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by

Dhanya P.M

Text Summarization is an area of research in Natural Language Processing.

Extractive summarization is the creation of a concise text of a lengthy document

by selecting the most important sentences. The proposed work creates extractive

summary by modeling text as Intuitionistic Fuzzy Hypergraphs (IFHG). The

IFHG is subjected to morphological operations like dilation and erosion.

Summary is created by designing a morphological filter operator using these

dilation and erosion. Two systems are developed, one which works for English

documents and another for Malayalam documents.

The input text passes through a preprocessing phase, namely stemming, where

the tokens are converted to their root form. A Malayalam lemmatizer is

developed using tree-based method, where the suffix forms a path in the tree and

the replacement forms the leaf. The preprocessed text is subjected to the

clustering phase, where spectral partitioning of the hypergraph is applied to form

clusters. For each cluster, IFHG is formed, upon which the summary filter is

designed. Two types of IFHG modeling is done in the proposed work. In one

method, sentences are modeled as hyperedges and words are modeled as nodes.

In the second method, documents are modeled as hyperedges and keywords are

modeled as nodes. This is a premier work which models text as IFHG and

creates summary using a morphological filter.
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Chapter 1

Introduction

1.1 Motivation and scope of the work

Today, most of the documents available online are very lengthy and they require

much time to fully read and comprehend it. In a world of busy schedule, even

reading newspapers of 20-40 pages, consumes much of the morning time. Here

comes the importance of automatic text summarization in daily life. Text

Summarization is the process of creating a short summary of a lengthy text

without losing core information. When it is automated, it is done by a software

by taking into consideration, the important information in it, its length and

many such aspects. Summarization has been getting extended to several other

areas like image summarization, video summarization etc.

Summarization gives the required and important information in a nutshell.

Moreover summaries save storage space. A cluster is a group of similar items.

Documents when clustered, results in placing similar documents together in one

cluster. Information retrieval from a clustered collection is more efficient than

from a scattered collection of articles. Summarization is useful in the field of

news summarization, summarization of technical reports, weather forecasting,

medical report summarization etc.

1
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1.2 Problem statement

Given a collection of articles, the proposed system groups them in to clusters

based on various domains. For each cluster an extractive summary is created.

Two systems are developed, one which summarizes English documents, the other

which summarizes Malayalam documents. For processing Malayalam documents,

a Malayalam lemmatizer is also developed.

The proposed system accepts text written in English and Malayalam languages.

The text is subjected to preprocessing tasks like removal of punctuation marks,

removal of special characters and removal of stop words. Stop words are words

which do not contribute to the theme of the text. After stop word removal, words

in the text are subjected to lemmatization, where the words are converted to their

root form. A Malayalam lemmatizer is developed which identifies the suffix in the

word and substitutes it with the replacement. This lemmatizer is developed using

two methods namely:

1. Dictionary-based method.

2. Tree-based method.

Once the words in the text are lemmatized, clustering is done in order to put

similar texts in one group. This clustering should be done such that there is more

intra-cluster similarity. Clustering is done in four methods such as the following:

1. Modeling text as a simple graph.

2. Modeling text as a weighted graph.

3. Modeling text as a hypergraph.

4. Modeling text as a weighted hypergraph.

In hypergraph modeling, sentences are modeled as hyperedges and words in the

sentences are modeled as nodes. Weights are assigned to the nodes by taking the

term frequency of the words. Weights of the hyperedges/sentences are calculated

by taking the sum of all node weights in it. The graph/hypergraph is subjected to

spectral partitioning method, by considering the eigen values and eigen vectors of
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the laplacian matrix L = Dv − A, where Dv is a diagonal matrix of node degrees

and A is the adjacency matrix of the graph. The weighted hypergraph method

gives a better result in clustering.

An IFHG, HIF = (Hn, He, (µn, γn), (µe, γe)) is formed for each cluster formed

from the spectral partitioning of the text, where Hn are the nodes, He are the

hyperedges, µn is the membership degree of the node, γn is the non-membership

degree of the node, µe is the membership degree of the hyperedge and γe is the non-

membership degree of the hyperedge. Here nodes are words and hyperedges are

sentences in the text. The pair of degrees (µn, γn) are assigned based on whether

the words belong to the priority set or non-priority set. The pair of degrees (µe, γe)

of the hyperedges/sentences depends on the degree of the nodes/words in them.

Several morphological operations are done on such a text IFHG. Dilation is a

morphological operation applied on IFHG. It is of two types:

1. Dilation w.r.to hyperedges-δe(Xn).

2. Dilation w.r.to nodes-δn(Xe).

Union/intersection of these dilations are done and tested for retrieving the priority

words/sentences in the text. Morphological operations are done by creating a sub-

IFHG X of the parent IFHG HIF . De Morgan’s law with sub-IFHGs is also tested.

Erosion is another morphological operation which is again of two types namely:

1. Erosion w.r.to hyperedges-εe(Xn).

2. Erosion w.r.to nodes-εn(Xe).

Union/intersection of these erosions are tested which retrieves priority words and

sentences from the text. A disjoint graph partitioning algorithm for IFHG is

designed with the help of these dilations and erosions. A composition operator is

applied on these dilations and erosions which results in a filter design. Such a

summary filter applied on a text produces text summary.

We come across different types of text summaries [1] like headlines, outlines,

minutes, previews, synopses, reviews, digests, bulletins, histories etc in our daily

life. So far, researchers all over the world in this field have developed different

methods to create a good concise version of the vast documents. They are

briefed in the following sections.
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1.3 Tensor flow model

The Google Brain Team developed an algorithm which creates a summary by

extracting interesting parts of the text and rephrasing them to create an

abstractive summarization. This tensor flow model is a sequence-to-sequence

model [2] which generates headlines from the input sentences. Many candidate

headlines are formed from which the most suitable one is selected. The method

uses a bidirectional Gated Recurrent Unit(GRU) encoder and a GRU decoder.

Implementation proceeds through several phases like bucketing, attention

mechanism and beam search.

1.4 Term frequency - inverse document

frequency (TF-IDF) method

In this model, documents are represented using the TF-IDF scores of words in

the document. TF is the average number of occurrences of a word per sentence

in a document. IDF value is computed based on the whole document. The

importance of TF-IDF is well understood, and it is referred as a sentence

weighing method [3]. The method of optimizing summarization [4] by first

categorizing the documents on the basis of TF-IDF and then ranking the

sentences using the existing scores to avoid redundant information, has

outperformed other summarization tools. Each document is represented as a

three-dimensional vector where each weight corresponds to one of the three

categories of the document. Each weight is calculated as a combination of

TF-IDF. Sentences are ranked using a score called SumBasic score. SumBasic

score of a sentence calculates the importance of a sentence based on the word

frequency. But in this summarization technique semantic relatedness among the

consecutive sentences is not calculated.

1.5 Clustering and classification

Different documents usually address different topics. They are normally broken

up explicitly or implicitly into sections. If the document collection for which the
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summary is to be produced is of totally different topics, then in order to create a

meaningful summary, document clustering is required. A hybrid clustering

method [5] (partitioning and hierarchical) is proposed to group Arabic

documents into several clusters. This method uses a cluster-based summarization

approach to gather similar texts, as well as a key phrase extraction approach by

an unsupervised machine learning algorithm to identify sentences that include

key phrases and to summarize original text documents. The preprocessing stage

includes four steps namely, tokenization, stop word elimination, stemming text

representation, and term weighting (TF-IDF). Document clustering involves

unsupervised document organization, topic extraction and fast information

retrieval. Clustering is divided into two major types: Hierarchical and K-means.

The first clustering involves two main clustering algorithms, namely, single and

complete-link clustering. The yield of single or complete-link clustering is K

clusters. All noun phrases are extracted from the Arabic text as candidate key

phrases. For each noun phrase, some set of features are extracted for ranking the

candidate key phrase namely, term frequency, first occurrence in text, last

occurrence in text and sentence count. The next step is sentence scoring to

extract important sentences. It is assumed that only those sentences that contain

key phrases are important. Cosine similarity and Jaccard coefficient are used to

find similar sentences in each cluster and finally ROUGE is used to evaluate the

results. The model is seen to have achieved an accuracy of 80% for single

document and 62% for multi-document summarization. In another method,

clustering is first applied to get document clusters. Later Linear Discriminant

Analysis (LDA) method [6] is applied to get the cluster topics, which are given as

input to the map reduce framework. Semantically similar terms are found with

the help of the WordNet Application Programming Interface (API). Later the

performance of the system without considering clustering and semantic similarity

of sentences are found out. A time stamp based approach [7] with Naive

Bayesian Classification is used where the time stamp provides an ordered look of

sentences. Here, a seven stage process is used which includes preprocessing,

selecting related documents, splitting into sentences and words, score calculation

of words and sentences using Bayesian classifier and finally selecting sentences.
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1.6 Neural networks

The neural networks are initially trained to learn the types of sentences that

should be included in the summary. The network is trained with sentences in test

paragraphs which are in the summary as well as not in the summary. This is

done by a human reader. The neural network [8] learns the patterns inherent in

sentences that should be included in the summary and those that should not be

included. In Automated Text Scoring(ATS) using neural networks [9] proposed

for Wikipedia articles, the method has several phases like tokenization, stop word

removal, stemming and synonym checking to assign the same weight to words

having the same meaning. In feature extraction phase, sentences are scored based

on ten features namely relative position of sentence, named entities, similarities

with other sentences, similarity with rest of the document, title relevance, relative

length of sentence, frequency of words, citation and numerical data. These scores

are then fed to a neural network, giving a single output score. Both the input

feature scores and the output score have a range from zero to one. The neural

network produces a single value, signifying the importance of the sentence in the

summary. Results of the system are evaluated using the F1 score which is the

harmonic mean of precision and recall. Summaries created from Microsoft Word

2007 have been used as model summaries. Evaluation indicates that the systems

with only one feature have extreme results while the other systems with all the

features, or all the features except one, have almost the same results. The best

system is the one with only feature which considers citations. The system with

only the feature being the relative length of sentence has the worst results. Systems

with only features being relative position of sentence, title relevance and frequency

of words have good results. A standard feed forward neural network language

model [10] is applied which takes x as input and outputs shortened sentences y

of length N < M , where M is the total number of sentences. Using the model,

it estimates the contextual probability of the next word. Encoders like Bag-of-

word encoder, Attention based encoder and Convolution encoders are used. In an

encoder-decoder Recurrent Neural Network (RNN) [11], it creates an abstractive

summary, traversing through several phases like capturing keywords using feature-

rich encoder, modeling rare/unseen words using switching-generator pointer and

capturing hierarchical document structure with hierarchical attention. In pointer-

generator network [12], the included models are:
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1. Baseline sequence-to-sequence model which attend to relevant words to

generate novel words.

2. Pointer-generator model where for each decoder time step a generation

probability is calculated which weighs the probability of generating words

from vocabulary versus copying words from source text.

3. Coverage mechanism to be used to solve the problem of repetition.

1.7 Latent semantic analysis

Singular Value Decomposition (SVD) is a very powerful mathematical tool that

can find principal orthogonal dimensions of multidimensional data. It is known as

Latent Semantic Analysis (LSA) in text processing because SVD when applied to

document-word matrices will group semantically related documents, even if they

do not share common words. In another method, ATS using text features and

SVD has been discussed. The document is tokenized, stop words are removed

and stemming is performed. The most important sentences are determined using

their TF-IDF weight. The terms-by-sentences matrix obtained is passed on to

SVD matrix decomposition technique [13] where the matrix is decomposed into

three matrices U , S and V . Here U is the matrix of the left singular vectors,

S is the matrix of the singular values and V is the matrix of the right singular

vectors. The kth singular vector in V is taken and the sentence associated with the

singular vector is taken into the summary. The system is evaluated for three levels

of summary. As a result, it was found that the technique was able to produce

machine summarization with significant level of precision and recall particularly

when the summarization level is high. Automatic document compression which is

done using LDA [14], word weighing and clustering algorithm proceeds through

phases like preprocessing, feature extraction, K-means clustering, representation

of documents as random mixtures over latent topics, TF-IDF and calculating

similarity measure. The system is tested on many Indonesian blog articles in

various domains and has shown good results. Email Summarization [15] using LDA

is done by selecting the content for summarization, choosing topic distribution,

generating word probability, Clue Word Summarization(CWS) of document, using

CWS document for distribution matching, generating LDA document and using it

for distribution matching. A project to automate topic modeling from Trademark
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and Domain Agreement [16] between two parties extracts text from pdf copy of

the document using python pdf-miner, clean text, model topics using scikit-learn

module countvectorizer and creates a final visual summary. The document term

matrix is inputted to LDA algorithm for topic modeling. As a result five distinct

topic contexts are isolated. In entity-summarization-LDA [17], an entity e is a

document which is a collection of triples < s, p, o >, where s is the subject, p

is the predicate and o is the object and they are used for constructing Resource

Description Framework(RDF) graph. Sum(e, k) selects the top-k subset of all

predicates and corresponding objects that are most relevant to that entity. Given

w as word, z as the topics and d as the document, the word-topic distribution

p(w/z), and the topic-document distribution p(z/d) are learned in an unsupervised

manner.

1.8 Graph based approach

In a method for Arabic text summarization [18] based on graph theory and

semantic similarity, semantic similarity between sentences is used to calculate

importance of each sentence in the document and the most important sentences

are extracted to generate document summary. The words sharing a single root

are related semantically. Feature selection techniques are applied to improve the

semantic similarity between sentences. A graphical structure of the text will be

helpful to understand the connection between different parts of the text.

Graph-based algorithms use a ranking algorithm to rate different sections of a

text where each section is considered as a node. Edges will represent the lexical

or semantic relations between two nodes. In a graph ranking algorithm, all nodes

are scored and sorted. Values are devoted to each vertex for selection decisions.

Then, sentences with the highest score are selected for the final summary. In this

work, after preprocessing (tokenizing, stop word removal and stemming) feature

extraction is done based on the TF, IDF, sentence position and indicative

expressions. In graph construction phase, nodes represent sentences and an edge

is formed between similar sentences. Weight of the edge represents the degree of

similarity. Cosine-similarity based on TF-IDF is used to calculate the similarity

between sentences. Two sentences are linked if their similarity is greater than a

predefined threshold. The result of this step is a highly connected undirected

weighted graph. This is the input to the next step which calculates a salient
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score for each sentence. Then sentences are ranked through a random walk on

the graph. A salient score for each node is calculated using PageRank algorithm.

Selecting top-ranked sentences may cause redundancy and may also lead to the

ignoring of important sentences. In semantic graph model [19], semantic

information of the sentence is extracted using weighted FrameNet Based

Semantic Graph Model(FSGM). Sentences are treated as weighted vertices, while

the semantic relationships are treated as weighted edges. Similarity of the

sentences are calculated with the help of FrameNet. In triangle-graph based

method [20], it involves steps like preprocessing, graph construction, centrality

calculation, sentence ranking, summary generation and finally evaluation of the

results. In a graph based multi-document summarization [21], for every sentence

(node), a degree centrality score is calculated which is equal to the number of

edges incident on the node. Sentences are ranked using a combined score of

degree centrality score and positional score. The centroid of a word is the

TF-IDF of the word. Centroid of a sentence is the sum of individual word

centroids. Now the summary is generated by using the Maximal Marginal

Relevance (MMR) method that initially selects a sentence with top rank and

selects the next ranked sentence only if it is dissimilar with any of the previously

selected sentences. This process is continued until the required length is reached.

This system with a graph based hybrid similarity measure was evaluated using

ROUGE-1, F-score and achieved better result than in systems with cosine

similarity measure and centroid based measure.

In text summarization using concept graph [22], the BabelNet knowledge base is

presented. It is an abstractive summarization technique for multiple documents.

The proposed system is based on identifying concepts of the BabelNet knowledge

base. By using the concepts and relationships which are identified from

documents, a graph is produced and then similar concepts are extracted from

this graph, so that they are placed in related communities. Sentences with

respect to these concepts and their communities are rated and final summary is

produced. The proposed method consists of five main steps: preprocessing,

identifying and weighing concepts, producing graph, community detection and

selecting sentences. Preprocessing includes the removal of frequent words that

carry little information such as prepositions and pronouns. In the next step, the

extraction and weighting of documents concepts is done. For this the BabelNet

knowledge base is used. Firstly words are mapped to BabelNet concepts and

then by applying the existing disambiguation system in BabelNet, the best
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concepts for each word are selected. After extracting the concepts, TF-IDF is

used for weighting concepts in document. After this step, the set of documents

are changed to a weighted non-repetitive set of concepts. The semantic relations

such as: derive, is-a, part-of, related and gloss-related are identified. An

undirected graph is constructed where nodes are weighted concepts and edges are

relation between the concepts. Further, similar communities in the graph are

identified using Girvan Newman algorithm which is based on the elimination of

edges between communities. At the end of this stage, a group of communities are

created which includes a variable number of unique, similar and weighted

concepts. For rating sentences, each community is weighted according to the

weights of its concepts in that community. The weight of each community is the

sum of the total weight of the concepts in the community. Then a linear function

is used to rate sentences. Weight of each concept in a sentence is considered

when calculating its rate. In this approach, after extracting each summary

sentence, previously selected concepts are ignored and sentence weight is

recalculated. ROUGE is used for evaluation of the results and it shows that the

method outperforms Microsoft, LexRank etc. The use of concepts instead of

words caused better understanding and produced summaries that are closer to

human summaries.

In multi-graph based text summarizer [23], the number of edges in the graph

between two sentences (two nodes) is equal to the number of same words in both

sentences. A word may occur in a sentence more than once. Such occurrence

may be added in a symmetric matrix. The total number of edges is stored in a

symmetric matrix that represents the text being summarized. The row values of

the matrix are summed up to generate a sum vector, which is used to rank the

sentences. This value replaces the TF-IDF value used by researchers over many

years. Sum vector is used to rank the sentences. A cut-off mechanism using the

required threshold is applied to produce the summary. This method is different

from the other methods in that it does not use the cosine equation to find the

similarity between sentences. Preprocessing reduces the size of the matrix by a

considerable amount, which increases the performance and accuracy of the

algorithm. Preprocessing mainly includes removal of articles, prepositions and

meaningless words (like a sentence starting with a bracket or any special

character). Results show that the method is efficient and produced excellent

results as compared to other online summarizers.
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1.9 Genetic algorithm(GA)

In a hybrid-based Arabic single document text summarizer approach [24], GA

that depends on semantic relationship between sentences is presented. The final

summary is generated by selecting the optimal vector of sentences that is produced

by the GA from the graph representation of the document. The cosine measure will

be used as a similarity function between sentences and the graph-based approach

is combined with the statistical method. In this paper, the preprocessing stage

includes four main steps: segmentation and tokenization, eliminating stop-words,

applying Part of Speech Tagging (POS) and finding n-gram for each noun. The

sentences are scored using topic similarity score, location score and length score,

which are together known as informative score. Text is represented as a graph,

with the nodes of the graph representing text elements (i.e., normally words or

sentences), while edges representing the links between those text elements. The

cosine similarity measure is selected on the basis of a term weighting scheme

which is the TF-IDF. The GA search space for the summarization problem is

the set of permutations of the nodes that represent the sentences of the source

document within the compression ratio (summary length). The most natural way

to represent a solution is through a path representation. The fitness function is

formulated for evaluating a given path by combining informative measure and

semantic measure. ROUGE is used to evaluate the summary. The proposed

approach has investigated the effects of using a scoring technique that combines

the informative and the semantic scoring techniques. This solves the problem

of a lack of attention of semantic relationships between the sentences that the

statistical approaches suffer from. The proposed scoring technique also aims to

solve the problem in ignoring the sentence’s structural features such as its length,

position etc., in graph-based approaches. In GA with map-reduce approach [25],

text processing is done to clean the text from stop words and HTML tags. Text

readability and text cohesion features are extracted and they are used to evaluate

the individuals in GA. Every GA iteration works as a single map reduce job. The

final winner sentences are sorted to create the summary.
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1.10 Fuzzy logic based methods

In a fuzzy based summary system [26], sentence grades are calculated from

syntactic parameters and semantic parameters. The degree of importance of a

sentence and correlation is used to find the final summary. The Adaptive

Network Fuzzy Inference System(ANSIF) model [27] takes five feature values of

the document and convert those crisp values to fuzzy values which become

strength of a rule. The output of the rule combined with the input variables are

transferred to the consequent layers. In summarization of legal documents [28],

the membership function in the fuzzifier section translates the inputs to linguistic

variables. Fuzzy rule base derive the linguistic values and defuzzifier converts it

to linguistic values. The output membership function divides sentences in to

unimportant, average and important categories. Membership functions are based

on fuzzy centroid method which uses a triangular membership function.

1.11 Recent text summarization in Indian

languages

A Malayalam summary system with semantic graph creation [29] and its

reduction has shown a precision of 0.466, recall of 0.667 and f-measure of 0.400.

The Malayalam summarizer [30], passes through various phases like

preprocessing, sentence scoring, sentence ranking and finally generates summary

by selecting top k sentences. Another Malayalam summarizer [31] that was

developed, has shown a ROUGE-1 of 0.57 and ROUGE-2 of 0.53 which was

applied on Malayalam news from Mathrubhumi daily. In a Hindi Text

summarizer [32], linguistic rules are used. Sentences are scored based on a

number of parameters and the system is tested for Hindi documents in various

domains. The system showed a recall of 0.69. A Tamil summarizer [33], using

centroid approach and applied on Tamil newspaper, finds group of words which

are statistically important for a document and extracts sentences nearest to the

centroid. In a Gujarati summarizer [34], mainly two features like stem weight

and similarity score are calculated. It uses DHIYA - stemmer, stem weightage

module, LexRank module and anaphora resolver.
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1.12 Conclusion

In this survey, an effort has been made to review the variety of approaches for

automatic text summarization. The significance and the utility of various kinds

of summarization techniques are presented. The study shows that both statistical

methods and semantic-based graph methods are available, and recently graph-

based approaches that consider the relatedness between the sentences are trending

more. The survey shows that research in the field of text summarization has been

an interesting area throughout the past years and that there is scope for further

improvements and extended works. Text summarization can also be combined

with other systems of Human-machine interactions and can lead to systems which

are truly useful for mankind.



Chapter 2

Lemmatization

Since artificial intelligence mainly deals with inducing intelligence in computers

so that they behave more like human beings, programming them to understand

natural languages like English, Hindi, Malayalam etc. is gaining importance. It is

obviously due to the need for artificial intelligence, that sub-domains like Natural

Language Processing(NLP), expert systems etc. are developing. Interaction of

the users with the systems using natural language can be either through natural

typed text or natural speech. Thus, text mining has been an important area of

research under NLP. Text document processing has many sub-domains where their

accuracy increases only if the words are reduced to their root form which we call as

the process of lemmatization. This text mining in any language requires the word

to be converted to the root form. Malayalam is a language which is spoken by over

33 million people in the state of Kerala, India. Malayalam words are subjected

to morphology to a large extent. A particular word in Malayalam can take more

than 100 affixes and same is discussed in section 2.2. Due to the complexity

of the words, lemmatization is very much required and very difficult in the case

of a language like Malayalam. Stemmers are already available in languages like

English, Arabic, Persian etc. Many stemming algorithms have been developed in

various Indian languages also. A stemmer [35] has been developed in Malayalam

which uses a three pass method.

Morphology is a term in NLP which refers to the different forms a particular

word can take. The process of removing the affixes from the word and extracting

the stem is called stemming. The lemmatizer generates the root word from the

given word rather than reducing it to the stem. Lemmatization is very important

14
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in any NLP project since only the root word can contribute to the word count.

This exploratory work presents two methods for extracting the root word from a

Malayalam word. One is clustered indexed dictionary based, which uses a suffix

replacement method by considering around 1135 rules which are identified by

several test cases. The second method creates a tree from the set of rules. The

permanently stored tree is then searched for a path which matches with the

suffix and the corresponding leaf node, which is the replacement, is retrieved.

Testing with online Malayalam documents helped in finding out and adding

several rules to the dictionary. This is a pioneering lemmatizer which uses a tree

based method.

2.1 Literature review

A Spanish version of porter stemmer [36] is used as preprocessing tool for

correctly extracting the text in each document image. This helps in forming the

bag-of-words vector. The performance of various page classifiers are being

compared as for all of which stemming is an important module which affects the

accuracy of the system. A work in Mongolian language [37] has considered stem

and suffixes for word segmentation. Application of predefined pattern to derive

the stem words are also discussed [38]. The presence of affixes results in a large

vocabulary in any language. They have discussed rule based, direct, interlingua,

transfer, statistical, example based, knowledge based and hybrid methods of

translation where stem and affixes play a vital role. The document similarity

calculations like tree based, time series, vector based and different text clustering

methods like hierarchical, partitioning, combination and multilevel XML

document clustering [39] require the word to be stemmed. Stemming, the

removal of affixes, is used as the preprocessing task for the calculation of term

frequency and is used in map reduce framework [40] for text summarization.

Factorizing words into the morphological components [41] requires the stem to

be extracted.

There are some stemmers [42] developed in Asian languages like Arabic, which

removed both the prefix and suffix of the given word. Since prefix words are very

rare in Malayalam, the algorithm we developed has considered suffixes only. The
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Indonesian stemmer [43], is based on finite state automata. A best word

candidate is selected from a candidate list. A detailed survey on stemming [44] is

done referring to many languages around the world like English, Czech,

Bulgarian, Turkish, Greek, German, Dutch, Portuguese, French etc. Some

methods discuss about integrating stemming rules [45] and has considered both

suffixes and prefixes.

The stemmers developed in Indian languages have been surveyed [46]. The

Gujarati stemmer [47] and the one developed in Bengali [48] use a rule based

approach. Stemming has reduced the number of unique words and both under

stemming and over stemming have been considered. The use of the minimum

stem set model of stemming [49] gives an accuracy of 80% - 88%. The system

has been tested for languages like Hindi, Marathi, Malayalam and English. The

method has an input word list and an input suffix list. There are methods which

uses a probabilistic approach [50] using a suffix list. Urdu stemmer [51] and

Hindi stemmer [52] have also been developed. The stemmer developed in

Punjabi [53], stems only nouns and proper names with the help of a dictionary.

One among 19 conditions is applied for an input Punjabi word and the result is

checked against a Punjabi Name list. Word sense disambiguation [54] is very

much benefited from stemming where testing is done with the help of a sense list

created from Hindi WordNet. Word stemming implemented with the help of

hashing [55], has considered nominal inflections, prenominal inflections and verb

inflections. The rule based stemmer in Hindi [56] makes use of a Hindi WordNet.

The Tamil stemmer [57] is clustering stemmed words using K-means to improve

the Information Retrieval(IR) system and another method deals with Tamil

suffixes[58] only.

In a Malayalam stemmer [59], stemming is done using Finite State

Automata(FSA). FSA is modelled using all possible suffixes and have considered

singular nouns, plural nouns and verbs. A method of recursive suffix stripping

[60] is also developed with an accuracy of 83.67%. If a word has three suffixes

then it is processed thrice. The system is a sub-module of a sentence parser and

the accuracy relies on the dictionaries being used. In morphological analyzer

[61], rather than root extraction, morphological features like noun/verb,

number(plural/singular) and tense(past/present/future) are also extracted. In
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the light weight stemmer [62], the authors developed a suffix dictionary and used

the suffix stripping algorithm to get the stem. Here the word after stripping is

taken as the output which is not the actual root word. In another method [63], a

rule list is provided separately for nouns and verbs, give an accuracy of only 60%

and uses the suffix stripping algorithm to get the stem.
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Table 2.1: Comparison of stemmers in Indian languages

AUTHOR, LANGUAGE METHOD TESTING,
YEAR ACCURACY

Prajitha U Malayalam One pass. Dictionary
et. al, 2013 Suffix stripping. of 1000 words with

Used Suffix Dictionary. their
Scanning from inflected

right to left forms
for the longest match. 86%

Prajisha K Malayalam Three pass.
2013 Suffix Stripping. Testing done with

Rule based system. news articles
in the web

Vinod P. M Malayalam Morphological analyzer. Testing with words
et. al, 2012 Recursive suffix taken from Malayalam

stripping. dictionary
Uses lexical dictionary,

monolingual dictionary and
bilingual dictionary.

