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ABSTRACT

Signal processing domain has seen tremendous growth in research and applications over

the past few decades. Digital Signal Processing (DSP) algorithms are widely used in

image and video processing systems. These systems find applications in the field of

multimedia, digital TV, radio, biomedical imaging, weather forecasting and gaming.

With the increased capacity of transistors in a chip, realization of many of these appli-

cations is possible. Digital image processing is a field of DSP where digital images are

processed by means of digital computers. Most of the steps in digital image processing

like image analysis, image reconstruction, image enhancement and compression can be

performed using Fast Fourier Transform (FFT) algorithm. Evolution of deep learning

techniques enabled implementation of most of the image processing applications with

high performance and accuracy. Most popular deep learning technique used for image

classification and detection task is Convolutional Neural Network (CNN), which is a

variant of deep neural network. There exist several hardware and software solutions for

implementing these algorithms. Hardware implementations provide better performance

per watt and are more suited for real-time embedded applications compared to software

implementations. This thesis focus on hardware acceleration of two dimensional FFT

and Convolutional Neural Networks for image processing systems.

In the first part of thesis, a two dimensional (2D) FFT architecture for image restora-

tion and reconstruction is presented. A 2D FFT architecture using cascade of two radix-

43 FFTs based on a parallel unrolled radix-4 butterfly unit is proposed in this work. A

64×64 point 2D FFT architecture based on radix-43 algorithm using a parallel unrolled

radix-43 FFT has been presented in this work. Radix-43 architecture in this work is a

memory optimized parallel architecture which computes 64 point FFT, with least exe-

cution time. Row-column decomposition of two radix-43 blocks is used to compute a

2D FFT. Proposed architecture has been implemented in UMC 65nm 1P10M CMOS

technology with a maximum clock frequency of 312.5 MHz and area of 1.22mm2. The

architecture is also implemented in Xilinx Virtex-7 FPGA and the results are compared
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with state -of-art implementations. Second part of this thesis is focused on an efficient

hardware accelerator for Convolutional Neural Networks (CNNs), which are widely

used in image classification tasks. Recent researches have shown the effectiveness of

FPGA as a hardware accelerator for CNNs which can deliver high performance at low

power budgets. Majority of computations in CNNs involve 2D convolution. Winograd

minimal filtering based algorithm is the most efficient technique for calculating convo-

lution for smaller filter sizes. CNNs also consist of fully connected layers which are

computed using General Element-wise Matrix Multiplication (GEMM). In the second

work, an exploration of various algorithms for computing convolution layers in CNN

is performed and complexity of these algorithms are compared. A unified architec-

ture named UniWiG is proposed, where both Winograd based convolution and GEMM

can be accelerated using the same set of processing elements. This approach leads to

efficient utilization of FPGA hardware resources while computing all layers in CNN.

We have mapped popular CNN models like AlexNet, VGG-16 and ResNet-18 onto

the proposed accelerator and the measured performance compares favorably with other

state-of-art implementations.

KEYWORDS: Digital Signal Processing; Deep Learning; Fast Fourier Transform;

FPGA; CNN; Hardware acceleration; Performance.
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CHAPTER 1

Introduction

Rapid advancements in science and technology has paved path for researches in de-

veloping machines which have faster processing capabilities than human brain. Image

processing and machine learning are currently active areas of research due to their wide

range of applications like surveillance, safety, medical field, games and entertainment

and so on. Digital Image Processing (DIP) refers to processing of digital images using

digital computers as described in Gonzalez and Woods (2008). Fundamental steps in

digital image processing is explained in Fig. 1.1 Gonzalez and Woods (2008). Some of

these processes are acquisition, image enhancement, image restoration and reconstruc-

tion, color image processing, wavelets and multi-resolution processing, compression,

morphological processing, segmentation, representation, object detection and recogni-

tion. An image is captured by the sensor (or a camera) in image acquisition stage. In

image enhancement, an image is manipulated to get a suitable result compared to the

actual image, depending on the application. Image restoration and reconstruction refers

to improvements in the appearance of an image. In color processing, the color of an

image is used to extract certain features. Wavelets and compression techniques are used

to reduce the size of an image. In morphological processing, feature extraction for rep-

resentation of shape is performed. Image segmentation is one of the difficult operations

in DIP, where the objects are separated from the background of the image. Represen-

tation and description can be either of two types, namely, boundary representation or

region representation. Recognition refers to labeling the image based on the descrip-

tors. Interaction between these modules is controlled by ’Knowledge Base’. Most of

these processes can be performed using Digital Signal Processing (DSP) algorithms

like Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT) and machine

learning algorithms.

Image reconstruction is computationally demanding operation and a standard CPU

or computer is not an efficient solution for performing real-time image reconstruction.

A digital image processing system consists of sensors, specialized image processing



Figure 1.1: Digital Image Processing Gonzalez and Woods (2008)

hardware and software, computer, storage devices and displays. Frame rate and res-

olution of the sensor and reconstruction time are important factors which affect the

performance of the image processing system. For performing certain signal processing

operations where speed or performance is a critical parameter, hardware accelerators

play key role. This thesis describes about hardware accelerators used in DIP systems

for improving the performance. In this chapter, motivation for this research, along-with

the objectives and scope of this thesis are presented.

1.1 Motivation, Objective and Scope

Researches in digital image processing has witnessed tremendous advances in the past

few years which has become an interesting area for researchers all over the globe. Digi-

tal signal processing algorithms are the key components in majority of image processing

applications. Hence efficient implementations of these algorithms have become a vital

part in realizing these applications in a real-time environment. Fast Fourier Transform

(FFT) and Convolutional Neural Networks (CNNs) are the two key techniques used in

many phases in digital image processing systems. There exist several hardware and

software solutions for FFT implementation. Hardware implementations provide better
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performance per watt and are more suited for real time embedded applications. Since

FFT is a computationally intensive operation, realizing an output reordered FFT in

hardware has become a challenging task. Most of the hardware accelerators for FFT do

not perform output reordering, considering that the succeeding tasks or modules will

take care of the reordering issues. Otherwise, in addition to FFT module, another re-

ordering block will be present, which increases the hardware cost. The main objective

of first part of this thesis is to develop a two dimensional (2D) FFT architecture which

can perform data reordering without extra hardware cost. Reduction of intermediate

memory, thereby reducing the latency and improving the FFT computation time and

performance is also aimed in this thesis.

In the second part of this thesis, a high-performance Convolutional Neural Network

(CNN) accelerator for image classification and segmentation is presented. Computa-

tional complexity of CNNs come from convolutional layers, which account for 90% of

the computations in CNN Huimin Li et al. (2016). Deployment of CNNs on embedded

systems with lower processing power and smaller power budget is a challenging task.

Recent researches have shown the effectiveness of Field Programmable Gate Arrays

(FPGA) as a hardware accelerator for CNNs which can deliver high performance at

low power budgets. Majority of computations in CNNs involve 2D convolution. Al-

gorithms like conventional or direct convolution, FFT based convolution and Winograd

minimal filtering are generally used for implementing convolutional layers Shen et al.

(2018); Lavin and Gray (2016). Suitable algorithm should be selected for realizing var-

ious convolution layers of a model, based on input feature size and filter size. Winograd

minimal filtering based algorithm Winograd (1980) is the most efficient technique for

calculating convolution for smaller filter sizes Ahmad and Pasha (2019). CNNs also

consist of fully connected layers which are computed using General Element-wise Ma-

trix Multiplication (GEMM). Most of the researchers use dedicated processing elements

for performing Winograd convolutions. The drawback here, is the need for separate pro-

cessing elements to accelerate convolutional layers and fully connected layers, which

result in severe under-utilization of resources.

Winograd algorithm is suited only for convolutional layers with small kernel sizes.

In case of the CNN model AlexNet Krizhevsky et al. (2012), first convolutional layer

needs direct convolution and other convolutional layers can be efficiently accelerated
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using Winograd convolution. If we can perform direct convolution, Winograd convo-

lution and fully connected layer computation using the same compute resources, we

can achieve significant savings in hardware. The main objective of the second part of

this thesis is to develop an efficient hardware accelerator for CNNs, which are widely

used in image classification tasks. This work presents a unified architecture named Uni-

WiG, where both Winograd based convolution and GEMM can be accelerated using the

same set of processing elements. This approach leads to efficient utilization of FPGA

hardware resources while computing all layers in CNN.

1.2 Choosing a Solution

Selection of a suitable platform for implementation is a challenging task. Several tech-

nology solutions are available for implementation of signal processing tasks. Digital

Signal Processors (DSP) are suited for implementing signal processing tasks, but they

give very less throughput. Similar is the case with General Purpose Processors (GPP).

Their power consumption is also very high. Hence software solutions for DSP im-

plementations are not very efficient. Graphics Processing Units (GPU) also consume

high power and are rarely used for embedded systems. Application Specific Integrated

Circuit (ASIC) solutions give better performance with limited flexibility. Field Pro-

grammable Gate Arrays (FPGA) are flexible and gives high performance, with decent

power consumption. FFT processors in the first work are implemented both in ASIC

and in FPGA for evaluating the performance.

CNN is the most commonly used algorithm for image classification. Although DNN

and CNN algorithms have been in existence over a long period of time, practical appli-

cation of these algorithms started recently only. These algorithms are massively com-

pute intensive and training the network can take multiple days to complete. Only with

the deployment of GPUs, significant improvement has been achieved in bringing down

the training time so as to be used in real life applications.

Most of the operations in CNNs can be reduced to matrix multiplication operations

which consist of significant amount of parallelism. GPUs provide a platform for eas-

ily parallelizing matrix multiplication operation and thus improve the performance of
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CNNs. However, GPU implementation of CNNs suffer from high power consump-

tion which prevents its adoption in embedded applications Huimin Li et al. (2016). A

dedicated hardware accelerator for CNN is required to achieve maximum performance

at relatively lower power consumption. FPGA based implementations give significant

performance improvement at acceptable power dissipation.

1.3 Overview of Fast Fourier Transforms

Over the past few decades signal processing domain has seen explosive growth in re-

search and applications. Discrete Fourier Transform (DFT) is one of the essential part in

digital signal processing and communication systems. Fast Fourier Transforms (FFTs)

are widely used in image/video processing, Cognitive Radio, speech processing and

various biomedical applications. FFT is a faster technique to perform Discrete Fourier

Transforms (DFT) Proakis and Manolakis (1996). Cooley-Tukey is the common al-

gorithm to find FFT of a sequence, since it reduces the complexity from O(N2) to

O(Nlog2N) as compared to DFT J.W.Cooley and J.W.Tukey. (1965). One dimensional

Discrete Fourier Transform for x(n), anN point sequence, can be computed as in Equa-

tion (1.1) Proakis and Manolakis (1996)

X(k) =
N−1∑
n=0

x(n)W nk
N k = 0, 1, 2, ...N − 1 (1.1)

where WN , the Twiddle Factor, denotes the N th primitive root of unity, with its expo-

nent evaluated to modulo N and is introduced by Equation (1.2).

WN = e−2πi/N (1.2)

An N-point inverse DFT (IDFT) can be calculated as given in Equation 1.3.

x(n) =
1

N

N−1∑
k=0

X(k)W−nk
N n = 0, 1, 2, ...N − 1 (1.3)

IDFT requires few more logic like division and conjugate operation apart from the logic

applied in DFT. Conventional image reconstruction uses inverse Fast Fourier Transform

techniques. Inverse FFT (IFFT) is directly computed from FFT, and hence separate
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architecture for IFFT is not discussed in research papers.

Multidimensional Fourier Transforms find wide range of application in signal pro-

cessing systems. Multidimensional FFTs frequently find applications in video and im-

age processing like reconstruction, medical imaging, radar signal processing etc. Image

reconstruction is a key component in signal processing applications like medical imag-

ing, computer vision, face recognition etc. Reconstruction of images is an important

operation in most of these applications and involves complex computations in real time.

Two Dimensional (2D) FFTs which are used for reconstructing image from raw data is

computationally intensive and needs efficient implementations for catering to real time

applications. These applications require large memory sizes to support large size im-

ages. Therefore it is necessary to have an FFT architecture which optimizes the memory

but supports various image sizes, and provides the required throughput. For hardware

mapping of the architecture, a 2D FFT is split into one dimensional FFTs which are

performed over rows and then columns, generally referred as row-column decomposi-

tion. Equation (1.4) gives a relation between the hardware architecture parameters and

system performance Lenart (2008).

f × T = 2N2 × frate (1.4)

Area ∝ T

where, f denotes system frequency, T gives throughput, N is the size of the FFT, frate

is the frame rate and Area is the complexity of the architecture.

1.4 Overview of Convolutional Neural Networks

Deep Neural Networks (DNN) have revolutionized a variety of applications in varying

domains like autonomous vehicles, weather forecasting, cancer detection, surveillance,

traffic management, pattern recognition, image classification and speech recognition.

Convolutional Neural Network (CNN) is a variant of DNN, where computations are

performed as convolutions. CNN is the state-of-art technique for many machine learn-

ing tasks in image and video processing domain. CNN is the most commonly used

algorithm for image classification and recognition. Most of the layers in CNN are not
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Figure 1.2: Convolutional Neural Network Model

fully connected layers as in other deep learning architectures. Instead, images are di-

vided into tiles and convolution operation is performed to each tile with a filter (kernel)

tile. The filter coefficients or weights are common for all tiles in a single image vec-

tor. Hence the number of weights for a convolution layer is considerably less than an

equivalent fully connected layer. Typically CNNs consist of three main layers namely,

convolutional layer (CONV) which performs feature extraction, max pooling (POOL)

which is for sub sampling and fully connected (FC) layer for classification. A typical

CNN is shown in Fig. 1.2.

Various CNN models were proposed from ImageNet Large-Scale Visual Recogni-

tion Challenge (ILSVRC) in the last few years, with varying number of CONV layers

and filter sizes. Popular CNN models include AlexNet, which won ImageNet Challenge

in 2012 Krizhevsky et al. (2012), Overfeat (ImageNet 2013) Sermanet et al. (2014),

VGG Simonyan and Zisserman (2015) and GoogLeNet Szegedy et al. (2015) (Ima-

geNet 2014) and ResNet (ImageNet 2015) He et al. (2016). AlexNet Krizhevsky et al.

(2012), has five CONV layers and three FC layers. Overfeat Sermanet et al. (2014)

also has five CONV and three FC layers, but with more number of filters. VGG has

different models like VGG-11, VGG-13, VGG-16 and VGG-19, which has deeper lay-

ers Simonyan and Zisserman (2015). GoogleNet Szegedy et al. (2015) goes much more

deeper, with 22 layers. ResNet He et al. (2016) has exceeded human level accuracy,

with more than 34 layers.

Convolutions in a CNN are two dimensional (2D) operations where the input image

is convolved with kernel, which is a multiply and accumulate (MAC) operation. One

dimensional convolution which operates on two signals I(x) and f(x) is described as

in (1.5).

f(x) ∗ I(x) =
+∞∑

k=−∞

f(x)I(x− k) (1.5)
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A two dimensional (2D) convolution can be computed from one dimensional convolu-

tion as in (1.6).

f(x, y) ∗ I(x, y) =
+∞∑

u=−∞

+∞∑
v=−∞

f(u, v)I(x− u, k − v) (1.6)

This is the generic mathematical formula for computing convolutions. Now consider an

M × N input image (I) and P × Q kernel (F), which slides over the input image with

a stride S to give R × C output (O). In 2D convolution, each value of the input image

is multiplied with each element of the convolution kernel and the outputs are summed

together. Pseudo code for two dimensional convolution is given in Algorithm 1.

Algorithm 1: Pseudo code for 2D Convolution
M ×N is the input image size.
P ×Q is the kernel size.
S is the stride of sliding window.
R× C is the output image size.
for (r = 0; r < R; r ++)
for (c = 0; c < C; c++)
O[r][c]+ =

∑P−1
i=0

∑Q−1
j=0 F [i][j]* I[r + S + i][c+ S + j]

In CNNs, there will be multiple channels of input and kernels, and the outputs from

each channel are added up together to get the final result. A summary of CONV layers

of various popular CNN models is given in Table 1.1.

1.5 Contribution of the Thesis

Hardware acceleration of signal processing algorithms are on high demand for real-

time embedded systems. The purpose of this work is to develop efficient hardware

architecture for digital image processing systems. In the first part of thesis, an efficient

two dimensional (2D) FFT architecture for image reconstruction, based on radix-43

algorithm has been presented. Here, a 64 × 64 point 2D FFT architecture based on

radix-43 algorithm using a parallel unrolled radix-43 FFT as the basic block has been

proposed. Proposed radix-43 architecture is a memory optimized parallel architecture

which computes 64 point FFT, with least execution time. Here we use row-column

decomposition of two radix-43 blocks to compute a 2D FFT. Following are the key

8



Table 1.1: CONV Layers of Various CNN Models

AlexNet Overfeat VGG-16 GoogLenet ResNet

Krizhevsky
et al.
(2012)

Sermanet
et al.
(2014)

Simonyan
and Zis-
serman
(2015)

Szegedy
et al.
(2015)

He et al.
(2016)

Featurein 224×224 231×231 224×224 224×224 224×224

CONV
layers

5 5 13 57 53

Filters 11, 5, 3 11, 5, 3 3 1, 3, 5, 7 1, 3, 7

Stride 4, 1 4, 1 1 1, 2 1, 2

Parameters 2.3 M 16 M 14.7 M 6.0 M 23.5 M

MAC 666 M 2.67 G 15.3 G 14.3 G 3.86 G

contributions of first part of the thesis.

• A novel architecture for computing two dimensional FFT based on radix-43 algo-
rithm

• An efficient output reordering technique using the six-bit control signal

• Memory reduction within 1D FFT and optimizing the intermediate memory be-
tween two 1D FFTs from N2 to N .

• ASIC and FPGA implementations of the proposed architecture were performed.
Comparison of proposed work with the state-of-art implementations and show
significant improvement in computation time and the comparable area in terms of
slice look-up tables (LUTs).

Proposed architecture has been implemented in UMC 65nm 1P10M CMOS tech-

nology with a maximum clock frequency of 312.5 MHz and area of 1.22mm2. The

architecture is also implemented in Xilinx Virtex-7 FPGA and the results are compared

with state-of-art implementations.

In the second part of this thesis, various techniques for implementation of convolu-

tion layers and fully connected layers in CNNs were discussed. Training and inference

of different CNN models on various platforms were discussed. Based on the analysis

of algorithms and hardware availability, a high performance CNN accelerator based on

Winograd minimal filtering and general matrix multiplication (GEMM) is presented. A

unified, blocked Winograd-GEMM architecture for accelerating CNNs on FPGA has

been proposed, where, CONV layers and FC layers can be implemented using efficient
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hardware utilization. An architecture, where both GEMM and Winograd filtering can

be performed using the same processing element arrays has been presented. Block ma-

trix multiplication scheme has been used for improving the efficiency and bandwidth.

We propose a blocked version of Winograd minimal filtering algorithm for higher per-

formance of the accelerator. Following are the key contributions of this work.

• Design space exploration of various algorithms for performing convolutions in
CNN has been performed. Also, training and inference time of various layers
in the feed forward network of AlexNet, VGG-16 and ResNet on platforms like
GPP, GPU, server and Jetson TX2 board were performed.

• A unified architecture for performing general element-wise matrix multiplication
(GEMM) as well as Winograd filtering algorithm using the same array of pro-
cessing elements (PEs) has been proposed. Such a unified architecture gives the
most efficient implementation for CONV layers irrespective of the filter sizes and
also for FC layers. Winograd filtering is transformed to a GEMM operation as
proposed in Lavin and Gray (2016) so that PEs for GEMM can be reused for
Winograd algorithm.

• A novel algorithm is proposed, which transforms Winograd minimal filtering al-
gorithm into blocked general element-wise matrix multiplication which targets
optimal utilization of BRAMs and DDR bandwidth.

