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2.7 Plot of Ĥ(u) for the electric cart data set. . . . . . . . . . . . . . . . . . . 59

3.1 Plots of the density function for different values of parameters. . . . . . . . 63
3.2 Probability density functions of Jones distribution and its approximation. . . 70
3.3 Probability density functions of gamma distribution and its approximation. . 71
3.4 Plots of H(u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5 Q-Q plot for the repair time data. . . . . . . . . . . . . . . . . . . . . . . . 78
3.6 Q-Q plot for the income data. . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1 Plots of density function for different values of parameters. . . . . . . . . . 87
4.2 Plots of the hazard function for different values of parameters. . . . . . . . 94
4.3 Estimate of the hazard quantile function. . . . . . . . . . . . . . . . . . . . 100
4.4 The densities of the BF, EF and Frechet distributions for the glass fibres

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.5 The density of the proposed model for the glass fibres data. . . . . . . . . . 101
4.6 Q-Q plot for the glass fibres data. . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Plots of density function for different values of parameters. . . . . . . . . . 107
5.2 L-coefficients of Skewness and kurtosis for selected values of β and γ as a function

of the parameter α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 L-coefficients of Skewness and kurtosis for selected values ofα and γ as a function

of the parameter β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xvii



List of Figures xviii

5.4 L-coefficients of Skewness and kurtosis for selected values of α and β as a func-

tion of the parameter γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.5 Plots of the hazard quantile function for different values of parameters. . . . 118
5.6 Q-Q plot and estimated hazard quantile function for the chemotherapy data

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1 Bounds of HY (u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2 Non-monotonic shapes of HY (u). . . . . . . . . . . . . . . . . . . . . . . 140
6.3 MX(u) and MY (u) for selected values of parameters. . . . . . . . . . . . . 141
6.4 Plots of the density function for different values of parameters. . . . . . . . 150
6.5 Plots of hazard quantile function for different values of parameters. . . . . . 151
6.6 Fitted densities and histogram of aluminium strip data. . . . . . . . . . . . 153
6.7 Q-Q plot of the aluminium strips data. . . . . . . . . . . . . . . . . . . . . 154
6.8 Fitted densities and histogram of the carbon fibres data. . . . . . . . . . . . 155
6.9 Q-Qplot of the carbon fibres data. . . . . . . . . . . . . . . . . . . . . . . 155

7.1 Estimates of cause specific hazard quantile functions for Hoel data. . . . . . 175
7.2 Estimates of cause specific hazard quantile functions for Davis and Lawrence

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.1 Plots of relevated hazard function (hX#Y (x)) of the Weibull distribution. . . 197
8.2 Q-Q plot for data set-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.3 Q-Q plot for data set-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.4 (a) Uniform (0, θ

θ−1
) with T ∗PH(u), and (b) rescaled beta (0, 1

1−θ ) with
T ∗PH(u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.5 Hazard quantile function for different choices of parameters. . . . . . . . . 209
8.6 Hazard quantile function for different choices of parameters. . . . . . . . . 210



List of Tables

2.1 Ageing behaviour of the hazard quantile function for different regions of
parameter space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Shape of the hazard quantile function for different regions of the parameter
space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Shape of the hazard quantile function for different regions of the parameter
space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
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Chapter 1

Introduction

The term reliability has been formulated as the science of predicting, estimating or opti-

mizing the probability of survival, the mean life or more generally the life distribution of

components or systems. Most of the statistical models used in the context of reliability

studies are developed in terms of the distribution function F (x) or its related concepts. An

equivalent and an alternative approach is by means of using the quantile function defined

by

Q (u) = F−1 (x) = inf{x : F (x) ≥ u}, 0 ≤ u ≤ 1.

Both F (x) and Q(u) contain the same information about the random mechanism of the

subject with different implications. Although both convey the same information about the

underlying distribution, most of the popular statistical concepts and methodologies in the

current literature is based on distribution functions. The quantile-based studies are carried

out mostly when the traditional approach is either difficult or fails to provide the desired

results. Further, the quantile function has several interesting characteristics that are not

shared by the distribution function. For example, the sum of two quantile functions is

again a quantile function.

Historically, many researchers have pointed out the potential of quantiles in data analysis

even before the nineteenth century. Quetelet [121] initiated the use of quantiles in statistical

analysis by introducing the concept of inter-quantile range for measuring the data variabil-

1
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ity. Hastings et al. [56] introduced a class of distributions through the quantile function

which does not have a closed form expression for its distribution function. This was a ma-

jor development in portraying quantile functions to represent distributions. The class of

distributions by Hastings et al. [56] was later refined by Tukey [152] to form a symmet-

ric distribution, called Tukey lambda distribution. This model was generalized in different

ways referred to as the lambda distributions. These include various forms of quantile func-

tions discussed in Ramberg and Schmeiser [123], Ramberg [122], Ramberg et al. [125], and

Freimer et al. [40]. Govindarajulu [45] introduced and then studied by Nair et al. [104],

a new quantile function by taking the weighted sum of quantile functions of two power

distributions. Gilchrist [42] presented the power-Pareto distribution by taking the product

of power and Pareto quantile functions. van Staden and Loots [153] developed a four pa-

rameter distribution, using a weighted sum of generalized Pareto and its reflection quantile

functions. Sankaran et al. [136] developed a new quantile function based on the sum of

quantile functions of generalized Pareto and Weibull distributions. The density function or

distribution function for these models are not available in closed forms except for certain

special cases. The great advantage of these models is that the simple forms of the quantile

functions make it extremely straightforward to simulate random values, which is useful

in inference problems. Another milestone in the development of quantile functions is the

seminal paper by Parzen [117], in which he established the description of a distribution

in terms of the quantile function and its role in data modelling. Gilchrist [42] presented

several properties of quantile function which are useful for the construction of new flexible

distribution models based on quantile functions to analyse various types of statistical data

sets. He also discussed different estimation methods and goodness of fit tests for the quan-

tile function models. The estimates based on quantiles are more accurate and robust in the

presence of outliers when heavy tailed distributions are employed for the analysis of vari-

ous lifetime data sets. In the simulation studies, quantile functions are used for generating
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random samples.

Researchers such as Parzen [117], Freimer et al. [40] and Gilchrist [42] have pointed out

the scope of using quantile functions in reliability analysis. Nair and Sankaran [97] elab-

orately elucidated the importance of quantile functions in reliability analysis. They pre-

sented quantile-based definitions for various reliability measures such as the distribution

function, hazard rate, mean residual life, percentiles, higher moments of residual life, etc.

Several characterization results and the interrelationships between the quantile-based reli-

ability measures are also presented. A detailed review on the properties and applications

of quantile functions in reliability theory are available in Nair et al. [105]. Recently, Nair

et al. [107] and Nair et al. [106] have developed quantile-based definitions of the well-

known proportional hazards model and proportional reversed hazards model respectively

and presented various properties and applications in the context of reliability analysis. They

also discussed the advantages of these models over the existing ones defined in terms of the

distribution functions.

We now give a brief review of the background concepts that are used in the subsequent

chapters. First, we present the definition of a quantile function and list its important prop-

erties. Then the quantile forms of various measures such as moments, percentiles, etc.

are presented. The quantile-based reliability concepts such as residual life, hazard quan-

tile function, mean residual quantile function etc. are given subsequently. We then discuss

some most celebrated quantile function models in the literature such as lambda distributions

by Tukey [152], Ramberg and Schmeiser [124], Freimer et al. [40], the Govindarajalu dis-

tribution by Govindarajulu [45], the Power-Pareto distribution by Gilchrist [42], the Jones

class of distributions by Jones [66] and the model proposed by van Staden and Loots [153].
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1.1 Basic concepts

In this section, we define basic concepts and properties of the quantile function, which are

useful for forthcoming chapters.

1.1.1 Quantile function

For a real valued random variable X with right continuous distribution function F (x), the

quantile function Q (u) is defined as

Q (u) = F−1 (x) = inf{x : F (x) ≥ u}, 0 ≤ u ≤ 1. (1.1.1)

For −∞ < x < ∞ and 0 < u < 1, we have F (x) ≥ u if and only if Q (u) ≤ x. Thus if

there exists an x such that F (x) = u, then F (Q (u)) = u and Q (u) is the smallest value

of x satisfying F (x) = u. For a continuous random variable X , (1.1.1) reduces to

Q (u) = inf{x : F (x) = u},

and when F (x) is strictly increasing too,Q (u) is the unique value of x such that F (x) = u.

In this case, we can easily formulate the quantile function by solving F (x) = u for x in

terms of u. Note that the quantile function Q(u) characterizes the underlying distribution.

The important properties of the quantile functions are given below:

1. Q (u) is non-decreasing in u, where u ∈ (0, 1).

2. Q (F (x)) ≤ x for all x ∈ (−∞, ∞) for which 0 < F (x) < 1 and F (Q (u)) ≥ u

for any u ∈ (0, 1).
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3. Q (u) is left continuous, i.e., Q (u−) = Q (u). Further, Q (u+) = inf{x : F (x) > u}

so that Q (u) has limits from above.

4. Any jumps of F (x) are flat points of Q (u) and flat points of F (x) are jumps of

Q (u).

5. For a uniform random variable U over (0, 1), we get

P{Q (u) ≤ x} = P{U ≤ F (x)} = F (x) . (1.1.2)

Thus Q (u) and X are identically distributed for the standard uniform distribution.

6. The mixture of two quantile functionsQ1(u) andQ2(u) given by, Q(u) = αQ1(u)+

(1− α)Q2(u), 0 ≤ u ≤ 1 is also a quantile function, which lies between Q1(u) and

Q2(u).

7. Sum of two quantile functions is again a quantile function. For example, Govindara-

julu [45] constructed a new quantile function by taking the weighted sum of quantile

functions of two power distributions.

8. The product of two positive quantile functions is again a quantile function. Gilchrist

[42] formed the power-Pareto quantile function by considering the product of quan-

tile functions of the power and Pareto distributions.

9. Suppose L(x) is a non-decreasing function, then L(Q(u)) is also a quantile func-

tion. Further, if L(x) is non-decreasing over the interval (0, 1) with the property that

L(0) = 0 and L(1) = 1, then Q(L(u)), u ∈ (0, 1) is also a quantile function with

the same support as that of Q(u). Gilchrist [42] studied various applications of these

transformations in the context of statistical data modelling.
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Some of the aforementioned properties (properties 6 to 9) of quantile functions are not

true in the case of distribution functions. These suggest the use of quantile functions in

modelling and analysis of various types of statistical data sets. For more properties and

applications of quantile functions, we refer to Gilchrist [42] and Nair et al. [105].

1.1.2 Quantile density function

Throughout the study, we consider X as a non-negative continuous random variable with

distribution function F (x) and quantile function Q(u). Let f (x) is the probability density

function of X . Then the function f (Q (u)) is called the density quantile function and the

derivative of Q (u), given by

q (u) = Q′ (u) ,

is called quantile density function of X . From the identity, F (Q (u)) = u, upon differen-

tiating with respect to u, we get

q (u) f (Q (u)) = 1. (1.1.3)

In words, f(Q(u)) and q(u) are reciprocals of each other. This justifies calling them by

names which are the reverse of each other.

1.1.3 Quantile form of some general concepts

In this section, we present quantile-based definitions of some important general concepts.

These concepts are useful for the discussions in the sequel. A detailed survey of various

quantile-based concepts are given in Nair et al. [105].
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1.1.3.1 Percentiles

A percentile (or a centile) is a measure used to indicate the value below which a certain

percentage of observations in a group of observations falls. There are different measures

based on percentiles, which are used for identifying various distributional properties. Some

of the most commonly used measures based on percentiles are listed below.

An important measure of location, the median is defined by

M = Q (0.5) . (1.1.4)

The inter-quartile range, which is used as a measure of dispersion has the form

IQR = Q

(
3

4

)
−Q

(
1

4

)
, (1.1.5)

The Galton’s coefficient of skewness (also known as Bowley’s coefficient of skewness

(Bowley [19])) denoted by S is given by

S =
Q(3

4
) +Q(1

4
)− 2M

IQR
, (1.1.6)

and the Moor’s coefficient of kurtosis (Moors [92]), T is

T =
Q
(

7
8

)
−Q

(
5
8

)
+Q

(
3
8

)
−Q

(
1
8

)
Q
(

3
4

)
−Q

(
1
4

) . (1.1.7)

It is to be noted that, −1 ≤ S ≤ +1 and the extreme positive skewness occurs when

Q(1
4
) → M and the extreme negative skewness is attained when Q(3

4
) → M . For a

symmetric distribution, we getM =
Q( 1

4
)+Q( 3

4
)

2
and hence S = 0. As a measure of kurtosis,
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T is justified on the grounds that the differences Q
(

7
8

)
−Q

(
5
8

)
and Q

(
3
8

)
−Q

(
1
8

)
become

large (small).

1.1.3.2 Order statistics

Let X1, X2, ..., Xn denotes the lifetimes of n identical units in a life testing experiment.

SupposeF (x) is the common distribution function. The random variablesX(1), X(2), ..., X(n)

correspond to the ordered sample values are referred to as the order statistics, whereX(1) =

min
1≤i≤n

Xi and X(n) = max
1≤i≤n

Xi. The distribution of rth order statistic is given by

Fr (x) = P{X(r) ≤ x} =
n∑
k=r

 n

r

 (F (x))k (1− F (x))n−k . (1.1.8)

In particular, the distributions of X(1) and X(n) are

F1 (x) = 1− (1− F (x))n and Fn (x) = (F (x))n,

respectively. To derive the quantile form of the distribution of order statistics, we use the

definitions of the beta function,

B (m,n) =

∫ 1

0

tm−1 (1− t)n−1 dt , m, n > 0

and the incomplete beta function ratio,

Ix (m,n) =
Bx (m,n)

B (m,n)
,
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where, Bx (m,n) =
∫ x

0
tm−1(1− t)n−1 dt. The incomplete beta function and the upper tail

of the binomial distribution are connected through the relation

n∑
k=r

 n

r

 pk(1− p)n−k = Ip (r, n− r + 1). (1.1.9)

Denote ur = Fr (x) and F (x) = u. Now from (1.1.8) and (1.1.9), we have ur =

Iu (r, n− r + 1). Using this relation, the quantile function of the rth order statistic is

obtained as

Qr (ur) = Q
(
Iur
−1 (r, n− r + 1)

)
, (1.1.10)

where I−1 represents the inverse of the incomplete beta function ratio I . The order statistics

X(1) and X(n) have simple forms for their quantile functions given by

Q1(u1) = Q(1− (1− u1)
1
n ) and Qn(un) = Q(u

1
n
n ). (1.1.11)

1.1.3.3 Residual life

The concept of residual life has received several applications in reliability theory. It is the

remaining life of an item after it has attained age t, say. The residual life associated with

a life time random variable X is the random variable Xt = (X − t|X > t). The survival

function of Xt is defined by

F̄t (x) = P{Xt > x} =
F̄ (x+ t)

F (t)
, (1.1.12)
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where F̄ (x) = P{X > x} = 1− F (x). This implies

Ft (x) =
F (x+ t)− F (t)

1− F (t)
. (1.1.13)

Suppose F (t) = u0, F (x+ t) = v and Ft (x) = u. Then, we have x+t = Q (v) and x =

Q1 (u) , say. This givesQ1 (u) = Q (v)−Q (u0) and from (1.1.13), we obtain u (1− u0) =

v − u0 or v = u0 + (1− u0)u. Thus the quantile function of Xt becomes

Q1 (u) = Q (u0 + (1− u0)u)−Q (u0) . (1.1.14)

1.1.3.4 Gini’s mean difference

Gini’s mean difference is one of the popular measures used in the context of econometrics,

which is defined by

∆ =

∫ ∞
−∞

∫ ∞
−∞
|x− y| f (x) f (y) dx dy

= 2

∫ ∞
−∞

F (x) (1− F (x)) dx. (1.1.15)

By setting F (x) = u, we get

∆ = 2

∫ 1

0

u (1− u) q (u) du (1.1.16)

= 2

∫ 1

0

(2u− 1) Q (u) du. (1.1.17)

The expression (1.1.17) is obtained by integrating (1.1.16) by parts. One can use (1.1.16)

or (1.1.17) depending on whether q (u) or Q (u) is known.
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1.1.3.5 Moments

The rth ordinary moment is defined as

µ
′

r = E (Xr) =

∫ ∞
0

xr f (x) dx.

An equivalent expression in terms of the quantile function is

µ
′

r =

∫ 1

0

(Q (u))r du. (1.1.18)

In particular, for r = 1, E(X) has the form

µ =

∫ 1

0

Q (u) du =

∫ 1

0

(1− u) q (u) du.

Other measures based on moments to describe spread, skewness and kurtosis in terms of

quantile function are respectively given by

σ2 = E (X − µ)2 =

∫ 1

0

(Q (u)− µ)2 du (variance),

µ3 = E (X − µ)3 =

∫ 1

0

(Q (u)− µ)3 du,

and, µ4 = E (X − µ)4 =

∫ 1

0

(Q (u)− µ)4 du.

1.1.3.6 L-moments

Sections 1.1.3.5 and 1.1.3.1 have considered the moments and percentiles that are capa-

ble for summarizing probability distributions. In this section, we present the L-moments,

which are the competing alternatives to the ordinary moments. Hosking [60] provided a
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unified theory and a systematic study on L-moments. The L-moments are analogous to the

ordinary moments but can be estimated by linear combinations of order statistics.

The rth L-moment of the random variable X is defined as

Lr = r−1

r−1∑
k=0

(−1)k

 r − 1

k

 E (Xr−k:r) , r = 1, 2, .... (1.1.19)

By inserting the expression of E (Xr:n), we get

Lr = r−1

r−1∑
k=0

(−1)k

 r − 1

k

 r!

k! (r − k − 1)!

∫ 1

0

ur−k−1 (1− u)kQ (u) du.

An alternative form for the above expression is given in Jones [65]. In particular, the first

four L-moments are

L1 =

∫ 1

0

Q (u) du =

∫ 1

0

(1− u) q (u) du = µ (1.1.20)

L2 =

∫ 1

0

(2u− 1) Q (u) du =

∫ 1

0

(
u− u2

)
q (u) du (1.1.21)

L3 =

∫ 1

0

(
6u2 − 6u+ 1

)
Q (u) du =

∫ 1

0

(
3u2 − 2u3 − u

)
q (u) du (1.1.22)

and L4 =

∫ 1

0

(
20u3 − 30u2 + 12u− 1

)
Q (u) du =

∫ 1

0

(
u− 6u2 + 10u3 − 5u4

)
q (u) du.

(1.1.23)

The L-moments have several theoretical advantages over ordinary moments. They are able

to characterize a wider range of distributions and are more robust to the effects of outliers

in the data. The L-moments exist whenever E(X) is finite, whereas for many distributions

additional restrictions are required for the ordinary moments to be finite. Sillito [144],

Greenwood et al. [46], Hosking [59], Hosking [58] and Hosking and Wallis [61] have
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made detailed studies on various properties and applications of L-moments in summarizing

and characterizing probability distributions, different estimation techniques based on L-

moments and the comparison between the ordinary moments and L-moments in analysing

various measures of distributional shapes. As in the case of ordinary moments, the L-

moments are useful to summarize the probability distributions, to identify the distributions

and to fit models to data. A distribution may be specified in terms of its L-moments, even

if some of its ordinary moments do not exist (Hosking [59]). Hosking [58] showed that the

L-moments are more preferable than the ordinary moments to provide summary measures

of distributional shape. Various measures based L-moments have generally lower sampling

variance and robust against outliers.

For a non-degenerate random variable X , with E(X) < ∞, consider the ratios, τr =

Lr
L2
, r = 3, 4, .... We can observe that, |τr| < 1 for r ≥ 3. Using these L−moment ratios,

Hosking [60] defined an alternative measure of the coefficient of variation called the L-

coefficient of variation, given by

τ2 =
L2

L1

. (1.1.24)

Note that 0 < τ2 ≤ 1, when X is non-negative. This is due to the fact that when X is

non-negative L1 ≥ 0, L2 ≥ 0 and

L2 =

∫ 1

0

u (1− u) q (u) du ≤
∫ 1

0

(1− u) q (u) du = L1.

To measure the skewness and kurtosis, theL−coefficient of skewness (τ3) andL−coefficient

of kurtosis (τ4) are defined as

τ3 =
L3

L2

, (1.1.25)
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and

τ4 =
L4

L2

. (1.1.26)

The range of τ3 is (−1, 1) and that of τ4 is 1
4

(5 τ 2
3 − 1) ≤ τ4 < 1. These results are

proved in Hosking [58] and Jones [65]. Nair and Vineshkumar [100] presented various

properties of the first two L-moments of residual life and their relevance in different aspects

of reliability analysis as well as in economics. The second L-moment of residual life was

found to be a better measure of variability when compared to variance residual quantile

function.

Let X1, X2, ..., Xn be a random sample of size n from the population. Suppose X(1) ≤

X(2) ≤ ... ≤ X(n) are the ordered sample observations. Then the rth sample L-moment is

defined by

lr =
r−1∑
k=0

pr−1,k bk, (1.1.27)

where

pr−1,k = (−1)r−k
(
r

k

)(
r + k

k

)
and

bk =

(
1

n

) n∑
i=1

(i− 1)(i− 2)...(i− k)

(n− 1)(n− 2)...(n− k)
X(i), for κ = 0, 1, 2, ...n− 1. (1.1.28)

Hosking [60] derived the asymptotic properties of the L-moments. The following theorem

provides asymptotic normality of the sample L-moments.

Theorem 1.1.1. (Hosking [60]) Let X be a real valued random variable with quantile

function Q(u, θ), where θ is a vector of m parameters, L-moments Lr and finite variance.

Let lr, r = 1, 2, 3, ...m be sample L-moments calculated from a random sample of size n

drawn from the distribution of X . Then
√
n(lr − Lr), r = 1, 2, ....,m, converges to the

multivariate normal distribution N(0,Λ), where the elements Λr, s (r, s = 1, 2, 3, ...,m)
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of Λ are given by

Λr,s =

∫∫
0<u<v<1

{P ∗r−1(u)P ∗s−1(v) + P ∗s−1(u)P ∗r−1(v)}u(1− v)q(u)q(v)dudv, (1.1.29)

with

P ∗r (x) =
r∑

k=0

(−1)r−k
(
r

k

)(
r + k

k

)
xk,

where P ∗r (x) is the rth order shifted Legendre polynomial.

1.2 Quantile based reliability concepts

There exist several quantile function models which do not have a closed form expression

for the corresponding distribution function. The equivalent definitions of various reliability

measures in terms of quantile functions are necessary for the analysis of lifetime data using

quantile functions. Nair and Sankaran [97] presented basic reliability measures in terms of

quantile functions and established their inter-relationships. In this section, we give a brief

review of the basic concepts and results of quantile-based reliability measures which are of

use in the sequel and are referred to in the text. We assume that the support of X is (0, ∞)

and the distribution function F (x) is continuous and strictly increasing.
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1.2.1 Hazard quantile function

One of the basic concepts in reliability theory is the hazard rate (failure rate). The hazard

rate function of a random variable X , denoted by h(x) is defined as

h(x) = lim
∆t→0

P [x ≤ X < x+ ∆x|X > x]

∆x
. (1.2.1)

h(x) gives the instantaneous rate of failure of X in a small interval (x, x + ∆x) given

the survival of the unit at time x. For an absolutely continuous random variable X with

probability density function f(x), (1.2.1) reduces to

h(x) =
f(x)

F̄ (x)
=

d

dx

[
− log F̄ (x)

]
. (1.2.2)

Since F (0) = 0, by integrating (1.2.2) over (0, x), we get

F̄ (x) = exp

− x∫
0

h(t)dt

. (1.2.3)

Thus h(x) characterizes the underlying distribution through the identity (1.2.3). For more

properties and applications of h(x), one could refer to Lai and Xie [78].

By setting F (x) = u in (1.2.2), Nair and Sankaran [97] defined the hazard quantile func-

tion, which is the quantile version of the hazard rate h(x). The hazard quantile function,

denoted by H(u) is defined as

H(u) = h(Q(u)) = [(1− u)q(u)]−1. (1.2.4)

Now H(u) can be interpreted as the conditional instantaneous rate of failure of a unit in
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the next small interval of time given the survival of the unit until 100(1− u) % point of the

distribution. Note that H(u) uniquely determines the distribution using the identity,

Q(u) =

u∫
0

dp

(1− p)H(p)
. (1.2.5)

Thus H(u) uniquely determines F (x). Moreover, Nair and Sankaran [97] showed that the

monotonicity properties of h(x) and H(u) are same. Thus the failure pattern of a unit or a

system can be analysed through its hazard quantile function.

1.2.2 Mean residual quantile function

Mean residual life (MRL) is a well-known measure, which has been widely used for mod-

elling lifetime data in reliability and survival analysis. For a non-negative random variable

X , the mean residual life function is defined as

m(x) = E(X − x|X > x) =
1

1− F (x)

∞∫
x

(1− F (t))dt. (1.2.6)

Note that m(x) represents the average lifetime remaining for a component, which has al-

ready survived up to time x. In terms of the density function, (1.2.6) can be written as

m(x) =
1

F̄ (x)

∞∫
x

(x− t)f(t)dt. (1.2.7)

On differentiating (1.2.7) with respect to x, we get

h(x) =
1 +m′(x)

m(x)
. (1.2.8)
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Now from (1.2.3), we have

F̄ (x) =
m(0)

m(x)
exp

−
x∫

0

dx

m(x)

 . (1.2.9)

From (1.2.9), we see that m(x) uniquely determines the distribution of X . Basic properties

and applications of m(x) are studied by Guess and Proschan [48] and Nanda et al. [110].

The mean residual life has been extensively discussed in reliability theory by various au-

thors such as Bryson and Siddiqui [21], Barlow and Proschan [11] and Muth [96]. The

properties including the limiting distribution have been studied by Meilijson [88], Balkema

and De Haan [8] and Bradley and Gupta [20]. A smooth estimator of the mean residual life

is given by Chaubey and Sen [24]. Chen and Cheng [25] and Nanda et al. [110] studied

the proportional mean residual life model for the analysis of survival data. Abouammoh

and El-Neweihi [1], Gupta and Kirmani [49], Abu-Youssef [2] and Ahmad and Mugdadi

[4] have discussed various properties of the class of distributions generated by monotonic

mean residual life function. For more details on m(x), we refer to Sankaran and Sunoj

[133], Gupta and Kirmani [50], Nair and Sankaran [98] and Nanda [108].

Nair and Sankaran [97] introduced the quantile version of mean residual life function,

called mean residual quantile function. The mean residual quantile function denoted by

M(u) is obtained by letting F (x) = u has the form

M (u) = m (Q (u)) = (1− u)−1

∫ 1

u

(Q (p)−Q (u)) dp. (1.2.10)

In terms of the quantile density function, (1.2.10) can be expressed as

M (u) = (1− u)−1

∫ 1

u

(1− p) q (p) dp. (1.2.11)
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Using (1.2.4), we have

M (u) = (1− u)−1

∫ 1

u

(H (p))−1 dp. (1.2.12)

Differentiating (1.2.12), we get

(H (u))−1 = M (u)− (1− u)M ′ (u) . (1.2.13)

Thus (1.2.5) becomes,

Q (u) = µ−M (u) +

∫ u

0

(1− p)−1M (p) dp, (1.2.14)

where µ = M(0) <∞. Thus M(u) uniquely determines Q(u). M(u) is interpreted as the

mean remaining life of a unit beyond the 100(1− u)% of the distribution. The exponential

distribution with mean λ is characterized by the constant mean residual quantile function.

1.2.3 Residual variance quantile function

The variance residual life function of the random variable X with E(X) <∞ is defined as

σ2(x) = V (X − x|X > x)

=
1

F̄ (x)

∫ ∞
x

(t− x)2f(t)dt−m2(x). (1.2.15)

Researchers such as Launer [81], Gupta et al. [53] and Gupta and Kirmani [51] studied

various important reliability properties of σ2(x). Unlike mean residual life and hazard rate

functions, there does not exist an explicit formula to determine F (x) from σ2(x). This

brings in the importance of characterizing various families of distributions based on σ2(x).
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Nair and Sudheesh [99] presented some interesting characterization results in this direction.

The quantile form of the variance residual life function is known as the residual variance

quantile function, which is defined as

V (u) = σ2(Q(u))

=
1

1− u

∫ 1

u

Q2(p) dp− (M(u) +Q(u))2 . (1.2.16)

Nair and Sankaran [97] showed that,

V (u) =
1

1− u

∫ 1

u

M2(p) dp or M2(u) = V (u)− (1− u)V ′(u). (1.2.17)

It follows from (1.2.17) that V (u) and M(u) determines each other uniquely. Thus V (u)

characterizes the underlying distribution. This result highlights the importance of residual

variance quantile function over the variance residual life function defined in (1.2.15). For

details, we refer to Nair et al. [105].

1.2.4 Percentile residual quantile function

For α ∈ (0, 1), the αth percentile residual life is the αth percentile of the residual life

distribution of X. It is denoted by P ∗α(x) and is defined by

P ∗α(x) = F−1
x (α) = F−1

(
1− (1− α) F̄ (x)

)
− x. (1.2.18)

P ∗α(x) can be interpreted as the age that will be survived, on the average, by 100(1− α)%

of units that have lived beyond age x. For various properties and applications of P ∗α(x), one

could refer to Launer [82], Schmittlein and Morrison [138] and Gupta and Langford [52].
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Now by taking F (x) = u, in (1.2.18), the percentile residual quantile function denoted by

Pα (u) is defined as

Pα (u) = P ∗α (Q (u)) = Q [1− (1− α) (1− u)]−Q (u) . (1.2.19)

Nair et al. [105] have discussed various reliability properties and applications of Pα (u).

1.2.5 Quantile based reliability concepts in reversed time

There exist several important reliability concepts defined in reversed time. These concepts

are useful to analyse the failure pattern of the lifetime random variable X under the con-

dition X ≤ x. In this section, we present the quantile form of such measures and its

importance in reliability analysis. The definitions are listed below.

1.2.5.1 Reversed hazard quantile function

The reversed hazard rate denoted by λ(x) is defined by

λ(x) =
f(x)

F (x)
,

which was introduced by Keilson and Sumita [70] and then it has been widely used in

several contexts such as stochastic ordering, estimation and modelling of left censored

data and characterization of probability distributions. The quantile form of the reversed

hazard rate λ(x) denoted by Λ (u) is called the reversed hazard quantile function. Nair and
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Sankaran [97] defined Λ(u) as

Λ (u) = λ (Q (u)) = (u q (u))−1 . (1.2.20)

Λ (u) determines the distribution through the formula,

Q (u) =

∫ u

0

(PΛ (p))−1 dp, (1.2.21)

and the identity connecting Λ (u) and H (u) is

H (u) = (1− u)−1 uΛ (u) .

More properties and interrelations between Λ (u) with other quantile-based measures are

given in Nair et al. [105].

1.2.5.2 Reversed mean residual quantile function

The reversed mean residual life function has the expression,

r(x) =
1

F (x)

∫ x

0

F (t)dt.

Researchers such as Finkelstein [39], Nanda et al. [109] and Li and Garrido [85] studied

various properties and applications of r(x). The reversed mean residual quantile function

denoted by R (u) is the quantile version of r(x) and has the form

R (u) = r (Q (u))

= u−1

∫ u

0

(Q (u)−Q (p)) dp
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= u−1

∫ u

0

p q (p) dp. (1.2.22)

The reversed mean residual life has been studied by many researchers such as Finkelstein

[39], Nanda et al. [109] and Li and Garrido [85]. Important reliability properties and appli-

cations of the reversed mean residual quantile function can be found in Nair et al. [105].

1.2.6 Total time on test transform

The total time on test transform is a widely accepted statistical tool, which has many ap-

plications in reliability analysis (see Lai and Xie [78]). This was first studied in the early

1970s, see for example Barlow et al. [9], Barlow and Doksum [10]. When several units

are tested for studying their life lengths, some of the units would fail while others may

survive the test period. The sum of all observed and incomplete life lengths is the total

time on test statistic. As the number of units on test tends to infinity, the limit of this statis-

tic is called the total time on test transform (TTT). The TTT is basically a quantile-based

concept, although it is defined in terms of F (x) in the literature.

For a non-negative random variable X, the TTT transform is defined as

H−1
F (u) =

∫ F−1(u)

0

F̄ (t) dt. (1.2.23)

The quantile-based TTT introduced by Nair et al. [102] has the form

T (u) =

∫ u

0

(1− p)q(p)dp. (1.2.24)

On differentiating (1.2.24), we get T ′(u) = (1 − u)q(u) and hence the quantile function
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can be uniquely determined from T (u) as

Q(u) =

∫ u

0

T ′(p)

1− p
dp. (1.2.25)

Nair et al. [102] found various properties and applications of T (u) in the context of relia-

bility analysis.

1.2.7 Parzen score function

The Parzen score function defined by Parzen [117] is given by

J(u) =
q′(u)

q2(u)
. (1.2.26)

Parzen [117] discussed the role of J(u) in statistical data modelling using quantile func-

tions. This measure can be viewed as an equivalent representation (if we set x = Q(u)) of

the function η(x) = −f ′(x)
f(x)

, introduced and studied by Glaser [43]. Nair et al. [103] pre-

sented various reliability properties of J(u), which are useful in the context of the lifetime

data modelling. From (1.2.26), we get

q(u) =

(∫ 1

u

J(p) dp

)−1

, (1.2.27)

Thus J(u) uniquely determines the distribution. Nair et al. [103] introduced some new

methods using Parzen score function for constructing new flexible quantile functions with

monotonic as well as non-monotonic hazard quantile functions. A detailed review of this

topic is available in Nair et al. [105].
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1.3 Quantile function models

We already mentioned that the quantile functions are efficient alternative to distribution

functions for modelling different types of lifetime data. In this section, we present some

quantile function models available in the literature, that can be utilized for the analysis of

different types of lifetime data sets.

1.3.1 Lambda family of distributions

Tukey [152] introduced a simple one parameter quantile function known as the Tukey

lambda distribution. This is the basic model from which several extensions and gener-

alizations were done by many researchers in the literature. The quantile function of the

model is given by

Q(u) =


uλ−(1−u)λ

λ
, λ 6= 0

log(u)
1−u , λ = 0.

(1.3.1)

We can see that the quantile function (1.3.1) is a linear combination of the Pareto and power

quantile functions. The quantile density function and hazard quantile function of the model

are

q(u) = (1− u)λ−1 + uλ− 1,

and

H(u) = u
(
u(1− u)λ + uλ(1− u)

)−1
.

respectively. The mean residual quantile function takes the form

M(u) =
(
uλ(λ(u− 1)− 1) + λ((1− u)λ − u(1− u)λ) + 1

)
(λ(λ+ 1)(1− u))−1 .