Jisha P. J Malayalam Input and
et. al, 2011 Morphological analyzer. Output test cases

Uses bilingual dictionary and in Unicode format
root dictionary

Vijay S. R Malayalam Finite state automata
et. al, 2010 Next state is determined Testing done with

using morphotactic rules Online news papers

Jikitsha S Gujarathi Substitution rules Evaluation
Bankim P based on EMILE corpus

2014 92.41%

Das S, Bengali Using hash Tested using FIRE
Mitra. P table containing 2010 data set

2010 suffixes of nouns Recall of 96.27%
verbs. Considers

derivational
inflectional words.

Vasudevan N, Hindi Semi supervised. 84%
Pushpak B, Stemming by weighted

2012 minimum set.

Ramachandran Tamil Iterative suffix 84.79%
V. A, Illango K stripping.

2012

Kasthuri M, Tamil Prefix, question, Testing with docs
Britto R. K conjunction, case from net

2014 plural and imperative
tense suffixes
are stripped.
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Figure 2.1: Morphology of word ’mavu’

Here the word after stripping is taken as the output which is not the actual root

word. Rather than using a three pass algorithm [35] for the lemmatizer, the

proposed method uses a single pass algorithm. The system is used as a sub-module

of a question answering system. A comparison of stemming methods developed in

Indian languages is shown in Table 2.1.

2.2 Morphology in Malayalam

Since Malayalam language is rich in morphology, the lemmatizer developed here

employs a total of 1135 suffix replacement rules. Morphology in Malayalam

language is so complex that a single word can take many different forms.

Difficulty in developing a lemmatizer is due to this language complexity. We can

show this complexity by taking as example a simple word ’mavu’ which means

mango tree in English. Some of the morphological forms of the mentioned word

are shown in Fig. 2.1.

The word ’mavu’ which is a noun can be attached with one preposition as

’mavil’, ’mavulla’, ’mavinte’, ’mavo’, ’mavaya’, ’mavakkiya’, ’mavennal’,

’mavundu’, ’mavilla’, ’mavum’, ’mavanu’, ’mavinu’, ’mavalle’, ’maville’ etc.

The same word can come with two suffixes as in the words ’mavilninnu’,

’mavillengil’, ’mavayathinal’, ’mavayirikkum’, ’mavanullathu’, ’mavupayogichu’,
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’mavileykkanu’, ’mavundengil’, ’mavanithu’, ’mavilekkayi’, ’mavillathayi’,

’mavilottu’, ’mavukalum’, ’mavinoduchernnu’ etc. The word ’mavu’ can come

with three affixes as the cases ’mavilninnukondu’, ’mavukalumayi’,

’mavukalumanu’ etc and also with four affixes as in the cases

’mavundayirunnappol’ and ’mavilekkayirikkum’. Similar inflections happens in

the case of verbs also. For example the verb ’varuka’ can take one affix as in

’vannal’, ’vannilla’, ’vannittu’ etc. The verb can take two affixes as in the case

’vannennal’, ’vannittundu’, ’vannittanu’, ’vannittilla’ etc.

Suffixes in Malayalam

The suffixes used in Malayalam language can be divided in to singular suffixes,

binary suffixes, triple suffixes and suffixes with more than three parts. They can

be detailed as the following:

1. Singular suffixes

• Suffixes which end with ’chillu’ - ’ththil’, ’kal’, ’ral’, ’mbol’, ’ngalil’,

’mengil’, ’ppol’, ’uppol’ etc are examples which belong to this category.

• Suffixes which end with ’chandrakkala’ - Few examples of such category

include ’athu’, ’manu’, ’ru’, ’rodu’, ’rkku’, ’rkkai’, ’arundu’, ’rnnu’,

’mennu’, ’nnathu’, ’ttathu’.

• Suffixes which end with ’u’, ’e’ - ’rathu’, ’chchu’, ’ththe’, ’ththinte’,

’kale’, ’ththode’, ’loode’, ’katte’, ’ve’, ’nude’, ’yalle’ etc belong to this

category.

• Suffixes which end with ’i’ - ’kumayi’, ’koodi’, ’dakki’, ’kkayi’, ’ippoyi’,

’raadi’ etc are few in this category.

• Suffixes which end with ’anunasika’ - ’kum’, ’makaam’, ’ththinum’,

’yolam’, ’kalum’, ’injnjum’.

• Suffixes which end with ’a’, ’o’ - Some of the cases are ’maya’, ’malla’,

’killa’, ’ninna’, ’unna’, ’kulla’, ’mo’, ’yallo’.

2. Binary suffixes

These suffixes consist of two singular suffixes joined together. They can be

further classified as the following:
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• Suffixes which end with ’chillu’ - Some cases include ’yennal’,

’unnappol’, ’rumbol’ etc.

• Suffixes which end with ’chandrakkala’ - ’ththileykku’, ’mbaththekku’,

’yumanu’, ’mbozhanu’, ’ngalkku’, ’yittullathu’, ’ninnanu’,

’kondathinu’, ’mayundu’, ’nullathu’, ’dunnathu’, ’lekkulathu’,

’mayittu’, ’nathinu’, ’nilekkanu’, ’ilekkullathu’, ’yilninnu’, ’lanithu’,

’ththilumundu’.

• Suffixes which end with ’u’, ’e’ - ’rnnathinu’, ’kkappedunnu’, ’kalpole’,

’lanivide’, ’njnjathalle’.

• Suffixes which end with ’i’ - ’ththodukoodi’, ’lumundayi’, ’marundaayi’,

’ththilekkayi’, ’yallathaayi’.

• Suffixes which end with ’a’ - This include ’rumaayirunna’,

’mundaayirunna’, ’ndndakkiya’, ’ndndavunna’, ’ndndakavunna’,

’yanundavuka’, ’naduththulla’, ’kalkkalla’, ’kallulla’, ’mallaththa’.

3. Triple suffixes

These suffixes consist of three suffixes joined together. They can be further

classified in to the following:

• Suffixes which end with ’chillu’ - They include ’ndndakkiyennal’,

’ndndavukayennal’, ’ngngittillengil’, ’markadiyil’, ’markidayil’,

’ndndayirunnappol’.

• Suffixes which end with ’i’ - They include ’mundayirunnathayi’,

’inodoppamayi’.

• Suffixes which end with ’chandrakkala’ - ’kalilonnanu’,

’kalolottallaththathu’, ’kalilottallaththathanu’, ’iyappozhanu’.

• Suffixes which end with ’u’ - They include ’kkumaayirunnu’,

’umundaayirunnu’, ’ththilekkayirunnu’.

4. More than three suffixes

Here more than three suffixes are joined together to form a single suffix.

They include ’lokkeyundakarundengil’, ’kalilottallaththathanennanu’,

’ilekkayirikkum’, ’millaththathukondulla’ etc.
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Figure 2.2: Architecture of dictionary based method

2.3 System architecture

Here, two methods are proposed, Method-1, which is a dictionary based and

Method-2, which is a suffix tree based method. The suffix-replacement dictionary

which is developed in Method-1 is used to create the suffix tree. The two

methods are illustrated in the Fig. 2.2 and Fig. 2.3. The concept of suffix tree

has been slightly modified. In actual definition of suffix tree, except for the root,

every internal node has at least two children and each edge is labeled with a

non-empty substring of the search word S. The tree implemented here does not

pose any such restrictions. Here a node can have empty substring of S. The tree

is being pickled in order to make it a permanent storage. Tree pickling is a

concept in python programming whereby permanent data structures can be

created.

2.4 Methodology

• Dictionary based method

The method proposed here uses a suffix replacement methodology where it

creates a Malayalam dictionary of suffixes and replacements. This method

follows a lookup table approach as in English stemmers, but the difference
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Figure 2.3: Architecture of tree based method

is that, in latter the lookup table is maintained only for some exceptional

cases. Here the suffix is not stripped, but the suffix itself gets replaced with

another.

Eg:- ’avalude’ - ’aval’, ’vannupoyi’ - ’varuka’, ’kazhukum’ - ’kazhukuka’,

’pokanayirikkum’ - ’pokuka’, ’thengilninnanu’ - ’thengu’. The Malayalam

suffix-replacement dictionary is being developed using MySQL. Since the

table is a large one, in order to reduce the searching time, it is clustered

indexed as shown in Fig. 2.4. The table is permanently sorted based on the

alphabetical order of the suffix as we can see in Fig. 2.5. The clustered

index is created based on the first letter of suffixes. The search is first

directed to the index table which consists of the unique first letter of the

suffixes and pointers to the first occurrence of the suffix starting with that

unique first letter in the dictionary. The largest suffix from the word is

found out and is substituted with the replacement in the dictionary.

For a given input word(token), the identification of the suffix starts from the

first letter itself and only that portion of the table consisting of the suffixes

starting with that letter is being searched. This limitation is imposed due

to the presence of the clustered index. If a suffix could not be found in

that area, the algorithm takes the next letter of the token and searches the

table in the limited area containing suffixes starting with that letter. Once

a proper suffix is found, it is replaced with the corresponding replacement.

More suffix replacement pairs are given in Appendix A.
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Figure 2.4: Indexed table

• Tree based method

In this method, a tree is constructed from the set of rules available in the

database. Here, the rules are retrieved group wise, where one group

consists of rules which start with the same first letter. The tree is being

pickled using the pickling technique of python which makes the tree a

permanent structure. This permanent tree is being queried in search of the

suffix. The root node of the tree is the head node without storing any

identifier. The first level children are unique first letter of the suffixes. The

second level nodes are formed by taking the unique prefixes of the suffixes

in the dictionary after removing the first letter. The third level nodes are

constructed by taking the rest of the suffix after removing the prefix from

it. The leaf nodes of the tree are the replacements. The method passes

through two phases where the first phase is dealing with tree creation

which is shown in Figs. 2.6 to 2.8 and tree pickling. The second phase is

dealing with searching the tree for a matching suffix path and replacing the

matched string in the word with the leaf node of that path. The search

starts with the first letter of the word. The letter is compared with the

identifier of the nodes in the first level children. Once a match is found, the

letter is removed from the word and the unique prefixes of the resultant

string is taken. The prefixes are now compared with the second level

children of the identified path. Once a match is found up to the third level,
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Figure 2.5: Dictionary
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Algorithm 1: Dictionary based method

Input: Input document and suffix-replacement dictionary which is clustered
indexed.

Output: lemma.
read the text and tokenize the sentences;
remove stop words;
i = 0;
for each token tk do

ch = tk[i];
repeat

search the clustered index for the entry ch;
if found then

search the portion of the table pointed by the pointer for the suffix
starting with ch;

if found then
retrieve the replacement from the table corresponding to that
suffix;

replace the suffix with the replacement;
display the lemma and exit from loop;

else
i = i + 1;

end

else
continue;

end

until i < n;
if i == n then

display the token unchanged
end

the leaf node is taken as the replacement of the suffix. If at any level there

is a mismatch, we do not backtrack to the previous level, but advance the

pointer in the word to the second letter and do the above process. The

backtracking is avoided by the careful selection of prefixes in the second

level node formation. All the prefixes selected are unique and this reduce

the chance of backtracking to nil. Execution times of both tree based

method and dictionary based method is calculated for 100 Malayalam

words from online documents and is shown in the Fig. 2.17. Tree based

method which has a time complexity of O(n2) shows an average execution

time of 0.00073s and the dictionary based method shows an average

execution time of 0.0084s. Tree has reduced the searching time very much

since we need to search only a portion of the tree.
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Figure 2.6: Step1: Lemmatization

2.5 N-gram rules

N-gram rules are formed by considering more number of letters to the left of actual

suffix.

• Bi-gram rules

As in Fig. 2.1, we can see that, ’thinu’ can’t be taken as a suffix, as it can

come with many other affixes and can create specific rules. It can be

converted to a bi-gram rule by considering one more letter on the left side

and the same is shown in the entries one and two in Fig. 2.11. ’thinu’

along with the letter ’na’ and ’nja’ form two different suffixes ’nathinu’

and ’njathinu’ and get replaced with two different replacements ’zhuka’

and ’yuka’. Similarly the ’ttathinu’, ’yathinu’, ’thathinu’ are also bi-gram

suffixes which are formed by considering one more letter(’tta’, ’ya’, ’tha’

respectively) on the left side of ’thinu’. They get converted to the

replacements like ’kkuka’, ’vuka’, ’um’ respectively.

• Tri-gram rules

Tri-gram rules are formed by considering two more letters to the left of the
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Figure 2.7: Step2: Lemmatization

Figure 2.8: Step3: Lemmatization
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Algorithm 2: Tree creation

Input: Rules from the database.
Output: Tree.
read the rules of the form S −R group wise from the suffix replacement
dictionary;
SFi = unique first letter of suffixes;
where i ranges from 1 to n and n is the number of unique first letter;
create root node Rn;
create first level child nodes of the tree with SFi;
for each group i do take the suffixes Sj where j ranges from 1 to m;
and m is the no of suffixes in a group (S −R)i;
RSj = Sj - SFi;
PRk = Unique prefixes of RSj;
where k ranges from 1 to p and p is the no of unique prefixes in that group ;
create second level child nodes with PRk;
RPR = RSj - PRk;
create third level child nodes with RPR;
create leaf nodes Rl which corresponds to the replacement in S −R rule, where l
ranges from 1 to r and r is the no of replacements ;

Figure 2.9: Suffixes which end with ’anunasika’
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Algorithm 3: Tree search(tree,word)

Input: Word to be searched.
Output: lemma.
c = first letter of Wi where Wi is the ith word of the document;
children = level1 nodes of the tree;
for each child in children do

compare child.identifier with c;
if not match then

break;
else

nextnode = child;
CWi = Wi - c;
children = childnodes of nextnode;
find prefixes of CWi ;
for child in children do

compare prefixes with child.identifier;
if not match then

break;
else

nextnode = child;
RWi = CWi - child.identifier;
children = childnodes of nextnode;
for child in children do

compare RWi with child.identifier;
if not match then

call Tree search(tree, CWi)
else

return leaf node
end

end

end

end

end

end

actual suffix word. The entries 3, 4, 6, 8 and 11 in Fig. 2.11 are examples of

such tri-gram rules. As sample rule we can take ’ttiyathinu’ - ’ttuka’ where

two letters ’tti’ and ’ya’ to the left of ’thinu’ is also considered for creating

the rule. The third entry in Fig. 2.9 ’varolam’ - ’r’ is also an example of

tri-gram rule where the suffix is formed by adding two letters ’va’ and ’r’

along with the actual suffix ’olam’. All the entries in Fig. 2.10 and Fig. 2.11

are examples of n-gram rules where more than 3 letters to the left of actual

suffix is considered for the creation of the L.H.S of the rules.
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Figure 2.10: Suffixes which end with ’chandrakkala’

Figure 2.11: Suffixes which ends with ’aanu’

2.6 Comparison with existing methods

Suffix tree method is the one used in human genome project, where a tree of

suffixes is created in which every node has a single letter of the substring to be

searched, but here the nodes in level two and level three can have more than a

single letter as the node identifier. The node in level one has only single letter as

the node identifier, which in this case is the starting letter of the suffix. As

mentioned earlier, the tree created in the proposed method avoids backtracking

with a careful selection of prefixes. Initially common prefix with maximum

length is found out and the words with these prefixes are removed from the list.

From the remaining list, again common prefix with maximum length is found

out. This process continues until there are no common prefixes. The stemmer

lalitha [62] has mentioned about the suffix ’yolam’, the present method has a

related similar set which consists of the rules given in Fig. 2.9. The stemmer

lalitha has given the suffix ’kalodullathu’ and few similar suffixes identified by

the present lemmatizer are given in Fig. 2.10. While the lalitha stemmer has

implemented the suffix, ’kalilottallathathanennanu’ the method here has

identified some related rules as given in Fig. 2.11. Stemmer lalitha uses a suffix

dictionary and the method here, uses a suffix-replacement dictionary which is

permanently alphabetically sorted and clustered indexed, followed by a tree
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Figure 2.12: Rules

created out of it.

The Malayalam stemmer [62] searches for the suffix from right to left and

considers only stemming where word ’angangal’ get converted to ’anga’, but our

method searches from left to right and generates the output ’anagam’ which is

lemma, the real meaningful word. The suffixes identified in the words ’odunnu’,

’odum’, ’odumbhol’, ’odarundu’, ’odan’, ’odiyappol’, ’odippoyi’, ’odimari’,

’odivannu’, ’odikkondu’, ’odikkondirunnu’ etc get substituted with the

replacement ’duka’ and result in the word ’oduka’ which is the correct lemma.

But most of the Malayalam stemmers give the output ’odu’ which is only the

stem.

The morphological analyzer and generator for Malayalam-Tamil translation [61]

converts the input word ’varum’ to the output ’varu’, but my method gives the

correct output ’varuka’. Another morphological analyzer which is based on a

hybrid approach [60] gives the output ’odu’ for the input word

’odikkondirikkukayayirunnu’, but our method gives the output ’oduka’ which is

the correct meaningful word. More comparisons are given in Table 2.2. This

table shows nine separate categories in which VRIKSH lemmatizer gives a better

result when compared with Indic stemmer. The cases include examples from

bi-gram and tri-gram rules.
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Table 2.2: Comparison of special cases with Indic stemmer

Cases Results of VRIKSH lemmatizer

Case 1 The rule ’rum’ - ’r’ in online stemmer [63], stems the words ’avarum’ - ’avar’,
’palarum’ - ’palar’ correctly but stems the words wrongly as ’varum’ - ’var’,

’theerum’ - ’theer’, ’chaarum’ - ’chaar’ , ’tharum’ - ’thar’. The results
correctly obtained in the new method and the addition of the extra rules

is shown in Fig. 2.12. This will take the largest matching suffix and
substitute with its replacement.

Case 2 Online stemmer has given only the rule ’thilekku’ - ’um’,
but the new lemmatizer has considered additional rules as in Fig. 2.13.

Case 3 While the Indic stemmer has considered only the rule
’mundayirunnathayi’ - ’um’+ ’undu’, the new method has identified

many additional rules as shown in Fig. 2.14.

Case 4 Many stemmers developed so far generalize the rules which
lead to many stemming errors. For eg:- ’akaam’ ’um’, but is true

only for certain words like ’pakamakaam’ ’pakam’. We can see that
the rules fail in the case of the words like ’avaralakaam’,

’mazhayakaam’, ’avalakaam’, ’vayasakaam’ etc. Some of the new suffixes
identified by this method to sort out this issue are given in Fig. 2.15.

Case 5 Let us consider some words like ’veenathinu’, ’marinjathinu’,
’thottathinu’, ’pettathinu’, ’kattathinu’, ’njettiyathinu’,

’poyathinu’, ’pottiyathinu’, ’charithrathinu’, ’ponnathinu’.
A generalized rule can’t be used here as they get converted to

their root form in different ways. The solution is given in Fig. 2.16.
The fourth, eighth, last two entries in Fig. 2.12 and last four entries

in Fig. 2.13 are exceptions where the suffix and replacement is the entire word.

Case 6 The rules ’nanu’ = ’n’ + ’anu’, ’nalla’ = ’n’ + ’alla’, ’nilla’ = ’n’ + ’illa’
are some of the rules in Indic stemmer which again creates the stop word ’alla’,

which need to be removed again.The present method modified the rules as
’nanu’ - ’n’, ’nalla’ - ’n’, ’nilla’ ’n’, where by it eliminates the creation

of stop words. Similar is the case with the ’lanu’ = ’l’ + ’anu’, ’lalla’ = ’l’ + ’alla’,
’lilla’ = ’l’ + ’illa’. Since the above rules create stop words ’anu’,
’alla’, ’illa’, they are modified as ’lanu’ ’l’, ’lalla’ - ’l’, ’lilla’ - ’l’.

Case 7 The rules ’ykanayi’ = ’ykan’ + ’avuka’ is actually creating a word which
need to be stemmed again, so we have modified the replacement

as ’ykuka’ and the rule ’kanayi’ = ’kan’ + ’avuka’ is also modified as the
’kanayi’ ’kuka’ which gives the real meaningful lemma.

Case 8 Unwanted stop words are again being created by the rules mentioned
in online stemmer which can be seen in the following ones ’yaaniva’ = ’anu’ + ’iva’,

’yullava’ = ’ulla’ + ’ava’, ’yullathu’ = ’ulla’ + ’athu’, ’yallo’ = none + ’allo’.
The proposed method has created new rules which replaces all these rules

with null as R.H.S .

Case 9 The Indic stemmer has applied stemming rules
separately for noun/verb. He has given the rule ’rilla’ = ’r’ + ’illa’.
This is true only for nouns i.e., ’avarilla’ = ’avar’ + ’illa’. In case

of verb ’kavarilla’, the stemmed output should be ’kavaruka’ + ’illa’.
The new method takes in to consideration a lot of such stemming errors.

Similarly the Indic stemmer has given the rules ’nil’ ’n’, ’ril’ - ’r’,
’yil’- null, ’lil’ - ’l’, but the new method has considered a lot of relevant

rules like ’kil’ - ’k’, ’ngil’ - ’ng’, ’chil’ - ’ch’, ’dil’ - ’d’, ’nnil’ ’nn’,
’thil’ - ’th’ and specifically ’mil’ - ’m’ Eg:- ’assamil’ - ’assam’ which is

not addressed in Indic stemmer.
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Figure 2.13: Suffixes which end with ’leykku’

Figure 2.14: Suffixes which end with ’ndaayirunnathaayi’

2.7 Data set

Online Malayalam documents from various domains are considered for testing the

performance of the system developed. The documents selected are of varying

sizes as shown in Table 2.4. The results obtained from the Vriksh lemmatizer

and the target system is being manually checked by Malayalam speaking natives.

Repeated study of the Malayalam documents revealed that, only 50% of the words

come with suffixes and so need to be lemmatized. Out of that, majority of the

words end with ’chandrakkala’. The words which end with ’anunasika’ are less
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Figure 2.15: List of suffixes

Figure 2.16: Lemma
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Table 2.3: Distribution of words in Malayalam documents

Malayalam word categories Average
distribution

of words

Words to be lemmatized 50% of N

Words ending with ’chandrakkala’ 30% of L

Words ending with ’aekaaram’ 20% of L

Words ending with ’akaaram’ 20% of L

Words ending with ’ikaaram’ 12% of L

Words ending with ’ukaaram’ 6% of L

Words ending with ’chillu’ 6% of L

Words ending with ’anunasika’ 6% of L

compared to the total number of words to be stemmed. Statistics of distribution of

various category of words are shown in the Table 2.3. Here N is the total number

of words in the document and L is the total number of words to be lemmatized.

2.8 Performance evaluation

Comparison with other Malayalam stemmers can be done by considering the

measures like precision, recall and accuracy. Here true positives, false positives,

true negatives and false negatives are defined as follows.

tp = no of words correctly lemmatized (2.1)

fp = no of words mistakenly lemmatized (2.2)

tn = no of words correctly not lemmatized (2.3)

fn = no of words mistakenly not lemmatized (2.4)

For comparison online Malayalam documents were taken as the data set.

Altogether documents of varying lengths are considered. Here tp + tn forms the

correct result and fp + fn forms the incorrect result. The results obtained can be

tabulated as in Table 2.4. The documents are tested with dictionary based, tree

based and Indic stemmer. The dictionary based and tree based gives the same

result as the second is developed from the first. The difference lie in the

execution time which is shown in Fig. 2.17. Testing was done on a system with

memory - 1.9 Gb, Processor - Intel Core 2 Duo CPU T6570@2.10 Ghz x 2, OS

type 32 bit Ubuntu 11.10. Accuracy, precision, recall and F1 score measures are
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Table 2.4: Comparison of correct results with Indic stemmer

Vriksh stemmer Indic stemmer

Word count Correct % Correct %
in dataset words words

500 475 95 241 48

1000 821 82 563 56

2000 1706 85 782 39

2500 2025 81 1725 69

3000 2582 86 2040 68

5000 4102 82 3550 71

7500 6154 82 4651 63

10000 8608 86 4659 63

15000 14793 98 6301 68

20000 17609 88 12000 60

Table 2.5: Result analysis

Vriksh stemmer Indic stemmer

Data set Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score
word count

500 0.95 0.96 0.98 0.97 0.48 0.68 0.61 0.64

1000 0.82 0.78 0.94 0.85 0.56 0.43 0.47 0.45

2000 0.85 0.90 0.77 0.83 0.39 0.48 0.26 0.34

2500 0.81 0.75 0.80 0.77 0.69 0.88 0.44 0.59

3000 0.86 0.88 0.79 0.83 0.68 0.80 0.42 0.55

5000 0.82 0.85 0.87 0.86 0.71 0.71 0.52 0.59

7500 0.82 0.93 0.88 0.90 0.63 0.87 0.58 0.70

10000 0.86 0.79 0.98 0.86 0.63 0.78 0.61 0.68

15000 0.98 0.98 0.98 0.98 0.68 0.77 0.61 0.68

20000 0.88 0.84 0.98 0.90 0.60 0.77 0.40 0.53

calculated and tabulated in Table 2.5. There are some words which gave

incorrect results in the proposed method. The addition of rule for correcting

those words may result in the incorrect result of other words. So such words can

be considered as the exceptional cases and should be dealt separately. The only

solution is to consider the entire word as the suffix and the expected lemma as

the replacement. Some of the examples are ’doore’ - ’door’, ’mylilere’ - ’myliler’.

Here the false positives and false negatives show the incorrect results which are

given by both the methods.
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Figure 2.17: Comparison of execution time

2.9 Conclusion

There has been a lot of work in Indian languages for developing stemmers,

taggers, translators etc. These types of applications help the people to

communicate and work in their own mother tongue rather than depending on

other languages. Nowadays, lot of software applications in native languages are

available as mobile apps. There lies one importance of this work. The

implementation of the tree based method makes the retrieval faster. Both the

positive and negative aspects of the present method are discussed. There is still

room for improvement and the accuracy can be increased by adding more and

more rules. Moreover, the number of nodes can be reduced by making the

method graph based. On an average our method has shown an accuracy of 87%.

Since Indic stemmer is the only link available online, the performance could be

directly compared with it alone.



Chapter 3

Clustering

Documents have been represented using graphs for many applications like

document clustering, document summarization etc. They have also been

modeled using the vector space for various text processing activities. The

purpose of this work is to model text using hypergraph and apply the

morphological operators on hypergraph created from the underlying text to get

text clusters. The document is considered as a graph and partitioning is applied

which finally results in clusters. Here document is modeled as a hypergraph and

two methods for text clustering are discussed. The first method uses simple

hypergraph and the second method uses a weighted hypergraph. This work also

discusses on how to model multiple documents as a single hypergraph. The

method can be extended for multi-document clustering also.

3.1 Introduction

Hypergraph [88] H = (V,E) as shown in Fig 3.1(a), is a graph in which every

edge is associated with many nodes as opposed to exactly two nodes in the case

of a normal graph. Because of this, edges in a hypergraph are called hyperedges.

Here V is the set of nodes and E is the set of hyperedges. |V | is the order of the

hypergraph and |E| is the size of the hypergraph. The number of nodes with

which a hyperedge is associated is called the cardinality of the hyperedge. If the

cardinality of all the hyperedges of a hypergraph is k, then it is called a

k−uniform hypergraph. The same is shown in Fig. 3.1(b). The number of

hyperedges with which a node is associated is called the degree of the node. If all

39
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Figure 3.1: Hypergraph

the nodes in a hypergraph are having the degree d, then such a hypergraph is

called d−regular hypergraph. Document clustering has been widely used in

many information retrieval systems [64]. Clustering helps in finding the nearest

neighbour of a document. They are used in search engines in response to a user’s

query. They also help in creating a hierarchical cluster of documents. In a

hypergraph modelling [65] for documents, the nodes are the documents and

hyperedges are the authors. Based on the authors, the documents are being

grouped. But in the present method, while converting to the area of text, a

hyperedge is a sentence and nodes are the unique words in that sentence. The

number of hyperedges in this graph will be the number of sentences considered

for clustering. Just as a sentence can have many words in it, a hyperedge is

having many nodes in it. While modeling multiple documents, a hyperedge is a

document itself and the nodes in it are the unique words in that document. The

number of hyperedges will be same as the number of documents considered for

clustering. This is the pioneer work which uses the concept of hypergraph in text

clustering as well as document clustering. Let us consider the input text given

below:



Text Summarization Using IFHG 41

Figure 3.2: Text modeled as hypergraph

”The method proposed here uses a suffix replacement methodology where it

creates a Malayalam dictionary of suffixes and replacements. The Malayalam

suffix replacement dictionary is being developed using MySQL. In this method

tree is being constructed from a set of rules available in the database. The tree of

rules is being pickled using the pickling technique of python which makes tree a

permanent structure.”

