2 2403 2048 3 2119 1700

4 1645 1627 5 1976 1916 6 1712 1713

7 1943 1685 8 2104 1820 9 2983 2794

10 1745 1600 11 1710 1591 12 2046 1907

13 1840 1841 14 1867 1685 15 1859 1649

16 1954 2149 17 1325 1170 18 1419 1371

19 1828 1634 20 1725 1594 21 2276 2189

22 1899 1614 23 1633 1513 24 2061 1867

25 1856 1493 26 1727 1412 27 2168 1896

28 1655 1675 29 2326 2301 30 1490 1382

Table 4.8: Estimates of the ψr+1(t1|t2)
ψr(t1|t2)

for the stiffness data when r = 1

t2\t1 1300 1400 1600 1700 1800 1900 2000 2100

1300 775.58 703.98 590.14 563.19 544.73 552.95 551.16 570.91

1400 786.19 708.49 590.14 563.19 544.73 552.95 551.16 570.91

1500 802.87 725.19 605.56 574.28 550.05 552.95 551.16 570.91

1600 844.66 763.55 627.92 580.49 550.05 552.95 551.16 570.91

1700 969.45 884.75 731.91 671.07 617.73 581.78 572.89 577.22

1800 992.79 905.20 742.53 672.53 617.73 581.78 572.89 577.22

1900 1092.01 1004.66 841.13 768.79 707.96 667.70 645.66 600.47

2100 1213.52 1126.60 962.75 888.74 823.62 772.90 724.76 670.62
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Table 4.9: Values of r+1
m̂−r−1

[
t1 + 1+â2t2

â1+b̂t2

]
for r = 1, â1 = 0.0321, â2 = 0.0292, b̂ =

0.0154 and m̂ = 18.3438.

t2\t1 1300 1400 1600 1700 1800 1900 2000 2100

1300 159.32 171.56 196.03 208.27 220.51 232.74 244.98 257.22

1400 159.32 171.56 196.03 208.27 220.50 232.74 244.98 257.22

1500 159.32 171.56 196.03 208.27 220.50 232.74 244.98 257.22

1600 159.32 171.56 196.03 208.27 220.50 232.74 244.98 257.22

1700 159.32 171.56 196.03 208.27 220.50 232.74 244.98 257.22

1800 159.32 171.56 196.03 208.27 220.50 232.74 244.98 257.21

1900 159.32 171.56 196.03 208.27 220.50 232.74 244.98 257.21

2100 159.32 171.55 196.03 208.27 220.50 232.74 244.98 257.21

Table 4.10: Estimated values of ψ̂r+1(t1|t2)

ψ̂r(t1|t2)

[
r+1

m−r−1

[
t1 + 1+â2t2

â1+b̂t2

]]−1

for the stiffness
data when r = 1.

t2\t1 1300 1400 1600 1700 1800 1900 2000 2100

1300 4.868 4.103 3.010 2.704 2.470 2.376 2.250 2.220

1400 4.935 4.130 3.010 2.704 2.470 2.376 2.250 2.220

1500 5.039 4.227 3.089 2.757 2.495 2.376 2.250 2.220

1600 5.302 4.451 3.203 2.787 2.495 2.376 2.250 2.220

1700 6.085 5.157 3.734 3.222 2.801 2.500 2.339 2.244

1800 6.232 5.276 3.788 3.229 2.801 2.500 2.339 2.244

1900 6.854 5.856 4.291 3.691 3.211 2.869 2.636 2.335

2100 7.617 6.567 4.911 4.267 3.735 3.321 2.958 2.607





Chapter 5

On conditional lower partial

moments and its applications∗

5.1 Introduction

As explained in the previous chapter, there are many practical situations where

the use of conditional distributions is more available than the joint distribution.

It is well known that, the marginal densities cannot determine the joint density

uniquely unless the variables are independent. Similar to the conditional sur-

vival models discussed in Chapter 4, the determination of the joint distribution of

X = (X1, X2), when conditional distributions of (X1|X2 ≤ t2) and (X2|X1 ≤ t1)

are known, has also been an important problem studied by many (see Arnold

et al. (1999), Ghosh and Kundu (2018) etc).

In the present chapter, we introduce and study Conditional Lower Partial Mo-

ments (CLPMs) and study it in the context of reliability modeling, risk analysis

∗Contents of this chapter have been published as entitled “On conditional lower partial mo-
ments and its applications”, American Journal of Mathematical and Management Sciences, 37 (1), 14-32
(see Sunoj and Vipin (2018)).
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and income (poverty) studies. The organization of the present chapter is as fol-

lows. In Section 5.2, we introduce CLPM. In Section 5.3, characterization results

based on CLPM are proved. Section 5.4 study some applications of CLPMs in risk

analysis and income studies and obtained certain partial ordering based on it. We

propose a nonparametric estimator for the partial moment in Section 5.5. Section

5.6 presents the results of a simulation study along with an application to a real

data set.

5.2 Conditional lower partial moments

In this section, we define lower partial moments of conditional distributions and

study its important properties.

Definition 5.2.1. Let X = (X1, X2) be a bivariate random vector admitting an

absolutely continuous distribution function F with respect to a Lebesgue measure

in the two dimensional Euclidean space R2. Let Fi(ti|tj) = P (Xi ≤ ti|Xj ≤ tj)

denote the conditional distribution function of Xi given Xj ≤ tj , i, j = 1, 2; i 6= j.

Then the Conditional Lower Partial Moment (CLPM) is defined as

δr(ti|Xj ≤ tj) = E
[
(Xi − ti)r−|Xj ≤ tj

]
, r = 0, 1, 2, ...

=

∫ ti

−∞
(ti − xi)rfi(xi|tj)dxi, (5.1)

where (Xi − ti)− is defined as in (2.7) and fi(.|tj) is the conditional pdf corre-

sponding to Fi(.|tj).

Further, δr(ti|Xj ≤ tj), i = 1, 2, i 6= j, possess the following properties,

(i) δ0(ti|Xj ≤ tj) = Fi (ti|tj).

(ii) for a nonnegative random vector (X1, X2) and for fixed tj , both δr(ti|Xj ≤ tj)
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are non-decreasing and continuous in ti ≥ 0, i, j = 1, 2, i 6= j for all values

of r.

(iii) as ti →∞ , δr(ti|Xj ≤ tj)→∞ and δ0(ti|Xj ≤ tj)→ 1, i, j = 1, 2, i 6= j.

Applying integration by parts in (5.1) yields,

δr(ti|Xj ≤ tj) = r

∫ ti

−∞
(ti − xi)r−1Fi(xi|tj)dxi, i, j = 1, 2, i 6= j. (5.2)

Theorem 5.2.1. For any positive integer r, δr(ti|Xj ≤ tj), i, j = 1, 2; i 6= j determines

the corresponding conditional distribution uniquely through the relationship

r! Fi (ti|tj) =
∂r

∂tri
(δr(ti|Xj ≤ tj)) . (5.3)

Proof. Differentiating both sides of (5.1) successively r times with respect to ti

gives (5.3).

AssumeX = (X1, X2) is a nonnegative random vector with an absolutely joint

distribution function F (x1, x2) and marginal distribution functions Fi(xi), i = 1, 2.

Let a = (a1, a2) and b = (b1, b2) be two vectors of real numbers satisfying ai =

inf{x|Fi(x) > 0}, i = 1, 2 and bi = sup(x|Fi(x) < 1), i = 1, 2. The variables X1 and

X2 are thought of as lifetimes of married couples, failure times of two component

system, etc. Then two important functions of common use in reversed time (inac-

tivity time) are (i) Bivariate reversed hazard rate (BRHR) due to Roy (2002a) given

in section 2.3.2 and (ii) Bivariate reversed mean residual life (BRMRL) defined in

section 2.3.5 proposed by Nair and Asha (2008).

From (5.2), it an be easily seen that h̄i(ti, tj) = ∂
∂ti

ln
(
δ
′
1(ti|Xj ≤ tj)

)
, where

δ
′
1(ti|Xj ≤ tj) = ∂

∂ti
δ1(ti|Xj ≤ tj). Also, m̄i(ti, tj) =

δ1(ti|Xj≤tj)
δ0(ti|Xj≤tj) , or equivalently

m̄i(ti, tj) =
(

∂
∂ti

ln δ1(ti|Xj ≤ tj)
)−1

. Thus the important concepts and results de-
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fined in past lifetime study using BRHR and BRMRL can be restated in terms of

the CLPMs.

5.2.1 Examples: Conditional lower partial moments

Now we provide examples of CLPM for some popular bivariate distributions.

Example 5.2.1. (Normal conditionals): Suppose that the joint density of (X1, X2)

is bivariate normal with joint density

f (x1, x2) =
1

2πσ1σ2

√
1− ρ2

exp

{
−1

2 (1− ρ2)

((
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2

−2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

))}
,−∞ < xi <∞,

where µi ∈ R, σi > 0, and −1 ≤ ρ ≤ 1. Then we have,

f1 (x1|x2) =
1

√
2πσ1

√
1− ρ2

−
(
x1 −

(
µ1 + σ1ρ

(
x2−µ2
σ2

)))2

2σ2
1

(1− ρ2)


and

δr(t1|X2 ≤ t2) =
1

2
K1K

r/2
3

(√
K3Γ

(
r + 1

2

)
1F1

(
−r

2
;
1

2
;−K

2
2

K3

)
+K2rΓ

(r
2

)
1F1

(
1− r

2
;
3

2
;−K

2
2

K3

))

where, K1 = 1√
2πσ1
√

1−ρ2
, K2 = t1 −

(
µ1 + σ1

σ2
ρ (t2 − µ2)

)
, K3 = 2σ2

1
(1− ρ2) and

1F1(a; b; z) denotes the Kummer confluent hypergeometric function defined by

1F1(a; b; z) =
∞∑
k=0

(a)k z
k

(b)k k!
, where (a)k represent the Pochhammer symbol defined by

(a)k = a (a− 1) . . . (a− k + 1). The case of δr(t2|X1 ≤ t1) is similar.

Example 5.2.2. (Pareto conditionals): Suppose that the joint density of (X1, X2)
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follows bivariate Pareto with joint density

f (x1, x2) =
α (α + 1)

σ1σ2

(
1 +

x1

σ1

+
x2

σ2

)−(α+2)

, xi, σi, α ≥ 0, i = 1, 2.

and

f1 (x1|x2) =
α

σ1

(
1 + x2

σ2

)
1 +

x1

σ1

(
1 + x2

σ2

)
−(α+2)

.

Then,

δr(t1|X2 ≤ t2) =

αtr+1
1 2F1

(
1, α + 2; r + 2;− t1

σ1
(

1+
t2
σ2

)
)

(r + 1)σ1

(
1 + t2

σ2

) ,

where 2F1(a, b; c; z) denotes the Gauss hypergeometric function defined by,

2F1(a, b; c; z) =
∞∑
k=0

(a)k (b) zk

(b)kk!
,

with (a)k denote the Pochhammer symbol.

Example 5.2.3. (Centered Normal conditionals distribution): Suppose that the

joint density of (X1, X2) is f (x1, x2) = Ke−(x21+x22+cx21x
2
2); c > 0, where K is a nor-

malizing constant. Then f1 (x1|x2) =
(1+cx22)

1/2

√
2π

e−(1+cx22)x21 , and consequently,

δr(t1|X2 ≤ t2) =
2−r−

3
2 (−ct2

2 − 1)
−r
e−2(ct22+1)t1 (Γ (r + 1,−2t1 (ct2

2 + 1))− Γ (r + 1))
√
π
√

ct2
2 + 1

,

where, Γ (a, z) is the incomplete gamma function defined by Γ (a, z) =
∫∞
z
ta−1e−tdt.

Example 5.2.4. (Exponential conditionals): Consider the bivariate exponential

conditionals distribution (Arnold and Strauss (1988)), with the joint density func-

tion,

f (x1, x2) = Ce−(x1+x2+ax1x2); x1, x2, a, C > 0,



Chapter 5. On conditional lower partial moments and its applications 120

such that

f1 (x1|x2) = (1 + ax2) e−(1+ax2)x1 .

Then,

δr(t1|X2 ≤ t2) = e−t1(at2+1)(−at2 − 1)−r (Γ (r + 1,−t1 (at2 + 1))− Γ (r + 1))

Example 5.2.5. (Ali-Mikhail-Haq family of bivariate distributions, (Ali et al. (1978)):

F (x1, x2) =
x1

(1− α(1− x1)(1− x2))
, 0 ≤ x1, x2 ≤ 1,−1 ≤ α ≤ 1.

Consequently, δr(t1|X2 ≤ t2) =
tr+1

(
rΓ (r+1)2F1

(
1,1;r+2;

t1(t2−1)α
(t2−1)α+1

)
−1
)

α(t1−1)(t2−1)−1
,where 2F1(a, b; c; z)

denotes the Gauss hypergeometric function.

In the following theorems we examine some properties of CLPM.

Theorem 5.2.2. The variables X1 and X2 are independent if and only if

δr(ti|Xj ≤ tj) = lr (ti) , i, j = 1, 2, i 6= j.

Theorem 5.2.3. The CLPM, δr(ti|Xj ≤ tj) i, j = 1, 2, i 6= j satisfies the following

recurrence relationship,

∂

∂ti
δr(ti|Xj ≤ tj)− rδr−1(ti|Xj ≤ tj) = 0.

Proof. From (5.2), we have δr(ti|Xj ≤ tj) = (r − 1)
∫∞
ti

(ti − xi)r−2Fi(xi|tj)dxi. Tak-

ing logarithm on both sides of (5.2), we get

ln[δr(ti|Xj ≤ tj)] = ln

[
r

∫ ti

−∞
(ti − xi)r−1Fi(xi|tj)dxi

]
. (5.4)

Differentiating (5.4) with respect to ti, we obtain the required relationship.
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In the following theorem we obtain a relationship connecting CLPM and LPM.

Theorem 5.2.4. Let X = (X1, X2) be a non-negative random vector admitting an ab-

solutely continuous distribution function F (x1, x2) with respect to a Lebesgue measure

in the two dimensional Euclidean space R2. Assume that E(X1X2) is finite. Then for

i, j = 1, 2 and i 6= j, the CLPM, δr(ti|Xj ≤ tj) and the LPM, lr (ti) satisfies the relation-

ship

δr(ti|Xj ≤ tj)lr(tj)− δr(tj|Xi ≤ ti)lr(ti) = 0. (5.5)

Proof. The proof follows immediately from the definition of CLPM and from the

following relation,

Fi (xi|xj)Fj (xj) = Fj (xj|xi)Fi (xi) , i, j = 1, 2, i 6= j.

Multiplying both sides by r(ti − xi)r−1 and integrating with respect to xi, we have,

Fj (xj)

∞∫
ti

r(ti − xi)r−1Fi (xi|xj) dxi = Fj (xj|xi)
∞∫
ti

r(ti − xi)r−1Fi (xi) dxi,

⇔ Fj (xj) δr(ti|Xj ≤ tj) = Fj (xj|xi) lr(ti).

Now multiplying both sides by r(tj − xj)r−1 and integrating with respect to xj ,

yields (5.5).

Theorem 5.2.5. Let δr(ti|Xj ≤ tj), i, j = 1, 2 and i 6= j, denotes the CLPM as defined

in (5.1). Then, for every r ≥ 1, δr(ti|Xj ≤ tj) is a convex function of ti.

Proof. The proof is similar to the proof given in Bawa (1978) and Hogan and War-

ren (1972), since for all values of r, (ti − x)r will always be a convex function in

ti. Then the theorem follows from the linearity property of conditional expecta-

tion.

The following example illustrates Theorem 5.2.5.
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Example 5.2.6. (Farlie–Gumbel–Morgenstern Distribution): Consider the one-parameter

Farlie–Gumbel–Morgenstern (F-G-M) family of distributions with uniform marginal,

given by the pdf,

f (x1, x2) = 1 + α(1− 2x1)(1− 2x2) , 0 ≤ xi ≤ 1, −1 ≤ α ≤ 1, i = 1, 2. (5.6)

Then f1 (x1|x2) = 1 + α(1− 2x1)(1− 2x2) and the CLPM

δr(ti|Xj ≤ tj) =
tr+1
i

r + 1

(
1 + α (1− 2tj) +

2αti (2tj − 1)

r + 2

)
, i, j = 1, 2, i 6= j.

Clearly, δr(ti|Xj ≤ tj) is non-decreasing in ti for fixed tj and non-decreasing in

r for fixed ti and tj , i, j = 1, 2 and i 6= j, which are illustrated in Figure 5.1 and

Figure 5.2 respectively.

(a) r = 0 (b) r = 1 (c) r = 2

(d) r = 3 (e) r = 4 (f) r = 5

Figure 5.1: Surface plots of CLPM for F-G-M distribution (5.6) with α = 0.5 for
different values of r.
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Figure 5.2: Plot of δr(t1|X2 ≤ t2) for F-G-M distribution (5.6) with α = 0.5 and
t2 = 0.5 for different values of r.

5.3 Characterization of bivariate distributions using

CLPM

A standard practice adopted in statistical modellng is to ascertain the physical

properties of the process, express them by means of equations or inequalities and

then solve them to obtain the model. Accordingly, in the present section, we pay

attention on identifying certain characterization relationships based on CLPMs to

model some important probability distributions.