Chapter 1. Introduction 26

Researchers like Joiner and Rosenblatt [64] and Shapiro and Wilk [143] studied some

asymmetric versions of the Tukey lambda distribution. All such versions are subsumed

in the generalized lambda distribution family introduced by Ramberg and Schmeiser [123]

with quantile function,

Q (u) = λ1 +
1

λ2

(
uλ3 − (1− u)λ4

)
, 0 ≤ u ≤ 1,

where λ1 is the location parameter, λ2 is the scale parameter, while λ3 and λ4 determines

the shape. This model is widely accepted for modelling and analysis of various types of

lifetime data due to its versality and special properties. Hazard quantile function has the

form

H(u) =
λ2

(1− u) (λ3uλ3−1 + λ4(1− u)λ4−1)
,

and mean residual quantile function becomes

M(u) =
1

λ2(1− u)

(
1− uλ3+1

λ3 + 1
− (1− u)uλ3 +

λ4(1− u)λ4+1

λ4 + 1

)
.

1.3.2 van Staden and Loots model

Consider the quantile function of the generalized Pareto model,

Q1 (u) =


−1
λ4

(
(1− u)λ4 − 1

)
, λ4 6= 0

− ln (1− u) , λ4 = 0
(1.3.2)
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and its reflection quantile function,

Q2(u) = −Q1(1− u) =


1
λ4

(
uλ4 − 1

)
, λ4 6= 0

log u , λ4 = 0.
(1.3.3)

van Staden and Loots [153] introduced a new quantile function by taking the weighted sum

of the quantile functions (1.3.2) and (1.3.3) with respective weights 1 − λ3 and λ3, where

0 6 λ3 6 1, with additional location and scale parameters λ1 and λ2 respectively. Thus,

the new quantile function is of the form

Q (u) = λ1 + λ2

[
(1− λ3)

uλ4 − 1

λ4

− λ3
(1− u)λ4 − 1

λ4

]
, λ2 > 0. (1.3.4)

Some well-known distributions such as exponential, logistic and uniform are special cases

of this model. The hazard quantile function of (1.3.4) is

H(u) =
1

λ2(1− u) ((1− λ3)uλ4−1 + λ3(1− u)λ4−1)
,

and the mean residual quantile function is obtained as

M(u) = λ2

(1− λ3)
(

1−uλ4+1

(λ4+1)(1−u)
− uλ4

)
λ4

− λ3(1− u)λ4

λ4 + 1

 .

1.3.3 Power-Pareto distribution

Gilchrist [42] introduced the power-Pareto distribution with quantile function

Q(u) =
Cuλ1

(1− u)λ2
, C, λ1, λ2 > 0. (1.3.5)
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The model (1.3.5) is the product of quantile functions of the power and Pareto distributions

with respective quantile functions Q1(u) = αuλ1 and Q2(u) = σ(1− u)−λ2 , with C = ασ

and α, λ1, λ2 > 0. Researchers such as Gilchrist [42], Hankin and Lee [55] and Nair et al.

[105] have presented various properties and characterizations of this quantile function. The

hazard quantile function and mean residual quantile function are respectively given by

H(u) =
(1− u)λ2

C uλ1−1 (λ1(1− u) + λ2u)
,

and

M(u) =
1

1− u
Bu(1− λ2,1 + λ1)− Cuλ1

(1− u)λ2
.

1.3.4 Govindarajulu distribution

The earliest attempt for modelling failure time data using quantile function which does not

have a closed form expression for its distribution function was done by Govindarajulu [45].

He developed the quantile function,

Q(u) = θ + σ
(
(β + 1)uβ − βuβ+1

)
, θ, σ, β > 0. (1.3.6)

This model was applied to a real life data on the failure times of a set of 20 refrigerators

which were ran to destruction under advanced stress conditions. Since the range of the

distribution is (θ, θ + σ), for lifetime studies, we can set θ to be zero, and hence (1.3.6)

reduces to

Q(u) = σ
(
(β + 1)uβ − βuβ+1

)
, θ, σ, β > 0. (1.3.7)
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Later, Nair et al. [104] have established some important reliability properties and character-

izations of the Govindarajalu distribution. The hazard quantile function and mean residual

quantile function are obtained by

H(u) =
[
σβ(β + 1)uβ−1(1− u)2

]−1
, and

M(u) =
[
2− (β + 1)(β + 2)uβ + β(β + 2)uβ+1 − β(β + 1)uβ+2

]
×[(β + 2)(1− u)]−1 σ

respectively.

1.3.5 Jones distribution

Jones [66] introduced a new class of distributions using the functional relation between

f(x) and F (x) given by

f(x) = (F (x))α(1− F (x))β, α, β ∈ R (1.3.8)

where α and β are real constants. An equivalent form of (1.3.8) in terms of the quantile

density function is

q(u) = u−α(1− u)−β, 0 < u < 1. (1.3.9)

Hence the quantile function is obtained as

Q(u) = Bu(1− α, 1− β), 0 < u < 1, α, β < 1, (1.3.10)
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where Bu(·, ·) represents the incomplete beta function. The hazard quantile function and

the mean residual quantile function are respectively given by

H(u) = uα(1− u)β−1 and M(u) =

Γ(1−α)Γ(2−β)
Γ(−α−β+3)

−Bu(1− α, 2− β)

1− u
. (1.3.11)

1.4 Censoring

In reliability studies, the lifetime data sets are mainly of two types, one where the lifetime

is known exactly and the other where it is not. In the latter case, it is only known to have a

certain amount of time when the event of interest did not occur. Data of this kind are called

censored data. Different types of censoring are possible in life testing experiments and this

depends on the criteria, which is used to conclude the experiment.

1.4.1 Type I censoring

Censoring which occurs as a function of time is known as type I censoring. Here we record

the failure times of items which are failed prior to a particular point of time. Data of this

type are called right censored. Data can also be left censored. This types of censoring arise

when it is only known that the failures have occurred prior to some time. As compared to

left censoring, right censoring is most common in reliability studies.



Chapter 1. Introduction 31

1.4.2 Type II censoring

Type I censoring may provide a limited amount of information if the period of study is

too short. An alternative is to continue observation until a fundamental number r(< n)

of failures have occurred. This also results in incomplete data, since the lifetimes of the

remaining n− r units are not observed. This type of censoring is called type II censoring.

1.4.3 Independent random censoring

In this case, we assume that each individual has a lifetime X and a censoring time C,

where X and C are mutually independent continuous random variables. Here we observe

the variable (T, δ), where T = min(X,C) and the censoring indicator δ is defined as, δ =

1 if T ≤ C and 0 otherwise.

There are other kinds of censoring schemes such as interval and middle censoring. For

more details, one could refer to Klein and Moeschberger [72].

1.5 Q-Q plot

The quantile-quantile (Q-Q) plot is an efficient graphical tool to assess if a data set plausibly

came from the chosen candidate distribution. Let X(r) denotes the rth ordered observation

in a data of size n, when the observations are arranged in ascending order of magnitude.

Then Q-Q plot is the scatter plot obtained by plotting (Q(ur), X(r)) for r = 1, 2, ..., n. In

the ideal case, the graph should show a straight line that bisects the axes of coordinates.

Since the data are random, the fitted values lying approximately along the aforementioned
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line can be taken as an indication of a satisfactory model.

1.6 Chi-square test for goodness of fit

When two Q-Q plots looks very similar, it is useful to have some numerical measure to

conclude the analysis. Though a number of methods are available for this purpose, one

that is relevant to modelling with quantiles is the chi-square goodness of fit test. We first

divide the interval of u ∈ (0, 1) into m equal parts using ui = i
m
, i = 1, 2, ...,m − 1;

u0 = 0, um = 1. Let fi be the number of observations in the data lying in the interval

(Q̂(ui−1), Q̂(ui)), which is the observed frequency (Oi) in the ith interval. The expected

value (Ei) of fi is n
m

for all i. Using this fact, we can construct the test statistic, χ2 =∑m
i=1

(Oi−Ei)2
Ei

=
∑m

i=1

(fi− n
m)

2

n
m

, which approximately follows the chi-square distribution

with m − 1 degrees of freedom. If the data under consideration is very different from the

fitted quantile function, the value of χ2 will be larger than indicated by a χ2 distribution.

Throughout the thesis, the terms increasing and decreasing are used in a wide sense, that

is, a function f is increasing (decreasing) if f(x) ≤ (≥) f(y) for all x ≤ y. Whenever we

use a derivative, an expectation, or a conditional random variable, we are tacitly assuming

that it exists.

1.7 Objectives and present study

We have already seen that quantile functions have several advantages over the distribution

functions, so that we can efficiently employ quantile functions for the analysis of various
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types of lifetime data. The literature provides a number of quantile functions, which are

useful in the context of lifetime studies. One of the main objectives of the present work

is to introduce new flexible lifetime models based on quantile functions with no closed

form distribution functions. We will investigate important ageing properties and stochastic

orders of the proposed models. Also, we examine the adequacy of these models to represent

real life situations in the light of various data sets. Another objective of our study is to

develop quantile-based definitions of some important reliability concepts such as relevation

transform and proportional odds model and study the relevance of these representations in

reliability analysis. In addition, we introduce the concept of cause specific hazard quantile

function and develop a kernel-based non-parametric estimator for the same, which is useful

for the analysis of failure pattern in competing risks set up.

The present work is organized into nine chapters. After the present introductory chapter,

which focuses attention on a brief review of the basic quantile-based reliability concepts

and review of literature, Chapter 2 proposes a new quantile function called half logistic-

exponential geometric quantile function. The new quantile function is the sum of quantile

functions of the half logistic and exponential geometric distributions. Various distributional

properties and reliability characteristics are discussed. The estimation of parameters of the

model using the method of L-moments is studied. The proposed model is applied to a real

life data.

As pointed out earlier, the product of two positive quantile functions is again a quantile

function. Using this property, in Chapter 3, we introduce a new family of distributions by

taking the product of quantile functions of the Pareto and Weibull distributions. Important

reliability characteristics and distributional properties are discussed. The practical utility

of the model is established with the help of two real life data sets.
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In Chapter 4, we introduce a new method for constructing more flexible families of distri-

butions using the properties of quantile functions. We derive a new class of distributions,

which is an extension of the class of distributions with linear mean residual quantile func-

tion. Distributional properties and reliability measures are presented. The estimation of

parameters of the model using the method of percentiles is studied. Application of the

proposed model in lifetime data analysis is ascertained by fitting the model to a real data.

An important measure used in quantile-based reliability analysis to measure the expected

remaining life beyond 100(1 − u)% point of the distribution is the mean residual quantile

function. This can advantageously used as a measure to characterize any probability distri-

bution. In Chapter 5, we propose a new class of distributions with quadratic mean residual

quantile function. Various distributional properties along with reliability characteristics

are discussed. Characterizations of the class of distributions using different quantile-based

reliability measures are presented. The estimation of parameters of the model using the

method of L-moments is studied. The proposed quantile function is applied to a real life

data and compared the performance with other competing alternative models.

Even though a lot of work has been carried out on the well-known proportional odds model

in the classical frame work, to the best of our knowledge, the approach based on quan-

tile function is new. Chapter 6 presents a quantile-based definition for the proportional

odds model. We discuss important reliability properties of the model using quantile func-

tions. Various ageing properties of the model are derived. A generalization for the class

of distributions with homo-graphic hazard quantile function is provided and the practical

application of this model is illustrated with two real life data sets.

In survival studies, it is common that the failure of subjects may be attributed to more than

one cause. Competing risks models are usually employed to analyze such type of data. Two
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frameworks are often employed to deal with standard competing risks data such as cumu-

lative incidence function formulations and cause specific hazard formulations. In Chapter

7, we discuss modelling and analysis of competing risks data using quantile functions. We

introduce and study the cause specific hazard quantile function. Moreover, we present new

competing risks models using various functional forms for the cause specific hazard quan-

tile functions. A non-parametric estimator of the cause specific hazard quantile function is

also derived. Asymptotic properties of the estimators are studied. Simulation studies are

carried out to assess the performance of the estimators. We apply the proposed procedure

to two real life data sets.

Relevation transform introduced by Krakowski [74] is extensively studied in the literature.

Chapter 8 presents a quantile-based definition of the relevation transform and study its

properties in the context of lifetime data analysis. We study the reliability properties of a

special case of relevation transform namely proportional hazards relevation transform. Var-

ious stochastic orders and ageing concepts are discussed. A new lifetime distribution called

proportional hazards relevated Weibull (PHRW) is introduced and discussed its applications

with two real data sets. We also give important special cases of relevation transform in the

context of proportional hazards and equilibrium models in terms of quantile functions.

Finally, Chapter 9 summarizes the major conclusions of the thesis and present some pro-

posals for future research.





Chapter 2

Half Logistic-Exponential Geometric Quan-

tile Function

2.1 Introduction

A major objective of the quantile-based reliability analysis is to develop new quantile func-

tions that are useful for modelling and analysis of lifetime data sets. In the present chapter,

we introduce and study a new flexible family of distributions defined in terms of a quan-

tile function, which does not have a closed form expression for its distribution function.

Quantile functions have several properties that are not shared by distribution functions. For

example, the sum of two quantile functions is again a quantile function. Further, the prod-

uct of two positive quantile functions is again a quantile function in the non-negative setup.

The aim of the present chapter is to introduce a new quantile function which is derived

by taking the sum of quantile functions of the half logistic and the exponential geometric

distributions. The proposed class gives a wide variety of distributional shapes for various

choices of the parameters.

The chapter is organized as follows. In Section 2.2, we present a family of distributions and

Results in this chapter have been published as entitled “A new class quantile functions useful in reliability
analysis” in the “Journal of Statistical Theory and Practice” (See Sankaran and Kumar M [131].)

37
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study its basic properties. Section 2.3 presents some well-known distributions which are

either a member of the proposed class of distributions or obtained by applying some suit-

able transformations on the proposed quantile function. The distributional properties such

as measures of location and scale, L-moments are given in Section 2.4. In Section 2.5, we

present various reliability characteristics of the class. Section 2.6 focuses on the inference

procedures associated with the parameters of the model. We then provide application of the

class of distributions in a real life situation. Finally, Section 2.7 provides major conclusions

of this chapter.

2.2 Half logistic - exponential geometric (HLEG) quantile

function

Balakrishnan [7] considered the folded form of the standard logistic distribution and re-

ferred it as the half logistic distribution. The survival function and quantile function of this

distribution are respectively given by

Ḡ1(x) = 2
(

1 + e
x
β

)−1

, β ≥ 0, (2.2.1)

and

Q1(u) = β log

(
1 + u

1− u

)
, β ≥ 0. (2.2.2)

The model (2.2.1) is a possible lifetime model, which has several characterizations based

on the recurrence relations for the single and product moments of its order statistics.

Adamidis and Loukas [3] introduced the exponential geometric (EG) distribution with ap-

plications to reliability modelling in the context of decreasing failure rate data. The survival



Chapter 2. Half Logistic Exponential Geometric Quantile Function 39

function and quantile function of the EG distribution are given by,

Ḡ2(x) = 1−G2(x) = (1− p)e−
1
α
x(1− p e−

1
α
x)−1, α > 0 and 0 ≤ p < 1. (2.2.3)

and

Q2(u) = α log

(
1− pu
1− u

)
, α > 0 and 0 ≤ p < 1. (2.2.4)

We now introduce a new class of distributions through the quantile function

Q(u) = Q1(u) +Q2(u)

= α log

(
1− pu
1− u

)
+ β log

(
u+ 1

1− u

)
, 0 ≤ p ≤ 1, α ≥ 0, β ≥ 0. (2.2.5)

Thus Q(u) is the sum of (2.2.2) and (2.2.4) with extended parameter space. The support

of the proposed class of distributions (2.2.5) is (0,∞). The quantile density function is

obtained as

q(u) =
2β + α((1− p))(u+ 1)− 2βpu

(u2 − 1) (pu− 1)
. (2.2.6)

The quantile function (2.2.5) represents a family of distributions with neither the density

nor the distribution function available in closed form. However, these can be calculated by

numerical inversion of the quantile function. For the proposed class of distributions, the

density function f(x) can be written in terms of the distribution function as

f(x) =
(1− pF (x))(1− (F (x)2)

α(1− p)(1 + F (x)) + 2(1− pF (x))β
. (2.2.7)

For all values of the parameters, the density is strictly decreasing in x and it tends to zero as

x → ∞. Plots of the density function for different combinations of parameters are shown

in Figure 2.1. The mode of the distribution is at zero and the modal value is 1
2β+α(1−p) .



Chapter 2. Half Logistic Exponential Geometric Quantile Function 40

α=.001

α=0.15
α=0.25

α=0.5

α=1

1 2 3 4
Q(u)

0.2

0.4

0.6

0.8

1.0

1

q (u)

β=0.45,p=0.026

Figure 2.1: Plots of the density function for different values of parameters.

2.3 Members of the family

The proposed family of distributions (2.2.5) includes several well-known distributions for

various values of the parameters. Further, we can derive certain popular distributions from

the proposed model by making use of various transformations described in Gilchrist [42].

Case 1. β = 0, p = 0 and α > 0.

The quantile function of the proposed class of distributions reduces to the quantile

function,

Q(u) = α(− log(1− u)), (2.3.1)

which is the exponential distribution with mean α. We can apply the power trans-

formation of the form T (x) = xK on (2.3.1) to form the Weibull distribution with

parameters α and K.
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Case 2. α = β and p = 1.

The quantile function of the proposed class of distributions becomes,

Q(u) = α log

(
1 + u

1− u

)
, (2.3.2)

which corresponds to the half-logistic distribution. Moreover, this belongs to the

class of distributions with linear hazard quantile functions introduced and studied by

Midhu et al. [91], with quantile function,

Q(u) =
1

a(1 + θ)
log

(
1 + θu

1− u

)
, (2.3.3)

with θ = 1 and a = 1
2α

.

Case 3. β = 0, α > 0 and 0 < p < 1.

The quantile function of the proposed class of distributions reduces to the quantile

function of the exponential geometric distribution,

Q(u) = α log

(
1− pu
1− u

)
. (2.3.4)

This also belongs to the class of distributions (2.3.3), with parameters θ = −p, (−1 <

θ < 0) and a = 1
α(1−p) .

Case 4. p = 0, α > 0 and β > 0.

The quantile function is obtained as

Q(u) =
(A−B) log(1 + Au)− A(B + 1) log(1− u)

A(A+ 1)K
, (2.3.5)

where K = 1
α+2β

, A = 1 and B = α
α+2β

. The quantile function (2.3.5) corresponds
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to the family of distributions with homographic hazard quantile function given in

Sankaran et al. [135].

In the construction of our family, the sum of two quantile functions are involved. In the

following theorems, we derive the random variable associated with the proposed quantile

function (2.2.5).

Theorem 2.3.1. IfZ ∼ HL(β), then the random variableX = Z+α log

(
(1+p)+(1−p)exp(Zβ )

2

)
has HLEG(α, β, p) distribution.

Proof. Consider two random variables S and T with quantile functions QS(u) and QT (u)

and distribution functions FS(x) and FT (x) respectively.

Now, suppose Q∗(u) is defined by,

Q∗(u) = QS(u) +QT (u).

Then the random variable corresponds to the quantile function Q∗(u) is S+QT (FS(S)) or

T +QS(FT (T ))( Sankaran et al. [136]).

Now take Y ∼ EG(α, p) andZ ∼ HL(β), then we haveZ+QY (FZ(Z)) hasHLEG(α, β, p)

distribution.

Since QY (u) = α log
(

1−pu
1−u

)
and FZ(Z) = 1− 2

(
1 + exp

(
Z
β

))−1

, we get

Z +QY (FZ(Z)) = Z + α log

(1 + p) + (1− p)exp
(
Z
β

)
2

 , (2.3.6)

which completes the proof. �

Theorem 2.3.2. If Y ∼ EG(α, p), then the random variableX = Y+β log

(
2(1−pexp(−Yα ))
(1−p)exp(−Yα )

)
has HLEG(α, β, p) distribution.
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Proof. The proof follows along the same lines as in Theorem 2.3.1, once we note that if

Y ∼ EG(α, p) and Z ∼ HL(β), then Y + QZ(FY (Y )) has HLEG(α, β, p) distribution,

and therefore the details are omitted. �

2.4 Distributional characteristics

The quantile-based measures of distributional characteristics for location, dispersion, skew-

ness and kurtosis are popular in statistical analysis. These measures are also useful for esti-

mating parameters of the model by matching population characteristics with corresponding

sample characteristics. For the model (2.2.5), basic descriptive measures such as median

(M ), inter-quartile-range (IQR), Galton’s coefficient of skewness (S) and Moor’s coeffi-

cient of kurtosis (T) are obtained as

M = α log(2− p) + β log(3),

IQR = α log

(
12− 9 p

4− p

)
+ β log

(
21

5

)
,

S =
1.43β−2(1.09β+α log(2.(1−0.5p)))−α log(1.33(1−0.25p))+α log(4.(1−0.75p))

1.43β−α log(1.33(1−0.25p))+α log(4.(1−0.75p))
,

and

T =
α(−0.69 log(1.14−0.14p)+0.7 log(1.6−0.6p)−0.7 log(2.67−1.7p)+0.7 log(8−7p))+1.24β

−0.7α log(1.34−0.34p)+0.7α log(4−3p)+β
.

The rth L moment is given by

Lr =

1∫
0

r−1∑
k=0

(−1)r−1−k

 r − 1

k


 r − 1 + k

k

ukQ(u)du.
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For the model (2.2.5), first four L-moments are

L1 = β log(4) +
α(p− 1) log(1− p)

p
, (2.4.1)

L2 = α + 2β − β log(4) +
α(p− 1) log(1− p)

p2
− α

p
, (2.4.2)

L3 = −4β + β log(64)− α(p− 2)(p− 1) log(1− p)
p3

+
2α(p− 1)

p2
, (2.4.3)

and

L4 =
p(4βp3(23−33 log(2))+α(p−1)((p−15)p+30))+6α(p−1)((p−5)p+5) log(1−p)

6p4
.

(2.4.4)

The L-coefficient of variation (τ2), L-coefficient of skewness (τ3) and L-coefficient of kur-

tosis (τ4) have the following forms;

τ2 =
L2

L1

=
α + 2β − β log(4) + α(p−1) log(1−p)

p2
− α

p

β log(4) + α(p−1) log(1−p)
p

,

τ3 =
L3

L2

=
−4β + β log(64)− α(p−2)(p−1) log(1−p)

p3
+ 2α(p−1)

p2

α + 2β − β log(4) + α(p−1) log(1−p)
p2

− α
p

,

and

τ4 =
L4

L2

=
p (4βp3(23− 33 log(2)) + α(p− 1)((p− 15)p+ 30)) + 6α(p− 1)((p− 5)p+ 5) log(1− p)

6p2(p(α(p− 1)− βp(log(4)− 2)) + α(p− 1) log(1− p))
.

Figures 2.2, 2.3 and 2.4 present skewness (τ3) and kurtosis (τ4) measures for various param-

eter values. We can show that τ3 lies in (0.25, 1) and τ4 lies in (0.12, 0.67) using numerical

optimization techniques. Thus, the proposed class of distributions (2.2.5) consists only

positively skewed distributions. The curves of τ3 and τ4 increase with α for fixed β and p,

decrease with β for fixed α and p, and first increase and then decrease with p for fixed α

and β.
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Figure 2.2: Skewness and kurtosis of the HLEG(α, β, p) distribution for selected values
of β and p as a function of the parameter α.
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Figure 2.3: Skewness and kurtosis of the HLEG(α, β, p) distribution for selected values
of α and p as a function of the parameter β.
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Figure 2.4: Skewness and kurtosis of the HLEG(α, β, p) distribution for selected values
of α and β as a function of the parameter p.

2.4.1 Order statistics

If Xr:n is the rth order statistic in a random sample of size n, then the density function of

Xr:n can be written as

fr(x) =
1

B(r, n− r + 1)
f(x)F r−1(x)(1− F (x))n−r.

From (2.2.7), we have

fr(x) =
1

B(r, n− r + 1)

(1− F (x))n−r(1− pF (x))(1− (F (x)2)(F (x))r−1

α(1− p)(1 + F (x)) + 2(1− pF (x))β
.

Hence

E(Xr:n) =
1

B(r, n− r + 1)

∫ ∞
0

x
(1− F (x))n−r(1− pF (x))(1− (F (x)2)(F (x))r−1

α(1− p)(1 + F (x)) + 2(1− pF (x))β
dx.
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In quantile terms, we have

E(Xr:n) =
1

B(r, n− r + 1)

∫ 1

0

Q(u)
(1− u)n−r(1− p u)(1− u2)ur−1

α(1− p)(1 + u) + 2(1− p + u)β
dx.

The quantile function of the first order statistics X1:n has the form,

Q(1)(u) = Q(1− (1− u)
1
n )

= α log
(
p− (p− 1)(1− u)−1/n

)
+ β log

(
2(1− u)−1/n − 1

)
,

and nth order statistic Xn:n has the quantile function,

Q(n)(u) = Q(u
1
n )

= α log

(
1− pu1/n

1− u1/n

)
+ β log

(
u1/n + 1

1− u1/n

)
.

2.5 Reliability properties

Since the proposed quantile function is the sum of exponential geometric and half logistic

quantile functions, we get the relation

(1− u)q(u) = (1− u)q1(u) + (1− u)q2(u). (2.5.1)

where q1(u) and q2(u) are the quantile density functions of exponential geometric and half

logistic distributions respectively. Now from (1.2.4) and (2.5.1)

1

H(u)
=

1

H1(u)
+

1

H2(u)
, (2.5.2)
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where H1(u), H2(u) and H(u) are the hazard quantile functions of the exponential geo-

metric, half logistic and the proposed class of distributions respectively. From (2.5.2), we

can observe that the hazard quantile function of the proposed class of distributions (2.2.5)

is proportional to the harmonic average of the hazard quantile functions of exponential

geometric and half logistic distributions. For the class of distributions (2.2.5), we have

H(u) =
(u+ 1)(pu− 1)

α(p− 1)(u+ 1) + 2β(pu− 1)
. (2.5.3)

The shape of the hazard function is determined by the derivative of H(u), given by

H
′
(u) =

αp(p− 1)(u+ 1)2 + 2β(pu− 1)2

(α(p− 1)(u+ 1) + 2β(pu− 1))2
.

Since (α(p − 1)(u + 1) + 2β(pu − 1))2 > 0 for all values of the parameters, the sign of

H ′(u) depends only on the term,

K(u) = αp(p− 1)(u+ 1)2 + 2β(pu− 1)2. (2.5.4)

The hazard quantile function accommodates increasing, decreasing, linear and upside-

down bathtub shapes for different choices of parameters. Plots of hazard quantile function

for different values of parameters are given in Figure 2.5. Now we consider the following

cases.

Case 1. p = 0, α > 0 and β > 0.

We obtainK(u) = 2β. The first term inK(u) is zero and the second term is positive,

so that K(u) > 0 for all 0 < u < 1 and the distribution have increasing hazard rate

(IHR).

Case 2. p = 1, α > 0 and β > 0.
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We have K(u) = 2β(u − 1)2. The first term in K(u) is zero and the second term is

positive, so that K(u) > 0 for all 0 < u < 1 and hence the distribution distribution

is IHR.

Case 3. p = 0, β = 0 and α > 0.

This case leads to, H(u) = 1
α
, a constant. Thus the distribution is exponential.

Case 4. 0 < p < 1, α > 0 and β > 2αp
(1−p) .

Now X is IHR if and only if K(u) > 0 for all u ∈ (0, 1). This holds if and only if,

p(p− 1)α(1 + u)2 > −2β(pu− 1)2,

which gives,
2β

αp(1− p)
>

(1 + u)2

(pu− 1)2
. (2.5.5)

Since (1+u)2 > (pu−1)2, for all 0 < u < 1 and 0 < p < 1, we have the right side

of (2.5.5) is increasing in u and attains its maximum when u = 1. Now for u = 1,

the inequality (2.5.5) reduces to β > 2αp
(1−p) , thus it is clear that H(u) is increasing in

this case.

Case 5. 0 < p < 1, α > 0 and 0 < β < αp(1−p)
2

.

Similar to Case 4, we can show that H(u) have a decreasing hazard rate (DHR) if

and only if,

p(p− 1)α(1 + u)2 < −2β(pu− 1)2

or
2β

αp(1− p)
<

(1 + u)2

(pu− 1)2
. (2.5.6)

Since right side of (2.5.6) is increasing in u and attains its minimum when u = 0, the

above inequality reduces to β < αp(1−p
2

. Thus the distribution is DHR.
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Case 6. 0 < p < 1, α > 0 and αp(1−p
2

< β < 2αp
1−p .

The first term of K(u) is negative and second term is positive, so that K(u) attains a

zero in this case. This, in turn, gives H ′(u) = 0 suggesting the possibility for non-

monotonic hazard quantile function. Let u0 be the solution of the equationK(u) = 0.

From (2.5.4), we have u0 is the solution corresponding to the quadratic equation,

u2(αp(p− 1) + 2βp2) + u(2αp(p− 1)− 4pβ) + (αp(p− 1) + 2β) = 0,

which provides,

u0 =
−αp2 −

√
2
√
−αβp4 − αβp3 + αβp2 + αβp+ αp+ 2βp

αp2 + 2βp2 − αp
. (2.5.7)

For further inference, we note that the second derivative of H(u) has the form

H ′′(u) =
4αβ(1− p)(p+ 1)2

(α(p− 1)(u+ 1) + 2β(pu− 1))3
.

For the change point u0 obtained in (2.5.7), we get

H ′′(u0) = −
√

2p2√
αβ(1− p)p(p+ 1)2

. (2.5.8)

Since H ′′(u0) < 0, we have H(u) attains a maximum at u0. Hence X has an upside-

down bathtub-shaped hazard quantile function (see Nair et al. [105]).

The ageing pattern of H(u) for various parameter values are summarized in Table 2.1. We

can easily show the following lemma, which is useful for finding bounds of H(u).

Lemma 2.5.1. The limits of HLEG(α, β, p) hazard quantile function are
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Table 2.1: Ageing behaviour of the hazard quantile function for different regions of param-
eter space.

Sl.No Parameter Region Shape of the hazard quantile function
1 p = 0, α > 0 and β > 0 IHR
2 p = 1, α > 0 and β > 0 IHR
3 p = 0, α > 0 and β = 0 Constant
4 0 < p < 1, α > 0 and β > 2αp

(1−p) IHR

5 0 < p < 1, α > 0 and 0 < β < αp(1−p)
2

DHR
6 0 < p < 1, α > 0 and αp(1−p)

2
< β < 2αp

1−p upside-down bathtub
7 α = 0, β > 0 and 0 < p < 1 IHR
8 β = 0, α > 0 and 0 < p < 1 DHR

lim
u→0

H(u) =
1

α(1− p) + 2β
and lim

u→1
H(u) =

1

α + β
, (2.5.9)

where α > 0, β > 0 and 0 < p < 1.

Proof. It is straight forward to show the results in (2.5.9) by taking the corresponding limits

of the hazard quantile function (2.5.3). �

Theorem 2.5.1. If X ∼ HLEG(α, β, 1), then the two limits of hazard quantile function

are independent of the parameter α, given by;

(i) limu→1H(u) = 2 limu→0H(u)

and

(ii) 1
2β

< H(u) < 1
β

, for all 0 < u < 1 and β > 0.

Proof.
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Figure 2.5: Plots of hazard quantile function for different values of parameters.

(i) The proof is direct once we note that,

lim
u→0

H(u) =
1

2β
and lim

u→1
H(u) =

1

β
. (2.5.10)

(ii) From Table 2.1, H(u) is IHR for p = 1, α > 0 and β > 0. Thus lower and upper

bounds for H(u) exist when u approaches 0 and 1 respectively.
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Now from (2.5.10), we get

1

2β
< H(u) <

1

β
for all 0 < u < 1 and β > 0.

This completes the proof. �

Theorem 2.5.2. If X ∼ HLEG(α, β, 0). Then the bounds of H(u) are given by

1

α + 2β
< H(u) <

1

α + β
, for all 0 < u < 1 and β > 0.

Proof. The proof is similar to that of Theorem 2.5.1 once we note that,

lim
u→0

H(u) =
1

α + 2β
and lim

u→1
H(u) =

1

α + β
, (2.5.11)

and H(u) is increasing for p = 0, α > 0 and β > 0. �

Theorem 2.5.3. Let X ∼ HLEG(α, β, p). Then the hazard quantile function satisfies the

following;

(i) If β > 2αp
(1−p) then 1

α(1−p)+2β
< H(u) < 1

α+β

(ii) If 0 < β < αp(1−p)
2

then 1
α+β

< H(u) < 1
α(1−p)+2β

.

Proof.

From Table 2.1, note that X is IHR when β > 2αp
(1−p) . Now from Lemma 2.5.1, we get,

1

α(1− p) + 2β
< H(u) <

1

α + β
. (2.5.12)

To prove (ii), note that X is DHR for 0 < β < αp(1−p)
2

. Since H(u) is decreasing over u,

boundary values are reversed. This completes the proof. �
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For the class of distributions (2.2.5), M(u) has the form

M(u) =
β log(4) +

α(p−1) log( p−1
pu−1)

p
− 2β log(u+ 1)

1− u
. (2.5.13)

It is well-known that increasing (decreasing) failure rate implies decreasing (increasing)

mean residual life (See Lai and Xie [78]). The ageing behaviour of the class of distributions

(2.2.5) based on mean residual quantile function can be defined from Table 2.1. There exists

closed form expressions of the hazard quantile function and mean residual quantile function

defined in reverse time (see Nair and Sankaran [97]) for the proposed class of distributions

(2.2.5).

The quantile-based total time on test transform (TTT) introduced in Nair et al. [102] is

obtained as

T (u) =

u∫
0

(1− p ) q(p)dp =
α(p− 1) log(1− pu)

p
+ 2β log(u+ 1). (2.5.14)

Nair et al. [103] studied various properties and applications of the Parzens score function

J(u) in the context of lifetime data analysis. For the class of distributions (2.2.5), J(u) is

obtained as

J(u) =
q
′
(u)

q2(u)
=
α(p− 1)(u+ 1)2(p(2u− 1)− 1) + 4βu(pu− 1)2

(α(p− 1)(u+ 1) + 2β(pu− 1))2
. (2.5.15)

It is of great importance to characterize life distributions by the relationships among relia-

bility concepts. In the same spirit, we prove the following characterization theorem.