• An analytical model for estimating performance and BRAM usage has also been
proposed, using which appropriate tile sizes for each layer can be identified,
which can be used to optimize the tile size for a given convolution layer.

• The proposed architecture has been used to accelerate popular CNN models like
AlexNet, VGG-16 and ResNet-18 models on Xilinx XC7VX690T FPGA. Com-
parison of various CNN implementations has been performed to show the effi-
ciency of proposed accelerator.

To maximize the resource utilization, we have designed the architecture of the ac-

celerator, a reusable one. Conventionally, CNNs like AlexNet, VGGNet etc follw a

layer-by-layer sequential operation. A layer-by-layer computation flow of CNN has

been designed in this work. Proposed architecture has been implemented on Xilinx

XC7VX690T FPGA using both single precision floating point arithmetic and 16-bit

fixed point arithmetic. Since various layers in a CNN are to be sequentially exectuted

even in an end-to-end implementation, FPGA resources remain the same.
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1.6 Organization of the Thesis

The main theme of this research work is to develop efficient architectures for high per-

formance image processing applications, in a real-time scenario.

Chapter 2 covers various existing FFT algorithms and architectures in literature.

Hardware complexity analysis of different architectures and output reordering tech-

niques are also discussed in this chapter. Secondly, a survey of various CNN acceler-

ators implemented using GPU, ASIC and FPGA are carried out and explored different

CNN implementations. A study of CNN architectures based on different convolution

algorithms has also been conducted.

Chapter 3 discusses radix-43 based two dimensional FFT architecture. Here, a 2D

FFT architecture based on cascade of two unrolled parallel-pipelined radix-43 FFT has

been discussed. A 64×64 point 2D FFT architecture is implemented in ASIC and

FPGA and comparison has been performed with various existing 2D FFT architectures

to show the effectiveness of our architecture.

In Chapter 4, an exploration of various convolution algorithms are performed. Mer-

its and demerits of various convolution schemes for CNN are discussed in this chapter.

Need for a unified Winograd-GEMM architecture is also briefly explained. In this chap-

ter, training and inference of popular network models in CPU, GPU and Jetson TX2

platforms are also presented. An FPGA based architecture for accelerating AlexNet

CNN model is also discussed in this chapter.

In Chapter 5, blocked version of Winograd minimal filtering algorithm is presented.

Unified Winograd-GEMM architecture for accelerating CNNs on FPGA is proposed in

this chapter. Blocking techniques for improving the performance are also discussed.

An analytical model for estimating performance and BRAM usage has also been pro-

posed, using which appropriate tile sizes for each layer can be identified. Floating point

implementation of AlexNet model on FPGA is described here and compared with the

existing architecture.

In Chapter 6, FPGA implementation details of proposed CNN architecture in fixed

point arithmetic are explained and the results are discussed. Fixed point implemen-

tation of AlexNet, VGG-16 and ResNet-18 models are performed and the results are
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evaluated. Comparisons with state-of-art implementations are also done in this chapter.

Chapter 7 presents the conclusions and future directions of this research work.
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CHAPTER 2

Background and Related Works

In this chapter, hardware implementations of various two dimensional (2D) FFT ar-

chitectures are described. Hardware and software accelerators for convolutional neural

networks, from various research groups are also discussed in this chapter.

2.1 FFT Algorithms and Architectures

Cooley-Tukey is the common algorithm to find DFT of a sequence. DFT can be com-

puted in a faster method using FFT, since it reduces the complexity from O(N2) to

O(Nlog2N) as compared to DFT J.W.Cooley and J.W.Tukey. (1965). One dimensional

Discrete Fourier Transform for x(n), an N point sequence, can be computed as Proakis

and Manolakis (1996)

X(k) =
N−1∑
n=0

x(n)W nk
N k = 0, 1, 2, ...N − 1 (2.1)

where WN , the Twiddle Factor, denotes the N th primitive root of unity, with its expo-

nent evaluated to modulo N and is introduced by the Equation (2.2),

WN = e−2πi/N (2.2)

Each of the coefficients in a DFT requires N complex multiplications and N − 1 com-

plex additions. Hence, for an N-point DFT, N2 complex multiplications and N(N − 1)

complex additions are required. An N-point inverse DFT (IDFT) can be calculated as

given in Equation (2.3),

x(n) =
1

N

N−1∑
k=0

X(k)W−nk
N n = 0, 1, 2, ...N − 1 (2.3)

IDFT requires few more logic like division and conjugate operation apart from the logic

applied in DFT.



Figure 2.1: Butterfly diagram of Radix-2 DIF FFT

2.1.1 Radix-2 Cooley-Tukey FFT

Most of the applications which uses Cooley-Tukey FFT, has a block-length N, which

are powers of two or four. If the block-length 2m is factorized as 2 × 2m−1, then it is

called radix-2 FFT Blahut (2010). The decomposition size of an FFT is denoted using

radix. Computation of FFTs can be done either in decimation-in-frequency (DIF) or

decimation-in-time (DIT) technique. In DIT technique, theN input sequence is divided

into two N
2

sequences, which are even and odd sequences of the input, x(n), and their

DFTs are computed as shown in Equation (2.4).

X1(k) =

(N/2)−1∑
r=0

x(2r)W rk
N/2 k = 0, 1, 2, ...

N

2
− 1 r = 0, 1, 2, ...

N

2
− 1

X2(k) =

(N/2)−1∑
r=0

x(2r + 1)W rk
N/2 k = 0, 1, 2, ...

N

2
− 1 (2.4)

Here the inputs are in bit-reversed order, while outputs are in natural order. DIT follows

in-place computation, where the output values are stored in the same registers where

the previous input values were stored. This saves significant memory for computation.

In DIF technique, the output sequenceX(K) is divided into odd and even sequences

as shown in Equation (2.5). Here the output is bit-reversed and input is in natural order.

X(2k) =

(N/2)−1∑
n=0

[x(n) + x(n+
N

2
)]W nk

N/2 k = 0, 1, 2, ...
N

2
− 1

X(2k + 1) =

(N/2)−1∑
n=0

[x(n)− x(n+
N

2
)]W nk

N W nk
N/2 k = 0, 1, 2, ...

N

2
− 1 (2.5)

Butterfly diagram of radix-2 DIF technique is shown in Fig. 2.1. The computational

complexity of both DIT and DIF are same and both follow in-place computation.
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Figure 2.2: Radix-4 DIF FFT Butterfly

2.1.2 Radix-4 FFT

If the block-length 4m is factorized as 4 × 4m−1, then it is called radix-4 FFT Blahut

(2010). Here an N -point sequence is decomposed into four smaller sequences as given

in Equation (2.6).

X(4k) =

(N/4)−1∑
n=0

[x(n) + x(n+
N

4
) + x(n+

N

2
) + x(n+ 3

N

4
)]W nk

N/4

X(4k + 1) =

(N/4)−1∑
n=0

[x(n)− jx(n+
N

4
)− x(n+

N

2
) + jx(n+ 3

N

4
)]W n

NW
nk
N/4

X(4k + 2) =

(N/4)−1∑
n=0

[x(n)− x(n+
N

4
) + x(n+

N

2
)− x(n+ 3

N

4
)]W 2n

N W nk
N/4

X(4k + 3) =

(N/4)−1∑
n=0

[x(n) + jx(n+
N

4
)− x(n+

N

2
)− jx(n+ 3

N

4
)]W 3n

N W nk
N/4(2.6)

Radix-4 butterfly diagram is given in Fig. 2.2.
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2.1.3 2D FFT

A two dimensional Fourier transform can be computed from one dimensional FFT. An

N×N 2D FFT can be computed from 2N one dimensional FFT computations, where N

is the sequence length. A two dimensional DFT of size N×N, with inputs x(i1, i2) is

given as,

y(k1, k2) =
N−1∑
i1=0

N−1∑
i2=0

x(i1, i2)W
k1i1+k2i2
N (2.7)

where k1, k2 = 0, 1, 2, .......N − 1

Using two, one dimensional DFTs, a 2D DFT can be performed based on Row-Column

(RC) decomposition algorithm, as given in Equation (2.8).

X(k1, i2) =
N−1∑
i1=0

x(i1, i2)W
k1i1
N (2.8)

where k1 = 0, 1, 2, ...N − 1

Y (k1, k2) =
N−1∑
i2=0

X(k1, i2)W
k2i2
N

where k2 = 0, 1, 2, ...N − 1

Various FFT algorithms and architectures are available in research papers. FFT

architectures and algorithms are chosen based on power, area and throughput require-

ments Cortes et al. (2006) Manolopoulos et al. (2007). Different pipelined based and

memory based architectures are proposed by several research groups over decades Li

(2008)Gold and R.Rabiner (1975)Saponara et al. (2012). Pipelined architecture gener-

ally gives more area overhead and consumes more power. Pipeline based architectures

based on linear decomposition of radix-2 are available in Shousheng He and Torkelson

(1998a,b); Jeesung Lee et al. (2006); Cho and Lee (2013); Oh and Lim (2005); Lin et al.

(2006). These are either Single-path Delay Feedback (SDF) or Multi-path Delay Com-

mutator (MDC) architectures. In Shousheng He and Torkelson (1996) and Yu-Wei Lin

et al. (2005) different schemes of SDF and MDC pipelined architectures are discussed.

In Yin et al. (2016), a two-parallel real FFT based on radix-2 is presented. Their archi-

tecture is a pipelined architecture with latency reduction and less hardware complexity.

Many more pipelined FFT architectures were proposed in past years Maharatna et al.
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(2004); Chin-Teng Lin et al. (2006a); Chen et al. (2008); Chih-Peng Fan et al. (2006);

Li et al. (2010); Yu et al. (2011); Tang et al. (2010); Reisis and Vlassopoulos (2008);

Huggett et al. (2005); Chin-Teng Lin et al. (2006b); Hasan et al. (2003); Cheng and

Parhi (2007); Lin and Yu (2007); Yu-Wei Lin et al. (2004); Liao et al. (2018). Radix-2

systolic FFT architecture is presented in Swartzlander (2007). Authors in Garrido et al.

(2016) proposes a serial commutator Fast Fourier Transform, with proper data manage-

ment, to simplify the rotator, and minimize the arithmetic complexity. Memory based

designs for 1D FFT are presented in Cohen (1976); Hsiao et al. (2010); Tsai and Lin

(2011); Babionitakis et al. (2010b); Ma et al. (2015). Memory based architectures con-

sume more area and less power compared to pipelined FFT, for long size FFTs Xia et al.

(2016). Several memory access schemes for 1D FFT are proposed in Xing et al. (2017);

Huang and Chen (2016); Xia et al. (2016). In Shih et al. (2018), a reconfigurable FFT

architecture is proposed, which supports 46 different modes for LTE applications. Var-

ious reconfigurable FFTs are also proposed in research papers. FFT of size upto 256 K

using radix-43 algorithm is presented in Babionitakis et al. (2010b). Yang et al. propose

a multiple stream MDC architecture which computes 128 - 2 K point FFT and achieve

memory reduction by an efficient memory scheduling mechanism Yang et al. (2013a).

FFT processor to compute 16 - 1 K point FFTs with reconfigurable address generation

block is presented in Yutian Zhao et al. (2005). A variable length FFT processor rang-

ing from 512-8 K points, using mixed radix SDF architecture is presented in S.-S. Wang

and C.-S. Li (2008). Multi-processor ring based FFT architecture in Guichang Zhong

et al. (2006) and CORDIC based cached memory architecture in J.-C. Kuo et al. (2003),

have the disadvantage of taking higher number of clock cycles per FFT computation,

resulting in higher execution time and lower throughput. FFT processor in Tang et al.

(2012) is based on Multi-path Delay Feed-back architecture and supports FFT sizes

from 64 - 1 K point. Although these architectures support reconfigurability, they are

not scalable in terms of FFT sizes.

Different architectures for 2D FFT has been proposed by various research groups.

Software solutions like FFTW Frigo and Johnson (1998), Spiral Puschel et al. (2005),

gives high performance, but consume more power and are not suitable for embedded

system applications. Various hardware solutions such as FFT processor ASICs and

FPGA implementations are available in D’Alberto et al. (2007), T. (2001), Lenart et al.
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(2008), Kim et al. (2009). A new two dimensional decomposition algorithm is imple-

mented in Yu et al. (2011). Here the data is divided into several sub blocks and butterfly

operation is performed between these sub blocks. 2D FFT of each of these sub block is

computed, where the size of sub block is determined using available FPGA resources.

In Chen and Prasanna (2014), several energy optimization techniques are used to de-

velop an efficient and high throughput 2D FFT architecture on FPGA. In Lenart et al.

(2008) 2D FFT for digital holographic imaging is presented. They have used mixed

radices, ie., radix-2 and radix-22 butterfly units in the 1D FFT. A transpose unit is re-

quired after the first 1D FFT block, to compute 2D FFT.

In Akin et al. (2012) the issue of off-chip memory bandwidth is addressed. An

ILUT based 1D FFT is used to develop a 2D FFT on FPGA in Kee et al. (2009). In

Akin et al. (2012) and Kee et al. (2009), N2 intermediate memory is required after

the first phase of FFT. But for the architecture proposed in this thesis, the intermediate

memory requirement after performing a 1D FFT reduces to N. Moreover, within a 1D

FFT block, there is significant reduction in intermediate RAM.

Output reordering is a major functional block when designing FFT architecture.

The purpose of reordering is to convert the non-natural FFT output to natural order.

Extensive research papers are available for design and implementation of FFT archi-

tecture. But only few papers discuss about output reordering techniques in FFT and its

complexity. In OFDM based applications, output reordering is taken care by the pre-

ceding block. Hence most of the research papers of FFT focus on design of FFT core

alone, rather than bit reversal. An output reordering logic is presented in Chidambaram

(2005). But the logic block becomes complex with large sizes of N. In memory based

designs, efficient schemes for conflict free addressing is a challenging task Babionitakis

et al. (2010b). Address schemes used in memory based FFT architecture will produce

the output in reordered form Sorokin and Takala (2011); Hsiang-Sheng Hu et al. (2009).

For SDF and MDC architectures, buffers are required at the output, for data reordering.

Output reordering in parallel pipelined FFT architectures are highly complex and are

discussed in Garrido et al. (2011); Yang et al. (2013b). In F. Kristensen (2003), two

buffers each of size N are required to store even and odd FFT outputs for reordering.

In Chakraborty and Chakrabarti (2008) single memory of size N is used for bit reversal

of even and odd outputs alternatively. In MDF (Multi path Delay Feedback) pipelined
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architectures 3×N memory will be used for output reordering. ie., 2×N will be re-

quired in output side and N will be used within the processing elements Huang and

Chen (2012). In Garrido et al. (2011) a framework for performing bit reversal in output

data is proposed. They use minimum number of registers for calculating bit reversal

and new circuits were designed for output reordering in different radices. An algo-

rithm for performing bit reversal is discussed in Marti-Puig and Reig Bolano (2009).

But the algorithm is applicable only if transform length is a power of four. In most

of these architectures, either a dedicated hardware or significant memory is required

for reordering. Our architecture does not require buffers for output reordering. This is

possible using the six-bit control signal used in our FFT.

2.2 Convolutional Neural Networks

Neuromorphic computing, which is based on brain-inspired computing has become a

contrast architecture to von Neumann architecture. Neuromorphic architectures are

highly appreciated for their parallel and fast processing capabilities, and also for their

low power requirement in the context of Dennard scaling Esmaeilzadeh et al. (2011),

as Moore’s law is about to end and Dennard scaling demands for more power. Neu-

romorphic architecture are suitable candidates for implementation of machine learning

algorithms. Researchers work on developing new network models that mimic biologi-

cal brain, along-with developing new machine learning algorithms. Machine learning is

a sub-field of artificial intelligence, where the computers have learning abilities without

being programmed explicitly.

In brain-inspired computing, an algorithm will take some of the functionalities in

a way, in which the brain functions. Computations in brain are centered on neurons.

There are billions of neurons in human brain, which are interconnected each other.

Each of the neuron is a processing unit, which receives many real inputs and produces

a single real output. The inputs enter a neuron through dendrites and leaves through

axons as shown in Fig.2.3. These input-output signals are named as activations. Axon

is connected to the dendrite through a synapse. As seen from Fig. 2.3, the input signal

xi is scaled by the weight wi, when it is passed through the synapse. Learning factor

of the brain is indicated as the weight, and various outputs are generated depending
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Figure 2.3: Neuron in the brain

Figure 2.4: Typical Neural Network

on the variations in these weights. In general, neural networks involves computation of

a neuron as the weighted sum of all the input values. This is given in Equation (2.9)

where b denotes bias,

Yj = f(
∑
i

wixi + b) (2.9)

Fig. 2.4 shows a simple neural network, with three input neurons receiving three dif-

ferent values and propagating it to the middle layer, which is called hidden layer. The

weighted sums from many hidden layers are given to output neurons, which are the

outputs of a neural network. If the neural network has more than one hidden layer, then

it is generally referred to as deep neural network and the area in which they are used is
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deep learning.

Recent breakthrough in the advancement of deep learning has led to deployment

of Deep Neural Networks (DNNs) for most of the artificial intelligent tasks. DNNs

have become a dominant approach for a variety of machine learning tasks like object

detection, image classification and recognition, autonomous automobiles, autonomous

speech processing and so on. DNNs are inspired by the functionality and behavior of

human brain, where the computations are performed by ’neurons’. Training of a net-

work refers to a process where an algorithm will learn to approach a problem. Training

involves selection of weights of the network so as to produce the desired output. Run-

ning a network with these computed weights is called as inference. In other words,

inference is referred as execution of the feed forward path of a neural network. Train-

ing can be performed using supervised learning (with labeled classes), unsupervised

learning (without labeled classes), semi-supervised learning (a subset being labeled) or

reinforcement learning (where the state of environment is known, to maximize the out-

put) techniques. Another technique used is transfer learning for better precision, where

the network is learned from previously adjusted weights.

Typically, Artificial Neural Networks (ANN) are composed of Multi-Layer Percep-

trons (MLP), which are fully connected layers, where all output neurons connected to

all input neurons. Here, the weights (coefficients) to be stored is significantly high and

the computation is also increased. One way to reduce the huge memory requirement

is to set some of the weights to zero, thereby removing some connections, without los-

ing the precision. Another way to reduce the memory requirement is weight sharing.

Here same set of weights can be used to calculate the output. An efficient technique for

reducing the memory and computation is to use convolutions as computation instead

of fully connected layers. Here weight sharing and windowing techniques are used for

reducing the complexity.

Convolutional neural networks (CNNs), a variant of DNN, is a promising solution to

wide range of applications like robotics, weather forecasting, video surveillance and ap-

plications in the field of medicine like cancer detection etc. CNNs out-perform human

intelligence in many image classification tasks. CNNs are composed of different layers

namely, convolutional layer (referred as CONV), pooling layer (POOL), normalization,

ReLU (recti-linear unit) and fully connected (referred as FC) layers. Convolution layer
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extracts various features of the input image, while sub-sampling is done by POOL lay-

ers. It is followed by FC layers which performs classification of the feature map. CONV

layer convolves the input feature map with filter and produces output feature map. Fil-

ter weights are calculated during the training process. Pooling layer is done either with

MAX or AVERAGE operation. Each neuron in an FC layer is connected to all other

neurons in the previous layer, which increases the number of weights in FC layer and

makes it a memory intensive layer. But in CONV layer, computations are higher and

filter coefficient storage requirement is less compared to FC layer.