Theorem 5.3.1. The CLPM satisfies the following linear equation

δr(ti|Xj ≤ tj) = Ktiδr−1(ti|Xj ≤ tj), 0 < K < 1 (5.7)

if and only if (X1, X2) follows a bivariate uniform distribution with CDF

F (t1, t2) =
t1t2
b d

, 0 ≤ t1 ≤ b, 0 ≤ t2 ≤ d. (5.8)
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Proof. Assume that (5.7) holds. Now using (5.1), we have δr(ti|Xj ≤ tj) =
tr+1
i

b(r+1)
, i =

1, 2, i 6= j, so that δr(ti|Xj≤tj)
δr−1(ti|Xj≤tj) = rti

r+1
, i = 1, 2, i 6= j, thus (5.7). Conversely, sup-

pose that (5.7) holds true. Differentiating both sides of (5.7) with respect to ti, r

times and rearranging the terms, we have h̄i (t1, t2) = 1
ti

. Now making use use of

equations (2.13) and (2.14) due to Roy (2002a), the model (5.8) follows.

The bivariate power distribution is of great importance in income studies and

reliability modeling for past lifetime (see Nair and Asha (2008)). In the follow-

ing theorem we prove characterizations to bivariate power and bivariate uniform

models based on relationship between two consecutive CLPMs.

Theorem 5.3.2. The ratio of the two consecutive CLPMs satisfies the relationship

δr(ti|Xj ≤ tj)

δr−1(ti|Xj ≤ tj)
=

rti
K + r +B(tj)

, i, j = 1, 2, i 6= j, (5.9)

where B(tj) is a function depending only on tj , if and only if X = (X1, X2) follows

bivariate uniform distribution

F (t1, t2) = t2 t
1+θ log t2
1 , 0 < t1, t2 < 1 (5.10)

for K = 1 and bivariate power distribution

F (t1, t2) = t2k2−1
2 t2k1−1+θ log t2

1 , 0 < t1, t2 < 1 (5.11)

for K > 0.

Proof. Let (5.9) holds true. Then we have,

δr(ti|Xj ≤ tj) (K + r +B(tj)) = rtiδr−1(ti|Xj ≤ tj), i, j = 1, 2 i 6= j,

Differentiating both sides with respect to ti, r times and rearranging the terms,



Chapter 5. On conditional lower partial moments and its applications 125

we have h̄i (t1, t2) =
K+B(tj)

ti
. Now making use use of (2.13) and (2.14) due to Roy

(2002a), we have the result. For the distribution (5.10) using (5.1) gives

δr(ti|Xj ≤ tj) =
r!Γ (2 + θ log tj) t

1+θ log tj+r
i

Γ (2 + θ log tj + r)
i, j = 1, 2, i 6= j

and for the distribution (5.11), we have

δr(ti|Xj ≤ tj) =
r!Γ (2k1 + θ log tj) t

2k1−1+θ log tj+r
i

Γ (2k1 + θ log tj + r)
i, j = 1, 2, i 6= j,

so that (5.9) follows immediately. Hence the proof.

Now we prove a characterization to bivariate Type 3 extreme-value distribu-

tion using CLPMs.

Theorem 5.3.3. Let (X1, X2) be a bivariate random vector in the support of (−∞, b1)×

(−∞, b2) with bi <∞ admitting an absolutely continuous distribution functionF (x1, x2),

then the ratio of the two consecutive CLPMs is of the form

δr(ti|Xj ≤ tj)

δr−1(ti|Xj ≤ tj)
=

r

α(tj)
, i, j = 1, 2 i 6= j, (5.12)

where, α(tj) is some function of tj only, if and only if X = (X1, X2) follows bivariate

Type 3 extreme-value distribution (Nair and Asha (2008)) given by the joint CDF,

F (t1, t2) = e[c1(t1−b1)+c2(t2−b2)+θ(t1−b1)(t2−b2)], −∞ < ti < bi <∞, ci > 0. (5.13)

Proof. Using (5.1), for (5.13) yields δr(ti|Xj ≤ tj) = r! e[ci+θ(tj−bj)](ti−bi)
(ci+θ(tj−bj))r , i = 1, 2, i 6=

j, so that δr(ti|Xj≤tj)
δr−1(ti|Xj≤tj) = r

ci+θ(tj−bj) , i = 1, 2, i 6= j and (5.12) holds. Conversely

assuming (5.12), differentiating both sides with respect to ti, r times and rear-

ranging the terms, we have h̄i (t1, t2) = α(tj). the rest part of the proof follows

from (2.13) and (2.14) due to Roy (2002a).
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5.4 Applications of conditional lower partial moments

5.4.1 Income and poverty studies

Lower partial moments are considered as a useful tool in poverty and income

studies as both LPMs and poverty indices are focusing on the lower part of the

distribution (see Sunoj and Maya (2008)). In income studies, a useful index to

measure the level of poverty is the income-gap ratio, given by β∗(t) = t − X .

We define bivariate income-gap ratio in terms of CLPMs as a vector, β∗ (t1, t2) =

(β∗1 (t1, t2) , β∗2 (t1, t2)), where the ith component is given by

β∗i (t1, t2) =
δ1(ti|Xj ≤ tj)

tiδ0(ti|Xj ≤ tj)
, i, j = 1, 2; i 6= j. (5.14)

The applications of Pareto distribution in economics, reliability etc. are well

known. The first author to systematically study k-dimensional Pareto distribu-

tions was Mardia (1962). In the following theorem, we characterize bivariate

Pareto distribution of the first kind (Mardia (1962)) using (5.14).

Theorem 5.4.1. A non-negative random vector (X1, X2) follows bivariate Pareto distri-

bution of the first kind (Mardia (1962)) with the joint density,

f(x1, x2) = (α+1)α(θ1θ2)α+1(θ2x1 + θ1x2 − θ1θ2)−(α+2), xi ≥ θi > 0, i = 1, 2, α > 0.

(5.15)

if and only if the bivariate income-gap ratio satisfy the relationship

β∗i (ti, tj)

β∗i (ti, tj)− 1
= K + tiAi (tj) , K > 0, i, j = 1, 2; i 6= j (5.16)

Proof. Suppose (5.16) holds true. Then, from (5.14), we have, β∗i (ti, tj) =
m̄i(ti,tj)

ti

and m̄i (ti, tj) =
t1(K+tiAi(tj))

K+tiAi(tj)−1
. Now the results follow from Nair and Asha (2008).
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To prove the converse part, for the density (5.15), we have

fi(xi|xj) = (α + 1) θi
α+1θj

(θjxi + θixj − θ1θ2)−(α+2)

(xj − θj)−(α+1)
, i, j = 1, 2; i 6= j.

Now (5.1) yields, δr(ti|Xj ≤ tj) =
(α+1)θα+1

i θj

(θitj−θiθj)−α
tr+1
1 ((θitj−θiθj)(r+2)+θjti)

(r+1)(r+2)
, i = 1, 2, i 6= j,

proceeds to get the required form (5.16).

Logistic distribution or log-logistic distributions are sometimes found useful

in modelling income data. The next theorem gives a characterization to bivariate

logistic distribution based on conditional income-gap ratio defined in (5.14).

Theorem 5.4.2. If X = (X1, X2) is a random vector in the support R2 with absolutely

continuous distribution function F (·) and E(X1X2) < ∞, then X follows bivariate

logistic distribution defined by the joint CDF

F (x1, x2) =
(
1 + e−x1 + e−x2

)−1
, −∞ < x1, x2 <∞, (5.17)

if and only if for all (t1, t2) in R2, the bivariate income-gap ratio satisfies,

β∗i (t1, t2) =
log (eti (e−tj + 1) + 1)

ti

(e−ti (e−tj + 1) + e−ti)

e−tj + 1
, i, j = 1, 2, i 6= j. (5.18)

Proof. Assuming the distribution to be (5.25), using (5.1), we have

δr(ti|Xj ≤ tj) = −r! Lir
(
−eti

(
1 + e−tj

))
, i = 1, 2, i 6= j (5.19)

where Lin(z) is the polylogarithm function defined by Lin(z) =
∑∞

k=1
zk

kn
. Now

(5.18) follows from (5.19) and (5.14).
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To prove the converse, we note that from (5.14)

m̄i (t1, t2) = tiβ
∗
i (t1, t2) = log

(
1 + e−ti + e−tj

e−tj

)(
1 + e−ti + e−tj

1 + e−tj

)
, i, j = 1, 2; i 6= j

The rest part of the proof directly follows from Nair and Asha (2008).

It has been shown by many authors (see Brzezinski (2014)) about the impor-

tance of power function distribution in income studies. The following theorem

provides a characterization to bivariate power distribution using conditional in-

come gap ratio (5.14).

Theorem 5.4.3. If (X1, X2) is a random vector in the support (0, b1) × (0, b2) , bi <

∞, i = 1, 2 with absolutely continuous distribution function F (·) and E(X1X2) < ∞,

then

β∗i (t1, t2) = ai (tj) , i, j = 1, 2, i 6= j (5.20)

for a non-negative function ai (.) if and only if (X1, X2) follows bivariate power function

distribution with joint CDF

F (t1, t2) =

(
t1
b1

)c1( t2
b2

)c2+θ log
(
t1
b1

)
, ti ∈ (0, bi); ci > 0, i = 1, 2; θ ≤ 0, (5.21)

Proof. For the distribution, (5.21), using (5.1), we have

δr(ti|Xj ≤ tj) =
r!
(

1
bi

)ci+θ log

(
tj
bj

)
t
ci+θ log

(
tj
bj

)
+r

i Γ
(
θ log

(
tj
bj

)
+ ci + 1

)
Γ
(
ci + θ log

(
tj
bj

)
+ r + 1

) , i, j = 1, 2; i 6= j.

(5.22)

Now (5.20) follows from (5.14) and (5.22).

To prove the converse, assume, (5.20) is true. Then, m̄i (t1, t2) = tiβ
∗
i (t1, t2) =

ti ai (tj) , i, j = 1, 2; i 6= j. The remaining part of the proof follows directly from
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Nair and Asha (2008).

For modelling extremal events of insurance and finance, extreme-value distri-

butions are of importance. The following theorem characterizes bivariate Type 3

extreme-value distributions based on the conditional income-gap ratio.

Theorem 5.4.4. Let (X1, X2) be a bivariate random vector in the support of (−∞, b1)×

(−∞, b2) with bi < ∞ admitting an absolutely continuous distribution function F (·).

Then

β∗i (t1, t2) =
ai (tj)

ti
, i, j = 1, 2; i 6= j (5.23)

if and only if (X1, X2) follows a bivariate Type 3 extreme-value distribution defined in

(5.13).

Proof. Using (5.2), for (5.13) we have, δr(ti|Xj ≤ tj) = r! e[ci+θ(tj−bj)](ti−bi)
(ci+θ(tj−bj))r . So that

β∗i (t1, t2) = 1
(ci+θ(tj−bj))ti and (5.23) holds. Conversely assuming (5.23) to be true,

we have m̄i (t1, t2) = tiβ
∗
i (t1, t2) = ai (tj) , i, j = 1, 2; i 6= j. Now the results follows

from Nair and Asha (2008).

5.4.2 Risk Analysis

The LPM measure risk by negative deviations of the random return, according to

a minimal acceptable return or return threshold or target return. In the present

section we consider an important situation where auxiliary information about

random (assets) return, Y is provided by a predictor, X.

Let F (y|x) = P (Y ≤ y|X ≤ x) and QY |X≤x (α|x) = inf {y : F (y|x) ≥ α} , α ∈

(0, 1), be respectively denote the conditional CDF and conditional quantile func-

tion (CQF) of Y |X ≤ x (see Parzen et al. (2004) and Belzunce et al. (2012a)).

Assuming F (·|x) is absolutely continuous and strictly increasing in x, we have
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F
(
QY |X≤x (α|x)

)
= α and Q (α|x) = QY |X≤x (α|x) = F−1

Y |X≤x (α|x).

Then, the zeroth order CLPM, δ0(y|X ≤ x) = P (Y ≤ y|X ≤ x) corresponds

to the conditional expected loss i.e the conditional (shortfall) probability that the

expected income (return) will be lower than target. The conditional Value-at-

Risk denoted by CV aR for a variable of interest Y will be the αth quantile of the

conditional distribution of Y |X ≤ x, i.e.

CV aRY |X≤x (α) = inf {y : δ0(y|X ≤ x) ≥ α} , α ∈ (0, 1) .

Another important measure useful in risk analysis is the Conditional Expected Short-

fall (CES), which measures the conditional expected loss knowing that the losses

are larger than a given quantile. similar to the definition of CES given by Peracchi

and Tanase (2008) one can define the CES for Y |X ≤ x as,

τ (α|x) = E (Y |Y ≤ Q (α|x) , X ≤ x)

=
1

α

α∫
−∞

Q (u|x)du = Q (α|x)− 1

α

Q(α|x)∫
−∞

F (y|x)dy,

setting t1 = Q (α|x) in (5.1), one can relate the conditional expected shortfall (CES)

with the first order CLPM, δ1(y|X ≤ x) as

τ (α|x) = Q (α|x)− δ1 (Q (α|x))

α
, (5.24)

where, δ1 (Q (α|x)) =
α∫
0

(Q (α|x)−Q (u|x))du = αQ (α|x) −
α∫
0

Q (u|x)du. Further,

it is clear that τ (α|x) will be always non-decreasing function in α ∈ (0, 1) and

negative, since the two functions in the RHS of (5.24) is non-decreasing in α and

Q (α|x) < δ1(Q(α|x))
α

.



Chapter 5. On conditional lower partial moments and its applications 131

Let U = Y1|X ≤ x and V = Y2|X ≤ x be conditional return on two op-

tions with quantile functions Q (α|x) and W (α|x) respectively, and let Qn (α|x) =
α∫
0

Qn−1 (p|x)dp, n = 1, 2, . . . with Q0 (α|x) = Q (α|x) (see Muliere and Scarsini

(1989)). Similarly we define Wn (α|x). Then, the following theorem provides the

importance of first order CLPM in comparing two returns in terms of conditional

expected shortfalls.

Theorem 5.4.5. Let (τU (α|x) , δ1 (Q (α|x))) and (τV (α|x) , γ1 (W (δ|x))) denotes the

CES and First order CLPM pair for the two random returns U and V respectively. Then,

for all α ∈ (0, 1),

τU (α|x) ≤ τV (α|x)⇔ δ1 (Q (α|x)) ≤ γ1 (W (α|x)) .

if and only if the function α−1 [Q1 (α|x)−W1 (α|x)] is a decreasing function of α.

Proof.

τU (α|x) ≤ τV (α|x) ⇔ 1

α

α∫
−∞

Q (u|x)du ≤ 1

α

α∫
−∞

W (u|x)du

⇔ Q1 (α|x)

α
≤ W1 (α|x)

α

⇔ α−1 [Q1 (α|x)−W1 (α|x)] ≤ 0

⇔ 1

α2

α (Q (α|x)−W (α|x))−

 α∫
0

Q (u|x)du

−
α∫

0

W (u|x)du

 ≤ 0

⇔ αQ (α|x)−
α∫

0

Q (u|x)du ≤ αW (α|x)−
α∫

0

W (u|x)du

⇔ δ1 (Q (α|x)) ≤ γ1 (W (α|x)) .
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Note that, δ1 (y|X ≤ x) =
y∫
−∞

F (u|x)du gives ∂2δ1(y|X≤x)
∂y2

= f (y|x) > 0, shows

that δ1 (y|X ≤ x) is convex. The following theorem examines the monotonic prop-

erties of CES.

Theorem 5.4.6. Let τ (α|x) be the α-level CES, α ∈ (0, 1), and δ1 (Q (α|x)) denote the

first order CLPM fixed at αth quantile, Q (α|x) with corresponding conditional quantile

density function, q (α|x). Then τ (α|x) is

(a) non-decreasing if and only if τ (α1|x) > τ (α2|x) for α1 > α2, ∀αi ∈ (0, 1) , i = 1, 2.

(b) concave if and only if δ1(Q(α|x))
q(α|x)

≥ α2

2
.

(c) convex if and only if δ1(Q(α|x))
q(α|x)

≤ α2

2
.

Proof. The proof immediately follows from the definition of CES given in (5.24).

Example 5.4.1. Consider the bivariate logistic distribution specified by the joint

CDF,

F (y, x) =
(
1 + e−y + e−x

)−1
, −∞ < y, x <∞ (5.25)

Then, δr(t|X ≤ x) = −r! Lir (−et (1 + e−x)) , where Lin(z) is the polylogarithm

function defined by Lin(z) =
∑∞

k=1
zk

kn
and δ1(t|X ≤ x) = log (et (e−x + 1) + 1).

From (5.24) the CES will be,

τ (α|x) =
1

α
e−x

(
1− α− ex

(
α + log

((
e−x + 1

)
e−

(α−1)e−x(ex+1)
α + 1

)
− 1

))
.

The plot of the CES, τ (α|x) is further depicted in Figure 3 for different values of

x.

When there are multiple options of risky investments a criterion for deciding

the best is by introducing an order of preference among them. Stochastic dom-
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Figure 5.3: Plot of CES for bivariate Logistic distribution (5.25).

inance criteria play an important role in this (see Levy (2015)). One can define

Stochastic dominance in terms of the CLPMs as follows.

Definition 5.4.1. Let U = Y1|X ≤ x and V = Y2|X ≤ x be conditional return

on two options with corresponding distribution functions F (y1|x) and G (y2|x)

respectively. Let δr (t|X ≤ x) and γr (t|X ≤ x) and denote conditional partial mo-

ments of order r for the random variables U and V respectively. Then F dominates

G conditionally (FDGC) by first, second and third order respectively denoted by

CFSD,CSSD and CTSD, if and only if

(a) Conditional First order stochastic Dominance (CFSD) :

δ0 (t|X ≤ x) ≤ γ0 (t|X ≤ x)

(b) Conditional Second order stochastic Dominance (CSSD) :

δ1 (t|X ≤ x) ≤ γ1 (t|X ≤ x)

(c) Conditional Third order stochastic Dominance (CTSD) :
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t∫
−∞

δ1 (v|X ≤ x)dv ≤
t∫

−∞

γ1 (v|X ≤ x)dv,∀t, x.