Theorem 2.5.4. A non-negative continuous random variable X follows;

(a) HLEG(u;α, 0, p) if and only if any one of the following properties hold.
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(i) H(u) = A1 − A2 u, 0 < A2 < A1

(ii) J(u) = H(u) + C (1− u), C > 0

(iii) T (u) = −1
A2

log
(
H(u)
A1

)
and

(b) HLEG(u; 0, β, p) if and only if any one of the following properties hold.

(i) H(u) = K(1 + u), K > 0

(ii) J(u) = 2K u

(iii) T (u) = 1
K

log(KKH(u))

where A1, A2, C andK are constants.

Proof. We prove the result for (a). The proof for (b) is similar.

(a) Suppose H(u) = A1 − A2 u is true. Then the corresponding quantile function is

obtained as

Q(u) =
log
(
A1−A2 u
A1(1−u)

)
A1 − A2

, (2.5.16)

which is equivalent to HLEG(u;α, 0, p), with α = 1
A1−A2

> 0 and 0 < p = A2

A1
< 1.

Conversely for β = 0, the expression of H(u) reduces to H(u) = 1
α (1−p) −

p
α (1−p) ,

which is in the required form (i).

When J(u) = H(u) + C (1 − u) is true, from Nair and Sankaran [97], we have the

identity, (1− u)H ′(u) = H(u)− J(u), which gives

(1− u)H ′(u) = C (u− 1). (2.5.17)
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The solution of the ordinary differential equation (2.5.17) is

H(u) = D − C u, C > 0, D − C > 0,

which satisfies (i), so the proof is completed.

Suppose T (u) = −1
A2

log
(
H(u)
A1

)
is true. Differentiating this with respect to u, we get

T ′(u) =
−H ′(u)

A2H(u)
. (2.5.18)

Differentiating (2.5.14) with respect to u, we get,

T ′(u) = (1− u)q(u) =
1

H(u)
. (2.5.19)

From (2.5.18) and (2.5.19), we get H ′(u) = −A2, which leads to (i). Conversely for

the class of distributions HLEG(u;α, 0, p) we obtain,

T (u) =
α(p− 1) log(1− pu)

p
,

or

T (u) =
−1

A2

log

(
H(u)

A1

)
,

where A1 = 1
α(1−p) and A2 = p

α(1−p) .

This completes the proof. �
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2.6 An application

There are different methods for estimating the parameters of a quantile function. The

method of minimum absolute deviation, method of least squares, method of maximum

likelihood, method of percentiles and the method of L-moments are commonly employed

for this purpose. In the first three methods, the estimates are found by optimizing non-linear

function of parameters. This will lead to complex expressions as pointed out in Gilchrist

[42] and Hosking [59]. To estimate the parameters of (2.2.5), we use the method of L-

moments. We equate sample L-moments to corresponding population L-moments. Let

X1, X2, ..., Xn be a random sample of size n from the population with quantile function

(2.2.5), then the first three sample L-moments are given by

l1 =

(
1

n

) n∑
i=1

X(i)

l2 =

(
1

2

)(
n

2

)−1 n∑
i=1

((
i− 1

1

)
−
(
n− i

1

))
X(i)

l3 =

(
1

3

)(
n

3

)−1 n∑
i=1

((
i− 1

2

)
− 2

(
i− 1

1

)(
n− i

1

)
+

(
n− i

2

))
X(i)

where X(i) is the ith order statistic.

For estimating the parameters α, β and σ, we equate first three sample L-moments to pop-

ulation L-moments given in Section 2.4. The parameters are obtained by solving the equa-

tions

lr = Lr; r = 1, 2, 3. (2.6.1)

Since L1 is the mean of the distribution, mean survival time is estimated as l1. Similarly

estimate of variance is obtained as V̂ (x) =
∫ 1

0
(Q̂(u))2du− l21, which can be evaluated with

the help of numerical integration techniques. Hosking [60] has shown that the L-moment
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estimates are asymptotically normal and consistent. Since the set of equations (2.6.1) are

non-linear in α, β and p, asymptotic variances of the L-moment estimates are difficult to

compute. The bootstrap method is commonly used to obtain the asymptotic variance of the

estimates (see Efron and Tibshirani [37]).

To illustrate the application of the proposed class of distributions, we consider a real data

set reported in Zimmer et al. [157]. The data consist of time to first failure of 20 electric

carts. We estimate the parameters using the method ofL-moments. The sampleL-moments

are obtained as

l1 = 12.66 l2 = 5.91 and l3 = 1.57. (2.6.2)

We then equate these values to the corresponding population L-moments given in (2.4.1),

(2.4.2) and (2.4.3), so that we have three non-linear equations. The Newton-Raphson

method is used to find the solutions of these equations. Least square method of estimation

for quantile functions given in Öztürk and Dale [115] was employed for fixing the initial

estimates for the Newton-Raphson iterative procedure. The estimates of the parameters are

obtained as

α̂ = 8.518 β̂ = 1.209 and p̂ = 0.329. (2.6.3)

The standard errors of the estimates α̂, β̂ and p̂ are obtained as 0.035, 0.141 and 0.021

respectively. To examine the adequacy of the model, we use the Q-Q plot, which is given in

Figure 2.6. The Q-Q plot shows that the proposed model provides a good fit for the given

data. We also carry out the chi-square goodness of fit test. The chi-square test statistic

value is 0.210, giving p-value 0.647 with one degree of freedom. This also indicates the

adequacy of proposed model for the given data set. We also compute the estimate of H(u)

by substituting the parameter values (2.6.3) in (2.5.3), which is given in Figure 2.7. Note

that the estimate Ĥ(u) is decreasing in u, which is consistent with our claim in Table 2.1.
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Figure 2.6: Q-Q plot for the electric cart data set.
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Figure 2.7: Plot of Ĥ(u) for the electric cart data set.

We can also infer that the data has a decreasing failure pattern.

2.7 Conclusion

In this chapter, we have introduced a class of distributions (2.2.5), which is the sum of

quantile functions of the half logistic and exponential geometric quantile functions. Various

reliability properties were studied. We have identified several well-known distributions

which are members of the proposed class of distributions. The estimation of parameters
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using the method of L-moments was studied and discussed the estimation procedure with

the aid of a real data. The proposed model has several advantages over the existing quantile

function models. The analysis of hazard quantile function over the whole parameter space

can be done without using numerical methods. The model is useful for fitting different

types of lifetime data due to the flexible behaviour of hazard quantile function. Unlike

generalized lambda distribution and generalized Tukey lambda distribution, the estimation

of parameters does not involve any computational difficulties.



Chapter 3

Pareto-Weibull Quantile Function

3.1 Introduction

Quantile function has several properties that are not shared by the distribution function.

For example, the sum of two quantile functions is a quantile function and the product of

two quantile functions is also a quantile function in the non-negative set up. In Chapter

2, we studied the properties and applications of a new quantile function, which is formed

by taking the sum of quantile functions of half logistic and exponential geometrical distri-

butions. The aim of the present chapter is to construct a new flexible quantile function by

considering the product of quantile functions of two lifetime distributions.

The Weibull distribution is popular due to its wide use to model various types of failure time

data. Several generalizations of the Weibull distribution were developed in the literature to

add more flexibility. These generalizations include the generalized Weibull distribution

by Mudholkar and Kollia [93], the exponentiated-Weibull distribution by Mudholkar et al.

[94], and the beta-Weibull distribution by Famoye et al. [38]. For various properties of

Weibull and related distributions, we may refer to Johnson et al. [63] and Murthy et al.

[95]. Pareto distribution is also an important distribution used in the context of reliability

Results in this chapter have been published as entitled “Pareto-Weibull quantile function” in the “Journal
of Applied Probability and Statistics” (See Sankaran and Kumar M [132]).

61
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studies for modelling decreasing failure time data. The Pareto family of distributions are

commonly used to model a wide variety of heavy tailed social and economic data. A com-

prehensive review on properties and generalizations of the Pareto distribution is available

in Arnold [6].

We propose a new class of distributions defined by a quantile function by taking the product

of quantile functions of Weibull and Pareto distributions. The proposed class gives a wide

variety of distributional shapes for various choices of the parameters.

The rest of the chapter is organized into six different sections. In Section 3.2, we present

a class of distributions and study its basic properties. Section 3.3 presents some well-

known distributions which are either a member of the proposed class of distributions or

obtained by applying some suitable transformations on the proposed quantile function. The

distributional properties such as measures of location and scale, L-moments etc., are given

in Section 3.4. In Section 3.5, we present various reliability characteristics of the class.

Section 3.6 focuses on inference procedures. We then provide applications of this class of

distributions in two real life situations. Finally, Section 3.7 provides major conclusions of

the study.

3.2 A class of distributions

Motivated by the property that the product of two positive quantile functions is again a

quantile function, we introduce a class of distributions defined by

Q(u) = σ(1− u)−α(− log(1− u))β, 0 < u < 1, α, β ≥ 0, σ > 0. (3.2.1)
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The proposed quantile function Q(·) is the product of two quantile functions Q1(·) and

Q2(·), where Q1(u) = σ1(1 − u)−α is the quantile function of the Pareto distribution and

Q2(u) = σ2(− log(1−u))β is the quantile function of the Weibull distribution. The support

of the distribution is (0,∞). The quantile density function is obtained as

q(u) = σ(1− u)−α−1(− log(1− u))β−1(β − α log(1− u)). (3.2.2)

The quantile function (3.2.1) represents a family of distributions with no closed form ex-

pression for its density or distribution function. However, these can be calculated by numer-

ical inversion of the quantile function. The family of distributions (3.2.1) accommodates a

1

q (u )

Figure 3.1: Plots of the density function for different values of parameters.

variety of shapes for its probability density function. Plots of the density function for dif-

ferent parameter values are given in Figure 3.1. It is seen that for appropriate choices of the

parameter values the family includes uni-modal, positive and negatively skewed members.

For the proposed class of distributions, the density function f(·) can be written in terms of
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the distribution function and the survival function as

f(x) =
(1− F (x))1+α(− log(1− F (x))1−β

σ(β − α log(1− F (x))
. (3.2.3)

The family of distributions (3.2.3) is a rich family, which contains several class of distri-

butions corresponding to different types of distribution functions in the expression of f(x).

The derivative of f(x) is obtained as

f ′(x) =
(1− F (x))1+α(− log(1− F (x))1−β

σ(β − α log(1− F (x))
f(x)[

− (1 + α)− (1− β)

log(1− F (x)
− α

(β − α log(1− F (x))

]
. (3.2.4)

Thus for β > 1, the density function is always decreasing and when 0 < β ≤ 1, the density

function is uni-modal with mode x0 = Q(u0), where

u0 = 1− e

(
β+2αβ−

√
4αβ+4α2β+β2

2α(1+α)

)
. (3.2.5)

3.3 Members of the family

The family of distributions (3.2.1) includes some well-known distributions as its special

cases. For α = 0,we get the Weibull distribution with quantile functionQ(u) = σ(− log(1−

u))β, which contains the exponential distribution with mean σ for β = 1 and the Rayleigh

distribution when β = 2. When β = 0, the quantile function (3.2.1) reduces to Q(u) =

σ(1− u)−α, which is the quantile function of the Pareto distribution.

By making use of various transformations on quantile functions described in Gilchrist [42],

we can derive certain popular distributions from the proposed model (3.2.1). By applying
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logarithmic transformation on (3.2.1), with β = 0, we get

Q1(u) = log(Q(u)) = log(σ)− α log(1− u) =
1

log(C)
− α log(1− u), (3.3.1)

with C = e(log(σ))−1 , which leads to the Gompertz distribution.

Consider the power u-transformation of the form T (u) = u
1
θ with β = 1, α = 0 and θ > 0,

we have

Q2(u) = Q(T (u)) = −σ log(1− u
1
θ ). (3.3.2)

This is the quantile function of the generalized exponential distribution.

Using the reciprocal transformation, putting β = 0 the quantile function became

Q3(u) =
1

Q(1− u)
= kuα. (3.3.3)

with k = 1
σ

. This is the quantile function of the power distribution.

For β = 0, the centering transformation gives the Pareto distribution of II kind with quantile

function,

Q4(u) = 1−Q(u) =
(1− (1− u)α)

(1− u)α
. (3.3.4)

Raising to a power η, the above quantile function became

Q5(u) = (Q4(u))η = ((1− u)−α − 1)η, (3.3.5)

which is the quantile function of the Burr XII distribution.

For the formulation of our model (3.2.1), the product of two quantile functions are involved.

However, to the best of our knowledge, the random variable associated with the quantile

function of the product is not explicitly derived in the literature. The following theorem
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helps to find the random variable associated with the product of two quantile functions.

Theorem 3.3.1. Let X and Y be two random variables with strictly increasing distribution

functions FX(·) and FY (·) and quantile functions QX(·) and QY (·) respectively. Then

QX(·) × QY (·) is the quantile function of the random variable Z = XQY (FX(X)).

Proof. LetZ be a continuous random variable with quantile functionQZ(·), whereQZ(u) =

QX(u)×QY (u). If QX(u) = t then u = FX(t) . Thus,

QZ(u) = tQY (FX(t)) for all u ∈ (0, 1).

Or, u = FZ(tQY (FX(t))).

Finally, FZ(z) = FZ(tQY (FX(t))),where QZ(u) = z. (3.3.6)

From (3.3.6), since z and t are the realizations of Z and X respectively, we get Z =

XQY (FX(X)). On similar lines, if we choose QY (u) = t, we can show that Z =

Y QX(FY (Y )). �

Remark 3.3.1. When X follows Weibull distribution variable with parameters σ1 and β

and Y follows Pareto distribution with parameters σ2 and α, then the random variable

Z = σ2X

(
eα(

X
σ1)

1
β

)
has quantile function of the form (3.2.1).

3.4 Distributional characteristics

For the model (3.2.1), we have

Median = Q

(
1

2

)
= 0.5−ασ(− log(0.5))β.
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The inter-quartile-range, IQR is obtained as

IQR = Q

(
3

4

)
−Q

(
1

4

)
= σ

((
1

4

)−α(
− log

(
1

4

))β
−
(

3

4

)−α(
− log

(
3

4

))β)
.

The Galton’s coefficient of skewness, S has the expression

S =
Q(3

4
) +Q(1

4
)− 2M

IQR

=
−21−α (− log

(
1
2

))β
+ 3−α

(
− log

(
3
4

))β
+
(
− log

(
1
4

))−β(
− log

(
1
4

))−β − 3−α
(
− log

(
3
4

))β ,

and the Moor’s coefficient of kurtosis, T is

T =
Q(7

8
)−Q(5

8
) +Q(3

8
)−Q(1

8
)

IQR

Q(3
4
) +Q(1

4
)− 2M

IQR

=
−3−α

(
− log

(
3
8

))β
+ 5−α

(
− log

(
5
8

))β − 7−α
(
− log

(
7
8

))β
+
(
− log

(
1
8

))β
2−α

(
− log

(
1
4

))β − 6−α
(
− log

(
3
4

))β .

The first L−moment L1, which is the mean of the distribution is obtained as

L1 =

∫ 1

0

Q(u) du = σ(1− α)−(β+1)Γ(β + 1). (3.4.1)

The second L−moment of the family has the form,

L2 =

∫ 1

0

(2u− 1)Q(u) du

= σ
(
(1− α)−(β+1) − 2(2− α)−(β+1)

)
Γ(β + 1), (3.4.2)
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which is twice the mean differences of the population. The third and the fourth L-moments

are obtained by

L3 =

∫ 1

0

(
6u2 − 6u+ 1

)
Q(u) du

= σ
(
(1− α)−(β+1) − 6(2− α)−(β+1) + 2(3− α)−(β+1)

)
Γ(β + 1), (3.4.3)

and

L4 =

∫ 1

0

(
20u3 − 30u2 + 12u− 1

)
Q(u) du

= σ
(
(1− α)−(β+1) − 12(2− α)−(β+1) + 30(3− α)−(β+1)

− 20(4− α)−(β+1)
)

Γ(β + 1). (3.4.4)

respectively. The L-coefficient of variation, analogous to the coefficient of variation based

on ordinary moments is given by

τ2 =
L2

L1

=
(
(1− α)−β−1 − 2(2− α)−β−1

)
(1− α)β+1

= 1− 2

(
η

1 + η

)β+1

,

where η = 1 − α. Thus τ2 lies in (0, 1), attains maximum when β tends to infinity and its

minimum when both α and β tend to zero. To measure the skewness of the distribution, we

use the L-coefficient of skewness defined by

τ3 =
L3

L2

=
(1− α)−(β+1) − 6(2− α)−(β+1) + 2(3− α)−(β+1)

(1− α)−(β+1) − 2(2− α)−(β+1)
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=
η−(β+1) − 6(η + 1)−(β+1) + 2(η + 2)−(β+1)

η−(β+1) − 2(η + 1)−(β+1)
.

L-coefficient of kurtosis for the family (3.2.1) is obtained as

τ4 =
L4

L2

=
(1− α)−(β+1) − 12(2− α)−(β+1) + 30(3− α)−(β+1) − 20(4− α)−(β+1)

(1− α)−(β+1) − 2(2− α)−(β+1)

=
η−(β+1) − 12(η + 1)−(β+1) + 30(η + 2)−(β+1) − 20(η + 3)−(β+1)

η−(β+1) − 2(η + 1)−(β+1)
.

3.5 Some approximations

In this section, we establish the relationship of the proposed model (3.2.1) with some fa-

miliar standard distributions through approximations. The advantage of this approximation

is justified from the practical and analytical points of view. In statistical data modelling,

usually we choose one among the candidate distributions, estimate the parameters of the

model and then carry out proper goodness of fit test. If the choice is not appropriate, we

repeat the procedure with another model, sometimes with a different strategy for estimation

and model adequacy test. If we have a quantile function for which the approximation to

different types of distributions is available, we can utilize the distributional properties and

inferential aspects of this quantile function as an alternative to other distributions in the

context of lifetime data analysis.

We first consider the class of distributions defined by Jones [66], with quantile density

function

q(u) = Ku−α1(1− u)−β1 , K > 0, α1, β1 are real. (3.5.1)
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To approximate (3.5.1) with (3.2.1) we need to identify the parameters α, β and σ for

which the approximation is appropriate. Equating first three L-moments of both quantile

functions and solving for α, β and σ, we get the parameters values of the quantile function

(3.2.1). For illustration, we consider (3.5.1) with α1 = 0.12, β1 = 1.2, and K = 6. The

corresponding parameter values of the quantile function (3.2.1) are α = 0.129, β = 0.875

and σ = 6.769. We plot the probability density function of the two models in Figure 3.2,

which shows that our model is a good approximation to Jones distribution. In Figure 3.2 the

solid line and the broken line represents the probability density functions of Jones model

and the corresponding approximation respectively. On similar lines, the proposed model

0 50 100 150 200

x0.00
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0.08
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Figure 3.2: Probability density functions of Jones distribution and its approximation.

can be approximated to the gamma distribution with density function,

f(x) =
β−α2

2 xα2−1e
− x
β2

Γ(α2)
, x > 0. (3.5.2)

When α2 = 2.5 and β2 = 1.5, the values of parameters in (3.2.1) are α = 0.004 , β = 0.593

and σ = 4.172. We plot the density function of two models in Figure 3.3, which shows

that our model is a reasonable approximation to the gamma distribution. In Figure 3.3,

solid line represents density function of the gamma model and broken line denotes the den-
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sity function of the approximation. Other lifetime models such as inverse Gaussian, Log
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Figure 3.3: Probability density functions of gamma distribution and its approximation.

normal, etc., can also be approximated by the proposed class of distributions. Since these

distributions does not have closed form distribution functions, one need to depend on nu-

merical methods for simulating observations. But it is much easier to generate observations

from the approximated form of Q(u).

3.6 Reliability properties

For the class of distributions (3.2.1), the hazard quantile function is obtained as

H(u) =
(1− u)α(− log(1− u))1−β

σ(β − α log(1− u))
. (3.6.1)

The identity (3.6.1) can also be written as

H(u) =

(
−Q(u)

(
α +

β

log(1− u)

))−1

, (3.6.2)
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where Q(u) is the quantile function defined in (3.2.1). The shape of the hazard function is

determined by the derivative of H(u), which is obtained as

H ′(u) =
(1− u)α−1(− log(1− u))−β (2αβ log(1− u))− (β − 1)β − α2 log2(1− u)

σ(β − α log(1− u))2
.

Since (1 − u)α−1 > 0 and σ(β − α log(1 − u))2 > 0 for all values of the parameters, the

sign of H ′(u) depends only on the function

K(y) = α y(2β − αy)− β(β − 1), (3.6.3)

where y = log(1 − u) < 0. The parameter α does not affect the sign of the two terms in

K(y). Now, we have six different cases.

Case 1: α = 0 and β > 1.

The first term in K(y) is 0 and the second term is negative so that K(y) < 0 and the

distribution is DHR.

Case 2: α > 0 and β > 1.

Both terms in K(y) are negative. Then K(y) < 0 and the distribution is DHR.

Case 3: α = 0 and β = 1.

From (3.6.1), we get, H(u) = 1
σ
, a constant, so the distribution is exponential.

Case 4: α > 0 and β = 1.

The second term in K(y) is 0 and the first term is negative. Then K(y) < 0 and

distribution is DHR.

Case 5: α = 0 and 0 < β < 1.

The first term in K(y) is 0 and the second term is positive, which gives K(y) > 0
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and distribution is IHR.

Case 6: α > 0 and 0 < β < 1.

In this case, the first term in K(y) is negative and the second term is positive. Thus

K(y) can be zero. The first derivative of H(u) is obtained as

H ′(u) =
e(α−1)y(−y)−βK(y)

σ(β − αy)2
. (3.6.4)

Further, the second derivative of H(u) is given by,

H ′′(u) =
dH ′(u)

dy

1

u− 1
.

The sign of H ′′(u) depends only on

− e(α−2)y(−y)−β

σ(β − αy)2
[K ′(y) + (α− 1)K(y)− β

y
K(y) +

2α

(β − αy)
K(y)].

Let y0 be the solution of the equation K(y) = 0. From (3.6.4), we have H ′(u0) = 0,

where u0 = 1− ey0 . Then the sign of H ′′(u0) depends on K ′(y0). We have

K ′(y) = 2αβ − 2α2y.

Since y < 0 for all u ∈ (0, 1) and the parameters α and β are non-negative, we get

K ′(y0) ≥ 0 andH ′′(u0) ≤ 0. So thatH(u) attains a maximum at y0 = β−
√
β

α
. Hence

X has an upside-down bathtub-shaped hazard quantile function with change point

u0 = 1− eβ−
√
β

α . It may be noticed that monotonicity of the conventional hazard rate

is equivalent to that of the hazard quantile function.
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Figure 3.4: Plots of H(u).

Summarizing the analysis, the family (3.2.1) possesses, IHR for α = 0, 0 < β < 1, DHR

when α ≥ 0, β > 1 and UBT if α > 0, 0 < β < 1. Figure 3.4 gives plots of H(u) for the

different values of parameters. For the class of distributions (3.2.1), mean residual quantile

function M(u) has the form

M(u) =
σ(1− α)−(β+1)Γ[β + 1, (α− 1) log(1− u)]

1− u
− σ(1− u)−α(− log(1− u))β.

The hazard quantile function and mean residual quantile function defined in reverse time

(see Nair and Sankaran [97]) have the respective expressions,

Λ(u) = [uq(u)]−1 =
(1− u)α+1(− log(1− u))1−β

σu(β − α log(1− u))
,
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R(u) =

(
−1

u

) u∫
0

p q(p)dp

=

(
−1

u

)(
σ(1− α)−β−1Γ(β + 1) +

σ(1− u)−α(− log(1− u))β

α− 1

(1− αu)((α− 1) log(1− u))β + β(1− u)αΓ(β, (α− 1) log(1− u))

((α− 1) log(1− u))−β).

The total time on test (TTT) is a useful concept in reliability theory. For the class of

distributions (3.2.1), we obtain T (u) as

T (u) = σ(1− α)−β−1Γ(β + 1) +

(
σ(1− u)−α(− log(1− u))β((α− 1) log(1− u))−β

α− 1

)
(β(1− u)αΓ(β, (α− 1) log(1− u))− α(u− 1)((α− 1) log(1− u))β).

(3.6.5)

The first L−moment of the residual life random variable Xt = X|X > t is the vitality

function studied by Kupka and Loo [75]. In the quantile set up which is given by

α1(u) =
1

1− u

1∫
u

Q(p)dp

=
σ(1− α)−β−1Γ(β + 1, (α− 1) log(1− u))

1− u
.

The second L−moment of residual life (Nair and Vineshkumar [100]) is given by

α2(u) =
1

(1− u)2

1∫
u

Q(p)(2p− u− 1)dp

=
σ(1− α)−β−1(2− α)−β−1

1− u

[
(α− 2)(u− 1)(2− α)β

Γ(β + 1, (α− 1) log(1− u))− 2(1− α)β+1

Γ(β + 1, (α− 2) log(1− u))

]
.
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Residual life can be also explained in terms of percentiles as percentile residual life func-

tion, defined by

Pα(u) = Q(1− (1− α)(1− u))−Q(u)

= σ
(
((α− 1)(u− 1))−α(− log((α− 1)(u− 1)))β − (1− u)−α(− log(1− u))β

)
.

and the reversed percentile residual life function is (Nair and Vineshkumar [101])

Rα(u) = Q(u)−Q((1− α)u)

= σ(1− u)−α(− log(1− u))β − σ((α− 1)u+ 1)−α(− log((α− 1)u+ 1))β.

The class of distributions defined in (3.2.1) can be characterized by the relationship between

J(u) and H(u) as

J(u) = H(u)

[
1 + α +

1− β
log(1− u)

+
α

β − αlog(1− u)

]
.

3.7 Applications

To estimate the parameters of (3.2.1), we use the method of L-moments. We equate sample

L-moments to corresponding population L-moments. The sample L-moments are given by

l1 =

(
1

n

) n∑
i=1

X(i) (3.7.1)

l2 =

(
1

2

)(
n

2

)−1 n∑
i=1

((
i− 1

1

)
−
(
n− i

1

))
X(i) (3.7.2)

l3 =

(
1

3

)(
n

3

)−1 n∑
i=1

((
i− 1

2

)
− 2

(
i− 1

1

)(
n− i

1

)
+

(
n− i

2

))
X(i)
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whereX(i) is the ith order statistic. For estimating the parameters α, β and σ, we equate first

three sample L-moments to population L-moments given in Section 3.5. The parameters

are obtained by solving the equations,

lr = Lr; r = 1, 2, 3. (3.7.3)

The set of equations (3.7.3) are non-linear in α, β and σ.

To illustrate the application of the proposed class of distributions. We consider two real

life data sets. We first consider a real data set reported in Von Alven [154] and Chhikara

and Folks [26]. The data consists of active repair times (in hours) for an airborne commu-

nication transceiver. We estimate the parameters using the method of L-moments and the

sample L-moments are obtained as

l1 = 3.607, l2 = 2.116 and l3 = 1.102. (3.7.4)

We now equate these values to the corresponding population L-moments given in (3.4.1),

(3.4.2) and (3.4.3), so that we have three non-linear equations. Newton-Raphson method is

used to find the solution of the resulting system of non-linear equations. The values of the

parameters which minimizes the residual sum of squares are used as the initial values for

the Newton-Raphson procedure. The estimates of the parameters are obtained as

α̂ = 0.302, β̂ = 0.773 and σ̂ = 2.061. (3.7.5)

To examine the adequacy of the model, two goodness of fit techniques are employed. The

first one is the Q-Q plot, which is given in Figure 3.5. The Q-Q plot reveals the physical

closeness of the model. We also carry out the chi-square goodness of fit test. The chi-square
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Figure 3.5: Q-Q plot for the repair time data.

value is 1.022 with p-value 0.79, which does not reject the model.

Now, consider another set of data reported in Arnold [6] on the lifetime tournament earn-

ings through 1980 of all those professional golfers whose lifetime tournament earnings

exceed $700,000 during that period. We estimate the parameters using the method of L-

moments. The sample L-moments are obtained as

l1 = 1168.12 l2 = 253.314 and l3 = 103.538. (3.7.6)

Now by equating these to the corresponding population L-moments and solving the equa-

tions numerically, the estimates obtained are

α̂ = 0.291 β̂ = 0.065 and σ̂ = 837.795. (3.7.7)

To check the goodness of fit, we use Q-Q plot and chi-square goodness of fit test. Figure

3.6 presents Q-Q plot, which shows that most of the data points are close to the straight

line. This means that the quantile function (3.2.1) gives a reasonable fit for the data. The
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Figure 3.6: Q-Q plot for the income data.

chi-square value is 1.52 with p-value 0.68, which does not reject the model.

3.8 Conclusion

We have introduced a class of distributions (3.2.1), which is the product of quantile func-

tions of the Pareto and Weibull distributions. The random variable associated with the

quantile function was identified. Several well-known distributions which are either the

members of the proposed class of distributions or obtained through some suitable trans-

formations on the quantile function (3.2.1) were presented. The estimation of parameters

of the model using L-moments was studied and discussed the estimation procedure with

the aid of two real data sets. The proposed model has several advantages over the existing

quantile function models. The analysis of shape of hazard quantile function over the whole

parameter space can be done without using numerical methods. The proposed model was

applied to two real life situations to illustrate its utility.





Chapter 4

A Class of Quantile Functions with Ap-

plications to Reliability Analysis

4.1 Introduction

As previously mentioned, quantile functions have several distinct properties that are not

shared with the distribution functions. This makes quantile-based analysis more attractive

in certain practical situations. There exist many simple quantile functions, that serve well

in empirical model building, for which distribution functions are not in tractable forms. In

the present chapter, we provide a new method of constructing flexible quantile functions

based on the probability integral transform method given in Lai [77]. We then develop a

new class of distributions using the proposed method. The proposed class gives a wide

variety of distributions with different shapes for various choices of the parameters.

The summary of the chapter is as follows. In Section 4.2, we present a general method of

transformation and a particular case for the construction of new quantile functions. Section

4.3 presents a new family of distributions using the proposed method of transformation.

Various distributional properties and L-moments are given in Section 4.4. Section 4.5

presents important reliability properties of the class. Section 4.6 studies inference proce-

Results in this chapter have been communicated to an international journal.
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dures of the model. We then provide an application of this class of distributions in a real

life situation. Finally, Section 4.7 provides major conclusions of the study.

4.2 Method for constructing new quantile functions

Let G1(·) and G2(·) be the cumulative distribution functions of two continuous lifetime

distributions with the latter having support on the unit interval. Then a new class of distri-

bution is defined by the cumulative distribution function

F (t) = G2(G1(t)), (4.2.1)

which was discussed in Lai [77]. We now consider an equivalent transformation method

in the context of quantile functions. Let Q(u), Q1(u) and Q2(u) be the quantile functions

corresponding to the cumulative distribution functions F (t), G1(t) and G2(t) respectively.

Suppose F (t) = u, then G2(G1(t)) = u, which gives G1(t) = Q2(u) and t = Q1(Q2(u)).

Thus we have

Q(u) = Q1(Q2(u)). (4.2.2)

In general, Q1(Q2(u)) is a quantile function for any two choices of quantile functions

Q1(u) and Q2(u). When Q2(u) is a unit support quantile function, we get Q(0) = Q1(0)

and Q(1) = Q1(1), and hence the support of Q(u) and Q1(u) are same. This will be useful

for the construction of flexible lifetime models from the existing non-negative distributions.

Thus, we consider Q2(u) as a unit support quantile function. Using the relation (4.2.2),

we can expand existing families of distributions defined in terms of quantile functions by

adding suitable parameters. We can also apply all the standard transformation methods
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given in Gilchrist [42] to add more flexibility. For example, if X has the quantile function

(4.2.2), then 1
X

has the quantile function

Q∗(u) =
1

Q(1− u)
=

1

Q1(Q2(1− u))
. (4.2.3)

The quantile density function q(u) for the model (4.2.2) is obtained as

q(u) =
d

du
Q1(Q2(u)) = q1(Q2(u))q2(u), (4.2.4)

where q1(u) and q2(u) are the quantile density functions corresponding toQ1(u) andQ2(u).

The density quantile function are related through the expression

f(Q(u)) = f1(Q1(Q2(u)))f2(Q2(u)). (4.2.5)

For the class of distributions (4.2.2), the hazard quantile function is of the form

H(u) = ((1− u)q1(Q2(u))q2(u))−1

= H1(Q2(u))
1−Q2(u)

(1− u)q2(u)
(4.2.6)

= (1−Q2(u))H1(Q2(u))H2(u), (4.2.7)

where Hj(u) is the hazard quantile function corresponding to Qj(u), j = 1, 2. Note that

the monotonic properties of hazard rate and hazard quantile function are identical.

We now consider some special cases of (4.2.2) by properly choosing the unit support quan-

tile function. When Q2(u) = 1− (1− u)
1
θ , we have

Q(u) = Q1(1− (1− u)
1
θ ).
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This leads to the well-known proportional hazards model with baseline quantile function

Q1(u), which yields 1− F (x) = (1−G1(x))θ (see Nair et al. [105]).

If we substitute Q2(u) = u
1
θ , we get

Q(u) = Q1(u
1
θ ),

which provides proportional reversed hazards model with F (x) = (G1(x))θ.

For Q2(u) = u
β+(1−β)u

with β > 0, we obtain

Q(u) = Q1(Q2(u))

= Q1

(
u

β + (1− β)u

)
, (4.2.8)

where Q1(u) is the baseline quantile function. This is the quantile version of the Marshall

and Olkin [87] model with distribution function

1− F (x) =
α(1−G(x))

1− (1− α)(1−G(x))
, α > 0, (4.2.9)

with α = 1
β

. Now for the model (4.2.8), the quantile density function q(u) has the form

q(u) =
d

du
(Q1(Q2(u)))

=

(
β

(β + (1− β)u)2

)
q1

(
u

β + (1− β)u

)
. (4.2.10)

Since Q2(u) = u
β+(1−β)u

, q2(u) = d
du
Q2(u) = β

(β+(1−β)u)2
and 1 − Q2(u) = β(1−u)

β+(1−β)u
, we

get
1−Q2(u)

(1− u)q2(u)
= β + (1− β)u. (4.2.11)
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Now from (4.2.6), the relation between the hazard function ofQ(u) and the baseline hazard

quantile function is obtained as

H(u) = (β + (1− β)u)H1

(
u

β + (1− β)u

)
. (4.2.12)

In the next proposition, we provide bounds forH(u) in terms of the baseline hazard quantile

function H1(u).

Theorem 4.2.1. Let X be a random variable with quantile function Q(u) as described in

(4.2.8). Then H(u) satisfies the boundary condition,

Minimum{β, 1}H1

(
u

β + (1− β)u

)
≤ H(u) ≤ Maximum{β, 1}H1

(
u

β + (1− β)u

)
(4.2.13)

Proof. We have the function β + (1− β)u satisfies the relation,

Minimum{β, 1} ≤ β + (1− β)u ≤ Maximum{β, 1}. (4.2.14)

Now using this relation in (4.2.12), we get the inequality (4.2.13), which completes the

proof. �

Remark 4.2.1. From (4.2.12), it follows that H(u)

H1( u
β+(1−β)u)

is increasing in u for 0 < β ≤ 1

and decreasing in u for β ≥ 1.