Modeling of the above text as hypergraph is shown in Fig. 3.2. The main aim

here is to model text using hypergraphs, partition the hypergraph and create

text clusters. Outline of the remaining sections of this chapter is as follows:

Section 3.2 presents a detailed literature review on the graphical methods, non

graphical methods and parallel algorithms in text clustering. Section 3.3 creates

a mathematical framework for the text hypergraph and the text weighted

hypergraph. Section 3.4 introduces various mathematical operations on the

hypergraph and the weighted hypergraph. Hypergraph morphology is discussed

in section 3.5, the proposed methodology is discussed in section 3.6, its
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implementation, data set and the result analysis in section 3.7. Section 3.8 offers

some idea on the future work.

3.2 Literature survey

This section gives an overview of various methods currently used in the field of

text clustering. The text clustering algorithms are divided in to graphical,

non-graphical methods and their extensions in parallelism. The graphical

methods used are dependency graph based, document graph based, K-NN graph

based, co-occurrence graph based, semantic graph based and graphical network

of documents. The non graphical methods include K-means, K-medoid, density

based, hierarchical methods etc.

• Non graphical methods

In a method using association [66], the authors find correlation between the

terms using internal correlation measures like association between the

terms, normalized association between the terms, co-variance and pearson

correlation coefficients. Finally these are applied in K-means algorithm to

improve the performance. Word sense disambiguation is done using

WordNet in [67] and the theme of the text is represented using lexical

chains. Only core semantic terms are considered to reduce dimensionality

of feature set. In another paper [68], the raw input text is subjected to

many operations like wide one dimensional convolution, folding, dynamic

K-max pooling etc. The main problem with many algorithms are that,

they cluster together only if there are common terms. They won’t cluster

based on concepts. In order to solve this problem, along with document

term matrix, document concept matrix [69] is also created with the help of

Wikipedia and then clustering is done. A hierarchy of clusters [70] is

created using frequent item sets. The method spans through several phases

like tree construction, pruning, sibling merging etc. Sibling merging is done

by finding inter cluster similarity. A hierarchical clustering method [71] is

also discussed. Birch [72] is a bottom up method of clustering. When

applied to the document, the clustering feature(CF) is created from the

vector representation of the document and the CF tree is created by
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storing the features incrementally. The branching factor is decided and tree

nodes are split accordingly. Density based methods like DBSCAN,

CHAMELEON [73] are being discussed, which mainly looks for the density

of the key words occurring in the short text. They accumulate neighbours

in a dense region and form clusters.

• Graph oriented methods

The importance of fidel vector in graph partitioning is well demonstrated

and is used to decompose it in to non-overlapping neighbourhoods [74].

Uniform hypergraph partitioning is applied in geometric grouping [75]. A

detailed study on eigen values, eigen vectors and eigen spaces [76] are also

made. Text can be modelled using a bipartite graph [77] and it can be

subjected to clustering. A detailed survey [78] on document

representations, text classification, clustering and implementations is

available. The method which represents sentences and documents as

dependency graph [79] shows how words in it are related to each other.

Every word in a sentence will be related to the sentence head. After

construction of the graph several operations like merging, union etc. of

edges are performed which would improve the result of clustering.

Dependency graph for the entire text can be created. Similarity of the

graphs are found out and K-means clustering is applied. A document

graph is constructed using WordNet noun taxonomy [80] where graphs

with similar subgraphs are clustered together. Always similar subgraphs

reflect similar sense. They are mined using apriori algorithm. Firstly, the

method finds 1-edge subgraphs, then 2-edge subgraphs, K-edge subgraphs

and so on. Finally hierarchical clustering algorithm is applied to find the

similar subgraphs. In another method, weighted K-NN graph [81] is

constructed by assigning each node with K random neighbours with the

help of similarity matrix created. In the reduce phase, top-K similar nodes

are selected. Edges between the vertices are weighted, where the weight

shows the similarity. Edge pruning is done where those below a threshold

weight are deleted. In co-occurrence graph based method, the feature

terms in the document will be modeled as vertices and the edges represents

the co-occurrence of the terms [82] in the same sentence/ paragraph

/window of size n. Graphs are subjected to various operations like graph

union, subgraph calculation etc. Similar subgraphs are found out and
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clustering is done. A network of documents [83] are created with

documents as vertices, edges represent similarity between the documents.

Further cluster centroids are calculated with the centrality values where

the K-means clustering is later applied.

• Parallel algorithms

A parallel k-means algorithm [84] has been proposed where neighbour

matrix is created and it includes parallelism by including more processors

in computing. The initial centroids are updated. The method finally shows

how speed in clustering is improved by increasing the number of processors

used. A parallel method with map-reduce [85] is implemented where it

shows a good scalability and works well on large data sets. In hierarchical

agglomerative clustering [86] made parallel, there is increase in the speed

and quality of clustering. For parallel document processing [87], anchors,

pivots, hierarchy of anchors and sorting are defined on documents.

3.3 Mathematical framework for text

hypergraph

Here a text is modeled using a hypergraph and a weighted hypergraph. A sample

hypergraph created is shown in the Fig. 3.3, where there are 27 nodes and 3

hyperedges. The second hyperedge is overlapping on the first hyperedge as the

nodes 3 and 11 are repeated in second hyperedge also. The third hyperedge is

not overlapping on the other hyperedges. While partitioning using the spectral

partition method, we should get the first two edges in one partition and the third

edge in the second partition. So let us describe a mathematical frame work for

this hypergraph.

Let τ denote the text to be clustered. Let (Hτ , S, ξ, υ) denote the hypergraph

structure corresponding to the text τ where

Hτ ⇒ the hypergraph corresponding to the text τ ,

ξ ⇒ the edge set in Hτ which represents the sentences S in the text τ and

υ ⇒ the node set in the Hτ which represents the unique words in the text τ .

The Edge set ξ can be partitioned in to disjoint equivalence classes. Equivalence

classes generate unique partitions of the given text τ .
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Figure 3.3: A sample hypergraph created

The same is shown in Fig. 3.3 where the hyperedge set = [[1], [2], [3]] and the

node set consists of nodes [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] being spanned across three hyperedges.

Let (Hwτ, S,W, ξ, υ) denote a weighted hypergraph structure corresponding to the

text τ where Hwτ ⇒ the weighted hypergraph corresponding to the text τ ,

ξ ⇒ the edge set in Hwτ which represents the sentences S in the text τ ,

υ ⇒ the node set in Hwτ which represents the unique words in the text τ and

W ⇒ the term frequency of the words in the document. The Edge set ξ can be

partitioned in to disjoint equivalence classes. These equivalence classes generate

unique partitions of the given text τ .

Lemma 3.1

The intersections of the partitions Pi of the hypergraph Hτ gives an empty set.

i.e., ∀i
⋂
Pi = φ

Proof

Let τ denote the text under consideration containing different topics which are

to be partitioned. Let Hτ be the hypergraph created from the text with vertex
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Figure 3.4: Partitions in hypergraph

set υ which represents the set of words and edge set ξ which represents the set

of sentences. Let Pi;1≤i≤n be the partition created corresponding to the edge set

ξi;1≤i≤n. With respect to text τ , an edge set ξi is taken as the set of all sentences

related to a particular topic tpi;1≤i≤n.

Therefore

ξi ∩ ξj = φ (3.1)

So also the corresponding partition Pi represents the category of text related to a

particular topic tpi . Hence Pi contains tpi which is distinct from Pj which contains

tpj . i.e., Pi and Pj does not have any common sentences. Since each Pi is disjoint,

it implies

Pi ∩ Pj = φ (3.2)

Therefore

∀i;1≤i≤n ∩ Pi = φ (3.3)

E.q(3.3) is implied from E.q(3.1) and E.q(3.2).
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Illustration

Consider the hypergraph Hτ in the Fig. 3.4. Here two partitions P1 and P2 are

created. These two partitions are not having a common edge. So When we take

the intersection of both we get an empty set φ.

Lemma 3.2

The union of all the partitions Pi of the hypergraph Hτ gives the original

hypergraph Hτ .

i.e., ∀i
⋃
Pi = Hτ (Equality holds only when outliers are also considered)

Proof

In lemma 3.1, different edge sets ξi;1≤i≤n of Hτ represent different text categories

belonging to tpi . While partitioning, some outlier sentences are also produced

which do not belong to any of these edge sets. The original hypergraph Hτ is

obtained by combining all the edge sets i.e.,

∀i1≤i≤n ∪ ξi = Hτ (3.4)

As mentioned in lemma 3.1, since an edge set ξi in the hypergraph Hτ represents

a partition Pi of text τ it implies

∀i1≤i≤n ∪ Pi = Hτ (3.5)

Illustration

According to Fig. 3.4, while partitioning, two partitions P1 and P2 are created.

Some nodes(nodes 41 and 57) are seen outside the partitions which do not

belong to any of the edge sets. These nodes are called outliers. The union of

these outliers and the partitions P1 and P2 gives the original hypergraph Hτ .

Theorem 3.1

Edge set ξ in the hypergraph Hτ corresponding to the text τ generates unique

partitions Pi of the text τ .

Proof

The proof of theorem follows from proof of i), ii) and iii).

i) tpi ∈ Pi;∀1≤i≤n
Let tpi and tpj be two different topics in text τ . Then tpi ∈ Pi and tpj ∈ Pj for

i 6= j.

ii) By lemma 3.1, either Pi = Pj or Pi ∩ Pj = φ, i 6= j
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iii)By lemma 3.2, ∪Pi = Hτ ;∀1≤i≤n
An edge in Hτ represents a sentence in τ . So edge set of the hypergraph Hτ

represents sentences in the text τ . When spectral partitioning is applied to Hτ ,

edge set is getting divided in to two subsets. These two sets represent the first

level clustering of the text τ . When this is iterated, it ultimately leads to

partitions(clusters) which are unique and the intersection of these partitions will

be a null set as said in lemma 3.1.

3.4 Mathematical operations

The hypergraph Hτ and the weighted hypergraph Hwτ created for the text τ

undergo various mathematical operations.

• Adjacency matrix of Hτ

The adjacency matrix A of the hypergraph Hτ is the square matrix of the

nodes υ in the hypergraph Hτ . Here we can see that Aij = 1 and Aji = 1,

if the node υi and node υj are part of the same hyperedge ξk. In turn it

means both the nodes υi and υj are words co-occurring in many sentences.

A row in the matrix A shows the neighbouring words of a particular word,

taking in to consideration all the sentences in the text τ . Referring to Fig.

3.3, we can see words 1 to 13 and 14 to 18 are neighbours of word 3.

• Diagonal matrix of Hτ

Diagonal matrix Dv of the hypergraph Hτ is a square matrix of node

degree, where the diagonal entries Dvii = Number of hyperedges in which

that node υi is present. It actually shows the number of sentences in which

a word occurs. While term frequency shows the total count of a word in a

text, this shows the number of sentences in which that word occurs. The

term frequency can be higher than this since it also counts the word

repetitions in a single sentence.
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• Laplacian matrix L of Hτ Laplacian matrix L of the hypergraph Hτ is a

square matrix, and can be written as

L = Dv − A (3.6)

• Diagonal matrix of edge degree

Diagonal matrix of edge degree De of hypergraph Hτ is a square matrix,

where the entries are the degrees of the hyperedges. The degree of a

hyperedge ξi is equal to the sum of the degrees of all the nodes υi in that

hyperedge. This is the sum of number of sentences to which each word in a

sentence belongs. Suppose a sentence has n words. Let cwi be the count of

sentences of the text τ in which that word occurs. The edge degree is equal

to the sum of cwi of all words in that sentence S.

• Matrix H of weighted hypergraph Hwτ

The matrix H is the one where the rows represent the nodes and the

columns represent the hyperedges. An entry H(υi, ξj) = 1 iff υi is a part of

the edge ξj. In turn it means that a word wi is a part of the sentence Sj.

• Weight matrix W of weighted hypergraph Hwτ

The weight matrix W of a hypergraph Hwτ is a diagonal matrix of weights

w of hyperedges ξi. The weight wi of a hyperedge ξi is equal to the sum of

the weights of all nodes υj in that hyperedge ξi. With respect to the text τ

and the hypergraph Hτ , the weight of a node is the term frequency of the

word in the entire document.

• Adjacency matrix of weighted hypergraph Hwτ

Adjacency matrix

A = H ∗W ∗HT −Dv (3.7)

where Dv is the diagonal matrix of node degree of weighted hypergraph.
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Figure 3.5: Eigen values of L

Figure 3.6: Eigen vector of the selected eigen value

• Laplacian matrix Lw of weighted hypergraph Hwτ

The laplacian matrix Lw of weighted hypergraph Hwτ can be calculated as

Lw = Dv − A (3.8)

3.5 Hypergraph morphology - hypergraph

contraction

Since spectral partitioning is applied to the fidel vector of the laplacian matrix L

of the hypergraph Hτ of the text τ in Method-I and weighted hypergraph Hwτ

in Method-II, the vector is being divided in to two. Correspondingly two sets of

text τi and τj are created for the text τ . Two hypergraphs H+
τ and H−τ are again

created with the new set of nodes formed as part of the partitioning. Thus the

initial hypergraph is being contracted in each iterative phase.
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Figure 3.7: Iteration 1

Figure 3.8: Iteration 2

Figure 3.9: Negative and positive splits
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3.6 Proposed method for text clustering

As mentioned above, this work has implemented two methods for text clustering.

In this method, text clustering refers to clustering text(sentences) into groups,

while in document clustering multiple documents are involved. The eigen vector

corresponding to the maximum absolute eigen value is selected as the fidel vector.

The same is shown in Fig. 3.5 and Fig. 3.6. The first method in text clustering

uses a non-weighted hypergraph and spectral partitioning is applied to it based

on the sign of fidel vector. The method has many iterations as seen in Fig. 3.7

and Fig. 3.8, until there are no change in signs. Fig. 3.9 shows the positive

and negative split made in the selected vector. The figures shown in this chapter

do not pertain to a single test case, but are outputs of various test cases. The

second method uses a weighted hypergraph where the weight of the hyperedge of

the graph is sum of the weights of the nodes in that edge. In turn the weight of

the node will be equal to the term frequency of the word in all the sentences to

be clustered. The detailed algorithm can be seen in section 3.6.1.

3.6.1 Algorithm: Method I

Algorithm 4: Clustering text τ by spectral partitioning hypergraph Hτ

Data: Hypergraph

Result: Partitions

repeat

create a hypergraph Hτ of the text τ ;

create adjacency matrix A of the hypergraph Hτ ;

find Dv of the hypergraph Hτ ;

find laplacian matrix L of Hτ ;

find the eigen values of L;

search for the eigen value λi which has a maximum absolute value;

select fidel vector corresponding to this eigen value λi;

partition the vector based on the +/- values;

divide the sentences such that all those with negative value fall in one group

and those with positive value fall in the second group;

until there is no change in sign or there are < two elements in a group;
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3.6.2 Algorithm: Method II

Algorithm 5: Clustering text τ by spectral partitioning weighted hypergraph

Hwτ
Data: Weighted hypergraph

Result: Partitions

repeat

create a weighted hypergraph Hwτ of the text τ ;

calculate weight matrix W of Hwτ ;

calculate matrix H of Hwτ ;

find the matrix Lw of Hwτ ;

find the eigen values λi of Lw;

select the eigen value with maximum absolute value;

find the fidel vector;

partition the elements in the fidel vector to + and - ;

divide the sentences such that all those with negative value fall in one group

and those with positive value fall in the second group;

until there is no change in sign or < two elements in a group;

3.7 Implementation

The implementation of text clustering using hypergraph is done in python. The

input document contains Malayalam/English text. Malayalam is a regional

language spoken in Kerala state and Lakshwadeep islands in India. A Malayalam

lemmatizer is developed using a tree based method which reduces the words to

its root lemma form, so that the term frequency can be calculated. Porter

stemmer is used for stemming English text. The stemming also help in

identifying the connection between the sentences for the graph creation and the

hypergraph creation.

3.7.1 Data set

The data set consists of Malayalam articles taken from the Malayalam news sites

and English articles taken from English news sites. These documents after

preprocessing like punctuation removal, white space removal and stop word



Text Summarization Using IFHG 54

Table 3.1: Data set statistics

Categories word-count stemmed stop
word-count word-count

sports, 125 40 10
medicine,
film,

sports 500 160 52
travel,
politics,

film 2000 700 160
medicine

travel 5000 1900 320
film
politics

cricket 10000 4050 990
football
tennis
films

medicine 20000 6400 1400
travel
football

removal are subjected to stemming. The text containing lemmatized words are

used for creating graph and hypergraph. Both the graphs are subjected to

spectral partitioning and results are compared. The clustering applied here help

in grouping together news articles related to particular topic. The data set

consists of news related to various topics like politics, travel, sports, medical

news, film news etc. The work has successfully clustered the articles in to groups

which finally resulted in an automatic topic identification. An overview of the

Malayalam data set is shown in Table 3.1.

3.7.2 Performance comparison

Hypergraph modeling of a text is compared with graph modeling of a text which

has been followed so far in many languages. A document is modeled as a graph as

in Fig. 3.10, by considering the sentences as vertices and an edge existing between

two vertices if there is a common word in both sentences. The connectivity of the
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Figure 3.10: Text modeled as graph

graph shows which all sentences are being connected and the disconnectivity of the

graph shows isolated sentences. This type of modeling has many disadvantages as

the graph which is created does not show, how the document is really organized.

While the graph method does not convey the idea about which all words make

the sentences connected, the hypergraph shown in Fig. 3.2, gives a clear idea

about the actual organization of the document, sentences and the words in it.

From Fig. 3.2, the distribution of the words in the document is evident. The

performance of text clustering using graph and hypergraph is done based on the

parameters like speed, accuracy and complexity of the methods. Among the two

methods discussed above, the weighted method shows more accuracy than the non

weighted method, so that it is used for comparison with simple graph method. The

weight of the edge will be the sum of the weights of the vertices in that edge. In the

following sections, the two new methods like hypergraph and weighted hypergraph

are compared with contemporary methods like graph and weighted graph.

• Iterations

The hypergraph method takes more iterations till it identifies all the

outliers in the data set correctly. Outliers are the text which do not belong

to any of the clusters. Outlier detection in the graph method is less. Since

the graph modeling using hypergraph is more meaningful with respect to

the organization of the document, outliers can be eliminated more

correctly. But since the document modeling using the graph convey less

knowledge about the document, the outlier detection and elimination is
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affected and not according to the expectations of the reader. The

anonymous sentences eliminated from the hypergraph method always

satisfy the reader.

• Space complexity

The number of edges in the hypergraph representing the text are equal to

the number of sentences considered. If there are 100 sentences to be

clustered, whether they are connected or not, the number of edges will be

fixed and is equal to 100. But for the graph of such a text, considering

connections among all the vertices, the number of edges will be 99 + 98

+......+ 1, which is very large. Generally we can say that for text with n

sentences, the number of edges in a hypergraph is n, while the number of

edges in a graph is n− 1 + n− 2.....+ 1 which can be written as (n− 1)n/2

and is of order O(n2). The number of nodes in the hypergraph method is

equal to the number of unique terms considered for clustering, while the

number of vertices in the graph method is equal to the number of sentences

considered for clustering. The number of unique terms will be less as we

remove the stop words from the text in the preprocessing phase. Moreover,

there will be many repeating words in the text. Word repetition can

happen in a single sentence and also across sentences. So also the space

complexity of the hypergraph is less when compared to the graph.

• Time complexity

Time complexity of both graph and hypergraph methods are evaluated

based on the above two parameters like number of iterations and the

number of edges and vertices that need to be constructed in each iteration

of the algorithm. Even though there is a slight increase in the number of

iterations in the hypergraph method, it is compensated by the reduction in

the number of edges and nodes that need to be constructed in every

iteration of the algorithm. Even though the number of iterations in the

graph method is less, it takes more time because of the increased number

of edges and vertices that need to be constructed in each iteration of the

algorithm. The time comparison of both graph and hypergraph are shown

in the Fig. 3.11. Both the plots show a peak value initially in the time of

graph creation, because the algorithm creates the original graph of the



Text Summarization Using IFHG 57

Figure 3.11: Execution time for graph creation

document in the first step. In each iteration, due to spectral partitioning,

the size of the graph to be created decreases. That is why, the execution

time for graph creation is minimum in the final iteration. Considering all

the iterations, the total time taken for graph creation is 0.0663611889

seconds in the case of graph based method, while the total time taken for

hypergraph creation is only 0.0194737911 seconds. This time is for the

second smallest data set mentioned in Table 3.1. Since this algorithm

iterates over the edges and the nodes in it, the time complexity is O(n2).

• Accuracy and entropy

The hypergraph method gives more accurate results in the case of cluster

formation and in the case of outlier detection. The clusters which end up

with single sentences are considered ouliers and others are actual clusters

which speak about a particular topic. The accuracy is being tested

manually with native Malayalam news readers. The clusters returned by

the algorithm is compared with the clusters returned manually by the

native people. The number of clusters returned by the weighted

hypergraph method shows an accuracy of the 98% and the clusters

returned by the graph method shows an accuracy near to 80%. The

precision, recall, F-measure of the clustering is calculated based on the true
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positives, true negatives, false positives and false negatives. True positive is

defined as the number of clusters correctly assigned by the method. True

negatives are defined as the number of outliers correctly identified by the

system, false positives are the number of outliers that the system marked

as clusters and the false negatives are the number of clusters, the system

marked as outliers. Once these measures are obtained, the following are

calculated.

Precision = tp/(tp + fp) (3.9)

Recall = tp/(tp + fn) (3.10)

Accuracy = tp + tn/Total (3.11)

and

F −measure = 2 ∗ Precision ∗Recall/(Precision+Recall) (3.12)

The results can be tabulated as in Table 3.2. The results are generated

for different data sets of varying sizes. The recall is always 1.0 since the

false negatives generated by the system is always nil. i.e., the number of

clusters, the system identifies as outliers is nil. The main contributor of

the good value of recall, is the efficient outlier detection by the proposed

system. Similarly, result analysis is made for the spectral partitioning by

the weighted hypergraph. The results obtained are consolidated in Table

3.3. Entropy is a metric that is a measure of the amount of disorder in a

vector. Among the various versions of entropy, the one which is selected

here is Shannon’s entropy. Fig. 3.12 has four entropy plots representing

graph, weighted graph, hypergraph and weighted hypergraph. Among the

four methods weighted hypergraph has the lowest entropy. The graph shows

a decrease in the disorder as the number of clusters increase.

3.8 Multi-document clustering

The two methods discussed above can be used for multi-document clustering. The

hypergraph is constructed by modeling documents as hyperedges and unique words

as nodes. The above mentioned two methods of spectral partitioning is applied

where the nodes are partitioned based on the sign of the elements in the fidel vector.
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Table 3.2: Result analysis of spectral partition of Hτ

Data set tp tn fp fn Precision Recall Accuracy F-measure

125 9 0 1 0 0.90 1.0 0.90 0.95

500 9 3 1 0 0.90 1.0 0.92 0.95

2000 10 2 0 0 1.0 1.0 1.0 1.0

5000 20 5 1 0 0.95 1.0 0.96 0.99

10000 50 10 2 0 0.96 1.0 0.97 0.98

20000 100 5 2 0 0.98 0.95 0.98 0.96

Table 3.3: Result analysis of spectral partition of Hwτ

Data set tp tn fp fn Precision Recall Accuracy F-measure

125 10 0 0 0 1.0 1.0 1.0 1.0

500 9 3 0 0 1.0 1.0 1.0 1.0

2000 10 2 0 0 1.0 1.0 1.0 1.0

5000 20 5 1 0 0.95 1.0 0.96 0.98

10000 50 10 1 0 0.98 1.0 0.98 0.99

20000 100 5 1 0 0.99 1.0 0.99 0.99

Figure 3.12: Entropy comparison
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All nodes(words) which are associated with negative values form one cluster and

those with positive values fall in the second cluster. All documents(edges) with

those nodes with negative values fall in first cluster and those with positive values

fall in the second one. This is iteratively done until there is no change in sign or

the cluster has only one document in it.

3.9 Conclusion

In this chapter, we have presented a novel method of modeling text using

hypergraphs and weighted hypergraphs. The sentences in the text forms the edge

set and the words in the text forms the node set. Once the hypergraph is

constructed various mathematical operations like finding the adjacency matrix,

diagonal matrix of node degree, diagonal matrix of edge degree, laplacian matrix,

matrix H, weight matrix are calculated. On applying spectral partitioning to the

laplacian matrix, the edges are divided in to partitions where by, it results in a

hypergraph morphology named hypergraph contraction. Hypergraph contraction

leads to the formation of text clusters. Both hypergraph method and weighted

hypergraph method are being compared with existing graph and weighted graph

method. Hypergraph methods saves time in graph creation and clustering by

29%. Hypergraph method also saves space since only less space required in each

iteration. Moreover the accuracy of the text clustering is more in the case of

hypergraphs. While hypergraph method shows an accuracy of 95.5%, weighted

hypergraph partitioning shows an accuracy of 98%.



Chapter 4

Intuitionistic fuzzy hypergraph

modeling

Intuitionistic fuzzy hypergraphs (IFHG) are hypergraphs in which a second

degree (non-membership) is also included with membership degree for every node

in it. Likewise, every hyperedge is also having a membership and

non-membership degree. If a system is modeled using IFHG, the membership

degree actually shows the wantedness of the hyperedge/node with respect to the

application and the non-membership degree shows the unwantedness of the

node/hyperedge. In order to create a summary we need to model each text

cluster as an IFHG. In this chapter we show the various morphological

operations that can be applied on an IFHG and their results.

4.1 Recent works in hypergraphs/IFHG

Lattice structures on hypergraphs [88] has shown many properties like partial

ordering, infimum, supremum, isomorphism etc. The authors have introduced

complete lattice, dualities, discrete probability distribution on vertices and

hypergraph similarity based on dilation. Mathematical morphology of

hypergraphs are also used for classification or matching problems [89] on data

represented by hypergraphs. As an example, the authors have applied it on a 2-D

image and they proposed further applications of hypergraph in image analysis.

New similarity measures and pseudo-metrics on lattices of hypergraphs [90] are

detailed, which are incorporated in existing system for hypergraph-based feature

61
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selection, indexing, retrieval and matching. Morphological dilation, erosion,

opening, closing, filtering on graphs [91] are illustrated with image processing,

where the authors apply it in binary and grey scale image denoising and the

method has outperformed many existing methods. Images are represented using

set union [92] of hyperedges and are subjected to contra harmonic mean filter for

salt and pepper noise removal. The method give better results in terms of visual

quality, peak signal to noise ratio and mean absolute error.

Intuitionistic fuzzy sets and its operators [93] are applied to electoral example.

Using modal operators and its extended version, the authors have represented

people’s changing opinion on voting day and afterwards. Fuzzy traversals of

fuzzy hypergraphs, coloring of fuzzy hypergraphs and strongly interconnected

hypergraphs [94] are also detailed. With suitable illustrations the concept of

Intuitionistic Fuzzy Hypergraphs (IFHG) [95] and Dual IFHG are illustrated,

where the authors also explain (α, β) cut on hypergraph, strength of an edge,

incidence matrix etc. Also, the authors propose to use this concept in clustering

problem. Operations like complement, join, union, intersection, ringsum,

cartesian product and composition are defined for intuitionistic fuzzy

hypergraphs [96], where the authors further propose to apply these operations in

clustering techniques. Isomorphism between two IFHG and the cartesian

product of two IFS [97] over the same universe are found out, where they also

illustrate in-degree, out-degree of vertex v, weak isomorphism and co-weak

isomorphism. A hyper-network [98] is created with processors as vertices and

connections between the processors modeled as hyperedge. Radio coverage

networks in a geographic region is modeled with radio receivers as vertices, where

the membership values signify the quality of reception of a station/radio. The

authors also propose further research in intuitionistic fuzzy soft hypergraphs and

rough hypergraphs. An application with Intuitionistic Fuzzy sets for career

choice [99] which is a decision making system is developed where the system

represents the performance of students using membership µ, non-membership ν

and hesitation margin π. The authors apply normalized Euclidean distance to

determine the apt career choice. Operations on transversals of IFDHG [100],

their union, intersection, addition, structural subtraction, multiplication and

complement are defined and discussed. The authors also propose to work on

application in coloring of IFHG. Generalized strong IFHG (GSIFHG), spanning

IFHG and generalized strong spanning IFHG [101] are discussed, which can be
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used to analyze the structure of a system and to represent a partition, covering

and clustering. Morphological dilation [102] is applied to different operations like

union, intersection and complement of subgraphs of IFHG, which find role in

text processing and image processing. The authors have also proved De

Morgan’s law applied to IFHG.