Remark 5.4.1. Note that the definitions (a)-(c) can be defined in terms of condi-

tional CDF as follows.

(i) CFSD : FY1|X≤x (t|x) ≤ GY2|X≤x (t|x) , ∀t, x.

(ii) CSSD :
t∫
−∞

FY1|X≤x (u|x)du ≤
t∫
−∞

GY2|X≤x (u|x)du, ∀t, x

(iii) CTSD :
t∫
−∞

v∫
−∞

[
GY2|X≤x (u|x)− FY1|X≤x (u|x)

]
dudv ≥ 0, ∀t, x

The computations involving CDFs are often complex and may cause analytical

problems in certain cases. An alternative is a quantile approach. Accordingly, we

define the following quantile-based conditional stochastic dominance as follows.

Definition 5.4.2. Let U = Y1|X and V = Y2|X be conditional return on two op-

tions with quantile functions Q (α|x) and W (α|x) respectively. Let, Qn (α|x) =
α∫
0

Qn−1 (p|x)dp, n = 1, 2, . . . with Q0 (α|x) = Q (α|x). Similarly we define Wn (α|x).

Then U dominates V by

(a) first order conditional stochastic dominance (U ≥CFSD V ) ifQ (α|x) ≥ W (α|x)

for all α, with strict inequality for at least one α.

(b) second order conditional stochastic dominance, (U ≥CSSD V ) if Q1 (α|x) ≥

W1 (α|x) for all α, with strict inequality for at least one α.

It is to be noted that for every n,

Qn−1 (α|x) ≥ Wn−1 (α|x)⇒ Qn (α|x) ≥ Wn (α|x) .

However, the converse of the above definition need not be true. We now obtain

the conditions under which the converse holds.
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Theorem 5.4.7. If Qn (α|x) ≥ Wn (α|x) and

α∫
0

Qn−1(p|x)dp

α∫
0

Wn−1(p|x)dp
, n = 1, 2, 3, . . . is increasing

then Qn−1 (α|x) ≥ Wn−1 (α|x).

Proof. Qn (α|x) ≥ Wn (α|x) ⇒ Qn(α|x)
Wn(α|x)

≥ 1. Since,

α∫
0

Qn−1(p|x)dp

α∫
0

Wn−1(p|x)dp
is increasing, by

differentiation, Qn−1 (α|x)
α∫
0

Wn−1 (p|x)dp−Wn−1 (α|x)
α∫
0

Qn−1 (p|x)dp ≥ 0.

⇒ Qn−1 (α|x)

Wn−1 (α|x)
≥

α∫
0

Qn−1 (p|x)dp

α∫
0

Wn−1 (p|x)dp

⇔ Qn−1 (α|x)

Wn−1 (α|x)
≥ 1.

In the following theorem we illustrate some sufficient conditions to estab-

lish stochastic dominance for conditional random variables using quantile-based

CLPMs.

Theorem 5.4.8. Let δr (t) and γr (t) and denote the CLPMs of order r of U and V respec-

tively. Then suppose,

(a) if Q1(α|x)
W1(α|x)

is increasing in α and δ1 (t|X ≤ x) ≤ γ1 (t|X ≤ x), then U ≥CFSD V .

(b) if Q2(α|x)
W2(α|x)

is increasing in α and δ2 (t|X ≤ x) ≤ γ2 (t|X ≤ x), then U ≥CSSD V .

Proof. Note that,

δ1 (t|X ≤ x) ≤ γ1 (t|X ≤ x) ⇔
α∫

0

Q (p|x)dp ≥
α∫

0

W (p|x)dp

⇔ Q1 (α|x) ≥ W1 (α|x) ,

then (a) follows from Theorem 5.4.5. Similarly from the definition of CTSD (Re-
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mark 5.4.1) (Levy (1992)) we have,

δ2 (t|X ≤ x) ≤ γ2 (t|X ≤ x) ⇔
t∫

−∞

v∫
−∞

GY2|X (u|x)dudv ≥
t∫

−∞

v∫
−∞

FY2|X (u|x)dudv

⇔
α∫

0

v∫
0

Q (p|x)dpdv ≥
α∫

0

v∫
0

W (p|x)dpdv

⇔
α∫

0

Q1 (p|x)dp ≥
α∫

0

W1 (p|x)dp

⇔ Q2 (α|x) ≥ W2 (α|x) ,

and rest part of the proof of (b) follows from Theorem 5.4.5.

Let δr (t|X ≤ x) and γr (t|X ≤ x) denote the CLPMs of order r for the random

variables U and V and let the corresponding quantile formulations be Pr (u) and

Ar (u) respectively. Using the quantile-based LPM given in Nair and Sankaran

(2011), the first and second order quantile-based CLPMs can be defined as

P1 (α|x) = δ1 (Q (α|x)) = αQ (α|x)−
α∫

0

Q (u|x)du (5.26)

and

P2 (α|x) = δ2 (Q (α|x)) =

α∫
0

Q2 (u|x)du+ 2Q (α|x)P1 (α|x)− αQ2 (α|x) (5.27)

In the following theorem, we present a partial ordering based on first and

second order quantile-based CLPMs defined in (5.26) and(5.27) respectively.

Theorem 5.4.9. Let U = Y1|X ≤ x and V = Y2|X ≤ x denote two random variables

with quantile functionsQ (α|x) andW (α|x) respectively. Also let Pr (α|x) andAr (α|x)

denote the quantile based CLPMs of order r for the random variables U and V . Then we

say that



Chapter 5. On conditional lower partial moments and its applications 137

(a) U is smaller than V in the quantile based first CLPM denoted by U ≤FCLP V if

P1 (α|x) ≤ A1 (α|x) for all 0 < α < 1.

(b) U is smaller than V in the quantile based second CLPM denoted by U ≤SCLP V if

P2 (α|x) ≤ A2 (α|x) for all 0 < α < 1.

The ordering of U and V in terms of δr (t|X ≤ x) and γr (t|X ≤ x) need not

mean that similar order preserved for Pr (u) and Ar (u). The following example

justifies this property.

Example 5.4.2. Let (Y1, X) follows bivariate uniform distribution with joint CDF

F (y1, x) = y1x, 0 ≤ y1, x ≤ 1 (5.28)

and (Y2, X) follows bivariate power distribution with joint CDF

G (y2, x) =
√
y2x, 0 ≤ y2, x ≤ 1. (5.29)

Then, F (y1|x) = y1 and G(y2|x) =
√
y2. Also Q (α|x) = α and W (α|x) = α2. The

two CLPMs corresponding to (5.28) and (5.29) will be,

δr (t|X ≤ x) =
rtr+1

r (r + 1)
(5.30)

and

γr (t|X ≤ x) =

√
πrtr+

1
2Γ (r)

2Γ
(
r + 3

2

) (5.31)

respectively. Then,

(i) from (5.30) and (5.31), δ1 (t|X ≤ x) = t2

2
and γ1 (t|X ≤ x) = 2t3/2

3
. Hence,

δ1 (t|X ≤ x) ≤ γ1 (t|X ≤ x)
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for all 0 < t < 1. Also for (5.28) and (5.29) the first quantile based CLPMs

will be, P1 (α|x) = α2

2
and A1 (α|x) = 2α3

3
respectively. Note that these two

functions cross at α = 3
4
. Hence they are not ordered.

(ii) Similarly from (5.30) and (5.31), δ2 (t|X ≤ x) = t3

3
and γ1 (t|X ≤ x) = 8t5/2

15
,

and thus

δ2 (t|X ≤ x) ≤ γ2 (t|X ≤ x)

for all 0 < t < 1. On the other hand, for (5.28) and (5.29), P2 (α|x) = α3

3
and

A1 (α|x) = 8α5

15
. Here, the two functions cross at α =

√
5
8
. Hence they are not

ordered.

The above observation motivates us to propose the following necessary and

sufficient conditions for which the quantile-based first and second order CLPMs

admit a partial order.

Theorem 5.4.10. Let U = Y1|X ≤ x and V = Y2|X ≤ x denote two random vari-

ables with quantile functions Q (α|x) and W (α|x) and quantile based CLPMs of order r,

Pr (α|x) and Ar (α|x) respectively. Then, for all α, α ∈ (0, 1)

(a) U ≤FCLP V if and only if α−1 [Q1 (α|x)−W1 (α|x)] is a decreasing function of α.

(b) U ≤SCLP V if and only if

α2 [V (Y1|Y1 ≤ Q (α|x) , X ≤ x)− V (Y2|Y2 ≤ W (α|x) , X ≤ x)]

is a decreasing function of α.

Proof. The proof (a) follows exactly similar to the proof of Theorem 5.4.5. To prove
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(b), note that

V (Y1|Y1 ≤ Q (α|x) , X ≤ x) = E
(
Y 2

1 |Y1 ≤ Q (α|x) , X ≤ x
)

−E2 (Y1|Y1 ≤ Q (α|x) , X ≤ x)

=
1

α

α∫
0

Q2 (u|x)du−

 1

α

α∫
0

Q (u|x)du

2

=
1

α2

α α∫
0

Q2 (u|x)du−

 α∫
0

Q (u|x)du

2 .

Also from (5.27),

P2 (α|x) =

α∫
0

Q2 (u|x)du+ 2Q (α|x)P1 (α|x)− αQ2 (α|x)

=

α∫
0

Q2 (u|x)du+ 2Q (α|x)

α∫
0

(Q (α|x)−Q (u|x))du− αQ2 (α|x)

=

α∫
0

Q2 (u|x)du+ αQ2 (α|x)− 2Q (α|x)

α∫
0

Q (u|x)du

=
∂

∂α

α α∫
0

Q2 (u|x)du−

 α∫
0

Q (u|x)du

2
=

∂

∂α

[
α2 (V (Y1|Y1 ≤ Q (α|x) , X ≤ x))

]
Hence,

P2 (α|x) ≤ A2 (α|x)

⇔ ∂

∂α

[
α2 (V (Y1|Y1 ≤ Q (α|x) , X ≤ x))

]
≤ ∂

∂α

[
α2 (V (Y2|Y2 ≤ W (α|x) , X ≤ x))

]
⇔ ∂

∂α

[
α2 (V (Y1|Y1 ≤ Q (α|x) , X ≤ x)− V (Y2|Y2 ≤ W (α|x) , X ≤ x))

]
≤ 0,

implies that α2 [V (Y1|Y1 ≤ Q (α|x) , X ≤ x)− V (Y2|Y2 ≤ W (α|x) , X ≤ x)] is a de-
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creasing function of α. Hence the proof.

5.5 Estimator of the conditional lower partial moment

We have discussed various properties of CLPMs in the context of reliability mod-

eling, risk analysis and income (poverty) studies. To use these results in practice

one require the estimators of δr(ti|Xj ≤ tj), i, j = 1, 2, i 6= j. In this section we pro-

pose a non-parametric estimator for the conditional partial moment δr(ti|Xj ≤ tj).

Let (X1i , X2i), i = 1, 2, ...n be n independent and identically distributed pairs of

observations with distribution function F (·, ·). The estimator for δr(t1|X2 ≤ t2) is

defined by

δ̂r(t1|X2 ≤ t2) =
1

n

n∑
i=1

(t1 −X1i)
rI (X1i ≤ t1, X2i ≤ t2) (5.32)

where I(·) denotes the indicator function. Similarly one can define δ̂r(t2|X1 ≤

t1). The estimator in (5.32) is the rth sample moment of the observations from

X1i ≤ t1|X2i ≤ t2. The consistency and asymptotic properties of the estimator

δ̂r(t1|X2 ≤ t2) can be proved similar to the estimators proposed by Kulkarni and

Rattihalli (2002).

5.6 Simulation study and analysis of a real data set

We present here the results of a simulation study and illustrate the properties

of empirical estimator δr(ti|Xj ≤ tj), i, j = 1, 2, i 6= j by analyzing the system

reliability data given in ReliaSoft (2003).
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5.6.1 Simulation study

To study the performance of the estimator δ̂r(t1|X2 ≤ t2), we carried out a series

of 1000 simulations each of size n (n = 10, 100 and 1000) from a bivariate power

distribution with the joint CDF F (x1, x2) = x2k2−1
2 x2k1−1+θ log x2

1 , 0 < x1, x2 < 1 for

k1 = k2 = 1 and θ = 0.5. The CLPM for the distribution will be

δr(t1|X2 ≤ t2) =
r! Γ (2k1 + θ log t2) t2k1−1+θ log t2+r

1

Γ (2k1 + θ log t2 + r)
.

The performance of the empirical estimator δ̂r(t1|X2 ≤ t2) obtained from simu-

lation study is given in Table 5.1 and graphically plotted in Figure 5.4. The results

of simulation studies shows that bias and MSE of the proposed empirical estima-

tor δ̂r(t1|X2 ≤ t2), decreases with increasing sample sizes. Also the MSE decreases

as t1 and t2 increases. δ̂r(t2|X1 ≤ t1) can be estimated in a similar manner.

δr(t1 )
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Figure 5.4: Performance of δ̂r(t1|X2 ≤ t2) for bivariate Power distribution (5.11)
with K1 = K2 = θ = 0.5.



Chapter 5. On conditional lower partial moments and its applications 142

Table 5.1: Performance of δ̂r(t1|X2 ≤ t2) for bivariate Power distribution (5.11)
with K1 = K2 = 1 and θ = 0.5.

r t1 t2
Bias×103 MSE×103

n = 10 n = 100 n = 1000 n = 10 n = 100 n = 1000

0

0.2 0.2 7.6948 0.1948 3.3748 18.0152 2.5128 0.9129

0.4 0.4 -9.6594 2.54056 4.1506 23.3923 4.35301 1.7888

0.5 0.5 8.2314 16.2314 4.2614 24.9318 3.6815 1.5681

0.6 0.6 -8.6192 2.2808 5.2708 20.1493 3.4074 1.2078

0.8 0.8 -7.1672 2.2327 5.4127 13.7824 1.5892 0.4473

0.9 0.9 6.9907 -1.7092 1.3307 7.1048 0.861 0.1754

1

0.2 0.2 3.0051 2.3399 0.9140 0.8725 0.1424 0.0659

0.4 0.4 4.5281 5.1027 2.7722 2.4701 0.8563 0.6103

0.5 0.5 4.6341 5.8129 2.8685 4.5850 1.3007 0.9850

0.6 0.6 -2.7193 3.0457 3.2079 6.3422 1.7500 1.3833

0.8 0.8 -7.2615 1.6969 3.1211 8.5525 2.6666 2.1155

0.9 0.9 -0.9841 3.4273 4.8067 8.9388 2.9524 2.3862

2

0.2 0.2 -0.0003 0.0062 0.2511 0.0000 0.0069 0.0035

0.4 0.4 1.9302 2.3695 1.1690 0.5084 0.1600 0.1253

0.5 0.5 0.3379 1.9013 1.9568 1.1005 0.4032 0.3231

0.6 0.6 5.7896 3.2270 2.5524 1.9985 0.7949 0.6745

0.8 0.8 2.5602 4.5522 3.8733 5.2803 2.4371 2.0397

0.9 0.9 9.3798 5.0054 6.3244 9.121 3.6764 3.134

3

0.2 0.2 1.2861 -0.0149 0.0572 0.0814 0.0003 0.0002

0.4 0.4 0.0168 0.3605 0.3500 0.0181 0.0271 0.0228

0.5 0.5 2.4531 0.9066 1.0250 0.2658 0.1035 0.0922

0.6 0.6 3.6207 0.7479 1.2857 0.6693 0.3256 0.2825

0.8 0.8 -2.4299 3.7394 3.8465 3.6838 1.7326 1.5753

0.9 0.9 -1.8403 4.2085 6.2142 8.1337 3.5918 3.1161
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5.6.2 Analysis of real data

In this section, we obtain the non-parametric estimator of δr(t1|X2 ≤ t2) for the

system reliability data given in ReliaSoft (2003). The data set consists of a parallel

system containing two motors without censoring. The system configuration was

made in such a way that when both motors are functioning, the load is shared

between them. If one of the motors fail, the entire load is then shifted to the sur-

viving motor. The system fails when both motors fail. Sutar and Naik-Nimbalkar

(2014) analyzed this data to model the load sharing effect using accelerated fail-

ure time (AFT) model. We further analyzed this data to validate the properties

of the proposed empirical estimator δ̂r(t1|X2 ≤ t2). Table 5.2 shows the time to

failure data for 18 systems that contain the two motors.

Table 5.3 provides the estimates of δr(t1|X2 ≤ t2) for different values of r. It

is easy to see that δ̂r(t1|X2 ≤ t2) is non-decreasing in t1 and t2 for all values of r.