Non-linearity is introduced after CONV layers or FC layers using activation func-

tions. Sigmoid and Hyperbolic tangent functions were considered as traditional activa-

tion functions, whereas Rectified Linear Unit (ReLU), Leaky ReLU, Exponential ReLU

were referred as modern activation functions. Pooling combines a set of values into a

smaller set of values. Pooling is done on non-overlapping blocks of values. A stride

greater than one is used to minimize the dimension of feature map. In Max pooling,

maximum value in the block is selected where as in Average pooling, average value of

the block is taken into account. Batch normalization is performed at the layer input ac-

tivations so as to have zero mean and standard deviation as unity. This normalized value

is then scaled and shifted. Drop out is also a regularizer, which is used in many CNN

models. Sometimes batch normalization allows drop outs to be omitted because of the

presence of noise in statistical estimations in the variables. Performance increases when

the model is regularized well using drop out.

Convolutions in CNN are 2D operations, where filter weights are multiplied with

each element in the feature map and are summed together. ie., it involves multiply and

accumulate (MAC) operations of filter weights and input feature map. Each element

in the input feature and filter is multiplied and accumulated to get the corresponding

element in the output feature map. Consider M channels of K ×K filter, and a total of

N such filters. Also consider M channels of H×W input feature maps, for performing

convolution. Each filter performs convolution on the input feature map with a stride of

S, and generates the output feature map, Y . Element (u, v) in nth filter, mth channel is

represented as Gn,m,u,v and input element (x, y) in mth channel is denoted as Di,m,x,y.
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Figure 2.5: Convolution Operation

Convolution is given by the formula as in (2.10),

Yi,n,x,y =
M∑
m=1

K∑
u=1

K∑
v=1

Di,m,x+u+S,y+v+S ×Gn,m,u,v (2.10)

Entire output of convolving the image with filter can be written as in (2.11),

Yi,n =
M∑
m=1

Di,m ∗Gn,m (2.11)

where * denotes correlation.

Convolution operation is shown in Fig. 2.5.

Various convolution architectures were proposed by different research groups over

the last few years. GPU based 2D convolver proposed in Iandola et al. (2013) reduces

memory communication by reorganizing the convolution algorithm and working on

few threads. In Ciobanu and Gaydadjiev (2013), a vectorized separable 2D convolver

optimized for polymorphic register files, for high performance, is proposed and imple-

mented in GPU. GPU implementations give high performance but they are not suitable

for embedded applications due to their high power consumption. Various FPGA based

convolvers are presented in Perri et al. (2005); Aguilar-González et al. (2019); Rao et al.

(2016); Chang and Sha (2017); Russo et al. (2012); StrÃűm (2016); Mohammad and

Agaian (2009). In Perri et al. (2005) a reconfigurable architecture for 2D convolution

is presented, which uses 8-bit and 16-bit fixed point arithmetic. Here even though high

performance is achieved, precision is degraded. CAPH language has been used in the

convolver design in Aguilar-González et al. (2019), to reduce the design time. The de-

sign flow is a data-flow model, where tokens are interchanged through a network. Here

also 16-bits are taken for representation. Reconfigurable one dimensional convolution
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architecture presented in Rao et al. (2016) has been implemented in both ASIC and

FPGA. They have used separable convolutions for implementation.

2D convolution for CNN presented in Chang and Sha (2017), uses singular value

decomposition approximation method, which in turn transformed to conventional row

and column technique. Russo et al. (2012) compare GPU and FPGA implementations,

which concludes that GPU achieves high performance with high power consumption,

whereas FPGA can operate in small boards with less power consumption. Convo-

lution architecture for CNN proposed by Wang et al. (2016) uses parallel finite im-

pulse response algorithm for convolution and implemented in 90nm CMOS process.

StrÃűm (2016) presents an architecture with 16 parallel convolutions and implemented

in FPGA. Mohammad and Agaian (2009) also uses fixed point arithmetic with less pre-

cision for implementation. The above mentioned papers follow conventional technique

for computation of convolutions. This uses more hardware resources as the number of

multiply and accumulate (MAC) operations are very high in conventional technique.

Several GPU accelerators for Convolutional Neural Networks are available in vari-

ous research papers. In Li et al. (2016), performance evaluation of CNN on Tesla K40c,

for various kind of implementations is presented. Training period of AlexNet models

are evaluated for various frameworks using GPU in Kim et al. (2017). FFT based

CNN implementations using Torch 7 environment were performed on GeForce GTX

Titan GPU in Mathieu et al. (2013). GPU accelerators for CNN are also presented in

Chakradhar et al. (2010); Krizhevsky et al. (2012); Szegedy et al. (2015); Gupta et al.

(2015). Many open-source frameworks for deep learning like Caffe Jia et al. (2014),

Torch Collobert et al. (2011) Theano Bergstra et al. (2010) etc. were also introduced

which can use CUDA programming. Specific libraries like cuDNN Chetlur et al. (2014)

are also available for accelerating CNNs.

ASIC based implementations of CNN are presented in Tu et al. (2017); Chen et al.

(2014, 2016). Authors in Chen et al. (2014) propose an architecture with interconnected

nodes which contains 64 nodes. ASIC based accelerator proposed by Chen et al. (2014),

gives high performance but with limitations in flexibility. A reconfigurable and scalable

CNN architecture is presented in Tu et al. (2017) with reconfigurable deep neural archi-

tecture (DNA). Fast FIR Algorithm (FFA) has been introduced in Wang et al. (2018a)

to develop a reconfigurable convolution core, with high power efficiency.
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Figure 2.6: Hardware Utilization for AlexNet implementation

FPGA based implementations of CNN are available from various research groups

Ma et al. (2018); Guo et al. (2018); Zeng et al. (2018); Motamedi et al. (2016); Lu et al.

(2017); Zhang et al. (2015); Huimin Li et al. (2016); Yufei Ma et al. (2016); Ma et al.

(2017a); Guan et al. (2017); Podili et al. (2017); Ma et al. (2018); Zhang et al. (2016);

Suda et al. (2016); Xiao et al. (2017); Yu et al. (2017); Qiu et al. (2016); Peemen et al.

(2013); Wang et al. (2018b); Aydonat et al. (2017); Zhang et al. (2016); Nguyen et al.

(2019); Lian et al. (2019); Kyriakos et al. (2019); Yu et al. (2019). FPGA based imple-

mentations give significant performance improvement at acceptable power dissipation.

Implementation of CNN models in hardware platforms is a challenging task, because of

the extreme compute complexity of convolution layers and memory constraints raised

by fully connected layers. Machine learning tasks in emerging applications demand

higher accuracy levels which will lead to more complex networks. Various hardware

architectures for CNN are proposed in recent years. Hardware under-utilization is a

major issue in most of the implementations, which is unacceptable for applications in-

volving embedded systems. Fig. 2.6 shows the hardware utilization for convolutional

layers in some of the FPGA implementations in literature. Fig. 2.6 gives the % utiliza-

tion of logic used in AlexNet CNN accelerators in research papers published in FPGA

2016 Zhang et al. (2015), FPL 2016 Huimin Li et al. (2016), FPGA 2016 Qiu et al.

(2016) and Integration 2018 Ma et al. (2018).
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Most of the researches in CNN implementations try to effectively exploit the abun-

dant parallelism inherent in the matrix-matrix operations that dominate the computa-

tions in CONV and FC layers. In Huimin Li et al. (2016), a method for utilizing the

parallelism of each layer and improving the bandwidth utilization of FC layers is pre-

sented. In Motamedi et al. (2016), the authors present an FPGA based accelerator for

CNNs using the direct convolution algorithm. Here the architecture tries to optimize the

performance by exploiting various levels of parallelism available in the convolution al-

gorithm. A design space exploration algorithm for this purpose has also been presented.

Hardware CNN accelerator in Nguyen et al. (2019) implements YOLO (you-only-look-

once) on FPGA with high throughput and power efficiency. Authors in Lee et al. (2019)

propose a novel method called double MAC to improve the computation throughput of

CNN, by packing two MAC operations in one DSP slice of FPGA. AlexNet and VGG

models were implemented using this technique, without much accuracy loss. An FPGA

based CNN accelerator which uses block-floating point has been presented in Lian

et al. (2019). Here, the design is based on shifting operations and achieved 50% re-

duction in memory and bandwidth requirements. Authors in Lian et al. (2019) have

also proposed an analytical model for error propagation of CNN, based on their de-

sign. In Hailesellasie et al. (2018), a technique for reducing the parameters of CNN by

removing all fully connected layers is presented. In Lu et al. (2019), architecture for

sparse CNNs on FPGA has been proposed, where the non-zero weights are compressed

into arrays and convolutions were performed as element-wise matrix multiplications.

A hardware/software co-design approach for inference of complex CNNs is presented

in Xia et al. (2019), which is a part of PAI, a Platform for Artificial Intelligence. A

digital electronic and analog photonic CNN architecture is presented in Bangari et al.

(2020), where computations are reduced using photonic CNNs. Here, silicon photon-

ics devices are used to perform convolutions. The CNN architecture has been applied

for digit recognition using MNIST database. Dedicated blocks for convolution, fully

connected layer and pooling layer are presented in Kyriakos et al. (2019). An overlay

domain specific unit is proposed in Yu et al. (2019), which is software programmable

and gives faster compilation time for CNN models, which are taken from deep learn-

ing frameworks like tensorflow. FPGA implementations give better power efficiency

for VGG and YOLO networks. In Wu et al. (2019), dedicated processing engines are

implemented for point-wise convolution and depth-wise convolution, to improve the
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performance. They have implemented MobileNet on their architecture for object detec-

tion. A flexible training hardware is designed in Kolala Venkataramanaiah et al. (2019),

where an RTL compiler has been developed to generate FPGA synthesizable RTL.

Fast Fourier Transform (FFT) based convolution technique is another method for

performing convolution operations in CNN. FFT based convolution gives reduced com-

putational complexity compared to conventional method. However FFT based convolu-

tion techniques are useful only for larger filter sizes Podili et al. (2017). But optimiza-

tions in FFT based convolutions can result in improved performance,even for small

filter sizes Zeng et al. (2018). FFT Overlap and Add technique method is used to im-

plement ResNet on a many core architecture in Abtahi et al. (2017). Here filter size

is 3×3 for all layers. Comparisons with direct convolution show significant improve-

ment in performance for layers with smaller input sizes. This is because for small filter

sizes, FFT based convolutions are inefficient if there is mismatch between the filter

size and input size as reported in Podili et al. (2017). In Zhuge et al. (2018), authors

have compared FFT and Winograd based convolution techniques for varying filter sizes

and conclude that FFT based technique is more suited for larger filter sizes. In Zeng

et al. (2018), authors improve the performance of FFT based convolution by employing

Concatenate-and-Pad (CaP) and frequency domain loop tiling technique.

Another method of computing convolution involves Winograd minimal filtering al-

gorithm Winograd (1980). Winograd reduces the number of multiplications in convo-

lution significantly. Complexity of Winograd algorithm depends on the tile size chosen

for implementation. Choosing a larger tile size can reduce the complexity at the cost of

reduced precision. For applications which require less precision, we can use large tile

sizes. Tile sizes in Winograd algorithms are typically represented as F (m×m, r × r)

which denotes that m×m outputs are computed using an r× r tap filter. In Podili et al.

(2017); DiCecco et al. (2016); Lavin and Gray (2016) tile size of F (2×2, 3×3) is cho-

sen for implementing CONV layers. Tile size of F (4× 4, 3× 3) has been used in Xiao

et al. (2017); Ahmad and Pasha (2019); Lu et al. (2017); Yu et al. (2017); Zhuge et al.

(2018) while Zhuge et al. (2018) uses F (2× 2, 3× 3) also. Architecture in Podili et al.

(2017) was implemented for accelerating VGG-16 using Winograd algorithm where

as Lu et al. (2017) implemented both AlexNet and VGG-16. A hybrid approach is to

use different methods for various CONV layers depending on the filter size.
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Various research groups have proposed Winograd filtering algorithm based hard-

ware accelerators for CNN Xiao et al. (2017); Podili et al. (2017); Lu et al. (2017);

Yu et al. (2017); Zhuge et al. (2018); Wang et al. (2018c, 2019); Ahmad and Pasha

(2019). These approaches propose dedicated processing elements (PEs) for perform-

ing Winograd based convolutions, which necessitates separate processing elements for

convolution layers and fully connected layers, resulting in severe under-utilization of

resources. Performing all convolution and FC layer operations on same processing ele-

ments can improve resource utilization.

In Lu et al. (2017), loop unrolling is performed to parallelize Winograd operations

which are mapped to multiple processing elements. Each PE is designed to perform

Winograd operation using Element-Wise Matrix Multiplication (EWMM). Tile sizes of

F (5×5, 3×3) and F (4×4, 3×3) have been used. Here FC operations are transformed

to EWMM and mapped to the PEs. In Wang et al. (2019), sparse-Winograd CNN accel-

erator has been presented, where the sparsity of activations and weights are exploited

and computations are reduced. A dedicated Winograd convolution engine for CNN is

presented in Ahmad and Pasha (2019), where multiplication complexity is reduced and

power efficiency is improved. In Yang et al. (2019), a Winograd based dynamically Re-

configurable Architecture (WRA) for CNNs on FPGA has been presented. WRA can

implement conventional convolutions, depthwise separable convolution and group con-

volution. Winograd algorithm is generally used for strides equal to one. In Yang et al.

(2019), convolutions with stride greater than one are decomposed, to perform Winograd

filtering. They have implemented VGG-16 and lightweight models like MobileNet us-

ing this architecture.

In this work, a novel hybrid architecture which implements Winograd algorithm

and general element-wise matrix multiplication using the same set of processing ele-

ments has been proposed. This architecture consists of PEs which are optimized for

GEMM and transform modules with very small resource overheads which maps Wino-

grad algorithm to GEMM operations. This unified architecture gives the most efficient

implementation for CONV layers irrespective of filter sizes and also for FC layers. A

comparison of various approaches used in CNN accelerators is given in Table 2.1.

Data representation for hardware implementation can be either fixed point or float-

ing point. Lu et al. (2017); Huimin Li et al. (2016); Yufei Ma et al. (2016); Qiu et al.
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Table 2.1: Various Approaches in CNN Accelerators

Algorithmic Optimization Hardware Generation

GEMM Suda et al. (2016) HLS (OpenCL) Suda et al. (2016)

Winograd Aydonat et al. (2017) HLS (Vivado) Zhang et al. (2015)

DiCecco et al. (2016)

FFT Zeng et al. (2018) RTL Motamedi et al. (2016)

Our work is based on Winograd using GEMM and implemented using RTL

(2016); Bai et al. (2018); Zeng et al. (2018) uses 16-bit fixed point data. Qiu et al.

(2016) presents an FPGA implementation of AlexNet. Authors go deeper with CNN

layers in Qiu et al. (2016), where dynamic precision technique for data quantization is

presented. A 32-bit floating point based AlexNet is implemented in FPGA in Zhang

et al. (2015). In above cited implementations, a separate processing element is dedi-

cated for performing Winograd based convolution, in those CONV layers with smaller

filter sizes, and another PE for performing conventional convolution operation of other

layers in CNN. This results in reduced utilization of FPGA resources leading to lower

overall performance. Also, most of the FPGA implementations are performed using

fixed point arithmetic and only few are done in 32-bit floating point. There arises a

trade-off between the precision and resource utilization of the design while choosing

the word-length. Recently several researchers have addressed the issues related with

accuracy of CNN models, using compression techniques like pruning and quantization

of weights and activations Guo et al. (2016); Gupta et al. (2015); Han et al. (2015).
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CHAPTER 3

Radix-43 based Two Dimensional FFT Architecture

Two dimensional FFTs are widely used for reconstruction of images from raw data.

This require efficient implementations for catering to the real time scenario. Image

processing applications require large memory for supporting the image size. Therefore,

a suitable architecture is needed which optimizes the memory and supports various

image sizes, while providing the required throughput. In this chapter, a Radix-43 based

2D FFT architecture with an efficient output reordering technique is discussed.

A 2D FFT is computed from 2×N one dimensional (1D) FFTs. So the performance

of 1D FFT directly influences the performance of 2D FFT. An N×N 2D FFT requires

N row-wise 1D FFT followed by N column-wise 1D FFT, which produces N2 interme-

diate values to be stored, between the two 1D FFTs Kee et al. (2009).

Radix-43 algorithm Babionitakis et al. (2010a) based on a novel radix-4 butterfly

unit is used to present the proposed 64×64 FFT architecture. Two radix-43 blocks are

cascaded to compute 64×64 complex point FFT. A radix-43 block is implemented such

that, the outputs generated are already reordered, which results in savings in interme-

diate memory and reduces latency. Our method uses parallel unrolled architecture of

radix-43 for implementing 2D FFT, which is an extension of our previous work on 1D

FFT S (2013); Kala et al. (2013a,b).

The contributions in this chapter are summarized as follows:

• A novel architecture for computation of 2D FFT based on radix-43 algorithm

• An efficient output reordering technique using six-bit control signal

• Memory reduction within 1D FFT and optimizing the intermediate memory be-
tween two 1D FFTs from N2 to N

• ASIC and FPGA implementations of the proposed architecture

• Comparison of proposed work with the state-of-art implementations and show
significant improvement in computation time and comparable area in terms of
slice LUTs



3.1 Proposed 2D FFT Architecture and Data Reorder-

ing

In this section, a novel architecture for 2D FFT using radix-43 algorithm is presented.

2D DFT for size 64 × 64, with inputs x(i1, i2) can be expressed as,

y(k1, k2) =
63∑
i2=0

[
63∑
i1=0

x(i1, i2)W
k1i1
64 ]W k2i2

64 (3.1)

where k1, k2 = 0, 1, 2, .......63

Consider the inner block of summation in Equation (3.1),

63∑
i1=0

x(i1, i2)W
k1i1
64

This is a 64 point FFT, which can be computed using a radix-43 algorithm. Similarly

the outer summation of Equation (3.1) can also be computed using a radix-43 FFT. Thus

a 2D FFT is computed using a cascade of two radix-43 blocks. Radix-43 architecture

presented in Kala et al. (2013b) has been used for computing the 1D FFT. Each radix-43

has three stages of radix-4 butterfly units. The algorithm and architecture of radix-43 is

explained in 3.1.1 and 3.1.2 respectively. Hereafter radix-43 will be denoted as R43 and

radix-4 as R4.

3.1.1 R43 Algorithm

Radix-43 algorithm can be derived from the DFT formula given in Equation (3.2). Here,

a four dimensional index mapping of n and k has been applied to Equation (3.2). The

algorithm presented in Babionitakis et al. (2010b) has the following steps.

X(k) =
N−1∑
n=0

x(n)W nk
N k = 0, 1, 2, ...N − 1 (3.2)

n = n1 +
N

64
n2 +

N

16
n3 +

N

4
n4

k = 64k1 + 16k2 + 4k3 + k4 (3.3)
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Apply Equation (3.3) to the DFT formula in (3.2),

X(64k1 + 16k2 + 4k3 + k54) =
N
64
−1∑

n1=0

3∑
n2=0

3∑
n3=0

3∑
n4=0

x(n1 +
N

64
n2 +

N

16
n3 +

N

4
n4)W

nk
N

(3.4)

Decomposing the twiddle factors,

W nk
N = W n1k1

N
64

W
n1(16k2+4k3+k4)
N W

n2(4k3+k4)
64 W n3k4

16 (−j)(n2k2+n3k3+n4k4) (3.5)

Substituting (3.5)) in (3.4) and expanding the summation with index n4,

X(64k1 + 16k2 + 4k3 + k4) =
N
64
−1∑

n1=0

3∑
n2=0

3∑
n3=0

[B(n1 +
N

64
n2 +

N

16
n3)](−j)(n2k2+n3k3)

W n1k1
N
64

W
n1(16k2+4k3+k4)
N W

n2(4k3+k4)
64 W

n3(k4)
16 (3.6)

The first butterfly unit, B is given by

B = x(n1 +
N

64
n2 +

N

16
n3)(−j)k4x(n1 +

N

64
n2 +

N

16
n3 +

N

4
) +

(−1)k4x(n1 +
N

64
n2 +

N

16
n3 +

N

2
) + (j)k4x(n1 +

N

64
n2 +

N

16
n3 +

3N

4
) (3.7)

Expanding the summation in (3.6) with index n3,

X(64k1 + 16k2 + 4k3 + k4) =

N
64
−1∑

n1=0

3∑
n2=0

[H(n1 +
N

64
n2)]× (−j)(n2k2

W n1k1
N
64

W
n1(16k2+4k3+k4)
N W

n2(4k3+k4)
64 W

n3(4k4+k5)
64 (3.8)

The second butterfly unit, H is given by

H = B(n1 +
N

64
n2) + (−j)k3 [B(n1 +

N

64
n2)]W

k4
16 +

(−1)k3 [B(n1 +
N

64
n2 +

N

8
)]W k4

8

+(j)k3 [B(n1 +
N

64
n2 +

3N

16
)]W k4

16W
k4
8 (3.9)
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Expanding the summation in (3.8) with index n2,

X(64k1 + 16k2 + 4k3 + k4) =

N
64
−1∑

n1=0

[T (n1)W
n1(16k2+4k3+k4)
N ]W n1k1

N
64

(3.10)

The third butterfly unit, T is given by

T = H(n1) + (−j)k2 [H(n1 +
N

64
)]W k3

16W
k4
64 +

(−1)k2 [H(n1 +
N

32
)]W k3

16W
k4
8 +

(j)k2 [H(n1 +
3N

64
)]W

3(4k3+k4)
64 (3.11)

Equations (3.7), (3.9) and (3.11) are the three butterfly units in radix-43 algorithm. Each

of these butterfly operations are based on radix-4 butterfly and hence the name Radix-43.