4.3 A new class of distributions

We now construct a new class of distributions, which is an extended version of the class of

distributions with linear mean residual quantile function defined in Midhu et al. [89]. The
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quantile function of the class of distributions with linear mean residual quantile function is

given by

Q1(u) = (−(α + δ) log(1− u)− 2αu) , −δ < α < δ, δ > 0, σ > 0. (4.3.1)

Note that the class of distributions with linear mean residual quantile function have no

closed form expression for it’s distribution function. Now from (4.2.8) and (4.3.1), we

present a class of distributions with quantile function,

Q(u) =

(
(α + δ) log

(
1 +

u

β(1− u)

)
− 2αu

β + (1− β)u

)
β > 0. (4.3.2)

By re-parametrizing (4.3.2), using σ = α + δ and γ = −2α
α+δ

, the quantile function (4.3.2)

becomes

Q(u) = σ

(
log

(
1 +

u

β(1− u)

)
+

γu

β + (1− β)u

)
σ > 0, β > 0 and γ > −1.

(4.3.3)

Since the support of the distribution is (Q(0), Q(1)) = (0,∞), this can be efficiently em-

ployed for modelling various types of lifetime data. The quantile density function q(u) is

given by

q(u) =
σ(u(βγ + β − 1)− β(γ + 1))

(u− 1)(β − βu+ u)2
. (4.3.4)

The distribution function or density function of the random variable X corresponding to

(4.3.3) cannot be expressed in closed form by solving Q(u) = x and has to be evaluated

numerically. However, we can represent (4.3.4) in terms of the density function f(x) and

the distribution function F (x) as

f(x) =
(F (x)− 1)(β − βF (x) + F (x))2

σ(F (x)(βγ + β − 1)− β(γ + 1)
. (4.3.5)
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Plots of the density function for different combinations of parameters is shown in Figure

4.1.
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Figure 4.1: Plots of density function for different values of parameters.

For γ = 0, we can observe that the model (4.3.3) is essentially a particular case of the class

of distributions with linear hazard quantile function considered in Midhu et al. [90] with

quantile function

Q(u) =
1

a+ b
log

(
a+ b u

a− a u

)
, a > 0, a+ b > 0, (4.3.6)

with a = β and b = 1−β. Further, this particular case includes several well-known families

of distributions for various values of the parameter β. These consists of the exponential

distribution with mean σ for β = 1 and the extended Weibull distribution, defined by
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Marshall and Olkin [87] with quantile function,

Q(u) = σ log

(
θ + (1− θ)(1− u)

1− u

)
(4.3.7)

with θ = 1
β
> 0 for β > 0. In particular, for β = 1

2
, (4.3.7) reduces to

Q(u) = −σ log

(
1 + u

1− u

)
,

which is the half-logistic distribution.

In addition, when β > 1, the quantile function (4.3.7) can be expressed as

Q(u) = σ log

(
1− Pu
1− u

)
, (4.3.8)

with 0 < P = β−1
β

< 1, which is the exponential geometric distribution defined by

Adamidis and Loukas [3].

4.4 Distributional characteristics

The ordinary moments are given by E(Xr) =
∫ 1

0
(Q(p))rdp and in particular the mean of

the distribution has the form

µ =
σ(−βγ + (βγ + β − 1) log(β) + γ)

(β − 1)2
.

The quantile-based measures of the distributional characteristics like location, dispersion,

skewness and kurtosis are popular in statistical analysis. These measures are also useful in
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inference problems. For the class of distributions (4.3.3), we have

Median = Q

(
1

2

)
= σ

(
γ

β + 1
+ log

(
1

β
+ 1

))
.

The inter-quartile range is obtained as

IQR = Q

(
3

4

)
−Q

(
1

4

)
= σ

(
8βγ

3β2 + 10β + 3
+ log

(
β + 3

β

)
− log

(
1

3β
+ 1

))
.

Galton’s coefficient of skewness,

S =
Q(3

4
) +Q(1

4
)− 2M

IQR

=

4(β−1)βγ
(β+1)(β+3)(3β+1)

− 2 log
(

1
β

+ 1
)

+ log
(
β+3
β

)
+ log

(
1

3β
+ 1
)

8βγ
3β2+10β+3

+ log
(
β+3
β

)
− log

(
1

3β
+ 1
) .

and Moor’s coefficient of kurtosis,

T =
Q
(

7
8

)
−Q

(
5
8

)
+Q

(
3
8

)
−Q

(
1
8

)
Q
(

3
4

)
−Q

(
1
4

)
=

(
− 5

3β+5
+ 3

5β+3
+ 1
−7β−1

+ 7
β+7

)
γ + log

(
72

35β+5
+ 56

5(3β+5)
+ 1
)

8βγ
3β2+10β+3

+ log
(
β+3
β

)
− log

(
1

3β
+ 1
) .

For the class of distributions (4.3.3), we obtain the second L-moment as

L2 =

∫ 1

0

(2u− 1)Q(u) du

=
σ(β(βγ + β + γ − 1) log(β)− (β − 1)(2βγ + β − 1))

(β − 1)3
, (4.4.1)
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which is twice the mean differences of the population. The third and fourth L- moments

are

L3 =

∫ 1

0

(
6u2 − 6u+ 1

)
Q(u) du

=
βσ ((β2(γ + 1) + 4βγ + γ − 1) log(β)− (β − 1)(β(3γ + 2) + 3γ − 2))

(β − 1)4
, (4.4.2)

and L4 =

∫ 1

0

(
20u3 − 30u2 + 12u− 1

)
Q(u) du

=
σ(6β(β(β((β + 9)γ + β + 2) + 9γ − 2) + γ − 1) log(β)))

6(β − 1)5

− ((β − 1)(β(β(2β(11γ + 8) + 76γ − 3) + 22γ − 12)− 1))

6(β − 1)5
(4.4.3)

respectively. The L-coefficient of variation, L-coefficient of skewness and L-coefficient of

kurtosis are

τ2 =
L2

L1

=
β(βγ + β + γ − 1) log(β)− (β − 1)(2βγ + β − 1)

(β − 1)(−βγ + (βγ + β − 1) log(β) + γ)
, (4.4.4)

τ3 =
L3

L2

=
β(β((β + 4)γ + β) + γ − 1) log(β)− (β − 1)β(β(3γ + 2) + 3γ − 2)

(β − 1)(β(βγ + β + γ − 1) log(β)− (β − 1)(2βγ + β − 1))
, (4.4.5)

and

τ4 =
L4

L2

=
(β − 1)(α(β(β(28β + 155) + 56) + 1) + β(β(3− 16β) + 12)δ + δ)

6(β − 1)2((β − 1)(3αβ + α− βδ + δ)− β log(β)(α(β + 3)− βδ + δ))

− 6β log(β)(α(β(β(β + 16) + 20) + 3)− β(β(β + 2)− 2)δ + δ)

6(β − 1)2((β − 1)(3αβ + α− βδ + δ)− β log(β)(α(β + 3)− βδ + δ))
,

(4.4.6)

respectively. We can show that τ3 lies in (-1, 1) and τ4 lies in (-0.25, 1) using numerical
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techniques.

4.4.1 Order statistics

The density function of the rth order statistic Xr:n is of the form

fr(x) =
1

B(r, n− r + 1)
f(x)F r−1(x)(1− F (x))n−r.

For the proposed model, it reduces to

fr(x) =
1

B(r, n− r + 1)

(1− F (x))n−r(βF (x)− β − F (x))2(F (x))r−1

σ(F (x)(βγ + β − 1)− β(γ + 1))
.

This gives

E(Xr:n) =
1

B(r, n− r + 1)

∫ ∞
0

x
(1− F (x))n−r(βF (x)− β − F (x))2(F (x))r−1

σ(F (x)(βγ + β − 1)− β(γ + 1))
dx.

In terms of quantile functions, we have

E(Xr:n) =
1

B(r, n− r + 1)

∫ 1

0

Q(u)
(1− u)n−r(βu− β − u)2ur−1

σu(βγ + β − 1)− β(γ + 1))
dx.

The first order statistic X1:n has quantile function,

Q(1)(u) = Q(1− (1− u)
1
n )

= σ

(
γ − γ(1− u)1/n

(β − 1)(1− u)1/n + 1
+ log

(
(1− u)−1/n − 1

β
+ 1

))
,
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and the nth order statistic Xn:n has quantile function

Q(n)(u) = Q(u
1
n )

= σ

(
γu1/n

β − (β − 1)u1/n
+ log

(
1

βu−1/n − β
+ 1

))
.

The above expressions of order statistics are useful when studying the series and parallel

systems in reliability theory (see Lai and Xie, 2006).

4.5 Reliability properties

Hazard quantile function is one of the basic concept employed for the modelling and anal-

ysis of lifetime data in quantile set up. For the class of distributions (4.3.3), the hazard

quantile function has the expression

H(u) =
(β − βu+ u)2

σ(βγ + β − u(βγ + β − 1))
. (4.5.1)

Special Cases:

(a). For γ = 0, we get linear hazard quantile function H(u) = A+ Bu, where A = β
σ

and

B = (1−β)
σ

. This was studied by Midhu et al. [91]. In this case, we have H(u) is IHR for

β < 1, DHR for β > 1 and constant for β = 1. Thus for β = 1 and γ = 0, the underlying

distribution is exponential.

(b). When β = 0, the hazard quantile function is of the form H(u) = Ku, where K = 1
σ

.

We can observe that H(u) is linear in this case also.

(c). When β = 1, hazard quantile function takes the form H(u) = 1
C−Du , where C =

σ(1 + γ) and D = σγ. Some special cases of Rescaled beta, power and generalized
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Weibull distributions have hazard quantile function of this form.

The shape of the hazard quantile function is determined by the derivative of H(u), which

is obtained as

H ′(u) =
(β − (β − 1)u)((β − β(β + (β − 2)γ)) + (β − 1)u(βγ + β − 1))

σ(βγ + β − u(βγ + β − 1))2
.

Since β−(β−1)u > 0 and σ(βγ+β−u(βγ+β−1))2 > 0 for all values of the parameters

and 0 < u < 1, the sign of H ′(u) depends only on

K(u) = β((2− β)γ + (1− β)) + (β − 1)u(β(γ + 1)− 1).

By thoroughly analysing the function K(u), we observe that the hazard quantile function

accommodates increasing, decreasing, linear and bathtub shapes for different choices of

parameters β and γ. Plots of hazard quantile function for different values of parameters

are given in Figure 4.2. The hazard quantile function have both monotonic as well as non-

monotonic members for various parameter values. We consider 9 different regions of the

parameter space and analyse the behaviour of H(u) in each of them separately. The shape

of H(u) is determined based on the sign of K(u). The ageing pattern of H(u) for various

parameter values are given in Table 4.1. The hazard quantile function has bathtub shape

for cases 5, 7 and 8 with a change point

u0 =
β2(1− γ)− β(1− 2γ)

β2(γ + 1)− β(γ + 2) + 1
.

For the class of distributions (4.3.3), M(u) has the form

M(u) =
σ
(
− (β−1)βγ
β−βu+u

− (βγ+β−1) log(β−βu+u)
u−1

)
(β − 1)2

. (4.5.2)
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Figure 4.2: Plots of the hazard function for different values of parameters.

It is well-known that increasing (decreasing) failure rate implies decreasing (increasing)

mean residual life (see Lai and Xie [78]). The ageing behaviour of the class of distributions

(4.3.3) based on mean residual quantile function can be defined from Table 4.1. There

exists closed form expressions of the hazard quantile function and mean residual quantile

function defined in reverse time (see Nair and Sankaran, 2009) for the proposed class of

distributions (4.3.3).

The total time on test transform has the expression

T (u) =

∫ u

0

(1− p)q(p)dp.

=
σ
(

(βγ + β − 1) log
(

β
β−βu+u

)
− (β−1)γu

β−βu+u

)
(β − 1)2

. (4.5.3)
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Table 4.1: Shape of the hazard quantile function for different regions of the parameter
space.

Sl.No Parameter Region Shape of the hazard quantile function
1 β 6= 1, γ = 0 DHR
2 β = 1, γ = 0 Constant
3 1 < β < 2, −1 < γ < 0 DHR
4 1 < β < 2, γ > β−1

2−β IHR
5 1 < β < 2, 0 < γ < β−1

2−β Bathtub
6 0 < β < 1, γ > 1−β

β−2
IHR

7 0 < β < 1, −1 < γ < 1−β
β−2

Bathtub
8 β > 2, γ > β−1

β
Bathtub

9 β > 2, −1 < γ < β−1
β

DHR

Residual life can be also explained in terms of percentiles as the percentile residual life

function. From (4.3.3) we have

Pα(u) = Q(1− (1− α)(1− u))−Q(u)

= σ

(
αβγ(u− 1)

(β(u− 1)− u)(α + (α− 1)β(u− 1)− αu+ u)

)
+ σ

(
log

(
α− αu+ u

(α− 1)β(u− 1)
+ 1

)
− log

(
u

β − βu
+ 1

))
, (4.5.4)

and the reversed percentile residual life function,

Rα(u) = Q(1− (1− α)(1− u))

= σ

(
αβγ(u− 1)

(β(u− 1)− u)(α + (α− 1)β(u− 1)− αu+ u)

)
+ σ log

(
α− αu+ u

(α− 1)β(u− 1)
+ 1

)
− log

(
u

β − βu
+ 1

)
. (4.5.5)

The Parzens score function defined in Nair et al. [103] is obtained as

J(u) =
q′(u)

q2(u)
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=

((β − 1)u− β)(((β − 1)u− β)(−(−2β + 2(β − 1)u+ 1))

− 2(β − 1)βγ(u− 1)2)

(β − 1)3(u− 1)2
. (4.5.6)

It is important to give characterizations for life distributions by the relationships among

reliability concepts. In the same spirit, we present the following characterization theorems.

Theorem 4.5.1. A random variable X belongs to the family of distributions (4.3.3) if and

only if J(u) and H(u) satisfies the relation

J(u)

H(u)
= 2 +

2

A+ A′u
+

1

B +B′u
, (4.5.7)

where A and B are real constants, with A′ = (1− A) and B′ = (1−B).

Proof. For the class of distributions (4.3.3), we have from (4.5.6) and (4.5.1),

J(u)

H(u)
= 2− 2

β − βu+ u
+

1

βγ + β − u(βγ + β − 1)
,

which gives
J(u)

H(u)
= 2 +

2

A+ (1− A)u
+

1

B + (1−B)u
, (4.5.8)

where A = β and B = β(1 + γ).

Then (4.5.8) gives,
J(u)

H(u)
= 2 +

2

A+ A′u
+

1

B +B′u
(4.5.9)

where A′ = (1− A) and B′ = (1−B).

To prove the converse part, we use the identity given by Nair et al. [103],

J(u) = H(u)− (1− u)H ′(u). (4.5.10)
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This can be written as
H ′(u)

H(u)
=

(
1

1− u

)(
1− J(u)

H(u)

)
,

or
d

du
log(H(u)) =

(
1

1− u

)(
1− J(u)

H(u)

)
.

Thus, we have

H(u) = exp

(∫
1

1− u

(
1− J(u)

H(u)

)
du

)
. (4.5.11)

From (4.5.7) and (4.5.11), we get

H(u) =
(A+ (1− A)u)2

C(B + (1−B)u)
, (4.5.12)

where C is the integrating constant. This identity is the same as (4.5.1) with C = σ,A = β

andB = β(1+γ). SinceH(u) uniquely determinesQ(u), X belongs to the proposed class

of distribution, which completes the proof. �

Theorem 4.5.2. The distribution of the random variable X belongs to the family (4.3.3), if

and only if,

M(u)− β

u
T (u) =

[
A

u(1− u)
log

(
βu
(

1 +
Cu

β

)β+Cu
)]

(4.5.13)

where A and C real are constants.

Proof. For the class of distributions (4.3.3), from (4.5.2) and (4.5.3), we have

(1− u)M(u)−
(

(1− u)β

u

)
T (u) =

A

u

(
(u− 1)β log

(
β

u+ β − uβ

)
+ u log(u+ β − uβ)

)
, (4.5.14)
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where A = (β+βγ−1)σ
u(β−1)2

.

This can also be expressed as

(1− u)M(u)−
(

(1− u)β

u

)
T (u) =

A

u
log

[
βu
(
β + Cu

β

)β+Cu
]

(4.5.15)

where C = 1− β. This gives

(1− u)M(u)−
(

(1− u)β

u

)
T (u) =

A

u
log

[
βu
(
β + Cu)

β

)β+Cu
]
,

which implies

M(u)− β

u
T (u) =

[
A

u(1− u)
log

(
βu
(

1 +
C

β

)β+Cu
)]

.

Now to proof the converse part, we have the identity,

T (u) = µ− (1− u)M(u). (4.5.16)

From (4.5.16) and (4.5.13), we get M(u) of the form (4.5.2), which completes the proof.

�

4.6 An application

Since the L−moments of the proposed model are not in a simple form, to estimate the pa-

rameters of (4.3.3), we employ the method of percentiles illustrated in Karian and Dudewicz

[69]. We consider the three population percentiles for the proposed class of distributions
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(4.3.3) as

ρ1 = Q(0.5) = σ

(
0.5γ

0.5(1− β) + β
+ log

(
1

β
+ 1

))
,

ρ2 = Q(0.9)−Q(0.1)

= σ

(
8.89βγ

β(β + 9.11) + 1
− log

(
β + 0.111

β

)
+ log

(
β + 9

β

))
and

ρ3 =
Q(0.5)−Q(0.1)

Q(0.9)−Q(0.5)

=

0.889βγ
β(β+1.11)+0.111

− log
(
β+0.111

β

)
+ log

(
β+1
β

)
8βγ

β(β+10)+9
− log

(
β+1
β

)
+ log

(
β+9
β

) . (4.6.1)

For a given data X1, X2, ..., Xn, let π̃p denote the (100p)th percentile of the data. We

compute π̃p by first writing (n + 1)p as r + a
b
, where r is a positive integer and a

b
is a

fraction in the interval [0, 1]. Let X(1), X(2), ..., X(n) be the order statistics of the data, then

π̃p is defined as

π̃p = x(r) +
a

b
(X(r+1) −X(r)). (4.6.2)

Karian and Dudewicz [69] employed this definition of percentiles for estimating parameters

of lambda distribution. We now consider the three sample percentiles ρ̃1, ρ̃2, and ρ̃3 defined

by

ρ̃1 = π̃0.5, ρ̃2 = π̃0.9 − π̃0.1 and ρ̃3 =
π̃0.5 − π̃0.1

π̃0.9 − π̃0.5

.

The estimates of the parameters β, γ and σ are obtained by equating the sample percentiles

to the corresponding population percentiles, ρ̃i = ρi, (i = 1, 2, 3).

To illustrate the application of the proposed class of distributions, we consider a real data

reported in Smith and Naylor [145]. The data are the strengths of 1.5cm glass fibres,
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measured at the National Physical Laboratory, England. We estimate the parameters using

the method of percentiles, the sample percentiles are obtained as

ρ̃1 = 1.59 ρ̃2 = 0.858 and ρ̃3 = 2.545.

We then equate these values to the corresponding population percentiles given in (4.6.1),

so that we have three non-linear equations, Newton-Raphson method is used to find the

solutions of these equations. The value of the parameters which minimizes the residual sum

of squares is used as the initial values for the Newton-Raphson procedure. The estimates

of the parameters are

β̂ = 0.072 γ̂ = 20.918 and σ̂ = 0.0711.

Plot of Ĥ(u) is increasing in u as shown in Figure 4.3. This data was analysed earlier by

Barreto-Souza et al. [12]. They employed beta Frechet (BF), exponentiated Frechet (EF)

and Frechet distributions for modelling this data. Figure 4.4 gives the density functions

of BF, EF and Frechet distributions with the histogram of the data. Figure 4.5 presents
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Figure 4.3: Estimate of the hazard quantile function.

the fitted density function of the proposed model for the data. This shows that our model

gives a better fit than the other three models to the data set. To examine the adequacy of
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Figure 4.4: The densities of the BF, EF and Frechet distributions for the glass fibres data.

the model, two goodness of fit techniques are employed. The first one is the Q-Q plot,

which is given in Figure (4.6). The Q-Q plot ensures the physical closeness of the model

to the data. We also carry out the chi-square goodness of fit test. The chi-square value is

1.84 with p−value 0.87. This indicates that the proposed model is a reasonable one for the

given data set. P-values corresponding to BF, EF and Frechet distributions are 0.65, 0.54

and 0.38 respectively.
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Figure 4.5: The density of the proposed model for the glass fibres data.
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Figure 4.6: Q-Q plot for the glass fibres data.

4.7 Conclusion

We introduced a new method for creating new quantile function models from the existing

ones. A general method for the construction of new quantile function from a baseline quan-

tile function was introduced. We derived a new class of distributions using the proposed

method by choosing the class of distributions with linear mean residual quantile function

as the baseline quantile function. Several well-known distributions are members of the

proposed class of distributions. The proposed class of distributions provides a general and

flexible framework for the analysis of lifetime data. The estimation of parameters of the

model using the method of percentiles was studied. The model was applied to a real data

on the strengths of glass fibres. The analysis of shape of hazard quantile function over the

whole parameter space can be done without using numerical methods. The quantile func-

tion is useful for modelling various kinds of lifetime data due to the flexible behaviour of

hazard quantile function.



Chapter 5

A Class of Distributions with Quadratic

Mean Residual Quantile Function

5.1 Introduction

The residual life plays a vital role in life testing experiments. It represents the lifetime

remaining to a unit after it has attained age t. For a non-negative random variable X with

cumulative distribution function F (x), the survival function and the quantile function of

the residual life random variable Xt are derived in Section 1.1.3.3. The expected value of

Xt is called the mean residual life, which is given in (1.2.7).

Nair and Sankaran [97] defined the mean residual quantile function M(u), which is the

quantile version of the mean residual life as defined in Section 1.2.2. Various properties

and applications of M(u) are extensively discussed in Nair et al. [105]. Both mean resid-

ual quantile function and mean residual life function contains the same information about

the underlying lifetime distribution, but their interpretations are different from one another.

Midhu et al. [89] proposed a class of distributions with linear mean residual quantile func-

tion. Thomas et al. [151] introduced a class of distributions with inverse linear mean resid-

Results in this chapter have been published as entitled “A class of distributions with the quadratic
mean residual quantile function” in the Journal of “Communication in Statistics Theory and Methods” (See
Sankaran and Dileep Kumar [128]).

103
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ual quantile function. Motivated by this, in the present chapter, we introduce a new class of

distributions with quadratic mean residual quantile function. The proposed model can be

viewed as a generalization of the class of distributions with linear mean residual quantile

function.

The rest of the Chapter is organized as follows. In Section 5.2, we present a new family of

distributions with quadratic mean residual quantile function. The distributional properties

such as measures of location and scale, and L-moments are given in Section 5.3. Section

5.4 presents various reliability characteristics and some important characterizations of the

class. Section 5.5 focuses on the inference procedures of the parameters of the model. We

provide an application of this class of distributions in a real life situation in Section 5.6.

Finally, Section 5.7 summarizes major conclusions of the study.

5.2 A class of distributions with quadratic mean residual

quantile function

We consider a class of distributions with quadratic mean residual quantile function given

by M(u) = A+Bu+Cu2. Using (1.2.14), we obtain the corresponding quantile function

as

Q(u) = −(A+B + C) log(1− u)− (2B + C)u− 3C

2
u2. (5.2.1)

By re-parametrizing (5.2.1), using α = A+B+C, β = A−B and γ = A−B− 3C, the

quantile function Q(u) becomes,

Q(u) = −α log(1− u) + (β − α)u+
(γ − β)

2
u2, α ≥ 0, β ≥ 0, γ ≥ 0. (5.2.2)
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The support of the proposed class of distributions (5.2.2) is (0,∞). Since Q(u) is always

differentiable for 0 < u < 1, the quantile density function q(u) is given by

q(u) = β + u

(
γ − β +

α

1− u

)
. (5.2.3)

The family of distributions (5.2.3) satisfies the identifiability property. This means that for

any two parameter combinations say, (α1, β1, γ1) and (α2, β2, γ2), we can easily prove that,

q(α1, β1, γ1) = q(α2, β2, γ2) if and only if α1 = α2, β1 = β2 and γ1 = γ2. Note that

the class of distributions (5.2.2) does not have closed form expression for its distribution

function and has to be evaluated numerically. However, we can represent (5.2.3) in terms

of the density function f(x) and the distribution function F (x) as

f(x) =
1

q(F (x))
=

(
β + F (x)

(
γ − β +

α

1− F (x)

))−1

. (5.2.4)

f(x) includes increasing, decreasing and uni-modal bathtub shapes for various choices of

the parameters. From (5.2.4), we obtain the derivative of f(Q(u)) with respect to u as

f ′(Q(u)) =
(u− 1)2(β − γ)− α

(β + u2(β − γ) + u(α− 2β + γ))2 . (5.2.5)

Since (β + u2(β − γ) + u(α− 2β + γ))
2 ≥ 0 for all 0 ≤ u ≤ 1, the sign of f ′(Q(u))

depends only on the function V (u) = (u−1)2(β−γ)−α. Now, we consider the following

cases;

Case 1. When α = 0 and β > γ, we have V (u) > 0 for all 0 < u < 1 and the distribution

has increasing probability density function.

Case 2. For β < γ and α > 0, the first and the second terms in V (u) are negative, so that

V (u) < 0 for all 0 < u < 1. Thus the distribution has decreasing probability density
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function.

Case 3. When β > γ and α > (β − γ), the first term in V (u) is positive and the second

term negative. Since α > (β − γ), we have V (u) < 0 for all 0 < u < 1 and the

distribution has decreasing probability density function.

Case 4. For β > γ and 0 < α < (β − γ), we obtain the first term in V (u) as positive and the

second term as negative. Since 0 < α < (β − γ), we have V (u) can attain a zero at

u0 = 1− α
β−γ . We can also see that u0 is a point of maxima, since V ′′(u0) < 0. Thus

the density function f(x) is unimodal and the mode of the distribution is obtained as

x0 = Q(u0).

Plots of the density function for various combinations of the parameters are shown in Figure

5.1.

5.2.1 Special cases

When α = β = γ, the distribution is exponential with,

Q(u) = −α log(1− u), α > 0,

and when α = 0 and β = γ, the distribution is uniform (0, β) with

Q(u) = βu, β > 0.

For α = β = 0, we have

Q(u) =
γ

2
u2, γ > 0,
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Figure 5.1: Plots of density function for different values of parameters.

which is the quantile function of a power distribution with parameters γ
2

and 2 respectively.

When β = γ, the proposed class of distributions reduces to the class of distributions with

linear mean residual quantile function with,

Q(u) = −α log(1− u) + (β − α)u. (5.2.6)

Midhu et al. [89] studied various properties and applications of (5.2.6). Note that the quan-

tile function (5.2.6) includes only decreasing probability density functions.
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5.3 Distributional properties

The quantile-based measures of the distributional characteristics of location, dispersion,

skewness and kurtosis are popular in statistical analysis, which are also useful for estimat-

ing parameters of the model by matching population and sample characteristics.

5.3.1 Measures of location, spread and shape

For the model (5.2.2), we get the population median M as

M = Q

(
1

2

)
=

1

8
(α(log(256)− 4) + 3β + γ) . (5.3.1)

The inter-quartile-range, IQR is obtained as

IQR = Q

(
3

4

)
−Q

(
1

4

)
=

1

4
(α(log(81)− 2) + β + γ). (5.3.2)

Galton’s coefficient of skewness (also known as Bowley’s coefficient of skewness (Bowley

[19])), S is given by

S =
Q(3

4
) +Q(1

4
)− 2M

IQR

=
16α log

(
4
3

)
− β + γ

4(α(log(81)− 2) + β + γ)
, (5.3.3)
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and the Moor’s coefficient of kurtosis(Moors [92])

T =
Q
(

7
8

)
−Q

(
5
8

)
+Q

(
3
8

)
−Q

(
1
8

)
Q
(

3
4

)
−Q

(
1
4

)
=
α
(
log
(

194481
625

)
− 2
)

+ β + γ

α(log(81)− 2) + β + γ
. (5.3.4)

5.3.2 L-moments

The rth L−moment in terms of the quantile function is given by

Lr =

1∫
0

r−1∑
k=0

(−1)r−1−k

 r − 1

k


 r − 1 + k

k

ukQ(u)du. (5.3.5)

The first L−moment, L1 is the mean of the distribution

L1 =

∫ 1

0

Q(u) du =
α

2
+
β

3
+
γ

6
. (5.3.6)

The second L-moment for the family (5.2.2) is obtained as

L2 =

∫ 1

0

(2u− 1)Q(u) du =
α

3
+
β

12
+

γ

12
, (5.3.7)

which is twice the mean differences of the population.

The third and the fourth L-moments of the proposed family are

L3 =
α

6
− β

60
+

γ

60
, (5.3.8)
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and

L4 =
α

12
. (5.3.9)

The L-coefficient of variation τ2, analogous to the coefficient of variation based on ordinary

moments has the form

τ2 =
L2

L1

=
4α + β + γ

6α + 4β + 2γ
. (5.3.10)

To measure the skewness of the distribution in the quantile set up, the L-coefficient of

skewness τ3 is given by

τ3 =
L3

L2

=
10α− β + γ

5(4α + β + γ)
. (5.3.11)

The L-coefficient of kurtosis for the family (2.6) is obtained as

τ4 =
L4

L2

=
α

4α + β + γ
. (5.3.12)

Figures 5.2, 5.3 and 5.4 present L-coefficient of skewness (τ3) and L-coefficient of kurtosis

(τ4) measures for various parameter values. We can show that τ3 lies in (-0.2, 1) and τ4 lies

in (0, 0.25), using numerical optimization techniques. The values of τ3 and τ4 increases

with α for fixed β and γ, decreases with β for fixed α and γ. The curve of τ4 decreases

with γ for fixed values of α and β and increases with γ for fixed α and β when β > α and

decreases when β < α . Thus the proposed class of distributions (5.2.2) consists of both

positively and negatively skewed distributions.
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Figure 5.2: L-coefficients of Skewness and kurtosis for selected values of β and γ as a function of
the parameter α.
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Figure 5.3: L-coefficients of Skewness and kurtosis for selected values of α and γ as a function of
the parameter β.
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Figure 5.4: L-coefficients of Skewness and kurtosis for selected values of α and β as a function of
the parameter γ.

5.3.3 Order statistics

If Xr:n is the rth order statistic in a random sample of size n, then the density function of

Xr:n can be written as

fr(x) =
1

B(r, n− r + 1)
f(x)F r−1(x)(1− F (x))n−r.

For the model (5.2.4), we have

fr(x) =
1

B(r, n− r + 1)

(1− F (x))n−r+1(F (x))r−1

(1− F (x))(γF (x) + (1− F (x)β) + αF (x)
.

Hence,

E(Xr:n) =
1

B(r, n− r + 1)

∫ ∞
0

x
(1− F (x))n−r+1(F (x))r−1

(1− F (x))(γF (x) + (1− F (x)β) + αF (x)
dx.
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In quantile terms, we have,

E(Xr:n) =
1

B(r, n− r + 1)

∫ 1

0

Q(u)ur−1(1− u)n−rdu

= α(Hn −Hn−r) +
r(γ − 2α(n+ 2) + β(2n− r + 3) + γr)

2(n+ 1)(n+ 2)
,

where Hn is the nth harmonic number given by Hn =
∑n

i=1
1
i
. In particular,

E(X1:n) =
α + β + γ + 2α

n
+ βn

(n+ 1)(n+ 2)
,

and

E(Xn:n) = αHn +
n(γ − 2α(n+ 2) + β(n+ 3) + γn)

2(n+ 1)(n+ 2)
.

For the class of distributions (5.2.2), the first order statistic X1:n has quantile function,

Q(1)(u) = Q(1− (1− u)
1
n )

= −1

2

(
(1− u)1/n − 1

) (
−2α + β + γ + (β − γ)(1− u)1/n

)
− α log

(
(1− u)1/n

)
,

and the quantile function of the nth order statistic is

Q(n)(u) = Q(u
1
n )

= (β − α)u1/n − α log
(
1− u1/n

)
+

1

2
(γ − β)u2/n.

The expressions of the order statistics X1:n and Xn:n are useful when studying the series

and parallel systems in reliability theory (see Lai and Xie [78]).
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5.3.4 Reliability measures

For the class of distributions (5.2.2), the hazard quantile function is obtained as

H(u) =
1

β + u(α + γ + β(u− 2)− γu)
. (5.3.13)

The hazard quantile function accommodates increasing, decreasing, linear, bathtub and

upside-down bathtub shapes for different choices of the parameters with H(0) = 1
α(1−p)+2β

and H(1) = 1
α+β

. The shape of the hazard function is determined by the derivative of

H(u), which is obtained as

H
′
(u) =

u(γ − β) + β −
(
α+γ

2

)
(β + u(α + γ + β(u− 2)− γu))2

. (5.3.14)

Since (β + u(α + γ + β(u − 2) − γu))2 > 0 for all values of the parameters, the sign of

H ′(u) depends only on

K(u) = u(γ − β) + β −
(
α + γ

2

)
. (5.3.15)

Now, we consider the following cases,

Case 1: α = β = γ.

H(u) =
1

γ
, a constant. Thus the distribution is exponential.

Case 2: β = γ > α.

The first term in K(u) is zero and the second term is positive, so that K(u) > 0 for

all 0 < u < 1 and hence the distribution is IHR.
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Case 3: β = γ < α.

The first term inK(u) is zero and the second term is negative, which givesK(u) < 0

for all 0 < u < 1 and the distribution has decreasing failure rate.

Case 4: γ < β = γ+α
2

.

The first term in K(u) is negative and the second term is zero, so that K(u) < 0 for

all 0 < u < 1 and the distribution is DHR.

Case 5: γ > β = γ+α
2

.

The first term in K(u) is positive and the second term is zero, which implies K(u) >

0 for all 0 < u < 1. Thus the distribution is IHR.

Case 6:α+γ
2
< β < γ.

Both terms of K(u) are positive and hence the distribution is IHR.

Case 7: γ < β < α+γ
2

.

Both terms of K(u) are negative and hence the distribution is DHR.

Case 8: γ < β, β > α+γ
2

and α < γ.