Further, for fixed t1 and t2, δ̂r(t1|X2 ≤ t2) is non-decreasing in r.
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Table 5.2: Data set for two motors in a load sharing configuration

System

Time to failure Time to failure

Eventfor Motor A for Motor B

(Days) (Days)

1 102 65 B Failed First

2 84 148 A Failed First

3 88 202 A Failed First

4 156 121 B Failed First

5 148 123 B Failed First

6 139 150 A Failed First

7 245 156 B Failed First

8 235 172 B Failed First

9 220 192 B Failed First

10 207 214 A Failed First

11 250 212 B Failed First

12 212 220 A Failed First

13 213 265 A Failed First

14 220 275 A Failed First

15 243 300 A Failed First

16 300 248 B Failed First

17 257 330 A Failed First

18 263 350 A Failed First
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Table 5.3: Estimates of δr(t1|X2 ≤ t2) for load sharing data for different values of r

.

r t1
t2

100 150 200 250 300 350

0

100 0 0.055556 0.055556 0.111111 0.111111 0.111111

150 0.055556 0.222222 0.222222 0.277778 0.277778 0.277778

200 0.055556 0.277778 0.277778 0.333333 0.333333 0.333333

250 0.055556 0.277778 0.444444 0.666667 0.833333 0.833333

300 0.055556 0.277778 0.444444 0.722222 0.888889 1

350 0.055556 0.277778 0.444444 0.722222 0.888889 1

1

100 0 0.888889 0.888889 1.55556 1.55556 1.55556

150 2.66667 7.05556 7.05556 10.5 10.5 10.5

200 5.44444 20.6111 20.6111 26.8333 26.8333 26.8333

250 8.22222 34.5 37.2778 50.7778 54.8889 54.8889

300 11 48.3889 59.5 84.1111 96.5556 101

350 13.7778 62.2778 81.7222 120.222 141 151

2

100 0 14.2222 14.2222 22.2222 22.2222 22.2222

150 128 376.944 376.944 590.5 590.5 590.5

200 533.556 1745.61 1745.61 2442.5 2442.5 2442.5

250 1216.89 4501.17 4565.06 6206 6334.78 6334.78

300 2178 8645.61 9403.94 12950.4 13907 14085.8

350 3416.89 14178.9 16465.1 23167.1 25784.8 26685.8

3

100 0 227.556 227.556 323.556 323.556 323.556

150 6144 22190.4 22190.4 35430.8 35430.8 35430.8

200 52288.4 164159 164159 242211 242211 242211

250 180100 615306 617001 860662 864995 864995

300 431244 1583950 1636900 2255730 2331050 2338280

350 847388 3278430 3549300 4919410 5252370 5333640





Chapter 6

Upper partial moments of bivariate

weighted models∗

6.1 Introduction

The concept of weighted distribution was popularized by Rao (1965) in connec-

tion with modeling statistical data in situations where the usual practice of em-

ploying standard distributions for the purpose was not found appropriate. Based

on this idea, the objectives of the present chapter are two-fold. That is, to study

more reliability aspects of bivariate and conditional upper partial moments in the

context of weighted models as studied respectively in Chapter 3 and Chapter 4.

The present chapter is unfolded as follows. Following the introductory part, in

Section 6.2, we introduce bivariate Weighted Upper Partial Moments (BWUPMs)

and obtained various properties of BWUPMs. In Section 6.3, we study the bi-

variate equilibrium models using BWUPM. An important property known as

‘stop-loss dependence’, which is very useful in the context of actuarial analysis

∗Contents of this chapter have been communicated to an International Journal.
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is further explored in this section. In section 6.4 we investigate some important

dependence concepts useful in life-length and actuarial studies and obtain its re-

lationships with BUPM’s. Finally in Section 6.5, we study properties of condi-

tional upper partial moments in the context of weighted models.

6.2 Bivariate weighted upper partial moments

Recalling from chapter 3 that Sankaran and Nair (2004) and Hürlimann (2002)

defined the (r, s)th Bivariate Upper Partial Moments (BUPMs) as

pr,s (t1, t2) = E [(X1 − t1)r(X2 − t2)sI(X1 > t1, X2 > t2)]

=

∞∫
t1

∞∫
t2

(x1 − t1)r(x2 − t2)sf(x1, x2)dx1dx2. (6.1)

Using (2.18) and (6.1), the partial moments for bivariate distributions under

weighting is defined as follows.

Definition 6.2.1. LetX = (X1, X2) be a non-negative random vector admitting an

absolutely continuous distribution function F (x1, x2) with respect to a Lebesgue

measure in the positive octant R+
2 = {(x1, x2)|x1, x2 > 0} of the two-dimensional

Euclidean space R2. Assume that for r, s = 0, 1, 2, . . . , E(Xr
1X

s
2) is finite. Then

the (r, s)th Bivariate Weighted Upper Partial Moment (BWUPM) corresponding

to the weighted random vectorXw = (Xw
1 , X

w
2 ) is defined as

pwr,s (t1, t2) =

∞∫
t1

∞∫
t2

(x1 − t1)r(x2 − t2)sfw(x1, x2)dx1dx2

=

∞∫
t1

∞∫
t2

(x1 − t1)r(x2 − t2)s
w(x1, x2)

µw(x1, x2)
f(x1, x2)dx1dx2. (6.2)

Then Rw(t1, t2) = A(t1,t2)
µw

R (t1, t2) provides the bivariate reliability function as-
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sociated with (Xw
1 , X

w
2 ), where, A (t1, t2) = E (w (X1, X2) |X1 > t1, X2 > t2) and

µw = E (w (X1, X2)) (Navarro et al. (2006)). Table 6.1 provides the structural forms

of pwr,s (t1, t2) for some popular bivariate weight functions.

Analogous to (6.1), BWUPM’s also uniquely determines the corresponding

bivariate weighted distribution.

Theorem 6.2.1. For any two positive integers (r, s), pwr,s (t1, t2) determines the corre-

sponding bivariate weighted distribution uniquely through the relationship,

∂r+s

∂tr1∂t
s
2

pwr,s(t1, t2) = (−1)r(−1)sr! s!Rw(t1, t2). (6.3)

Proof. From (6.2), it is easy to see that

pwr,s (t1, t2) = r s

∞∫
t1

∞∫
t2

(x1 − t1)r−1(x2 − t2)s−1Rw(x1, x2)dx1dx2, (6.4)

Now differentiating both sides of (6.4) successively r, s times we have the required

result.

Among the different weight functions available in the bivariate case, an im-

portant one is w1(x1, x2) = x1x2, known as the area sampling or its size-biased

version w(x1, x2) = xα1
1 xα2

2 . In agriculture it is often encounter to estimate the av-

erage yield produced in unit area, then the weighted model with w(x1, x2) = x1x2

corresponds to the situation where the probability of choosing a specified sample

is proportional to its area (Nair and Sunoj (2003)). In this context, we have the

following theorem on BWUPM.

Theorem 6.2.2. The BWUPM of the weighted model fw (x1, x2) with the weight func-
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Table 6.1: Bivariate weighted partial moments for different weight functions

Sl. No w(x1, x2) pwr,s(t1, t2)

1 x1
pr+1,s(t1,t2)+t1pr,s(t1,t2)

E(X1)

2 x2
pr,s+1(t1,t2)+t2pr,s(t1,t2)

E(X2)

3 x1 + x2
(t1+t2)pr,s(t1,t2)+pr+1,s(t1,t2)+pr,s+1(t1,t2)

E(X1+X2)

4 x1x2
pr+1,s+1(t1,t2)+t2pr+1,s(t1,t2)+t1pr,s+1(t1,t2)+t1t2pr,s(t1,t2)

E(X1X2)

5 x2 − x1, x1 ≤ x2
(t2−t1)pr,s(t1,t2)+pr,s+1(t1,t2)−pr+1,s(t1,t2)

E(X2−X1)

6 max(x1, x2)


pr+1,s(t1,t2)+t1pr,s(t1,t2)

E(X1)
, t1 > t2

pr,s+1(t1,t2)+t2pr,s(t1,t2)

E(X2)
, t1 < t2

7 min(x1, x2)


pr,s+1(t1,t2)+t2pr,s(t1,t2)

E(X2)
, t1 > t2

pr+1,s(t1,t2)+t1pr,s(t1,t2)

E(X1)
, t1 < t2

tion w(x1, x2) = xα1
1 xα2

2 , satisfies the relationship

pwr,s (t1, t2) =

α1∑
u=0

α2∑
v=0

 α2

v


 α1

u

 tu1 t
v
2 pm,n (t1, t2),

where

 n

r

 = n!
r! (n−r)! , m = r + α1 − u and n = s+ α2 − v.

Proof. The proof directly follows from the binomial expansion of the terms in the

definition of BWUPM.
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The next theorem examines the monotonicity of bivariate partial moments un-

der weighting.

Theorem 6.2.3. For the random vector (Xw
1 , X

w
2 ), the bivariate weighted partial mo-

ment, pwr,s (t1, t2) is

(a) decreasing in ti, i = 1, 2 for fixed value of r and s.

(b) increasing in r or s for fixed values values of t1 and t2 if both x1 − t1 > 1 and

x2 − t2 > 1 holds true and decreasing in r or s for fixed values values of t1 and t2 if

either 0 < x1 − t1 < 1 or 0 < x2 − t2 < 1 or both holds true.

Proof. To prove (a), from (6.2) we have

∂pwr,s (t1, t2)

∂t1
= −rpwr−1,s (t1, t2) (6.5)

and
∂pwr,s (t1, t2)

∂t2
= −spwr,s−1 (t1, t2) . (6.6)

From (6.5) and (6.6) it follows that pwr,s (t1, t2) is decreasing in ti, i = 1, 2 irrespec-

tive of the weight function w(x1, x2) for all values of r and s.

In order to prove (b), note that since r(s) takes positive integer values, pwr,s (t1, t2)

is increasing in r(s) if and only if pwr,s (t1, t2) − pwr−1,s (t1, t2) is non-negative for all

values of r (pwr,s (t1, t2) − pwr,s−1 (t1, t2) is non-negative for all values of s). Now

consider,

pwr,s (t1, t2)− pwr−1,s (t1, t2) =

∞∫
t1

∞∫
t2

(x1 − t1)r−1(x2 − t2)s(x1− t1− 1)fw(x1, x2)dx1dx2

(6.7)
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and

pwr,s (t1, t2)− pwr,s−1 (t1, t2) =

∞∫
t1

∞∫
t2

(x1 − t1)r(x2 − t2)s−1(x2− t2− 1)fw(x1, x2)dx1dx2

(6.8)

Hence (b) follows from (6.6) and (6.7).

Arnold and Nagaraja (1991) have shown that the independence of X1 and X2

is equivalent to the independence of Xw
1 and Xw

2 , and equivalent to the weight

function w(x1, x2) = w(x1)w(x2). Then, we have the following result.

Theorem 6.2.4. For an arbitrary weight function w(x1, x2), any two of the following

statements together imply the third.

(a) X1 and X2 are independent.

(b) Xw
1 and Xw

2 are independent.

(c) w(x1, x2) is of the form w(x1)w(x2) for (x1, x2) ∈ Sx1 × Sx2 , the Cartesian product

space of Sx1 and Sx2

(d) pwr,s (t1, t2) = pwr (t1) pws (t2) , where pwr (t1) and pws (t2) are the univariate partial

moments corresponding to the weighted random variables Xw
1 and Xw

2 respectively.

The assumption of independence is seldom valid in practice. For example, a

two components system always exhibit dependence among its component’s life-

times. Thus it is natural to assume a dependence among the components of a sys-

tem. There are various notions of bivariate dependence that are used in literature

(see Shaked and Shanthikumar (2007)). A popular one is the Positive (Negative)

Quadrant Dependence (PQD (NQD)) property. A random vector X = (X1, X2)

satisfies the Positive (Negative) Quadrant Dependence denoted by PQD (NQD)
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if for all values of t1, t2 > 0,

P (X1 > t1, X2 > t2) ≥ (≤)P (X1 > t1)P (X2 > t2). (6.9)

Equivalently, the bivariate partial moments, (X1, X2) satisfies the Positive Quad-

rant Dependence (PQD) property if and only if

pr,s (t1, t2) ≥ (≤) pr (t1) ps (t2) (6.10)

for all values of r, s and ti > 0, i = 1, 2.

To this effect we have the following theorem.

Theorem 6.2.5. Assume thatX has PQD (NQD) property. ThenXw has property,

pwr,s (t1, t2) ≥ (≤) pwr (t1) pws (t2) . (6.11)

if and only if

(i) Xw has the joint pdf fw (x1, x2) = w1(x1)w2(x2)f(x1,x2)
E(w1(X1)w2(X2))

with E (w1 (X1)w2 (X2)) =

E (w1 (X1))E (w2 (X2)).

(ii) Xw possess PQD (NQD) property.

Proof. Let the bivariate random vector X = (X1, X2) satisfies the PQD (NQD)
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property. Hence R (t1, t2) ≥ (≤)R1 (t1)R2 (t2) ⇐⇒ f (t1, t2) ≥ (≤)f1 (t1) f2 (t2) .

⇐⇒ w1(x1)w2(x2)f(x1,x2)
E(w1(X1)w2(X2))

≥ (≤)w1(x1)f1(x1)
E(w1(X1))

w2(x2)f2(x2)
E(w2(X2))

⇐⇒
∞∫
t1

∞∫
t2

(x1 − t1)r(x2 − t2)s w1(x1)w2(x2)f(x1,x2)
E(w1(X1)w2(X2))

dx1dx2

≥ (≤)
∞∫
t1

(x1 − t1)r w1(x1)f1(x1)
E(w1(X1))

dx1

∞∫
t2

(x2 − t2)r w2(x2)f2(x2)
E(w2(X2))

dx2

⇐⇒ pwr,s (t1, t2) ≥ (≤) pwr (t1) pws (t2)

⇐⇒ Rw (t1, t2) ≥ (≤) Rw
1 (t1)Rw

2 (t2)

Hence the theorem.

Corresponding to a non-negative bivariate random vector (Xw
1 , X

w
2 ) Navarro

et al. (2006) defined the bivariate reliability function associated with (2.18) as

Rw (t1, t2) =
mw (t1, t2)

E (w (X1, X2))
R (t1, t2) ,

where mw(.) is the generalized conditional expectation function defined as

mw (t1, t2) = E (w (X1, X2) |X1 > t1, X2 > t2) .

Now in terms of the BWUPM we have,

Rw (t1, t2) =
pw0,0 (t1, t2)

pw0,0 (0, 0)

Basu (1971) defined the bivariate scalar failure rate by k(t1, t2) = f(t1,t2)
R(t1,t2)

. Ac-

cordingly, from the uniqueness theorem of BWUPM an extension of k(t1, t2) into
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weighted set-up is defined as follows

kw (t1, t2) =

∂r+s+2

∂tr+1
1 ∂ts+1

2

(
pwr,s(t1, t2)

)
∂r+s

∂tr1∂t
s
2

(
pwr,s(t1, t2)

)
The following theorem gives the relation connecting the BUPM and BWUPM

for the residual life distribution in bivariate set-up.

Theorem 6.2.6. The survival function of a bivariate non-negative random vector (X1, X2)

satisfies the relationship

R (t1, t2) =
pr,s (2t1, 2t2)

pwr,s (t1, t2)
(6.12)

if it follows a bivariate residual life distribution defined by the p.d.f

fw (x1, x2) =
f (x1 + t1, x2 + t2)

R (t1, t2)
.

6.3 Equilibrium models

The concept of equilibrium distribution plays an important role in survival anal-

ysis, reliability and insurance studies (see Gupta (2007), Navarro and Sarabia

(2010)). The equilibrium distribution (or stationary renewal distribution) arises

as the limiting distribution of the forward recurrence time in a renewal process.

There has been many attempts to extend the concept into higher dimensions (see

Gupta and Sankaran (1998), Navarro et al. (2006) and Nair and Preeth (2008)).

Navarro et al. (2006) defined the bivariate equilibrium distribution as

f eq (t1, t2) =
R (t1, t2)

E (X1X2)
(6.13)

Now the following implication is direct.
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Theorem 6.3.1. The BWUPM of a bivariate random vectorX satisfies the relationship

pwr,s (t1, t2)

pr,s (t1, t2)
= E (X1X2)

if it follows a bivariate equilibrium distribution defined by the p.d.f (6.13)

6.3.1 Bivariate equilibrium distributions of order n

Let X = (X1, X2) denotes a non-negative random vector defined on the posi-

tive octant R+
2 = {(x1, x2)|x1, x2 > 0} of the two dimensional Euclidean space R2

with the absolutely continuous survival function R(t1, t2) and let (Xn,1, Xn,2) be a

random vector having survival function Rn (t1, t2) defined by,

Rn (t1, t2) =

∞∫
t1

∞∫
t2

Rn−1 (u, v) dudv

∞∫
0

∞∫
0

Rn−1 (u, v) dudv

, n = 1, 2, . . .

with R0 (t1, t2) = R (t1, t2) and the density function

fn (t1, t2) =
Rn−1 (t1, t2)

µn−1:2

,

where µn,2 = E (Xn,1Xn,2) =
∞∫
0

∞∫
0

Rn (u, v) dudv < ∞. Then (Xn,1, Xn,2) is said to

have a bivariate equilibrium distribution of order n based on R (t1, t2) (Nair and

Preeth (2008)).

In the following theorem, we obtain the bivariate equilibrium distribution of

order n based on BUPM, a bivariate extension of Theorem 3.2 given in Gupta

(2007). It provides an alternative method of construction of the bivariate equilib-

rium distribution of order n, using BUPM.
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Theorem 6.3.2. The survival function of the bivariate equilibrium distribution of order

n is given by

Rn (t1, t2) =
pn,n (t1, t2)

(n!)2
n−1∏
i=0

µi:2

(6.14)

Proof. Setting r = s = n in (6.1), we have

pn,n (t1, t2) = E
[
(X1 − t1)n+ (X2 − t2)n+

]
=

∞∫
t1

∞∫
t2

(x1 − t1)n(x2 − t2)nf (x1, x2) dx1dx2

= n2

∞∫
t1

∞∫
t2

(x1 − t1)n−1(x2 − t2)n−1R (x1, x2) dx1dx2

= n2µ0:2

∞∫
t1

∞∫
t2

(x1 − t1)n−1(x2 − t2)n−1f1 (x1, x2) dx1dx2

= n2(n− 1)2µ0:2

∞∫
t1

∞∫
t2

(x1 − t1)n−2(x2 − t2)n−2R1 (x1, x2) dx1dx2

= n2(n− 1)2µ0:2 µ1:2

∞∫
t1

∞∫
t2

(x1 − t1)n−2(x2 − t2)n−2f2 (x1, x2) dx1dx2.