Applications in propositional logic, related databases with visits of directed

hypergraphs and optimal paths are studied in detail[103]. It has many concepts

like connectivity, path and cuts of hypergraphs. Many mathematical operators

like dilation, erosion, dual adjunctions are defined on hypergraphs [104], [105]

which are applied to image filtering by modeling image as hypergraphs.

4.2 Need for an intuitionistic fuzzy hypergraph

Let us consider a cricket team with altogether 15 players. Let there be n such

teams. We can model each team as a hyperedge and the players in the team as

nodes. A player can be part of more than one team. So the entire set of teams

can be modeled as an IFHG, where each team member can be given a membership

and non-membership degree. Assume that not all the players are good performers.

Good performers can be given a higher membership degree (chance of selection to

play) and low non-membership degree (chance of non selection to play). Like wise

low performers can be given high non-membership degree (chance of non selection

to play) and low membership degree (chance of selection to play). Always those

with membership degree > 0.5 will be permanent members of the team. Consider

a scenario where 11 out of 15 players are having membership degree > 0.5 and are

permanent members. Rest four members are having high non-membership degrees

since they are not so good players and they are considered as substitute players.

Once a player is to be replaced, the one with lowest non-membership degree from

the substitute players is selected for replacement. Membership degree of a team

member should not be zero. Once it is zero he is not part of team, so also that

node is not part of the IFHG. Likewise the non-membership degree should not be

one. Here the membership and non-membership degree of the team is calculated

from the membership and non-membership degrees of the team members. If all

the team members are good players (high membership degree), then membership

degree of the team (chance of selection to the tournament) is also high. If there
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is at least one member with very high non-membership degree, it may affect the

teams performance and increase the non-membership degree of the team (chance

of rejection from the tournament).

4.3 Preliminaries of IFHG

Let [HIF , (µn, γn), (µe, γe), H
n, He] be a finite intuitionistic fuzzy hypergraph

with membership degree µn and non membership degree γn defined on the set of

nodes Hn and membership degree µe and non-membership degree γe defined on a

set of hyperedges He of HIF . Depending on the membership degree µn, the node

can be treated as high priority, medium priority and low priority. The non

membership degree γn <= 1 − µn. Similarly depending on the membership

degree µe, the hyperedge can be treated as high priority, medium priority and

low priority. The sum of the membership degree and non-membership degree of

the node is less than or equal to 1 [95]. i.e., µn + γn <= 1. So also the sum of the

membership degree and non-membership degree of the hyperedge is less than or

equal to 1 [95]. i.e., µe + γe <= 1. If all the nodes in a hyperedge has µn > 0.5,

then µe is the supremum of all µn in that edge. In such a case γn <= 1 − µn. If

there is at least one node with γn > 0.5, then the γe of that edge is the

supremum of all γn in that edge. In such a case µe <= 1− γe.

A sample IFHG and the priorities assigned are shown in Fig. 4.1.

Node priorities are assigned as follows:

1. Low priority node : µn < 0.5.

2. Medium priority node :µn = 0.5.

3. High priority node : µn > 0.5.

4. Low priority edge : µe < 0.5.

5. Medium priority edge : µe = 0.5.

6. High priority edge : µe > 0.5.
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Figure 4.1: IFHG with degrees

4.4 (α, β) cut

Let [XIF , (µ
′
n, γ

′
n), (µ′e, γ

′
e), X

n, Xe] be the sub-hypergraph obtained by applying

the (α, β) cut on HIF , where α corresponds to the membership degree and β

corresponds to the non-membership degree of nodes/edges. i.e., Hα,β = XIF . The

(α, β) cut of HIF can be written as follows:

Hα,β = [XIF , (µ
′
n, γ

′
n), (µ′e, γ

′
e), X

n, Xe] ={(µ′α
n , γ

′β
n ), (µ

′α
e , γ

′β
e ) / µ

′α
n = {

µ(ni)/µ(ni) > α } ∩ γ′β
n = {γ(ni)/γ(ni) < β } ∩ µ′α

e = { µ(ei)/µ(ei) > α } ∩ γ′β
e

= {γ(ei)/γ(ei) < β } }where µ(ei) and γ(ei) are defined as in section 4.3.

Here XIF ⊂ HIF , such that XIF consists of nodes with membership degree >

0.5. The hyperedges in XIF has at least one node with membership degree >

0.5 and it should not contain any node with non-membership degree > 0.5. i.e.,

the membership degree can be greater than 0.5, but the non-membership degree

should be less than 0.5. Now XIF is a collection of priority edges and priority

nodes.
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Figure 4.2: (α, β) cut and sub-IFHGs

4.5 Complement of a sub-IFHG

Given a parent IFHG H, sub-IFHG X, we can define (edge complement) of X as

Xe′ = X ′ = He −Xe, (4.1)

and nodes in Xe′ can be defined as

Xe′n = [Hn −Xn] ∪ {ni/ni ∈ Xn ∩ ni ∈ IXn}, (4.2)

where IXn are isolated nodes in X without an edge. Now the node complement

of X can be written as Xn′
where

Xn′
= Hn −Xn. (4.3)

Both Xe′n and Xn′
is shown in Fig. 4.3. We can see that node n8 is a node in

Xn. According to eq(4.2), it is also present in Xe′n since it is an isolated node in

X without a hyperedge. But we can see that Xn′
is not having node n8. In this

work X ′ should be considered as Xe′ .
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Figure 4.3: IFHGs (a): H, (b): X, (c): Xe′ , (d): Xn′

Figure 4.4: Results of morphological dilation

4.6 Morphological dilation

Morphological Dilation [88] [104] is of two types:

1. Dilation w.r.to hyperedge - δe(Xn) - Returns the set of edges which has at

least one node in X.

2. Dilation w.r.to node - δn(Xe) - Returns the set of nodes within the

hyperedges of X.

The parent and sub-IFHGs considered for dilation operation are given in Fig. 4.5

and Table 4.1.

Let us apply union operation on these dilations and verify the results

Proposition 4.1: Let HIF be the parent IFHG, X and Y be the sub-IFHGs,

then the following holds
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Figure 4.5: (a) H (b) X (c) Y

Table 4.1: Details of hypergraph HIF

Hyperedges nodes Edge priority

e1 n1 n2 n3 n4 Low
(0.4, 0.6) (0.5, 0.5) (0.5, 0.5) (0.4, 0.6) (0.5, 0.5)
e2 n2 n4 n5 n6 Medium
(0.5, 0.5) (0.5, 0.5) (0.5, 0.5) (0.5, 0.5) (0.5, 0.5)
e3 n3 n4 n7 n8 Low
(0.4, 0.6) (0.4, 0.6) (0.5, 0.5) (0.6, 0.4) (0.8, 0.2)
e4 n4 n6 n8 n9 Low
(0.9, 0.1) (0.5, 0.5) (0.5, 0.5) (0.5, 0.5) (0.9, 0.1)
e5 n7 n8 n10 n11 High
(0.8, 0.2) (0.7, 0.3) (0.5, 0.5) (0.5, 0.5) (0.6, 0.4)
e6 n8 n9 n11 n12 High
(0.9, 0.1) (0.5, 0.5) (0.9, 0.1) (0.8, 0.2) (0.9, 0.1)

δn(X ∪ Y )e = δn(Xe) ∪ δn(Y e), (4.4)

where δn(X ∪ Y )e is a dilation w.r.to nodes. This dilation retrieves only priority

nodes.

Proof: Consider the union operation of two sub-IFHGs X and Y. In L.H.S of

eq(4.4), consider X ∪ Y = (Zn, Ze) where Zn = Xn ∪ Y n and Ze = Xe ∪ Y e and

the union operation is same as the operation on graph. Therefore

δn(X ∪ Y )e = Zn (4.5)

by definition of δn.
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Figure 4.6: δn(X ∪ Y )e

Also δn(Xe) = Xn and δn(Y e) = Y n. Thus

δn(Xe) ∪ δn(Y e) = Xn ∪ Y n = Zn. (4.6)

Equations(4.5) and (4.6), imply δn(X∪Y )e = δn(Xe)∪δn(Y e). Fuzzy membership

and non-membership degrees are invariant under this equation. The result of this

operation is shown in the Fig. 4.6. As seen in this figure, this dilation operation

will retrieve all nodes within the priority sub-IFHGs. Since the graphs are of

higher priority, the nodes retrieved are also of high priority.

Example 4.1: Consider H = (Hn, He) as an IFHG, where Hn are the nodes

such that Hn = {n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12} and He be the

hyperedges such that He = {e1, e2, e3, e4, e5, e6}. Let X be the sub-IFHG, where

X = (Xn, Xe); where Xn = {n7, n8, n10, n11} and Xe = e5. Let Y be the

sub-IFHG, where Y = (Y n, Y e); where Y n = {n8, n9, n11, n12} and Y e = e6. The

membership degree and the non-membership degree of the nodes and hyperedges

of IFHG H are given in Table 4.1. Here we set

X = Hα,β/{0.5 < α <= 0.9; β <= 1 − α};Y = Hα,β/{α >= 0.9; β <= 1 − α }.
The result of the operation δn(X ∪ Y )e is Zn = {n7, n8, n9, n10, n11, n12}. Also

the same results are obtained from δn(Xe) ∪ δn(Y e); i.e.,

{n7, n8, n10, n11} ∪ {n8, n9, n11, n12} = {n7, n8, n9, n10, n11, n12} = Zn. Here the

proof is substantiated with the above example.

Proposition 4.2: Let X and Y be sub-IFHGs of HIF and δ be the dilation

operator defined, then edge dilation of X ∪ Y is

δe(X ∪ Y )n = δe(Xn) ∪ δe(Y n). (4.7)
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Figure 4.7: δe(X ∪ Y )n

Proof: In L.H.S of eq(4.7), δe(X ∪Y )n is the collection of all edges which consists

of nodes in X ∪ Y . As shown in Fig. 4.7, it consists of edges which are of priority

and also of non priority. This is because, the nodes of sub-IFHGs X and Y are

also part of other hyper edges which are of medium priority or low priority. All

other edges are discarded in this operation. Let

δe(X ∪ Y )n = Ze. (4.8)

In R.H.S of eq(4.7), δe(Xn) = Xe and δe(Y n) = Y e.

Hence

δe(Xn) ∪ δe(Y n) = Xe ∪ Y e = Ze. (4.9)

From equations(4.8) and (4.9), it follows that δe(X ∪ Y )n = δe(Xn) ∪ δe(Y n).

Example 4.2: Consider the same problem defined in example 4.1. Applying it

in L.H.S of eq(4.7), we get (X ∪ Y )n = {n7, n8, n9, n10, n11, n12}. Now

δe(X ∪ Y )n = {e3, e4, e5, e6}. Considering R.H.S, we get δe(Xn) = {e3, e4, e5, e6}
and δe(Y n) = {e3, e4, e5, e6}. Now δe(Xn) ∪ δe(Y n) = {e3, e4, e5, e6}.

Proposition 4.3: Let HIF be the parent IFHG, X and Y be the sub-IFHGs, δ

be the dilation operator, then dilation w.r.to nodes of (X ′ ∪ Y ′) is

δn(X ′ ∪ Y ′)e = δn(X ′e) ∪ δn(Y ′e). (4.10)
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Proof: Let X ′ = H − X, Y ′ = H − Y,X ′ = (Xn′
, Xe′). Let (X ′ ∪ Y ′)e be the

set of all hyperedges not in X ′ ∪ Y ′ = Z ′. Also Zn′
and Ze′ are the nodes and

hyperedges of Z ′. Hence

δn(X ′ ∪ Y ′)e = Zn′
. (4.11)

Also

δn(X ′e) ∪ δn(Y ′e) = Xn′ ∪ Y n′
. (4.12)

From eq(4.11) and eq(4.12), eq(4.10) is implied. Here (X ′∪Y ′)e retrieves all edges

which are of high, medium and low priority. So also the dilation operation δn(X ′∪
Y ′)e retrieves all nodes within these high, medium and low priority hyperedges.

The same is shown in Fig. 4.8(a).

Example 4.3: Considering L.H.S of eq(4.10), we obtain (X ′ ∪ Y ′)e as the set

{e1, e2, e3, e4, e5, e6}. From that we get, δn(X ′ ∪ Y ′)e as the set of nodes

{n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12}. Consider R.H.S of eq(4.10), where

we get δn(X ′e) = {n1, n2, n3, n4, n5, n6, n7, n8, n9, n11, n12}. Also

δn(Y ′e) = {n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11}. Now δn(X ′e) ∪ δn(Y ′e) is the

set {n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12}.

Proposition 4.4: Let HIF be the parent IFHG, X and Y be the sub-IFHGs, δ

be the dilation operator then dilation w.r.to edge is

δe(X ′ ∪ Y ′)n = δe(X ′n) ∪ δe(Y ′n). (4.13)

Proof: Let X ′ = H−X, Y ′ = H−Y,X ′ = (Xn′
, Xe′), Y ′ = (Y n′

, Y e′). (X ′∪Y ′)n

be the set of all nodes not in X ∪ Y , where X ∪ Y = Z ′. Also Zn′
and Ze′ are the

nodes and hyperedges of Z ′. Hence

δe(X ′ ∪ Y ′)n = Ze′ . (4.14)

Also

δe(X ′n) ∪ δe(Y ′n) = Xe′ ∪ Y e′ . (4.15)

From eq(4.14) and eq(4.15), eq(4.13) is implied. This dilation operation will

retrieve all edges which are of high, medium and low priority. The same is shown

in Fig. 4.8(b).
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Figure 4.8: (a) δn(X ′ ∪ Y ′)e (b)δe(X ′ ∪ Y ′)n

Example 4.4: Considering the L.H.S of eq(4.13), we obtain the result

(X ′ ∪ Y ′)n as the set {n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12}. Now

δe(X ′ ∪ Y ′)n = {e1, e2, e3, e4, e5, e6}. Consider the R.H.S, where

δe(X ′n) = {e1, e2, e3, e4, e6}. Now δe(Y ′n) = {e1, e2, e3, e4, e5}. From this we get

δe(X ′n) ∪ δe(Y ′n) = {e1, e2, e3, e4, e5, e6}.
Let us apply intersection operation on these dilations and verify the results.

Proposition 4.5: Let HIF be the parent IFHG, X and Y be the sub-IFHGs,

then the following holds:

δn(X ∩ Y )e = δn(Xe) ∩ δn(Y e), (4.16)

provided there are common edges in X and Y , where δn(X ∩ Y )e is a

morphological dilation w.r.to nodes, which retrieves priority nodes which are

present in common edges of both the subgraphs.

Proof: Consider the intersection of two sub-IFHGs X and Y . In L.H.S of eq(13),

consider X ∩ Y = (Zn, Ze) where Zn = Xn ∩ Y n and Ze = Xe ∩ Y e and the

intersection operation is same as the operation on graph. Therefore

δn(X ∩ Y )e = Zn (4.17)

by definition of δn. Also δn(Xe) = Xn and δn(Y e) = Y n. Hence

δn(Xe) ∩ δn(Y e) = Xn ∩ Y n = Zn. (4.18)

Eq(4.16) is implied by eq(4.17) and eq(4.18). Fuzzy membership and
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Figure 4.9: δn(X ∩ Y )e

non-membership are invariant under this equation. The resultant graph is shown

in Fig. 4.9. This dilation will retrieve only priority nodes which are found in

both X and Y .

Example 4.5: Since the above result is true only if there are common edges

in X and Y , let us modify X by including a common edge with Y so that now

new X = (Xn, Xe), where Xe = {e5, e6} and Xn = {n7, n8, n9, n10, n11, n12}.
Consider result of L.H.S of eq(4.16), where we get (X ∩ Y )e = {e6}, so we get

δn(Xe) = {n7, n8, n9, n10, n11, n12}. Consider R.H.S of eq(4.16), where we get

δn(Xe) = {n7, n8, n9, n10, n11, n12} and δn(Y e) is the set {n8, n9, n11, n12}. Then

Proposition 4.5 is proved with the result δn(Xe) ∩ δn(Y e) as {n8, n9, n11, n12}.

Proposition 4.6: Let HIF be the parent IFHG, X and Y be the sub-IFHGs,

then the following holds:

δe(X ∩ Y )n = δe(Xn) ∩ δe(Y n), (4.19)

where δe(X ∩ Y )n is a dilation w.r.to edges which retrieves edges which contains

at least one priority node common in both the subgraphs.

Proof: In L.H.S of eq(4.19), (X ∩Y )n is the collection of all nodes in X ∩Y . i.e.,

δe(X ∩ Y )n is the collection of all hyperedges which contains these nodes. Let

δe(X ∩ Y )n = Ze. (4.20)

In R.H.S of eq(4.19), δe(Xn) = Xe and δe(Y n) = Y e. Hence

δe(Xn) ∩ δe(Y n) = Xe ∩ Y e = Ze. (4.21)
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Figure 4.10: δe(X ∩ Y )n

Eq(4.19) is implied by eq(4.20) and eq(4.21). The same result is shown in Fig.

4.10. As we see in the figure, not all edges are of high priority. It retrieves all

kinds of edges. But it ensures that at least one node in that edge is of high

priority.

Example 4.6: Consider X and Y mentioned in example 4.1. In L.H.S of

eq(4.19), while we get (X ∩ Y )n = {n8, n9}. we get δe(X ∩ Y )n = {e3, e4, e5, e6}.
Considering R.H.S of eq(4.19), we obtain δe(Xn) = {e3, e4, e5, e6};
δe(Y n) = {e3, e4, e5, e6}. Now δe(Xn) ∩ δn(Y n) = {e3, e4, e5, e6}. Now

δe(Xn) ∩ δe(Y n) = {e3, e4, e5, e6}.

Proposition 4.7: Let HIF be the parent IFHG, X, Y the sub-IFHGs, then

δn(X ′ ∩ Y ′)e = δn(X ′e) ∩ δn(Y ′e), (4.22)

provided there are common edges in X and Y , where δn(X ′ ∩ Y ′)e is a dilation

w.r.to nodes which retrieves all types of nodes in edges which are present in X ′

and Y ′.

Proof: Let X ′ = H−X = (Xn′
, Xe′) and Y ′ = H−Y = (Y n′

, Y e′). Let (X ′∩Y ′)e

be the set of all hyperedges not in X ∩ Y , where X ′ ∩ Y ′ = Z ′. Also Zn′
and Ze′

are the nodes and hyperedges of Z ′. Hence

δn(X ′ ∩ Y ′)e = Zn′
. (4.23)

Also

δn(X ′)e ∩ δn(Y ′)e = Xn′ ∩ Y n′
. (4.24)

Eq(4.22) is implied by eq(4.23) and eq(4.24). Resultant graph obtained is shown

in Fig. 4.11(a).
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Example 4.7: Let us consider the modified X = (Xn, Xe), where Xe = {e5, e6}
and Xn = {n7, n8, n9, n10, n11, n12}. Now in L.H.S of eq(4.22), we get (X ′ ∩ Y ′)e

as {e1, e2, e3, e4}. Now δn(X ′ ∩ Y ′)e = {n1, n2, n3, n4, n5, n6, n7, n8, n9}. Consider

R.H.S of eq(4.22) where we get δn(X ′)e = {n1, n2, n3, n4, n5, n6, n7, n8, n9}.
δn(Y ′)e = {n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11}. Thus we get

δn(X ′)e ∩ δn(Y ′)e = {n1, n2, n3, n4, n5, n6, n7, n8, n9}.
Proposition 4.8: Let HIF be the parent IFHG, X, Y the sub-IFHGs, then

δe(X ′ ∩ Y ′)n = δe(X ′n) ∩ δe(Y ′n), (4.25)

where δe(X ′ ∩ Y ′)n is a dilation w.r.to edges which retrieves all types of edges

which contains at least one node common in X ′ and Y ′.

Proof: Let X ′ = H−X = (Xn′
, Xe′) and Y ′ = H−Y = (Y n′

, Y e′). Let (X ′∩Y ′)n

be the set of all nodes not in X ∩ Y , where X ′ ∩ Y ′ = Z ′. Also Zn′
and Ze′ are

the nodes and hyperedges of Z ′. Hence

δe(X ′ ∩ Y ′)n = Ze′ . (4.26)

Also

δe(X ′)n ∩ δe(Y ′)n = Xe′ ∩ Y e′ . (4.27)

Eq(4.25) is implied by eq(4.26) and eq(4.27). The resultant graph is shown in

Fig. 4.11(b).

Example 4.8: Take X and Y as defined in Example 4.1. Applying it in

eq(4.25), we get (X ′ ∩ Y ′)n = {n1, n2, n3, n4, n5, n6, n7, n8, n9}. So

δe(X ′ ∩ Y ′)n = {e1, e2, e3, e4, e5, e6}. δ(X ′)n = {e1, e2, e3, e4, e5, e6}. Also

δe(Y ′)n = {e1, e2, e3, e4, e5, e6}. Thus δe(X ′)n ∩ δe(Y ′)n = {e1, e2, e3, e4, e5, e6}.

4.7 Generalized associative law

• Union

Proposition 4.9: Let X1, X2, ....., Xn be the sub-IFHGs of HIF . Let δn be

the dilation w.r.to nodes, then

δn(X1 ∪X2 ∪ .. ∪Xn)e = δn(X1)
e ∪ δn(X2)

e.... ∪ δn(Xn)e. (4.28)
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Figure 4.11: (a) δn(X ′ ∩ Y ′)e (b)δe(X ′ ∩ Y ′)n

The proof follows from proposition 4.1. Similarly

δe(X1 ∪X2 ∪ ... ∪Xn)n = δe(X1)
n ∪ δe(X2)

n.... ∪ δe(Xn)n, (4.29)

where the proof follows from proposition 4.2.

• Intersection

Proposition 4.10: Let X1, X2, ....., Xn be sub-IFHGs of HIF . Let δn be

the dilation w.r.to nodes, then

δn(X1 ∩X2 ∩ ... ∩Xn)e = δn(X1)
e ∩ δn(X2)

e.... ∩ δn(Xn)e. (4.30)

The proof follows from proposition 4.5.

Similarly

δe(X1 ∩X2 ∩ ... ∩Xn)n = δe(X1)
n ∩ δe(X2)

n.... ∩ δe(Xn)n, (4.31)

where the proof follows from proposition 4.6.

• Distributive law

Let X, Y and T be three sub-IFHGs of HIF , then

δn((X ∪ Y ) ∩ T )e = δn(X ∩ T )e ∪ δn(Y ∩ T )e. (4.32)

The proof follows from proposition 4.1 and proposition 4.5.
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4.8 De Morgan’s law applied to morphological

dilation

Dilation with respect to nodes considering union of sub-IFHGs

Proposition 4.11: Let X, Y be the sub-IFHGs, δ be the dilation operator then

δn(X ∪ Y )
′e = δn(X ′)e ∩ δn(Y ′)e. (4.33)

Proof: Let (X ∪Y )′ be the sub-IFHG with edges which are not present in X ∪Y .

Let (X ∪ Y )
′e be the edges in that hypergraph. Hence δn(X ∪ Y )

′e is the set of

all nodes in the sub-IFHG (X ∪ Y )′. Let it be Zn′
. Also δn(X ′)e is the set of all

nodes in X ′ and δn(Y ′)e is the set of all nodes in Y ′. Let v be an arbitrary node

in δn(X ∪ Y )
′e, which implies that v belongs to δn(X ′)e and v belongs to δn(Y ′)e.

Hence

δn(X ∪ Y )′e ⊆ δn(X ′)e ∩ δn(Y ′)e. (4.34)

Let v belongs to δn(X ′)e∩δn(Y ′)e which implies that v belongs to X ′ and v belongs

to Y ′. Hence v /∈ X and v /∈ Y .

Therefore v /∈ X ∪ Y . Hence v ∈ (X ∪ Y )′. i.e.,

δn(X ′)e ∩ δn(Y ′)e ⊆ δn(X ∪ Y )′e. (4.35)

Eq (4.33) is implied by eq(4.34) and eq(4.35).

Example 4.11: Consider the IFHG given in Table 4.1( also shown in Fig.

4.12(a)(b)(c)). Let X be a sub-IFHG =(Xn, Xe) and Xe = {e5, e6} and

X = (Xn, Xe), where Xe is the set {e5, e6} and Xn is the set

{n7, n8, n9, n10, n11, n12}. Let Y be another sub-IFHG such that Y = (Y n, Y e),

where Y e = {e6} and Y n = {n8, n9, n11, n12}. Considering L.H.S of eq(4.33), we

get (X ∪ Y )
′e as the set of hyperedges {e1, e2, e3, e4}. Now δn(X ∪ Y )′e is the set

{n1, n2, n3, n4, n5, n6, n7, n8, n9}. Considering R.H.S of eq(4.33), we get δn(X ′)e

as the set {n1, n2, n3, n4, n5, n6, n7, n8, n9}. Also δn(Y ′)e is the set of nodes

{n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11}. Thus we get δn(X ′)e ∩ δn(Y ′)e as the set

given by {n1, n2, n3, n4, n5, n6, n7, n8, n9} as shown in Fig. 4.12(d).
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Figure 4.12: De Morgan’s law and morphological dilation

Dilation with respect to hyperedge considering union of sub-IFHGs

Proposition 4.12: Let X, Y be the sub-IFHGs and δ be the dilation operator,

then

δe(X ∪ Y )′n = δe(X ′)n ∩ δe(Y ′)n. (4.36)

Proof: Let (X ∪ Y )′ be the sub-IFHG edges which are not present in X ∪ Y . Let

(X ∪ Y )
′e be the edges in that hypergraph. Hence δe(X ∪ Y )

′n is the set of all

hyperedges in the sub-IFHG (X ∪ Y )′. Let it be Ze′ . Also δe(X ′)n is the set of

all hyperedges in X ′ and δe(Y ′)n is the set of all hyperedges in Y ′. Let v be an

arbitrary node in δe(X ∪ Y )
′n, which implies that v belongs to both δe(X ′)n and

δe(Y ′)n. Hence

δe(X ∪ Y )′n ⊆ δe(X ′)n ∩ δe(Y ′)n. (4.37)

Let v belongs to δe(X ′)n ∩ δe(Y ′)n which implies that v belongs to both X ′ and

Y ′. Hence v /∈ X and v /∈ Y .

Therefore v /∈ X ∪ Y .
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which implies v ∈ (X ∪ Y )′. Hence

δe(X ′)n ∩ δe(Y ′)n ⊆ δe(X ∩ Y )′n. (4.38)

Eq (4.36) is implied by eq(4.37) and eq(4.38).

Example 4.12: Consider the IFHG given in Table 4.1( also shown in Fig.

4.12(a)(b)(c)). Considering L.H.S of eq(4.36), we get (X ∩ Y )′n as the set

{n1, n2, n3, n4, n5, n6, n7, n8, n9}. Thus we get δe(X ∩ Y )′n = {e1, e2, e3, e4, e5, e6}.
Considering R.H.S of eq(4.36), we get δe(X ′)n = {e1, e2, e3, e4, e5, e6}. Thus

δe(X ′)n ∩ δe(Y ′)n = {e1, e2, e3, e4, e5, e6} as shown in Fig. 4.12(e).

Dilation with respect to node considering intersection of sub-IFHGs

Proposition 4.13: Let X, Y be the sub-IFHGs, δ be the dilation operator, then

δn(X ∩ Y )′e = δn(X ′)e ∪ δn(Y ′)e, (4.39)

provided there are edges in X ∩ Y .

Proof: Let (X ∩ Y )′ be the IFHG with edges which are not present in X ∩ Y .