Since α < γ, we have β − γ < β − α+γ
2

. Now, in this case, it is clear that

−
(
β − α+γ

2

)
< γ − β < 0, which gives K(u) > 0 for all 0 < u < 1 and the

distribution is IHR.

Case 9: γ < β, β > α+γ
2

and α > γ.

We have 0 < β − α+γ
2

< β − γ, which is obtained from the condition α > γ. The

first term of K(u) is negative and the second term is positive so that K(u) can attain

a zero in this case. This in turn gives the possibility for H(u) to be non-monotone.

Let u0 be the solution of the equation K(u) = 0. From (5.3.15), we have u0 is the
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solution corresponding to the linear equation,

u(γ − β) + β −
(
α + γ

2

)
= 0, (5.3.16)

which provides,

u0 =
α + γ − 2β

2(γ − β)
. (5.3.17)

The second derivative of H(u) is

H ′′(u) =
2(α2+α(β(3u−4)+γ(2−3u))+3β2(u−1)2−3βγ(u−1)(2u−1)+γ2(3(u−1)u+1))

(β+u(α+γ+β(u−2)−γu))3
.

(5.3.18)

For the change point u0 obtained in (5.3.17), we obtain

H ′′(u0) = − 32(β − γ)3

(α2 + 2α(γ − 2β) + γ2)2 . (5.3.19)

Since H ′′(u0) < 0, H(u) attains a maximum at u0. Hence X has an upside-down

bathtub-shaped hazard quantile function (see Nair et al. [105]).

Case 10: γ > β, β < α+γ
2

and α > γ.

Since α > γ, we obtain 0 < γ − β < α+γ
2
− β. This leads to K(u) > 0 for all

0 < u < 1 and the distribution is IHR.

Case 11: γ > β, β < α+γ
2

and α < γ.

First term of K(u) is positive and the second term is negative so that K(u) can attain

a zero in this case. Now as similar to Case 9, H(u) is non-monotone with change

point, say u1 ∈ (0, 1), obtained as

u1 =
α + γ − 2β

2(γ − β)
.
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The second derivative of H(u) at u1 is obtained as

H ′′(u1) = − 32(β − γ)3

(α2 + 2α(γ − 2β) + γ2)2 .

Since H ′′(u1) > 0, H(u) attains a minimum at u1. Thus X has a bathtub shaped

hazard quantile function.

The ageing pattern ofH(u) for various parameter values are summarised in Table 5.1. Plots

Table 5.1: Shape of the hazard quantile function for different regions of the parameter
space.

Case Parameter Region Shape of the hazard quantile function
1 α = β = γ Constant
2 β = γ > α IHR
3 β = γ < α DHR
4 γ < β = γ+α

2
DHR

5 γ > β = γ+α
2

IHR
6 γ > β, β > α+γ

2
IHR

7 γ < β, β < α+γ
2

DHR
8 γ < β, β > α+γ

2
, α < γ IHR

9 γ < β, β > α+γ
2

, α > γ Upside-down bathtub
10 γ > β, β < α+γ

2
, α > γ IHR

11 γ > β, β < α+γ
2

, α < γ Bathtub

of the hazard quantile function for different values of the parameters are given in Figure

5.5. The lower and upper limit’s for the hazard quantile function of the class of distributions

(5.2.2) are independent of the parameter γ, and has the form,

lim
u→0

H(u) =
1

β
and lim

u→1
H(u) =

1

α
. (5.3.20)

For the class of distributions (5.2.2), the total time on test transform T (u) is obtained as

T (u) =
1

6
u
(
6β + 2u2(β − γ) + 3u(α− 2β + γ)

)
. (5.3.21)
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Figure 5.5: Plots of the hazard quantile function for different values of parameters.

The quantile form of the first L-moment of residual life given by Nair and Vineshkumar

[100] has the form

α1(u) =
1

1− u

∫ 1

u

Q(p)dp

=
1

6

(
2β + γ − βu2 + γu2 − 3α(u− 1)− 6α log(1− u) + 2βu+ γu

)
. (5.3.22)

The second L-moment of residual life (Nair and Vineshkumar [100]) is obtained as

α2(u) =
1

(1− u)2

∫ 1

u

(2p− u− 1)Q(p)dp
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=
α

3
+
β

12
+

γ

12
+ u2

(
β

12
− γ

12

)
+ u

(
α

6
− β

6

)
. (5.3.23)

In reversed time, the first L-moment of X|X ≤ t of (5.2.2) is obtained as

θ1(u) =
u(u(3β + β(−u) + γu)− 3α(u− 2))− 6α(u− 1) log(1− u)

6u
. (5.3.24)

The second L-moment of X|X ≤ t is

θ2(u) =
−βu4 + γu4 − 2αu3 + 2βu3 − 6αu2 + 12αu− 12αu log(1− u) + 12α log(1− u)

12u2
.

(5.3.25)

From Nair and Vineshkumar [100], we have the identity,

R(u) = uθ′1(u) = uθ′2(u) + 2θ2(u),

where R(u) is the reversed mean residual quantile function.

Parzen’s score function, defined in Parzen [117] and Nair et al. [103] is

J(u) = − d

du

(
1

q(u)

)
=
q′(u)

q2(u)

=
α− (u− 1)2(β − γ)

(β + u(α + γ + β(u− 2)− γu))2
. (5.3.26)

5.3.5 Characterizations

We now present some useful characterizations of the proposed family of distributions using

various quantile-based reliability measures.

Theorem 5.3.1. A random variable X has the quadratic mean residual quantile function if
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and only if the hazard quantile functionH(u) is a reciprocal quadratic function of the form,

H(u) =
1

K1 +K2u+K3u2
, (5.3.27)

where K1 > 0, K2, K3 are real constants.

Proof. Suppose that (5.3.27) holds. From Nair et al. [105], we have

M(u) =
1

1− u

∫ 1

u

1

H(p)
dp. (5.3.28)

Substituting (5.3.27) in (5.3.28) and integrating we get

M(u) = ζ1 + ζ2u+ ζ3u
2,

where ζ1 = K1 + K2

2
+ K3

3
, ζ2 = K2

2
+ K3

3
and ζ3 = K3

2
.

Conversely, for the class of distributions (5.2.2), we obtain

H(u) =
1

β(1 + u2 − 2u) + γ u(1− u) + αu
,

or

H(u) =
1

β + u2(β − γ) + u(α− 2β + γ)
, (5.3.29)

which is reciprocal quadratic in u. The rest of the proof follows from (5.3.29). �

Theorem 5.3.2. A random variable X has the quadratic mean residual quantile function

if and only if the hazard quantile function satisfies the first order homogeneous ordinary

differential equation,

H ′(u) +H(u)

(
B + 2Cu

A+Bu+ Cu2

)
= 0, (5.3.30)
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where A > 0, B and C are real constants. Assume that H(u) is twice differentiable with

respect to u.

Proof. For the class of distributions (5.2.2), H(u) satisfies the first order homogeneous

ordinary differential equation,

H ′(u)(β + u(α + γ + β(u− 2)− γu)) +H(u)(α + γ + 2β(u− 1)− 2γu) = 0.

After simplification we obtain,

H ′(u) +H(u)

(
B + 2Cu

A+Bu+ Cu2

)
= 0,

where A = β,B = α + γ − 2β and C = β − γ.

Conversely, whenH(u) is twice differentiable and satisfies the differential equation (5.3.30),

we rewrite the differential equation as

d

du

[
H(u)(A+Bu+ Cu2)

]
= 0. (5.3.31)

On integrating (5.3.31), we obtain H(u) as

H(u) =
K

A+Bu+ Cu2
, (5.3.32)

where K is the integrating constant. From (5.3.32), we have H(u) is reciprocal quadratic

in u, which completes the proof. �

Theorem 5.3.3. A random variable X has the quadratic mean residual quantile function if

and only if

T (u)− uM(u) = (C1 + C2u)u, (5.3.33)
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where C1, C2 are real constants.

Proof. Suppose (5.3.33) is true. From Nair et al. [105], we have the identity,

T (u) = µ− (1− u)M(u). (5.3.34)

From (5.3.33) and (5.3.34), we obtain

M(u) = µ− C1u− C2u
2, which is quadratic inu

Conversely, for the class of distributions (5.2.2), we have,

T (u) =
1

6
u
(
6β + 2u2(β − γ) + 3u(α− 2β + γ)

)
. (5.3.35)

Now, (5.3.35) can be written as

T (u)− uM(u) = (C1 + C2u)u,

where C1 = 2β
3
− γ

6
− α

2
and C2 = γ−β

3
. This completes the proof. �

Theorem 5.3.4. Let X be a random variable having the quantile function Q(u). Then X

belongs to the class of distributions with quadratic mean residual quantile function if and

only if
H(u)

J(u)
=

A+Bu+ Cu2

(A+B) + Cu(2− u)
, (5.3.36)

where A,B and C are real constants.

Proof. From Nair et al. [103], we have,

(1− u)H ′(u) = H(u)− J(u). (5.3.37)
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From (5.3.37) and Theorem 5.3.2, we obtain,

H ′(u) +H(u)

(
B + 2Cu

A+Bu+ Cu2

)
= 0.

⇔
(
H(u)− J(u)

1− u

)
+H(u)

(
B + 2Cu

A+Bu+ Cu2

)
= 0

⇔ H(u)

(
1 +

(1− u)(B + 2Cu)

A+Bu+ Cu2

)
− J(u) = 0

⇔ H(u)

(
(A+B) + Cu(2− u)

A+Bu+ Cu2

)
− J(u) = 0

⇔ H(u)

J(u)
=

A+Bu+ Cu2

(A+B) + Cu(2− u)
.

This completes the proof. �

The equilibrium distribution is a widely accepted tool in the context of analysis of age-

ing phenomena. The equilibrium distribution associated with X is defined by the density

function,

g(x) = µ−1

∫ ∞
x

−
F (t)dt. (5.3.38)

Suppose Z is the random variable associated with the density (5.3.38). Then from Nair

et al. [105], we have,

HZ(u) =
1

MX(u)
. (5.3.39)

where HZ(u) and MX(u) are the hazard quantile function of Z and the mean residual

quantile function of X respectively. From (5.3.39), it follows that the hazard quantile

function of the equilibrium random variable is the reciprocal of the mean residual quantile

function of the baseline distribution.

Theorem 5.3.5. The distribution of X belongs to the class of distributions with quadratic

mean residual quantile function if and only if the equilibrium distribution of X is also a

member of the same class of distributions.
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Proof. Suppose X belongs to the class of distributions with quadratic mean residual quan-

tile function, M(u) = A+Bu+ Cu2. Now from (5.3.39), we obtain

HZ(u) =
1

A+Bu+ Cu2
. (5.3.40)

Since HZ(u) is a reciprocal quadratic function in u, from Theorem 5.3.1, we have the equi-

librium random variableZ belongs to the class of distributions with quadratic mean residual

quantile function. The proof of the converse part is direct from the identity (5.3.39). �

Another measure, which has received wide applications in economics is the Ginis mean

difference, defined as

G(t) = 2

∫ ∞
t

Ft(x)F̄t(x)dx.

Nair and Vineshkumar [100] presented the quantile-based Ginis mean difference as

∆(u) = G(Q(u)) = 2

∫ 1

u

(1− p)(p− u)

(1− u)2
dp = 2α2(u). (5.3.41)

From (5.3.41), we have α2(0) is half the mean difference of X, which is a widely accepted

measure of dispersion in the analysis of income and poverty in economic studies.

Theorem 5.3.6. Let X be a random variable with quantile function Q(u). Then X has

quadratic mean residual life if and only if the second L-moment of residual life is a

quadratic function in u.

Proof. Suppose M(u) = A+Bu+ Cu2. We have,

α2(u) =
1

(1− u)2

∫ 1

u

(1− p)M(p)dp

(1− u)2α2(u) =

∫ 1

u

(1− p)M(p)dp. (5.3.42)
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Differentiating (5.3.42) with respect to u and simplifying, we get

α2(u) = (B − 2A) + u(2C − 3B)− 4Cu2, (5.3.43)

which is quadratic in u. Conversely, for the class of distributions (5.2.2), from (5.3.23), we

get α2(u) as a quadratic function in u. This completes the proof. �

Corrolary 5.3.6.1. Let X be a random variable with quantile function Q(u). Then X has

quadratic mean residual life if and only if the quantile-based Gini’s mean difference ∆(u)

of X is a quadratic function in u.

Proof. The proof follows from Theorem 5.3.6 once we note that ∆(u) = 2α2(u). �

5.4 Estimation of parameters

In the literature, there are different methods for the estimation of parameters of the quantile

functions (Gilchrist [42]). The L-moment estimates are likely to have less bias compared

to other estimates. To estimate the parameters of the proposed model (5.2.2), we use the

method of L-moments. We equate sample L-moments to corresponding population L-

moments. The first three sample L-moments are given by

l1 =

(
1

n

) n∑
i=1

X(i),

l2 =

(
1

2

)(
n

2

)−1 n∑
i=1

((
i− 1

1

)
−
(
n− i

1

))
X(i),

l3 =

(
1

3

)(
n

3

)−1 n∑
i=1

((
i− 1

2

)
− 2

(
i− 1

1

)(
n− i

1

)
+

(
n− i

2

))
X(i),
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where X(i) is the ith order statistic in a sample of size n. For estimating the parameters

α, β and γ, we equate the above three sample L-moments to the corresponding population

L-moments given in (5.3.6) through (5.3.8). The parameters are obtained by solving the

equations,

lr = Lr; r = 1, 2, 3. (5.4.1)

For the class of distributions (5.2.2), using Theorem 1.1.1, we have,

√
n


l1 − L1

l2 − L2

l3 − L3

 ∼ N(0,Λ),

where the variance-covariance matrix Λ has the form,

Λ =


Λ1,1 Λ1,2 Λ1,3

Λ2,1 Λ2,2 Λ2,3

Λ3,1 Λ3,2 Λ3,3

 ,

with,

Λ1,1 =
1

180

(
105α2 + 5α(5β + 7γ) + 4β2 + 7βγ + 4γ2

)
,

Λ1,2 =
1

720

(
350α2 + 59αβ + 101αγ + 6β2 + 14βγ + 10γ2

)
,

Λ1,3 =
1

50400

(
17115α2 + 784αβ + 3311αγ − 260β2 − 110βγ + 160γ2

)
,

Λ2,1 =
1

720

(
350α2 + 59αβ + 101αγ + 6β2 + 14βγ + 10γ2

)
,

Λ2,2 =
1

5040

(
2072α2 + 238αβ + 518αγ + 17β2 + 50βγ + 45γ2

)
,

Λ2,3 =
1

100800

(
29890α2 + 718αβ + 5092αγ − 165β2 − 80βγ + 245γ2

)
,

Λ3,1 =
1

50400

(
17115α2 + 784αβ + 3311αγ − 260β2 − 110βγ + 160γ

)
,
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Λ3,2 =
1

100800

(
29890α2 + 718αβ + 5092αγ − 165β2 − 80βγ + 245γ2

)
,

and Λ3,3 =
1

100800

(
23025α2 − 199αβ + 2869αγ + 158β2 + 59βγ + 128γ2

)
.

From (5.4.1), we have α̂, β̂, and γ̂ are linear functions of sample L-moments given by,

α̂ = 3l1 − 9l2 + 15l3, β̂ = 9l1 − 21l2 + 15l3, and γ̂ = −21l1 + 69l2 − 75l3. (5.4.2)

Now it is straight forward from the variance covariance matrix and (5.4.2) that,

√
n(α̂− α) ∼ N(0, σ2

α), (5.4.3)
√
n(β̂ − β) ∼ N(0, σ2

β), (5.4.4)

and
√
n(γ̂ − γ) ∼ N(0, σ2

γ), (5.4.5)

where

σ2
α =

9 (3533α2 − 79αβ + 293αγ + 88β2 + 63βγ + 22γ2)

2240
, (5.4.6)

σ2
β =

2397α2 + 825αβ + 821αγ + 288β2 + 487βγ + 222γ2

2240
, (5.4.7)

and σ2
γ =

204517α2 + 28609αβ + 28557αγ + 25128β2 + 28367βγ + 9062γ2

2240
.

(5.4.8)

The asymptotic 100(1− η)% confidence intervals for α, β and γ are given by

C.I(α) = α̂± zη/2

√
σ̂2
α

n
,

C.I(β) = β̂ ± zη/2

√
σ̂2
β

n
,

and C.I(γ) = γ̂ ± zη/2

√
σ̂2
γ

n
,
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where zη/2 is the 100(1 − η/2)th percentile of the standard normal distribution. Further,

α̂, β̂ and γ̂ are consistent estimators of α, β and γ respectively, which follows from the fact

that sample L-moments are consistent estimators of population L-moments (see Hosking

[60]).

5.4.1 Akaike information criterion (AIC)

Let X be a random variable with density function f(X,θ), where θ = (θ1, θ2, ..., θk) be a

vector of parameters. Suppose θ̂i is the estimate of the parameter θi, i = 1, 2, ...k based on

a random sample X1, X2, ...Xn. Then the AIC of the model is given by

AIC = 2k − 2 log(L̂), (5.4.9)

where L̂ =
∏n

1 f(Xi, θ). Suppose Q(u) be the quantile function corresponding to the

random variable X . Let X(1), X(2), ..., X(n) be the ordered sample. Then the quantile

version of (5.4.9) is obtained as

AIC = 2k − 2 log

(
1∏n

1 q(ui, θ)

)
, (5.4.10)

where the values of ui, i = 1, 2, 3, ...n are calculated using the following algorithm (Gilchrist

[42], Nair et al. [105]).

(i) Take u0
i = i

n+1
, i = 1, 2, ..., n as the initial estimate of ui corresponding to X(i).

(ii) Compute Di = Q(u0
i )−X(i) for i = 1, 2, ..., n, and update each u0

i with

u1
i = u0

i +
X(i)−Q(u0i )

q(u0i )
, when |Di| > ε, a small positive quantity, say ε= 10−7.

(iii) Iterate step-(ii) until |Di| ≤ ε for all i.
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The performance of the quantile function models with no closed form expression for their

distribution function can be assessed using the AIC measure (5.4.10).

5.5 An application

We give an application of the proposed family using a well-known data set to demonstrate

the flexibility and applicability of the proposed model over other lifetime parametric mod-

els. The method of L-moments is used for estimating the parameters. We consider the

data set reported in Bekker et al. [15], which corresponds to the survival times (in years)

of a group of 45 patients given chemotherapy treatment alone. The sample L-moments are

obtained as

l1 = 1.341 l2 = 0.676 and l3 = 0.205. (5.5.1)

Then the estimates of the parameters are

α̂ = 1.014 β̂ = 0.949 and γ̂ = 3.11. (5.5.2)

The standard error of the estimates α̂, β̂ and γ̂ are obtained as 0.099, 0.046 and 0.33 re-

spectively. To examine the goodness of fit of the model, we use a Q-Q plot, presented in

Figure 5.6(a), which shows that our model fit’s well to the data. We also carry out the chi

square goodness of fit test. The chi-square value is 0.73 with p−value 0.69, which does

not reject the model. AIC value obtained is 122.106. Recently Handique and Chakraborty

[54] fitted this data with Kumaraswamy Weibull (K-W), beta generalized Weibull (B-W)

and beta generalized Kumaraswamy Weibull (BKw-W) distributions. The AIC values of

these models are 124.14, 123.44, and 122.92 respectively. It is evident for this data that

our model gives a better fit than the other three with respect to the AIC values. Plot of the
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estimated hazard quantile function is given in Figure 5.6(b). Note that Ĥ(u) has bathtub

shape, which supports our claim in Table 5.1.
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Figure 5.6: Q-Q plot and estimated hazard quantile function for the chemotherapy data set.

5.6 Conclusion

In this chapter, we proposed a new class of distributions with quadratic mean residual quan-

tile function. The proposed class of distributions generalizes the class of distributions with

linear mean residual quantile function, proposed and studied by Midhu et al. [89]. The

distributional properties and various reliability characteristics of the proposed model are

tractable. The analysis of the hazard quantile function over the whole parameter space

can be done without using numerical methods. Various characterizations of the proposed

lifetime model were developed in terms of the quantile-based reliability measures. We dis-

cussed theL-moment method of estimation and derived the asymptotic variance-covariance

matrix of the estimates. The model was applied to a real life data. The proposed model can

be used in different real life situations due to the flexibility of hazard quantile function.



Chapter 6

Proportional Odds Model- A Quantile Ap-

proach

6.1 Introduction

The concept of proportional hazards model (PHM) introduced by Cox [31] is extensively

used for the analysis of survival data. The assumption of constant hazard rate ratio in the

PHM is unreasonable in many practical situations as pointed by Bennett [17], Kirmani and

Gupta [71] and Rossini and Tsiatis [126]. As an alternative to this, Bennett [17] developed

the proportional odds model (POM), which studies the effectiveness of cure when the mor-

tality rate of a group having some disease approaches that of a (disease-free) control group

as time progresses using the concept of POM. Followed by the work of Bennett [17], sev-

eral applications of the POM were developed by various researchers such as Collett [28],

Pettitt [119] and Rossini and Tsiatis [126]. Various ageing properties of the POM were

studied by Kirmani and Gupta [71].

Let X be a random variable with distribution function F (x) and density function f(x).

Results in this chapter have been published as entitled “Proportional odds model-a quantile approach” in
the “Journal of Applied Statistics” (See Dileep et al. [36] ).

131
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Then the odds function is defined by

φX(t) =
P (X > t)

P (X ≤ t)
=
F̄X(t)

FX(t)
=
λX(t)

hX(t)
,

where hX(t) = fX(t)

F̄X(t)
is the hazard rate and λX(t) = d

dt
log(FX(t)) is the reversed hazard

rate of X . Note that the odds function φX(t) is a decreasing function of t.

Consider two non-negative random variables X and Y with survival functions F̄X(x) and

F̄Y (x) respectively. Then Y is the POM of X with proportionality constant α if

φY (t) = αφX(t), (6.1.1)

or equivalently
F̄Y (t)

FY (t)
= α

F̄X(t)

FX(t)
. (6.1.2)

Marshall and Olkin [87] studied the model (6.1.1) as a method for the construction of

more flexible new families of distributions by introducing an additional parameter α in the

baseline distribution. For more details on the Marshall-Olkin family of distributions, one

can refer to Caroni [22], Ghitany et al. [41], Cordeiro et al. [30], Sankaran and Jayakumar

[129] and Cordeiro et al. [29].

In literature, the properties and applications of the POM are studied in terms of the distri-

bution functions. However, as pointed out earlier, any probability distribution can also be

specified in terms of its quantile function. Recently, quantile regression models are em-

ployed for the analysis of censored lifetime data, which does not restrict the variation of

the coefficients for different quantiles, in contrast to the well-known PHM or accelerated

failure time models. The analysis of Stanford heart transplant data was done in Gorfine

et al. [44] using quantile regression models. Nair et al. [106] presented various properties
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and applications of PHM in terms of the quantile functions. Motivated by these facts, in

the present chapter, we study the properties and applications of POM in quantile set up.

The proposed quantile-based approach has several advantages. It provides an alternative

methodology for the analysis of lifetime data. Further, the proposed method develops a new

class of lifetime models that do not have tractable distribution function but have simple and

closed form quantile function. It gives new results in reliability analysis which are useful

for the study of ageing phenomena as well as for the comparison of lifetime of systems.

The rest of the chapter is organized as follows. Section 6.2 presents the quantile-based

definition of POM and it’s basic properties. In Section 6.3, we establish various ageing

concepts in the context of POM. The role of POM in constructing new flexible quantile

functions is illustrated in Section 6.4. Finally, Section 6.5 summarizes major conclusions

of the study.

6.2 Quantile based proportional odds model

Suppose X and Y be two non-negative random variables as described in Section 6.1. The

quantile functions of X and Y are denoted by QX(u) and QY (u). Let qX(u) and qY (u)

respectively denote the quantile density functions of X and Y . Then from (6.1.2), we get

F̄Y (QX(u))

FY (QX(u))
= α

(
1− u
u

)
(6.2.1)

or equivalently

FY (QX(u)) =

(
u

α(1− u) + u

)
. (6.2.2)
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Note that FY (QX(u)) 6= u.

Then (6.2.1) can be written in terms of quantile function as

QX(u) = QY

(
u

α(1− u) + u

)
, (6.2.3)

or

QY (u) = QX

(
αu

1 + (α− 1)u

)
. (6.2.4)

From (6.2.4), we note that QY (0) = QX(0) and QY (1) = QX(1). Thus the support of the

random variable Y is the same as that of X. Cordeiro et al. [30] have shown that (6.2.4)

is the quantile function of the family of distributions discussed in Marshall and Olkin [87]

and they derived several characteristics of (6.2.1) in the quantile formulation.

6.3 Ageing properties

The preservation of reliability ageing classes under different reliability operations is a rel-

evant topic in reliability theory. In this section, we study different ageing properties of Y

in relation to those of X . Let HX(u), MX(u) and ΛX(u) denote the hazard quantile func-

tion, mean residual quantile function, and reversed hazard quantile function of the random

variable X. Then the POM model given in (6.2.1) reduces to

F̄Y (QX(u))

FY (QX(u))
= α

(
1− u
u

)
= α

(
ΛX(u)

HX(u)

)
. (6.3.1)
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From (6.2.4), we have

HY (u) =

(
(1 + (α− 1)u

α

)
HX

(
αu

1 + (α− 1)u

)
, 0 < u < 1. (6.3.2)

We now state a few structural properties of the variables X and Y involved in POM in

terms of the hazard quantile function.

(i) HY (u) lies in
(
HX(u′)

α
, HX(u′)

)
for α ≥ 1 and lies in

(
HX(u′), HX(u′)

α

)
for 0 <

α ≤ 1, where u′ = αu
1+(α−1)u

. Note that u′ = 0 when u = 0 and u′ = 1 when

u = 1, 0 < u′ < 1 and further u′ and αu
1+(α−1)u

are in one-to-one correspondence.

This is an interesting property of POM that geometricallyHY (u) curve within a band

of width
(
α−1
α

)
HX(u′) below the HX(u′) curve for α ≥ 1 and in a band of width(

1−α
α

)
HX(u′) whenever 0 < α ≤ 1.

(ii) limu→0HY (u) = 1
α

limu→0HX(u) and limu→1HY (u) = limu→1HX(u). Thus at

the lower endpoint HX(u) is below or above HY (u) depending on whether α ≥ 1 or

0 < α ≤ 1 and the two coincide at the extremity of the unit square.

(iii) From property (i), for α ≥ 1,

HY (u) ≥ HX(u′)

α
⇔ (1− u) qY (u) ≤ α(1− u′) qX(u′)

⇔ u qY (u) ≤ αu

1 + (α− 1)u
qX(u′)

⇔ u qY (u) ≤ u′ qX(u′) (6.3.3)

⇔ ΛY (u) ≥ α−1 ΛX(u′).

Similar arguments show that the reversed hazard quantile function of Y lies within

(ΛX(u′), α−1ΛX(u′)) for α ≥ 1 and within (α−1ΛX(u′), ΛX(u′)) when 0 < α ≤ 1.
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Note that, ΛY (u) also lies within a band above or below ΛX(u′), which is similar to

HY (u′).

(iv) Note that u ≤ (≥) αu
1+(α−1)u

when α ≥ (≤) 1. Then we have

QX(u) ≥ QX

(
αu

1 + u(α− 1)

)
= QY (u), when 0 < α ≤ 1,

and

QX(u) ≤ QX

(
αu

1 + u(α− 1)

)
= QY (u), when α > 1.

Further,

QX(u) ≤ QY (u) ≤ αQX(u′), α ≥ 1 (6.3.4)

and

αQX(u′) ≤ QY (u) ≤ QX(u), 0 < α ≤ 1. (6.3.5)

The last two inequalities give bounds for the distribution of Y in the event of Y being POM

of X. Further, they can be used for comparing lifetimes of two systems under POM set up.

Remark 6.3.1. The result (iii) is difficult to obtain in the distribution function approach to

POM.

Example 6.3.1. Consider the generalized lambda distribution,

QX(u) = λ1 +
1

λ2

[
uλ3 − 1

λ3

− (1− u)λ4 − 1

λ4

]
, 0 ≤ u ≤ 1. (6.3.6)

with condition λ1 − 1
λ2 λ3

≥ 0 to make it the quantile function of a lifetime X. The dis-

tribution has support
(
λ1 − 1

λ2 λ3
, λ1 + 1

λ2 λ4

)
, λ3, λ4 > 0 and

(
λ1 − 1

λ2 λ3
, ∞

)
, λ3 >

0, λ4 ≤ 0 and it becomes the exponential as λ3 −→ ∞, λ4 −→ 0. It is a highly flexible

model capable of representing a wide range of data sets. In this case, QY (u) lies above
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QX(u) when α > 1 and below QX(u) when 0 < α ≤ 1, the other bounds for QY (u) are

obtained directly from (6.3.4) and (6.3.5) respectively. Similar bounds with distribution

functions are difficult to get as QX(u) = x has no closed form solution in u.

Remark 6.3.2. Equation (6.3.4) or (6.3.5) provides a graphical diagnostic procedure for

POM. Using the baseline quantile function QX(u) and uniform random numbers in [0, 1],

the band (QX(u), αQX(u′)) can be constructed for a given α. If the plot of sample values

falls within the band, then QY (u) in (6.2.4) will be a reasonable choice as POM of X.

We have

HY (u) =

(
(1 + (α− 1)u

α

)
HX

(
αu

1 + (α− 1)u

)
. (6.3.7)

Kirmani and Gupta [71] have proved that if X is IHR (DHR) and α > 1 (0 < α ≤ 1) then

Y is IHR (DHR). This result does not consider the other two cases such as X is IHR with

0 < α ≤ 1 and X is DHR with α > 1. Moreover, its application requires the monotonicity

of the hazard rate of X. Note that the monotonicity properties of the hazard rate and the

hazard quantile function are equivalent (see Nair et al. [105]). We now give a result that

ascertains the behaviour ofHY (u) without any assumptions on the hazard quantile function

of X. The identity (6.3.7) gives

dHY (u)

du
=

(
(1 + (α− 1)u

α

) (
d

du
HX

(
αu

1 + (α− 1)u

))
+

(
α− 1

α

)
HX

(
αu

1 + (α− 1)u

)
.

Hence Y is IHR if d
du
HX

(
αu

1+(α−1)u

)
≥ − d

du
log(1 + (α− 1)u). Integrating from 0 to u,

HX

(
αu

1 + (α− 1)u

)
≥ HX(0)

1 + (α− 1)u
. (6.3.8)
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If we set u′ = αu
1+(α−1)u

, the above inequality is equivalent to

HX(u′) ≥ (α− (α− 1)u′)HX(0), for all 0 ≤ u′ ≤ 1. (6.3.9)

Similarly, Y is DHR if the above inequality is reversed. Further, when

HX(u′0) = (α− (α− 1)u′0)HX(0), (6.3.10)

for some 0 ≤ u′0 ≤ 1, then Y has either bathtub-shaped or upside down bathtub-shaped

hazard rate.

Note that HY (u) can be more flexible compared to HX(u), since it can accommodate non-

monotonic shapes even if X is monotonic. This suggests the use of POM (6.2.4) for con-

structing more flexible families of distributions. We illustrate this in Section 6.4.

Example 6.3.2. Let X follows Weibull distribution with quantile function

QX(u) = σ(− log(1− u))
1
λ , u ∈ (0, 1). (6.3.11)

Then

QY (u) = σ

(
− log

(
1− u

1 + (α− 1)u

)) 1
λ

. (6.3.12)

Plots of HX(u) and HY (u) for various parameter combinations are presented in Figures

6.1(a) and 6.1(b). From Figure 6.1(a), since λ = 0.4, we see that, HX(u) ≤ HY (u) for

α = 2 (> 1) and HX(u) ≥ HY (u) for α = 0.5 (< 1). In Figure 6.1(b), we consider

the case where X is IHR (λ = 2). Here we observe that the plots of HX(u) and HY (u)

intersects. The Weibull distribution given in (6.3.11) is DHR when 0 < λ < 1 and IHR

when λ > 1. Figure 6.2 represents non-monotonic shapes of HY (u) for various parameter
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Figure 6.1: Bounds of HY (u).

combinations. Thus the model (6.3.12) will be a reasonable choice in modelling different

types of lifetime datasets.

Definition 6.3.1. The random variable X is new better (worse) than used in hazard rate

(NBUHR (NWUHR)) if and only if HX(u) ≤ (≥)HX(0) for all u ∈ (0, 1) ((Nair et al.

[105])).

Theorem 6.3.1. Suppose Y is the POM of X. Then the following results hold;

(i) If X is NBUHR and α > 1, then Y is NBUHR

(ii) If X is NWUHR and 0 < α ≤ 1, then Y is NWUHR.

Proof. Assume X is NBUHR and α > 1. Then,

HY (u) =

(
(1 + (α− 1)u

α

)
HX

(
αu

1 + (α− 1)u

)
≥ HX(0)

(
(1 + (α− 1)u

α

)
(since X is NBUHR)
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Figure 6.2: Non-monotonic shapes of HY (u).

≥ HX(0)

(
1

α

)
(since(1 + (α− 1)u) ≥ 1 when α ≥ 1)

= HY (0), which implies Y is NBUHR.

This completes the proof of (i). Proof for (ii) is similar. �

We say that X is decreasing (increasing) mean residual life if MX(u) is decreasing (in-

creasing) in u. In general, the DMRL (IMRL) property is not preserved under POM. To

illustrate this, consider a random variable X with quantile function

QX(u) = −(c+ µ) log(1− u)− 2 c u, µ ≥ 0, −µ ≤ c ≤ µ ( Midhu et al. [89]).
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Then

MY (u) =
α
(

((α− 1)µ+ (α + 1)c) log
(

α
(α−1)u+1

)
+ 2(α−1)c(u−1)

(α−1)u+1

)
(α− 1)2(1− u)

.

Plots of MX(u) and MY (u) for selected values of parameters are given in Figure 6.3. From

this, it is clear that in general monotonicity properties of MY (u) are different from MX(u).

We establish a necessary and sufficient condition for Y to have monotone mean residual
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Figure 6.3: MX(u) and MY (u) for selected values of parameters.

life in the next Theorem.

Theorem 6.3.2. The random variable Y is DMRL (IMRL) if and only if

− d

du
log

[∫ 1

u

((
1 + (α− 1)p

α

)
HX

(
αp

1 + (α− 1)p

))−1
]
dp ≥ (≤)

1

1− u
,

(6.3.13)

for all u ∈ (0, 1).