Proceeding in this manner, yields

pn,n (t1, t2) = (n!)2µ0:2 µ1:2 . . . µn−1:2

∞∫
t1

∞∫
t2

fn−1 (x1, x2) dx1dx2

= (n!)2
n−1∏
i=0

µi:2 Rn (t1, t2) ,

completes the proof.
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6.3.2 Stop-loss dependence

In actuarial sciences, (X − t)+ represents the financial loss incurred by an insur-

ance company, called risks. The rth moment E[(X − t)+]r is usually referred to

as the rth degree stop-loss transform of the risk X and is a standard measure of

dangerousness of X (see Cheng and Pai (2003)). The study of the impact of de-

pendence among risks has become a major topic in actuarial science, in which

the assumption of mutual independence of risks is often violated in practice. Ac-

tuaries intuitively feel that positive correlations between individual risks reveal

a more dangerous situation compared to independence (Denuit et al. (2001)). In

this context, Denuit et al. (2006) introduced the concept known as the Positive

Stop-Loss Dependence (PSLD). We consider now the first two Stop-Loss Depen-

dence (PSLD) orders for our study.

Definition 6.3.1. Two random variables X1 and X2 are said to be positively stop-

loss dependent (PSLD,) if the inequalities

E
[
(X1 − t1)+|X2 > t2

]
≥ E

[
(X1 − t1)+

]
and

E
[
(X2 − t2)+|X1 > t1

]
≥ E

[
(X2 − t2)+

]
hold for all t1, t2 ∈ R+.

Definition 6.3.2. Let ψr (ti|tj) ; i, j = 1, 2, i 6= j and pr(t) denote the rth CUPM (see

Sunoj and Vipin (2017)) and rth univariate partial moments respectively. Then the

two random variables X1 and X2 are said to be

(i) First order Positively (Negatively) Stop-Loss Dependent (denoted by FPSLD
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(FNSLD)), if the inequalities

ψ1 (ti|tj) ≥ (≤) p1 (ti) , i, j = 1, 2, i 6= j.

hold for all ti, i = 1, 2 ∈ R+.

(ii) Second order Positively (Negatively) Stop-Loss Dependent (denoted by SP-

SLD (SNSLD)), if the inequalities

ψ2 (ti|tj) ≥ (≤) p2 (ti) , i, j = 1, 2, i 6= j.

hold for all ti, i = 1, 2 ∈ R+.

Clearly, the above two stop loss dependence concepts imply each other. i.e X1

and X2 is FPSLD (FNSLD))⇔ X1 and X2 is SPSLD (SNSLD)).

Let Rw(t1, t2) denotes the survival function corresponding to (Xw
1 , X

w
2 ), with

marginal survival functions of Xw
1 and Xw

2 respectively by, Rw
1 (t1) = A1(t1)

µw
R1 (t1)

and Rw
2 (t2) = A2(t2)

µw
R2 (t2) , where A1 (t1) = A (t1, 0) and A2 (t2) = A (0, t2) . In

the next theorem, obtain the relationship betweenX andXw based on the PSLD

(NSLD) property for any general weight function w(x1, x2).

Theorem 6.3.3. IfX is PSLD (NSLD), thenXw is also PSLD (NSLD) when A(t1,t2)µw
A1(t1)A2(t2)

≤

(≥) 1.

Proof. We prove the general case here that is for r = 1, 2. Suppose

X = (X1, X2) is PSLD (NSLD) ⇔ ψr (ti|tj) ≥ (≤) pr (ti) , i, j = 1, 2, i 6= j

⇔ R1 (t1)R2 (t2)

R (t1, t2)
≤ (≥)1 (6.15)
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Now consider,

ψwr (ti|tj) ≥ (≤) pwr (ti) , i, j = 1, 2, i 6= j, (6.16)

where ψwr (ti|tj) , i, j = 1, 2, i 6= j is the rth order CUPM for the weighted mod-

els. Differentiating both sides of (6.16) with respect to ti, r times and after some

simplification yields

⇔ Rw
i (ti|tj) ≥ (≤)Rw

i (ti) , i, j = 1, 2, i 6= j

⇔ A (t1, t2)µw
A1 (t1)A2 (t2)

≤ (≥)
R1 (t1)R2 (t2)

R (t1, t2)
(6.17)

Now (6.15) and (6.17) together implies that XW is PSLD (NSLD) if A(t1,t2)µw
A1(t1)A2(t2)

≤

(≥)1.

6.4 Dependence measures

In this section, we consider some importance dependence useful in life-length

studies and obtain its relationships with BUPM’s.

6.4.1 Expectation dependence

Expectation dependence (Wright (1987)) is an important concept in fields such as

finance, insurance and asset pricing.

Definition 6.4.1 (Wright (1987)). Consider two random variables X1 and X2 de-

fined on [a1, b1] × [a2, b2],−∞ < ai < ∞,−∞ < bi < ∞, i = 1, 2, respectively.

Then the random variable X1 is Positive Expectation Dependent on X2 denoted

by PED(X1|X2) if

E[X1] ≥ E[X1|X2 ≤ t2] for all t2. (6.18)

The condition (6.18) states that when the knowledge of X2 is small (i.e., below
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the threshold t2) increases the expected value of X1. In the following we inves-

tigate the usefulness and applications of expectation dependence for bivariate

weighted models. Let us assume that the components Xw
1 and Xw

2 exhibits some

dependence. Then, we have the following result.

Theorem 6.4.1. Let Xw = (Xw
1 , X

w
2 ) be a non-negative bivariate dependent weighted

random vector defined on [0,∞]× [0,∞]. Then

E[Xw
1 ] ≥ E[Xw

1 |Xw
2 ≤ t2]⇔ E[Xw

1 ] ≤ E[Xw
1 |Xw

2 > t2] for all t2. (6.19)

Proof. Note that

E (Xw
1 ) = E (Xw

1 |Xw
2 ≤ t2)Fw

2 (t2) + E (Xw
1 |Xw

2 > t2)Rw
2 (t2) , (6.20)

where Fw
2 (.) and Rw

2 (.) are the distribution function and the survival function

corresponding to the random variable Xw
2 respectively. Also we have,

E (Xw
1 ) = E (Xw

1 )Fw
2 (t2) + E (Xw

1 )Rw
2 (t2) . (6.21)

From (6.20) and (6.21) it follows that

Rw
2 (t2) [E (Xw

1 |Xw
2 > t2)− E (Xw

1 )] = Fw
2 (t2) [E (Xw

1 )− E (Xw
1 |Xw

2 ≤ t2)]

(6.22)

Now applying the definition (6.18), from (6.22) it follows that

E[Xw
1 ] ≤ E[Xw

1 |Xw
2 > t2] for all t2.

Hence the result.
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Theorem 6.4.2. Let Xw = (Xw
1 , X

w
2 ) be a non-negative bivariate dependent weighted

random vector defined on [0,∞]× [0,∞]. Then

(Xw
1 , X

w
2 ) is PSLD⇔ PED(Xw

1 |Xw
2 )⇔ Corr [Xw

1 , I [Xw
2 > t2]] ≥ 0, for all t2

(6.23)

where I[.] is the usual indicator function.

Proof.

(Xw
1 , X

w
2 ) is PSLD ⇔ ψwr (t1|t2) ≥ pwr (t1) for all t2

⇔ Rw
1 (t1|t2) ≥ Rw

1 (t1) , for all t2

⇔ E[Xw
1 ] ≤ E[Xw

1 |Xw
2 > t2], for all t2

⇔ PED(Xw
1 |Xw

2 ), for all t2.

Now consider

PED(Xw
1 |Xw

2 ) for all t2 ⇔ E (Xw
1 |Xw

2 > t2) ≥ E (Xw
1 ) for all t2

⇔ Rw
2 (t2) [E (Xw

1 |Xw
2 > t2)− E (Xw

1 )] ≥ 0, for all t2

⇔ E (Xw
1 I [Xw

2 > t2])− E (Xw
1 )E (I [Xw

2 > t2]) ≥ 0,

for all t2

⇔ Cov [Xw
1 , I [Xw

2 > t2]] ≥ 0, for all t2

⇔ Corr [Xw
1 , I [Xw

2 > t2]] ≥ 0, for all t2 (6.24)

The above result shows that the two positive stop loss dependence concepts

(i.e FPSLD and SPSLD) and first degree positive expectation dependence are equiv-

alent to the positive correlation between Xw
1 and I[Xw

2 > t2].
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6.4.2 Stop-loss distance for weighted models

In actuarial studies, models are often compared by finding bounds for differences

in probabilities, that is, (integrated) differences between their respective probabil-

ity density functions or distribution functions. However, this approach is often

questionable when tackling insurance problems. Instead, the focus should be on

the resulting premiums, in particular stop-loss premiums, p1(t) = E (X − t)+.

The reason for this is obvious: small variations in the probabilities of events

hardly ever influence the decision made by insurance management. Any differ-

ence between calculated premiums, however, will be directly visible (see Denuit

et al. (2006)). Motivated with this, Gerber (1979) introduced the concept of stop-

loss distance which is defined as follows

Definition 6.4.2. Given two rvs X1 and X2, the stop loss distance dSL is defined

as

dSL (X1, X2) = sup
t∈R+

|p1 (t)− q1 (t)| , (6.25)

where p1(.) and q1(.) are the first-order partial moments corresponding to the ran-

dom variables X1 and X2 respectively.

An important stochastic order that lies closely in association with the stop-loss

distance is the stop-loss order which is defined as follows

Definition 6.4.3. Given two random variables X1 and X2, X1 is said to precede

X2 in the stop-loss order, written as X1 ≤SL X2, if p1(t) ≤ q1(t) for all t ∈ R+.

In the following theorems, we compare weighted random variables based on

the stop-loss order.

Theorem 6.4.3. Let Xw
1 and Xw

2 be two weighted random variables. Then

Xw
1 ≤SLXw

2 ⇔ X1≤SLX2
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if and only if mw1 (t)

µw1
≤ mw2 (t)

µw2
, where mwi (t) = E (w (Xi) |Xi > t) , i = 1, 2 and 0 <

µwi = E (w (Xi)) <∞, i = 1, 2.

Proof. Let pw1 (t) and qw1 (t) denote the partial moments corresponding to the uni-

variate weighted random variables Xw
1 and Xw

2 respectively. Then, by virtue of

Definition 6.4.3, we have

Xw
1 ≤SLXw

2 ⇔ pw1 (t) ≤ qw1 (t)

⇔ Rw
1 (t) ≤ Rw

2 (t)

⇔ E (w (X1) |X1 > t)

E (w (X1))
R1 (t) ≤ E (w (X2) |X2 > t)

E (w (X2))
R2 (t)

⇔ R1(t) ≤ R2(t)

⇔ X1≤SLX2.

Theorem 6.4.4. Let Xw
1 , Xw

2 and Xw
3 be three univariate weighted random variables.

Then

Xw
1 ≤SLXw

2 ≤SLXw
3 ⇒ dSL (Xw

1 , X
w
2 ) ≤ dSL (Xw

1 , X
w
3 .)

Proof. From definition (6.25),

dSL (Xw
1 , X

w
2 ) = sup

t∈R+

∣∣E [(Xw
1 − t)+

]
− E

[
(Xw

2 − t)+

]∣∣
≤ sup

t∈R+

∣∣E [(Xw
1 − t)+

]
− E

[
(Xw

3 − t)+

]∣∣
= dSL (Xw

1 , X
w
3 ) .

Hence the result.
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6.4.3 Positive (negative) dependence/association measures

In this section, we propose alternative definitions to positive (negative) depen-

dence of a bivariate density and association measure due to Clayton (1978) using

BUPM’s. First, we consider the positive (negative) dependence based on the to-

tally positive order 2 condition using BUPM’s.

Definition 6.4.4. Let X and Y be subsets of real line. A function f(x, y) is said

to be totally positive order 2 (TP2) (reverse regular of order 2 (RR2)) if

f (x1, y1) f (x2, y2) ≥ (≤) f (x1, y2) f (x2, y1) (6.26)

for all x1 ≤ x2 in X and y1 ≤ y2 in Y .

Multiplying both sides of (6.26) by (x1 − t1)r(y1 − u1)s(x2 − t2)r(y2 − u2)s and

integrating both sides by the respective variables, Definition 6.4.4 can also be re-

stated in terms of BUPMs as follows.

Definition 6.4.5. A joint probability density function f(x, y) is said to be totally

positive order 2 (TP2) (reverse regular of order 2 (RR2)) if

pr,s (t1, u1) pr,s (t2, u2) ≥ (≤) pr,s (t1, u2) pr,s (t2, u1) (6.27)

for all t1 ≤ t2 in X and u1 ≤ u2 in Y .

Example 6.4.1 (Bivariate Farlie-Gumbel-Morgenstern (FGM)). LetX follows a bi-

variate Farlie-Gumbel-Morgenstern (FGM) distribution defined by the joint CDF

F (x1, x2) = x1x2 + αx1x2(1− x1)(1− x2), 0 ≤ x1 ≤ 1, , 0 ≤ x2 ≤ 1,−1 ≤ α ≤ 1.
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Now applying the definition (6.1) it follows that

pr,s(t1, t2) =
rs

36
(t2 (18 + t2(2αt2 − 3α + 9))) + (1− t1)r(1− t2)s

+
rs

36

(
α + 2α(t2 − 1)2(2t2 + 1)t31 − 3(t2 − 1)2t21(α + 2αt2 − 3)

)
−rs

36

(
18(t22 − 1)t1 − 27

)
. (6.28)

Now consider the simplest case, r = s = 1, then from (6.28) it follows that

p1,1 (t1, t2) =
1

36
(t1 − 1)2(t2 − 1)2 (α + 2α (t2 + t1 (2t2 + 1)) + 9) . (6.29)

Then it is easy to verify that the terms defined in the inequality (6.27) and the first

order BUPM given in (6.29) together implies that X is TP2(RR2) when α ≥ (≤) 0

for all t1 ≤ t2 in X and u1 ≤ u2 in Y .

Analogously one can define the TP2 (RR2) property for the weighted p.d.f

fw(x, y) using BWUPM as follows

pwr,s (t1, u1) pwr,s (t2, u2) ≥ (≤) pwr,s (t1, u2) pwr,s (t2, u1) (6.30)

for all t1 ≤ t2 in X and u1 ≤ u2 in Y .

Next we consider the well-known measure of association due to Clayton (1978),

defined as

θ (t1, t2) =
f (t1, t2)R (t1, t2)

R1 (t1, t2)R2 (t1, t2)
,

where R1 (t1, t2) = ∂R(t1,t2)
∂t1

and R2 (t1, t2) = ∂R(t1,t2)
∂t2

. When X1 and X2 are posi-

tively (negatively) associated, θ(t1, t2) > (<)1 and θ(t1, t2) = 1 implies indepen-

dence of X1 and X2. Gupta (2001) further proved that θ(t1, t2) can be expressed
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as

θ (t1, t2) =
hX1|X2=t2 (t1)

h1 (t1, t2)
,

where h1(t1, t2) = hX1|X2>t2(t1) is the first component of the vector valued failure

rate defined by Johnson and Kotz (1975). In terms of the BUPMs, we have the

equivalent representation

θ (t1, t2) =
∇r+1

1

(
p∗r,0 (t1, t2)

)
∇r+1

1

(
p∗r,0 (t1, t2)

)∇r
1 (pr,0 (t1, t2))

∇r
1 (pr,0 (t1, t2))

,

where p∗r,0 (t1, t2) and pr,0 (t1, t2) are the (r, 0)th BUPM corresponding to the sur-

vival functions S(t1, t2) = P (X1 > t1, X2 = t2) and R(t1, t2) = P (X1 > t1, X2 > t2)

respectively and where ∇r
i (f) denotes the rth partial derivative of the function f

with respect to ti defined by ∇r
i (f) = ∂r

∂tri
, i = 1, 2. Extension of this measure into

the weighted set-up is also straight forward.

From Gupta (2001) we also have θ (t1, t2) ≥ (≤)1 if and only if h1(t1, t2) is

increasing (decreasing) in x2. In this direction we have the following theorem.

Theorem 6.4.5. θ(tw1 , tw2 ) > (<) 1 or Xw
1 and Xw

2 are positively (negatively) associated

if and only if
[
−∇

r+1
1 (pwr,0(t1,t2))
∇r1(pwr,0(t1,t2))

]
is increasing (decreasing) in t2.

Proof. θ(tw1 , tw2 ) > (<) 1⇔ hw1 (t1, t2) is increasing (decreasing) in t2.

θw(t1, t2) > (<) 1 ⇐⇒ hw1 (t1, t2) is increasing (decreasing) in t2

⇐⇒ − ∂
∂t1

lnRw (t1, t2) is increasing (decreasing) in t2

⇐⇒ − ∂
∂t1

(
ln
(
∂r

∂tr1
pwr,0 (t1, t2)

))
is increasing (decreasing) in t2

⇐⇒ −∇
r+1
1 (pwr,0(t1,t2))
∇r1(pwr,0(t1,t2))

is increasing (decreasing) in t2.
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6.5 Conditional upper partial moments for weighted

models

In this section we study properties of CUPMs in the context of weighted models.