Let (X ∩ Y )′e be the edges in that IFHG. let δn(X ∩ Y )′e be the set of all nodes

in the sub-IFHG X ∩ Y as in Fig. 4.12(f). Let v be a node in δn(X ∩ Y )′e, then

it is not a node of X ∩ Y ie v /∈ X ∩ Y .

δn(X ∩ Y )′e /∈ X ∩ Y. (4.40)

Also δn(X ′)e is the set of nodes in X ′ and δn(Y ′)e is the set of nodes in Y ′. Let v

belong to δn(X ′)e ∪ δn(Y ′)e which implies that v either belongs to any node in X ′

or Y ′. i.e., v /∈ X ∩ Y . Therefore

δn(X ′)e ∪ δn(Y ′)e /∈ X ∩ Y. (4.41)

Eq(4.39) is implied by eq(4.40) and eq(4.41).

Example 4.13: Consider the IFHG given in Table 4.1( also shown in Fig.

4.12(a)(b)(c)). Consider L.H.S of eq(4.39), we get (X ∩ Y )′e = {e1, e2, e3, e4, e5}.
Now δn(X ∩ Y )′e is {n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11}. Now from R.H.S of

eq(4.39), we get δn(X ′)e as the set of nodes {n1, n2, n3, n4, n5, n6, n7, n8, n9}. Also

δn(Y ′)e gives the set of nodes {n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11}. Therefore
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δn(X ′)e ∪ δn(Y ′)e = {n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11} as shown in Fig.

4.12(f).

Dilation with respect to hyperedge considering intersection of

sub-IFHGs

Proposition 4.14 Let X, Y be the sub-IFHGs, δ be the dilation operator, then

δe(X ∩ Y )′n = δe(X ′)n ∪ δe(Y ′)n, (4.42)

provided there are edges in X∩Y . Let (X∩Y )′ be an IFHG with nodes which are

not present in X ∩ Y . Let (X ∩ Y )
′n be the nodes in that IFHG. Let δe(X ∩ Y )

′n

be the set of all edges in the sub-IFHG (X ∩Y )′. Let e be an edge in δe(X ∩Y )
′n.

i.e., it is not an edge of X ∩ Y . Therefore e /∈ X ∩ Y and hence

δe(X ∩ Y )
′n /∈ X ∩ Y. (4.43)

Also δe(X ′)n is the set of all edges in X ′. Also δe(Y ′)n is the set of all edges in

Y ′. Let e belongs to δe(X ′)n ∪ δe(Y ′)n, which implies that e either belongs to X ′

or Y ′. i.e., e /∈ X ∩ Y . Therefore

δe(X ′)n ∪ δe(Y ′)n /∈ X ∩ Y. (4.44)

Then Eq(4.42) is implied by eq(4.43) and eq(4.44).

Example 4.14: Consider the IFHG given in Table 4.1( also shown in Fig.

4.12(a)(b)(c)). Considering L.H.S of eq(4.42), we get δe(X ∩ Y )
′n as the set of

hyperedges {e1, e2, e3, e4, e5, e6}. Consider R.H.S of eq(4.42), where we get

δe(X ′)n = {e1, e2, e3, e4, e5, e6}. Now δe(Y ′)n = {e1, e2, e3, e4, e5, e6}. Thus

δe(X ′)n ∪ δe(Y ′)n = {e1, e2, e3, e4, e5, e6} as shown in Fig. 4.12(g).

4.9 Morphological erosion

Morphological erosion [88] [104] is of two types:

1. Erosion w.r.to hyperedge - εe(Xn) - Returns the set of edges which has only

nodes in X. Given a parent IFHG H and sub-IFHG X as in Fig. 4.14(a) and

Fig. 4.14(b) respectively, the result of this erosion is shown in Fig. 4.14(c).



Text Summarization Using IFHG 81

Figure 4.13: (a)Parent IFHG H, (b) sub-IFHG X, (c)sub-IFHG Y

Figure 4.14: Result of erosion w.r.to edge

2. Erosion w.r.to node - εn(Xe) - Returns the set of nodes which are not present

in Xe′ . Given a parent IFHG H and sub-IFHG X as in Fig. 4.15(a) and Fig.

4.15(b) respectively, the result of this erosion is shown in Fig. 4.15(c).

4.10 Mathematical modeling for morphological

erosion

In this section, let us model a parent IFHG and introduce (α, β) cut of the

parent IFHG in order to create priority sub-IFHGs. Let us define

HIF = [Hn, He], where Hn = [n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12] and

He = [e1, e2, e3, e4, e5, e6] as given in Fig. 4.13. Some nodes are of low priority

(µn < 0.5), some are of medium priority (µn = 0.5) and few others are of high
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Figure 4.15: Result of erosion w.r.to node

Table 4.2: Details of hypergraph HIF

Hyperedges Nodes Edge priority

e1 n1 n2 n3 n4 Low
(0.4, 0.6) (0.5, 0.5) (0.5, 0.5) (0.4, 0.6) (0.4, 0.5)
e2 n2 n4 n5 n6 Low
(0.4, 0.6) (0.5, 0.5) (0.4, 0.6) (0.4, 0.6) (0.9, 0.1)
e3 n3 n4 n7 n8 Low
(0.4, 0.6) (0.4, 0.6) (0.4, 0.6) (0.6, 0.4) (0.8, 0.2)
e4 n4 n6 n8 n9 Low
(0.4, 0.6) (0.4, 0.6) (0.9, 0.1) (0.8, 0.2) (0.9, 0.1)
e5 n7 n8 n10 n11 High
(0.8, 0.2) (0.6, 0.4) (0.8, 0.2) (0.8, 0.2) (0.8, 0.2)
e6 n8 n9 n11 n12 High
(0.9, 0.1) (0.8, 0.2) (0.9, 0.1) (0.8, 0.2) (0.9, 0.1)

priority (µn > 0.5). Let XIF be obtained by (α, β) cut on

HIF/0.5 < α ≤ 0.9; {β ≤ 1− α} ∩ {β ≤ 0.1}. Here α corresponds to membership

degree and β corresponds to non-membership degree. We can see that thresholds

are applied on both α and β. Since α has a wider range, we get a sub-IFHG with

more number of edges and nodes. Let YIF be obtained by (α, β) cut on

HIF/α ≥ 0.9; {β ≤ 1 − α} ∩ {β ≤ 0.1}. Since α has high limit, we get a

sub-IFHG with relatively less number of hyperedges and nodes when compared

with the first one. The details of the hypergraphs HIF , XIF and YIF are given in

Table 4.2, Table 4.3 and Table 4.4 respectively. For simplicity let us refer them

as H, X and Y .
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Table 4.3: Details of hypergraph XIF

Hyperedges Nodes Edge priority

e5 n7 n8 n10 n11 High
(0.8, 0.2) (0.6, 0.4) (0.8, 0.2) (0.8, 0.2) (0.8, 0.2)
e6 n8 n9 n11 n12 High
(0.9, 0.1) (0.8, 0.2) (0.9, 0.1) (0.8, 0.2) (0.9, 0.1)
Hyperedges Nodes Node priority

Nil n6 High
(0.9, 0.1)

Table 4.4: Details of hypergraph YIF

Hyperedges nodes Edge priority

e6 n8 n9 n11 n12 High
(0.9, 0.1) (0.8, 0.2) (0.9, 0.1) (0.8, 0.2) (0.9, 0.1)
Hyperedges nodes Node priority

Nil n6 High
(0.9, 0.1)

Figure 4.16: (a) H (b) Result of union of erosion w.r.to edge

Proposition 4.15: Let HIF be the parent IFHG. Let X and Y be the sub-IFHGs

and ε be the erosion operator, then

εe(X ∪ Y )n = εe(Xn) ∪ εe(Y n), (4.45)

where εe(X ∪ Y )n is an erosion w.r.to edge, which retrieves edges consisting of

only nodes either in X or in Y .

Proof: In L.H.S of eq(4.45), εe(X ∪ Y )n = collection of all edges which consists
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of nodes in (X ∪ Y )n only. Let {n1, n2, ......., nk} be the nodes in (X ∪ Y ). Let

{e1, e2, ...., ek} be the hyperedges which consists of these nodes only. Let εe(Xn)

be the set of hyperedges which contains nodes in X only and εe(Y n) be the set of

hyperedges which consists of nodes in Y only. So these edges are present either

in εe(Xn) or in εe(Y n). We can explain this w.r.to an IFHG formed, where

technical documents are hyperedges and authors are nodes. Let X be the

sub-IFHG consisting of only documents and authors in the area of graphs. So X

consists of hyperedges which represent documents and isolated nodes which

represent authors. Let Y be the sub-IFHG which consists of documents and

authors in the area of fuzzy graphs. Y also consists of hyperedges which

represent documents and isolated nodes which represent authors. Let Y ⊂ X.

Now (X ∪ Y )n is the union of authors in graphs and fuzzy graphs. Also

εe(X ∪ Y )n is the set of documents which consists of these authors only. i.e.,

εe(X ∪ Y )n ⊆ εe(Xn) ∪ εe(Y n), (4.46)

where εe(Xn) can be considered as the documents in the area of graphs only and

εe(Y n) can be documents in the area of fuzzy graph only.

Now considering R.H.S of eq(4.45), εe(Xn) represents the collection of edges

which contains nodes in X only. Also εe(Y n) represents the collection of edges

which contains the nodes in Y only. Let {n1, n2, ...., np} be the nodes in X and

{e1, e2, ...., ep} be the edges in εe(Xn). Let {np+1, np+2, ...., nk} be the nodes in Y

and {ep+1, ep+2, ...., ek} be the edges in εe(Y n). Now an edge e in {e1, e2, ...., ek}
can be present either in {e1, e2, ...., ep} or in {ep+1, ep+2, ....., ek} i.e.,

εe(Xn) ∪ εe(Y n) ⊆ εe(X ∪ Y )n. (4.47)

Eq(4.45) is implied by eq(4.46) and eq(4.47).

Example 4.15: Consider Table 4.2, Table 4.3 and Table 4.4. In L.H.S of eq(4.45),

we get (X ∪ Y )n = {n6, n7, n8, n9, n10, n11, n12} i.e., we are taking all nodes in

X ∪ Y . Now find edges from H which consists of these nodes only. This will

give us εe(X ∪ Y )n = {e5, e6}. Now in R.H.S of (4.45), εe(Xn) are the edges

in H which consists of nodes of X only. i.e., εe(Xn) = {e5, e6}. Again εe(Y n)
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Figure 4.17: εe(Xn) ∪ εe(Y n)

are the edges in H which consists of nodes on Y only. i.e., εe(Y n) = {e6}.Thus

εe(Xn) ∪ εe(Y n) = {e5, e6} ∪ {e6} = {e5, e6}. The result is shown in Fig. 4.16(b)

and Fig. 4.17.

Proposition 4.16: Let HIF be the parent IFHG. Let X and Y be the sub-IFHGs

and ε be the erosion operator, then

εe(X ∩ Y )n = εe(Xn) ∩ εe(Y n), (4.48)

where εe(X ∩Y )n is an erosion w.r.to edge which retrieves edges consisting of only

nodes common in X and Y .

Also, If X ∩ Y = φ, then εe(X ∩ Y )n = εe(Xn) ∩ εe(Y n) = φ.

Proof: In L.H.S of eq(4.48), εe(X∩Y )n is the collection of all edges which consists

of nodes in (X ∩ Y ) only. Let {n1, n2, ......, nk} be the nodes in (X ∩ Y ). Let

{e1, e2, ....ek} be the hyperedges which consists of these nodes only. So these

hyperedges are present both in εe(Xn) and εe(Y n). i.e.,

εe(X ∩ Y )n ⊆ εe(Xn) ∩ εe(Y n). (4.49)
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Figure 4.18: (a) H (b) Result of intersection of erosion w.r.to edge

Now considering R.H.S of eq(4.48), εe(Xn) represents the collection of edges

which contains nodes in X only. Also εe(Y n) represents the collection of edges

which contains the nodes in Y only. Let {n1, n2, ...., np} be the nodes in X and

{e1, e2, ...., ep} be the edges in εe(Xn). Let {np+1, np+2, ....., nk} be the nodes in Y

and {ep+1, ep+2, ..., ek} be the edges in εe(Y n). Now an edge e in {e1, e2, ...., ek}
must be present both in {e1, e2, ...., ep} and in {ep+1, ep+2, ...., ek} i.e.,

εe(Xn) ∩ εe(Y n) ⊆ εe(X ∩ Y )n. (4.50)

Eq(4.48) is implied by eq(4.49) and eq(4.50).

Example 4.16: Consider Tables 4.2, 4.3 and Table 4.4. In L.H.S of (4.48),

We get (X ∩ Y )n = {n6, n8, n9, n11, n12} i.e., we are taking all nodes in X ∩ Y .

Now find edges from H which consists of these nodes only. This will give us

εe(X ∩ Y )n = {e6}. Now in R.H.S of (4.48), εe(Xn) are the edges in H which

consists of nodes of X only. i.e., εe(Xn) = {e5, e6}. Again εe(Y n) are the edges in

H which consists of nodes on Y only. i.e., εe(Y n) = {e6}. Thus εe(Xn)∩εe(Y n) =

{e5, e6} ∩ {e6} = {e6}. The result is shown in Fig. 4.18(b).

Proposition 4.17: Let HIF be the parent IFHG. Let X and Y be the sub-IFHGs

and ε be the erosion operator, then

εn(X ∪ Y )e = εn(Xe) ∪ εn(Y e), (4.51)
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where εn(X ∪ Y )e is an erosion w.r.to node which retrieves high priority nodes

which are not present in (X ∪ Y )e
′
.

Proof: Consider L.H.S of eq(4.51). Let v be an arbitrary node in εn(X ∪ Y )e.

i.e., v is a node in (X ∪ Y )e, but it is not a not of (X ∪ Y )e
′
.

i.e.,

v ∈ (X ∪ Y )e. (4.52)

Also

v /∈ (X ∪ Y )e
′
. (4.53)

Consider R.H.S of eq(4.51), where v is a node of εn(Xe) ∪ εn(Y e) i.e.,

v ∈ Xe. (4.54)

Also

v /∈ Xe′ . (4.55)

or

v ∈ Y e. (4.56)

Also

v /∈ Y e′ . (4.57)

Eq(4.52) is implied by eq(4.54) and eq(4.56). Also eq(4.53) is implied by eq(4.55)

and eq(4.57). Also Eq(4.51) is implied by eq(4.52) - eq(4.57).

Example 4.17: Consider Table 4.2, Table 4.3 and Table 4.4. In L.H.S of

eq(4.51), we get (X ∪ Y )e = {e5, e6}. i.e,, we are taking all edges in X ∪ Y . Now

find (X ∪ Y )e
′

i.e., all edges which are not included in this. Now find all

(X ∪ Y )n which are not in any edge of (X ∪ Y )e
′
. i.e.,

εn(X ∪ Y )e = {n10, n11, n12}. Consider R.H.S of eq(4.51). Xe = all edges in X.

Find Xe′ = He −Xe = all edges other than that in X. Now find all nodes in X

which are not in any hyperedge of Xe′ . i.e., εn(Y e) = {n10, n11, n12}. Now εn(Y e)
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Figure 4.19: (a) H (b) Result of union of erosion w.r.to node

= all nodes in Y which are not in any edge of Y e′ , where Y e′ = He − Y e. i.e.,

εn(Y e) = {n12}. Thus εn(Xe) ∪ εn(Y e) = {n10, n11, n12} ∪ {n12} = {n10, n11, n12}.
The result is shown in Fig. 4.19(b).

Proposition 4.18: Let HIF be the parent IFHG. Let X and Y be the sub-IFHGs

and ε be the erosion operator, then

εn(X ∩ Y )e = εn(Xe) ∩ εn(Y e), (4.58)

where εn(X ∩ Y )e is an erosion w.r.to node which retrieves high priority nodes

which are not present in (X ∩ Y )e
′
.

Proof: Let v be an arbitrary node in εn(X ∩ Y )e. Consider L.H.S of eq(4.58),

where v is a node in (X ∩ Y )e; but not a node of (X ∩ Y )e
′
. A node in (X ∩ Y )e

′

is written as (X ∩ Y )e
′n and is defined as per eq(4.2).

i.e.,

v ∈ (X ∩ Y )e. (4.59)

Also

v /∈ (X ∩ Y )e
′
. (4.60)

Consider R.H.S of eq(4.58), where v is a node of εn(Xe) ∩ εn(Y e), then it is a

node of (Xe), but not a node of (Xe′). A node of (Xe′) is written as (Xe′n) and is

defined as per eq(4.2). Also v is a node of (Y e), but not a node of (Y e′).
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Figure 4.20: (a) H (b) Result of intersection of erosion w.r.to node

i.e.,

v ∈ (Xe); v ∈ (Y e). (4.61)

Also

v /∈ (Xe′); v /∈ (Y e′). (4.62)

Eq(4.59) is implied by eq(4.61); eq(4.60) is implied by eq(4.62). Eq(4.58) is

implied by eq(4.59) - eq(4.62).

Example 4.18: In L.H.S of eq(4.58), (X ∩ Y )e = {e6}. Now

(X ∩ Y )e
′

= {e1, e2, e3, e4, e5}. Now nodes in (X ∩ Y ) not in any edge of

(X ∩ Y )e
′

= εn(Xe) ∩ εn(Y e) = {n12}. Let us take R.H.S of eq(4.58), εn(Xe) is

the nodes in X but not in any edge of Xe′ which is the set {n9, n10, n11, n12};
εn(Y e) is the nodes in Y but not in any edge of Y e′ = {n12};
εn(Xe) ∩ εn(Y e) = {n9, n10, n11, n12} ∩ {n12} = {n12}. The result is shown in Fig.

4.20(b).

Proposition 4.19: Let HIF be the parent IFHG. Let X and Y be the sub-IFHGs

and ε be the erosion operator, then

εe(X ′ ∪ Y ′)n = εe(X ′)n ∪ εe(Y ′)n, (4.63)
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Figure 4.21: (a) H (b) Result of union of complement of erosion w.r.to edge

where εe(X ′ ∪ Y ′)n is an erosion w.r.to edge which retrieves edges which consists

of (X ′ ∪ Y ′)n only.

Here X ′ and Y ′ are defined as in eq(4.1).

Proof: In L.H.S of eq(4.63), εe(X ′ ∪ Y ′)n = collection of all edges which consists

of nodes in (X ′ ∪ Y ′)n only. Let {n1, n2, ......., nk} be the nodes in (X ′ ∪ Y ′). Let

{e1, e2, ..., ek} be the hyperedges which consists of these nodes only. Therefore

these nodes are present either in εe(X ′)n or in εe(Y ′)n. i.e.,

εe(X ′ ∪ Y ′)n ⊆ εe(X ′)n ∪ εe(Y ′)n. (4.64)

Now considering R.H.S of eq(4.63), εe(X ′)n represents the collection of edges

which contains nodes in X ′ only. Also εe(Y ′)n represents the collection of edges

which contains the nodes in Y ′ only. Let {n1, n2, ...., np} be the nodes in X ′ and

{e1, e2, ...., ep} be the edges in εe(X ′)n. Let {np+1, np+2, ....., nk} be the nodes in

Y ′ and {ep+1, ep+2, ...., ek} be the edges in εe(Y ′)n. Now an edge e in

{e1, e2, ...., ek} can be present either in {e1, e2, ...., ep} or in {ep+1, ep+2, ...., ek} i.e.,

εe(X ′)n ∪ εe(Y ′)n ⊆ εe(X ′ ∪ Y ′)n. (4.65)

Eq(4.63) is implied by eq(4.64) and eq(4.65).
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Example 4.19: Consider Table 4.2, Table 4.3 and Table 4.4. In L.H.S of

eq(4.63), (X ′ ∪ Y ′)n = all nodes in (X ′ ∪ Y ′). Now εe(X ′ ∪ Y ′)n = all hyperedges

from H which consists of (X ′ ∪ Y ′)n only = {e1, e2, e3, e4, e5}. In R.H.S of

eq(4.63), we find εe(X ′)n as all edges in H which consists of nodes of X ′ only,

which gives the set {e1, e2, e3, e4}. Now εe(Y ′)n is all edges in H which consists of

nodes of Y ′ only, which gives the set {e1, e2, e3, e4, e5}. Therefore

εe(X ′)n ∪ εe(Y ′)n = {e1, e2, e3, e4, e5}. The results are shown in Fig. 4.21(b).

Proposition 4.20: Let HIF be the parent IFHG. Let X and Y be the sub-IFHGs

and ε be the erosion operator, then

εe(X ′ ∩ Y ′)n = εe(X ′)n ∩ εe(Y ′)n, (4.66)

where εe(X ′ ∩ Y ′)n is an erosion w.r.to edge which retrieves edges which consists

of (X ′ ∩ Y ′)n only.

Here X ′ and Y ′ are defined as in eq(4.1).

If X ′ ∩ Y ′ = φ, then εe(X ′ ∩ Y ′)n = εe(X ′)n ∩ εe(Y ′)n = φ.

Proof: In L.H.S of eq(4.66) , εe(X ′ ∩Y ′)n = collection of all edges which consists

of nodes in (X ′ ∩ Y ′)n only. Let {n1, n2, ......., nk} be the nodes in (X ′ ∩ Y ′). Let

{e1, e2, ...., ek} be the hyperedges which consists of these nodes only. Therefore

these nodes are present both in εe(X ′)n and in εe(Y ′)n. i.e.,

εe(X ′ ∩ Y ′)n ⊆ εe(X ′)n ∩ εe(Y ′)n. (4.67)

Now considering R.H.S of eq(4.66), εe(X ′)n represents the collection of edges

which contains nodes in X ′ only. Also εe(Y ′)n represents the collection of edges

which contains the nodes in Y ′ only. Let {n1, n2, ...., np} be the nodes in X ′ and

{e1, e2, ...., ep} be the edges in εe(X ′)n. Let {np+1, np+2, ....., nk} be the nodes in

Y ′ and {ep+1, ep+2, ...., ek} be the edges in εe(Y ′)n. Now an edge e in

{e1, e2, ...., ek} can be present both in {e1, e2, ...., ep} and in ep+1, ep+2, ....., ek i.e.,

εe(X ′)n ∩ εe(Y ′)n ⊆ εe(X ′ ∩ Y ′)n. (4.68)
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Figure 4.22: (a) H (b) Result of intersection of complement of erosion w.r.to
edge

Eq(4.66) is implied by eq(4.67) and eq(4.68).

Example 4.20: Consider Table 4.2, Table 4.3 and Table 4.4. In L.H.S of eq(4.66),

we get εe(X ′∩Y ′)n = {e1, e2, e3, e4} which are those edges from H, which consists

of nodes in (X ′ ∩ Y ′) only. Consider R.H.S of eq(4.66), where εe(X ′)n = {e1, e2,
e3, e4}. εe(Y ′)n = {e1, e2, e3, e4, e5}. Now εe(X ′)n ∩ εe(Y ′)n = {e1, e2, e3, e4}.
The results are shown in Fig. 4.22(b).

Proposition 4.21: Let HIF be the parent IFHG. Let X and Y be the sub-IFHGs

and ε be the erosion operator, then

εn(X ′ ∪ Y ′)e = εn(X ′)e ∪ εn(Y ′)e, (4.69)

where εn(X ′ ∪ Y ′)e is an erosion w.r.to node which retrieves nodes not present in

(X ′ ∪ Y ′)e′ and X ′, Y ′ are defined as in eq(4.1).

Proof: Consider L.H.S of eq(4.69). Let v be an arbitrary node in εn(X ′ ∪ Y ′)e.
Now v is not a node of (X ′ ∪ Y ′)e′ . i.e.,

v ∈ (X ′ ∪ Y ′)e. (4.70)

and

v /∈ (X ′ ∪ Y ′)e′ . (4.71)
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Consider R.H.S of eq(4.69), where v is a node of εn(X ′)e ∪ εn(Y ′)e. Then it is a

node of (X ′)e or a node of (Y ′)e, but not a node of Xe and also not a node of Y e.

i.e.,

v ∈ (X ′)e. (4.72)

i.e.,

v /∈ (X)e, (4.73)

or

v ∈ (Y ′)e. (4.74)

i.e.,

v /∈ (Y )e. (4.75)

Eq(4.70) is implied by eq(4.72) and eq(4.74). Eq(4.71) is implied by eq(4.73) and

eq(4.75). Eq(4.69) is implied by eq(4.70) to eq(4.75).

Example 4.21: Consider Table 4.2, Table 4.3 and Table 4.4. Consider L.H.S of

eq(4.69). εn(X ′ ∪ Y ′)e is the set of all nodes in X ′ ∪ Y ′ which do not belong to

any edge in (X ′ ∪ Y ′)e′ . Here edges in (X ′ ∪ Y ′)e′ = {e6}. Now nodes in X ′ ∪ Y ′

which do not belong to {e6} is the set {n1, n2, n3, n4, n5, n6, n7, n10}. Let us

consider R.H.S of eq(4.69), where εn(X ′)e is the set of all nodes which do not

belong to any of the edge in X
′e′ which is the set {n1, n2, n3, n4, n5, n6}. Also

εn(Y ′)e is the set of all nodes which do not belong to any of the edge in Y
′e′ ,

which is the set {n1, n2, n3, n4, n5, n6, n7, n10}. Now εn(X ′)e ∪ εn(Y ′)e is the set

{n1, n2, n3, n4, n5, n6, n7, n10}. The result is shown in Fig. 4.23(b).

Proposition 4.22: Let HIF be the parent IFHG. Let X and Y be the sub-IFHGs

and ε be the erosion operator, then

εn(X ′ ∩ Y ′)e = εn(X ′)e ∩ εn(Y ′)e, (4.76)

where εn(X ′ ∩ Y ′)e is an erosion w.r.to node which retrieves nodes that are not

present in (X ′ ∩ Y ′)e′ .
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Figure 4.23: (a) H (b) Result of union of complement of erosion w.r.to node

Figure 4.24: (a) H (b) Result of intersection of complement of erosion w.r.to
node

Here X ′ and Y ′ are defined as per eq(4.1).

Also if X ′ ∩ Y ′ = φ, then εn(X ′ ∩ Y ′)e = εn(X ′)e ∩ εn(Y ′)e = φ.

Proof: Consider L.H.S of eq(4.76). Let v be an arbitrary node in εn(X ′ ∩ Y ′)e.
Now v is not a node of (X ′ ∩ Y ′)e′ . i.e.,

v ∈ (X ′ ∩ Y ′)e. (4.77)

implies

v /∈ (X ′ ∩ Y ′)e′ . (4.78)
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Consider R.H.S of eq(4.76), where v is a node of εn(X ′)e ∩ εn(Y ′)e. Then it is a

node of (X ′)e and a node of (Y ′)e, but not a node of Xe and also not a node of

Y e. i.e.,

v ∈ (X ′)e; v ∈ (Y ′)e, (4.79)

which implies

v /∈ (X)e; v /∈ (Y )e. (4.80)

Eq(4.77) is implied by eq(4.79). Eq(4.78) is implied by eq(4.80).

Example 4.22: Consider Table 4.2, Table 4.3 and Table 4.4. Consider L.H.S of

eq(4.77). εn(X ′ ∩ Y ′)e is the set of all nodes in X ′ ∩ Y ′ which are not in any of

the edges in (X ′ ∩ Y ′)e′ . Edges in (X ′ ∩ Y ′)e′ = {e5, e6}. Now nodes which are

not in {e5, e6} is the set {n1, n2, n3, n4, n5, n6}. Let us consider R.H.S of eq(4.77),

where εn(X ′)e = nodes which are not in any of the edges of

X
′e′ = {n1, n2, n3, n4, n5, n6}. Now εn(Y ′)e = Set of all nodes which are not in

Y
′e′ which is the set {n1, n2, n3, n4, n5, n6, n7, n10}. Now we get

εn(X ′)e ∩ εn(Y ′)e = {n1, n2, n3, n4, n5, n6}. The result is shown in Fig. 4.24(b).

Proposition 4.23: Let HIF be the parent IFHG, X1, X2, ....., Xn be the sub-

IFHGs of H and ε be the erosion operator, then the following are true for the

union of subgraphs.