Proof. Suppose Y is DMRL (IMRL). From (1.2.11) and (6.2.4),

(1− u)MY (u) =

∫ 1

u

(1− p) qY (p)dp
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=

∫ 1

u

(
α (1− p)

(1 + (α− 1)p)2

)
qX

(
αp

1 + (α− 1)p

)
dp. (6.3.14)

Differentiating (6.3.14) with respect to u, since Y is DMRL (IMRL),

MY (u) ≤ (≥)

(
α (1− u)

(1 + (α− 1)u)2

)
qX

(
αu

1 + (α− 1)u

)
,

equivalently,

1

1− u

∫ 1

u

(
α (1− p)

(1 + (α− 1)p)2

)
qX

(
αp

1 + (α− 1)p

)
dp

≤ (≥)
(

α (1− u)
(1 + (α− 1)u)2

)
qX

(
αu

1 + (α− 1)u

)
.

This implies (
α (1−u)

(1+(α−1)u)2

)
qX

(
αu

1+(α−1)u

)
∫ 1

u

(
α (1−p)

(1+(α−1)p)2

)
qX

(
αp

1+(α−1)p

)
dp
≥ (≤)

1

1− u
,

which is equivalent to (6.3.13).

Conversely, we have (6.3.13) is true, which gives

− d

du
log

[∫ 1

u

(
α (1− p)

(1 + (α− 1)p)2

)
qX

(
αp

1 + (α− 1)p

)]
dp+

d

du
log(1− u) ≥ (≤) 0.

This gives

− d

du
log

[
1

1− u

∫ 1

u

(
α (1− p)

(1 + (α− 1)p)2

)
qX

(
αp

1 + (α− 1)p

)]
dp ≥ (≤) 0,

which implies

− d

du
log MY (u) ≥ (≤) 0,

or MY (u) is decreasing (increasing). �
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To illustrate this, consider the case when X is exponential with quantile function,

QX(u) = −λ log(1− u). (6.3.15)

Note that MX(u) = λ, a constant. Now to analyse the monotonicity property of MY (u),

the left hand side of (6.3.13) is obtained as

− d

du
log

[∫ 1

u

((
1 + (α− 1)p

α

)
HX

(
αp

1 + (α− 1)p

))−1
]
dp

=
α− 1

((α− 1)u+ 1) log
(

α
(α−1)u+1

) (6.3.16)

We observe that

α− 1

((α− 1)u+ 1) log
(

α
(α−1)u+1

) ≤ (≥)
1

1− u
for α ≤ (≥)1.

Thus from Theorem 6.3.2, we have MY (u) is IMRL (DMRL) for α ≤ (≥)1.

Two other models used in similar contexts that have received considerable attention are the

proportional hazards (PHM) and proportional reversed hazards (PRHM) models. In the

quantile framework, Y is the PHM of X if

hY (QX(u)) = αHX(u),

and Y is the PRHM of X if

λY (QX(u)) = αΛX(u).

See Nair et al. [106] for a discussion of PHM. We now show that POM does not imply

PHM or PHRM for the same pair of random variables X and Y. As an illustration, let X
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be a Pareto random variable with survival function,

F̄X(x) = x−β, x > 1, β > 0 and QX(u) = (1− u)−
1
β .

Then HX(u) = β (1− u)
1
β . The POM has quantile function,

QY (u) =

(
1− u

1 + (α− 1)u

)− 1
β

,

and survival function,

F̄Y (x) =
αx−β

1 + (α− 1)x−β
.

Accordingly,

hY (x) =
(
x(1 + (α− 1)x−β)

)−1
,

or

hY (QX(u)) =
(1− u)−

1
β

1 + (α− 1)(1− u)
6= αHX(u).

Hence Y is not PHM of X.

In similar lines, suppose X follows power distribution with QX(u) = u
1
β , β > 0, so that

ΛX(u) = β u−
1
β . Under the assumption of POM,

QY (u) =

(
αu

1
β

1 + (α− 1)u
1
β

)

and

FY (x) =

(
x

α− (α− 1)x

)β
, giving, λY (x) =

αβ

x(α− (α− 1)x)
.

Thus

λY (QX(u)) =
αβ

u
1
β

(
α− (α− 1)u

1
β

) 6= αΛX(u),
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showing that Y is not PRHM of X.

Although POM does not imply both PHM and PRHM in the same variables, our next

Theorem reveals that in the presence of POM there is indeed PHM and PRHM in two other

random variables.

Theorem 6.3.3. Suppose that Y is POM of X. Then there exist random variables X1(X2)

and Y1(Y2) such that Y1(Y2) is the PHM (PRHM) of X1(X2).

Proof. Under the POM assumption, it follows from (6.2.1) that,

F̄Y (QX(u))

FY (QX(u))
= α

(
1− u
u

)
,

and hence

exp

[
−
(

u

1− u

)]
= exp

[
−α
(
FY (QX(u))

F̄Y (QX(u))

)]
=

(
exp

[
−
(
FY (QX(u))

F̄Y (QX(u))

)])α
. (6.3.17)

It is not difficult to recognize the left side of (6.3.17) as a survival function of a non-

negative random variable Y1 in [0, 1] and by the same way exp
[
−
(
FY (QX(u))

F̄Y (QX(u))

)]
as the

survival function of some random variable X1. Thus,

F̄Y1(u) =
(
F̄X1(u)

)α
,

and hence Y1 is the PHM of X1.

To prove the second part, we write (6.2.1) as

exp

[
−
(
F̄Y (QX(u))

FY (QX(u))

)]
= exp

[
−α
(

1− u
u

)]
,
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and observe that exp
[
−
(

1−u
u

)]
is a distribution function of a random variable X2 and the

left side is a distribution function of Y2 and they satisfy

FY2(u) = (FX2(u))α ,

showing that Y2 is the PRHM of X2. �

As an illustration, Suppose X follows unit exponential distribution with quantile function

QX(u) = − log(1− u). Then the distribution of Y is

FY (x) =
1− e−x

1 + (α− 1)e−x
, x > 0.

and

QY (u) =
− log(1− u)

1 + (α− 1)u
.

Also the distribution function of X1 is

FX1(u) =

(
exp

[
−
(
FY (QX(u))

F̄Y (QX(u))

)])α
= exp

[
−α
(

u

1− u

)]
.

Always FY1(u) = exp
[
−
(

u
1−u

)]
, so that the condition for PHM is satisfied.

The analysis of data using POM can be done by transforming random variables in such a

way that the resultant random variables satisfy PHM (PRHM) property. The well-known

estimation methods such as partial likelihood could be employed for the inference proce-

dures.



Chapter 6. Proportional Odds Model- A Quantile Approach 147

The survival function of the equilibrium random variable Z associated withX has the form,

F̄Z(x) =
1

µX

∫ ∞
x

F̄X(t)dt,

where µX = E(X). Setting x = QX(u), from Nair et al. [105], we obtain

FZ(QX(u)) =
1

µX

∫ u

0

(1− p)qX(p)dp, (6.3.18)

where the integral

ζX(u) =
1

µX

∫ u

0

(1− p)qX(p)dp, (6.3.19)

is called the scaled total time on test transform of the random variable X. For various

properties and applications of ζX(u), one could refer to Nair et al. [105].

From (6.3.18), we have,

QX(u) = QZ (ζX(u)) or, QZ(u) = QX(ζ−1
X (u)), (6.3.20)

where QZ(.) is the quantile function corresponding to the equilibrium distribution of X.

Theorem 6.3.4. Suppose Y is the POM of X and Z denotes the equilibrium random vari-

able of X . The random variables Y and Z are identically distributed if and only if

qX(u) = µα
(
(1− u) (α + (1− α)u)2

)−1
.

Proof. Assume that the distributions of Y and Z are identical. Thus we have QZ(u) =

QY (u), which implies,

QX(ζ−1
X (u)) = QX

(
αu

1 + (α− 1)u

)
.
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Thus,

ζ−1
X (u) =

αu

1 + (α− 1)u
, or equivalently ζX(u) =

u

α + (1− α)u
.

Now from the identity, qX(u) =
ζ′X(u) µ

1−u ( Nair et al. [105]), we get

qX(u) = µα
(
(1− u) (α + (1− α)u)2

)−1
.

Conversely, we have qX(u) = µα ((1− u) (α + (1− α)u)2)
−1
, which gives ζX(u) =

u
α+(1−α)u

and ζ−1
X (u) = αu

1+(α−1)u
. Now from (6.2.4) and (6.3.20), we obtain

QZ(u) = QY (u) = QX

(
αu

1 + (α− 1)u

)
.

Thus Y and Z are identically distributed. which completes the proof. �

6.4 Generalized homographic hazard quantile function model

and its applications

The POM in (6.2.4) with 0 < α < ∞ gives a method of introducing a new parameter α

to an existing quantile function for obtaining a more flexible new family of distributions

based on quantile function. To illustrate this, we consider the class of distributions with

homographic hazard quantile function (HGHQ) introduced by Sankaran et al. [135], with

quantile function,

QX(u) =
(A−B) log(Au+ 1)− A(B + 1) log(1− u)

A(A+ 1)K
, K > 0, B ≥ −1 andA > 0.

(6.4.1)
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We now introduce a generalization of the class of distributions with homographic hazard

quantile function (GHGHQ) by takingQX(u) as the baseline distribution in the POM given

in (6.2.4). The resulting quantile function is denoted by QY (u) and has the form

QY (u) =
(A−B) log

(
αAu

(α−1)u+1
+ 1
)
− A(B + 1) log

(
1− αu

(α−1)u+1

)
A(A+ 1)K

, (6.4.2)

α > 0, K > 0, B ≥ −1, and A > 0.

Note that the class of distributions (6.4.2) does not have a tractable form for its distribution

function and density function. In such situations, conventional methods of analysis using

distribution functions are not appropriate. The support of the proposed class of distributions

(6.4.2) is (0,∞). The quantile density function is obtained as

qY (u) =
α(u(α + αB − 1) + 1)

K(1− u)((α− 1)u+ 1)(u(α + αA− 1) + 1)
. (6.4.3)

Using the relation fY (QY (u)) = 1
qY (u)

, we present the plots of the density function for

different combinations of parameters in Figure 6.4. We observe that the proposed class

of distributions accommodates increasing, decreasing and bell-shaped density curves. The

proposed family also includes symmetric, positively and negatively skewed distributions as

its special cases. The hazard quantile function is obtained as

HY (u) =
K((α− 1)u+ 1)((α + αA− 1)u+ 1)

α((α + αB − 1)u+ 1)
, (6.4.4)

which accommodates increasing, decreasing, linear, bathtub and upside-down bathtub shapes

for different choices of parameters. Plots of hazard quantile function for different values of

parameters is given in Figure 6.5. Note that the baseline distribution has only increasing or

decreasing hazard quantile function.
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Figure 6.4: Plots of the density function for different values of parameters.

As mentioned in Chapter 1, the L−moments are often found to be more desirable than the

conventional moments in describing the characteristics of the distributions as well as for

inference. For the model (6.4.2), first four L−moments are obtained as follows;

L1 =
α((α− 1)(A−B) log(A+ 1) +A log(α)(α+ αB − 1))

(α− 1)AK(α+ αA− 1)
,

L2 =
1

(α− 1)2AK(α+ αA− 1)2
[(α− 1)A(α+ αA− 1)(α+ αB − 1)

(α− 1)2(−(A−B)) log(A+ 1)−A log(α)(α(α+B(α(A+ 2)− 2)− 2) + 1)
]
,

L3 =

(
α

(α− 1)3AK(α+ αA− 1)3

)
α(−2(α− 1)A(α+ αA− 1) (α (α ,

+B(α(A+ 2)− 2)− 2) + 1)(α− 1)3(α+ αA+ 1)(A−B) log(α(A+ 1))

+(α+ 1)B log(α)(α+ αA− 1)3
)
,

and,

L4 =

(
α

6(α− 1)4AK(α+ αA− 1)4

)[
(α− 1)− 6

(
α2 + 3α+ 1

)
B log(α)(α+ αA− 1)4

(
Aα+ αA− 1 +

(
α2
(
−
(
A2 +A(47B − 37) + 94B + 10

))
+ α(−13A+ 61B + 35)



Chapter 6. Proportional Odds Model- A Quantile Approach 151

0.0 0.2 0.4 0.6 0.8

10

20

30

40

50

u⟶

H
Y
(u
)⟶

K = 1.56, A = 9, B = -1, α = 0.32

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

u⟶

H
Y
(u
)⟶

K = 1.56, A = 9, B = 28, α = 0.32

0.0 0.2 0.4 0.6 0.8 1.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

u⟶

H
Y
(u
)⟶

K = 1.46, A = 1, B = -0.38, α = 0.314

0.0 0.2 0.4 0.6 0.8 1.0
15

20

25

30

35

u⟶

H
Y
(u
)⟶

K = 1.68, A = 4.7, B = -0.725, α = 0.052

0.0 0.2 0.4 0.6 0.8 1.0

5.0

5.5

6.0

6.5

u⟶

H
Y
(u
)⟶

K = 1.56, A = 9, B = 2.2, α = 0.32

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

u⟶

H
Y
(u
)⟶

K = 0.005, A = 44, B = -1, α = 9

Figure 6.5: Plots of hazard quantile function for different values of parameters.

−16A2(16B + 3) +A(6B − 33) + 6B − 20
)
α3 + α4(A+ 1)(A(13B − 3) + 26B + 10)

+α5(A+ 1)2(B + 1)
)
−6(α− 1)3

(
α2(A+ 1)2 + 3α(A+ 1) + 1

)
(A−B) log(α(A+ 1)))) . (6.4.5)

For the estimation of parameters in (6.4.2), we employ the method of L−moments. We

equate sample L−moments to corresponding population L−moments. For estimating the

parameters A, B, α and K, we equate first four sample L−moments to corresponding
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population L−moments. The parameters are obtained by solving the equations,

lr = Lr; r = 1, 2, 3, 4. (6.4.6)

Hosking [60] showed that sample L−moments are consistent estimators of population

L−moments. Asymptotic normality of the L−moment estimators is given in Theorem

1.1.1. Since the set of equations (6.4.6) are non-linear in A, B, α and K, we need to adopt

a proper numerical method to find out the estimates.

6.5 Applications

To illustrate the application of the proposed class of distributions, we consider two real

data sets. First, we consider the data reported in Birnbaum and Saunders [18]. The data

consist of measurements of fatigue life (thousands of cycles until rupture) of rectangular

strips of 101 aluminium sheeting. A special testing machine designed and constructed by

members of the instrument development unit of the physical research staff, Boeing airplane

company, was employed for recording the data. The method of L-moments is employed

for the estimation of parameters. We equate the population L−moments L1, L2, L3 and L4

given in (6.4.5) to corresponding sample L−moments. Since the equations are non-linear

functions of parameters, we use Newton-Raphson method for finding the estimates. Least

square method of estimation is employed for choosing the initial estimates. The initial

estimates thus obtained are A0 = 6.101, B0 = −0.424, α0 = 18.102 andK0 = 0.008.

Then the estimates of the parameters are obtained as

Â = 6.781, B̂ = −0.364, α̂ = 22.442 and K̂ = 0.003.
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Recently Sankaran et al. [136] employed a four parameter quantile function model, which

GHGHQ

WGP

HGHQ

500 1000 1500 2000 2500
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Y

D
e
n
s
it

y

Figure 6.6: Fitted densities and histogram of aluminium strip data.

was formed by taking the sum of quantile functions of Weibull and generalized Pareto dis-

tributions to model the above data. We denote this model by Weibull generalized Pareto

model (WGP). The estimated density with the histogram of the observed data for GHGHQ,

WGP and HGHQ models are presented in Figure 6.6. This shows that the GHGHQ distri-

bution gives a better fit than the other two models for the data set. To examine the adequacy

of the fitted model, we carried out the chi-square goodness of fit test. The chi-square value

of 2.83 with P -value 0.94 does not reject the model (6.4.2) for the given set of data. Chi-

square values obtained for the models WGP and HGHQ are 3.386 (p-value=0.90) and 4.15

(p-value=0.84) respectively. On the basis of chi-square values, our model gives a better fit.

Figure 6.7 presents the Q-Q plot which also shows the adequacy of the model.

Next, we consider another data set reported in Nichols and Padgett [114]. The data consist

of the breaking stress of a sample of 100 carbon fibres. Carbon fibres of 50 mm in length
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Figure 6.7: Q-Q plot of the aluminium strips data.

were sampled, tested and their tensile strengths were observed. The initial estimates ob-

tained are A0 = 40.225, B0 = 5.213, α0 = 37.121 andK0 = 0.075. Then the estimates of

the parameters using method of L−moments are obtained as

Â = 44.974, B̂ = 5.198, α̂ = 37.422 and K̂ = 0.219.

The estimated density with the histogram of the observed data for GHGHQ, WGP and

HGHQ models are presented in Figure 6.8, which shows that the GHGHQ distribution gives

a better fit than the other two models for the data set. To examine the adequacy of the fitted

model, we carried out the chi-square goodness of fit test. The chi-square value of 1.016

with p-value 0.60 does not reject the model (6.4.2) for the given set of data. Chi-square

values obtained for the models WGP and HGHQ are 2.587 (p-value=0.274) and 2.512 (p-

value=0.473) respectively. These values indicate that the proposed model performs better

as compared to the competing alternatives. Figure 6.9 presents the Q-Q plot of the proposed

model to the data, which ensures the appropriateness of our model.



Chapter 6. Proportional Odds Model- A Quantile Approach 155

GHGHQ

HGHQ

WGP

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

Y

D
e
n

si
ty

Figure 6.8: Fitted densities and histogram of the carbon fibres data.
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Figure 6.9: Q-Qplot of the carbon fibres data.
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6.6 Conclusion

The quantile version of the POM has been introduced and studied important reliability

properties and applications of the POM based on quantile functions. The quantile version

of POM has a different structure as compared to the POM using traditional distribution

function approach. We have investigated certain characterizations and ageing concepts and

illustrated using examples. A new class of distributions defined in terms of the quantile

function was introduced. The applications of the proposed class of distributions were stud-

ied with two real life data sets. The performance of the proposed model was compared with

existing quantile function models.



Chapter 7

The Cause Specific Hazard Quantile Func-

tion

7.1 Introduction

In survival studies, it is common that the failure of subjects may be attributed to more

than one cause. Competing risks models are usually employed to analyse such type of

data. In the competing risks set up, for each subject under study we observe a random

vector (X, J) where X represents lifetime (possibly censored) and J = {1, 2, . . . , k} is a

set of possible causes of failure. Assume that the causes of failure are mutually exclusive.

Two frameworks are often employed to deal with standard competing risks data such as

cumulative incidence function formulations and cause specific hazard formulations.

The cumulative incidence function Fj(x) is the probability of failure before time x due to

cause j given by

Fj(x) = P [X ≤ x, J = j], j = 1, 2, . . . , k. (7.1.1)

Note that F (x) =
∑k

j=1 Fj(x) is the distribution function of X .

Results in this chapter have been published as entitled “The cause specific hazard quantile function” in
the “Austrian Journal of Statistics” (see Sankaran et al. [137]).

157
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The cause specific hazard function hj(x) of X is defined as

hj(x) = lim
∆t→0

P [x < X + ∆t, J = j|X ≥ X]

∆t
, j = 1, 2, . . . , k. (7.1.2)

The hj(x) is the instantaneous rate of failure due to the cause j at time x given the subject

has survived up to time x. Let fj(x) = d
dt
Fj(x) be the cause specific density of X . If the

density fj(x) exists, (7.1.2) can be written as

hj(x) =
fj(x)

S(x)
, (7.1.3)

where S(x) = 1− F (x) is the survival function of X .

Another important function of interest used for the analysis of competing risks data is the

sub-survival function Sj(x), defined by

Sj(x) = exp

(
−
∫ x

0

hj(t)dt

)
. (7.1.4)

The function (7.1.4) does not represent a proper survival function of an observable random

variable (Lawless [83]). Further Sj(x) 6= 1− Fj(x).

When the causes of failure are mutually exclusive and exhaustive, then the hazard rate of

X , h(x) can be written as

h(x) =
k∑
j=1

hj(x).

Thus, S(x) is uniquely determined by the following identity

S(x) = exp

(
−

k∑
j=1

∫ x

0

hj(u)du

)
=

k∏
j=1

Sj(x).
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From (7.1.3), we get the cumulative incidence function Fj(x) as

Fj(x) =

∫ x

0

S(u)hj(u)du.

For properties and applications of (7.1.1), (7.1.2) and (7.1.4), see Carriere and Kochar [23],

Lawless [83] and Crowder [32].

As mentioned earlier an alternative approach for modelling and analysis of statistical data

is to use the quantile function. Recently, Peng and Fine [118] developed non-parametric

inference procedures for competing risks data using the quantile function. Sankaran et al.

[134] derived a test procedure for comparing various risks using sub-quantile functions and

Soni et al. [147] proposed tests for successive comparison of quantiles using the quantile

functions. Soni et al. [146] developed a non-parametric estimator of the quantile density

function.

The objective of the present chapter is to supplement the work of Peng and Fine [118] by

introducing quantile-based concepts in the competing risks set up. We define the cause

specific hazard quantile function which is the quantile version of (7.1.2). The proposed

study has several advantages. In many practical situations, the well-known parametric

models are not appropriate for the analysis of lifetime data. The quantile approach provides

new quantile function models, as shown in Section 7.3, which are useful for the modelling

and analysis of lifetime data. In survival studies, censoring is common. In such contexts,

quantile-based analysis is more appropriate as quantiles are more robust (Nair et al. [105]).

Finally, the quantile approach gives an alternative methodology for the statistical analysis

of competing risks data.

The rest of the chapter is organized as follows. In Section 7.2, we present definitions of
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quantile-based reliability concepts useful in competing risks theory. Using the proposed

methodology, we provide some new quantile function models in Section 7.3. Section 7.4

discusses non-parametric estimation of the cause specific hazard quantile functions and

study asymptotic properties of the estimators. A simulation study to assess finite sample

properties of the estimators and two real life applications are presented in Section 7.5.

Finally, Section 7.6 provides major conclusions of the chapter.

7.2 Cause specific hazard quantile functions

Let X be a non-negative continuous random variable representing the lifetime of a subject

with distribution function F (x) and density function f(x). Assume that F (x) is strictly

increasing. Denote Q(u) = inf{t : F (x) ≥ u} as the quantile function of X . Since F (x)

is strictly increasing, we have Q(u) = F−1(u). Let Qj(u) be the sub-quantile function

defined by

Qj(u) = inf{t : Fj(t) ≥ u}. (7.2.1)

Since Fj(∞) < 1, Qj(1) = vj < ∞. Let q(u) = d
du
Q(u) and qj(u) = d

du
Qj(u) be the

quantile density and the sub-quantile density functions, respectively (see Peng and Fine

[118]). We now define the cause specific hazard quantile function as

Hj(u) = hj(Q(u)) =
fj(Q(u))

1− F (Q(u))
=
fj(Q(u))

(1− u)
. (7.2.2)

The quantity Hj(u) is interpreted as the conditional probability of failure of the subject in

the next small interval of time due to cause j given the survival of the subject at 100(1−u)%

point of the distribution.
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Note that,
d

du
Fj(Q(u)) = q(u)fj(Q(u)) =

fj(Q(u))

f(Q(u))
. (7.2.3)

It is easy to see from (1.2.4) and (7.2.2), that
∑k

j=1 Hj(u) = H(u).

Thus the hazard quantile function is the sum of cause specific hazard quantile functions.

Further, note that,
d

du
(Fj(Q(u))) =

Hj(u)

H(u)
.

Therefore,

Fj(Q(u)) =

∫ u

0

Hj(p)

H(p)
dp,

or

Q(u) = Qj

(∫ u

0

Hj(p)

H(p)
dp

)
. (7.2.4)

The identity (7.2.4) enables us to determine Q(u) or Qj(u) from Hj(u).

7.3 Competing risks models

In this section, we discuss competing risks models that arise using different functional

forms of the cause specific hazard quantile function Hj(u).

(1) Constant cause specific hazard quantile function

Assume that the cause specific hazard quantile function corresponding to jth risk is

constant. That is, Hj(u) = aj, aj > 0 for 0 < u < 1, we get,

H(u) =
k∑
j=1

aj, q(u) =

(
(1− u)

k∑
j=1

aj

)−1

and Q(u) =
−log(1− u)∑k

j=1 aj
.
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Thus the constant cause specific hazard quantile function leads to the fact that lifetime

X has an exponential distribution with parameter
∑k

j=1 aj. From (7.2.4), we have

Qj

(
aju∑k
j=1 aj

)
= Q(u) = − log(1− u)∑k

j=1 aj
,

so that

Qj(u) = −
log(1−

∑k
j=1 aj

aj
u)∑k

j=1 aj
.

Thus,

Fj(t) =
aj∑k
j=1 aj

(1− e−
∑k
j=1 ajt).

The form of such sub-distributions have been discussed by Crowder [32].

(2) Linear cause specific hazard quantile function (Midhu et al. [90])

Suppose that the cause specific hazard quantile function for the cause j is given by

the function, Hj(u) = aj + bju, aj > 0, aj + bj > 0, 0 < u < 1. Then we obtain

H(u) = A+Bu, where A =
k∑
j=1

aj and B =
k∑
j=1

bj,

q(u) =
1

(1− u)(A+Bu)
,

and Q(u) = log

(
A+Bu

A(1− u)

) 1
A+B

.

We also have
d

du
Fj(Q(u)) =

aj + bju

A+Bu
,

which leads to

Q(u) = Qj

(
bj
B
u+

Baj − Abj
B2

log

(
A+Bu

A

))
.
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When bj = 0, the model reduces to the exponential model.

If aj = 0, thenHj(u) = bju andH(u) = u
∑k

j=1 bj. Thus,Q(u) =
(
log
(

u
1−u

)) 1∑k
j=1

bj .

In this case,

Qj

(
bj∑k
j=1 bj

)
= Q(u) =

(
log

(
u

1− u

)) 1∑k
j=1

bj

.

Thus,

Qj(u) =

log

 ∑k
j=1 bj

bj
u

1−
∑k
j=1 bj

bj
u


1∑k

j=1
bj

,

so that

qj(u) =
bj∑k

j=1 bju(bj −
∑k

j=1 bju)
.

Now Fj(t) can be written as

Fj(t) =
bj∑k
j=1 bj

(
et(
∑k
j=1 bj)

1 + et
∑k
j=1

bj

)
.

(3) Weibull cause specific hazard model.

Suppose the cause specific hazard function is given by

hj(t) = φξ−φj tφ−1, φ > 0, ξj > 0.

Thus the k risks have the same shape parameter but different scale parameters. Then

the hazard rate of X is given by

h(t) = φβtφ−1, (β =
k∑
j=1

ξ−φj ).
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The cause specific hazard quantile function for the risk j is

Hj(u) = φξ−φj

(
− 1

β
log(1− u)

)1− 1
φ

.

The hazard quantile function and quantile function are

H(u) = φβ

(
− 1

β
log(1− u)

)1− 1
φ

Q(u) =

(
− 1

β
log(1− u)

) 1
φ

,

and

Qj(u) =

[
− 1

β
log

(
1− βu

ξ−φj

)] 1
φ

respectively. It follows that Hj(u) =
ξ−φj
β
H(u) and thus cause specific hazard quan-

tile functions are proportional.

(4) Exponential mixture distribution.

For this model, we have

Fj(t) = πj(1− e−ajt), aj, πj > 0, (7.3.1)

then, we obtain,

Qj(u) = − 1

aj
log

(
1− u

πj

)
. (7.3.2)

We do not have explicit forms for Hj(u) and H(u) in this case.

(5) Proportional hazards model.

When

hj(t) = πjh(t), πj > 0,
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we obtain,

Hj(u) = πjH(u),

and Q(u) = Qj(πju). Thus cause specific hazard functions are proportional.

(6) Consider the model specified by Dewan and Kulathinal [34]. The cumulative

incidence functions for two risks are given by,

F1(t) = φF a(t) and F2(t) = F (t)− φF a(t), where 1 ≤ a ≤ 2 and 0 ≤ φ ≤ 0.5.

Then,

f1(t) = φa(F (t))a−1f(t) and f2(t) = f(t)− φa(F (t))a−1f(t).

We then obtain,

h1(t) =
f1(t)

F̄ (t)
=
φa(F (t))a−1f(t)

F̄ (t)
and h2(t) =

f2(t)

F̄ (t)
=
f(t)− φa(F (t))a−1f(t)

F̄ (t)
.

Finally note that, Q1(u) = Q
(
(u
φ
)
1
a

)
.

7.4 Non-parametric estimation of cause specific hazard quan-

tile function

We develop a non-parametric estimator of Hj(u) under right censoring using the kernel

density estimation approach. Suppose that the lifetime X is randomly right censored by

a variable Z. Then, we observe a random vector (Y, δ, δJ) where Y = min(X,Z) and

δ = I(X ≤ Z). Note that δJ is 0 for a censored observation, otherwise it is the cause
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of failure. Denote G(x) and H(x) as the distribution functions of Z and Y , respectively.

When Z and X are independent, we have

1−H(x) = (1− F (x))(1−G(x)).

The tuples (Yi, δi, δiJi) are assumed to be realizations of random variables (Y, δ, δJ), for

subjects 1, 2, · · · , n. If censoring is assumed, the Kaplan-Meier estimator of S(x) for the

ordered failure times Y(1) < Y(2) < ... < Y(n), corresponding to Yi, i = 1, 2, 3, ...n is given

by

Ŝ(x) =
∏

k:Y(k)<t

(
1− dk

nk

)
, (7.4.1)

where dk is the number of failures at Y(k) and nk is the number of subjects at risk in Y(k),

k = 1, 2, . . . , n. Then the non-parametric estimator of F (x) is F̂ (x) = 1 − Ŝ(x). Let

Yj(1) < Yj(2) < ... < Yj(nj) be ordered failure times due to risk j. The Kaplan-Meier

estimator of Sj(x) is obtained as

Ŝj(x) =
∏

k:Yj(k)<t

(
1− djk

njk

)
, (7.4.2)

where djk is the number of failures at Yj(k) and njk is the number of subjects at risk in Yj(k).

Let

Ŝji =

 Ŝj(Yj(i−1))− Ŝj(Yj(i)) i = 2, . . . , nj − 1

Ŝj(Yj(nj)) i = nj

and

S∗(i) =


0 if i = 0

F̂ (Y(i)) if i = 1, 2, ..., n− 1

1 if i = n
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A simple non-parametric estimator of Hj(u) is given by

Ĥj(u) =
f̂j(Q̂(u))

1− u
, (7.4.3)

where Q̂(u) = inf{x : F̂ (x) > u} is the non-parametric estimator of Q(u) and

f̂j(Q̂(u)) =
1

h(n)

1∫
0

K

(
p− u
h(n)

)
d(F̂j(Q̂(p))). (7.4.4)

Function K(x) is a kernel function satisfying following conditions:

(a) K(x) ≥ 0 for all x and
∫∞
−∞K(x)dx = 1;

(b) K(x) is symmetric about zero;

(c) K(x) has finite support and

(d) K(x) satisfies the Lipschitz condition.

Denote δ(i) as the indicator function corresponding to Y(i). Then a non-parametric estimator

of f̂j(Q̂(u)) given in (7.4.4) becomes

f̂j(Q̂(u)) =
1

h(n)

n∑
i=1

ŜjiK

(
S∗(i)− u
h(n)

)
I(δ(i) = 1, J = j), j = 1, 2, 3, . . . , k.

(7.4.5)

Substituting (7.4.5) in (7.4.3), we get an estimator of Hj(u).

We now establish asymptotic properties of Hj(u). We first prove strong consistency of

Hj(u), j = 1, 2, . . . , k.
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Theorem 7.4.1. Suppose that K(x) satisfies conditions (a) to (d). Assume that both F (x)

and K(x) are differentiable. Then supu |Ĥj(u)−Hj(u)| → 0 as n→∞ for j = 1, . . . , k.

Proof. From equation (7.2.3), we have dFj(Q(u)) = fj(Q(u))q(u)du. Then,

Ĥj(u)−Hj(u) =
1

(1− u)h(n)

∫ 1

0

K

(
p− u
h(n)

)
dF̂j(Q̂(p))− fj(Q(u))

1− u
. (7.4.6)

We can write (7.4.6) as

Ĥj(u)−Hj(u) =
1

(1− u)h(n)

∫ 1

0

K

(
p− u
h(n)

)
d
[
F̂j(Q̂(p))− F̂j(Q(p)) + F̂j(Q(p))

−Fj(Q(p))] +
1

(1− u)h(n)

∫ 1

0

K

(
p− u
h(n)

)
dFj(Q(p))− fj(Q(u))

1− u
.

(7.4.7)

Since, supu |Q̂(u)−Q(u)| → 0 as n→∞ (Andersen et al. [5]) and supx |F̂j(x)−Fj(x)| → 0

as n→∞ (Lawless [83]), the first term on the right side of (7.4.7) tends to zero when n is

large. Now consider

1

h(n)

1∫
0

K

(
p− u
h(n)

)
d(Fj(Q(p))) =

1

h(n)

∞∫
−∞

K

(
t− x
h(n)

)
d(Fj(t))

=
1

h(n)

∞∫
−∞

K

(
t− x
h(n)

)
fj(t)dt. (7.4.8)

Let t−x
h(n)

= z. Then (7.4.8) becomes

∞∫
−∞

K(z) fj(x+ zh(n))dz. (7.4.9)
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By Taylor series expansion of fj(x+ zh(n)), we obtain (7.4.9) as

∞∫
−∞

K(z)
[
fj(x) + zh(n)f ′j(x) + ...

]
dz, (7.4.10)

where prime denote derivative with respect to x.

As n→∞, h(n)→ 0 and hence (7.4.10) tends to

∞∫
−∞

K(z)fj(x)dz = fj(x). (7.4.11)

Using (7.4.8) and substituting x = Q(u) in (7.4.11), the equation (7.4.7) becomes

supu |Ĥj(u)−Hj(u)| → 0 as n→∞. �

In the following theorem, we prove the limiting distribution of
√
n(Ĥj(u)−Hj(u)).

Theorem 7.4.2. As n → ∞, for fixed u (0 < u < 1),
√
nh2(n)(Ĥj(u) − Hj(u)), j =

1, · · · , k follows a normal distribution with mean 0 and variance σ2
j (u), where,

σ2
j (u) = E

[
1

(1−u)

∫ 1

0
K∗(u, p)Z(p)dp

]2

, with Z(p) =
√
n[F̂j(Q̂(p))− Fj(Q(p))].

Proof. From Theorem 7.4.1 as n → ∞ and h(n) → 0, the expression (7.4.7) asymptoti-

cally reduces to

√
n(Ĥj(u)−Hj(u)) =

√
n

h(n) (1− u)

∫ 1

0

K

(
p− u
h(n)

)
d
[
F̂j(Q̂(p))− Fj(Q̂(p))

+Fj(Q̂(p))− Fj(Q(p))
]
.