For a bivariate weighted random vectorXW and analogous to (4.1) and (4.7), the

CUPMs can be defined as

φwr (ti|tj) =

∫ ∞
ti

(xi − ti)rfwi (xi|tj)dxi (6.31)

and

ψwr (ti|tj) =

∫ ∞
ti

(xi − ti)rf ∗wi (xi|tj)dxi, (6.32)

where fwi (xi|tj) = w(xi)
E(w(Xi)|Xj=tj)fi(xi|tj) and f ∗wi (xi|tj) = w(xi)

E(w(Xi)|Xj>tj)f
∗
i (xi|tj), i, j =

1, 2, i 6= j denote the weighted densities for the conditionally specified and sur-

vival models. An important weighted model is the length-biased models, when

the weight is proportional to the length of the units used i.e., w(ti) = ti, i = 1, 2.

A detailed survey of literature on length-biased and equilibrium models we refer

to Gupta and Kirmani (1990). For the length-biased case, the conditional partial

moment in (6.31) reduces to

φwr (ti|tj) =
1

φ1(0|tj)
(φr+1(ti|tj) + ti φr(ti|tj)) , i, j = 1, 2, i 6= j. (6.33)

In addition, for the equilibrium random variable XE with probability density

function fE(x) = F̄ (x)
E(X)

, the partial moment is given by

pEr (t) =
pr+1 (t)

(r + 1)E (X)
, (6.34)

(Sunoj (2004)) such that 0 < E(X) < ∞. Gupta and Sankaran (1998) defined

the equilibrium density for conditional random variable Xi|Xj > tj is given by
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fEi (xi|Xj > tj) =
Ri(xi|tj)

E(Xi|Xj>tj) , i, j = 1, 2, i 6= j. In this case, the conditional partial

moment of the second type using (6.32) becomes

ψwr (ti|tj) =
ψr+1(ti|tj)

(r + 1)ψ1(0|tj)
, i = 1, 2. (6.35)

Sankaran and Sreeja (2007) proved that the two random vectors (X1, X2) and

(Y1, Y2) satisfy the conditional proportional hazard rate (CPHR) model, when

their respective conditional hazard rate functions satisfy

hXw
i |Xw

j
(ti|tj) = θi (tj)hXi|Xj (ti|tj) ; i, j = 1, 2, i 6= j, (6.36)

where θi (tj) is a nonnegative function of tj only for i, j = 1, 2, i 6= j. Now based

on the observation (4.15) from chapter 4, we have the following theorem.

Theorem 6.5.1. Let (Xw
1 , X

w
2 ) be a random vector which has the bivariate weighted dis-

tribution associated to (X1, X2) and to two nonnegative and differentiable functions w1

and w2. Let us assume that the support of (X1, X2) is S = (l,∞) × (l,∞) for l ≥ 0.

Then,
∇r+1

1 (φwr (ti|tj))
∇r

1 (φwr (ti|tj))
= θi (tj)

∇r+1
1 (φr (ti|tj))
∇r

1 (φr (ti|tj))
, i, j = 1, 2, i 6= j (6.37)

if and only if (Xw
1 , X

w
2 ) and (X1, X2) satisfy the CPHR model (6.36).

6.5.1 Characterization results for weighted models using condi-

tional upper partial moments

We now prove some characterization results for popular bivariate distributions

using conditional partial moments in the context of length-biased and equilib-

rium distributions.

Theorem 6.5.2. For a random vectorX = (X1, X2) with E(Xi|Xj = tj) <∞,
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∇r+1
1 (φwr (ti|tj))
∇r

1 (φwr (ti|tj))
= Ci

∇r+1
1 (φr (ti|tj))
∇r

1 (φr (ti|tj))
(6.38)

for all ti and tj , where Ci is a constant independent of ti and tj, i, j = 1, 2.i 6= j if and

only ifX are independent Pareto I variables specified by the joint pdf

f(x1, x2) = C x−α1
1 x−α2

2 , x1, x2 > 1, α1, α2 > 0.

Proof. Following the similar steps of the Theorem 6.5.1, (6.38) implies that

hw (ti|tj) = Cih (ti|tj) , i, j = 1, 2; i 6= j.

Now the proof of theorem directly follows from the proof of Theorem 2.1 of Sunoj

and Sankaran (2005).

Theorem 6.5.3. For i, j = 1, 2 and i 6= j, the conditional partial moments of length-

biased and original models satisfy the relationship

φwr (ti|tj) φ1(0|tj)
φr(ti|tj)

= (A+ 1) ti +Bi(tj), A > 0, (6.39)

if and only if (X1, X2) follows bivariate distribution with Pareto conditionals given in

Arnold (1987) with the joint pdf (4.24).

Proof. Assume that (6.39) holds. Now using (6.33) we have

φwr (ti|tj) φ1(0|tj)
φr(ti|tj)

=
φr+1(ti|tj)
φr(ti|tj)

+ ti = (A+ 1) ti +Bi(tj).

Equivalently
φr+1(ti|tj)
φr(ti|tj)

= Ati +Bi(tj)

The rest of the proof is similar to that of Theorem 4.3.3. The proof of converse part
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is direct.

Theorem 6.5.4. For i, j = 1, 2 and i 6= j, the ratio of conditional partial moments of

length biased and original models satisfy the relationship

φwr (ti|tj)
φr(ti|tj)

φ1(0|tj) = r + 1 + ti, (6.40)

if and only if the joint density of (X1, X2) is defined in (4.16) with λi = 1, i = 1, 2.

Theorem 6.5.5. For i, j = 1, 2 and i 6= j the relationship

ψwr (ti|tj) ψ1(0|tj)
ψr(ti|tj)

=
1

λ
;λ > 0 (6.41)

holds if and only if the joint density of (X1, X2) follows

f(x1, x2) = e−λ(x1+x2) , x1, x2 > 0. (6.42)

Proof. Assume that (6.41) holds, then from (6.39) we get

ψwr (ti|tj) ψ1(0|tj)
ψr(ti|tj)

=
ψr+1(ti|tj)

ψr(ti|tj)(r + 1)
. (6.43)

Differentiating both sides of ψr+1(ti|tj)
ψr(ti|tj)(r+1)

= 1
λ

with respect to ti, r + 1 times and

on simplification, we obtain h∗i (t1, t2) = λ. Substituting in (4.21) and (4.22) yield

(6.42).

Theorem 6.5.6. For i, j = 1, 2 and i 6= j the CUPMs of equilibrium and original models

satisfy the relationship

ψwr (ti|tj) ψ1(0|tj)
ψr(ti|tj)

=
1

1 +Ktj
,−1 ≤ K ≤ 1 (6.44)

if and only if the joint density of (X1, X2) follows bivariate Gumbel Type I exponential
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distribution (4.9).

Proof. From (6.35) and (6.44), we obtain

ψr+1(ti|tj)
ψr(ti|tj)(r + 1)

=
1

1 +Ktj
. (6.45)

Equivalently

(ψr+1(ti|tj)) (1 +Ktj) = ψr(ti|tj)(r + 1).

Differentiating both sides with respect to ti, r + 1 times and on simplification,

we get h∗i (t1, t2) = 1 + Ktj . Now using (4.21) and (4.22), we have R(t1, t2) =

exp {− (t1 + t2 +Kt1t2)} , the joint survival function of (4.9) with θ = K. The

proof of the converse part is straightforward.

Theorem 6.5.7. For i, j = 1, 2 and i 6= j the relationship

ψwr (ti|tj) ψ1(0|tj)
ψr(ti|tj)

=
1

K
(ti +Bi(tj)) , K > 0 (6.46)

if and only if (X1, X2) follows bivariate distribution with Pareto conditionals given in

(4.40).

Proof. From (6.35) and (6.46), we get

ψr+1(ti|tj)
ψr(ti|tj)(r + 1)

=
1

K
(ti +Bi(tj)) (6.47)

and

ψr+1(ti|tj)
ψr(ti|tj)

= K∗ (ti +Bi(tj)) , (6.48)

where K∗ = (r+1)
K

. The remaining proof directly follows from Theorem 4.3.7.



Chapter 7

The role of copula-based upper

partial moments in stochastic

modelling∗

7.1 Introduction

The role of copulas in the analysis of lifetime data has been emphasised ei-

ther implicitly or explicitly during the past thirty years. This can be seen from

the works of various researchers like Romeo et al. (2006), Kaishev et al. (2007),

Pellerey (2008) and Navarro and Spizzichino (2010). The methodology adopted

to analyse bivariate data in these works is to infer the copula directly from the

observations or by appealing to reliability functions like the bivariate hazard rate

or mean residual life based on the survival function to identify the appropriate

copula. It is to be noted that for the various bivariate (multivariate) distributions

discussed in literature, measures of association often appear to be of great impor-

tance. The theory of copulas provides a flexible tool for identifying the nature

∗Contents of this chapter have been communicated to an International Journal.
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and extent of dependence in multivariate models.

The modelling and analysis of statistical data using copula has been exten-

sively studied in literature. One could refer to Schweizer and Sklar (2011), Joe

(1997), Nelsen (2007), McNeil et al. (2015) and Salvadori et al. (2007). A ques-

tion that usually arises in the study is the choice of the functional form of the

copula. The selection of the copula for a given dataset depends on the range of

dependence among the variables. In real life situations we come across a large

number of datasets with positive dependence and modelling them using many

well known copulas were found in literature. Copulas like Clayton and Frank

copulas incorporate strong positive dependence, independence and strong nega-

tive dependence. However, Gumbel copula can only incorporate independence

and positive association. Motivated by this, we introduce a stochastic order for

PQD (NQD) concepts in-terms of copula-based BUPMs.

Partial moments are extensively used in the field of analysis of risks. Most of

the real world problems are defined in higher dimensions. The present chapter

aims extending the partial moments to the bivariate case through copula func-

tion (Nelsen (2007)) and study its various properties. Applications of BUPM and

CUPMs in income studies and analysis of risks are also explored. The relation-

ship between survival copula and first-order bivariate partial moments are estab-

lished. We also investigate some applications of conditional partial moments in

the context of reliability, actuarial and income (poverty) studies.

Many of the probability models used in the literature may not have a tractable

distribution function. In such cases, an alternative approach for modelling and

analysis of statistical data is through the quantile function. Quantile function has
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many interesting properties that are not shared by the distribution functions. The

quantile function Q(u) of X is defined as,

Q(u) = F−1(u) = inf{x : F (x) ≥ u}, 0 ≤ u ≤ 1, (7.1)

for−∞ < x <∞. Nair et al. (2013b) defined a quantile-based rth order univariate

stop-loss transform as

Pr (u) = pr (Q (u)) =

∫ 1

u

(Q (p)−Q (u))rdp. (7.2)

They established various relationships between the first-order quantile-based stop-

loss transform P1 (u) and distribution properties such as measure of location, dis-

persion, skewness and kurtosis. Nair et al. (2013b) also obtained the relation-

ships between P1 (u) and certain other important income measures such as in-

come gap ratio, Lorenz Curve, Gini Index, Pietra Index, Bonferroni curve etc.

Recently, some applications of quantile-based lower partial moments were stud-

ied by Sunoj and Vipin (2017). Motivated with this, we further examine some

applications of conditional partial moments using quantile functions.

The objectives of the work in the present chapter are manifold. Firstly we de-

fine the bivariate upper partial moments using survival copula and prove certain

properties in section 7.2. An important ordering property known as tail mono-

tonicity and survival copula with standard exponential marginals are explored

in this section using copula-based BUPM. Applications of quantile-based condi-

tional upper partial moments in the context of system reliability studies, actuarial

science and income (poverty) studies are studied in Section 7.3. .



Chapter 7. The role of copula-based upper partial moments in stochastic modelling 176

7.2 Copula-based bivariate upper partial moments

Let X = (X1, X2) be a non-negative random vector with continuous survival

function R(t1, t2) and marginal survival functions Ri(ti) = P (Xi > ti), i = 1, 2

which are continuous and strictly decreasing. Then the survival copula C(u, v) of

X is a mapping C(u, v) : [0, 1]× [0, 1]→ [0, 1], defined by (Nelsen (2007))

C(u, v) = R
(
R−1

1 (u), R−1
2 (v)

)
,

where R−1
1 , R−1

2 are the usual inverse of R1 and R2 respectively. Alternatively, the

joint survival function

R (t1, t2) = C (R1 (t1) , R2 (t2)) .

The survival copula satisfies the following properties

(i) C(u, 1) = u, C(1, v) = v and C(u, 0) = 0 = C(0, v).

(ii) for every u1, u2, v1, v2 in [0, 1] such that u1 ≤ u2 and v1 ≤ v2,

C (u1, v1) + C (u2, v2)− C (u1, v2)− C (u2, v1) ≥ 0.

Applying the probability transforms,

u = R1(t1)⇒ t1 = R−1
1 (u) and v = R2(t2)⇒ t2 = R−1

2 (v)
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in (2.4), the copula-based bivariate partial moments becomes

Pr,s (u, v) = pr,s
(
R−1

1 (u) , R−1
2 (v)

)
= rs

u∫
0

v∫
0

(
R−1

1 (p)−R−1
1 (u)

)r−1(
R−1

2 (q)−R−1
1 (v)

)s−1

C(p, q)
dR−1

1 (p)

dp
dp
dR−1

2 (q)

dq
dq. (7.3)

Pr,s(u, v) provides the (r, s)th copula-based BUPM. We now consider the simplest

case when r = 1 and s = 1 in (7.3),

P1,1 (u, v) =

u∫
0

v∫
0

C (p, q)
dR−1

1 (p)

dp
dp
dR−1

2 (q)

dq
dq. (7.4)

Differentiating both sides of (7.4) with respect to u and v respectively, we have,

∂2P1,1 (u, v)

∂u∂v
= C (u, v)

dR−1
1 (u)

du

dR−1
2 (v)

dv
. (7.5)

Also from (7.3), we get

P1,0 (u, 1) = p1,0

(
R−1

1 (u) , 0
)

=

∞∫
t1

R1(u)du = −
u∫

0

p
dR−1

1 (p)

dp
dp (7.6)

and

P0,1 (1, v) = p0,1

(
0, R−1

2 (v)
)

=

∞∫
t2

R2(u)du = −
v∫

0

q
dR−1

2 (q)

dq
dq, (7.7)

where, (7.6) and (7.7) implies that, − 1
u

dP1,0(u,1)

du
=

dR−1
1 (u)

du
and − 1

v

dP0,1(1,v)

dv
=

dR−1
2 (v)

dv
.

Substituting in (7.5), we have the identity

dP1,0 (u, 1)

du

dP0,1 (1, v)

dv
C (u, v) = uv

∂2P1,1 (u, v)

∂u∂v
, (7.8)
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and hence uniquely determines the bivariate copula. (7.8) provides a alternative

method for the construction of survival copula.

Example 7.2.1. Let (X1, X2) be a non-negative random vector with an absolute

continuous survival function R(t1, t2). Then from (7.8) it follows that for the

choice of P1,1 (u, v) = u2 + v2 + uv and P1,0 (u, v) = uv = P0,1 (u, v) yields the

product survival copula, C(u, v) = uv.

Remark 7.2.1. Even if the first-order copula-based BUPM, P1,1 (u, v) uniquely de-

termines the survival copula C(u, v) using (7.8), however, it requires the knowl-

edge of its corresponding marginals P1,0 (u, v) and P0,1 (u, v). This motivate us

to explore an alternative to identify a functional relationship which could easily

identify C(u, v) without the knowledge of P1,0 (u, v) and P0,1 (u, v).

Defining the copula-based marginal partial moments p1,0 (t1, t2) and p0,1 (t1, t2)

by,

P1,0 (u, v) = −
u∫

0

C (p, v)
dR−1

1 (p)

dp
dp (7.9)

and

P0,1 (u, v) = −
v∫

0

C (u, q)
dR−1

2 (q)

dq
dq, (7.10)

in the following theorem, we prove that both P1,0 (u, v) and P0,1 (u, v) determines

the corresponding copula uniquely.

Theorem 7.2.1. The bivariate copula-based upper partial moments P1,0 (u, v) and P0,1 (u, v)

uniquely determine the survival copula through the relationships

dP1,0 (u, 1)

du
C (u, v) = u

∂P1,0 (u, v)

∂u
(7.11)
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and
dP0,1 (1, v)

dv
C (u, v) = v

∂P0,1 (u, v)

∂v
(7.12)

respectively.

Remark 7.2.2. Theorem 7.2.1 enable one to determine the survival copula with

the knowledge of either P1,0 (u, v) or P0,1 (u, v).

Example 7.2.2. Let P1,0 (u, v) = vuv (α+βv)
v−1
v

(αu+βv)
1
v
, α, β > 0. Then from (7.11), we have

a new survival copula C (u, v) = uvv
(
α+βv
αu+βv

) v−1
v
, and displayed in Figure 7.1.

Figure 7.1: Plot of the survival copula C (u, v) = uvv
(
α+βv
αu+βv

) v−1
v
, 0 < u, v < 1, for

α = β = 0.5.

The assumption of independence is seldom valid in practice. An important

notion that has been widely used in this context is the Positive (Negative) Quad-

rant Dependence (PQD (NQD)) property. As mentioned in (6.10) in section 6.2,

interms of the UPM’s, a random vector (X1, X2) satisfies the Positive (Negative)

Quadrant Dependence denoted by PQD (NQD) if for all values of t1, t2 > 0,

pr,s (t1, t2) ≥ (≤) pr (t1) ps (t2)
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for all values of r, s and ti > 0, i = 1, 2.

To this effect we have the following theorem.

Theorem 7.2.2. A random vector (X1, X2) is PQD (NQD) if and only if

P1,0 (u, v)

P1,0 (u, 1)
≥ (≤) v (7.13)

or
P0,1 (u, v)

P0,1 (1, v)
≥ (≤)u. (7.14)

Proof. Applying the probability transforms u = R1(t1) ⇒ t1 = R−1
1 (u) and v =

R2(t2)⇒ t2 = R−1
2 (v) in (6.9), we have

C (u, v) ≥ (≤)u v. (7.15)

Applying (7.11) and (7.12) in (7.15) yields

∂P1,0 (u, v)

∂u
≥ (≤) v

dP1,0 (u, 1)

du

and
∂P0,1 (u, v)

∂v
≥ (≤)u

dP0,1 (1, v)

dv
.