εe(X1 ∪X2....... ∪Xn)n = εe(X1)
n ∪ εe(X2)

n...... ∪ εe(Xn)n, (4.81)

εn(X1 ∪X2....... ∪Xn)e = εn(X1)
e ∪ εn(X2)

e...... ∪ εn(Xn)e, (4.82)

εe(X ′1 ∪X ′2....... ∪X ′n)n = εe(X ′1)
n ∪ εe(X ′2)n...... ∪ εe(X ′n)n (4.83)

and

εn(X ′1 ∪X ′2....... ∪X ′n)e = εn(X ′1)
e ∪ εn(X ′2)

e...... ∪ εn(X ′n)e, (4.84)

where X ′i is defined as in eq(4.1).



Text Summarization Using IFHG 96

Proposition 4.24: Let HIF be the parent IFHG, X1, X2, ....., Xn be the sub-

IFHGs of HIF and ε be the erosion operator, then the following are true for the

intersection of subgraphs.

εe(X1 ∩X2....... ∩Xn)n = εe(X1)
n ∩ εe(X2)

n...... ∩ εe(Xn)n, (4.85)

εn(X1 ∩X2....... ∩Xn)e = εn(X1)
e ∩ εn(X2)

e...... ∩ εn(Xn)e, (4.86)

εe(X ′1 ∩X ′2....... ∩X ′n)n = εe(X ′1)
n ∩ εe(X ′2)n...... ∩ εe(X ′n)n (4.87)

and

εn(X ′1 ∩X ′2....... ∩X ′n)e = εn(X ′1)
e ∩ εn(X ′2)

e...... ∩ εn(X ′n)e, (4.88)

where X1 ∩ X2....... ∩ Xn /∈ φ; X ′1 ∩ X ′2....... ∩ X ′n /∈ φ and X ′i is defined as in

eq(4.1).

4.11 Partitioning of intuitionistic fuzzy

hypergraph

The above erosion and dilation can be combined to perform partitioning of IFHG

in to disjoint sub-IFHGs. So let H be an IFHG. Then H can be partitioned in

to disjoint IFHGs X1, X2, .........., Xn, where X1 ∩ X2 ∩ ........... ∩ Xn = φ. The

method is shown in algorithm 6. The algorithm accepts an IFHG H and creates

its disjoint partitions. Firstly create a sub-IFHG X1. Create X ′1 as H − X1.

From this X ′1, we take a sub-IFHG X2, such that, there are no common edges in

the intersection of δe(X1)
n and εe(X2)

n. Now X ′2 is created as H − [X1 ∪ X2].

Now create X3 ⊂ X ′2 such that there are no common edges in δe(X1 ∪ X2)
n and

εe(X3)
n. This process is continued until no more partitions are possible from H.

The results of this partitioning algorithm for IFHG with 4 nodes per hyperedge are

shown in Table 4.5. Such a case can happen in a software firm, where 4 members

are allotted to each project. A project can be modeled as a hyperedge and team

members as nodes. A member may be working in several teams to have maximum

projects done with less resource persons. As seen in Table 4.5, in case: 1, only

up to disjoint partitions of size e = 2 are possible. In case: 2, a maximum of size
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Figure 4.25: Case:1. Disjoint partitioning

e = 3 is possible. In case: 3, we can have two sub-IFHGs of size e= 4. In case:

4, sub-IFHGs of size e = 5 are possible. In case: 5, up to size e = 9 is possible.

Case: 1 is shown in Fig. 4.25. With respect to document IFHG, the partitions in

Fig. 4.25 shows disjoint technical documents without same authors. Disjoint two

document sets are also shown.

Algorithm 6: Intuitionistic fuzzy hypergraph partitioning

1: Input : Parent IFHG.
2: Output : Partitions.
3: H = Intuitionistic Fuzzy Hypergraph.
4: Create X1 ⊂ H.
5: Create X ′1 = H −X1.
6: Create X2 ⊂ X ′1 such that δe(X1)

n ∩ εe(X2)
n = φ;where δ is the dilation

operator and ε is the erosion operator.
7: Create X ′2 = H − [X1 ∪X2].
8: Create X3 ⊂ X ′2 such that δe(X1 ∪X2)

n ∩ εe(X3)
n = φ.

9: Create Xn such that δe(X1 ∪X2..... ∪Xn−1)
n ∩ εe(Xn)n = φ.

10: Partitions = X1, X2, ......, Xn.
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Table 4.5: Analysis of IFHG partitioning

Figure Details

1. No of nodes = 12

2. No of hyperedges = 6

3. No of disjoint partitions(size e=1) = 2

4. No of disjoint partitions(size e=2) = 2

5. No of disjoint partitions (size e=3) = nil

1. No of nodes = 16

2. No of hyperedges = 9

3. No of disjoint partitions (size e=1)= 4

4. No of disjoint partitions (size e=2)= 2

5. No of disjoint partitions(size e=3)= 2

6. No of disjoint partitions (size e=4)= nil

1. No of nodes = 20, No of hyperedges = 12

2. No of disjoint partitions (size e=1)= 4, (size e=2)= 3

3. No of disjoint partitions(size e=3)= 2, (size e=4)= 2

4. No of disjoint partitions (size e=5)= nil

1. No of nodes = 25, No of hyperedges = 16

2. No of disjoint partitions (size e=1)= 4, (size e=2)= 3

3. No of disjoint partitions(size e=3)= 2, (size e=4)= 2

4. No of disjoint partitions (size e=5)= 2, (size e=6)= nil

1. No of nodes = 30,No of hyperedges = 25

2. No of disjoint partitions (size e=1)= 9,(size e=2)= 5

3. No of disjoint partitions(size e=3)= 4,(size e=4)= 4

4. No of disjoint partitions (size e=5)= 3,(size e=6)= 2

5. No of disjoint partitions (size e=7)= 2,(size e=8)= 2

6. No of disjoint partitions (size e=9)= 2,(size e=10)= nil
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Table 4.6: Applications of erosion of IFHG

Technical document processing using IFHG
Notation Operation Result

εn(X1)
e Erosion w.r.to nodes Retrieve all the high profile authors,

who are not part of low quality documents.
εe(X1)

n Erosion w.r.to hyperedges Retrieval of
documents with only high profile authors.

εn(X ′1)
e Erosion w.r.to nodes Retrieve all authors in low quality documents,

who are not part of any high quality documents
εe(X ′1)

n Erosion w.r.to hyperedge Retrieve all low quality documents

4.12 Metric-induced morphological operators on

intuitionistic fuzzy hypergraphs

Preliminary Definitions

Let us define HIF = [Hn, He], where Hn is the set of nodes

{n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15, n16} and He is the set of

hyperedges {e1, e2, e3, e4, e5, e6, e7, e8, e9} as given in Fig. 4.26. Here nodes with

low priority are having µn < 0.5, nodes of medium priority are having µn = 0.5

and nodes of high priority are with µn > 0.5. Let XIF be obtained by (α, β) cut

on HIF/0.5 < α ≤ 0.7; {β ≤ 1 − α} ∩ {β ≤ 0.3}. Let YIF be obtained by (α, β)

cut on HIF/α ≥ 0.7; {β ≤ 1 − α} ∩ {β ≤ 0.3}. Here α corresponds to

membership degree and β corresponds to non-membership degree. The details of

the IFHGs HIF , XIF and YIF are given in Table 4.7, Table 4.8, Table 4.9

respectively.

4.13 Adjunction of IFHG

The adjunctions that we are going to state here are already defined on

hypergraphs in [104][105]. We are extending these adjunctions to IFHG.

Proposition 4.25: Let H be an intuitionistic fuzzy hypergraph, let X, Y be the

sub-IFHGs, ε be the erosion operator and δ be the dilation operator. We observe
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Figure 4.26: Intuitionistic fuzzy hypergraphs(a):H, (b): X, (c) :Y

Table 4.7: Details of hypergraph HIF

Hyperedges Nodes Edge priority

e1 n1 n2 n3 n4 Low
(0.3, 0.7) (0.5, 0.5) (0.5, 0.5) (0.7, 0.3) (0.3, 0.7)
e2 n2 n4 n5 n7 Low
(0.3, 0.7) (0.5, 0.5) (0.3, 0.7) (0.5, 0.5) (0.5, 0.5)
e3 n5 n6 n7 n8 Medium
(0.5, 0.5) (0.5, 0.5) (0.5, 0.5) (0.5, 0.5) (0.5, 0.5)
e4 n3 n4 n9 n10 Low
(0.3, 0.7) (0.7, 0.3) (0.3, 0.7) (0.6, 0.4) (0.6, 0.4)
e5 n4 n7 n10 n11 Low
(0.3, 0.7) (0.3, 0.7) (0.5, 0.5) (0.6, 0.4) (0.5, 0.5)
e6 n7 n8 n11 n12 Medium
(0.5, 0.5) (0.5, 0.5) (0.5, 0.5) (0.5, 0.5) (0.5, 0.5)
e7 n9 n10 n13 n14 High
(0.6, 0.4) (0.6, 0.4) (0.6, 0.4) (0.5, 0.5) (0.5, 0.5)
e8 n10 n11 n14 n15 High
(0.7, 0.3) (0.6, 0.4) (0.5, 0.5) (0.5, 0.5) (0.7, 0.3)
e9 n11 n12 n15 n16 Low
(0.4, 0.6) (0.5, 0.5) (0.5, 0.5) (0.7, 0.3) (0.4, 0.6)
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Table 4.8: Details of hypergraph XIF

Hyperedges Nodes Edge priority

e8 n10 n11 n14 n15 High
(0.7, 0.3) (0.6, 0.4) (0.5, 0.5) (0.5, 0.5) (0.7, 0.3)
Hyperedges Nodes Node priority

Nil n3 High
(0.7, 0.3)

Table 4.9: Details of hypergraph YIF

Hyperedges Nodes Edge priority

e7 n9 n10 n13 n14 High
(0.6, 0.4) (0.6, 0.4) (0.6, 0.4) (0.5, 0.5) (0.5, 0.5)
e8 n10 n11 n14 n15 High
(0.7, 0.3) (0.6, 0.4) (0.5, 0.5) (0.5, 0.5) (0.7, 0.3)
Hyperedges Nodes Node priority

Nil n3 High
(0.7, 0.3)

that (εe, δn) are adjunctions if

Xe ⊆ εe(Y n) (4.89)

and

δn(Xe) ⊆ Y n;X ⊆ Y. (4.90)

Proof: Let us consider erosion operator εe, let e be an edge in Xe. i.e., e ⊂ Xe.

We know that εe(Y n) = Y e. Since X ⊂ Y , we get e ⊂ Xe ⊂ Y e. Therefore

Xe ⊆ εe(Y n). This edge is a priority edge in H. Now let us consider dilation

operator δn. Let v be a node in δn(Xe), i.e., v ⊂ Xn. Since X ⊆ Y , v ⊂ Y n.

Therefore v ⊆ Xn ⊆ Y n. Therefore δn(Xe) ⊆ Y n. This node v is definitely a

priority node of H.

Illustration: Let us check the results on IFHG by considering the H, X and Y

IFHGs. Here, In R.H.S of eq(4.89), εe(Y n) means the set of edges in H, which

consists of nodes in Y only. i.e., εe(Y n) = {e7, e8}. This operation returns the

high priority edges in H. Now we know that Xe as the hyperedges in X, i.e., Xe

= {e8}. Therefore Xe ⊆ εe(Y n). Now in L.H.S of eq(4.90), find δn(Xe) which is

the set of nodes in edges of X. i.e., δn(Xe) = {n10, n11, n14, n15}. This operation
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Figure 4.27: Results of adjunction(a):Xe, (b):εe(Y n), (c) :δn(Xe) (d) :Y n

Figure 4.28: Complement results of adjunction(a):(δe(Xn′
))′, (b):εe(Xn)

returns priority nodes in H which are part of X. We get Y n as the nodes in Y.

i.e., Y n = {n3, n9, n10, n11, n13, n14, n15}. We find that δn(Xe) ⊂ Y n. Therefore

(εe, δn) are adjunctions and the results are shown in Fig. 4.27.

Proposition 4.26: Let H be the intuitionistic fuzzy hypergraph, let X, Y be the

sub-IFHGs, ε be the erosion operator and δ be the dilation operator. We observe

that, If (εe, δn) are adjunctions, then

(δe(Xn′
))′ = εe(Xn) (4.91)

and

(δn(Xe′))′ = εn(Xe). (4.92)
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Proof: Let e be an edge in (δe(Xn′
))′ . i.e.,

e ∈ (δe(Xn′
))′, (4.93)

then

e /∈ δe(Xn′
); e /∈ X ′; (4.94)

i.e.,

e ∈ X. (4.95)

Let us consider R.H.S of eq(4.91). Let e be an edge of εe(Xn). i.e., e ∈ εe(Xn).

i.e.,

e ∈ X. (4.96)

Eq(4.91) is implied by eq(4.95) and eq(4.96). The edge e is a priority edge present

in X.

Consider L.H.S of eq(4.92). Let v be a node in (δn(Xe′))′ i.e., v ∈ (δn(Xe′))′ i.e.,

v /∈ (δn(Xe′)). So we can write v /∈ Xe′ or

v ∈ Xe. (4.97)

Now consider R.H.S of eq(4.92). Let v be a node of εn(Xe); i.e., v ∈ εn(Xe). We

get

v ∈ Xe. (4.98)

Eq(4.92) is implied by eq(4.97) and eq(4.98).

Illustration: In L.H.S of eq(4.91), δe(Xn′
) is the set of edges in H, which consists

of any node Xn′
. We know that Xn′

= {n1, n2, n4, n5, n6, n7, n8, n9, n12, n13, n16}.
Thus δe(Xn′

) = {e1, e2, e3, e4, e5, e6, e7, e9}. Therefore (δn(Xn′
))′ = {e8} = εe(Xn).

Both these operations return priority edges in X and the same are shown in Fig.

4.28(a) and Fig. 4.28(b) respectively. Now consider L.H.S of eq(4.92), δn(Xe′)

which is the set of nodes inXe′ . i.e., Xe′ = {e1, e2, e3, e4, e5, e6, e7, e9}. Now δn(Xe′)

is the set of nodes {n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15, n16}.
Now (δn(Xe′))′ = φ. We get εn(Xe) as the set of nodes in X which are not in Xe′ .

i.e., εn(Xe) = φ.
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Figure 4.29: (a):δn(εe(Y n)) (b): δe(εn(Y e)) (c):εe(δn(Y e)) (d):εn(δe(Y n))

4.14 Materials and methods - construction of

various intuitionistic fuzzy hypergraph

filters

A filter is something which gives the same result if a function is repeatedly applied

to it. Consider a water/sand filter where the filtrate on repeated passage through

the same filter gives the same filtrate. Similarly in the case of an IFHG, a filter

applied on a sub-IFHG should produce the same set of edges and nodes even if it

is filtered many times. If δ is the dilation operator and ε is the erosion operator,

γ = δ ◦ ε is an opening filter and φ = ε ◦ δ is a closing filter.

• Half opening filter w.r.to nodes - δn(εe(Y n))

If H is the parent IFHG, Y is the sub-IFHG, δ is the dilation operator and

ε is the erosion operator, then γ1/2 = δn(εe(Y n)) is a half opening filter

with respect to the nodes in Y . Here εe(Y n) is the set of edges in H which

consists of Y n only. i.e., εe(Y n) = {e7, e8}. Now δn(εe(Y n)) is the set of

nodes within those edges. i.e., δn(εe(Y n)) = {n9, n10, n11, n13, n14, n15}.
This will retrieve all nodes within all edges in Y . To this result if we apply

half opening again, it will retrieve the same set of nodes. Thus we can

prove that half opening γ1/2 = δn(εe(Y n)) is a filter. Here only a part of Y

is retrieved as shown in Fig. 4.29(a).



Text Summarization Using IFHG 105

• Half opening filter w.r.to hyperedges - δe(εn(Y e))

If H is the parent IFHG, Y is the sub-IFHG, δ is the dilation operator and

ε is the erosion operator, then γ1/2 = δe(εn(Y e)) is a half opening filter

with respect to the hyperedges in Y . Here εn(Y e) is the set of all nodes in

Y but not in Y e′ . i.e., εn(Y e) = {n13, n14}. Now δe(εn(Y e)) is the set of all

hyperedges in H which consists of such nodes. i.e., δe(εn(Y e)) = {e7, e8}.
Here {e7, e8} is the filtrate obtained. If we repeatedly apply δe ◦ εn to this

filtrate, we get the same results. Thus this half opening is a filter as shown

in Fig. 4.29(b).

• Half closing filter w.r.to hyperedges - εe(δn(Y e))

If H is the parent IFHG, Y is the sub-IFHG, δ is the dilation operator and

ε is the erosion operator, then φ1/2 = εe(δn(Y e)) is a half closing filter with

respect to the hyperedges in Y . Here δn(Y e) is the set of nodes within the

hyperedges of Y . i.e., δn(Y e) = {n9, n10, n11, n13, n14, n15}. Now εe(δn(Y e))

is the set of all edges in H which consists of the above nodes only. i.e.,

εe(δn(Y e)) = {e7, e8}. Here only a part of Y is retrieved as seen in Fig.

4.29(c).

• Half closing filter w.r.to nodes - εn(δe(Y n))

If H is the parent IFHG, Y is the sub-IFHG, δ is the dilation operator and

ε is the erosion operator, then φ1/2 = εn(δe(Y n)) is a half closing filter with

respect to the nodes in Y . Here δe(Y n) is the set of all edges in H which

has nodes in Y . i.e., δe(Y n) = {e1, e4, e5, e6, e7, e8, e9}. Now εn(δe(Y n)) is

the nodes not in (δe(Y n))′. From the given example, (δe(Y n))′ = {e2, e3}.
Now εn(δe(Y n)) = {n1, n3, n9, n10, n11, n12, n13, n14, n15, n16}.
The result is shown in Fig. 4.29(d).

4.15 Metric induced opening and closing filters

We can consider γλ as a metric induced opening where λ is a natural number which

shows the number of edges/nodes to be included in the retrieved sub-IFHG after

opening operation. i.e., γλ = (δ ◦ ε)λ. Similarily φλ is a metric induced closing,
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Figure 4.30: (a)-(f):Metric induced opening:γλ = [δn(εe(Y n))]λ for various λ

where λ is the number of edges/nodes to be included in the result after closing.

Here λ should be from 1 to number of elements in γ. So let us see different flavours

of γλ and φλ.

• Metric induced opening (γλ) with respect to nodes

If H is a parent IFHG, Y is a sub-IFHG, δ is the dilation operator and ε is

the erosion operator, then γλ = [δn(εe(Y n))]λ is a metric induced opening

with respect to the nodes where top λ nodes with high membership degrees

are selected. Here not all nodes in Y are retrieved. Only top priority nodes

are retrieved. The results of this opening are shown in Fig. 4.30(a)-4.30(f).

Here λ takes a maximum value of 6, since δn(εe(Y n)) returns a maximum

of only 6 nodes with respect to IFHGs in Fig. 4.26.

• Metric induced opening(γλ) with respect to hyperedges

If H is a parent IFHG, Y is a sub-IFHG, δ is the dilation operator and ε is

the erosion operator, then γλ = [δe(εn(Y e))]λ is a metric induced opening
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Figure 4.31: (a)-(b):Opening: γλ = [δe(εn(Y e))]λ 4.31(c)-(d):Closing: φλ =
[εe(δn(Y e))]λ

with respect to the hyperedges where top λ edges with high membership

degrees are selected. Here λ takes a maximum value of 2, since δe(εn(Y e))

returns only maximum of 2 edges with respect to IFHGs in Fig. 4.26. The

results of this opening are shown in Fig. 4.31(a) and Fig. 4.31(b) for

different values of λ.

• Metric induced closing(φλ) with respect to hyperedges

If H is a parent IFHG, Y is a sub-IFHG, δ is the dilation operator and ε is

the erosion operator, then φλ = [εe(δn(Y e))]λ is a metric induced closing

with respect to the hyperedges where top λ edges with high membership

degrees are selected. Here λ takes a maximum value of 2, since εe(δn(Y e))

returns only 2 edges with respect to IFHGs in Fig. 4.26. The results of this

closing operation are shown in Fig. 4.31(c) and Fig. 4.31(d) for different

values of λ.

• Metric induced closing(φλ) with respect to nodes

If H is a parent IFHG, Y is a sub-IFHG, δ is the dilation operator and ε is

the erosion operator, then φλ = [εn(δe(Y n))]λ is a metric induced closing

with respect to nodes where top λ nodes from edges which contain Y n and

which do not belong to the complement edges are selected. Here λ takes a

maximum value of 10, since εn(δe(Y n)) returns a maximum of 10 nodes

with respect to IFHGs in Fig. 4.26. The results of this closing are shown in

Fig. 4.32(a) - 4.32(j) for various values of λ.
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Figure 4.32: (a)-(j) : Metric induced closing φλ = [εn(δe(Y n))]λ

4.16 Alternate sequential filters

If H is a parent IFHG, Y is a sub-IFHG, γλ is an opening of the form (δ ◦ ε)λ and

φλ is a closing operator of the form (ε ◦ δ)λ, then (γλ ◦ φλ) is also a filter. Now an

alternate sequential filter can be obtained as (γλ ◦ φλ) ◦ (γλ ◦ φλ). The operations

repeated n number of times will retrieve the same set of hyperedges/nodes for a

particular value of λ, but we can have different results by varying the value of λ.

• Illustration: Consider H as a parent IFHG and Y as a sub-IFHG as

shown in Fig. 4.34(a) and 4.34(b) respectively. Let us apply

(γλ ◦ φλ) ◦ (γλ ◦ φλ) on these IFHGs. In Fig. 4.34, those marked in black
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Figure 4.33: Algorithm for ASF
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Figure 4.34: (a):H , (b):Y

Figure 4.35: Node ASF (γλ ◦ φλ) ◦ (γλ ◦ φλ) for λmax
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represents the node numbers and those in red shows the edge numbers. Let

φλ = [εn(δe(Y n))]λ. Since the value of λ is determined by the maximum

nodes retrieved by εn(δe(Y n)), we get λ = 18 in φλ. We get δe(Y n) as the

set {e2, e3, e4, e6, e7, e8, e10, e11, e12}. Now [εn(δe(Y n))]λ = φλ, which is the

set {n3, n4, n5, n7, n8, n9, n12, n13, n14, n16, n17, n18, n21, n22, n23, n25, n26, n27}.
We know (γλ ◦ φλ) = [δn(εe(φλ))]λ. We get εe(φλ) = {e3, e4, e7, e8}. Now

[δn(εe(φλ))]λ = {n3, n4, n5, n8, n9, n12, n13, n14, n17, n18, n21, n22, n23}, where

λ is 13. Applying (γλ ◦ φλ) to these nodes will again retrieve the same set

of nodes for the λmax value. Different results can be obtained for 1 <= λ

<= λmax for which algorithm is shown above. The results of this ASF for

λmax value is shown in Fig. 4.29.

4.17 Applications

Modeling systems with intuitionistic fuzzy hypergraphs finds application in the

field of Medical report processing, where a patient can be modeled as a hyperedge

and the symptoms can be modeled as nodes. When multiple patients are having

the same symptom, such a node forms part of multiple edges. In Fig. 4.36(a),

symptom 5 is present in all the three patients. An IFHG constructed in this way

can be subjected to many information retrieval operations. Membership and non

membership values can be assigned to different nodes/symptoms based on the

severity of the symptoms. Likewise membership and non-membership values can

be assigned to patients following the rules given in section 4.12. IFHG modeling

can be done in the area of social networking where a network group can be modeled

as a hyperedge and the members/nodes of the network group can be converted to

nodes. One member may be part of many network groups as shown in Fig. 4.36(b).

They can be assigned different membership values based on their life/character

background.

The systems modeled in this way can be subjected to various morphological

operations like dilation, erosion, adjunction, opening, closing and filtering. An

(α, β) cut can be applied on the Medical report IFHGs to find sub-IFHG X1. Let

us consider this sub-IFHG X1 as the set of all patients with severe diseases and

set of all severe symptoms. Let X2 be the sub-IFHG of Fig. 4.36(b), which

consists of all blacklisted groups and low priority members. The operations

applied to this X1 and X2 are given in Table 4.10. All these operations can be
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Figure 4.36: (a) : Medical report processing (b) : Social network analysis

further expanded to opening, closing, filtering etc. A detailed medical analysis of

patients in a particular area can be done with such systems which opens a wide

range of possibilities.

4.18 Data availablity, results and discussion

The filters mentioned in this work are tested on IFHGs consisting of maximum of

9,000 nodes. The method has shown 100% accurate results. The ASF algorithm

designed on IFHG has a complexity of O(n2), since we are searching through

the hyperedges and nodes within those hyperedges. The parameters α and β are
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Table 4.10: Applications of IFHG

Medical report processing using IFHG
Notation Operation Result

δn(Xe
1) Dilation w.r.to nodes This operation will retrieve

all the symptoms of patients
with severe diseases.

δe(Xn
1 ) Dilation w.r.to hyperedges This retrieves all the patients

with atleast one symptom common
with severely diseased patients.

εn(Xe
1) Erosion w.r.to nodes Retrieve

all the symptoms which are seen only
in severely diseased patients.

εe(Xn
1 ) Erosion w.r.to hyperedges Retrieval of

all patients with severe diseases.
Social network analysis using IFHG

Notation Operation Result

δn(Xe
2) Dilation w.r.to nodes This operation will retrieve

all the members of black listed groups
δe(Xn

2 ) Dilation w.r.to hyperedges This retrieves all the groups
with atleast one criminal member

εn(Xe
2) Erosion w.r.to nodes Retrieve

all the members which are seen only
in black listed groups.

εe(Xn
2 ) Erosion w.r.to hyperedges Retrieval of

all groups which are blacklisted.

working as filter parameters, since a high value of these parameters results in

less amount of filterate and low value of these parameters result in large amount

of filterate. With respect to text processing application using medical reports,

patients with ”minor”, ”moderate”, ”major” and ”extreme” medical conditions are

retrieved, when we vary the (α, β) cut. The algorithm to find the optimal number

of nodes/hyperedges in ASF iterates till the following condition is satisfied:

|γλ ◦ φλ| ≥ ε, (4.99)

where γλ is an opening filter, φλ is a closing filter, γλ ◦ φλ is an ASF and |γλ ◦ φλ|
is the cardinality of the filter. In eq(4.99), ε is a positive number. The algorithm

converges when ε → 0. Also the algorithm may exit without an output if no

sub-IFHG is obtained after (α, β) cut. i.e., in terms of medical report analysis we

can say that, if we have set (α, β) cut such as to retrieve patients with ”extreme”
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medical condition and if the area considered for analysis is not having such

patients, then the algorithm exits without generating an output. In such a case

we have to reduce the level of (α, β) cut such as to retrieve all patients in that

area with ”major” medical conditions. Likewise when we set the level of (α, β)

cut such as to retrieve patients in the area with ”minor” medical conditions and

get an empty sub-IFHG, this implies that, the area under consideration is the

one with ”good” medical conditions.

4.19 Conclusion

Here we have successfully defined the morphological operations like adjunction,

opening, closing, half opening, half closing and alternate sequential filter on

IFHG. The results have been substantiated with sample parent IFHG and

sub-IFHG. Such filter designs find applications in image processing, text

processing, computer networks etc. The (α, β) cut used to generate the

sub-hypergraphs can be varied with different values of (α, β). Different

sub-hypergraphs with varying (α, β) cut when applied with the above

morphological operators will produce results accordingly with various priority

ranges of hyperdges/nodes. One who is working with text/image processing and

network analysis can find numerous applications with these operations. A filter

designed on text results in text summary. Such applications are explained in

chapters 5, 6 and 7.



Chapter 5

Text IFHG and morphological

operators

In the previous chapter we have seen various morphological operations that are

applied on an IFHG. Aim of this chapter is to model text as an IFHG and apply

various morphological operations like dilation and erosion on it. The results are

verified with the help of a sample text.

5.1 Modeling text using IFHG

Let [ HIF , (µn, γn), (µe, γe), H
n, He ] be an intuitionistic fuzzy hypergraph with

membership degree µn and non-membership degree γn defined on the set of nodes

Hn; membership degree µe and non-membership degree γe defined on a set of

hyperedges He of HIF . While using the concept of hypergraphs in document

modeling, the sentences in the document forms the hyperedges He and the words

in the document forms the nodes Hn. The same method can be used in the case

of an IFHG where it includes membership and non-membership degrees for nodes

and hyperedges. The membership value µn of a node Hn is the term priority pn of

a word. i.e., the membership value of a word depends on the priority of the word.