(7.4.12)
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Using integration by parts, (7.4.12) becomes

√
n(Ĥj(u)−Hj(u)) =

√
n

h(n) (1− u)

(∫ 1

0

K∗(u, p)[F̂j(Q̂(p))− Fj(Q̂(p))]dp

+

∫ 1

0

K∗(u, p)[Fj(Q̂(p))− Fj(Q(p))]dp

)
, (7.4.13)

where K∗(u, p) = dK
dp

(
p−u
h(n)

)
.

From Andersen et al. [5], for 0 < u < 1, we have
√
n
(
Q̂(u)−Q(u)

)
is asymptotically

normal with mean zero and variance σ2
1
∗
(u) = (S(u))2

∫ u

0

(−dS(t))

S(t)S∗(t)
, where S∗(t) is the

probability that a unit is alive and uncensored at time t.

It follows from Lawless [83] that for 0 < x < ∞,
√
n(F̂j(x) − Fj(x)) is asymptotically

normal with mean zero and variance σ2∗
2 (x), which can be estimated as given in Section

9.2 of Lawless [83]. Using the functional delta method and Slutsky’s theorem (Serfling

[140]), we get that for 0 < u < 1,
√
nh2(n)(Ĥj(u)−Hj(u)) follows normal distribution

with mean as zero and variance σ2
j (u), where σ2

j (u) = E
[

1
(1−u)

∫ 1

0
K∗(u, p)Z(p)dp

]2

, with

Z(p) =
√
n
(
F̂j(Q̂(p)) −Fj(Q(p))). This completes the proof. �

Remark 7.4.1. Since the analytical expressions of σ2
j (u) is complex, we have to use the

bootstrap procedure for estimating the variance of Ĥj(u), j = 1, 2, ..., k. The bootstrap

method is based on the resampling method from the original data. We take B samples

of size n from the original data using random sampling with replacement. The bootstrap

samples are (Y
(k)
i , δ

(k)
i , J

(k)
i ), k = 1, 2, ..., B; i = 1, 2, ..., n. We then compute Ĥj(u), using

original data set and the estimate of Hj(u) using the bootstrap sample k is Λ̂
(k)
j (u), k =

1, 2, ..., B. We then compute the bias by taking differences Λ̂
(k)
j (u)− Ĥj(u), j = 1, 2; k =

1, 2, ..., B. Then using these differences, the average bias and MSE are calculated.
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7.5 Simulations

We now carry out extensive simulation studies to find out mean square error (MSE) and

bias of the estimator Ĥj(u) for the uncensored as well as the censored case. We consider

two causes of failure. We take different samples of size 50, 100 and 200. We generated

5000 data sets in each scenario. The order of sub-quantiles considered are u = 0.2, 0.4, 0.6

and 0.8. Simulations are carried out for uncensored and censored cases to find the average

bias and MSE of the estimators. We have employed the triangular, uniform and Epanech-

nikov kernel functions in simulation studies. However, results are being reported for the

Epanechnikov kernel as this provides the smallest MSE. The Epanechnikov kernel is de-

fined by

K(u) = 0.75(1− u2)I(|u| ≤ 1).

To generate random numbers, we consider the linear and Weibull cause specific hazard

quantile function models given in Section 7.3. Since the proposed estimator of the cause

specific hazard quantile function is based on the kernel function, the choice of bandwidth

is an important issue. For the construction of kernel type estimator of a quantile function,

Padgett [116] has considered separate bandwidths for different regions of u ∈ (0, 1) in

such a way that the mean squared error (MSE) is minimum. In our study, we calculate the

optimum bandwidths corresponding to different values of u such as 0.2, 0.4, 0.6 and 0.8.

The average of the optimal bandwidths obtained for different values of u is employed for

the construction of the proposed estimators.

To perform the simulation study, we use the same parameter combinations for the linear

cause specific hazard quantile function model in both censored as well as uncensored cases.

The same procedure is adopted for the Weibull cause specific hazard quantile function
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model. The parameter values chosen for the linear cause specific hazard quantile function

model are a1 = 1
2
, b1 = 3, a2 = 1

3
and b2 = 2. For the Weibull model, we take φ = 3, ξ1 =

1 and ξ2 = 2.

7.5.1 Results for the uncensored case

We first consider the linear cause specific hazard quantile function for different sample

sizes n = 50, 100 and 200. The estimators Ĥj(u), j = 1, 2 are calculated for all values of

u (0 < u < 1), which provides the smooth curves. Then the average bias and MSE of the

estimators are computed. The bandwidths for Ĥ1(u) and Ĥ2(u) are obtained as 0.52 and

0.64 respectively. Table 7.1 presents the average bias and MSE of Hj(u), j = 1, 2, for n=

50, 100 and 200. Both average bias and MSE decrease as sample size increases.

Table 7.1: Average bias and MSE of Ĥ1(u) and Ĥ2(u) for the linear cause specific hazard
model (uncensored) for the optimal bandwidths.

n
u

0.2 0.4 0.6 0.8

50
Ĥ1(u)

MSE 0.0562 0.2758 0.3318 0.1729
BIAS -0.1445 -0.4912 -0.4314 0.5814

Ĥ2(u)
MSE 0.0384 0.1477 0.1686 0.3029
BIAS -0.1225 -0.3077 -0.2773 0.2433

100
Ĥ1(u)

MSE 0.0453 0.2400 0.2766 0.1525
BIAS -0.1312 -0.4732 -0.4040 0.3315

Ĥ2(u)
MSE 0.0328 0.1303 0.1417 0.2478
BIAS -0.1221 -0.3008 -0.2727 0.6292

200
Ĥ1(u)

MSE 0.0406 0.2238 0.2523 0.1380
BIAS -0.1239 -0.4638 -0.3921 0.3307

Ĥ2(u)
MSE 0.0303 0.1221 0.1293 0.1734
BIAS -0.1203 -0.2961 -0.2566 0.1922

We then consider the Weibull cause specific hazard model (7.3.1). The estimators Ĥj(u), j =

1, 2 are calculated. The bandwidths which give minimum MSE for Ĥ1(u) and Ĥ2(u) are
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0.72 and 0.44 respectively. Table 7.2 gives average bias and MSE of the estimators of the

cause specific hazard quantile functions. Note that both average bias and MSE decrease as

sample size increases.

Table 7.2: Average bias and MSE for Ĥ1(u) and Ĥ2(u) for the Weibull cause specific
hazard model (uncensored) for the optimal bandwidths.

n
u

0.2 0.4 0.6 0.8

50
Ĥ1(u)

MSE 0.0395 0.1511 0.1546 0.1776
BIAS -0.1670 -0.3421 -0.2833 0.4186

Ĥ2(u)
MSE 0.0160 0.0253 0.0301 0.0296
BIAS -0.0560 -0.1248 -0.1296 0.1410

100
Ĥ1(u)

MSE 0.0354 0.1387 0.1368 0.1594
BIAS -0.1555 -0.3319 -0.2822 0.3956

Ĥ2(u)
MSE 0.0142 0.0207 0.0231 0.0232
BIAS -0.0554 -0.1009 -0.0932 0.1125

200
Ĥ1(u)

MSE 0.0335 0.1328 0.1285 0.1262
BIAS -0.1533 -0.3231 -0.1541 0.3492

Ĥ2(u)
MSE 0.0136 0.0189 0.0207 0.0165
BIAS -0.0447 -0.0804 -0.0748 0.0168

7.5.2 Results for the censored case

The censored observations are generated using uniform distribution U(0, C), where C is

chosen such that 20% observations are censored. We first consider the linear cause specific

hazard quantile function model. We compute the average bias and MSE of the estimators

Ĥj(u), j = 1, 2. The bandwidths which give minimum MSE for Ĥ1(u) and Ĥ2(u) are 0.67

and 0.31 respectively. Table 7.3 presents the average bias and MSE under censoring. Both

average bias and MSE decrease as sample size increases.

We generate observations from the Weibull cause specific hazard model with the censoring

scheme given above. The Ĥj(u), j = 1, 2 are calculated and the average bias and MSE of
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Table 7.3: Average bias and MSE for Ĥ1(u) and Ĥ2(u) for the linear cause specific hazard
model (censored) for the optimal bandwidths.

n
u

0.2 0.4 0.6 0.8

50
Ĥ1(u)

MSE 0.0680 0.2764 0.3901 0.7679
BIAS -0.2179 -0.5230 -0.5746 0.6104

Ĥ2(u)
MSE 0.0548 0.1622 0.1862 0.4400
BIAS -0.1691 -0.3778 -0.4054 0.6832

100
Ĥ1(u)

MSE 0.0618 0.2401 0.1875 0.7560
BIAS -0.1898 -0.4870 -0.5239 0.6020

Ĥ2(u)
MSE 0.0337 0.1991 0.1856 0.4110
BIAS -0.1506 -0.3533 -0.3699 0.2796

200
Ĥ1(u)

MSE 0.0587 0.2284 0.1582 0.7032
BIAS -0.1760 -0.4697 -0.4997 0.5468

Ĥ2(u)
MSE 0.0323 0.1978 0.1816 0.3591
BIAS -0.1415 -0.3412 -0.3523 0.2642

the estimators are computed. The bandwidths which give minimum MSE for Ĥ1(u) and

Ĥ2(u) are 0.59 and 0.38 respectively. Table 7.4 presents average bias and MSE of the esti-

mators of Hj(u), j = 1, 2. It follows that the average bias and MSE of Ĥj(u), j = 1, 2 are

small and both decrease as sample size increases.

Hoel data (Hoel [57]) The data were obtained from a laboratory experiment on two groups

of RFM strain male mice which had received a radiation dose of 300r at an age of 5-6

weeks. The first group of mice lived in a conventional laboratory environment while the

second group was in a germ-free environment. There are three major causes for death such

as thymic lymphoma, reticulum cell sarcoma and other cause. All mice died at the end of

the study so that there is no censoring. We considered data from first group of 99 mice

for analysis. We combine the last two causes since the number of deaths due to reticulum

cell sarcoma is small. Thus two causes for the analysis are thymic lymphoma (J1) and

other causes (J2) which include reticulum cell sarcoma. The interest is to compare the

mortality from these two modes of death. The estimates of Hj(u), j = 1, 2 are computed

as described in Section 7.4. The bandwidth which minimizes the bootstrap MSE has been
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Table 7.4: Average bias and MSE of Ĥ1(u) and Ĥ2(u) for the Weibull cause specific hazard
model (censored) for the optimal bandwidths.

n
u

0.2 0.4 0.6 0.8

50
Ĥ1(u)

MSE 0.0406 0.1512 0.1885 0.4045
BIAS -0.1750 -0.3827 -0.3864 0.6372

Ĥ2(u)
MSE 0.0168 0.0275 0.0339 0.0315
BIAS -0.0697 -0.1264 -0.1360 0.1430

100
Ĥ1(u)

MSE 0.0363 0.1415 0.1879 0.4041
BIAS -0.1619 -0.3658 -0.3619 0.6267

Ĥ2(u)
MSE 0.0149 0.0276 0.0341 0.0260
BIAS -0.0562 -0.1059 -0.1059 0.1344

200
Ĥ1(u)

MSE 0.0349 0.1501 0.1730 0.3757
BIAS -0.1554 -0.3574 -0.3497 0.6232

Ĥ2(u)
MSE 0.0157 0.0247 0.0295 0.0157
BIAS -0.0468 -0.0962 -0.0917 0.0177

chosen. Bandwidths thus obtained for Ĥj(u), j = 1, 2, are 0.71 and 0.29 respectively. Fig-

ure 7.1 shows the cause specific hazard quantile functions. From Figure 7.1, it is clear that

Hj (u)

u

H

1 (u)

H

2 (u)

Figure 7.1: Estimates of cause specific hazard quantile functions for Hoel data.

the cause specific hazard quantile function due to thymic lymphoma is uniformly smaller

than that due to other causes. We also observe that the two cause specific hazard functions

are closer to each other at the tails. The major cause of failure is not thymic lymphoma J1,

but other causes J2.



The Cause specific hazard quantile function 176

Davis and Lawrance data (Davis and Lawrance [33]). They considered the tyre-testing

data, which measure the failure times at hourly intervals of 171 tyres with 12% right cen-

soring. The major causes of failures are

(i) an open joint on the inner lines,

(ii) rubber chunking on the shoulder

(iii) loose chunking, low on the shoulder,

(iv) cracking of tread rubber,

(v) cracking on the side wall,

and (vi) all other causes of failures.

Since there are few failures due to certain causes, we grouped the causes into three major

categories as, cause 1 (J1) - for causes (iii) and (v) - 34 failures, cause 2 (J2) - for cause

(iv) - 69 failures and cause 3 (J3) - for causes (i), (ii), and (vi) - 48 failures.

The optimal bandwidths for Ĥ1(u), Ĥ2(u) and Ĥ3(u) are 0.47, 0.61 and 0.51 respectively.

Figure 7.2 shows the estimates of cause specific hazard quantile function due to three dif-

ferent causes. From Figure 7.2, it follows that the cause specific hazard quantile function

due to cause 1 is larger than that of cause 2. Further, the cause specific hazard quantile

function due to cause 3 lies between the other two causes of failure. The major cause of

failure is due to loose chunking, low on side wall and cracking on side wall (J1).
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Hj (u)

u

H

1 (u)

H

2 (u)

H

3 (u)

Figure 7.2: Estimates of cause specific hazard quantile functions for Davis and Lawrence
data.

7.6 Conclusion

The present chapter introduced the concept of cause specific hazard quantile function,

which is the quantile version of the cause specific hazard rate. The proposed methodology

provided new lifetime models useful for the analysis of competing risks data. The smooth

kernel type estimator of cause specific hazard quantile function has been developed for un-

censored as well as censored data. Asymptotic properties of the proposed estimator were

studied. The estimator performs well in terms of average bias and MSE for linear cause

specific hazard model as well as for Weibull cause specific hazard model. The procedure

has been applied to two real life data sets.

The proposed work based on the cause specific hazard quantile functions is an alternative

method of modelling and analysis of competing risks data. This technique has the ability to

pick up the differences at extreme values of the data. The quantile models presented here

will enable the practitioner to differentiate between the effects of various risks.





Chapter 8

Relevation Transforms and their Appli-

cations

8.1 Introduction

Relevation transforms, introduced by Krakowski [74] have attracted considerable interest

of researchers in survival analysis and reliability theory. Let X and Y be two absolutely

continuous non-negative random variables, with survival functions F̄ (·) and Ḡ(·) respec-

tively. Consider a component of a system whose lifetime X has survival function F̄ (x);

suppose that the component is replaced at the time of its failure at age x, by another com-

ponent of the same age x, where lifetime Y of the second component has survival function

Ḡ(x). Let X#Y be the total lifetime of the random variable Y given that it exceeds a

random time X . Then the survival function T̄X#Y (x) given by

T̄X#Y (x) = F̄#Ḡ(x) = F̄ (x)− Ḡ(x)

∫ x

0

1

Ḡ(t)
dF̄ (t), (8.1.1)

Results in this chapter have been published in the Journals “Metrika” as entitled “Reliability properties
of proportional hazards relevation transform” (See Sankaran and Kumar [130]) and in “Statistica” as entitled
“Quantile based relevation transform and its properties” (See Dileep et al. [35] ).

179
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The probability density function of the relevation random variable is obtained as

tX#Y (x) = T ′X#Y (x) = g(x)

∫ x

0

f(t)

Ḡ(t)
dt. (8.1.2)

Grosswald et al. [47] provided two characterizations of the exponential distribution based

on relevation transform. The concept of dependent relevation transform and its importance

in reliability analysis were given in Johnson and Kotz [62]. Applications of the multiple

relevation transforms, denoted by X = Y1#...#Yn, n = 2, 3, ..., where Yn is a sequence

of independent and identical random variables were considered from the reliability point

of view by Baxter [13]. Shanthikumar and Baxter [142] provided closure properties of

ageing concepts in the context of relevation transforms. Improved versions of the results

in Grosswald et al. [47] were given in Lau and Rao [80]. Chukova et al. [27] derived char-

acterizations of the class of distributions with almost lack of memory property based on

the relevation transform. Belzunce et al. [16] established the relationship between the rel-

evation transform and the distribution of record values. Further, they have shown that the

distribution of epoch times of a non-homogeneous pure birth process (NHPBP) is identi-

cal to the relevation transform. Some results for the comparison of the failure times and

inter failure times of two systems based on a replacement policy were given in Sordo and

Psarrakos [148]. Psarrakos and Di Crescenzo [120] introduced an inaccuracy measure con-

cerning the relevation transform of two non-negative continuous random variables.

The present chapter is arranged into two main sections. In Section 8.2, we study the basic

reliability properties of relevation transform under proportional hazards assumption and its

applications. In this connection, we discuss the ageing properties and stochastic orders.

We also introduce a new lifetime model by considering Weibull distribution as the baseline

of the proposed model. The proposed lifetime model is applied to two real-life data sets.
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Then in Section 8.3, we introduce the quantile version of the relevation transform and study

its basic properties. The quantile-based relevation transform in the context of proportional

hazards model and equilibrium distribution are discussed in sequel. Finally, Section 8.4

provides major conclusions of the study.

8.2 Proportional hazards relevation transform

In reliability theory, the proportional hazards model (PHM) plays a vital role in the com-

parison of lifetime of two components. The random variables X and Y satisfy PHM if,

hY (x) = θhX(x), θ > 0, (8.2.1)

where hY (x) and hX(x) are the hazard rate functions of X and Y . An equivalent represen-

tation of (8.2.1) is

Ḡ(x) = (F̄ (x))θ, θ > 0. (8.2.2)

For more details on PHM, one could refer to Kalbfleisch and Prentice [67] and Lawless

[84]. When Y is the PHM of X with survival functions related as in (8.2.2), we call the

transformation given in (8.1.1) as the proportional hazards relevation transform (PHRT).

Let X and Y be two non-negative random variables with absolutely continuous distribu-

tion functions F (x) and G(x) respectively. When Y is the PHM of X , from (8.1.1), the

relevation random variable X#Y has the survival function given by

T̄PH(x) = F̄ (x)− (F̄ (x))θ
∫ x

0

1

(F̄ (t))θ
dF̄ (t). (8.2.3)

We interpret T̄PH(x) in the same manner but with the difference that the replacement of
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the item is done by another, whose hazard rate is proportional to that of the original item.

Further, (8.2.3) provides a family of life distributions in its own right, which is quite flexi-

ble with respect to the reliability properties. Krakowski [74] has shown that PHRT posses

commutative property, which means that the random variables Y#X and X#Y are iden-

tically distributed.

Note that, for θ → 1,

Lim
θ→1

T̄PH(x) = F̄ (x)(1− log(F̄ (x))) = F̄#F̄ (x). (8.2.4)

The survival function (8.2.4) is known as the auto relevation of F̄ (x). Kapodistria and

Psarrakos [68] studied properties and applications of a sequence of random variables with

weighted tail distribution functions based on the auto relevation transform.

In the present chapter, we consider the case of θ 6= 1, which means X and Y are not

identically distributed. The survival function T̄PH(x) of the relevation random variable

X#Y under PHRT has a closed form expression in terms of the baseline survival function

F̄ (x), as seen from the following theorem.

Theorem 8.2.1. Let X and Y be two independent non-negative random variables with

distribution functions F (x) and G(x) respectively. Then Y is the PHM of X if and only if

the relevation survival function T̄PH(x) satisfies,

T̄PH(x) =
1

θ − 1

(
θF̄ (x)− (F̄ (x))θ

)
. (8.2.5)

Proof. Assume that Y is the PHM of X . Now from (8.2.3), we have

T̄PH(x) = F̄ (x)− (F̄ (x))θ
∫ x

t=0

1

(F̄ (t))θ
dF̄ (t)

= F̄ (x)− 1

1− θ
(
F̄ (x)− (F̄ (x))θ

)
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=

(
θ

θ − 1

)
F̄ (x)−

(
1

θ − 1

)
(F̄ (x))θ.

Conversely assume that the relation (8.2.5) holds. Then from (8.1.1) and (8.2.5), we get

F̄ (x)− Ḡ(x)

∫ x

t=0

1

Ḡ(t)
dF̄ (t) =

(
θ

θ − 1

)
F̄ (x)−

(
1

θ − 1

)
(F̄ (x))θ,

which can be written as

∫ x

t=0

1

Ḡ(t)
dF̄ (t) =

1

1− θ

(
(F̄ (x))θ − F̄ (x)

Ḡ(x)

)
. (8.2.6)

Differentiating both sides of (8.2.6) with respect to x,

(F̄ (x))′

Ḡ(x)
=

1

θ − 1

(
θ(F̄ (x))θ−1(F̄ (x))′ − (F̄ (x))′

Ḡ(x)
− ((F̄ (x))θ − (F̄ (x)))((Ḡ(x))′)

(Ḡ(x))2

)
,

(8.2.7)

where prime denote the derivative. Simplifying (8.2.7), we get

(Ḡ(x))′

Ḡ(x)
= θ

(F̄ (x))′

F̄ (x)
or hY (x) = θhX(x),

as required. �

Remark 8.2.1. T̄PH(x) in (8.2.5) has a mixture representation given by

T̄PH(x) = φF̄ (x) + (1− φ)(F̄ (x))θ,

where φ = θ
1−θ . Note that one of the weights is negative (generalized mixture) depending

on θ > 1 or 0 < θ < 1.

In the context of coherent systems with ‘n’ identical components, Navarro et al. [111]
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established that the component survival function F̄c(x) and the system survival function

F̄S(x) are connected through the relation

F̄S(x) = w(F̄c(x)), (8.2.8)

where w(u) is a distortion function, which is a concave non-decreasing function from [0, 1]

to [0, 1], such that w(0) = 0 and w(1) = 1.

From (8.2.5), the survival function T̄PH(x) satisfies,

T̄PH(x) = w(F̄ (x)), where w(u) =
1

θ − 1
(θu− uθ), u ∈ [0, 1]. (8.2.9)

The function w(u) is a concave distortion function. From this we can infer that, X#Y is

the distorted random variable obtained from X by the distortion w(u). Distorted random

variables have many applications in reliability theory. Navarro et al. [112] and Navarro et al.

[111] developed various stochastic orders and preservation properties of ageing classes for

the general distorted distributions in the context of coherent systems. For more details on

this topic, one could refer to Wang [155], Sordo and Suárez-Llorens [149], Sordo et al.

[150] and Navarro et al. [113].

From (8.2.5), we obtain the mean of X#Y as

µX#Y =

∫ ∞
0

T̄PH(x)dx =
θµX − µY
θ − 1

,

where µX , µY and µX#Y denotes the mean of the random variables X, Y and X#Y re-

spectively. Let tPH(x) be the relevation density function under PHM. Then,

tPH(x) =
θ

θ − 1
f(x)

(
1− (F̄ (x))θ−1

)
. (8.2.10)
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From (8.2.3) and (8.2.10), the hazard rate of the relevation random variable X#Y under

PHM is given by

hX#Y (x) =
tPH(x)

T̄PH(x)

⇔ hX#Y (x) = θ hX(x)

(
1− (F̄ (x))θ−1

θ − (F̄ (x))θ−1

)
. (8.2.11)

From (8.2.5), we have

∫ ∞
x

T̄PH(t)dt =
θ

θ − 1

∫ ∞
x

F̄ (t)dt− 1

θ − 1

∫ ∞
x

(F̄ (t))θdt.

Dividing with T̄PH(x) and noting that 1
(F̄ (x))θ

∫∞
x

(F̄ (t))θdt = mY (x), we have the relation,

mX#Y (x) =

(
θ

θ − (F̄ (x))θ−1

)
mX(x) +

(
1

1− θ(F̄ (x))1−θ

)
mY (x), (8.2.12)

where mX(x) and mY (x) are the mean residual life functions of X and Y respectively.

Expressions (8.2.5), (8.2.11) and (8.2.12) enable us to derive several results about the relia-

bility aspects of X#Y in terms of the corresponding results of X. These results are helpful

in assessing the properties of X#Y directly from X without having to find and use the

expressions of T̄PH , hX#Y and mX#Y . The survival function T̄PH(x) represents a family

of life distributions depending on the baseline survival function F̄ (x). It is advantageous

to know some criteria by which certain members of the family can be distinguished. We

now present few characterizations to meet this objective. When X follows the generalized

Pareto distribution with

F̄ (x) =
(

1 +
ax

b

)−(a+1
a )

, x > 0; b > 0, a > −1, (8.2.13)
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we obtain

T̄PH(x) =
1

θ − 1

[
θ
(

1 +
ax

b

)−(a+1
a )
−
(

1 +
ax

b

)−( θ(a+1)
a )

]
. (8.2.14)

The distribution (8.2.13) reduces to the exponential distribution with mean b as a→ 0, the

Pareto-II as a > 0 and the scaled beta as −1 < a < 0 and uniform as its special cases.

Even though the hazard rate and mean residual life of (8.2.14) are generally not of simple

forms, there is a simple relationship between the two functions that characterize the model

(8.2.14).

Theorem 8.2.2. The random variable X#Y has distribution (8.2.14) if and only if

mX#Y =
θ(a+ 1) + 1

θ(a+ 1)− a
(ax+ b) +

(ax+ b)2

θ(a+ 1)− a
hX#Y (x), θ > maximum

{
0,

a

a+ 1

}
.

(8.2.15)

Proof. By direct calculation from (8.2.14), we obtain

hX#Y =
(a+ 1)θ

b

[(
1 + ax

b

)−a+1
a
−1 −

(
1 + ax

b

)− θ(a+1)
a
−1
]

[
θ
(
1 + ax

b

)−a+1
a −

(
1 + ax

b

)− θ(a+1)
a

] (8.2.16)

and

mX#Y = b

[
θ
(
1 + ax

b

)−a+1
a

+1 − (θ(a+ 1)− a)−1
(
1 + ax

b

)− θ(a+1)
a

+1
]

[
θ
(
1 + ax

b

)−a+1
a −

(
1 + ax

b

)− θ(a+1)
a

] . (8.2.17)

From the last two expressions, we get the relation (8.2.15). To prove the ‘only if’ part, we
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note that (8.2.15) is equivalent to,

∫ ∞
x

T̄PH(t)dt = (ax+ b)
θ(a+ 1) + 1

θ(a+ 1)− a
T̄PH(x) +

(ax+ b)2

θ(a+ 1)− a
tPH(x). (8.2.18)

Setting y =
∫∞
x
T̄PH(t)dt, (8.2.18) reduces to the Euler-type differential equation,

y = −(ax+ b)

(
θ(a+ 1) + 1

θ(a+ 1)− a

)
dy

dx
+

(
(ax+ b)2

θ(a+ 1)− a

)
d2y

dx2
. (8.2.19)

Taking ez = ax+ b, dy
dx

= ady
dz
e−z; d2y

dx2
= a2

(
d2y
dz2
− dy

dz

)
e−2z, and substituting this in

(8.2.19), we have the second order homogeneous differential equation,

a2d
2y

dz2
+ (a2 + a(θa+ θ + 1))

dy

dz
+ (θ(a+ 1)− a)y = 0,

which has the auxiliary equation,

m2a2 +m(a2 + a(θa+ θ + 1)) + (θ(a+ 1)− a) = 0,

with solutions m = − 1
a
, −
(
θ(a+1)
a
− 1
)

. Thus,

y = C1(ax+ b)−
1
a + C2(ax+ b)−

θ(a+1)
a

+1,

giving

T̄PH(x) = K1(ax+ b)−
a+1
a +K2(ax+ b)−

θ(a+1)
a ,

for arbitrary constants K1 and K2. The constants are chosen in such a way that tPH(x) is a

density function, which leads to (8.2.18) and this completes the proof. �

Remark 8.2.2. When X has exponential distribution with mean b, the characteristic prop-
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erty reduces to

mX#Y (x) =
(1 + θ)b

θ
+
b2

θ
hX#Y (x).

In this case, the mean residual life is a linear function of the hazard rate and therefore

the points representing the empirical values of mX#Y and hX#Y lies along a straight line,

which is easy to verify.

Another special case of interest in (8.1.1) arises when F (·) is the equilibrium distribution

of G(·), so that f(x) = Ḡ(x)
µY

, where µY is the mean of Y . From (8.1.2),

tX#Y (x) =
xg(x)

µY
,

the length-biased model corresponding to G(·) and hence,

T̄X#Y (x) =
1

µY

[∫ ∞
x

Ḡ(t)dt− xḠ(x)

]
.

We can write the identity connecting hazard rates of X#Y and Y as

hX#Y (x) =
x

mY (x)− x
hY (x),

The random variable Y can be written as the product of Y#X with an independent uni-

form random variable U over [0, 1]. Thus Y is stochastically smaller than Y#X and also

E[X#Y ] = 2E[Y ]. For a detailed discussion of the role of length-biased models in relia-

bility, see Gupta and Kirmani [49]
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8.2.1 Ageing properties

We describe ageing properties of the proportional hazards relevation random variableX#Y

in connection with the ageing behaviour of the baseline random variable X. For a non-

negative random variable X with survival function F̄ (x), hazard rate h(x) and reversed

hazard rate λ(x), we shall consider the following ageing classes,

(i) X has increasing or decreasing hazard rate, denoted by IHR (DHR), if the hazard

rate h(x) is increasing (decreasing) in x.

(ii) X is new better (worse) than used, denoted by NBU (NWU) if F̄ (x + t) ≤ (≥

) F̄ (x) F̄ (t) for all x, t > 0.

(iii) X has increasing (decreasing) hazard rate average, denoted by IHRA (DHRA) if

1
x

∫ x
0
h(t)dt is increasing (decreasing).

(iv) X is new better (worse) than used in hazard rate denoted by NBUHR (NWUHR) if

h(0) ≤ (≥)h(x) for all x > 0 (Loh [86]).

The basic properties and applications of these ageing classes can be seen in Barlow and

Proschan [11], Shaked and Shanthikumar [141] and Nair et al. [105]. From (8.2.11), we

have the identity,

hX#Y (x) = θ hX(x)

(
1− (F̄ (x))θ−1

θ − (F̄ (x))θ−1

)
.

Since,
d

dx

(
1− (F̄ (x))θ−1

θ − (F̄ (x))θ−1

)
=
θ(θ − 1)2(F̄ (x))θ−1

(θ − (F̄ (x))θ−1)2
> 0,
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(
1−(F̄ (x))θ−1

θ−(F̄ (x))θ−1

)
is an increasing function in x for all θ > 0. Thus, when X is IHR then X#Y

is also IHR. The IHR property is preserved for F̄ 6= Ḡ (= F̄ θ). However, the case when X

is DHR gives different options as will be seen subsequently.

Now, we recall the following results from Navarro et al. [112] for the general distorted

distributions (8.2.8) discussed in the context of a coherent system having identical compo-

nents. Let X and S denote the lifetimes of the component and system respectively. Then,

(a) if X is NBU (NWU) and w(u) is submultiplicative (supermultiplicative) on [0,1],

that is w(u v) ≤ (≥)w(u)w(v) holds for all 0 ≤ u, v ≤ 1, then S is NBU (NWU),

(b) if X is IHRA (DHRA) and w(ua) ≥ (≤) (w(u))a holds for all 0 ≤ u, v ≤ 1 and

0 < a < 1, then S is IHRA (DHRA).

Using these results, we establish the following theorem for the model (8.2.5).

Theorem 8.2.3. LetX and Y be two non-negative random variables with distribution func-

tions F (x) and G(x) respectively and X#Y be the relevation of X and Y. Suppose Y is

the PHM of X. Then,

(i) if X is NBU then X#Y is NBU,

and,

(ii) if X is IHRA then X#Y is IHRA.

Proof. For the model (8.2.5), we have X#Y is the distorted random variable of X, with

distortion function,

w(u) =
1

θ − 1
(θu− uθ), u ∈ [0, 1]. (8.2.20)
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We can easily verify that w(u) is submultiplicative and satisfies the condition w(ua) ≥ (≤

)(w(u))a for all 0 ≤ u, v ≤ 1 and 0 < a < 1. Now from (a) and (b), proof for (i) and (ii)

follows. �

Remark 8.2.3. We can present an alternative proof for the above theorem by adopting

the results given in Shanthikumar and Baxter [142]. Let CHX(·) and CHY (·) be the cu-

mulative hazard functions of X and Y respectively. When Y is the PHM of X , we have

hY (x) = θhX(x). Moreover, we get

CHX(x)

CHY (x)
=

∫ x
0
hX(t)dt∫ x

0
hY (t)dt

=
1

θ
. (8.2.21)

Note that if G is NBU and CHX(x)
CHY (x)

is non decreasing then TX#Y (x) is also NBU (Shan-

thikumar and Baxter [142]). Since Y is the PHM of X , from (8.2.21), we have CHX(x)
CHY (x)

is

a constant. Now it is straightforward that if G is NBU then TPH(x) is also NBU. Since

hY (x) = θhX(x), it is clear that X is IHR if and only if Y is IHR. This implies X is NBU

if and only if Y is NBU, from which the result (i) follows. Shanthikumar and Baxter [142]

proved that if G is IHRA and CHX(x)
CHY (x)

is decreasing, then TX#Y (x) is IHRA. Under PHM,

similar to (i) we have G is IHRA if and only if F is IHRA.

Remark 8.2.4. Lai and Xie [78] established that NBU (NWU) implies NBUHR (NWUHR).

Thus the NBUHR (NWUHR) property is preserved under PHRT by Theorem 8.2.3.

8.2.2 Stochastic orders

There are many situations in practice where we need to compare the characteristics of two

distributions. Stochastic orders are used for the comparison of lifetime distributions. In

this section, we provide some important stochastic orders between the random variables

X and X#Y . We shall consider the following stochastic orders. Their basic properties
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and interrelations can be seen in Shaked and Shanthikumar [141] and Barlow and Proschan

[11].

SupposeX and Y are two lifetime random variables with absolutely continuous distribution

functions F (x) and G(x) respectively. Let f(x) and g(x) are the corresponding probability

density functions. Then we have the following;

(i) X is smaller than Y in the usual stochastic order denoted by X ≤st Y if and only if

F̄ (x) ≤ Ḡ(x) for all x.

(ii) X is smaller than Y in hazard rate order, denoted by X ≤hr Y, if and only if Ḡ(x)

F̄ (x)
is

increasing in x.

(iii) X is smaller than Y in the likelihood ratio order, denoted by X ≤lr Y, if and only if

g(x)
f(x)

is increasing in x in the union of their supports.

(iv) X is smaller than Y in the increasing convex order, denoted byX ≤icx Y, if and only

if
∫∞
x
F̄ (t) dt ≤

∫∞
x
Ḡ(t) dt for all x.

(v) X is less than Y in convex order, X ≤
c
Y , if G−1(F (x)) is a convex function.