Integrating both sides of the first inequality by u and second inequality by v yields

the required result.

7.2.1 Tail monotonicity

WhenX1 andX2 are continuous, an important positive dependence concept is the

tail monotonicity, where the left (right) tail decreasing (increasing) are of importance.

In the sequel we identify the relationships connecting first-order copula-based
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partial moment and right tail increasing property.

Definition 7.2.1. Let X1 and X2 be two random variables. Then,

(i) X2 is right tail increasing inX1 denoted byRTI(X2|X1) if P (X2 > t2|X1 > t1)

is a nondecreasing function of t1 for all t2.

(ii) X1 is right tail increasing inX2 denoted byRTI(X1|X2) if P (X1 > t1|X2 > t2)

is a nondecreasing function of t2 for all t1.

Equivalently, Nelsen (2007) has defined right tail increasing property in terms

of copula as follows.

Theorem 7.2.3. Let X1 and X2 be continuous random variables with copula C∗. Then

(i) RTI(X1|X2) if and only if for any v in I, 1−u−v+C∗(u,v)
1−u is nondecreasing in u.

(ii) RTI(X2|X1) if and only if for any u in I, 1−u−v+C∗(u,v)
1−v is nondecreasing in v.

In the following theorem we obtain relationships connecting right tail increas-

ing and copula-based partial moments.

Theorem 7.2.4. Let (X1, X2) be a random vector with common survival copula C. Then,

(X1, X2) is said to be

(i) RTI(X1|X2) if and only if the ratio
∂P1,0(u,v)

∂u
dP1,0(u,1)

du

is nondecreasing in 1− u.

(ii) RTI(X2|X1) if and only if the ratio
∂P0,1(u,v)

∂u
dP0,1(1,v)

du

is nondecreasing in 1− v.

Proof. We only provide the proof of the (i) part of the theorem. The proof of the

second part is analogous. Let u = 1 − p and v = 1 − q, where p, q ∈ I. Now from

(7.11), it follows that

C (u, v) =
u∂P1,0(u,v)

∂u
dP1,0(u,1)

du

⇒ C (1− u, 1− v) =
(1− u) ∂P1,0(1−u,1−v)

∂u
dP1,0(1−u,1)

du

⇒ C (1− u, 1− v)

(1− u)
=

∂P1,0(1−u,1−v)

∂u
dP1,0(1−u,1)

du

. (7.16)
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Now from the relation connecting the copula C∗ and the corresponding survival

copula C, we have,

C (u, v) = u+ v − 1 + C∗ (1− u, 1− v) .

Equivalently,

C (1− u, 1− v) = 1− u− v + C∗ (u, v)

Now let us assume, for any v ∈ I,
∂P1,0(u,v)

∂u
dP1,0(u,1)

du

is nondecreasing in 1− u. Then,

∂P1,0(u,v)

∂u
dP1,0(u,1)

du

is nondecreasing in 1− u ⇐⇒
∂P1,0(1−u,1−v)

∂u
dP1,0(1−u,1)

du

is nondecreasing inu

⇐⇒ C(1−u,1−v)
(1−u)

is nondecreasing inu

⇐⇒ 1−u−v+C∗(u,v)
1−u is nondecreasing inu

⇐⇒ 1−u−v+C∗(u,v)
1−u is nondecreasing inu

⇐⇒ RTI(X2|X1) for any v ∈ I.

Hence the theorem.

Remark 7.2.3. Even if the survival copula C(u, v) for a given P1,1 (u, v), P1,0 (u, v)

and P0,1 (u, v) can be evaluated, characterization ofC(u, v) cannot be accomplished

without the knowledge of the form of the marginals.
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7.2.2 Survival copula with standard exponential marginals

For a survival copula with standard exponential marginals, we define the copula-

based first-order partial moment as

L1,1 (u, v) =

u∫
0

v∫
0

C (p, q)

pq
dpdq,

L1,0 (u, v) =

u∫
0

C (p, v)

p
dp (7.17)

and

L0,1 (u, v) =

v∫
0

C (u, q)

q
dq. (7.18)

Now, L1,1 (u, v), L1,0 (u, v) and L0,1 (u, v) determine C(u, v) uniquely through the

identities,

C (u, v) = uv
∂2

∂u∂v
L1,1 (u, v) ,

C (u, v) = u
∂

∂u
L1,0 (u, v) (7.19)

and

C (u, v) = v
∂

∂v
L0,1 (u, v) . (7.20)

Further, P1,1 (u, v), P1,0 (u, v) and P0,1 (u, v) are connected with L1,1 (u, v), L1,0 (u, v)

and L0,1 (u, v) through,

(
∂2

∂u∂v
L1,1 (u, v)

)(
dP1,0 (u, 1)

du

dP0,1 (1, v)

dv

)
=
∂2P1,1 (u, v)

∂u∂v
,

∂

∂u
L1,0 (u, v)

dP1,0 (u, 1)

du
=
∂P1,0 (u, v)

∂u

and
∂

∂u
L0,1 (u, v)

dP0,1 (1, v)

dv
=
∂P0,1 (u, v)

∂v
.
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The form of L1,0(u, v) and L0,1(u, v) for some popular copulas are listed in Table

7.1.

Table 7.1: Examples of L1,0(u, v) and L0,1(u, v) for some families of survival copu-
las

C(u, v) L1,0(u, v) L0,1(u, v)

Product:

uv uv uv

Gumbel-Barnett:

u v exp [−β log u log v] , v u1−β log v

1−β log v
u v1−β log u

1−β log u

0 ≤ β ≤ 1

F-G-M:

uv [1 + θ (1− u) (1− v)] , uv
[
1 + θ (1− v)

(
1− u

2

)]
uv
[
1 + θ (1− u)

(
1− v

2

)]
−1 ≤ θ ≤ 1

Ali–Mikhail–Haq:
uv

1+(1−u)(1−v)
v
v−1

log
(
u+v−uv−2

v−2

)
u
u−1

log
(
u+v−uv−2

v−2

)
Clayton:

(u−1 + v−1 − 1)
−1 v log(uv (1−v)+1)

1−v
u log( vu (1−u)+1)

1−u

In the following theorem we characterize the Gumbel-Barnett survival copula

using (7.17) and (7.18).

Theorem 7.2.5. The marginal partial moments are of the form

(L1,0 (u, v) , L0,1 (u, v)) =

(
v uB1(v)

B1 (v)
,
u vB2(u)

B2 (u)

)
(7.21)

where B1(.) does not depend on u and B2(.) does not depend on v if and only if the

survival copula is Gumbel-Barnett.

Proof. To prove the sufficient part, we assume that (7.21) holds true. Then, using
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(a) L1,0(u, v) (b) L0,1(u, v)

Figure 7.2: Plot of L1,0(u, v) and L0,1(u, v) for Gumbel-Barnett survival copula
with β = 0.5.

(7.19) and (7.20) lead to the functional equation

v uB1(v) = u vB2(u), (7.22)

which is equivalent to

u
1

B2(u)−1 = v
1

B1(v)−1 .

The solution is

u
1

B2(u)−1 = k = v
1

B1(v)−1

giving

B2 (u) =
1− log u

β
,B1 (v) =

1− log v

β
, β = − log k

substituting in (7.22), we obtain the Gumbel-Barnett copula.

The proof of the necessary part directly follows from (7.17), (7.18) and Table

7.1.

Theorem 7.2.6. The condition C (u, v) = L1,1 (u, v) = L1,0 (u, v) = L0,1 (u, v) holds
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true if and only if the survival copula is the product survival copula, C (u, v) = uv.

7.3 Applications

In this section we explore some applications of quantile-based conditional partial

moments in the context of risk analysis and income and poverty studies.

7.3.1 Applications in system reliability studies

Now illustrate the use of representing partial moments using copulas in the view

point of system reliability studies. The distributions of maximum and minimum

of the random variables X1 and X2 are of much importance in reliability stud-

ies and survival analysis. For example, maximum of all component’s lifetimes

gives the total lifetime of the parallel system and for the series system, the min-

imum gives the total lifetime. Consider a two component system with lifetimes

(X1, X2). Let T1 = min(X1, X2) and T2 = max(X1, X2) denote the random vari-

ables of minimum and maximum respectively. If the component lifetimes are

statistically independent and identically distributed, the properties of such sys-

tems are well understood. However, in real life, component lifetimes are often

statistically dependent because they share the same environment. In the sequel,

we investigate some important properties of the series systems when lifetimes of

components are dependent which have the common marginal distribution.

7.3.1.1 Series system

Consider a series system with the system lifetime denoted by the random variable

T1 which consisting of two dependent and identically distributed components

lifetimes X1 and X2 having the same marginals. Then, from Navarro et al. (2013),



Chapter 7. The role of copula-based upper partial moments in stochastic modelling 187

the reliability function of the system is given by

RT1 (t) = P (T1 > t) = δC (R (t)) , t > 0, (7.23)

where δC (.) is defined as the diagonal section of the survival copula C. From

(7.23) it follows that

fT1 (t) = −dδC (R (t))

dt
= f (t) δ

′

C (R (t)) , t > 0, (7.24)

where δ′C(.) denotes the partial derivative of δC(.). Hence for any positive integer

r, partial moments for the Lifetime of the series system becomes

pr(t) = r

∫ ∞
t

(x− t)r−1RT1(x)dx. (7.25)

Now applying the probability integral transformation u = R1(t1) ⇒ t1 = R−1
1 (u)

and v = R2(t2) ⇒ t2 = R−1
2 (v) in (7.25), partial moments for the Lifetime of the

series system in terms of copula can be expressed as

pr(R
−1 (p)) = Pr(u) = −r

u∫
0

(
R−1 (p)−R−1 (u)

)r−1
δC (p)

dR−1 (p)

dp
dp. (7.26)

Confining to the case r = 1, (7.26) becomes

P1(u) = −
u∫

0

δC (p)
dR−1 (p)

dp
dp. (7.27)

Assuming the marginal lifetimes follows standard exponential distribution, (7.27)

becomes

P1(u) =

u∫
0

δC (p)

p
dp. (7.28)
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Hence one can determine the diagonal section of a survival copula from the first

order partial moment using the relationship

u
dP1(u)

du
= δC (u) (7.29)

Example 7.3.1. Consider a series system consisting of two components with sys-

tem lifetime T1 and marginals are distributed as standard exponentials. Let (X1, X2)

follows

(i) Gumbel’s exponential distribution specified by the joint survival function

R(t1, t2) = e(t1+t2+θt1t2), t1, t2 > 0, 0 ≤ θ ≤ 1.

Then the corresponding survival copula function is C(u, v) = u v e−θ logu logv

and the diagonal section is δC(u) = u2 e−θ (logu)2 , 0 ≤ u ≤ 1 for all 0 ≤ θ ≤ 1.

Then a direct application of (7.28) gives

P1 (u) =

√
πe1/θ

(
Erf
(
θ log(u)−1√

θ

)
+ 1
)

2
√
θ

, (7.30)

where Erf (u) = 2√
π

∫ u
0
e−p

2
dp.

(ii) Farlie-Gumbel-Morgenstern (F-G-M) with joint reliability function given by

C (R (t1) , R (t2)) = R (t1)R (t2) [1 + θR (t1)R (t2)] .

Then the FGM survival copula function is

C(u, v) = u v [1 + θ (1− u) (1− v)] ,−1 ≤ θ ≤ 1

and the diagonal section of the copula will be δC(u) = u2(1 + θ(1− u)2), 0 ≤
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Gumbel

FGM

0.2 0.4 0.6 0.8 1.0
p

0.1

0.2
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0.5

0.6

P1 (u)

Figure 7.3: Plot of P1(u) for bivariate Gumbels exponential and F-G-M copula
when θ = 0.5.

u ≤ 1. Hence, from (7.28) it follows that

P1 (u) =
θu4

4
− 2θu3

3
+
θu2

2
+
u2

2
. (7.31)

Figure 3 present the plot of P1(u) for Bivariate Gumbels exponential ((7.30)) and

F-G-M ((7.31)) copula for θ = 0.5. From the figure it is clear that P1(u) is of convex

nature.

Navarro et al. (2013) discussed that the failure rate function of T1 can be iden-

tified using the identity

hT (t) =
δ′C (R (t))

δC (R (t))
f (t) = α (R (t))h (t) , (7.32)

where α(u) = u δ
′
C(u)
δC(u)

, 0 < u < 1 and h(.) is the marginal failure rate function.

Now we present the following theorem which states the stochastic orders in

terms of P1(u).

Theorem 7.3.1. Let T1 = min{X1, X2} and T2 = min{Y1, Y2} denotes the lifetimes

of two series systems with two dependent and identically distributed component lifetimes

having the common absolutely continuous reliability functionsR and S respectively. Also
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let (P1(u), δC1 (u)) and (Q1(u), δC2 (u)) denote the first order partial moments together

with the corresponding diagonal section of the survival copulas C1 and C2 respectively.

Then,

(i) T1≤ST (≥ST )T2 for all R if and only if P1(u) ≤ (≥)Q1(u) in (0, 1).

(ii) If X1≤HR Y1 and d
du

(
ln
(
dP1(u)
du

))
≥ d

du

(
ln
(
dQ1(u)
du

))
in (0, 1) then T1≤HR T2.

Proof. Note that two random variables X is said to be smaller than Y in the usual

stochastic order (denoted by X ≤ST Y ) if R(t) ≤ S(t) for all t, where R and S are

the survival functions corresponding to X and Y respectively. Now from (7.29) it

follows that

P1(u) ≤ (≥)Q1(u) in (0, 1) ⇐⇒ dP1(u)
du
≤ (≥) dQ1(u)

du
in (0, 1)

⇐⇒ udP1(u)
du
≤ (≥)udQ1(u)

du
in (0, 1)

⇐⇒ δC1 (u) ≤ (≥) δC2 (u) in (0, 1).

Hence (i) follows from (7.23) and from the definition of the stochastic order.

To prove (ii), since X1≤HR Y1, we have, f(t)
R(t)
≤ g(t)

S(t)
, where f (t) = −dR(t)

dt
and

g (t) = −dS(t)
dt
. Moreover, X1≤HR Y1 ⇔ X1≤ST Y1, yields R(t) ≤ S(t). Hence,

d
du

(
ln
(
dP1(u)
du

))
≥ d

du

(
ln
(
dQ1(u)
du

))
⇐⇒ u d2

du2
P1(u)

d
du
P1(u)

+ 1 ≥ u d2

du2
Q1(u)

d
du
Q1(u)

+ 1, u ∈ (0, 1)

⇐⇒ u
δ′C1

(u)

δC1
(u)
≥ u

δ′C2
(u)

δC2
(u)
, u ∈ (0, 1)

⇐⇒ α(R(t)) ≥ α(S(t)).

Now using the fact that α(.) is non negative in (0, 1) and from (7.32), we have

hT1 (t) =
f (t)

R (t)
α (R (t)) ≥ g (t)

S (t)
α (S (t)) = hT2 (t) .
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Hence the result.

7.3.2 Applications in income studies

Abdul-Sathar et al. (2007) defined the income-gap ratio for the bivariate random

vector β (t1, t2) = (β1 (t1, t2) , β2 (t1, t2)), where the ith component of the random

vector is defined by

βi (ti, tj) = 1− ti
vi (ti, tj)

, i, j = 1, 2, i 6= j, (7.33)

where vi (t1, t2) = E(Xi|X1 > t1, X2 > t2) is the ith component of the bivariate

vitality function defined in Sankaran and Nair (1991). Using the definition of

BUPM, (7.33) becomes

β1 (t1, t2) =
p1,0 (t1, t2)

t1 p0,0 (t1, t2) + p1,0 (t1, t2)
(7.34)

and

β2 (t1, t2) =
p0,1 (t1, t2)

t2 p0,0 (t1, t2) + p0,1 (t1, t2)
. (7.35)

Letm (t1, t2) = (m1 (t1, t2) ,m2 (t1, t2)) denotes the vector-valued bivariate mean

residual life (BMRL) of Arnold and Zahedi (1988), where mi(t1, t2) = E(Xi −

ti|X1 > t1, X2 > t2), i = 1, 2. Employing the same probability transforms,

u = R1(t1) ⇒ t1 = R−1
1 (u) and v = R2(t2) ⇒ t2 = R−1

2 (v) , that we used for

defining the bivariate copula based stop-loss transform, Nair et al. (2017) defined

the analogue of bivariate mean residual function of (X1, X2) using survival cop-

ula as the vector (M1(u, v),M2(u, v)), where

M1 (u, v) = m1

(
R−1

1 (u) , R−1
2 (v)

)
=

−1

C (u, v)

u∫
0

C (p, v)
dR−1

1 (p)

dp
dp
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and

M2 (u, v) = m2

(
R−1

1 (u) , R−1
2 (v)

)
=

−1

C (u, v)

v∫
0

C (u, q)
dR−1

2 (q)

dq
dq.

Similarly, the bivariate quantile version of (7.34) and (7.35) will be

B1 (u, v) = β1

(
R−1

1 (u) , R−1
2 (v)

)
=

P1,0 (u, v)

R−1
1 (u) C (u, v) + P1,0 (u, v)

(7.36)

and

B2 (u, v) = β2

(
R−1

1 (u) , R−1
2 (v)

)
=

P0,1 (u, v)

R−1
2 (v) C (u, v) + P0,1 (u, v)

(7.37)

Now, we present the following theorem, which can be used to compare two

bivariate income-gap ratios of two different populations.