3.1.2 R43 Architecture

Signal Flow Graph (SFG) for R43 algorithm is shown in Fig. 3.1. SFG follows a

Decimation-In Frequency (DIF) pattern. From Fig. 3.1 it is clear that the first stage

has 16 butterfly operations, second stage has four butterfly computations and the third

stage has one radix-4 butterfly operation. Each node in the SFG represents one radix-4

butterfly unit. Inputs to the first R4 unit are x(0), x(16), x(32) and x(48). This produces

the four outputs X(0), X(16), X(32) and X(48). Each node of R4 butterfly unit is shown

in Fig. 3.2. Signals shown in SFG are explained in this section.

A fully unrolled R43 architecture which uses parallel R4 butterfly units Kala et al.

(2013a) is the basic building block of our proposed architecture. R4 unit has four

parallel inputs and gives one output based on a two-bit control input called mode select.

The mode select signal decides the generation of one output out of the four. Based on

the mode select signal, outputs can be generated in any order. But in a conventional R4

butterfly, outputs are generated in a particular order Proakis and Manolakis (1996). The
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Figure 3.1: Signal Flow Graph of R43 algorithm

Figure 3.2: Nodal representation of radix-4 butterfly
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Figure 3.3: Radix-4 Butterfly Unit

equation for a radix-4 butterfly unit is given in Equation (3.12),

X(0) = x(0) + x(1) + x(2) + x(3)

X(1) = x(0)− jx(1)− [x(2)− jx(3)]

X(2) = x(0)− x(1) + x(2)− x(3)

X(3) = x(0) + jx(1)− [x(2) + jx(3)] (3.12)

Radix-4 butterfly architecture is shown in Fig. 3.3 Kala et al. (2013a).

Unlike conventional Cooley-Tukey FFTs, this architecture generates the output in

required order rather than in bit reversed order. The output of R4 unit is decided by

a two-bit control signal Mode Select. Based on this signal, one out of four outputs is

produced. Control signals of R4 unit are given in Table 3.1. The signals cs0, cs1 and

cs2 can be derived from mode select signal. These are control signals for performing

swap operation (multiplication with ′j′) and adder/subtracter operation.

Fig. 3.4 shows the parallel unrolled architecture of R43 Kala et al. (2013b). First

stage has 16 R4 units, second stage has four R4 units and third stage has one R4 unit.

All R4 blocks are identical in this architecture. The notations R4 0, R4 4, R4 8, R4 12

indicates 0th, 4th, 8th, 12th radix-4 butterfly blocks and so on. W16 and W64 indicate
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Figure 3.4: Radix-43 block

twiddle factors of first and second stage. There are sixteen twiddle factor ROMs in the

first stage for storing W16. Each of these ROMs contain four twiddle factor values.

Second stage consists of four R4 engines and has four ROMs for storing W64. Each of

these ROMs in second stage consists of sixteen twiddle factor values.

Out of the N multipliers in each stage, first N/4 multipliers of all stages have unity

twiddle factor. So while implementing, these multipliers are removed. Thus first stage

has 12 complex multipliers instead of 16 and second stage has 3 multipliers instead of

4.

Table 3.1: Control Signals in Radix-4 Unit

Mode Output cs0 cs1 cs2

0 0 X(0) 0 0 0

0 1 X(1) 1 0 1

1 0 X(2) 0 1 1

1 1 X(3) 1 1 0
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Table 3.2: Mode Selection in Different Stages of R43 Block

Stage 1 Stage 2 Stage 3 Output generated

0 0 0 0

00 0

01 16

10 32

11 48

0 0 0 1

00 1

01 17

10 33

11 49

: : : :

: : : :

1 1 1 1

00 15

01 31

10 47

11 63

Mode select signals in R43 architecture is given in Table 3.2. Mode select is a six-

bit control signal. Each stage is assigned with two bits of mode. Based on the mode

of each stage, one out of 64 outputs is generated. Thus the outputs of R43 block is

obtained in reordered form in this architecture. Hence memory and logic for reordering

can be saved. Initially the mode select of all radix-4 engines are configured as mode

0. The outputs produced from first stage are multiplied with the corresponding twiddle

factors. Similar operation is performed in the second stage. Here, four radix-4 engines

are required to process the 16 outputs that are obtained from first stage. Again, the first

four outputs are generated by configuring the mode select of all four radix-4 engines

as mode 0, keeping the first stage radix-4 engines in mode 0 itself. Now using this

four outputs, the output required in the third stage can be generated, with another mode

selection in the last stage.

Table 3.2 shows that when the six-bit signal is ′000000′ mode is 0, ′000001′ gives

mode as 16 and so on. That is, mode select of the first and second stage remains ′00′

while that of the third stage is changing. This control signal can be generated using
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an up-counter. Mode select signals can be applied to radix-2 architectures also. In that

case, single bit will be sufficient for a radix-2 basic block.

3.1.3 Data Scheduling in Proposed Architecture

Consider the 64 × 64 input data which is stored in RAM given by matrix A, where Ai,j

is the element in ith row and jth column.

Data scheduling and reordering in First R43 Block is shown in Fig. 3.5. We start

with the mode select signal set as 0 and inputs as A1,1, A2,1, A3,1, ..., A64,1 in cycle 1.

FFT of these 64 inputs is performed producing the first output of first row in B matrix,

say B1,1 in first cycle. In cycle 2, the inputs A1,2, A2,2, A3,2, ..., A64,2 are given, keeping

the mode select as 0 itself. This produces the output B1,2. In a similar fashion, in cycle

64, A1,64, A2,64, ..., A64,64 with mode select = 0, the output B1,64 is produced. Thus all

the elements in first row are computed.

In the 65th cycle, all the computed elements in first row of B matrix i.e, B1,1, B1,2,

... ,B1,64 are fed in parallel to the second R43 block. Here, as soon as one row of first

R43 block is computed, second R43 begins to perform the next phase of computation.

Intermediate registers between the two R43 blocks store output from first block to be

used by the second block. In the second R43 block, mode select signal changes from 0

to 63 in each cycle, producing 64 outputs, that is, C1,1, C1,2, ..., C1,64. This is shown in

Fig. 3.6.

Since the output from first R43 block is required to be reordered before applying it

to second block, sequentially incrementing the mode select signals is not sufficient. For

the first block outputs to be reordered, mode select for first R43 block has to be given in

the order 0, 16, 32, 48, 1, 17, 33, 49,...,63.

In 65th cycle, the mode select for first R43 is changed to 16, and inputs A1,1, A2,1,

A3,1, ..., A64,1 are provided. FFT of these 64 inputs is performed producing the first

output of second row in B matrix, B2,1 in 65th cycle. In the 66thcycle, second output of

second row of B matrix, that is, B2,2 is computed and so on. In the 128th cycle, B2,64 is

calculated. Thus all the elements in second row is computed.

During 129th cycle, second block starts computation using the second row of B
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matrix, by changing the mode select from 0, 1, 2, 3,..., to 63 in 64 cycles, resulting in

the second row elements of C matrix. This procedure is repeated by changing mode

select till 63 to get all the elements in 64×64 B matrix, which is the output of first R43

block. The corresponding B matrix outputs are generated in each cycle. This completes

the column-wise FFT computation.

The elements in C matrix gives the final 2D FFT output. One output is generated

per clock cycle from second block. Thus 4096 cycles are required to produce all 4096

outputs of the 2D FFT.

3.1.4 2D FFT Architecture

In architectures which follow conventional Cooley-Tukey algorithm, only one R4 but-

terfly unit will be present in each stage. Hence the outputs from each stage should be

reordered before applying to the next stage. If two R43 blocks are cascaded, interme-

diate outputs are to be reordered. Since subsequent blocks will require the inputs to be

reordered before processing, intermediate RAMs are required between every cascaded

stage in such implementations. This reordering needs intermediate memory and mem-

ory size grows as FFT length increases. For example for a 64 × 64 2D FFT, a 4096 (64

× 64) deep memory is required between the two blocks. That is, for N × N 2D FFT,

N2 intermediate memory is required between each phase of R43.

As already mentioned, a parallel unrolled implementation for R43 block has been

used in this work. The order of output is controlled using a few control bits. With

this architecture, for a given set of inputs, at each stage, only those outputs required

for the next stage can be computed without losing any performance, so that most of

the intermediate buffers can be avoided. The resulting implementation is thus fully

optimized in terms of memory and latency.

A one dimensional FFT using R43 which is shown in Fig. 3.4 is performed, and its

output is fed to a second R43 block to perform row wise FFT, to get the two dimensional

FFT. The first processor performs sixty four 64-point FFT operations which gives 4K

intermediate values. The second FFT processor performs sixty four 64-point FFT op-

eration on these outputs and gives the final 64 × 64 point FFT. The two R43 blocks are

identical. Block diagram of the proposed architecture is shown in Fig. 3.7.

40



Fi
gu

re
3.

5:
D

at
a

Sc
he

du
lin

g
in

Fi
rs

t
R

ad
ix

-4
3

B
lo

ck
(a

)
O

ut
pu

t
w

he
n
M
od
e
=

0
(b

)
O

ut
pu

t
w

he
n
M
od
e
=

16
(c

)
O

ut
pu

t
fo

r
M
od
e
=

0
to

M
od
e
=

63

41



Figure 3.6: Data Scheduling in Second Radix-43 Block

Figure 3.7: Proposed 2D FFT Architecture using R43 blocks

Input Memory

The input memory block consists of two banks of 64 RAMs which operate in ping-pong

fashion. One set of input memory reads in the data, while the other set will read out the

data. The detailed layout of one of the banks is shown in Fig. 3.8. Inputs are written

into consecutive locations of RAM. ie.,RAM0 takes in the first 64 inputs,RAM1 takes

65th input onwards and so on. During the read operation, one input is supplied from
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Figure 3.8: Input Memory

each RAM, so that 64 inputs are available to the R43 block. Read operation is done in

parallel. Here, read address is same for all RAMs.

Interstage Processing

Interstage processing consists of two banks of registers with 64 registers in each bank.

Registers in the first bank are arranged as a chain of 64 shift registers. Outputs from

first R43 block enter into the first bank in serial. Registers in the first bank are advanced

in every clock cycle. Once in every 64 cycle, outputs from all the 64 registers in the

first bank are loaded in parallel to the second bank. Registers in the second bank act as

the input for the second R43 block.
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Control Circuitry

Control circuitry consists of an 12-bit up counter. Input RAMs in the input side requires

six-bits for addressing. There are two such memory banks in our architecture. The read

address, write address and chip select signals are generated from this counter. Also,

mode select signals for both R43 blocks are produced from this counter. While writing,

chipselect signals are separately generated for each of the RAMs. While reading, same

locations from all the RAMs are accessed in parallel and control signals are generated

accordingly. All these signals are synchronized with respect to the previous stage delay.

Continuous Flow FFT

Proposed FFT uses a novel data scheduling mechanism which supports continuous-

flow of data. Here, the butterfly units are constantly performing computations on the

streaming data. The FFT processor accepts one input sample in every clock cycle. Here

a conflict-free addressing scheme as discussed in Section 3.1.3 has been used.

Scalability

Data-path and control logic of the proposed architecture are scalable to support various

FFTs. Radix-43 block uses three stages of radix-4 FFT and if only two stages are

used, with appropriate twiddle factors, we get a radix-42 block. Cascading two radix-42

blocks will result in a 16×16 FFT. Similarly cascading two radix-44 blocks will result

in 256× 256 FFT. This requires four stages of radix-4 FFT in a radix-44 block.

3.2 Implementation Results and Analysis

3.2.1 Matlab Simulation

The proposed two dimensional FFT architecture using R43 algorithm has been simu-

lated in matlab and the outputs are compared with matlab inbuilt function for 2D FFT,

for validation. Floating point implementation is not efficient for hardware implemen-

tations owing to its complexity and high power. So fixed point implementation is pre-
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Figure 3.9: SNR Vs Word length for 64 point FFT using Radix-43 Algorithm

ferred. Selection of word length is a design issue for fixed point implementations. For

choosing an adequate word length, the Signal to Noise Ratio (SNR) for various word

length is analyzed. Based on the size of FFT and SNR, selection of word length also

varies. We have calculated the SNR of 64-point FFT for various word lengths as shown

in Fig. 3.9. Based on this analysis, 16 bits were selected as word length. 16 bit word

length gives SNR of 59.9 dB, which is sufficient for image reconstruction.

For fixed point implementation, in order to avoid overflow at all stages, inputs at

each butterfly node are scaled down by 0.25. Hence floating point FFT outputs also

have to be scaled down by the FFT size before performing the comparison. For real

and imaginary parts of data words, out of 16 bits, 1 bit is used for sign and 15 bits for

fraction, giving a range of -1 to +1. For representing twiddle factors, a 16 bit word with

1 bit for integer, 1 bit for sign and 14 fractional bits is used.

3.2.2 ASIC Implementation

The proposed architecture of 2D FFT has been implemented in RTL using Verilog HDL.

The implementation uses fixed point arithmetic with 16 bits each for representing real

and imaginary part of the data. The SRAMs used are generated by Faraday’s Memory

Compiler.

RTL simulation and verification has been done using Modelsim Simulation and Ver-

ification tool. RTL has been synthesized with Cadence RTL Compiler using Faraday

40 nm standard cell library, tailored for UMC’s 40nm,1.2V logic process. Activity in-
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formation generated using simulation are input to RTL compiler so as to estimate the

power dissipation. The FFT processor has an operating frequency of 500 MHz with

a throughput of 500 MSPS (Mega Samples Per Second). It has a total silicon area of

0.841mm2 with 0.409mm2 logic area and 0.432mm2 memory area. Power estimations

are done with a clock frequency of 500 MHz.

At 500 MHz, power consumption is 358 mW and execution time is 8.19µs. Energy

of the proposed 2D FFT is calculated as Power × Execution time, which is 2.9µJ.

Energy efficiency is referred as number of FFT points computed per Joule as given in

(3.13) Yu-Wei Lin et al. (2004).

FFTs

Energy
=

1

Power × ExecutionT ime× 103
(3.13)

Energy efficiency of the proposed architecture is 341 points/Joule. For the compu-

tation of a single point FFT, 2.9mJ is consumed.

The synthesized netlist from RTL Compiler is simulated and verified with input

test vectors generated by Matlab functional model. Verification structure is shown in

Fig. 3.10.

Latency Calculation

Input memory block requires 4096 cycles. After inputs are written to RAM, one ex-

tra cycle is required before it can be read out. Two R43 block require 3 cycle each.

Intermediate registers between two R43 block require 65 clock cycles. Total latency

required for the 64×64 point FFT is 4169 clock cycles. Effective computation time is

4096 cycles per 64×64 FFT. Operating frequency of proposed architecture is 500 MHz.

ASIC synthesis results are given in Table 3.3. Computation time for various 2D FFT

architectures are compared in Table 3.4. For a fair comparison, we have considered only

smaller size 2D FFTs in literature. Table 3.4 shows that our architecture takes less num-

ber of clock cycles for execution and gives 47.5% reduction in computation time for 64

× 64 2D FFT compared to the best existing implementation. Since the implementations

in references shown in Table 3.4 are of different technology,for evaluating the execution

speed, we have considered cycle count. Proposed architecture takes less clock cycles
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Figure 3.10: Verification
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Table 3.3: ASIC Synthesis Results of 64 × 64 FFT

Process 40 nm

Word length 16 bits

Max. Frequency 500 MHz

Area 0.841 mm2

(0.409 mm2 logic +

0.432 mm2 memory)

Voltage 1.2V

Power @ 500 MHz 358 mW

Computation time 8.19 µs

Energy 2.9 µJ

Energy per FFT 2.9 mJ

Throughput 500 MSPS

Table 3.4: Comparison of Computation Time

FFT Size Frequency Clock Computation

(MHz) cycles time

Proposed 64 × 64 500 4096 8.19µs

Rodrguez-Ramos et al. (2008) 64 × 64 100 4516 45.16µs

Wang et al. (2010) 64 × 64 263 4103 15.6µs

Yu et al. (2010) 128 × 128 100 179000 1.79ms

Deng et al. (2008) 128 × 128 100 33350 0.33ms

Yu et al. (2010) 256 × 256 100 605000 6.05ms

Deng et al. (2008) 512 × 512 100 295494 2.955ms∗∗

Mahmood et al. (2015) 512 × 512 - - 32.4ms∗∗

Wang et al. (2010) 512 × 512 266 524288 0.985 ms∗∗

Chen and Prasanna (2014) 1024 × 1024 - - 2.63ms∗

Uzun et al. (2005) 1024 × 1024 - - 62.5ms

Shirazi et al. (1995) 512 × 512 10 - 0.417s

∗∗Estimated computation time for 512 × 512 FFT based on our architecture is 0.131ms
∗Estimated from Chen and Prasanna (2014). Estimated computation time for 1024 ×

1024 FFT based on our architecture is 2.09ms

for FFT computation.
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3.2.3 FPGA Implementation

FPGA implementations are targeted to Xilinx Virtex 7, XC7V2000T FPGA device.

Table 3.5 gives the FPGA implementation results of 64 × 64 FFT. At 156.25 MHz,

total power consumption is 1422 mW, out of which 912 mW is dynamic power and 510

mW is static power. Table 3.6 shows the resource utilization of proposed architecture.

From Table 3.4 it can be seen that our architecture gives the least cycle count among

all other implementations. For ASIC implementation with a frequency of 500 MHz

we get an execution time of 8.19µs, which is the best among other implementations.

However in the case of FPGA, our operating frequency is 156.25 MHz. So even though

we have lower cycle count, this result in higher execution time.

We implement non pipelined adders and multipliers using DSP48 in FPGA. If we

use pipelined adders and multipliers, we should be able to improve the operating fre-

quency. 2D FFT comparison of resources is given in Table 3.7. Various FFT architec-

tures are compared with proposed work. Comparison of area in terms of slice LUTs

shows that we have comparable area with other implementations.

In this work, an efficient data scheduling technique has been implemented, so that

Table 3.5: FPGA Implementation Results of 64 × 64 FFT

Word length 16 bits

Frequency 156.25 MHz

Static Power 510 mW

Dynamic Power 912 mW

Total Power 1422 mW

Table 3.6: Resource Utilization of 64 × 64 FFT

Resource Used/Available Percentage

Slices 5692 / 305400 1.86

Flip flops 14103 / 2443200 0.57

Block RAM
64 / 2584 2.47

(RAMB18/FIFO18)

DSP48 124 / 2160 5.74
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2D FFT output is in normal order. SDF and MDC architectures require output memory

for bit reversal Huang and Chen (2012). Our architecture does not require any additional

hardware blocks for performing bit reversal. Output of proposed FFT architecture is

already in reordered form. Therefore extra buffers are not required here.