Let F̄1(x) = w1(F̄ (x)) and F̄2(x) = w2(F̄ (x)), where F̄1(x) and F̄2(x) are the survival

functions obtained by the distortion of F̄ (x) using the distortion functions w1(·) and w2(·)

respectively. Suppose S1 and S2 be the random variables corresponding to F̄1(x) and F̄2(x)

respectively. We now recall the following result from Navarro et al. [112] (Theorem 2.5).

S1 ≤lr (≥lr)S2 if and only if
w′1(u)

w′2(u)
is increasing (decreasing) in u ∈ (0, 1), (8.2.22)

where w′i(u) is the derivative of wi(u), i = 1, 2. To establish different stochastic order
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relations betweenX andX#Y , we take S1 = X#Y and S2 = X,with distortion functions

w1(u) = (θu−uθ)
θ−1

and w2(u) = u respectively.

Theorem 8.2.4. Suppose Y is the PHM of X . Then X ≤lr X#Y.

Proof. Note that,

d

du

(
w′1(u)

w′2(u)

)
=

d

du

((
θ − θuθ−1

)
θ − 1

)
= −θ uθ−2 ≤ 0.

Thus w′1(u)

w′2(u)
is decreasing in u ∈ (0, 1). Now from (8.2.22), we get X ≤lr X#Y. �

Remark 8.2.5. The proof for the above theorem can also be obtained from (8.2.5) by noting

that,
tPH(x)

f(x)
=

θ

θ − 1

(
1− (F̄ (x))θ−1

)
.

Now, for θ > 0 it holds that,

d

du

(
tPH(x)

f(x)

)
= θ(F̄ (x))θ−2f(x) ≥ 0.

This implies X ≤lr X#Y. Moreover, from Shaked and Shanthikumar [141], we have the

following implications,

X ≤lr X#Y =⇒ X ≤hr X#Y =⇒ X ≤st X#Y.

Kochar and Wiens [73] have defined an IHR order by saying that X is more IHR than Y if

X ≤
c
Y . Further, X is more IHRA (NBU) than Y if G−1(F (x)) is star-shaped denoted by

X ≤∗ Y (super-additive denoted by X ≤su Y ). Also, from Nair et al. [105] we have the

following,
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(a) X ≤DMRL Y if mX(x)
mY (x)

is non-decreasing in x,

(b) X ≤NBUE Y if mX(x)
mY (x)

≤ E(X)
E(Y )

for all x,

(c) X ≤NBUHR Y if hX(x)
hY (x)

≥ hX(0)
hY (0)

for all x,

(d) X ≤NBUHRA Y if F−1
Y (FX(x)) ≥ x

(
F−1
Y (FX(x)

)′
x=0

.

Further, it follows that X ≤c Y =⇒ X ≤DMRL Y =⇒ X ≤NBUE Y and X ≤NBU

Y =⇒ X ≤NBUHRA Y . Later Sengupta and Deshpande [139] proved that X ≤
c
Y

if and only if hX(x)
hY (x)

is non-decreasing in x, provided hY (x) 6= 0. The following theorem

establishes various interrelationships among these orderings, in the context of PHRT.

Theorem 8.2.5. Let X and Y be two non-negative random variables and X#Y be the

random variable corresponding to the relevation of X and Y with survival function (8.2.5).

If Y is the PHM of X, then X#Y ≤
c
X .

Proof. From (8.2.11), we have

hX#Y (x)

hX(x)
= θ

(
1− F̄ θ−1(x)

θ − F̄ θ−1(x)

)
.

Differentiating with respect to x, we obtain

d

du

(
hX#Y (x)

hX(x)

)
= θ(θ − 1)f(x)F̄ θ−2(x)

[(
1− F̄ θ−1(x)

)
+
(
θ − F̄ θ−1(x)

)(
θ − F̄ θ−1(x)

)2

]
.

Since
(
1− F̄ θ−1(x)

)
+
(
θ − F̄ θ−1(x)

)
≥ (≤) 0 for θ ≥ (≤) 1, we observe that

d

du

(
hX#Y (x)

hX(x)

)
≥ 0 for all θ > 0.

Thus, hX#Y (x)

hX(x)
is non-decreasing in x and hence X#Y is more IHR than X. �
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The implications, consequence of Theorem 8.2.5, are exhibited in the following diagram;

X#Y ≤cw� X =⇒ X#Y ≤∗w� X =⇒ X#Y ≤suw� X

X#Y ≤DMRL X =⇒ X#Y ≤NBUE X =⇒ X#Y ≤NBUHR X =⇒ X#Y ≤NBUHRA X.

Theorem 8.2.6. Let X1 and X2 be two random variables with survival functions F̄1(x) and

F̄2(x). Suppose Y1 and Y2 are the proportional hazards random variables associated with

X1 and X2 respectively. Then the following properties hold;

(i) If X1 ≤st X2 then X1#Y1 ≤st X2#Y2.

(ii) If X1 ≤hr X2 then X1#Y1 ≤hr X2#Y2.

(iii) If X1 ≤icx X2 then X1#Y1 ≤icx X2#Y2

Proof. The proof of (i) is direct from (8.2.5). To prove (ii), we have

u q′(u)

w(u)
=
θ
(
uθ − u

)
uθ − θu

.

Since d
du

(
u q′(u)
w(u)

)
= − (θ−1)2θuθ

(uθ−θu)
2 ≤ 0 for all θ > 0, from Navarro et al. [112] (Theorem 2.6),

we get X1#Y1 ≤hr X2#Y2. From Theorem 2.6 of Navarro et al. [112], (iii) follows, since

w(u) is concave in (0,1). �

8.2.3 Proportional hazards relevated Weibull distribution (PHRW) and

it’s applications

We now present a new lifetime model for illustrating the usefulness of PHRT in the con-

struction of flexible lifetime models. The hazard rate ofX#Y increases at a faster rate than
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that of X . Hence if the baseline model is DHR, then X#Y may lead to an upside-down

bathtub shaped hazard rate. Thus PHRT models with DHR baseline model provide a means

to construct distributions with non-monotone hazard rates.

Let X be a Weibull random variable with survival function F̄ (x) = e−αx
β
, α > 0, β > 0,

and hazard rate hX(x) = αβxβ−1. From (8.2.5), the survival function of X#Y is obtained

as

T̄PH(x) =
θe−αx

β − e−αθxβ

θ − 1
. (8.2.23)

The distribution (8.2.23) will be referred to as the proportional hazards relevated Weibull

distribution (PHRW). The hazard function, hX#Y has the following expression

hX#Y (x) =
αβθxβ−1

(
e−α(θ−1)xβ − 1

)
e−α(θ−1)xβ − θ

.

Note that hX(x) is always monotonic, IHR when β ≥ 1 and DHR when 0 < β ≤ 1. From

Figure 8.1, we can observe that hX#Y accommodates IHR, DHR and UBT.

We illustrate the utility of the model (8.2.23) with the aid of two real data sets. The first

data consists of the time between failures of secondary reactor pumps, which was reported

in Salman and Prayoto [127]. The model (8.2.23) is applied to this data. We estimate the

parameters using the method of maximum likelihood. The estimates are obtained as

α̂ = 9.631 β̂ = 0.709 and θ̂ = 0.094.

For comparison purposes, we consider some alternative models, such as extended Weibull

(Marshall and Olkin [87]), Weibull, flexible Weibull (Bebbington et al. [14]), reduced ad-

ditive Weibull (Xie and Lai [156], Lai et al. [79]) models. The Kolmogorov-Smirnov (K-S)

test statistics with the associated p-values for the PHRW, extended Weibull, Weibull, flex-
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Figure 8.1: Plots of relevated hazard function (hX#Y (x)) of the Weibull distribution.

ible Weibull and reduced additive Weibull models are presented in Table 8.1. The PHRW

Table 8.1: Kolmogorov-Smirnov statistic and p-values.

Distribution KS statistic p-Value
PHRW 0.101895 0.951183
Extended Weibull 0.105796 0.935241
Weibull 0.118395 0.866694
Flexible Weibull 0.138483 0.719057
Reduced Additive Weibull 0.16295 0.522059

distribution provides a better fit than the other models since it has the smallest K-S statistic

and largest p-value. To check the goodness of fit, we use Q-Q plot, which is given in Figure

8.2. The proposed model (8.2.23) is also useful for modelling statistical data in other con-

texts. To illustrate this, we consider another data reported in Kuş [76]. The data represent
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Figure 8.2: Q-Q plot for data set-1.

the period between successive earthquakes in the last century in North Anatolia fault zone.

The proposed model is applied and the maximum likelihood estimates are obtained as

α̂ = 0.018 β̂ = 0.609 and θ̂ = 4.083.

Kuş [76] showed that exponential-Poisson distribution (EP) provides a good fit for the data

and compared the performance with the Exponential geometric (EG), Weibull and Gamma

models. The K-S statistic with the associated p-values for the PHRW, EP, EG, Weibull and

Gamma models are presented in Table 8.2. The K-S test statistic takes the smallest value

Table 8.2: Kolmogorov-Smirnov statistic and p-values.

Distribution KS statistic p-Value
PHRW 0.0727 0.9985
EP 0.0972 0.9772
Weibull 0.1004 0.9690
Gamma 0.1239 0.8551
EG 0.1839 0.3914

when PHRW model is employed. Thus PHRW distribution provides a better fit than the

other four models. Figure 8.3 presents the Q-Q plot, which also shows the adequacy of
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the model. The ageing properties, stochastic orderings and other reliability characteristics
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Figure 8.3: Q-Q plot for data set-2.

of PHRW distribution can be explained in terms of the corresponding properties of the

Weibull distribution by using the theorems given in Section 8.2.1 and Section 8.2.2.

8.3 Quantile based relevation transform

To introduce the quantile-based relevation transform between X and Y , we denote QX(u)

and QY (u) as the quantile functions corresponding to the distribution functions F (·) and

G(·) respectively. From (8.1.1), by taking x = QX(u), we define quantile-based relevation

transform as

TX#Y (QX(u)) = 1− T̄X#Y (QX(u)) = u− Ḡ(QX(u))

∫ u

0

1

Ḡ(QX(p))
dp

= u− (1−Q−1
Y (QX(u)))

∫ u

0

1

(1−Q−1
Y (QX(p)))

dp. (8.3.1)
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Denote T ∗X#Y (u) = TX#Y (QX(u)) and Q1(u) = Q−1
Y (QX(u)), then (8.3.1) becomes,

T ∗X#Y (u) = u− (1−Q1(u))

∫ u

0

1

(1−Q1(p))
dp. (8.3.2)

From the property 9 of the quantile function given in Section 1.1.1, it follows that if K(x)

is a non-decreasing function of x, then K(Q(u)) is again a quantile function (Gilchrist

[42]). Now, since TX#Y (·) and Q−1
Y (·) are non-decreasing functions, TX#Y (QX(u)) and

Q−1
Y (QX(p)) are the quantile functions of F (T−1(x)) and F (G−1(x)). We call T ∗X#Y (u) as

the relevation quantile function (RQF). Note that, in general, the quantile-based relevation

transform is not symmetric, namely T ∗X#Y (u) 6= T ∗Y#X(u). We can interpret T ∗X#Y (u) as

the probability that the total lifetime is less than or equal to 100u% point of X, given it

exceeds a random time X. From (8.3.1), we have

T ∗X#Y (u) = TX#Y (QX(u))

⇒ QX#Y (T ∗X#Y (u)) = QX(u)

⇒ QX#Y (u) = QX(T ∗
−1

X#Y (u)). (8.3.3)

Thus, we can compute the quantile function of the relevation random variable X#Y from

the relevation quantile function T ∗X#Y (u) using the identity (8.3.3).

Theorem 8.3.1. Let X and Y be two random variables with survival functions F̄ (x) and

Ḡ(x) with quantile functions QX(u) and QY (u) respectively. Then T ∗X#Y (u) ≤ u for all

u ∈ (0, 1).

Proof. Denote T ∗X#Y (u) = u− ξ(u), where

ξ(u) = (1−Q1(u))

∫ u

0

1

(1−Q1(p))
dp ≥ 0 for allu ∈ (0, 1). (8.3.4)
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Since Q1(u) = Q−1
Y (QX(u)) = FY (QX(u)), we have Q1(u) ∈ (0, 1) for all u ∈ (0, 1).

This implies, ξ(u) ≥ 0 for all u ∈ (0, 1). From this, we get T ∗X#Y (u) ≤ u for all u ∈

(0, 1). �

Remark 8.3.1. From Theorem 8.3.1, we have

T ∗X#Y (u) ≤ u for all u ∈ (0, 1)

⇔ TX#Y (QX(u)) ≤ u for all u ∈ (0, 1)

⇔ QX(u) ≤ QX#Y (u) for all u ∈ (0, 1).

Since QX(u) ≤ QX#Y (u) for all u ∈ (0, 1), from Nair et al. [105], we get X ≤st X#Y .

Psarrakos and Di Crescenzo [120] showed that X ≤hr X#Y . From Nair et al. [105],

we have X is smaller than Y in hazard rate order, denoted by X ≤hr Y, if and only if

F̄Y (QX(1−u))
u

is decreasing in u. This implies

1− TX#Y (QX(1− u)

u
=

1− T ∗X#Y (1− u)

u
, is decreasing in u.

In the next theorem, we establish the relation between hazard quantile functions of the

random variable X#Y and X .

Theorem 8.3.2. Let HX#Y (u) and HX(u) be the hazard quantile functions corresponding

to the random variables X#Y and X . Then,

HX#Y (T ∗X#Y (u)) =
1

qX(u)

d

du

(
− log(1− T ∗X#Y (u))

)
, (8.3.5)

or equivalently,

HX#Y (T ∗X#Y (u))

HX(u)
= (1− u)

d

du

(
− log(1− T ∗X#Y (u))

)
. (8.3.6)



Relevation Transforms and their Applications 202

Proof. From (8.3.3), we have, QX#Y (T ∗X#Y (u)) = QX(u). Differentiating both sides with

respect to u, we get

qX#Y (T ∗X#Y (u)) (T ∗X#Y (u))′ = qX(u).

⇒ 1

qX#Y (T ∗X#Y (u)) (T ∗X#Y (u))′
=

1

qX(u)

⇒
HX#Y (T ∗X#Y (u))

(T ∗X#Y (u))′
=

1

(1− T ∗X#Y (u)) qX(u)

⇒ HX#Y (T ∗X#Y (u)) qX(u) =
(T ∗X#Y (u))′

(1− T ∗X#Y (u))
. (8.3.7)

From (8.3.7), we have

HX#Y (T ∗X#Y (u)) =
1

qX(u)

d

du

(
− log(1− T ∗X#Y (u))

)
. (8.3.8)

Since qX(u) = 1
(1−u)HX(u)

, (8.3.6) follows directly from (8.3.8), which completes the proof.

�

Theorem 8.3.3. Suppose X and Y be two random variables with same support in the non-

negative set up and QExp(u) be the quantile function of the unit exponential distribution.

Then,

HX#Y (T ∗X#Y (u)) =
HX(u)

HZ(u)
, (8.3.9)

whereHZ(u) is the hazard quantile function corresponding to the quantile functionQZ(u) =

QExp(T
∗
X#Y (u)).

Proof. Since X and Y have the same support, D, we have, T ∗X#Y (0) = 0 and T ∗X#Y (1) =

1. From Gilchrist [42], we have, ifQ(u) is a quantile function andK(u) is a non-decreasing

function of u satisfying the boundary conditions K(0) = 0 and K(1) = 1, then Q(K(u))
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is again a quantile function of a random variable with the same support. This gives

QZ(u) = QExp(T
∗
X#Y (u)) = − log(1− T ∗X#Y (u)), (8.3.10)

is a quantile function with support (0,∞).

From (8.3.10), we have

HZ(u) =

(
(1− u)

d

du

(
− log(1− T ∗X#Y (u))

))−1

, (8.3.11)

is the hazard quantile function of QZ(u). Now the result (8.3.9) follows from (8.3.6) and

(8.3.11), which completes the proof. �

Example 8.3.1. Suppose X follows uniform distribution with quantile function QX(u) =

θu and Y follows the exponential distribution with quantile function QY (u) = − 1
λ

log(1−

u). Then Q1(u) = Q−1
Y (QX(u)) = 1− exp(−λθu), and hence

T ∗X#Y (u) = u− 1

λθ
(1− exp(−λθu)) . (8.3.12)

The identity (8.3.3) is useful for generating random observations of the relevation random

variable X#Y . Since T ∗X#Y (u) given in (8.3.12) is not directly invertible, we generate

the random sample of X#Y by first carry out the numerical inversion of (8.3.12) and then

using the relation QX#Y (u) = QX(T ∗
−1

X#Y (u)).

Generally, relevation quantile function is not unique. There exist different distribution pairs

with same relevation quantile function. We illustrate this with the following example.

Example 8.3.2. Let X, Y, W andZ be four random variables with quantile functions, re-
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spectively by

QX(u) = − 1

λ1

log(1− u); λ1 > 0, [exponential distribution(λ1)],

QY (u) = − 1

λ2

log(1− u); λ2 > 0, [exponential distribution(λ2)],

QW (u) = (1− u)
− 1
λ1 − 1; λ1 > 0, [Pareto-II distribution(λ1)],

and

QZ(u) = (1− u)
− 1
λ2 − 1; λ2 > 0, [Pareto-II distribution(λ2)].

Now we obtain

Q−1
Y (QX(u)) = Q−1

Z (QW (u)) = 1− (1− u)
λ2
λ1 .

This gives

T ∗X#Y (u) = T ∗W#Z(u) =
λ1

(
(1− u)λ2/λ1 − 1

)
+ uλ2

λ2 − λ1

.

Note thatQ−1
Y (QX(u)) is the quantile function of the rescaled beta distribution and T ∗X#Y (u)

is the linear combination of the quantile functions of the rescaled beta and the uniform dis-

tributions.

Example 8.3.3. Suppose X follows Govindarajalu distribution with quantile function,

QX(u) = σ((β + 1)uβ − βuβ+1) and Y is uniform over the interval (0, 1). In this case,

Q1(u) = βuβ+1 − (β + 1)uβ + 1, then

T ∗X#Y (u) =
(β(u− 1)− 1)

(
βu
β+1

)β
B uβ

β+1
[1− β, 0]

β
+ u.
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8.3.1 Proportional hazards relevation quantile function

When Y is the PHM of X with survival functions as in (8.2.2), then the quantile form of

the transformation given in (8.2.3) is obtained as

T ∗PH(u) = TX#Y ((QX(u))) = u− (1− u)θ
∫ u

0

1

(1− p)θ
dp

=
1− uθ
1− θ

− (1− u)θ

1− θ
, u ∈ (0, 1). (8.3.13)

We call T ∗PH(u) as the proportional hazards relevation quantile function (PHRQF).

When θ = 1,

T ∗PH(u) = TX#X((QX(u))) = u+ (1− u) log(1− u), u ∈ (0, 1). (8.3.14)

Theorem 8.3.4. Let X and Y be two independent random variables. Then Y is the PHM

of X if and only if T ∗PH(u) satisfies the relation,

T ∗PH(u) = QA(u)−QB(u), (8.3.15)

where

(i) QA(u) and QB(u) are the quantile functions of uniform (0, θ
θ−1

) and rescaled beta

(0, 1
θ−1

) respectively, when θ > 1,

and

(ii) QA(u) is rescaled beta (0, 1
1−θ ) and QB(u) is uniform (0, θ

1−θ ), when θ < 1.
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Proof. From (8.3.13), we have

T ∗PH(u) =
θu

θ − 1
− 1

θ − 1

(
1− (1− u)θ

)
.

This can be written as

T ∗PH(u) =


θu
θ−1
− 1

θ−1

(
1− (1− u)θ

)
if θ > 1

1
1−θ

(
1− (1− u)θ

)
− θu

1−θ if θ < 1

which completes the proof for the ‘if’ part of the theorem. Conversely, assume that T ∗PH(u)

has the form (8.3.15), now for θ > 1, from (8.3.2), we have

T ∗PH(u) = u− ϑ(u)

∫ u

0

1

ϑ(p)
dp =

θu

θ − 1
− 1

θ − 1

(
1− (1− u)θ

)
,

where ϑ(u) = 1−Q−1
Y (QX(p)).

This implies

ϑ(u)

∫ u

0

1

ϑ(p)
dp =

((1− u)θ − (1− u))

1− θ
. (8.3.16)

Differentiating both sides with respect to u, we get

ϑ′(u)

∫ u

0

1

ϑ(p)
dp =

θ

1− θ
(1− (1− u)θ−1). (8.3.17)

Divide (8.3.17) by (8.3.16), we obtain

ϑ′(u)

ϑ(u)
=

θ(1− (1− u)θ−1)

(u− 1)(1− (1− u)θ−1)
=
−θ

1− u
,

which implies
d

du
log(ϑ(u)) =

−θ
1− u

. (8.3.18)
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On integration, (8.3.18) reduces to

log(ϑ(u)) = log(1− u)θ.

This gives ϑ(u)) = (1− u)θ. Now from (8.3.2), we obtain

ϑ(u) = 1−Q−1
Y (QX(u)) = (1− u)θ,

which gives

QX(u) = QY (1− (1− u)θ), or equivalently Ḡ(x) = (F̄ (x))θ.

Thus, Y is the PHM of X. Proof for the case 0 < θ < 1 is similar and hence the details are

omitted. �

Remark 8.3.2. From Theorem 8.3.4, we can see that T ∗PH(u) lies below uniform (0, θ
θ−1

)

quantile function when θ > 1 and it lies below rescaled beta (0, 1
1−θ ) quantile function

when θ < 1. We illustrate this for two particular cases of θ such as 0.5 and 2.5 in Figure

8.4.

Since T ∗PH(u) is a unit support quantile function, with an additional scale parameter σ, we

can use T ∗PH(u) for modelling lifetime data sets. Thus, consider the model,

Q∗(u) =


σ
(

1−uθ
1−θ −

(1−u)θ

1−θ

)
if θ 6= 1

σ(u+ (1− u) log(1− u)) if θ = 1.

(8.3.19)
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(a) θ = 2.5 (b) θ = 0.5

Figure 8.4: (a) Uniform (0, θ
θ−1

) with T ∗PH(u), and (b) rescaled beta (0, 1
1−θ ) with T ∗PH(u).

The hazard quantile function has the form

H∗(u) =


1−θ

θσ((1−u)θ+u−1)
if θ 6= 1

(σ(u− 1) log(1− u))−1 if θ = 1.

(8.3.20)

Note that, when θ = 1, q∗(u) = d
du
Q∗(u) = −σ log(1− u), which is the quantile function

of an exponential distribution with mean σ. Thus q∗(u) is non-decreasing when θ = 1.

H∗(u) is bathtub shaped for all choices of the parameters. Change point of H∗(u) is u0 =

1−
(

1
θ

) 1
θ−1 , when θ 6= 1 and for θ = 1, change point u0 = 0.63. Figure 8.5 shows the plots

of H∗(u) for some particular values of the parameters.

We illustrate the practical applicability of the above model with the aid of a real data set

given in Lawless [84]. The data consists of the number of cycles to failure for a group of

60 electrical appliances in a life test. The parameters of the model are estimated using the
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Figure 8.5: Hazard quantile function for different choices of parameters.

method of L-moments. The first and second L-moments are given by

L1 =
θ
(

1
θ+1
− 1

2

)
σ

1− θ
, (8.3.21)

and

L2 =
θ
(

1
θ2+3θ+2

− 1
6

)
σ

1− θ
. (8.3.22)

We equate the first two sample L−moments to corresponding population L-moments to

estimate the parameters. The first two sample L−moments are given by

l1 =

(
1

n

) n∑
i=1

X(i), (8.3.23)

l2 =

(
1

2

)(
n

2

)−1 n∑
i=1

((
i− 1

1

)
−
(
n− i

1

))
X(i), (8.3.24)

a where X(i) is the ith order statistic. For estimating the parameters θ and σ, we equate the

above two sample L−moments to corresponding population L-moments given in (8.3.21)
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and (8.3.22). The parameters are obtained by solving the equations,

lr = Lr; r = 1, 2. (8.3.25)

The estimates of the parameters are obtained as θ̂ = 2.573, σ̂ = 60.437. Figure 8.6 presents

the Q-Q plot, which shows that the proposed model provides a good fit for the data.
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Figure 8.6: Hazard quantile function for different choices of parameters.

8.3.2 Relevation transform with equilibrium distribution

When Y is the equilibrium random variable X , from (6.3.20), we have

QX(u) = QY (ζX(u)) , (8.3.26)

where ζX(u) is the scaled total time on test transform of X. Now in the coming theorem,

we present the relevation quantile function in the context of equilibrium random variables.

Theorem 8.3.5. Let X and Y be two non-negative random variables. Then Y is the equi-
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librium random variable of X if and only if

T ∗X#Y (u) = u− (1− φX(u))

∫ u

0

dp

(1− φX(p))
. (8.3.27)

Proof. Assume Y is the equilibrium random variable of X . From (8.3.1), We have

T (QX(u)) = u− (1−Q−1
Y (QX(u)))

∫ u

0

1

(1−Q−1
Y (QX(p)))

dp. (8.3.28)

Since Y is the equilibrium random variable of X , we have

QX(u) = QY (φX(u)) . (8.3.29)

Now using (8.3.29) in (8.3.28), we get

T ∗X#Y (u) = u−
(
1−Q−1

Y (QY (φX(u)))
) ∫ u

0

1(
1−Q−1

Y (QY (φX(p)))
)dp,

= u− (1− φX(u))

∫ u

0

dp

(1− φX(p))
. (8.3.30)

Conversely, assume (8.3.27) is true. Now from (8.3.2), we have

u− (1−Q1(u))

∫ u

0

1

(1−Q1(p))
dp = u− (1− φX(u))

∫ u

0

dp

(1− φX(p))
.

Taking derivative on both sides with respect u, and simplifying, we get

Q1(u) = φX(u)

⇔ Q−1
Y (QX(u)) = φX(u)

⇔ QX(u) = QY (φX(u)) .

Thus Y is the equilibrium random variable of X, which completes the proof. �
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Corollary 8.3.1. Suppose Y is the equilibrium random variable of X . Then T ∗X#Y (u)

uniquely determines φX(u) through the identity,

φX(u) = 1− exp

(∫ u

0

(T ∗X#Y (p))′

T ∗X#Y (p)− p
dp

)
. (8.3.31)

Proof. From (8.3.27), we have

(1− φX(u))

∫ u

0

dp

(1− φX(p))
= u− T ∗X#Y (u).

Differentiating both sides with respect to u, we get

1− φ′X(u)

∫ u

0

dp

(1− φX(p))
= 1− (T ∗X#Y (u))′

⇔ φ′X(u)

∫ u

0

dp

(1− φX(p))
= (T ∗X#Y (u))′. (8.3.32)

From (8.3.32), we have
∫ u

0
dp

(1−φX(p))
=

u−T ∗X#Y (u)

(1−φX(u))
. Inserting this in (8.3.32), we obtain

φ′X(u)

1− φX(u)
=

(T ∗X#Y (u))′

u− T ∗X#Y (u)
,

or,
d

du
(log(1− φX(u))) =

(T ∗X#Y (u))′

T ∗X#Y (u)− u
,

which gives

φX(u) = 1− exp

(∫ u

0

(T ∗X#Y (p))′

T ∗X#Y (p)− p
dp

)
.

This completes the proof. �

Remark 8.3.3. From Nair et al. [105], it follows that φX(u) uniquely determines the dis-

tribution through the relation,

Q(u) =

∫ u

0

µX φ
′
X(p)

1− p
dp, (8.3.33)
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and consequently T ∗X#Y (u) uniquely determines the baseline distribution.

Example 8.3.4. Let X be distributed as generalized Pareto with quantile function,

QX(u) =
b

a

[
(1− u)−

a
a+1 − 1

]
, b > 0, a > −1. (8.3.34)

Since µX = b, we get

φX(u) =
1

µ

∫ u

0

(1− p)qX(p)dp =
[
1− (1− u)

1
a+1

]
. (8.3.35)

Hence, the equilibrium random variable Y has its quantile function as,QY (u) = QX(φ−1
X (u)).

Thus from (8.3.34) and (8.3.35), we obtain

QY (u) =
b

a

[
(1− u)−a − 1

]
. (8.3.36)

Using (8.3.27), we get

T ∗X#Y (u) =
1

a

(
(a+ 1)

(
1− (1− u)

1
a+1

)
− u
)
. (8.3.37)

From Nair et al. [105], φX(u) and MX(u) are related through the identity,

MX(u) =
1− φX(u)

1− u
. (8.3.38)

Substituting (8.3.38) in (8.3.27),

T ∗X#Y (u) = u− (1− u)MX(u)

∫ u

0

dp

(1− p)MX(p)
. (8.3.39)

Thus MX(u) uniquely determines T ∗X#Y (u), when Y corresponds to the equilibrium dis-
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tribution of X .

Example 8.3.5. SupposeX follows linear mean residual quantile function distribution with

MX(u) = µ+ c u, then QX(u) = −(c+µ) log(1−u)− 2cu, µ > 0, −µ < c < µ (Midhu

et al. [89]). In this case,

T ∗X#Y (u) = u+
(1− u)(cu+ µ) log

(
µ−µu
cu+µ

)
c+ µ

.

In the next theorem, we provide a characterization for the exponential distribution using

T ∗X#Y (u), when Y is the equilibrium random variable of X.

Theorem 8.3.6. Let X be a non-negative random variable and Y be the corresponding

equilibrium random variable. Then X has exponential distribution if and only if

T ∗X#Y (u) = T ∗X#X(u), for allu ∈ (0, 1). (8.3.40)

Proof. AssumeX follows exponential distribution with quantile functionQX(u) = −1
λ

log(1−

u), λ > 0. We get µX = 1
λ

and φX(u) = u. Since, φX(u) = u, from (8.3.26), we have

QX(u) = QY (u). This implies, T ∗X#Y (u) = T ∗X#X(u).

Conversely, we have, T ∗X#Y (u) = T ∗X#X(u) for all u ∈ (0, 1). Now from (8.3.2), we have

T ∗X#Y (u) = u+ (1− u) log(1− u). (8.3.41)

Now using (8.3.31), we have φX(u) = u. Thus from (8.3.33), the baseline quantile function

of X is obtained as QX(u) = −µX log(1 − u), which is exponential. This completes the

proof. �



Relevation Transforms and their Applications 215

8.4 Conclusion

In this chapter, we first presented the proportional hazards relevation transform, which is

useful in the context of lifetime studies. Various properties and characterizations in terms of

reliability measures of PHRT were presented. Stochastic orders between the relevated ran-

dom variable X#Y and the baseline random variable X were developed. We also derived

various ageing concepts of X#Y in connection with the ageing behaviour of X , which

will be useful in reliability studies. We introduced the PHRW distribution and compared

the performance with existing competing alternatives.

We then provided the concept of relevation quantile function which is the quantile version

of the relevation transform. Various properties and applications were discussed. Relevation

quantile function in the context of proportional hazards and equilibrium models were stiud-

ied. The PHRQF model was applied to a real life data. We proved that T ∗X#Y (u) uniquely

determines the distribution of X , when Y is the equilibrium random variable of X.





Chapter 9

Conclusion and Future Study

9.1 Conclusion

The present study discussed the role of quantile functions in modelling and analysis of

lifetime data. The basic reliability concepts using quantile functions and their properties

were presented in Chapter 1. We have also provided a brief review of literature and the

relevance of the present study in Chapter 1.

In Chapters 2, 3, 4 and 5, we have developed some new quantile function models, which are

useful for the analysis of lifetime data sets. Various distributional properties and quantile-

based reliability measures of the proposed models were studied in detail. Estimation of

parameters has been done using the method of L-moments and method of percentiles. The

practical applications of these models were established with the help of real life data sets.

Motivated by the special properties of quantile functions, in Chapter 6 we studied the prop-

erties and applications of the proportional odds model in quantile set up. The proposed

quantile-based approach has several advantages. It provides an alternative methodology

for the analysis of lifetime data. Further, the proposed method develops a new class of

lifetime distributions that do not have tractable distribution function but have simple and

closed form quantile function. It gives new results in reliability analysis which are useful

217
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for the study of ageing phenomena as well as for the comparison of lifetime of systems.

We discussed modelling and analysis of competing risks data using quantile functions in

Chapter 7. The cause specific hazard quantile function was introduced. We provided cer-

tain competing risks models using various functional forms for the cause specific hazard

quantile functions. A non-parametric estimator of the cause specific hazard quantile func-

tion was derived. Asymptotic properties of the estimators were studied. Simulation studies

were carried out to assess the performance of the estimators. Finally, we applied the pro-

posed procedure to two real life data sets.

In Chapter 8, the relevation transform in the context of reliability modelling was discussed.

The proportional hazards relevation transform and its reliability properties were studied.

We introduced a quantile-based definition for the well-known relevation transform and de-

rived reliability characteristics. Quantile-based relevation transform in the context of pro-

portional hazards and equilibrium models were presented. A new quantile function model

which generalizes to various existing models was introduced. The model was applied to a

real life data set.

9.2 Future study

The present study developed new distribution models, which are useful for the analysis

of various types of lifetime data sets. When the physical process of the system is com-

plex, more flexible quantile functions are needed to model the underlying mechanism. As

pointed out in Chapter 1, quantile functions have certain special properties which are not

true in the case of distribution functions. There is a scope for generalizing the models pro-

posed in Chapters 2, 3, 4 and 5 using these special properties of quantile function. The
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work in this direction will be carried out later.

The term competing risks applies in survival studies where a system or an organism is ex-

posed to two or more causes of failure or death, but its eventual failure or death can be

attributed to precisely one of the causes. In Chapter 7, we have introduced the concept

of cause specific hazard quantile functions and derived non-parametric estimators of this

function. In survival studies, it is often interesting to compare various risks. The compar-

ison of various risks can be done by developing non-parametric tests using Ĥj(u), which

will be taken up in future research.

Due to the presence of censoring and truncation in lifetime data sets, we cannot employ the

parametric inference procedures efficiently. In such contexts, non-parametric estimators

are commonly used for inferential problems. To analyse these types of data sets in quantile

set up, we need to derive non-parametric estimators for various quantile-based reliability

measures. This is an area of research work that remains to be explored.

In this thesis, we deal with only univariate lifetime data. The analysis of high dimensional

data sets using quantile functions are yet to be discussed. Quantile-based definitions of

various reliability concepts, ageing properties and stochastic orders in multivariate set up

are the topics yet to be investigated.

The use of explanatory variables or covariates is an important way to represent heterogene-

ity in a population. Regression models are usually employed to analyse the relationship

between lifetime and covariates. Recently quantile regression models are employed for the

analysis of lifetime data. New regression models can be developed using the special prop-

erties of quantile functions, which will be of great importance and works in this direction

will be carried out in our future work.
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