The words which are having less priority will have a high non-membership value,

so also the node Hn which represents that word will have a less membership value

µn and high non-membership value γn. The words which are having high priority

will have a high membership value, so also the nodes Hn which represent those

words will have a high membership value µn and less non-membership value γn.

115



Text Summarization Using IFHG 116

Table 5.1: Priority set - words in various domains with high membership
values

Domain Sports Domain Health

words Membership words Membership

board 0.6 disease/illness 0.8
indian 0.6 problem 0.7
failure 0.8 severe 0.7
success 0.8 result 0.7
score 0.7 medicine 0.6
team 0.7 medical 0.6
amount 0.6 medicine 0.8
player 0.6 treatment 0.7
cricket 0.7 harmful 0.7
football 0.8 reason 0.8
Reception 0.8 severe 0.7

Domain Travel Domain Politics

words Membership words Membership

bus 0.8 failure 0.8
metro 0.8 success 0.8
distance 0.7 election 0.7
kilometer 0.7 chief minister 0.7
hotel 0.6 minister 0.7
road 0.6 prime minister 0.8
rail 0.6 panchayat 0.6
plane/flight 0.6 municipality 0.6
train 0.8 corporation 0.6
history 0.7 result 0.7
nature 0.8 state/country 0.7

The membership and non-membership values of the words are assigned according

to Table 5.1, Table 5.2 and Table 5.3 respectively. All other words in the document

other than those given in Table 5.1, Table 5.2 and Table 5.3 will have µn = 0.5

and γn = 0.5. Those words are medium words whose presence won’t affect the

result of morphological operations which are defined on sub-IFHG XIF of HIF .
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Table 5.2: Priority set - words with high membership values

Domain Automobile Domain Gadgets

words Membership words Membership

new 0.8 model 0.8
engine 0.8 price 0.8
company 0.8 market 0.7
market 0.7 memory 0.7
speed 0.7 speed 0.7
metro 0.6 storage 0.7

5.2 Assigning membership and non-membership

degrees

The membership degree µ(ni) of some node Hn is the sum of normalized term

frequency and membership value(given in Table 5.1 and Table 5.2) of the word.

For such words, non-membership degree is <= 1 − µ(ni). The non-membership

degree γ(ni) of some of the node Hn is the sum of normalized term frequency

and non-membership value of the node(given in Table 5.3). Here the normalized

term frequency is the count of the word in the document / number of words in

the document. For such words, the membership degree is <= 1 − γ(ni). The

membership degree of a hyperedge can be written as

µ(ej) = ∨∀i,j{µ(ni)/ni ∈ ej ∩ ni ∈ Pj}. (5.1)

As per Eq 5.1, The membership degree µ(ej) of the hyperedge He is the supremum

of the membership degrees of all the nodes Hn in it, provided all Hn in it belong

to the priority set Pj. The non-membership degree γ(ej) of such a hyperedge He

is <= 1 − µ(ej). The non-membership degree γ(ej) of a hyperedge He can be

written as

γ(ej) = ∨∀i,j{{γ(ni)/ni ∈ ej} ∩ {∃ni/ni ∈ nPj}}. (5.2)

It is the supremum of the non-membership degrees of all the nodes Hn in it,

provided at least one Hn belongs to the non-priority set nPj. The membership

degree of such edges will be <= 1 − γ(ej). Let us illustrate this IFHG modeling

with a small sample text. The text under consideration as in Fig. 5.1 is a
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Table 5.3: Non priority set-words with high non-membership values

Domain Sports Domain Health
Words Non-membership Words Non-membership

medicine 0.8 surgery 0.8
drugs 0.8 delivery 0.7
police 0.7 cancer 0.7
custody 0.7 death 0.7
arrest 0.7 failure 0.7

Domain Travel Domain Politics
Words Non-membership Words Non-membership

disaster 0.8 strike 0.8
accident 0.8 police 0.7
death 0.8 expel 0.7
deep 0.7 arrest 0.7
expensive 0.6 court 0.7
luxurious 0.6 strike 0.8
expense 0.6 harthal 0.8

Domain Automobile Domain Gadgets
Words Non-Membership Words Non-Membership

bike 0.6 expensive 0.8
lorry 0.7 expense 0.8
bus 0.7 old 0.8
minibus 0.7 tablet 0.7
railer 0.8 ipod 0.7
expensive 0.8 earphone 0.7
luxurious 0.8 outdated 0.8
old 0.8 cheap 0.8

preprocessed one from which the stop words are removed and which is subjected

to lemmatization.

This sample text consists of seven sentences. The membership and the

non-membership values of these words are calculated from Table 5.1, Table 5.2

and Table 5.3. This membership/non-membership value along with the

normalized term frequency give the membership and non-membership degree.

For all words other than those in the above tables, the membership and

non-membership values are 0.5. Here we consider that the sum of the

membership degree and non-membership degree of the node (word) is less than

or equal to 1. i.e., µ(ni) + γ(ni) <= 1 [95]. So also the sum of the membership

degree and non-membership degree of the hyperedge (sentence) is <= 1; i.e.,
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”He is an Indian cricket board player. The board has seen his arrest for using
drugs. Still the success was with Indian team. The team scored an amount of
20,00,000. The cricket player was arrested on 25/10/17.Police has stopped the
reception. Well, the next match is in the city......”

• indian− n1, cricket− n2, board− n9, player − n8.

• board− n9, drugs− n11, arrest− n15.

• indian− n1, team− n6, success− n4.

• team− n6, score− n5, amount− n7.

• cricket− n2, player − n8, arrest− n15.

• receipt− n16, police− n13, stop− n17 .

• next− n18, match− n19, city − n20 .

Figure 5.1: The sample text to be modeled as intuitionistic fuzzy hypergraph.

µ(ei) + γ(ei) <= 1 [95]. The IFHG for the above sample text can be drawn as in

Fig. 5.2.

In Fig. 5.2, we can see sentences modeled as hyperedges and words modeled as

nodes. Nodes are having both membership degree µ(ei) and non-membership

degree γ(ei). The hyperedges are also having both membership degree µ(ei) and

non-membership degree γ(ei). Since there are seven sentences in the sample text

in Fig. 5.1, there are seven hyperedges in Fig. 5.2. The hyperedge having the

nodes n1, n2, n8 and n9 is an edge with only priority words so that it is having

good membership degree. Due to the presence of nodes n11 and n15 which are

having high non-membership degrees, the corresponding hyperedge is having less

membership degree and high non-membership degree; I.e., the presence of a

single word with high non-membership degree γ(ei) influences the

non-membership degree of the hyperedge.

5.3 (α, β) cut on text IFHG

Here XIF ⊂ HIF , such that XIF consists of nodes with membership degree > 0.5.

The hyperedges in XIF has at least one node with membership degree > 0.5

and it should not contain any node with non-membership degree > 0.5. i.e., the

membership degree can be greater than 0.5, but the non-membership degree should
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Figure 5.2: Text modeled as hypergraph

be less than 0.5. Now XIF is a collection of priority sentences and priority words

as given in Fig. 5.3.

Now let us apply morphological operations [102], [104], [105] on this XIF . Let Xn

be the node set in XIF and Xe be the edge set in XIF .

5.4 Morphological operators on text IFHG

• Dilation with respect to nodes-δn(Xe)

This morphological operation is defined as

δn(Xe) = {ni/ni ∈ Xe}. (5.3)
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Figure 5.3: Hypergraph XIF obtained after (α, β) cut on HIF

Figure 5.4: Hypergraph obtained after dilation on XIF

Take all edges in XIF . This will result in Xe. Take all nodes Xn in Xe. Here

we are selecting all hyperedges from HIF , which have at least one node with

membership degree > 0.5 and which does not contain any node with non-

membership degree > 0.5. Once we select such edges, we select the nodes

in it with membership degree > 0.5. This will ultimately give δn(Xe). This

retrieves a collection of priority words within priority sentences as shown in

Fig. 5.4.
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Figure 5.5: Dilation w.r.to hyperedge

• Dilation with respect to hyperedge- δe(Xn)

This dilation can be written as

δe(Xn) = {ei/ei ∈ He ∩ {∃ni ∈ ei/ni ∈ Xn}}. (5.4)

Take all nodesXn. Find fromHIF all the hyperedges which includeXn. Here

we select from XIF all nodes with membership degree > 0.5. Find from HIF

all hyperedges which contain those nodes. This will give all hyperedges which

contain at least one node with membership degree > 0.5. These hyperedges

may or may not contain nodes with non-membership degree > 0.5. This

dilation selects all texts which has at least one priority word as shown in

Fig. 5.5.
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Figure 5.6: δ(Xn)-Dilation

• Node dilation- δ(Xn)

This dilation can be written as

δ(Xn) = {ei/ei ∈ He ∩ {∃ni ∈ ei/ei ∈ Xe}}. (5.5)

Take all hyperedges Xe. Take all nodes in Xe. Find all the hyperedges with

respect to HIF which contain these nodes. This dilation gives all sentences

in HIF which overlap with the priority sentences. This is shown in Fig. 5.6.

• Dilation-∆(Xe)

This dilation can be written as

∆(Xe) = {ei/ei ∈ He ∩ {∃ni/ni ∈ {Xe ∩He}}}. (5.6)

Find all hyperedges Xe. Find all nodes in Xe. Let it be Xn1. Find all

hyperedges He and the nodes in it. Let it be Hn1. For all Xn1 ∩ Hn1 6= ∅,
find the hyperedges from HIF . This will retrieve all sentences which has at

least one priority word in priority sentences of XIF . The same is

represented in Fig. 5.7.
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Figure 5.7: ∆(Xe)-Dilation

• Erosion w.r.to hyperedge-εe(Xn)

So far we have seen dilation operations of XIF . Now let us see how different

types of erosion can be defined on XIF . The erosion εe(Xn) can be defined

as

εe(Xn) = {ei/ei ∈ He ∩ {∀ni/{ni ∈ ei ∩ ni ∈ Xn}}}. (5.7)

Take all nodes Xn in XIF . Take all hyperedges in HIF which consists of

these nodes only. This erosion as seen in Fig. 5.8 strictly retrieves priority

sentences.

• Erosion w.r.to node- εn(Xe)

The erosion εn(Xe) can be written as

εn(Xe) = {ni/{ni /∈ {Xe ∩Xe′}/Xe′ = HIF −Xe}}}. (5.8)

Take all hyperedges Xe. Take its complement edges Xe′ in HIF . Take all

nodes Xn which are not in Xe ∩Xe′ . This will retrieve all priority sentences

which do not overlap with any non priority sentences. Now take the priority

words in it as shown in Fig. 5.9.
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Figure 5.8: Erosion with respect to hyperedge

Figure 5.9: Erosion with respect to node

• Hyperedge erosion-ε(Xe)

The erosion ε(Xe) is defined as

ε(Xe) = {ei/ei ∈ He ∩ {ni ∈ ei ∩ ni ∈ εn(Xe)}} (5.9)

Take all nodes in εn(Xe). Take all edges from XIF which fully contains these

nodes. This will retrieve all priority sentences which do not overlap with the

non-priority sentences. This is illustrated in Fig. 5.10.
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Figure 5.10: ε(Xe)-Erosion

• Dilation-[δ,∆](XIF )

This dilation can be written as

[δ,∆](XIF ) = {(ei, ni)/{ei ∈ {∆(Xe) ∩ δe(Xn)}} ∩ {ni ∈ ei /∈ {∆(Xe) ∩ δe(Xn)}}}

(5.10)

As seen in Fig. 5.11, this is obtained by joining ∆(Xe) and δe(Xn). Take all

edges which are common in δe(Xn) and ∆(Xe). Include all such hyperedges

and its nodes as output. For other edges in δe(Xn), include only nodes in

it. This will retrieve all sentences which overlaps with the priority sentences

and the words in it. It also retrieves all words in sentences which have both

priority and non-priority words and which do not overlap with others.
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Figure 5.11: [δ,∆](XIF )-Dilation

5.5 Conclusion

This chapter has successfully modeled text using an IFHG, by converting sentences

as hyperedges and words as nodes. Membership and non-membership values are

assigned for words, from which those of hyperdges are also calculated. It has also

shown the results of various dilations and erosions on text IFHG. Next chapter

shows how morphological filter operation is done on a text IFHG.



Chapter 6

Design of summary filter using

IFHG

6.1 Implementation

The implementation of the summarization as shown in Fig. 6.1 and algorithm

7, is done with the help of a filter system developed in python for input English

news taken from online news sites. The English news related to various topics

are being subjected to stop word removal and stemming. The preprocessed text

is then represented as a weighted hypergraph [107]. The weighted hypergraph

is subjected to spectral partitioning. Spectral partitions lead to text clusters.

The summary filter is then applied to each cluster formed. The sentences which

do not fall under any of the clusters are treated as outliers and are removed. A

Malayalam summarization system is also developed using the same method, where

a Malayalam lemmatizer [106] is used to stem the words.

6.1.1 Filter design

Filter is an operator which is idempotent and increasing defined on domain D. Let

XIF be the sub-hypergraph defined in section 5.3; then if f(f(XIF )) = f(XIF ),

then f is idempotent. If X and Y are sub-hypergraphs then if f(X) ⊂ f(Y ), then

f is increasing. F is a filter if both of these are satisfied. Let ε be the erosion

operator and δ be the dilation operator. Then let ε ◦ δ be an operator and if

128
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Figure 6.1: Architecture of summarization system

ε ◦ δ(ε ◦ δ(X)) = ε ◦ δ(X) then ε ◦ δ is a filter. That is, here filter consists of a

erosion which is composed of dilation or we can say that we have dilation followed

by erosion. Such a filter can be used for text summarization. Text summarization

basically can be considered as a filter which removes all unwanted sentences from

a text. We can also call summarization as a filter operator which selects only the

needed sentences from the given text.

6.1.2 Summary filter

Text summarization can be done with the help of this filter operator which is

applied to the IFHG created from the text under consideration. This filter is

designed as a combination of two morphological operators namely dilation and

erosion. Here dilation is designed as a conditional one and erosion is designed as

the one which performs complement operation. For implementing this

conditional dilation, let us assume that our text consists of certain star words,

whose occurrence in sentences are valid even if they co-occur with non priority

words. So for this summary filter, let us assume that our text consists of words

which are of high priority, words which are of low priority, words with neutral
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Figure 6.2: Modified intuitionistic fuzzy hypergraph HIF

priority, and star words. Let us redefine the intuitionistic fuzzy hypergraph as

[HIF , (µn, γn ), (µe, γe), H
n, H∗n, He, H∗e], where H∗n is the star node and H∗e

is the edge which has the star node H∗n. These star words are domain

independent. Some of the star words are given in Table 6.1. Sentences which

contain star words are definitely included in the summary text. To illustrate

this, let us add one more sentence to our sample text as the following:

” The arrest of the famous player .....”.

Now this will result in new hyperedge with the following nodes. famous- n21

player- n8 arrest-n15.

The modified intuitionistic fuzzy hypergraph after the addition of the above

sentence is given in Fig. 6.2. The sub-hypergraph XIF is also getting modified

since it will have the star nodes also in it. The modified XIF can be shown as in

Fig. 6.3.
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Figure 6.3: Modified XIF

Table 6.1: Star words irrespective of the domain of the text

Words Membership Words Membership

famous 0.9 excel 0.9
fame 0.9 excellent 0.9
well known 0.9 attract 0.9
famed 0.9 attractive 0.9
popular 0.9 pleasing 0.9
important 0.9 pretty 0.9
prominent 0.9 alluring 0.9
main 0.9 good 0.9
chief 0.9 handsome 0.9
major 0.9 significant 0.9
key 0.9 powerful 0.9
foremost 0.9 urgent 0.9
supreme 0.9 influential 0.9
overriding 0.9 momentous 0.9
essential 0.9 indispensable 0.9
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Figure 6.4: Conditional dilation on XIF

6.1.3 Conditional dilation for summary filter - δc(XIF)

This conditional dilation is applied such that while dilating the sub-IFHG XIF we

consider the condition specified by c, where c is designed such that it selects all

hyperedges in H which consists of star nodes given in Table 6.1.

δc(XIF ) = {ei/ei ∈ H∗e}. (6.1)

- This conditional dilation will retrieve all edges from the intuitionistic fuzzy

hypergraph, such that it consists of all edges H∗e, which consists of star nodes

H∗n as given in Fig. 6.4. Even though the non membership degree of the edge

H∗e is 0.7, it is retrieved in the dilation operation which is applied, since it

contains the star node H∗n.

6.1.4 Erosion for summary filter - ε(H∗e, Xe)

This erosion will retrieve all edges ε′ from HIF which are not in H∗e. Also take

all edges ε′′ from HIF which are not in Xe. The intersection of the two will result

in the retrieval of non priority edges. Now the complement of this will yield the

priority edges from the hypergraph HIF . This erosion will eliminate all duplicate

edges from H∗e and Xe and retrieve us the most important sentences which itself

is the required feature of a summary. This erosion can be written as

ε(H∗e, Xe) = {ei/ei ∈ [HIF − [H∗e
′ ∩Xe′ ]]}, (6.2)
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Figure 6.5: Summary filter

where H∗e
′

is the complement of H∗e and Xe′ is the complement of Xe. The

intuitionistic fuzzy sub-hypergraph retrieved after filter can be shown as in the

Fig. 6.5.

Algorithm 7: Summarization of text

collect news related to various topics from online sites;
preprocess the sentences by subjecting to stop word removal and stemming;
create weighted hypergraph Hwτ of the text τ ;
cluster the text τ using spectral partitioning of hypergraph Hwτ ;
for each cluster Ci do

assign µ(nj) and γ(nj) for all words Ci;
assign µ(ej) and γ(ej) for all sentences in Ci;
create intuitionistic fuzzy hypergraph HIF with nodes Hn having (µ(nj),
γ(nj)) and hyperedges He having (µ(ej), γ(ej));

create subgraph XIF of HIF with hyperedges Xe having µ(ej) > 0.5 and
nodes Xn having µ(nj) > 0.5 ;

apply conditional dilation H∗e = δc(XIF ) ;
apply erosion ε(H∗e, Xe) to form the summary;

end

6.2 Advantages over existing systems

The summarization system which is designed here as a filter applied on IFHG has

many advantages over existing summarization methods developed so far. They
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can be listed as follows:

• Variety of summary filters

As we all know, a filter is basically a composition of dilation and erosion

or erosion and dilation. The proposed new method helps in the creation of

series of different types of filters by combining the morphological operators

like dilation and erosion discussed in section 5.4. Using these different types

of filters, different types of summaries can be generated. Some of the filter

designs other than the one discussed in section 6.1 are shown below.

– Filter 1 - δ(εn(Xe))

This filter is a composition of erosion εn(Xe) and dilation δ. The erosion

will retrieve all nodes in Xe ∩ Xe′ . Now the dilation operation will

retrieve all hyperedges He which contains the nodes retrieved by the

erosion operator. This summary filter will retrieve all sentences from the

text with at least one priority word. But this summary will consider star

words only if they are part of priority edges in X. Well, this summary

is not that short.

– Filter 2 - ε(δn(Xe)) This is a composition of dilation δn(Xe) and

erosion ε. The dilation operator retrieves the collection of priority

nodes within priority edges. The erosion operator will retrieve all

hyperedges He in H which consists of only the nodes returned by the

dilation operator. This summary retrieves only pure priority sentences

that has no non-priority words in it. This is a very short summary.

– Filter 3 - ε(δe(Xn)) This is a composition of dilation δe(Xn) and

erosion ε. The dilation defined by δe(Xn) takes all nodes in X and

retrieves all edges from H which consists of these nodes. The erosion

will take the double complement of δe(Xn). This is also a very short

summary. More number of filters can be designed by combining the

morphological operators defined in chapter 5, resulting in the generation

of different types of summaries.

• Customized summary The summary generated by the filter is a

customized one as it requires the priority of the user to be submitted before

the summary being generated. Thus the summary generated is not a blind

one as it takes in to consideration the preferences of the reader. The reader

can give as input the priority and non-priority words and the summary will
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be generated accordingly. So the summary report will definitely be a one

which satisfies the reader.

6.3 Result analysis

The system is tested on google cloud platform with 8 cores, 30 GB memory. A

comparison of the proposed system with the existing online text summary systems

like tools4noobs, summarization.net, splitbrain.org/services is done for various

data set. The data set consists of English news taken from online news sites. The

news belongs to various domains like travel, politics, health, sports, gadgets etc.

The same is uploaded in Mendeley repository. First of all, the news is subjected to

clustering and then to summary generation using IFHG method. The summaries

generated by each of the above system is compared with human summaries created.

About 50 human summarizers are asked to create summaries for each of the data

set. The maximum repeating sentences among all the 50 summaries are output to

create the final human summary with which the existing systems and the IFHG

method are compared. The Rouge-L, Rouge-2 and Rouge-1 scores are calculated

and summarized in Table 6.2, Table 6.3 and Table 6.4. In the following tables ’P’

stands for the Precision, ’R’ stands for recall and ’F’ stands for F-measure. The

proposed work has shown an average precision of 0.88 , average recall of 0.84 and

average F-measure of 0.86. The similarity of the output of the proposed system

and the three online systems are compared with the human summaries as shown

in Fig. 6.6. For all the data sets, the proposed system generated summaries

having more than 90% similarity with human summaries. The method has a time

complexity of O(n2).

6.4 Conclusion

The system developed here has successfully modeled text using IFHG, where

words become nodes and sentences become hyperedges. Membership and

non-membership degrees are assigned for nodes. Based on that, membership

degrees and non-membership degrees of hyperedges are calculated. Various

morphological operations are defined and applied on IFHG. Summary of the text

is created by applying a filter operator on IFHG. The system has given a better
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Table 6.2: Rouge-L score

Data set IFHG Tools4noobs
size (words) P R F P R F
600 0.89 0.88 0.88 0.46 0.39 0.42
1071 0.81 0.78 0.79 0.33 0.23 0.25
2774 0.95 0.95 0.95 0.25 0.23 0.24
5044 0.67 0.69 0.68 0.19 0.16 0.17
6436 0.97 0.72 0.79 0.39 0.19 0.21

Data set Summarization.net Splitbrain.org
size(words) P R F P R F
600 0.27 0.31 0.29 0.49 0.51 0.50
1071 0.17 0.22 0.19 0.21 0.26 0.23
2774 0.22 0.35 0.24 0.36 0.48 0.39
5044 0.33 0.27 0.29 0.19 0.19 0.19
6436 0.29 0.27 0.28 0.29 0.32 0.31

Table 6.3: Rouge-2 score

Data set IFHG Tools4noobs
size(words) P R F P R F
600 0.87 0.88 0.88 0.51 0.45 0.48
1071 0.79 0.76 0.77 0.41 0.29 0.34
2774 0.97 0.97 0.97 0.60 0.55 0.58
5044 0.71 0.72 0.72 0.23 0.19 0.21
6436 0.95 0.69 0.79 0.31 0.17 0.23

Data set Summarization.net Splitbrain.org
size(words) P R F P R F
600 0.31 0.36 0.33 0.51 0.56 0.53
1071 0.07 0.09 0.08 0.17 0.20 0.18
2774 0.39 0.60 0.47 0.46 0.62 0.53
5044 0.46 0.41 0.43 0.20 0.21 0.21
6436 0.28 0.29 0.29 0.24 0.27 0.25

performance when compared to other existing systems. The summary filter has

shown more similarity with human summaries generated. The system combines

multiple text and treat it as a single one. The system can also be extended with

multiple documents, where important words can be modeled as nodes and

documents as hyperedges. In our system, there is only a single sub-hypergraph

with which morphological operations are defined. Other enhancements like

creating more than one sub-hypergraph and morphological operations with

intersection/union of those are also possible. These are explained in the next

chapter.



Text Summarization Using IFHG 137

Table 6.4: Rouge-1 score

Data set IFHG Tools4noobs
size(words) P R F P R F
600 0.88 0.92 0.91 0.58 0.55 0.57
1071 0.81 0.79 0.79 0.49 0.37 0.42
2774 0.97 0.97 0.97 0.69 0.66 0.67
5044 0.79 0.78 0.78 0.37 0.34 0.36
6436 0.97 0.74 0.84 0.49 0.34 0.39

Data set Summarization.net Splitbrain.org
size(words) P R F P R F
600 0.40 0.46 0.43 0.55 0.65 0.59
1071 0.19 0.25 0.22 0.29 0.35 0.32
2774 0.52 0.69 0.59 0.54 0.73 0.61
5044 0.55 0.5 0.52 0.34 0.38 0.36
6436 0.42 0.48 0.45 0.40 0.49 0.44

Figure 6.6: Similarity with human summary



Chapter 7

Filtering of IFHG and

multi-document summarization

A morphological filter [108] is nothing but an opening filter γ which is obtained

as δ ◦ ε or a closing filter φ which is obtained as ε ◦ δ.
An opening filter can again be classified as the following:

• Opening filter w.r.to nodes δn(εe(Y n)) for which the filtrate are nodes.

• Opening filter w.r.to hyperedges δe(εn(Y e)) for which the filtrate are

hyperedges.

A closing filter can be classified as the following:

• Closing filter w.r.to nodes εn(δe(Y n)) for which the results are nodes.

• Closing filter w.r.to hyperedges εe(δn(Y e)) for which the results are

hyperedges.

Now let us apply algebraic operations like union, intersection and complement

operations on these filters.

138
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7.1 Algebra of filter

Let us define HIF = [Hn, He, µn, µe, γn, γe], where Hn are the hypernodes

[n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15, n16, n17, n18, n19, n20, n21,

n22, n23, n24, n25] and He = [e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12] as given in

Fig. 7.1. Some nodes are of low priority (µn < 0.5), some nodes are of medium

priority (µn = 0.5) and few others are of high priority (µn > 0.5). Let XIF be

obtained by (α, β) cut on HIF/0.5 < α ≤ 0.7; β ≤ 1− α. Let YIF be obtained by

(α, β) cut on HIF/α ≥ 0.7; β ≤ 1− α. Here α corresponds to membership degree

and β corresponds to non-membership degree. The details of the hypergraphs

HIF , XIF and YIF are given in Fig. 7.1. Having given IFHGs H, X and Y , let us

define δn(Y e) as the set of all nodes within the hyperedges in Y . Now δe(Y n) is

the set of hyperedges in H which consists of nodes in Y . Let us define erosion

with the help of the operator ε. Now εe(Y n) is the set of all hyperedges in H

which consists of nodes of Y only. Similarly εn(Y e) is the set of all nodes in Y

but not in Y e′ . Now let us apply algebraic operations like union, intersection and

complement on these filters.

Proposition A: Let H be a parent IFHG, X and Y be sub-IFHGs, δ be the

dilation operator and ε be the erosion operator, then

δe(εn(X ∪ Y )e = δe(εn(Xe)) ∪ δe(εn(Y e)), (7.1)

where δe(εn(X ∪ Y )e is an opening filter w.r.to hyperedges

Proof: Consider L.H.S of eq(7.1). Let v be an arbitrary node in εn(X ∪ Y )e. i.e.,

v /∈ (X ∪ Y )e
′
; v ∈ (X ∪ Y )e. (7.2)

Let e be the edge which contains this v. i.e.,

e ⊆ δe(εn(X ∪ Y )e. (7.3)

Since v ∈ (X ∪ Y )e, this e may be present either in X or in Y . Consider R.H.S of

eq(7.1). Let v be a node in εn(Xe); i.e.,

v /∈ Xe′ ; v ∈ Xe. (7.4)
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Figure 7.1: (a) H, (b) X, (c) Y

Now δe(εn(Xe)) = {e1, e2..., ep} which contain v. Let u be a node in εn(Y e). i.e.,

u /∈ Y e′ ;u ∈ Y e. (7.5)

Now δe(εn(Y )e) = {ep+1, ..., ek}: let e be an arbitrary edge in {e1, e2..., ek}. This

e can be either a member of δe(εn(X)e) or δe(εn(Y )e). i.e.,

e ⊆ δe(εn(X)e) ∪ δe(εn(Y e)). (7.6)

Hence Eq(7.1) is implied by eq(7.3) and eq(7.6).