3.2.4 Hardware Complexity Analysis

We analyze the hardware complexity in terms of complex adders, complex multipliers,

memory requirement and control circuitry of various 1D FFT architectures in Table 3.8.

From Table 3.8, in R43 systolic architecture, the number of adders and multipliers are

comparable to other architectures.

In this work, fully parallel unrolled architecture of R43 FFT has been used. Our R43

FFT uses 63 adders, 15 complex multipliers and 64 words of memory. Even though

adders and multipliers are more, total area remains less as seen from ASIC results. This

is because memory consumes more area compared to logic. This architecture reduces

intermediate memory significantly, at the cost of adders and multipliers.

3.3 Summary of the Chapter

In this chapter, a novel 2D FFT architecture with efficient data reordering technique,

using radix-43 algorithm is presented. The architecture uses two parallel unrolled radix-

43 blocks in cascade to develop a 64 × 64 2D FFT architecture. We have used six-bit

mode select as the control signal in radix-43 architecture for performing data reordering.

Radix-43 architecture gives significant reduction in intermediate memory within a 1D

FFT and reduces the latency. Proposed architecture of 2D FFT reduces the intermediate

memory between two 1D FFTs from N2 to N . Fixed point arithmetic simulation of

the proposed architecture is done in matlab. SNR for various word lengths is analyzed

and 16 bit is chosen as the required word length for image processing applications.

The architecture has been implemented in RTL using Verilog HDL and simulated using

Modelsim. RTL has been synthesized with Cadence RTL Compiler using Faraday 40nm

standard cell library, tailored for UMC’s 40nm process. ASIC synthesis results give a

clock frequency of 500 MHz and core area of 0.841mm2. At 500 MHz the power
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consumption is 358mW. Energy efficiency in terms of number of FFTs per Energy is

341 points/Joule. 64 × 64 FFT takes 4096 cycles for computation and the execution

time is 8.19µs. Comparison with existing implementations shows 47.5% reduction in

computation time for 64 × 64 FFT. Proposed architecture has been also implemented

in Virtex-7 FPGA with an operating frequency of 156.25 MHz. FPGA implementation

results show comparable area in terms of slice LUTs.
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Table 3.8: Hardware Complexity of various 1D FFT Architectures

Architecture Adders Multipliers Memory Control

R2SDF
Wang and
Li (2016)

4log4N 2log4N-2 N-1 Simple

R4SDF
Wang and
Li (2016)

8log4N log4N-1 N-1 Medium

R22SDF
Shousheng
He and
Torkelson
(1998a)

4log4N log4N-1 N-1 Simple

R2MDC
Shousheng
He and
Torkelson
(1998a)

4log4N 2log4N-2 3N/2 -2 Simple

R4MDC
Wang and
Li (2016)

8log4N 3log4N-3 5N/2 -4 Complex

R4SDC
Wang and
Li (2016)

3log4N log4N-1 2N -2 Complex

R43 Sys-
tolic
Babioni-
takis et al.
(2010a)

3log4N log4N-1 N/3 log4N Simple
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CHAPTER 4

Convolution Algorithms for CNN Implementation

In this chapter, various convolution algorithms for accelerating CNNs on hardware are

discussed. Direct (or conventional) convolution and fast algorithms like FFT based

convolution and Winograd minimal filtering are described in this chapter. Training and

inference of popular CNN models in various platforms are also discussed in this chapter.

Hardware architecture for accelerating AlexNet model is proposed in this chapter and

has been implemented in Virtex-7 FPGA.

4.1 Direct Convolution

In 2D convolution, input data is convolved with kernel, which is a multiply and accu-

mulate (MAC) operation. There will be multiple channels of input and kernels, and the

outputs from each channel are added up together to get the final result. As the image

size increases, number of MAC operations also increases. This is a slow process since

each pixel in the image is multiplied with each of the weight in the kernel. Real time

CNN architecture comprises of several channels of input features and many convolu-

tional layers. Typical 2D convolution operation of 5×5 input data and 3×3 kernel is

shown in Fig. 4.1. Here a stride of one is used for convolving the data. For efficient

computation, strides may vary in different CNN models. Direct convolution can be

performed using general matrix multiplication (GEMM) algorithm.

We perform complexity analysis of 2D convolutions, in terms of adders and multi-

pliers, which is shown in Fig. 4.2. For an N×N kernel, number of adders required is

N2 − 1 and multipliers required is N2.

Fig. 4.3 shows the architecture of a one dimensional convolution which uses con-

ventional method. Stride of one is used in this architecture, with a filter size of three.

Streaming inputs are denoted as a0, a1, a2, etc. and the filter coefficients are b0, b1



Figure 4.1: Two dimensional convolution

Figure 4.2: Complexity analysis of 2D convolution
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Figure 4.3: Architecture of 1D Convolution

Figure 4.4: Architecture of 2D Convolution

and b2. Filter coefficients are the inputs to a constant multiplier. Registers used in the

architecture are denoted as r0, r1 and r2.

Fig. 4.4 shows the architecture of a two dimensional convolution which uses con-

ventional method. Stride of one is used in this architecture, with a filter size of three.

Streaming inputs are denoted as a0, a1, a2, etc. and the filter coefficients are b0, b1, b2

etc., which can be selected using the multiplexer. Registers used to shift and store the

input data are denoted as r0, r1 and r2.
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Figure 4.5: FFT based convolution

4.2 FFT Convolution

FFT based convolution is a fast algorithm for computing convolutions. Convolution

can be efficiently performed in frequency domain. Equation (4.1) gives mathematical

representation of FFT based convolution.

x(n) ∗ h(n) = IFFT{FFT (x(n))× FFT (h(n))} (4.1)

Here, Fourier transform of the input image and kernel are taken thereby transform-

ing them to frequency domain. Both FFTs should be of same length for element-wise

multiplication. Perform inverse FFT to get the results in time domain. Fig. 4.5 shows

FFT based convolution scheme. FFTs of the input feature and the kernel are taken and

are multiplied together. To perform matrix multiplication, augmentation is done. In-

verse FFT is computed for the result. FFT based convolution gives high performance

when kernel size is large. Computational complexity of FFT convolution is of the order

O(n2log(n)) where n denotes FFT size.

4.3 Winograd minimal filtering

Winograd minimal filtering is a fast algorithm for computing convolution based on Chi-

nese Remainder Theorem and involves polynomial multiplication. This algorithm can

be used for computing convolutions when filter sizes are small. As filter size increases,

transformation overhead also increases quadratically Zhuge et al. (2018). One dimen-

sional Winograd algorithm for computing m outputs using an r tap filter will require

m + r − 1 multiplications Lavin and Gray (2016). Consider F (m, r) =F (2, 3) where

2 outputs of a 3-tap filter are computed. The algorithm is given below, where d denotes

input data and g denotes filter coefficients.
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Table 4.1: Hardware Complexity of Winograd Algorithm

Operation Arithmetic complexity
Winograd operation 4 Multiply

Input transform 4 Add
Filter transform 4 Add, 2 Division (Shift)

Output transform 4 Add

Total 4 Multiply, 12 Add, 2 Shift
Assuming offline filter transform 4 Multiply, 8 Add

F(2,3)=

d0 d1 d2

d1 d2 d3



g0

g1

g2

 =

m0 +m1 +m2

m1 −m2 −m3


where m0, m1, m2 and m3 are calculated as in Equation (4.2),

m0 = (d0 − d2)g0 m1 = (d1 + d2)
g0 + g1 + g2

2
(4.2)

m3 = (d1 − d3)g2 m2 = (d2 − d1)
g0 − g1 + g2

2

Here, the input data is a tile of sizem+r−1, ie., in the case of F (2, 3), it is 4. For com-

puting m0, m1 , m2 and m3, only 4 multiplications are required. The algorithm require

4 additions involving data, 3 filter additions and 2 constant multiplications involving

the filter. Finally the multiplied outputs are added together using 4 additions. Hardware

complexity of Winograd algorithm is shown in Table 4.1. In matrix form, output Y is

written as,

Y = AT [(Gg)� (BTd)] (4.3)

where � denotes element-wise multiplication.

Two dimensional (2D) Winograd algorithm can be implemented from nested one

dimensional (1D) Winograd algorithm. 2D minimal algorithm for computing m × m

output tile using r× r filter requires (m+ r− 1) × (m+ r− 1) multiplications, where

(m + r − 1) × (m + r − 1) inputs are required. This can be denoted as shown in

Equation (4.4).

µ( F (m×m, r × r)) = µ( F (m×m))× µ( F (r × r)) (4.4)
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That is, input requirement and number of multiplications are same in minimal algo-

rithm. This nesting can be used for non-squared filters and outputs also. Output Y can

be written as,

Y = AT [(GgGT )� (BTdB)]A (4.5)

The transform matrices A,B and G can be precomputed, once the value of m and

r are known. Conventional convolution for a one dimensional function F (2, 3) has

2×3 = 6 multiplications, whereas in minimal filtering algorithm, only 2 + 3 − 1 = 4

multiplications are required. In the case of 2D convolution, F (2 × 2, 3 × 3) involves

22×32 = 36 multiplications, whereas Winograd takes 42 = 16 multiplications. There is

a complexity reduction in terms of multiplication, by a factor 36
16

= 2.25. In general, the

ratio of hardware complexity in terms of multiplication for conventional and Winograd

convolution is given by Equation (4.6),

Ratio of Multiplications =
m2 × r2

(m+ r − 1)2
(4.6)

For computing convolution operation in CNN, each image channel is divided into

tiles of size (m + r − 1) × (m + r − 1). Neighboring tiles have an overlap of r − 1

elements. For each of these channels F (m×m, r × r) is computed and the results are

summed up over all the channels.

Total number of multiplications per CONV layer = No. of tiles × (m+ r − 1)2

For an H ×W input feature with C channels and K number of kernels,

Total number of multiplications = H ×W × C ×K × (m+ r − 1)2

m2
(4.7)

As the tile size increases, number of additions and constant multiplications also in-

crease. The size of transform matrix also increases with tile size. The transform ma-

trices contain coefficients which needs approximation. Filtering require less numeric

precision as discussed in Lavin and Gray (2016). Acceleration rate will be higher

if Winograd tile is large. Transform matrices for various tiles are given in Apendix.

F (6× 6, 3× 3) involves (6 + 3− 1)2 = 84 multiplications, whereas conventional con-

volution uses 6×6×3×3 = 324 multiplications. Winograd algorithm gives complexity

reduction by a factor of 5.06×.
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Table 4.2: Design parameters for convolution

Tile input output kernel size
F (3, 2) 4 3 2
F (2, 3) 4 2 3
F (3, 3) 5 3 3
F (4, 3) 6 4 3
F (6, 3) 8 6 3

4.4 Depthwise Separable Convolution

Novel CNNs like MobileNet, ShuffleNet etc uses depthwise separable convolution ap-

proach which reduces the computational complexity in terms of operations and num-

ber of parameters. Depthwise separable convolution is a factorized form of conven-

tional convolution, where convolutions are split into depthwise and pointwise convolu-

tions Wu et al. (2019). In depthwise convolution, kernel is slided over each of the input

channel individually to obtain the output channel. Number of input and output chan-

nels are same here. In pointwise convolution, conventional convolution takes place with

1×1 kernel. This factorization will reduce the complexity of computation and number

of parameters.

4.5 Analysis of Convolution Schemes

FFT and Winograd filtering are fast algorithms for performing convolutions. However

these algorithms are optimum at certain input feature size and kernel size. For large ker-

nel sizes either direct convolution or FFT based convolution is suited, while Winograd

algorithm gives better performance for small kernel sizes.

We have conducted experiments with various kernel sizes and input feature maps for

conventional, Winograd minimal filtering and also FFT convolution. The kernel sizes

used and the input feature map considered are shown in Table 4.2. We have chosen

radix-2 FFT for convolution computations. Zero padding has been done to get the

powers of two. We have chosen F (2, 3), F (3, 3), F (4, 3), F (3, 2) and F (6, 3) Winograd

tile sizes for experiments. Fig. 4.6 shows the execution time of convolution operations

with varying input size and filter size for different convolution methods.
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Figure 4.6: Execution time for various convolution schemes

4.6 Training and Inference of CNN Models

Training of a network refers to a process where an algorithm will learn to approach a

problem. Training involves selection of weights of the network so as to produce the de-

sired output. Running a network with these computed weights is called as inference. In

other words, inference is referred as execution of the feed forward path of a neural net-

work. Graphic Processing Units (GPUs) are efficient for training and are widely used

for accelerating CNNs. Training and testing of deep learning models became easier with

the introduction of several deep learning frameworks like Caffe Jia et al. (2014), Ten-

sorflow and Torch Collobert et al. (2011) which can use CUDA programming. Many

companies have launched deep learning accelerators for CNN inference and training.

Google’s second generation tensor processing unit (TPU), Nvidia’s deep learning ac-

celerator (NVDLA) and Intel’s Nervana neural network processor (NNP) are some of

them. This Section briefs about the experiments conducted for training and inference of

some of the popular CNN models like AlexNet, VGGNet and ResNet on platforms like

CPU, GPU and Nvidia Jetson TX2 board. Training period and feed forward network

simulation time are compared for all these platforms.
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Table 4.3: AlexNet Layer Configuration

Layers Featurein Kernel #Kernels #Channels Stride

CONV1 227×227 11×11 96 3 4

POOL1 55×55 3×3 96 2

NORM1 27×27 96

CONV2 27×27 5×5 256 96 1

POOL2 27×27 3×3 256 2

NORM2 13×13 256 96

CONV3 13×13 3×3 384 256 1

CONV4 13×13 3×3 384 192 1

CONV5 13×13 3×3 256 192 1

POOL3 13×13 3×3 256 2

FC6 4096 neurons

FC7 4096 neurons

FC8 1000 neurons

4.6.1 CNN Models for Evaluation

For evaluation purpose, we have considered three popular CNN models which are dis-

cussed in the following subsections.

AlexNet Model

AlexNet was the first CNN model to win the ImageNet challenge in 2012 Krizhevsky

et al. (2012). AlexNet CNN model is used for image classification tasks which can

classify thousand categories. AlexNet consists of five convolution (CONV) layers and

three FC layers. Kernels used in AlexNet are of sizes 11, 5 and 3. Configurations of

AlexNet model are given in Table 4.3. Number of multiply and accumulate (MAC)

operations in convolutional and fully connected layers are shown in Fig. 4.7.

VGGNet Model

VGG model got second place in ILSVRC challenge in 2014, with top-5 accuracy of

92.6%. VGG network model is available in three different versions, namely VGG-11,

VGG-16 and VGG-19, based on the number of layers. Number of convolution stages
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Figure 4.7: MAC Operations in AlexNet

Table 4.4: VGG network models

VGG CONV CONV CONV CONV CONV
FC

Total

Model stage 1 stage 2 stage 3 stage 4 stage 5

VGG-11 1 1 2 2 2 3 11

VGG-16 2 2 3 3 3 3 16

VGG-19 2 2 4 4 4 4 19

in VGG network model is given is Table 4.4.

We analyze VGG models namely, VGG-11, VGG-16 and VGG-19 with top-5 error

rates 10.4%, 8.8% and 9.0% respectively. VGG models have five stages of convolution

layers. VGG-11 has one CONV layer in first two stages and two CONV layers, each

in the remaining stages. VGG-16 has two CONV layers in first and second stages, and

three CONV layers in remaining each of the stages. VGG-19 also has two CONV layers

in first two stages, whereas four CONV layers are present in each of the other stages.

Max pooling layer is present after each stages in both the networks and a soft max

operation is performed after the final FC layer. Here convolutions use a stride of one and

the 2×2 max pooling uses a stride of two. There are three FC layers in all VGG models.

The top-5 error rate of VGG-19 is greater than VGG-16, since the network started

converging and hence addition of further layers will not improve accuracy. Number of

MAC operations in different layers of VGG-16 are shown in Fig. 4.8.
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Figure 4.8: MAC Operations in VGG-16

ResNet Model

ResNet model won ISLVRC challenge in 2015 with top-5 error of 3.57% He et al.

(2016). ResNet uses residual connections to avoid performance degradation and form

highly deep networks. For ImageNet challenge, a depth of 152 layers were used in

ResNet which has only one fully connected layer as the last layer. Each of the residual

block has two 3×3 convolutional layers. ResNet uses depth of 34, 50, 101 or 152 layers

for realization.

4.6.2 Implementation and Results

We have performed the analysis in three different platforms. GPU simulations are per-

formed on Nvidia GeForce GTX 1080 Ti GPU with 3584 CUDA Cores, 1582 MHz,

11GB GDDR5X. We have used CUDA Version 8.0.61 and CuDNN library with Ver-

sion 6.0.21. General purpose processor platform used for the simulation is Intel Core i7

7th generation CPU, with frequency 3.60 GHz and 8GB RAM. For inference, no other

workloads were distributed over CPU and GPU. We have also performed the imple-

mentation of AlexNet, VGG models (VGG-11, VGG-13, VGG-16) and ResNet-50 on

Nvidia Jetson TX2 platform. Nvidia Jetson has been introduced as an artificial intelli-

gence (AI) platform for autonomous machines. Jetson provides high efficiency with less
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Figure 4.9: Comparison of feed forward simulations

power consumption and is widely used for low power scenarios like camera drones. Jet-

son TX2 is a fast and power-efficient embedded device for applications involving deep

learning techniques. We have performed training and inference of CNN on Jetson TX2

which has 256 Nvidia CUDA cores. We have used ImageNet Russakovsky et al. (2015)

dataset for performance evaluation, with input size 224×224.

Fig. 4.9 shows the execution time for feed forward path of AlexNet, VGG-16 and

ResNet models in CPU, GPU and Nvidia Jetson TX2 platforms. Execution time for

inference is much faster in GPU compared to general purpose processor and Jetson

TX2 platform. Fig. 4.10 shows the training time for AlexNet, VGG-16 and ResNet-50

models in CPU, GPU and Nvidia Jetson TX2 platforms. As seen from Fig. 4.10, train-

ing period is much shorter in GPU compared to CPU and Jetson hardware simulations.

Fig. 4.11 shows the feed forward network execution time and Fig. 4.12 shows the train-

ing period for VGG-11, VGG-16 and VGG-19 in CPU, GPU and Jetson TX2. Inference

time and training time are large in case of CPU and minimum for GPU implementation

for all the models. Even-though Jetson TX2 takes more time than GPU, Jetson boards

are used widely for embedded devices, where a GPU is not advisable.

66



0

200

400

600

800

1000

1200

1400

AlexNet VGG-16 ResNet-50

T
ra

in
in

g
 t

im
e 

in
 m

s

CNN Models

CPU GPU JETSON TX2

Figure 4.10: Comparison of training periods

0

100

200

300

400

500

600

700

800

VGG-11 VGG-16 VGG-19

E
x

ec
u
ti

o
n
 t

im
e 

in
 m

s

VGG Network Models

CPU GPU JETSON TX2

Figure 4.11: Comparison of inference time of VGG networks
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Figure 4.12: Comparison of training periods of VGG networks

Digit Recognition - Case study

We have performed the end-to-end simulation for digit recognition using LeNet CNN

model, as a case study. The study includes prediction of a digit (0,1, ... 9) included in

a handwritten figure. We have used MNIST dataset which consists of 60K handwrit-

ten digit (gray scale) images with dimensions of 28×28 pixels. The platform used was

Jupyter Notebook and implementation has been done using Python. The python im-

plementation uses Keras, OpenCV (CV2), Numpy libraries and tensorflow framework.