Theorem 7.3.2. Let (X1, X2) and (Y1, Y2) denote two random vectors with the bound-

ary line vectors (t1, t2) with corresponding two survival copula’s C(u, v) and C∗(u, v)

and the corresponding copula-based income-gap ratio vectors be (B1 (u, v) ,B2 (u, v)) and

(B∗1 (u, v) ,B∗2 (u, v)). Then,

B1 (u, v) ≤ (≥)B∗1 (u, v)⇔M1 (u, v) ≤ (≥)M∗
1 (u, v) , (7.38)

and

B2 (u, v) ≤ (≥)B∗2 (u, v)⇔M2 (u, v) ≤ (≥)M∗
2 (u, v) (7.39)

where, (M1 (u, v) ,M2 (u, v)) and (M∗
1 (u, v) ,M∗2 (u, v)) denote the vector-valued bivari-

ate mean residual quantile functions corresponding to (X1, X2) and (Y1, Y2) respectively.
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Proof. Suppose B1 (u, v) ≤ (≥)B∗1 (u, v) holds true. Then from the definition (7.34)

it follows that

B1 (u, v) ≤ (≥) B∗1 (u, v) ⇔ P1,0 (u, v)

R−1
1 (u) C (u, v) + P1,0 (u, v)

≤ (≥)
Q1,0 (u, v)

S−1
1 (u) C∗ (u, v) +Q1,0 (u, v)

. (7.40)

where, P1,0 (u, v) and Q1,0 (u, v) denote the quantile based stop-loss transforms

corresponding to (X1, X2) and (Y1, Y2) respectively. Now from (7.40), we have,

B1 (u, v) ≤ (≥)B∗1 (u, v)⇔ R−1
1 (u)

M1 (u, v)
≥ (≤)

S−1
1 (u)

M∗
1 (u, v)

and since (t1, t2) denote the boundary line points, the marginals should be equal.

i.e., R−1
i (u) = S−1

i (u) , i = 1, 2 for all values of u. Hence we have (7.38).

In a similar lines using (7.35) and employing the probability transforms, one

can also prove that,

B2 (u, v) ≤ (≥)B∗2 (u, v)⇔ R−1
2 (v)

M2 (u, v)
≥ (≤)

S−1
2 (v)

M∗
2 (u, v)

.

Hence the theorem.

As discussed earlier chapters, the measure MLPRI due to Belzunce et al. (1998)

has a significant role in income studies. Hence applying the same probability

transforms a copula based version of MLPRI is given by the vector

(Γ1 (u, v) , Γ2 (u, v)) =

(
1− M1 (u, v)

R−1
1 (u)

, 1− M2 (u, v)

R−1
2 (v)

)
.

Now the following theorem is immediate.
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Theorem 7.3.3. Let (X1, X2) and (Y1, Y2) denote the two random vectors with the bound-

ary points (t1, t2) and with two distribution functions F (x1, x2) andG(y1, y2) also let the

corresponding MLPRI vectors are denoted by (Γ1(u, v), Γ2(u, v)) and (Γ ∗1 (u, v), Γ ∗2 (u, v)).

Then, for i = 1, 2,

Γi (u, v) ≤ (≥) Γ ∗i (u, v)⇔Mi (u, v) ≤ (≥) M∗
i (u, v) .

The comparison of CES in terms of first order CUPM which is defined in Theo-

rem 5.1 has a different interpretation in the comparison of deprivation in the con-

text of incomes and wealth (see Duclos and Araar (2007), Belzunce et al. (2012a)

and the references there in). The indicator defined by Duclos and Araar (2007),

δ (p, q) =
(
F−1 (q)− F−1 (p)

)
+

=


F−1 (q)− F−1 (p) if F−1 (q) ≥ F−1 (p)

0 if F−1 (q) ≤ F−1 (p)

,

where 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1 gives the relative deprivation of an individual

with income F−1(p), while comparing with an another individual having income

F−1(q) and the expected relative deprivation of an individual at rank p is given

by

δ (p) =

1∫
0

δ (p, q) dq =E
[(
X − F−1 (p)

)+
]
. (7.41)

Extending the concept into bivariate set-up, the measure (7.41) can be used to

compare the relative deprivation among two populations, say, (X1, Y1) and (X2, Y2).

Then, for the conditioned random variable X1 > t1|Y1 > t2, , the α-level condi-

tional expected relative deprivation will be of the form (7.43). Hence the Theorem

7.3.4 can be used to compare the conditional expected relative deprivation among

two different populations.
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7.3.3 Comparisons of risks in actuarial studies

Partial moments are extensively used in actuarial science for the analysis of risks.

Let the non-negative random variable X represents the random amount that an

insurance company will pay to a policy holder in case of claim. Two measures

that are very popular for the comparison of risks are: (i) the Value-at-Risk (VaR)

and (ii) the Expected Shortfall (ES).

The VaR is given by V aR[X;α] = F−1(α), α ∈ (0, 1). The expected shortfall is

the right-spread function defined by, τX(α) = p1 (F−1(α)) = E
[
(X − F−1 (α))+

]
=

∞∫
F−1(α)

R (u) du.

In some situations, insurance companies do not have only one policy for some

policyholders but have two policies. Suppose of a policyholder can have a policy

to insure the car and another policy to ensure the house, with random claims X

and Y (see Belzunce et al. (2012a)). It is clear that X and Y should exhibit some

kind of dependence, say, a positive dependence. Let us consider two risky situ-

ations A and B for policyholders, with random risks (X1, Y1) and (X2, Y2). Then

the random variables of interest are X1|Y1 > t2 and Y1|X1 > t2 or X2|Y2 > t2 and

Y2|X2 > t2, which enables to compare the two risks such that the other risk is

being above certain threshold value.

Let R(t1|t2) = P (X1 > t1|X2 > t2) and Q(α|t2) = inf {t1 : R(t1|t2) ≤ 1− α},

α ∈ (0, 1) be respectively the conditional survival and quantile functions of X1 >

t1|Y1 > t2, where Q(α|t2) = QX1|X2>t2(α|t2) = F−1
X1|X2>t2

(α|t2). Assume that F (.|t2)

is absolutely continuous and strictly increasing in t1. Then from the definition of
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the rth order conditional upper partial moment (CUPM) given by

ψr(t1|t2) = r

∫ ∞
t1

(x1 − t1)r−1R(x1|t2)dx1,

one can define the quantile based rth order conditional stop-loss transform as,

ψr (Q (α|t2)) =

1∫
α

(Q (u|t2)−Q (α|t2))rdu.

Then, for r = 1,

ψ1 (Q (α|t2)) =

1∫
α

(Q (u|t2)−Q (α|t2))du

=

1∫
α

Q (u|t2)du− (1− α)Q (α|t2) .

The conditional value-at-risk will be the αth quantile of the conditional distribu-

tion of X1 > t1|X2 > t2, i.e. CV aR (Y ) = inf {t1 : ψ0(t1|t2) ≤ 1− α} , α ∈ (0, 1).

Now, consider the conditional mean of X1|X1 > t1, X2 > t2 is defined by

E (X1|X1 > t1, X2 > t2) = t1 +
1

R (t1, t2)

∞∫
t1

R (u, t2)du = t1 +
p1,0 (t1, t2)

p0,0 (t1, t2)
.

Then, the α-level Conditional Expected Shortfall (CES), τ(α|t2) of (X1|X1 > t1, X2 >

t2) is obtained by setting t1 = Q(α|t2). Thus in terms of conditional quantile func-

tion, we rewrite

E (X1|X1 > t1, X2 > t2) = Q(α|t2) +
p1,0 (Q(α|t2), t2)

p0,0 (Q(α|t2), t2)
.
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Moreover, we have,

E (X1|X1 > t1, X2 > t2) =
1

R (t1|t2)

∞∫
t1

udFX1|X2>t2 (u|t2) (7.42)

and by setting t1 = Q(α|t2) in (7.42) yields

τ(α|t2) =
1

α− 1

1∫
α

Q(u|t2)du. (7.43)

Let U = X1|Y1 > t2 and V = X2|Y2 > t2 be conditional risk on two options with

quantile functionsQ (α|t2) andW (α|t2) respectively. Then, the following theorem

provides the importance of quantile-based first order CUPM in comparing two

risks in terms of conditional expected shortfalls.

Theorem 7.3.4. Let (τU (α|t2) , ψ1 (Q (α|t2))) and (τV (α|t2) , γ1 (W (δ|t2))) denotes the

CES and First order CUPM pair for U and V respectively. Then, for all α ∈ (0, 1),

τU (α|t2) ≤ τV (α|t2)⇔ ψ1 (Q (α|t2)) ≤ γ1 (W (α|t2)) .

if and only if the function 1
1−α

(
1∫
α

Q (u|t2) du−
1∫
α

W (u|t2) du

)
is a decreasing function

of α.
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Proof.

τU (α|x) ≤ τV (α|x) ⇔ 1

1− α

1∫
α

Q (u|t2)du ≤ 1

1− α

1∫
α

W (u|t2)du

⇔ 1

1− α

 1∫
α

Q (u|t2)du−
1∫

α

W (u|t2)du

 ≤ 0

⇔ [−Q (α|t2) +W (α|t2)]

(1− α)

+

[
1∫
α

Q (u|t2)du−
1∫
α

W (u|t2)du

]
(1− α)2 ≤ 0

⇔ (1− α)W (α|t2)−
1∫

α

W (u|t2)du

≤ (1− α)Q (α|t2)−
1∫

α

Q (u|t2)du

⇔ ψ1 (Q (α|t2)) ≤ γ1 (W (α|t2)) .



Chapter 8

Conclusion and future work

The notion of ‘moment’ in statistical sense is a specific quantitative measure of

the shape of a set of points. Since the moments are closely connected to the dif-

ferent parameters of an underline population, there are various type of moments

of the rv X are defined in the literature. Among these a popular one is the ’par-

tial moments’. Partial moments are the specific quantitative measure for the data

when the investigator is more interested in the tail events. For example, in order

to analyse the affluence (poverty) of a population, the investigator has to fix a

level of reference for the population and consider the portions of the population

which falls above or below the reference level. In the context of actuarial studies,

this threshold level, might be the rate of inflation, the real interest rate, the return

on a benchmark index or the risk-free rate etc. If the analyst focus on the risky re-

turns of an investment from an arbitrary assets, there correspond the upside and

downside risks. Upside risk refers to the events in which the target returns falls

above the reference level t (i.e. an unexpected gain situation). As a dual the actu-

ary face a downside-risk situation when the returns falls shorts of t (i.e. an unex-

pected loss situation). These upward and downside risk situations in the context

of life-length studies are termed as the expected residual life and inactivity times

199
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(reversed lifetime) respectively. Hence if we apply the usual moments to analyse

the shape of the points in these kind of situations there is a high chance of ob-

taining misleading values as the estimates of population characteristics involving

moments such as measure of central tendency, measure of variation, peakedness

and shape. In such situation its better to deal with the respective upper and lower

partial moments accordingly. Due to the wide applications of partial moments in

different fields, such as risk analysis, actuarial science, forensic science, reliability

modeling, survival analysis, etc., the study of partial moments and its higher or-

ders based on residual and past lifetime are of greater interest among researchers.

In many statistical models, the assumption of independence between two or

more variables is often due to convenience rather than to the problem at hand.

In developing stochastic models for analyzing multivariate data characterization

results for important probability models plays a crucial role. Since Characteriza-

tion results implicates the facts under the imposed conditions the distribution F is

the only probability distribution satisfying the designated property P. Hence one

kind of theorem is developed for any such probability model in-terms of certain

functional relationships between the measure of our interest, the model identifi-

cation becomes much simpler. If the structure of the relationship is very simple

and easy to interpret, tho model identification will also be very easy. Motivated

by these facts the present study focused on developing characterization results

for bivariate probability models using bivariate and conditional versions of par-

tial moments.

There has been a various attempts to use partial moments as a useful tool

in developing characterization theorem for probability models in the univariate

frame work. For review see Chong (1977), Nair and Hitha (1990), Sunoj (2004),
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Abraham et al. (2007), Sunoj and Maya (2008), Nair et al. (2013a), Nair et al.

(2013b), etc. In the present work we have extended the notion of partial moments

to develop necessary theoretical framework for lifetime data analysis. In Chapter

1, we have given a brief outline of the work and in Chapter 2 we present the basic

concepts and review of literature.

In Chapter 3 we mainly focus on characterizing the bivariate probability mod-

els using BUPMs for non-negative continuous random vectors. A new bivariate

distribution is proposed by extending the results of Lin (2003) to the bivariate

case. It is identified that, that proposed distribution is a modified version of bi-

variate Gumbel’s exponential distribution. Some characterizing relationships be-

tween the BUPMs are established to model the proposed distribution. We have

also proved characterization theorems that extend the result of Abraham et al.

(2007) to characterize bivariate Pareto law using BUPMs. Finally, a data analysis

is carried out to illustrate a theoretical result established in the paper using a bi-

variate failure time data given in Barlow and Proschan (1976).

In Chapter 4 we have introduced the UPMs for the conditionally specified

and survival models. Since CUPMs uniquely determines the conditional distri-

butions, some useful characterizations of important bivariate models are studied.

The relationships connecting CUPMs and other common reliability measures are

obtained. The CUPMs in the context of system reliability (i.e., for minimum and

maximum of two component system) are examined. The applications of CUPMs

in context of income studies are also investigated. Finally, nonparametric estima-

tors for CUPMs are introduced and validated using simulated and real data sets

it is also used for illustrating a characterization result that we proved in the same

chapter.
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In Chapter 5, we have introduced the LPMs for the conditional models. Since

CLPM uniquely determines conditional distributions, some useful characteriza-

tions of important bivariate models are studied. The relationships and applica-

tions connecting CLPMs with reliability, risk, and income measures are estab-

lished. Finally, a non-parametric estimator for CLPM is introduced and is vali-

dated using simulated and real data sets.

Chapter 6 has studied some reliability aspects of bivariate upper partial mo-

ments based on bivariate weighted models. A detailed study on bivariate equi-

librium model using BWUPM has been conducted. Alternative definitions to

positive (negative) dependence properties in terms of BWUPMs are established.

Useful relationships with some important dependence notions viz., expectation

dependence, stop-loss distance for bivariate weighted distributions are also de-

rived. The concept of CUPMs are extended to weighted models and studied its

various properties.

BUPMs is usually expressed in terms of distribution functions. In Chapter 7,

an alternative approach is proposed by considering bivariate copulas instead of

bivariate distributions. We define the analogues of BUPMs that are expressed in

terms of copulas and study their properties. The proposed copula functions pos-

sess several advantages over the usual BUPMs defined in the literature. We can

generate new copulas through appropriate choices of the copula-based BUPM

and the proposed copula functions satisfy certain properties that are not shared

by their distribution-based counterparts. We also illustrate the use of represent-

ing partial moments using copulas in the view point of system reliability studies.

Applications of the copula based BUPMs and quantile based conditional partial
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moments in income studies and analysis of risks were also explored.

In the previous chapters we have seen that more results and findings are re-

quired to make more advanced study in connection with partial moments of

higher orders in higher dimensions. On the basis of the present study it is felt

that the following problems are of relevance in the future study.

(i) In order to apply the theoretical results those are establishing through partial

moments in practice one must require an estimator. Let {X1, . . . , Xn} denote

n i.i.d set of observations with common survival function R(t). A natural

estimator that has been widely using for estimating univariate partial mo-

ments is the empirical estimator given by p̂r(t) = 1
n

n∑
i=1

(Xi − t)rI (Xi > t)

or l̂r(t) = 1
n

n∑
i=1

(t−Xi)
rI (Xi ≤ t), where I(.) is the usual indicator func-

tion. The estimators are the rth sample moment of the observations from

the events {Xi > t, 1 ≤ i ≤ n} and {Xi ≤ t, 1 ≤ i ≤ n}. Since these esti-

mator are step functions, it possesses some undesirable properties like high

volatile nature. Moreover the partial moments have different interpretations

in different contexts. In life length studies the data that are commonly avail-

able are subject to censoring. The non-availability of the complete infor-

mation is reflected in censoring. In most reliability and life testing exper-

iments, due to time constraints or cost considerations the experimenter is

forced to terminate the experiment after a specific period of time or after the

failure of a specified number of units. Such non-availability of the complete

information results the underlying data censored. There are different cen-

soring mechanisms adopted by the experimenters. Also, the independence

assumption for the observations is not always adequate in the real life practi-

cal situations, for example, sequentially collected economic data. Therefore,
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in practice it is more adequate to assume that there might exist some sort of

dependence in the observed data. Accordingly, as a future work, we plans

to derive new nonparametric estimators for the partial moments in different

contexts and to validate it using simulated and real life data sets.

(ii) Since most of the real world problems are defined in higher dimensions, we

also plan to develop nonparametric estimator’s for the partial moments in

bivariate and conditional set-up under different schemes such as censoring

and dependence in data are present.

(iii) Usually association measures that are widely used to study about the de-

pendence structure of bivariate and multivariate are functions of joint sf,

joint CDF or conditional expectation etc. (see Nair and Sankaran (2010a)).

Since the partial moments are the more specific measure when the tail events

are of interest, we plan to develop an association measure using the target

semivariance. Alternatively we are also investigating about the application

product moment, a particular case of bivariate partial moment as useful tool

as a new association measure.

(iv) In Chapter 7, we developed the concept of copula based BUPMs. The esti-

mation of the proposed measure in the context of life-length and actuarial

studies is also a challenging problem. Extension of this copula based mea-

sure in bivariate discrete set-up as well as for the bivariate weighted models

is also an interesting problem.

We are currently attempting to resolve some of these problems and hopefully

work in this direction is expected to be presented in a future work.
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