Example 7.1 Consider the IFHGs given in Fig. 7.1. Let us find the R.H.S of

eq(7.1), where we get εn(Xe) = {n31, n35, n36}. Thus we get
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Figure 7.2: (a) Proposition A (b)Proposition B (c)Proposition C

δe(εn(Xe)) = {e6, e10, e11}. Again in R.H.S of eq(7.1) we can find

εn(Y e) = {n32, n36, n37}. Thus we get δe(εn(Y e)) as the set {e7, e11, e12}. Now

δe(εn(X)e) ∪ δe(εn(Y e)) = {e6, e7, e10, e11, e12}. The L.H.S of eq(7.1),

δe(εn(X ∪ Y )e) gives the set {e6, e7, e10, e11, e12}.

Proposition B: Let H be a parent IFHG, X and Y be sub-IFHGs, δ be the

dilation operator and ε be the erosion operator, then

δe(εn(X ∩ Y )e) = δe(εn(Xe)) ∩ δe(εn(Y e)), (7.7)

where δe(εn(X ∩ Y )e) is an opening filter w.r.to hyperedges

Proof: Consider L.H.S of eq(7.7). Let v be an arbitrary node in εn(X ∩ Y )e. i.e.,

v ∈ (X ∩ Y )e; v /∈ (X ∩ Y )e
′
. (7.8)
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Let e be the edge which contains this v. Now we can say that

e ⊆ δe(εn(X ∩ Y )e). (7.9)

Consider the R.H.S of eq(7.7). Let δe(εn(Xe)) = {e1, ..., ep}. Let δe(εn(Y e)) =

{ep+1, ..., ek}. There will be an edge e in {e1, e2, ..., ek} which will be a member of

both δe(εn(Xe)) and δe(εn(Y e)). i.e.,

e ⊆ δe(εn(Xe)) ∩ δe(εn(Y e)). (7.10)

Eq(7.7) is implied by eq(7.9) and eq(7.10).

Example 7.2 Consider the IFHGs in Fig. 7.1. Let us find the R.H.S of eq(7.7),

where we get δe(εn(Xe)) = {e6, e10, e11}. Also δe(εn(Y e)) = {e7, e11, e12}. Now

δe(εn(Xe)) ∩ δe(εn(Y e)) = {e11}. Now considering L.H.S of eq(7.7) we get

εn(X ∩ Y )e = {n28}. Thus δe(εn(X ∩ Y )e) = {e11}.

Proposition C: Let H be a parent IFHG, X and Y be sub-IFHGs, δ be the

dilation operator and ε be the erosion operator, then (δ ◦ ε) is defined as:

δn(εe(X ∪ Y )n) = δn(εe(Xn) ∪ δn(εe(Y n), (7.11)

which is an opening filter w.r.to nodes.

Consider L.H.S of eq(7.11). Let e be an arbitrary edge in εe(X ∪ Y )n). Let v be

an arbitrary node in e. By definition of δn, this v can be a node either of X or of

Y . i.e., v ∈ X or v ∈ Y . Consider R.H.S of eq(7.11). Let {v1, v2.....vp} be the

nodes in δn(εe(Xn). By definition of δn , a node v is an edge of X. i.e., v ∈ X.

Let {vp+1, vp+2.....vk} be the nodes in δn(εe(Y n). By definition of δn, a node v is

an edge of Y. i.e., v ∈ Y Let v be a node in {v1, v2.....vk}. Thus v ∈ X or v ∈ Y .

This implies eq(7.11).

Example 7.3 Consider IFHGs in Fig. 7.1. Let us find the R.H.S of eq(7.3),

where we get εe(Xn) is the set of hyperedges {e6, e10, e11}. Thus δn(εe(Xn) is the

set of nodes {n7, n8, n12, n13, n14, n17, n18, n19, n31, n35, n36}. Again εe(Y n) is the

set of edges {e7, e11, e12}. Thus we get δn(εe(Y n) as the set of nodes

{n8, n9, n13, n14, n15, n18, n19, n20, n32, n36, n37}. Thus δn(εe(Xn) ∪ δn(εe(Y n) gives
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the set {n7, n8, n9, n12, n13, n14, n15, n17, n18, n19, n20, n31, n32, n35, n36, n37}.
Considering L.H.S, we get εe(X ∪ Y )n as the set of hyperedges

{e6, e7, e10, e11, e12}. Thus δn(εe(X ∪ Y )n) results in the set of nodes

{n7, n8, n9, n12, n13, n14, n15, n17, n18, n19, n20, n31, n32, n35, n36, n37}.

Proposition D: Let H be the parent IFHG, X, Y be the sub-IFHGs, δ be the

dilation operator and ε be the erosion operator. Then

δn(εe(X ∩ Y )n) ⊂ (δn(εe(Xn)) ∩ δn(εe(Y n))). (7.12)

Example 7.4: Consider the IFHGs given in Fig. 7.1. Let us find the L.H.S of

eq(7.12). Here εe(X ∩ Y )n is the set of edges which contains (X ∩ Y )n only. i.e.,

εe(X ∩ Y )n is the set {e11}. Now δn(εe(X ∩ Y )n) is the set of nodes within e11.

Thus δn(εe(X ∩ Y )n) = {n13, n14, n18, n19}. Now consider R.H.S of eq(7.12). Here

δn(εe(Xn)) is the set {n7, n8, n12, n13, n14, n17, n18, n19, n26, n27, n28}. Also

δn(εe(Y n)) = {n8, n9, n13, n14, n15, n18, n19, n20, n28, n29, n30}. Thus

δn(εe(Xn)) ∩ δn(εe(Y n)) = {n8, n13, n14, n18, n19, n28}. Thus we can see that

L.H.S ⊂ R.H.S.

Proposition E: Let H be the parent IFHG, X, Y be the sub-IFHGs, δ be the

dilation operator and ε be the erosion operator. Then

εe(δn(X ∪ Y )e) = εe(δn(Xe)) ∪ εe(δn(Y e)). (7.13)

Proof: Consider the L.H.S of eq(7.13) Let v be an arbitrary node in δn(X ∪ Y )e.

According to the definition of δn, v ∈ X or v ∈ Y . Let h be an edge which

contains this v. By definition of εe, this h ∈ X or h ∈ Y . Consider R.H.S of

eq(7.13). Let {h1, h2....hp} be the edges in εe(δn(Xe)). By definition of εe, an

edge h in {h1, h2....hp} is an element of x. i.e., h ∈ X. Let {hp+1, hp+2....hk} be

edges in εe(δn(Y e)). By definition of εe, an edge h in {h1, h2....hk} will be edge of

X or Y . i.e., h ∈ X or h ∈ Y . Eq(7.13) is implied by this.

Example 7.5: Consider the IFHGs given in Fig.7.1. In L.H.S of eq(7.13),

δn(X ∪ Y )e is the set of nodes within (X ∪ Y )e. i.e.,

δn(X ∪ Y )e = {n7, n8, n9, n12, n13, n14, n15, n17, n18, n19, n20, n31, n32, n35, n36, n37}.
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Now εe(δn(X ∪ Y )e) = {e6, e7, e10, e11, e12}. Consider R.H.S of eq(7.13). Here

δn(Xe) is the nodes within Xe. i.e., δn(Xe) is the set of nodes

{n7, n8, n9, n12, n13, n14, n15, n17, n18, n19, n31, n35, n36}. Thus εe(δn(Xe)) is the set

of edges which consists of these nodes only. i.e., εe(δn(Xe)) = {e6, e10, e11}. Now

δn(Y e) is the nodes in Y e. i.e., εe(δn(Y e)) is the set

{n8, n9, n13, n14, n15, n18, n19, n20, n32, n36, n37}. Thus εe(δn(Y e)) is the set of edges

which contains the above nodes only. i.e., εe(δn(Y e)) = {e7, e11, e12}. Therefore

εe(δn(Xe)) ∪ εe(δn(Y e)) = {e6, e10, e11} ∪ {e7, e11, e12} = {e6, e7, e10, e11, e12}.

Proposition F : Let H be the parent IFHG, X, Y be the sub-IFHGs, δ be the

dilation operator and ε be the erosion operator. Then

εe(δn(X ∩ Y )e) = εe(δn(Xe)) ∩ εe(δn(Y e)), (7.14)

where εe(δn(X ∩ Y )e) is a closing filter w.r.to hyperedges.

Proof:Consider L.H.S of eq(7.14). Let v be a node in δn(X ∩ Y )e. By definition

of δn, it is a node in both X and Y . Let e be an edge which contains this v. By

definition of εe, this is an edge in both X and Y . i.e., e ∈ X; e ∈ Y . Consider

R.H.S of eq(7.14). Let {u1, u2....up} be nodes in δn(Xe). By definition of δn,

these nodes are in X. Let {e1, e2......ep} be the edges which consist of these

nodes. By definition of εe, these edges are in X. Let {up+1, up+2....uk} be nodes

in δn(Y e). By definition of δn, these nodes are in Y . Let {ep+1, ep+2......ek} be the

edges which consist of these nodes. By definition of εe, these edge is in Y . Now

an edge e in {e1, e2......ek} is present both in X and in Y ; i.e., e ∈ X, e ∈ Y .

Example 7.6: Consider L.H.S of eq(7.14). There δn(X ∩ Y )e yields the set of

nodes {n13, n14, n18, n19, n36}. Now εe(δn(X ∩ Y )e) is the set of edges which

contains the above nodes only. i.e., εe(δn(X ∩ Y )e) = {e11}. Consider R.H.S of

eq(7.14). δn(Xe) is the set of nodes in Xe. i.e.,

δn(Xe) = {n7, n8, n12, n13, n14, n17, n18, n19, n31, n35, n36}. Now εe(δn(Xe)) is the

edges which contain the above nodes only. i.e., εe(δn(Xe)) = {e6, e10, e11}.
Likewise δn(Y e) is the set of nodes in Y e only which gives the set

{n8, n9, n13, n14, n15, n18, n19, n20, n32, n36, n37}. Now εe(δn(Y e) is the set of edges

which contains these nodes only. i.e., εe(δn(Y e) = {e7, e11, e12}. Now

εe(δn(Xe)) ∩ εe(δn(Y e)) = {e11}.
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Figure 7.3: Proposition D

Proposition G: Let H be the parent IFHG, X, Y be the sub-IFHGs, δ be the

dilation operator and ε be the erosion operator. Then

εn(δe(X ∪ Y )n) = εn(δe(Xn)) ∪ εn(δe(Y n)), (7.15)

where εn(δe(X ∪ Y )n) is a closing filter w.r.to nodes.

Proof: Consider L.H.S of eq(7.15). Let {e1, e2...., ek} be the edges in

δe(X ∪ Y )n. Let v be an arbitrary node in {e1, e2...., ek}. According to the

definition of εn(δe(X ∪ Y )n)), this v should be contained in {e1, e2...., ek} but not

in {e1, e2...., ek}′. Consider R.H.S of eq(7.15). Let {e1, e2...., ep} be the edges in

δe(Xn). Let {n1, n2, ...., np} be the nodes in {e1, e2..., ep}. According to the

definition of εn(δe(Xn)) these nodes are present in {e1, e2, .., ep} but not in

{e1, e2, .., ep}′. Let {ep+1, ep+2..., ek} be the edges in δe(Y n). Let

{np+1, np+2, .., nk} be the nodes in {ep+1, ep+2, .., ek}. According to the definition

of εn(δe(Y n)) these nodes are present in {ep+1, ep+2..., ek} but not in

{ep+1, ep+2..., ek}′. i.e., any node v in {e1, e2...., ek} is present in {e1, e2...., ek} but

not in {e1, e2..., ek}.
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Figure 7.4: (a) Proposition E (b)Proposition F (c)Proposition G

Example 7.7: Consider L.H.S of eq(7.15). Here δe(X ∪ Y )n is the set of edges

which contain nodes in (X ∪ Y )n which gives the set

{e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16}. Thus εn(δe(X ∪ Y )n) is

the nodes in the above edges but not present in their complement edges = all

nodes in H. Consider R.H.S of eq(7.15). Here δe(Xn) is the set of edges which

contain nodes in Xn = all edges in H. Now εn(δe(Xn)) is the set of nodes in

above edges but not in their complement = all nodes in H. Now δe(Y n) is the

set of edges which contains nodes in Y n which gives

{e2, e3, e4, e6, e7, e8, e10, e11, e12, e13, e14, e15, e16}. Hence εn(δe(Y n)) is the nodes in

the above edges, but not in their complement which is the set

{n3, n4, n5, n8, n9, n10, n13, n14, n15, n18, n19, n20, n21, n22, n23, n24, n25, n27, n28, n29,

n31, n32, n33, n35, n36, n37, n39, n40, n41}. Hence εn(δe(Xn)) ∪ εn(δe(Y n)) = all

nodes in H.
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Proposition H: Let H be the parent IFHG, X, Y be the sub-IFHGs, δ be the

dilation operator and ε be the erosion operator. Then

εn(δe(X ∩ Y )n) ⊂ εn(δe(Xn)) ∩ εn(δe(Y n)), (7.16)

where εn(δe(X ∩ Y )n) is a closing filter w.r.to nodes.

Example 7.8: Consider L.H.S of eq(7.16). Here δe(X ∩ Y )n is the set of edges

which consists of any element in (X ∩ Y )n = {e2, e3, e4, e6, e7, e8, e10, e11, e12}.
Now εn(δe(X ∩ Y )n) is the set of nodes in the above edges but not in their

complement edges which gives the set of nodes

{n3, n4, n5, n8, n9, n10, n13, n14, n15, n18, n19, n20, n27, n28, n29, n31, n32, n33, n35, n36, n37}.
Now consider R.H.S of eq(7.16). δe(Xn) is the set of edges which contain any

node in Xn which gives all edges in H. Now εn(δe(Xn)) = all nodes in H. Now

δe(Y n) is the set of edges which contain nodes in

Y n = {e2, e3, e4, e6, e7, e8, e10, e11, e12, e13, e14, e15, e16}. Hence εn(δe(Y n)) is the

nodes in the above edges, but not in their complement edges which gives the set

{n3, n4, n5, n8, n9, n10, n13, n14, n15, n18, n19, n20, n21, n22, n23, n24, n25, n27, n28, n29,

n31, n32, n33, n35, n36, n37, n39, n40, n41}. Hence εn(δe(Xn)) ∩ εn(δe(Y n)) is the set

{n3, n4, n5, n8, n9, n10, n13, n14, n15, n18, n19, n20, n21, n22, n23, n24, n25, n27, n28, n29,

n31, n32, n33, n35, n36, n37, n39, n40, n41}.

7.2 Application of filter in multi-document

summary

Multi-document summarization is an important area in the field of NLP. There

are many summarization methods developed so far. In this section let us see how

multiple documents can be represented using an IFHG assigning membership and

non-membership values to the nodes and hyperedges.
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Figure 7.5: Proposition H

7.2.1 Modeling multiple documents using IFHG

Let [HIF , H
n, He, µn, γn, µe, γe] be an IFHG as mentioned in Section 7.1. Let He

be the hyperedges, where a hyperedge ei represents a document Di. Let Hn be

the nodes where a node vj represents a keyword wj in the document. The same

is shown in Fig. 7.6. Therefore the number of hyperedges in the HIF will be

same as the number of documents considered for summarization and the number

of nodes in a hyperedge will be same as the number of keywords in that document.

The membership value for a node vj depends on the normalized TF − IDF value

and the priority of that word. Irrespective of the domain there are words which

are having high priority. For example words like important, famous, beautiful,

attractive, relevant etc are given high priority. So these words will have µn > 0.5.

For such words γn = 1− µn. There are words which are having very low priority.

Some sample words include notorious, expensive, least, badly etc. These words

are having γn < 0.5. So for such words µn = 1 − γn. Rest of the words are

given µn = γn = 0.5 as they are medium priority words. Once the nodes are

assigned with both membership degree (µn) and non-membership degree (γn), the

hyperedges are also assigned membership degree (µe) and non-membership degree

(γe) as per the rules in Section 7.1.
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Figure 7.6: Multiple documents as IFHG

7.2.2 System architecture

For the formation of IFHG, all the documents are subjected to preprocessing steps

like stop word removal and lemmatization. keywords in a document are found out

by considering the tf − idf of the words. Only words with tf − idf above a

threshold θ are considered for the construction of the IFHG. Once an IFHG is

formed as mentioned in Section 7.2.1, it can be partitioned in to sub-IFHGs based

on the absence of overlapping nodes between the hyperedges. Such partitions are

now document clusters. For each cluster, sub-IFHG Xi is created by applying an

(α, β) cut. This Xi is subjected to opening and closing filters as mentioned in

Section 7.1. The results of filter w.r.to hyperedges will be yield good documents

and results of filter w.r.to nodes will yield priority keywords. These priority words

combined with priority documents yield good summaries. If needed, the number

of parameters considered for assigning membership degree can be increased. The

architecture of the system is shown in Fig. 7.7. The algorithm is given in Fig. 7.8.
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Figure 7.7: Architecture of multi-document summary

Figure 7.8: Algorithm for multi-document summary filter
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Figure 7.9: Summary results

7.3 Results of multi-document Summary

The proposed system with multiple documents modeled as IFHG was tested with

different number of input documents. The system developed in python, and the

hypergraph created using python pygraph works for both Malayalam and English

documents. The difference between two systems lie in the stemming phase, where

in Malayalam, a stemmer developed using tree based method [106] is used. Porter

stemmer is being used for English documents. Rests of the modules are common for

Malayalam and English summarization system. The results obtained with various

test cases are given in Fig. 7.9. The results of the IFHG system is compared

with results of 50 human summarizers and Rouge-L, Rouge-2, Rouge-1 scores are

calculated and shown in Fig. 7.10.
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Figure 7.10: Rouge-scores

7.4 Conclusion

This chapter has presented a novel method which models multiple documents

using IFHG. While chapter 5 has modeled sentences as hyperedges and words as

nodes, this chapter has extended it to multiple documents by treating documents

as hyperedges and words as nodes. The system is tested with documents of

varying size and has shown better results when compared to human summaries

with a time complexity of O(n2). Documents in various domains are considered

for summarization. The priority levels, (α, β) cuts, range oriented (α, β) cuts and

union / intersection operations applied on the filters give different types of

summaries suitable for different applications. Here IFHG takes only less space

since care is taken to reduce the number of nodes. We have also developed a

system which models sentences as hyperedges and words as nodes. Such IFHG

modeling and filtering can be done in other areas like mobile networking, social

networking, image processing etc. Modeling medical reports as IFHG and

creating medical report summary is a future enhancement of this work.



Chapter 8

Results and Screenshots

Here two systems are developed, one which summarizes Malayalam documents and

another which summarizes English documents. Both the systems have the same

sub modules like preprocessing, stemming, clustering and summary generation.

The main difference between the two systems lies in the stemming phase.

8.1 Lemmatization phase

In the case of English summary system, the stemmer used is porter stemmer, while

in the case of Malayalam summary system, a tree based Malayalam lemmatizer is

developed.
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Figure 8.1: Malayalam input file

Fig. 8.1 shows a Malayalam input file which is input to the system. Preprocessing

of the document is done which involves removal of periods, commas, white spaces,

stop words etc. Tokenization and removal of periods result in an output shown in

Fig. 8.2. A snapshot of stopword file is shown in fig. 8.3.
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Figure 8.2: Removal of periods

Figure 8.6: Suffix-replacement-tree
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Figure 8.3: Stop word file

Tokens are subjected to lemmatization. The suffix replacement rules used to build

the tree based lemmatizer is shown in Fig. 8.4 and Fig. 8.5. As seen in Fig. 8.6, a

path in the tree will be a suffix and the leaves are storing the replacement. When

a path match with suffix is obtained, suffix is replaced with the respective leaf.

The lemmatized output and the time taken for lemmatizing each word is shown

in Fig. 8.7. We can see the following replacements:

• thazhvarangalil (angalil:am)−−−−−−−→ thazhvaram

• valarnnu (rnnu:ruka)−−−−−−−→ valaruka

• neelagiriyude (yude:null)−−−−−−→ neelagiri
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Figure 8.4: Malayalam lemmatizer in phpmyadmin

Figure 8.5: Malayalam lemmatizer sorted in phpmyadmin
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• uyarangalilekku (lilekku:l)−−−−−→ uyarangal

• thudangiyittu (yittu:null)−−−−−−→ thudangi

• panju (u:yuka)−−−−−→ payuka

• kazhinju (u:yuka)−−−−−→ kazhiyuka

• avarthichittum (chittum:kkuka)−−−−−−−−−→ avarthikkuka

Here we can see that on finding a matching suffix, it is replaced with replacement.

But stemmers developed in many languages just strip the suffix, which yield the

stem word. Since the proposed lemmatizer is yielding the root word rather than

the stem word, it is more meaningful. The suffix replacement rules are placed in

database using phpmyadmin and tree is created using python. Python pickling

technique makes the tree permanent.
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Figure 8.7: Lemmatizer output and the time taken for each word

8.2 Clustering phase

Now let us see the results of clustering phase, where the text is modeled as a

weighted hypergraph. Clustering is done by spectral partitioning of the similarity

matrix of the hypergraph. Fig. 8.8 shows a sample Malayalam input file given

for clustering. It consists of a text pertaining to two topics. Some sentences are

related to travel and others related to politics. Number of unique words in the

text are found out. It is taken as the number of nodes in the hypergraph. The

number of sentences in the text form the number of hyperedges. The hypergraph

formed is shown in Fig. 8.9 and Fig. 8.10. The eigen values calculated for the

similarity matrix is shown in Fig. 8.11. The eigen vector of the eigen value with

maximum absolute value is shown in Fig. 8.12. Splitting the eigen vector based

on positive and negative values are illustrated in Fig. 8.13. The process iterates
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until there are no change in sign or number of elements is less than 2. The cluster

output is shown in Fig. 8.14.

Figure 8.8: Malayalam input for clustering
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Figure 8.9: Hypergraph modeling of the input

Figure 8.11: Eigen values of the similarity matrix
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Figure 8.10: Hypergraph edges and nodes

Figure 8.12: Eigen vector
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Figure 8.13: Splits in eigen vector
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Figure 8.14: Iterative cluster formation
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8.3 English system

Now we will see the results of English clustering system developed using IFHG.

The system is being run in google cloud system with 30GB memory with 8 cores.

The data set is uploaded in Mendeley Data set available as

http : //dx.doi.org/10.17632/kf4rr6zth6.1 The data set is shown in Fig. 8.15

and 8.16. It consists of data belonging to various domain like travel, politics,

medical, gadgets and automobile. Here also the text is first subjected to

preprocessing, stemming using porter stemmer and clustering using spectral

partitioning of weighted hypergraph. Fig. 8.17 is a snapshot of the English input

given in google cloud for clustering. Fig. 8.18 is the word frequency result and

Fig. 8.19 depicts the IFHG formed from the text, Fig. 8.20 shows the

conditional dilation, Fig. 8.21 reveals the erosion and summary and Fig. 8.22

shows the summary of each cluster output. As in the figure there are two

clusters. For each cluster two outputs are seen. First one contains cluster with

stemmed words. In the second, stemmed words are mapped back to original.

Figure 8.15: English input in mendeley data set
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Figure 8.16: English input in mendeley data set

Figure 8.17: Multi-cluster input in English
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Figure 8.18: Term frequency of input English text
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Figure 8.19: IFHG of input English text
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Figure 8.20: Conditional dilation of X
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Figure 8.21: Erosion of X to generate summary
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Figure 8.22: Multi-cluster output in English
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8.4 Multi-document IFHG

IFHG modeling is also applied to multiple documents where documents are

modeled as hyperedges and keywords as nodes. In multi-document IFHG

documents form the hyperedges and keywords form the nodes. In the previous

modeling sentences were the hyperedges and words were the nodes. Let us see

some outputs obtained when this multiple document IFHG is run in google cloud

platform. Fig. 8.23 and Fig. 8.24 are two input documents given for summary

generation. Fig. 8.25 is the multi-document IFHG and 8.26 gives the sub-IFHG

formed. The morphological operations applied on this IFHG is given in Fig.

8.27, the final summary result id shown in Fig. 8.28.

Figure 8.23: English input1 for multi-document IFHG
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Figure 8.24: English input2 for multi-document IFHG
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Figure 8.25: Multi-document IFHG formed from the input
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Figure 8.26: Sub-IFHG formed
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Figure 8.27: Morphological operations on IFHG
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Figure 8.28: Multi-document summary from IFHG filter

8.5 Advantages of IFHG modeling and summary

1. Hypergraph structure of the text is more meaningful when compared to the

normal graph structure of text.

2. Hypergraph actually shows, how the entire text is structured and how the

sentences are related to each other.
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3. The membership and non-membership values given to the nodes and

hyperedges show the wantedness and unwantedness of the words and

sentences.

4. Multi-document IFHG created is having only less number of nodes. This

reduces the space required for storing the data structure.

5. Priority levels are not limited to high, medium and low. Different levels of

priorities like very high, high, medium high, low, very low can be set with

the help of the membership and non-membership degrees of the words as

well as the documents.

6. Increasing the threshold of (α, β) cut results in a very short summary, where

by reducing it results in a lengthy summary.

7. Range oriented (α, β) cuts like value1 < α < value2 are also possible which

results in different sets of summaries.

8. Union/intersection of filters result in union/intersection of keywords. Since

filters w.r.to hyperedges result in selection of good documents, they combined

with node filters result in summary. Union /intersection of summaries are

also possible.

8.6 Disadvantages of the system

1. Since word sense disambiguation is not implemented, the system expects

unambiguous text as input.

2. If the input is ambiguous, it may affect the performance of the clustering

phase.

3. Since all words except stop words are subjected to lemmatization, the

performance depends on lemmatizer also.

4. Lemmatizer makes the system language depended, even though the rest of

the modules does not depend on the language. If the system need to be

extended to other languages, a stemmer in their own language is required.
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8.7 Conclusion

This is a premier work which models text as IFHG with words modeled as nodes

and sentences modeled as hyperedges. This is a novel work which applies

morphological filtering on IFHG. This is a premier work which creates document

summary using morphological filter. This is also the first work which models

multiple documents as IFHG where nodes are the keywords and hyperedges are

the documents. Better results are obtained when compared with other online

summary systems. The summary generated by these two systems have shown

more similarity with human summaries. Further extensions of the work are

possible with other graph operations on IFHG. System is yet to explore the

application of many hypergraph operations like graph join, cartesian product

etc., on text IFHG. This IFHG modeling can be extended to other areas like

image processing, networking etc.

8.8 Future enhancement

This IFHG modelling can be extended to modeling of crimes in various police

stations across Kerala and developing a Criminal Policing System, which

provides alerts based on crime history. The work in this direction has already

been started as a project funded by Kerala Technical University - Centre for

Research and Development(KTU-CERD). The project aims in developing a

fuzzy based crime/theft alert system for criminal policing system. The goals of

the project are the following:

• Predict probability of crime by combining information from multiple police

stations.

• Give alerts to public and authorities.

• Create a website which can be used by both police and public.

• Create a mobile app for both police and public which is connected to Google

map.

This project models an intuitionistic fuzzy hypergraph by considering the crime

categories, individual crimes and the criminals involved in each crime.
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As specific examples of wide applicability of IFHG models, we have already

mentioned medical report processing and social network analysis in chapter 4.



Appendix A

Malayalam Lemmatizer

The Malayalam Lemmatizer developed using php-myadmin uses nearly 1135

suffix replacement rules. The lemmatizer is developed in two methods:

• Dictionary Based method

• Tree based method

The suffix replacement rules are sorted alphabetically in the order of suffix. They

are shown in the following figures.
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Figure A.1: Suffix Replacement rules starting with ’ka’/’ga’
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Figure A.2: Suffix Replacement rules starting with ’ga’-’njnja’
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Figure A.3: Suffix-replacement rules starting with ’da’ - ’tha’
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Figure A.4: Suffix-replacement rules starting with ’na’ - ’ma’
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Figure A.5: Suffix-replacement rules starting with ’mba’ - ’ra’



Text Summarization Using IFHG 187

Figure A.6: Suffix-replacement rules starting with ’ra’ - ’la’
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Figure A.7: Suffix-replacement rules starting with ’la’ - ’sa’
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Figure A.8: Suffix-replacement rules starting with ’sha’ to ’sa’
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Figure A.9: Suffix-replacement rules starting with ’u’ to ’oo’
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