Simulations were done on Intel Core i5-7200 CPU @ 2.50 GHz. The first convolution

layer of CNN model uses 32 filters of size 5×5 and the activation used is ReLU. Second

convolution layer uses 64 filters of size 3×3 size and ReLU activations. Max Pooling

layer uses 2×2 filters.

4.7 Hardware Architecture for AlexNet Model

A hardware architecture for accelerating the first convolutional layer of AlexNet CNN

model has also been implemented. First convolution layer in AlexNet model uses 11×

11 filter with an input feature of size 227×227. Here, 96 filters and three input channels

are used. First layer can be implemented using conventional convolution technique. It
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Figure 4.13: CONV1 layer of AlexNet

uses general matrix-matrix multiplication algorithm for realization. Representation of

first CONV layer is shown in Fig. 4.13.

Even-though the algorithm follows general matrix multiplication, first layer can be

realized in different ways. Possible ways of realizations are as follows:

• Parallel computation of all the output channels, with 96 multipliers, one for each
output channel

• Sequential computation of the output channels, with 11×11 multipliers

• Implementing 11×96 multipliers, to perform row-computations in parallel

For better performance and comparable hardware resources, we implement pro-

posed architecture using the third method. The architecture uses a series of MAC units

in parallel for improving the throughput. Depth of parallelism is based on the available

hardware resources and bandwidth. Proposed architecture for implementation of the

first convolutional layer of AlexNet is shown in Fig. 4.14. The architecture performs

convolution of an M ×M input feature map with a K ×K kernel, with C input chan-

nels and F number of kernels. Input features and kernel coefficients are accessed from

DDR and the output feature is also written back to DDR. Single channel of M ×M in-

put feature is considered first, which has to be convolved with F kernels of size K ×K

each. Initially f data are fed in serial to the processing engine. We use x MAC units for

performing a row convolution (x = f). We have n such row convolution units which

perform convolution operation in parallel, denoted asK1 toKn. Outputs of all the chan-

nels are added together, reusing the accumulators in MAC unit resulting in n number of
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P ×Q outputs. In our architecture we use 11 MAC units per filter for performing a row

convolution. We have 96 such row convolution units which perform convolution opera-

tion in parallel. Similarly three channels of input feature map in CONV1 are considered

for computation.

4.7.1 FPGA Implementation Results

Convolution architecture for first layer of AlexNet model has been implemented on

Xilinx XC7V2000 FPGA. We have used 32-bits floating point arithmetic for imple-

mentation. The architecture has been verified using Matlab simulation environment.

Floating point multipliers in MAC unit are five stage pipelined. Proposed architecture

has an operating frequency of 200 MHz. Resource utilization of the proposed architec-

ture is given in Table 4.5. Since the architecture is a parallel convolution architecture,

with 96 channels in parallel, the implementation gives a throughput of 96 samples per

clock cycle. Our architecture gives a performance of 422 GFLOPs (Giga Floating point

Operations Per second) for the first layer of convolution in AlexNet CNN model.
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Table 4.5: Resource Utilization

Resource Used Available Percentage utilization
LUTs 519312 1221600 42.51

DSP48E 2112 2160 97.78
Flip Flops 136513 2443200 5.59

Comparison of performance in terms of GFLOPs for CONV1 (first) layer of AlexNet

CNN model as reported in various implementations are given in Table 4.6.

Table 4.6: Performance Comparison

Reference Precision Frequency Performance
(GFLOPs)

Proposed Work 32-bit floating point 200 MHz 422
Han et al. (2016) 32-bit floating point 189 MHz 27.01

Motamedi et al. (2016) 32-bit floating point 100 MHz 139
Shen et al. (2018) 32-bit floating point 200 MHz 59.7

Zhang et al. (2015) 32-bit floating point 100 MHz 27.5

But the architecture is specific for AlexNet model and is not efficient for other CNN

models. So further research was carried out to come up with an efficient architecture

for accelerating various popular CNN models and is discussed in the next chapter.

4.8 Summary of the Chapter

In this chapter, various convolution schemes like conventional, FFT based and Wino-

grad minimal filtering techniques are discussed. Execution time for these schemes, with

varying tile sizes are also presented in this chapter. Conventional convolutions are best

suited for large kernel sizes and FFT based convolutions are suited when input and ker-

nel sizes are matching. Winograd gives high performance when kernel size is small.

Training and execution time of various CNN models on different platforms like CPU,

GPU and Nvidia Jetson TX2 were also performed in this chapter. GPU takes much less

time compared to other simulations. Hardware architecture for accelerating convolu-

tional layers in AlexNet has been proposed and first layer is implemented on FPGA.

Since this architecture does not give efficient acceleration of other CNN models, an-

other high performance CNN accelerator is proposed in the next chapter.
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CHAPTER 5

UniWiG: Unified Winograd-GEMM based CNN

Architecture

In this chapter, a Unified Winograd-GEMM based CNN architecture, called as UniWiG

is presented. The motivation for proposed architecture, design and implementation on

FPGA and evaluation of results are discussed in this chapter.

5.1 Motivation

Various algorithms and architectures have been proposed for optimizing the compu-

tations in convolution layer. In the conventional approach, convolutions are reduced

to general element-wise matrix multiplications (GEMM) Lavin and Gray (2016). Fast

Fourier Transform (FFT) based convolution gives reduced computational complexity

compared to conventional method Mathieu et al. (2013). However it is efficient only

for large filter sizes or if both filter and data are of same size. Winograd minimal fil-

tering algorithm gives efficient implementation of convolution layers when filter size

is small. However the transformation is efficient only if input stride is equal to one.

Performance can be improved by using a hybrid approach, in which each convolution

layer is computed using the most appropriate algorithm as demanded by its filter size.

Most of the convolution layers in typical CNNs use small filter sizes. These layers can

be computed using Winograd algorithm. Layers with large filter sizes, layers with stride

greater than one and fully connected layers can be implemented using general matrix

multiplication.

Various research groups have proposed Winograd filtering algorithm based hard-

ware accelerators for CNN Xiao et al. (2017); Podili et al. (2017); Yu et al. (2017);

Zhuge et al. (2018); Lu et al. (2017). These approaches propose dedicated processing

elements for performing Winograd based convolutions, which necessitates separate pro-

cessing elements for convolution layers and fully connected layers, resulting in severe



under-utilization of resources. Performing all convolution and FC layer operations on

same processing elements (PEs) can improve resource utilization. In Lu et al. (2017),

PEs specialized for Winograd based convolution are also used to compute FC layers.

However, FC layers have to fit the designed Winograd based PEs without any scope for

optimizations. Also the PEs once implemented is tightly coupled with the Winograd

filter sizes and hence use the same filter sizes for all layers.

In this chapter, a novel hybrid architecture which incorporates Winograd filtering

algorithm on a GEMM accelerator is presented. This architecture consists of PEs which

are optimized for GEMM and transform modules with very small resource overheads

which map Winograd algorithm to GEMM operations. This unified architecture gives

the most efficient implementation for CONV layers irrespective of filter sizes and also

for FC layers. The proposed technique can be incorporated to any efficient GEMM

accelerator. For demonstrating the technique we have used the FPGA based GEMM

architecture in Shen et al. (2018).

The following are the major contributions in this chapter:

• We propose a unified architecture for performing general element-wise matrix
multiplication (GEMM) as well as Winograd filtering algorithm using the same
array of processing elements (PEs).

• Secondly, we propose a novel algorithm which transforms Winograd minimal
filtering algorithm into blocked general element-wise matrix multiplication which
targets optimal utilization of BRAMs and DDR bandwidth.

• An analytical model for estimating performance and BRAM usage has also been
proposed, using which appropriate tile sizes for each layer can be identified.

• The proposed architecture has been used to accelerate AlexNet CNN model on
FPGA and compared with existing architecture.

5.1.1 General Matrix Multiplication (GEMM)

Generally, matrix multiplication of two matrices A and B, to produce a matrix C is

given by,

Ci,j =
N−1∑
k=0

Ai,k ×Bk,j, (0 <= i < M, 0 <= j < R) (5.1)

Where A is an M ×N matrix, B is a N ×R matrix and C is a M ×R matrix.

74



Figure 5.1: GEMM Accelerator in Shen et al. (2018)

This equation can be coded using three nested loops. Computational complexity of

this algorithm is 2 ×M × N × R, ie., O(n3). Bandwidth and memory bottleneck of

matrix multiplication algorithms can be reduced by reusing the data Dou et al. (2005).

This is performed using a technique called block multiplication as discussed in 5.1.2.

In Shen et al. (2018); Huang et al. (2018), a multi-array architecture for accelerat-

ing floating point matrix multiplication is presented. Here single array of processing

engines are extended to multiple arrays so as to take the advantage of both throughput

improvement and bandwidth budget. An overview of the GEMM accelerator in Shen

et al. (2018) is shown in Fig. 5.1. Architecture in Huang et al. (2018); Shen et al.

(2018) is composed of Memory Access Controller (MAC), Workload Queue Manage-

ment (WQM) and Matrices Processing Engine (MPE). The architecture block diagram

in detail is given in Huang et al. (2018). Input and output data are stored in external

memory (DDR). Data transfer between DDR and processing engine is handled by MAC.
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MPE consists of a number of linear PE arrays which can work in parallel. Workload

queues for all the arrays are managed and load balancing is done by WQM.

5.1.2 Parallel Block Multiplication Scheme

FPGA implementations using direct convolution techniques have also been explored by

various research groups. Convolution here is performed using general matrix multipli-

cation algorithm (GEMM). In addition to CONV layers, FC layers can also be acceler-

ated using the same hardware. In Dou et al. (2005) a matrix multiplication kernel using

64-bit floating point arithmetic is presented. Here a linear array of PEs is used to imple-

ment block matrix multiplication for any arbitrary matrix size. The key here is to effi-

ciently exploit data re-usability. Matrices are partitioned into smaller size sub-matrices

and computations are done within these sub-matrices. Fig. 5.2 gives the parallel block

matrix multiplication scheme used in Dou et al. (2005).

Consider two 4×4 matricesA andB whose product is matrixC as shown in Fig. 5.2.

Matrix C is partitioned into sub matrices of size 2×2. For simplicity, we consider an

array consisting of only two processing elements (PE). For obtaining one sub block of

C, elements of two rows and two columns of A and B respectively, are required. Sub

block is initialized with data c0xx. Either first or last data pair from A i.e, (a11, a21) or

(a14, a24) and from B i.e, (b11, b12) or (b41, b42) are loaded to PE0 and PE1 respec-

tively. These are added to the data in c0xx, which is a MAC (Multiply And Accumulate)

operation and results in sub matrix c1xx. The operation is continued with other elements

in A and B to get the remaining intermediate results c2xx and c3xx. After 4 iterations, the

final sub matrix result c11 to c22 is obtained. PE0 and PE1 will repeat these computations

until all the elements of C are computed.

5.1.3 Transforming Winograd Minimal Filtering Algorithm to GEMM

Consider a CONV layer with a bank of F filters and C channels of size R×R convolv-

ing with an image of size H ×W . Filter elements are denoted by Gf,c,u,v and image

elements by Dc,x,y. Note that we are looking at a single image separately and not trying

to batch together a set of images as normally done. Using Winograd filtering algorithm
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F (m, r), the output Y is given by (5.2). That is

Y = AT [(GgGT )� (BTdB)]A (5.2)

where B, G and A are the data, filter and output transform matrices. Here, g is an

r × r filter and d is an (m + r − 1) × (m + r − 1) data tile. There will be total

T = d(H/m)e × dW/me data tiles per channel. (5.2) can be rewritten as, Substituting

U = GgGT and V = BTdB, and labeling the tile co-ordinates as (x̃, ỹ), Equation (5.2)

can be transformed as

Yf,x̃,ỹ = AT

[
C∑
c=1

Uf,c � Vc,x̃,ỹ

]
A (5.3)

Note that each tile (x̃, ỹ) is of size (m+ r − 1)× (m+ r − 1). By collapsing (x̃, ỹ) to

a single dimension t, Equation (5.3) becomes

Yf,t = AT

[
C∑
c=1

Uf,c � Vc,t

]
A (5.4)

Labeling each component in the tile as (ξ, ν) in the element-wise product term,

Yf,t = AT

[
C∑
c=1

U
(ξ,ν)
f,c � V

(ξ,ν)
c,t

]
A (5.5)

where U = GgGT and V = BTdB.

The term
C∑
c=1

U
(ξ,ν)
f,c � V

(ξ,ν)
c,t is matrix multiplication and can be represented as

U
(ξ,ν)
f,c V

(ξ,nu)
c,t .

Thus element-wise product has been transformed to (m+ r− 1)× (m+ r− 1) matrix

multiplications with the two matrices being of size F × C and C × T respectively.

The above transformation was proposed by authors in Lavin and Gray (2016). It

maps Winograd based convolution into GEMM operations between transformed input

feature tiles and filter tiles. Each element of input tile and filter tile, after transformation

is scattered to a different matrix. Transformed input matrix consists of corresponding

elements from consecutive input tiles for a single channel along the column and one

column for each channel. Transformed filter matrix is arranged as channels along the
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rows and filters along the columns. To apply the above transformation and perform

Winograd algorithm using GEMM, input data after tiling and data transform is repre-

sented asm+r−1C×T matrices, where row t in ith matrix represent ith element in the

transformed data tile t for all channels. Similarly the transformed filter has to be repre-

sented as m + r − 1 F × C matrices with each column representing filter coefficients

for all channels for one filter.

The complete algorithm has the following steps. First, transform the image and fil-

ter tiles and scatter the elements to different matrices. Next, matrix multiplication is

applied to corresponding matrix pairs and elements are gathered back and output trans-

form is performed. GEMM based Winograd convolutions have been implemented in

GPUs in Lavin and Gray (2016). Implementing this algorithm directly onto a hardware

accelerator like FPGA with limited on-chip memory is not very efficient. Multiplying

large matrices on such platforms is typically implemented using blocked matrix multi-

plication algorithms. Here both input matrices are divided into sub-matrices of smaller

sizes and multiplication is performed between these smaller matrices. In this work

we propose a blocked GEMM based Winograd convolution algorithm targeted towards

platforms with limited on-chip storage.

5.2 Proposed Blocked Winograd Minimal Filtering Based

Convolution Algorithm

Consider two input matrices A and B whose product is matrix C. A commonly used

blocking scheme is to partition A along the rows and B along the columns. Size of

sub-matrices (number of partitions) is fixed according to available on-chip memory.

Typically one partition from A is fetched and stored locally and multiplied with multi-

ple sub-matrices from B. This optimizes the required off-chip memory bandwidth and

reduces data transfer from off-chip memory. We adopt this blocking scheme for our

proposed blocked Winograd convolution algorithm.

Basic GEMM based Winograd filtering algorithm has been presented in Lavin and

Gray (2016). We have modified this algorithm to create the blocked variant which is

listed in Algorithm 2.
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Algorithm 2: Blocked Winograd Filtering Based Convolution Algorithm for
F (m×m, r × r)

T = dH/medW/me is the number of image tiles.
q = m+ r − 1 is the input tile size.
Each input tile is q × q and tile stride is m .
dc,t ∈ Rq×q is input tile t in channel c.
gf,c ∈ Rr×r is filter f in channel c.
G, BT and AT are filter, data and output transforms.
ST and SF are the row and column block size.
for τ = 0 to dT/ST e do

for φ = 0 to dF/SF e do
for f = φ ∗ SF to (φ+ 1) ∗ SF do

for c = 0 to C do
u = Ggf,cG

T ∈ Rq×q

Scatter u to matrices U : U ξ,ν
f,c = uξ,ν

end for
end for
for t = τ ∗ ST to (τ + 1) ∗ ST do

for c = 0 to C do
v = BTdc,tB ∈ Rq×q

Scatter v to matrices V : V ξ,ν
c,t = vξ,ν

end for
end for
for ξ = 0 to q do

for ν = 0 to q do
Zξ,ν = U ξ,νV ξ,ν

end for
end for
for f = 0 to SF do

for t = 0 to ST do
Gather z from matrices Z : zξ,ν = Zξ,ν

f,t

Yf,t = AT zA
end for

end for
end for

end for
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The algorithm is pictorially shown in Fig. 5.3. Initially, an input matrix of size

H ×W and C channels get transformed to C channels of T tiles each of size q × q.

Note that T = d(H/m)e×dW/me here. Qt(i.e, q×q) elements of a tile are scattered to

Qt different matrices. Corresponding element from all tiles are arranged along columns

and each column corresponds to one channel. Thus there will be Qt matrices of size

T × C. These matrices are divided into sub-blocks along the rows with ST being the

number of rows in a sub-block. Similarly, there are Qt transformed filter matrices each

of size C × F . These matrices are blocked along the columns with each sub-block

consisting of SF columns. Matrix multiplication between an input and filter sub-block

generates output sub-matrices of size ST × SF . This is repeated for all pairs of sub-

blocks in all the Qt input and filter matrices. Each input and filter matrix will give

d T
ST
e×d F

SF
e sub-matrices. Data from identical locations from the set ofQt sub-matrices

are gathered together to reform a tile. Output transform is performed on each of these

tile to give output tiles of size mST ×mSF .

Basic algorithm in Lavin and Gray (2016) transforms the Winograd operation into

q×q matrix multiplications where q = m + r − 1 is the input tile size. Each multi-

plication is between matrices of size T×C and C×F where T , C and F are number of

input tiles, channels and kernels respectively. In Algorithm 2, first matrix is divided

into sub-matrices of size ST × C and second matrix into sub-matrices of size C × SF .

Input and kernel transforms are performed at sub-matrix level, GEMM is performed on

the transformed sub-matrices, and resultant product sub-matrix is transformed to get ST

output tiles (each of size m ×m) for SF kernels. This process is repeated for all tiles

and filters. Hereafter we denote F(m×m, r × r) as F(m, r).

By transforming Winograd filtering to GEMM, a unified architecture can be used

for accelerating all layers of CNN. This architecture will consist of processing elements

for performing GEMM and additional modules for performing input, filter and output

transforms. We call this unified architecture as UniWiG.
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Figure 5.3: Blocked Winograd Minimal Filtering Algorithm

5.3 Proposed Unified Winograd-GEMM Accelerator Ar-

chitecture

Implementing GEMM on FPGAs involve trade-off between performance, external mem-

ory bandwidth and Block RAM (BRAM) utilization. Blocked Winograd based convolu-

tion algorithm presented in Section 5.2 is targeted at memory constrained scenarios and

can be mapped to any FPGA based GEMM accelerator. In this work, we use the state-

of-art systolic multi-array architecture presented in Shen et al. (2018) for accelerating

GEMM. Hereafter we refer Shen et al. (2018) as the baseline architecture.

We have modified the accelerator by including additional modules for performing

input and output transforms. Input tiles d have to be transformed using BTdB and filter

tiles g have to be transformed using GgGT before passing to the GEMM accelerator.

Similarly products from GEMM z has to be transformed usingAT zA. Filter coefficients

are constant for a given convolution network model and hence the filter transform are

applied off-line and transformed filter coefficients are stored in DDR. Fig. 5.4 gives the
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Figure 5.4: Proposed Unified Winograd-GEMM Architecture

high level block diagram for proposed unified Winograd-GEMM architecture. Two ad-

ditional blocks namely Data Transform Unit (DTU) and Output Transform Unit (OTU)

are introduced between the Memory Access Control and the PE arrays.

As explained in Section 5.2, we divide the input feature matrices and filter matrices

into sub-blocks of size ST and SF respectively. The first step is to tile the input fea-

ture sub-block and apply the transformation (BTdB). Data Transform Unit in Fig. 5.4

performs this transformation. Outputs from DTU are sent to PE array. We do not com-

pute the transform (GTgG) on-line. Instead these operations are computed off-line and

transformed filter matrices are used directly. Filter coefficient sub-blocks are fetched di-

rectly to PE array. PEs perform sub-block multiplication and send the output to Output

Transform Unit. This unit computes the operation (AT (z)A). Additional multiplex-

ers are introduced so that DTU and OTU can be bypassed to perform normal GEMM

computations.
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Fig. 5.5 shows the block diagram for Data Transform Unit. Input data tiles are assem-

bled here and the transform (BTdB) is applied. Blocked Winograd algorithm requires

tiles to be created as sub-blocks of size ST . DTU transforms tiles in a batch of ST ×C,

where C is the number of channels. Input tile size is q × q and elements from q rows

are required to create one tile. One complete row is fetched together to optimize DDR

bandwidth. q such rows from each channel are fetched and stored in Input Storage. Ini-

tially q rows from first channel is fetched and stored. Qt = q×q elements corresponding

to a tile are read out from Input Storage and sent to Data Transform stage. This is re-

peated for all tiles in the first q rows. Rows for subsequent channels are fetched and

stored while previous fetched channels are transformed. These steps are repeated for

all channels. Once all tiles from first q rows are transformed, next m rows are fetched

from DDR and tiles with a stride of m are created and transformed.

Transform matrix B used in Data Transform stage is a constant for a given Wino-

grad tile size and the operation can be reduced to additions and constant multiplications.

Elements of transformed tiles are stored as elements of Qt different matrices in Trans-

form Storage. Elements from subsequent tiles for same channel are stored in subsequent

rows of the same column. Each column stores elements corresponding to a single chan-

nel.

Input data matrix is transformed as sub-blocks of ST rows. Once one sub-block of
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Figure 5.6: Processing Element (PE) Shen et al. (2018)

transformed matrix for all channels are computed, these can be sent to the PE array to

be multiplied with filter sub-blocks.

Processing Element Arrays

Processing element (PE) arrays form the computational core of the accelerator. PEs are

designed for performing one MAC operation every cycle. Architecture of a PE, adapted

from Shen et al. (2018) is shown in Fig. 5.6. Multiple such PEs are connected together

to operate as one systolic processing unit. Consider multiplication of two sub-blocks S1

and S2 of sizeM×K andK×N respectively. Assume there areM PEs in one array. M

elements from first column of S1 is distributed among the PEs. Each PE then takes N

elements from first row of S2 and multiply these elements with stored element from S1

and results are stored in a local buffer. This operation is repeated with second column

of S1 and second row of S2 and products are added with previously stored intermediate

results. These steps are repeated with all K rows of S1 and columns of S2. The whole

sub-block multiplication takes N ×K cycles if we ignore cycles for fetching data and

pipeline latencies in the MAC. In Shen et al. (2018), authors have provided detailed

micro-architecture for the PE and exact analysis for computation time.

PE arrays can operate in Independent mode and Cooperation mode. In Independent

mode each array works separately on different workloads without communicating with

each other. In Cooperation mode, adjacent PEs are connected together so that they can
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work on a single workload. Cooperation mode is useful for larger block sizes and need

lower off-chip memory bandwidth. In our implementation, for Winograd convolution,

we operate the PE arrays in Independent mode. For GEMM based Winograd convolu-

tion, number of rows in the first matrix T (refer Fig. 5.3), for most layers is less than

32 which is the number of PEs in one array. As a result, having arrays of large size will

lead to underutilization of PEs. In case of fully connected layers and direct convolution

operation, arrays are operated in Independent mode or Cooperation mode as demanded

by the workload.

PE array computes product of two sub-blocks namely, input sub-block of size ST ×

C and the filter sub-block of size C×SF respectively. Filter sub-block is directly fed to

PE array from Memory Access Control unit. During prefetch stage, one row of the filter

sub-block consisting of SF elements are fetched. Each element is sent to a different PE

element in the array. ST elements corresponding to a column of input sub-block is then

fetched from DTU. First element from the column is sent to all PEs and multiplied with

the saved filter element. This is repeated for all ST elements and results are stored in the

PE memory. Next column from input sub-block is fetched and multiplied with the same

filter elements. Products are added appropriately with previously stored products in PE

memory. This procedure is identical to the scheme used in Shen et al. (2018) with one

key difference. In Shen et al. (2018) columns of first matrix are distributed and saved

to the PEs, while here rows from the second matrix are distributed. Also here the input

sub-block is fetched from DTU instead of Memory Access Control.

Qt input and filter sub-blocks are distributed among Np PE arrays and products are

sent to OTU. This ensures that, products for all elements of each input data tile are

computed upon which the output transform can be applied. Next, a new filter sub-block

is fetched and multiplied with the same Qt input sub-blocks. Reuse of input sub-block

ensures that input data transform need to be performed only once for each input tile.

Memory Access Control unit manages data transfer between DDR and accelerator.

Workloads are organized using buffer descriptors similar to the scheme used in Shen

et al. (2018). Workload Queue Management block will assign workloads for various

PE arrays. It uses a work stealing approach to distribute workloads uniformly among

multiple PE arrays.
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Figure 5.7: Output Transform Unit

Output Transform Unit (OTU)

Fig. 5.7 gives the block diagram for Output Transform Unit. Qt sub-block products

are stored in the Output Storage. Corresponding elements from all Qt sub-blocks are

collected to reform the tile and output transform is applied by multiplying with AT and

A. Similar to the transform in DTU, this transform can also be converted to constant

multiplications and additions. Each tile gives outputs of size m×m after the transform.

These outputs are sent to Memory Access Control to be written back to DDR.

DTU and OTU are designed such that multiple Winograd tile sizes are supported.

Depending on the chosen size, transform units can be dynamically reconfigured.

5.3.1 Block RAM Memory Requirement

We estimate the extra BRAM required for DTU and OTU based on input and filter

parameters. Input Storage needs to store 2m rows of image data for each class C.

Transform Storage stores Qt matrices of size ST × C while Output Storage stores Qt

matrices of size ST × SF . We use single precision floating point data so that total

additional BRAM locations required is 4× (2mWC +QtSTC +QtSTSF ) bytes. For

single precision floating point w is 4 and for 16-bit fixed point, w is 2.
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5.3.2 Performance Model

In Shen et al. (2018), authors have developed an analytical performance model for

GEMM on multi-array architecture. This model can be modified to evaluate the per-

formance of Winograd algorithm on our proposed modified multi-array architecture.

Let Np be the number of PE arrays working in parallel. Average number of sub-block

multiplications for Winograd performed in one array is given by

Nwork = d
Qt

Np

× d T
ST
e × d F

SF
ee (5.6)

GivenBW , the external memory bandwidth in bytes and w, the data word size in bytes,

average time taken in seconds to load a pair of sub-blocks is given by

Twork =
w(mWC ST

dW
m
e ×

1
d F
SF
e ×

1
Qt

+ SFC + STSF )

BW
(5.7)

First term in the numerator in (5.7) gives the cycles to transfer extra rows of image data

for generating ST transformed tiles. Qt such matrices are computed from a single input

tile and transformed image sub-blocks are reused for F
SF

filter sub-blocks. Second term

gives the cycles for transferring the filter sub-blocks and third term gives the cycles for

output write-back. Total time for data transfer is

Ttrans = Nwork × Twork (5.8)

Computation time in seconds for a PE array is given by

Tcomp =
Nwork(SF +Max(ST , SF )C + Stagefmac)

Facc
(5.9)

Here Stagefmac gives the pipeline stages in PE and Facc is the clock frequency of the

accelerator.

Bounds for execution time is given as

Max(Tcomp, Ttrans) < Ttotal < (Ttrans + Tcomp) (5.10)
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If data transfer and compute are completely overlapping, then lower bound of execution

time can be achieved. This performance model in conjunction with the BRAM model

can be used to fix the Winograd tile size m for a target performance and available

BRAM resources. Note that the basic model given in Shen et al. (2018) has to be used

for estimating performance estimates for regular GEMM operations.

5.3.3 Other Layers of CNN

Apart from convolutional and fully connected layers, CNN contains other layers like

pooling, Rectified Linear Unit (ReLU) and normalization. Pooling layers reduce the

size of feature map by replacing the subregions within a window (eg., 2×2 kernel)

with their maximum value, which is referred as Max Pooling. ReLU layers will give

an output equal to zero, for any input value which is less than zero. These two layers

are implemented using comparators after the output transform unit. Normalization unit

performs normalization operation across the feature map, and it consists of squaring

operation, addition and multiplication and can be implemented as given in Ma et al.

(2018). Outputs from OTU are given to ReLU for applying non linearity, and these are

sent to normalization unit. Outputs after normalization are sent to pooling unit. Each

row of the PE array will have one ReLU unit, normalization unit and one pooling unit

each. Since each row consists of 32 PEs, additional hardware complexity due to the

above mentioned units is significantly less when compared to PE arrays.

5.4 Implementation and Results

5.4.1 Comparison with Baseline Architecture

Proposed accelerator (UniWiG) is targeted at accelerating both convolution and fully

connected layers. We evaluate the effectiveness of this approach by comparing perfor-

mance, hardware resource utilization and off-chip memory bandwidth of UniWiG with

the baseline GEMM accelerator presented in Shen et al. (2018). Performance is gen-

erally measured in terms of Giga (Floating point) Operations Per Second (G(FL)OPS).

As mentioned in Section 4.3, Winograd algorithm reduces computational complexity
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of convolution operation. When we compare two architectures running two different

convolution algorithms with different computational complexity, GOPS may not show

the real difference in performance. This is especially true for large Winograd tile sizes

like F (6, 3) where theoretical reduction in computations is as high as 5.06×. In such

scenarios, throughput in terms of number of convolutions per second (CONV/s) can be

used to compare performance.

In Shen et al. (2018), authors use Xilinx XC7VX690T FPGA for implementing their

architecture. Authors have evaluated the performance of this accelerator for the popular

AlexNet CNN model. Single precision floating point is used for data representation. We

have used the same FPGA platform with the same CNN model and data representation

for UniWiG. Both implementations have 256 PEs. However in UniWiG, we have used 8

arrays of 32 PEs whereas in Shen et al. (2018), authors have used 4 arrays with 64 PEs.

Both implementations run at a clock frequency of 200 MHz.

AlexNet comprises of five CONV layers and three FC layers. First CONV layer uses

filter matrices of dimension 11×11. Winograd algorithm is not targeted at convolutions

involving such large filter sizes. So this layer and the FC layers are computed using

normal GEMM algorithm.

Winograd tile size is a key parameter affecting the performance. Using the per-

formance model and BRAM model presented in Sections 5.3.2 and 5.3.1, we estimate

execution time and BRAM requirement for each layer. Tile sizes which give minimum

execution time with less than 15% additional BRAM units were chosen. Each layer was

mapped to the architecture with selected tile size, and performance was measured.

Table 5.1 compares the performance between the two architectures for all layers.

For layers using Winograd based convolution, we compare both GFLOPS and CONV/s.

Chosen tile sizes are also indicated. In terms of CONV/s, our approach gives 1.36× to

4.03× improvement in performance. Maximum improvement is for CONV2 which uses

a larger tile size F (6, 3). Note that for all layers, increase in performance is less than the

theoretical reduction in complexity for the selected tile size. For example, theoretically,

savings in complexity for F (6, 3) is 5.06×. With reduced computations, off-chip data

transfers are not completely hidden by the computations and is a major reason for this

reduction in performance. Comparing GFLOPS, UniWiG is superior to the baseline for
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Table 5.1: Performance comparison with baseline architecture in Shen et al. (2018)

Layer
Proposed Work Shen et al. (2018)

Ratio of CONV/sTech-
nique GFLOPS CONV/s GFLOPS CONV/s

CONV1 Direct 57.22 - 59.7 - -
CONV2 Wino (6,3) 61.53 1581.21 87.8 392.22 4.033
CONV3 Wino (3,3) 72.6 592.2 64.9 217.07 2.72
CONV4 Wino (3,3) 72.25 786.05 64.1 571.77 1.36
CONV5 Wino (3,3) 72.84 1188.60 62.9 841.60 1.41

FC6 Direct 98.1 - 100.9 - -
FC7 Direct 97.3 - 99.3 - -
FC8 Direct 94.6 - 96.9 - -

all layers except CONV2. For CONV2, there is a reduction in GFLOPS which indicates

under utilization of PEs for larger tile sizes and needs further investigation.

For CONV1 layer and FC layers (which are computed using GEMM), we compare

the performance in terms of GFLOPS in Table 5.1. Measured performance for these

layers show slight degradation when compared to the baseline, even though both ap-

proaches use identical architectures for GEMM computations. This can be attributed to

implementation differences most likely in Memory Access Control and Workload Queue

Management blocks.

Table 5.2 compares FPGA resources for both implementations. Very less additional

FPGA resources are used for introducing Winograd algorithm to the GEMM accelera-

tor. Only 8.9% of total LUT resources and 13.4% of total BRAMs are required. Max-

imum off-chip bandwidth is required for FC layers and hence it remains unchanged

between the two architectures. Note that percentages in Table 5.2 indicate the differ-

ence as a fraction of total available resources for the selected FPGA platform. This

comparison shows that with the unified architecture, we are able to achieve significant

performance improvement with low overhead in hardware resources and DDR band-

width, which shows the effectiveness of our approach.
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Table 5.2: Comparison of FPGA resources with baseline architecture in Shen et al.
(2018)

Resource Proposed Work Shen et al. (2018) % Increase
BRAM 757.5 560.50 13.4

DSP48E 1123 1032 2.5
Flip Flops 383K 292K 10.51

LUTs 252K 192K 8.9
DDR Bandwidth 1.6 GB/s 1.6GB/s 0

5.5 Summary of the Chapter

In this chapter, an efficient CNN accelerator based on unified Winograd-GEMM archi-

tecture has been presented. Blocked Winograd minimal filtering algorithm has been

proposed to improve the performance of accelerator. Performance model of proposed

architecture with estimations for BRAM requirement and compute time has been dis-

cussed. Proposed UniWiG architecture has been implemented on Xilinx XC7VX690T

FPGA. The same FPGA platform as that used in Shen et al. (2018) has been selected for

easier performance comparison. All the layers of AlexNet has been accelerated using

single precision floating point arithmetic.
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CHAPTER 6

Performance Analysis of CNN Models on UniWiG

Finding optimum tile size for Winograd algorithm is a critical step to maximize perfor-

mance. In this chapter, selection of optimum tile size is explained in detail in the context

of AlexNet, VGG-16 and ResNet-18 models. Estimated Performance and BRAM re-

quirement for all layers are presented for all the models. Also, fixed point variant of the

architecture with additional support for batch processing is discussed in detail. This is

compared with existing state-of-art implementations.

6.1 Fixed point Implementation of UniWiG

Floating point implementations are expensive in terms of hardware resources. For most

applications, required accuracy can be achieved with 16-bit fixed point precision Guo

et al. (2018). We have also implemented a 16-bit fixed point variant of UniWiG on

Xilinx XC7VX690T FPGA. In this section, we map AlexNet, VGG-16 and ResNet-

18 CNN models on this implementation and analyze the performance and hardware

utilization.

6.1.1 Batch Processing

Fixed point implementation with 256 PEs occupy only around 15% of FPGA resources.

Hence we increased the number of PEs to 1280. They are separated into five groups

of 256 PEs having eight 32 PE arrays. Cooperation mode is only allowed for arrays

within a group. DTU and OTU modules are replicated for all groups, while a common

DDR interface is used. Typical CNN implementations perform batch processing, with

same convolution operations applied on multiple images in parallel. Fetched filter co-

efficients are used for all images in a batch. We configure the five groups of PE arrays

to operate on five different input images. FC layer computations involve product of a



Table 6.1: AlexNet CONV parameters for various tile sizes

Parameter CONV1 CONV2 CONV3 CONV4 CONV5
Input (H×W) 227×227 27×27 13×13 13×13 13×13
Filter (r×r) 11×11 5×5 3×3 3×3 3×3
Filters (F ) 96 256 384 384 256

Channels (C) 3 48 256 192 192

Tiles
(T )

F (2, 3) - 196 49 49 49
F (3, 3) - 81 25 25 25
F (4, 3) - 49 16 16 16
F (6, 3) - 25 9 9 9

vector (inputs) and a matrix (filter). Batch processing is used to convert this to GEMM.

Here each PE array group works on a batch of 128 inputs. Thus for CONV layers a

batch of five inputs and for FC layers a batch of 640 images are processed in parallel.

With this scheme, we maximize FPGA resource utilization and improve performance.

6.1.2 Fixing the Winograd Tile Size

AlexNet Model

Table 6.1 gives various parameters like input size, filter size and number of filters and

feature inputs for each CONV layer in AlexNet. We have used Winograd algorithm

for CONV layers with stride one only and other CONV layers were implemented using

direct convolution. Thus CONV1 with 11 × 11 filter size is evaluated using direct

convolution. For the remaining layers, number of tiles for various Winograd tile sizes

are also shown. Larger filters and smaller inputs have less number of tiles. Note that, for

CONV2, we have used the technique proposed in Guo et al. (2018) to convert 5×5 filter

to four 3× 3 filters. We apply these parameters for various tile sizes to the performance

and BRAM model, and use the results to fix the optimum tile size. Fig. 6.1 shows

estimated compute time for four convolution layers with different tile sizes. F (6, 3)

gives lowest compute time for CONV2 and F (4, 3) for other layers. Table 6.2 gives the

total number of BRAM instances required for each tile size. There are 1470 BRAMs in

XC7VX690T FPGA. For each layer, we choose the tile size which gives minimum

compute time and use less than 1470 BRAMs. For example, for CONV3, F (4, 3)

which gives optimum compute time needs more than 1470 BRAMs and hence F (3, 3) is
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Table 6.2: Estimated BRAM for various tiles in AlexNet

CONV Layer F(2,3) F(3,3) F(4,3) F(6,3)
CONV2 835 885 945 1085
CONV3 1050 1225 1670 2245
CONV4 980 1115 1460 1900
CONV5 980 1115 1460 1900

chosen. The selected tile sizes are F (6, 3) for CONV2, F (3, 3) for CONV3 and F (4, 3)

for other layers. Corresponding BRAM numbers are marked as bold.
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Figure 6.1: Estimated compute time for CONV Layers in AlexNet

VGG-16 Model

We repeated the above analysis for VGG-16 CNN model and fixed the optimum tile

sizes. Here there are five stages of convolution layers with a total of 13 different layers

and three FC layers. All convolution layers use 3 × 3 filter size. Compute time for

different tile sizes are shown in Fig. 6.2 and corresponding BRAM requirement is given

in Table 6.3. Layers with identical parameters are clubbed together. BRAM for selected

tile sizes are marked as bold in Table 6.3.

ResNet-18 Model

Table 6.4 gives various parameters of ResNet-18 for different Winograd tile sizes.

CONV1 layer is computed using direct convolution since filter size is 7×7. Table 6.4
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Figure 6.2: Estimated compute time for CONV Layers in VGG-16

Table 6.3: Estimated BRAM for Various Tiles in VGG-16

CONV Layer F(2,3) F(3,3) F(4,3) F(6,3)
CONV1-1 785 815 845 925
CONV1-2 990 1130 1280 1630
CONV2-1 920 1025 1140 1405
CONV2-2 1070 1255 1460 1925
CONV3-1 1000 1145 1265 1565

CONV3-2, 3-3 1230 1490 1720 2275
CONV4-1 1115 1280 1580 2065

CONV4-2, 4-3 1465 1775 2210 3275
CONV5-1, 5-2, 5-3 1335 1670 2540 3655
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Table 6.4: ResNet-18 parameters for various tiles

Parameter CONV Stage
1 2_x 3_x 4_x 5_x

Output 112×112 56×56 28×28 14×14 7×7
Filter 7×7 3×3 3×3 3×3 3×3

# Filters 64 64 128 256 512
# Channels 64 64 128 256 512

Tiles
(T )

F (2, 3) - 3136 784 196 49
F (3, 3) - 1444 361 100 25
F (4, 3) - 784 196 49 16
F (6, 3) - 361 100 25 9

Table 6.5: Convolution Schemes for various layers in ResNet-18

CONV Layer Stride Convolution
CONV1 2 Direct

CONV2_x 1 Winograd
CONV3_1 2 Direct

CONV3_2,3,4 1 Winograd
CONV4_1 2 Direct

CONV4_2,3,4 1 Winograd
CONV5_1 2 Direct

CONV5_2,3,4 1 Winograd

shows the number of tiles required in each CONV stage, for various tile sizes. Also,

we have used Winograd algorithm for CONV layers with stride one in each stage and

layers with stride two in each stage were implemented using direct convolution. Ta-

ble 6.5 gives the convolution scheme used in each CONV layer of various stages and

the strides.

For fixing Winograd tile size for each CONV stage, we have performed an estima-

tion of computation time and BRAM requirement for each CONV stage for various tile

sizes. Fig. 6.3 shows the computation time required for CONV layers in different stages,

for various tile sizes and corresponding BRAM requirement is given in Table 6.6.

XC7VX690T FPGA consists of 1470 BRAMs. For CONV layers in each stage, we

choose the tile with minimum computation time and BRAM within 1470. For example,

for CONV5_x stage, F (3, 3), F (4, 3) and F (6, 3) gives minimum compute time, but

uses more than 1470 BRAMs. So we have selected F (2, 3) for CONV layers in this
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Figure 6.3: Compute time for ResNet-18 CONV layers

Table 6.6: BRAM for various tiles in ResNet-18

CONV Layer F(2,3) F(3,3) F(4,3) F(6,3)
CONV2_x 920 950 1110 1225

CONV3_2,3,4 1000 1025 1265 1565
CONV4_2,3,4 1115 1280 1580 2065
CONV5_2,3,4 1335 1670 2540 3655
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Table 6.7: Hardware Resource Utilization

Resource Used Available % Utilization

Flipflops 649K 866K 74.9

LUTs 468K 693K 67.6

BRAMS 1465 1470 99.6

DSP48E 1436 3600 39.8

DDR BW 2.55 GBps 6.4 GBps 39.9

stage. Similarly tile sizes were chosen for various stages. Selected BRAMs are high-

lighted in Table 6.6. CONV4_x uses F (3, 3), CONV3_x uses F (4, 3) and CONV2_x

uses F (6, 3) tiles. Transform units are implemented to support all these tile sizes.

6.1.3 Hardware Resource Utilization

Based on the BRAM analysis, we decide the maximum BRAMs required for imple-

menting all layers of AlexNet, VGG-16 and ResNet-18 models. DTU and OTU are

implemented to support all selected tile sizes and configuration parameters for these

tile sizes. Table 6.7 shows the hardware resource utilization for the implementation on

XC7VX690T FPGA. Proposed accelerator uses 67.6% LUTs, 39.8% DSP48E blocks

and 99.6% BRAMs. Maximum operating clock frequency is 200 MHz. Peak DDR

bandwidth required is only 39.9% when compared to the theoretically available maxi-

mum bandwidth of 6.4 GBps.

6.1.4 Performance Model Accuracy

Here we evaluate the proposed analytical model for performance with the actual mea-

sured results. Table 6.8 gives the estimated performance and actual performance for

different CONV layers in AlexNet. Chosen tile sizes are also shown. Actual measured

performance is very close to the estimated performance which shows the efficacy of

our model. Estimation error is around 7% on average. The slight decrease in actual

performance can be attributed to additional delays introduced due to bank conflicts at

the external memory.
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Table 6.8: Performance Model Accuracy for CONV layers in AlexNet

CONV Layer
Selected Estimated Actual Estimation error
Tile Size GOPS GOPS (%)

CONV2 F(6,3) 387.2 358.1 7.5
CONV3 F(3,3) 392.3 368.1 6.2
CONV4 F(4,3) 507.8 476.4 6.2
CONV5 F(4,3) 507.8 474.9 6.5

6.2 Comparison with Existing Accelerators

In Table 6.9 and 6.10, we compare our results with state-of-art accelerators from litera-

ture for AlexNet and VGG-16 respectively. Giga operations per second (GOPS) is the

most commonly used metric for comparing accelerator performance. However as dis-

cussed in Section 5.4.1, two different algorithms with varying computation complexity

cannot be compared using GOPS. Since total number of operations in Winograd based

convolution depend on the filter size and is significantly lower, GOPS tend to under-

estimate its performance when compared to direct convolution. Hence higher GOPS

for direct convolution need not indicate higher convolution performance. In Lu et al.

(2017) the authors use effective GOPS for each layer which is the total MAC operations

for convolution divided by total compute time. However, since this is not a commonly

used metric, we have decided to present the comparisons in terms of actual GOPS.

From Table 6.9 and 6.10, it can be seen that even in terms of GOPS, only Zeng et al.

(2018), Aydonat et al. (2017) and Huimin Li et al. (2016) for AlexNet and Zeng et al.

(2018) for VGG-16 show higher performance. Huimin Li et al. (2016) is an end to

end accelerator targeted at AlexNet model using direct convolution techniques. Perfor-

mance in terms of GOPS is 1.33× that of UniWiG. In Huimin Li et al. (2016), authors

have reported 2.56 ms processing time per image which gives a throughput of 390 im-

ages per second. For AlexNet model on UniWiG, we get a throughput of 942 images

per second which is around three times that of Huimin Li et al. (2016). Throughput of

1020 images per second is reported in Aydonat et al. (2017), which is achieved with

1.5× clock frequency and more FPGA resources. In Zeng et al. (2018), authors use

FFT based convolutions together with Concatenate-and-Pad (CaP) and frequency do-

main loop tiling techniques which significantly improves the throughput. Performance

in GOPS is close to twice that of UniWiG. Authors have not presented the processing
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Table 6.9: Comparison of AlexNet CNN Implementations

Our
Work

INT’18 FPGA’18 FPL’16 FPGA’15 FPGA’16 FPGA’17

Ma et al.
(2018)

Zeng
et al.
(2018)

Huimin
Li et al.
(2016)

Zhang
et al.
(2015)

Suda
et al.
(2016)

Aydonat
et al.
(2017)

FPGA
Virtex-7 Stratix-V Stratix-V Virtex-7

VX485T
Stratix-V Arria 10

VX690T GXA7 GXA7 VC709 GSD8

Precision 16-fixed 16-fixed 16-fixed 16-fixed 32-float 8-16
fixed

16-float

F(MHz) 200 100 200 156 100 120 303

Logic Used
468K 121K 107K 274K 186K 114K 246K

(67%) (48%) (46%) (63%) (61.3%) (49%) (58%)

DSP Used
1436 256 256 2144 2240 256 1476

(39.8%) (100%) (100%) (60%) (80%) (100%) (97%)

BRAM
1465 1552 1377 956 1024 1893 2487

(99%) (61%) (73%) (65%) (50%) (74%) (92%)

Performance
433.63 114.5 780.6 565.94 61.62 117.8 1382

GOPS GOPS GOPS GOPS GFLOPS GOPS GFLOPS

time in Zeng et al. (2018), absence of which prevents us from comparing performance in

terms of throughput. Table 6.9 and 6.10 shows that logic cells and DSP blocks used are

maximum for UniWiG which indicates that there is further scope for micro-architectural

optimizations.

As mentioned earlier, Lu et al. (2017) reports performance in terms of effective

GOPS and has not been included in the comparison tables. For AlexNet, average effec-

tive GOPS for all layers is 854.6. The corresponding figure for AlexNet on UniWiG is

794.38. However UniWiG uses half the number of DSPs and less logic blocks.

The estimated power consumption of AlexNet model is 17.3 Watts. This gives

an energy efficiency (GOP/s/W) of 25.06, which is comparable to other state-of-art

implementations Ma et al. (2018); Lu et al. (2017); Suda et al. (2016); Huimin Li et al.

(2016).

We compare our accelerator with existing ResNet implementations and is given in

Table 6.11. Note that in Baskin et al. (2017), authors have presented performance

in terms of total run time for ResNet-18. For the purpose of comparison, we have
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Table 6.10: Comparison of VGG CNN Implementations

Our FPGA’18 TCAD’18 TVLSI’18 FCCM’17 FPL’17 ASAP’17

Work Zeng
et al.
(2018)

Guo
et al.
(2018)

Ma et al.
(2018)

Guan
et al.
(2017)

Ma et al.
(2017a)

Podili
et al.
(2017)

Network VGG-16 VGG-16 VGG-16 VGG-16 VGG-19 VGG-16 VGG-16

FPGA
Virtex-7 Stratix

V
Zynq Stratix-

V
Stratix-
V

Virtex-7 Stratix-
V

VX690T GXA7 XC7Z045 GXA7 GSMD5 VC707

Precision
16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 32-bit

fixed fixed fixed fixed fixed fixed fixed

F(MHz) 200 200 150 150 150 150 200

Logic
468K 107K 183K 218K 45.7K 212.1K 197K

(67%) (46%) (84%) (93%) (27%) (90%) (83%)

DSP
1436 256 780 256 1044 256 256

(39.8%) (100%) (87%) (100%) (64%) (100%) (100%)

BRAM
1465 1377 486 2210 959 2202 451

(99%) (73%) (87%) (86%) (48%) (86%) (17.6%)

Perf.
407.23 669.1 137 348.8 364.36 352.84 229.2

(GOPS)
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Table 6.11: Comparison of ResNet models

Our work Baskin et al. (2017) Ma et al. (2017a) Ma et al. (2017b)

Network ∗R-18 R-18 R-50 R-50

FPGA
Virtex 7 Stratix V Stratix V Arria-10

XC7VX690T 5SGSD8 GXA7 GX1150

Precision 16-fixed 32-float 16-fixed 16-fixed

Freq (MHz) 200 105 150 150

DSP Blocks 1436 (39.8%) - 256 (100%) 1046 (69%)

Logic used 468K (67.6%) 596K 173.5K (74%) 128K (30%)

BRAM used 1465 (99.6%) 1543 (60.5%) 1946 (76%) 2167 (80%)

Performance 383 GOPS 207.58 GFLOPS 250 GOPS 285.1 GOPS

∗R denotes ResNet

estimated performance in GFLOPS based on the runtime. Table 6.11 shows that our

implementation gives the maximum performance while consuming the minimum off-

chip BRAM blocks which shows the effectiveness of our approach.

6.3 Summary of the Chapter

In this chapter, fixed point implementation of UniWiG architecture using 16-bits has

been performed. Performance of AlexNet, VGG-16 and ResNet-18 models in UniWiG

architecture were analyzed. BRAM requirement and computation time were estimated

for these models and appropriate Winograd tile sizes were selected for implementation.

Comparisons with state-of-art accelerators show that our implementation is effective in

terms of performance.
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CHAPTER 7

Conclusions and Future Work

In this chapter, summary and further directions for the research work in this thesis are

presented. This thesis presents efficient hardware accelerators for various real-time im-

age processing tasks like image reconstruction and image classification, which are key

components in digital image processing. FFTs are widely used in image reconstruction

and requires efficient implementation for real time applications. An efficient 2D FFT

architecture for image reconstruction is presented in the first part of the thesis. Im-

age classification can be performed efficiently with novel machine learning algorithms.

CNNs are popular for performing image classification tasks. Efficient CNN accelera-

tor for image classification has been presented in the second part of the thesis. A high

throughput CNN accelerator on FPGA, using unified Winograd-GEMM architecture is

proposed here. Comparisons with state-of-art accelerators show the effectiveness of

proposed architecture.

7.1 Summary of the Thesis

Digital image processing is a field of DSP where digital images are processed by means

of digital computers. Most of the steps in digital image processing like image analy-

sis, image reconstruction, image enhancement and compression can be performed using

Fast Fourier Transform (FFT) algorithm. Evolution of deep learning techniques enabled

implementation of most of the image processing applications with high performance

and accuracy. Most popular deep learning technique used for image classification and

detection task is Convolutional Neural Network (CNN), which is a variant of deep neu-

ral network.

In the first part of the thesis, a novel 2D FFT architecture with efficient data reorder-

ing technique, using the radix-43 algorithm has been presented. The architecture uses

two parallel unrolled radix-43 blocks in cascade to develop a 64×64 2D FFT architec-

ture. We have used six-bit modeselect as the control signal in radix-43 architecture for



performing data reordering. Radix-43 architecture gives a significant reduction in inter-

mediate memory within a 1D FFT and reduces the latency. Proposed 2D architecture

reduces the intermediate memory between two 1D FFTs from N2 to N . SNR for vari-

ous word lengths is analyzed and 16-bit is chosen as the required word length for image

processing applications. The architecture has been implemented in RTL using Verilog

HDL and simulated using Modelsim. RTL has been synthesized with a Cadence RTL

Compiler using Faraday 40 nm standard cell library, tailored for UMC’s 40 nm pro-

cess. ASIC synthesis results give a clock frequency of 500 MHz and core area of 0.841

mm2. 64×64 FFT takes 4096 cycles for computation and the execution time is 8.19 µs.

A comparison with existing implementations shows 47.5% reduction in computation

time for 64×64 FFT. The proposed architecture has also been implemented in Virtex-

7 FPGA with an operating frequency of 156.25 MHz. FPGA implementation results

show the comparable area in terms of slice LUTs.

Future directions on FFT architecture

• Extending this architecture to realize a large size 2D FFT to evaluate and validate
the optimization in memory and latency. Cascading two radix-44 units can result
in a 256×256 point FFT.

• Radix-4 engine can be used as a building block for reconfigurable 2D FFTs of
various sizes. This requires further studies on existing reconfigurable and pro-
grammable 2D FFT architectures.

• Future work also focuses on a three dimensional FFT architecture for video pro-
cessing applications.

In the second work, a novel unified architecture called UniWiG for implementing

both general matrix multiplication (GEMM) algorithm and Winograd minimal filtering

algorithm on the same processing elements has been presented. Both convolution and

fully connected layers of CNN can be accelerated using this architecture. Such a unified

architecture gives the most efficient implementation for CONV layers irrespective of the

filter sizes and also for FC layers. Winograd filtering is transformed to a GEMM opera-

tion so that PEs for GEMM can be reused for Winograd algorithm. A novel algorithm is

proposed, which transforms Winograd minimal filtering algorithm into blocked general

element-wise matrix multiplication which targets optimal utilization of BRAMs and

DDR bandwidth. Proposed architecture consists of multiple systolic arrays optimized
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for GEMM and has been implemented on FPGA. An analytical model for estimating

performance and BRAM usage has also been proposed, using which appropriate tile

sizes for each layer can be identified, which can be used to optimize the tile size for a

given convolution layer. Comparisons with baseline implementation show that UniWiG

gives 1.4× to 4.02× performance improvements with less than 15% additional FPGA

resources. Popular CNN models namely AlexNet, ResNet-18 and VGG-16 have been

accelerated using UniWiG and results are comparable with other state-of-art accelera-

tors. A variety of challenges were encountered during the design and implementation of

the CNN accelerator. How to parallelize the multiple processing elements in the general

matrix multiplier and how many PEs in an array is required for the accelerator was a

critical design element.

Future work on CNN accelerator

Proposed architecture is used to accelerate AlexNet, ResNet-18 and VGG-16 models.

Further work is needed to accelerate other CNN models like MobileNet, SqueezeNet

etc. using this architecture. Proposed architecture supports Winograd algorithm based

convolutions for stride of one, for all layers in a model. For strides other than one,

general matrix multiplication algorithm is used. Architectural changes are required for

performing computations using Winograd method, if different strides are used. Deep

compression techniques can significantly reduce the memory and bandwidth require-

ment for the execution of deep neural networks. For sparse and redundant network

connections, we can introduce pruning techniques to the network. Also, future work

targets on minimum computation for maximum accuracy. That is, to find out the opti-

mum bit-width for an accurate result.

Future works also include researches on security aspects of proposed architecture.

Side-channel leakages pose a major threat to the security of hardware accelerators. In

the future work, we analyze the vulnerability of Unified Winograd-GEMM architecture

to reverse engineering attacks.
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APPENDIX A

WINOGRAD MINIMAL FILTERING

COEFFICIENTS

Winograd minimal filtering is a fast algorithm for computing convolution based on

Chinese Remainder Theorem and involves polynomial multiplication. One dimensional

Winograd algorithm for computingm outputs using an r tap filter will requirem+r−1

multiplications Lavin and Gray (2016). Two dimensional (2D) Winograd algorithm can

be implemented from nested one dimensional (1D) Winograd algorithm. Output Y can

be written as,

Y = AT [(GgGT )� (BTdB)]A (A.1)

The transform matrices A,B and G can be precomputed, once the value of m and r are

known. Transform matrices for various Winograd tile sizes are computed offline and

are given in the following sections.

A.1 F (2× 2, 3× 3)

F (2× 2, 3× 3) is obtained by nesting F (2, 3) 1D Winograd tiles. The coefficients for

F (2, 3) are given as:

AT=


1 1 1 0

0 1 −1 −1



BT=



1 0 −1 0

0 1 1 0

0 −1 1 0

0 1 0 −1





G=



1 0 0

1
2

1
2

1
2

1
2
−1

2
1
2

0 0 1



A.2 F (3× 3, 2× 2)

F (3× 3, 2× 2) is obtained by nesting F (3, 2) 1D Winograd tiles. The coefficients for

F (3, 2) are given as:

AT=


1 1 1 0

0 1 −1 0

0 1 1 1



BT=



1 0 −1 0

0 1 1 0

0 −1 1 0

0 −1 0 1



G=



1 0

1
2

1
2

1
2
−1

2

0 1



A.3 F (3× 3, 3× 3)

F (3× 3, 3× 3) is obtained by nesting F (3, 3) 1D Winograd tiles. The coefficients for

F (3, 3) are given as:
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AT=


1 1 1 10

0 1 −1 2 0

0 1 1 4 1



BT=



2 −1 −2 1 0

0 −2 −1 1 0

0 2 −3 1 0

0 −1 0 1 0

0 2 −1 −2 1



G=



1
2

0 0

−1
2
−1

2
−1

2

−1
6

1
6
−1

6

1
6

1
3

2
3

0 0 1



A.4 F (4× 4, 3× 3)

F (4× 4, 3× 3) is obtained by nesting F (4, 3) 1D Winograd tiles. The coefficients for

F (4, 3) are given as:

AT=



1 1 1 1 1 0

0 1 −1 2 −2 0

0 1 1 4 4 0

0 1 −1 8 −8 1
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BT=



4 0 −5 0 1 0

0 −4 −4 1 1 0

0 4 −4 −1 1 0

0 −2 −1 2 1 0

0 2 −1 −2 1 0

0 4 0 −5 0 1



G=



1
4

0 0

−1
6
−1

6
−1

6

−1
6

1
6
−1

6

1
24

1
12

1
6

1
24
− 1

12
1
6

0 0 1



A.5 F (6× 6, 3× 3)

For F (6× 3), the transform matrices consist of large coefficients and are given as:

AT=



1 1 1 1 1 1 1 0

0 1 −1 2 −2 3 −3 0

0 1 1 1 4 4 9 9 0

0 1 −1 8 −8 27 −27 0

0 1 1 16 16 81 81 0

0 1 −1 32 −32 243 −243 1
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BT=



−36 0 49 0 −14 0 1 0

0 36 36 −13 −13 1 1 0

0 −36 36 13 −13 −1 1 0

0 18 9 −20 −10 2 1 0

0 −18 9 20 −10 −2 1 0

0 12 4 −15 −5 3 1 0

0 −12 4 15 −5 −3 1 0

0 −36 0 49 0 −14 0 1



G=



−1
36

0 0

1
48

1
48

1
48

1
48

− 1
48

1
48

− 1
120

− 1
60
− 1

30

− 1
120

1
60

− 1
30

1
720

1
240

1
80

1
720

− 1
240

1
80

0 0 1
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