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Abstract 

Magnetic resonance imaging (MRI) is one of the most popular non-invasive imaging 

techniques used to look inside the human body and visually represent the physiology 

of various organs and tissues. One of its particularly notable features is the lack of 

ionizing radiations involved. However, a relatively high scanning time puts it at a 

disadvantage. Therefore, a major component of the research in this field over the last 

four decades has been focused on improving the imaging speed while also trying to 

achieve better image quality. The demand for accelerated imaging is often met by 

restricting the amount of data collected from the scanner. Missing data would then be 

estimated offline to reconstruct an artifact-free image. In this thesis, a new approach 

to MRI reconstruction using robust non-linear (NL) diffusion based compressed 

sensing (CS) is introduced and investigated in detail. 

The signal processing technique of CS is widely popular due to its ability to 

facilitate efficient acquisition and reconstruction of a sparse or compressible signal 

like that of MRI, from relatively few measurements. Among the numerous sparse 

approximation techniques available in CS, minimization of total variation (TV) has 

been the key approach to sharply preserve the edges during the reconstruction process.  

In the primary phase of this work, a Perona-Malik (PM) diffusion based sparse 

approximation algorithm is developed as an alternative to TV to address its high 
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sensitivity to regularization parameter. In the succeeding part, a mixed-order diffusion 

algorithm is developed that can prevent the formation of both staircase and speckle 

effects during reconstruction.  

It is further observed that the direction of image gradient computation has 

significant influence on the diffusion of both edges and artifacts. In the final part of 

the work, this critical aspect is addressed by developing a directionality guided 

diffusion reconstruction algorithm. This enables a better preservation of the complex 

structural details in the image by adapting the direction of diffusion to local variations 

in the directionality of edges and employing a precise diffusion in the local regions of 

the image on a sub-pixel level.  
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Chapter 1 

Introduction to Compressed Sensing MRI 

and Thesis Outline 

 

 

1.1 Introduction 

Compressed Sensing (CS) is a signal processing technique that has recently received 

a lot of attention in the areas of signal detection, estimation and classification due to 

its ability to facilitate efficient acquisition and reconstruction of a sparse/compressible 

signal from relatively few measurements. The term sparsity indicates the scarcity of 

non-zero elements in a signal. A sparser signal will have a greater number of its 

elements as zeros as compared to a less sparse one. The theory of CS is built on an 

idea that the perfect reconstruction of a signal need not require a sampling rate 

proportional to its maximum frequency as necessitated by the famous Nyquist 

sampling rate, but proportional to its actual information content, since the complete 

information in a sparse signal can be captured by collecting only a few of its samples 

(1-3). This is particularly useful in different areas of imaging sciences like radar 

imaging, seismic imaging and various bio-medical applications like Magnetic 
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Resonance Imaging (MRI) (4-6), where the signal of interest has an associated sparse 

representation.  

In the case of MRI for example, which is the broad theme of this thesis, the images 

are generally compressible in different representations like wavelet and finite 

differences (6, 7). MRI is one of the established and most popular non-invasive 

imaging techniques used to look inside the human body and visually represent the 

physiology of various organs and tissues. It carries clinically valuable information 

regarding various anatomical and functional details of the internal organs in a human 

body. One of its particularly notable features is the lack of ionizing radiations involved 

in the imaging process as compared to other imaging modalities like computed 

tomography (CT).  

Even though the diagnostic information generated by MRI aids in early detection 

and staging of various diseases and monitoring the body’s response to various 

treatments, the relatively high scanning time involved puts it at a disadvantage. For 

example, the factors like patient discomfort (MRI scanners generate noise due to 

gradient fields) and motion related artifacts in the image (because patient might find it 

difficult to stay still for a longer duration) become important when the scanning time 

is high. Furthermore, one would ideally prefer the magnetic resonance (MR) images 

to have both high resolution and large spatial field-of-view (FOV) at the same time. 

While a high resolution gives more information about the fine details in the image, a 

large spatial FOV covers more area in the scan. However, to achieve this 

simultaneously, dense sampling (small sampling interval) and larger FOV of k-space 
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are required. That is, a greater number of samples need to be collected, increasing the 

scan time. 

Therefore, the research in this field over the last four decades has been mainly 

focused on improving the imaging speed while also trying to achieve better image 

quality. In MRI, the data is collected in ‘k-space’, which is a collection of the spatial 

frequencies of the image, related to the actual image through Fourier transform. That 

is, the entries of k-space are Fourier coefficients of the image. As the sampling speed 

is fundamentally limited by various physical and physiological constraints, a 

straightforward approach to address the aforementioned factors is to accelerate the 

imaging process (data acquisition) by limiting the number of samples collected to what 

is essential. The skipped samples are then estimated from the collected samples using 

the computing power of modern-day computers. This is the well-defined and widely 

researched reconstruction problem in MRI where the MR signal collected in k-space 

is undersampled and an artifact-free image is reconstructed from it. 

The fact that CS can correctly reconstruct a sparse signal from randomly measured 

Fourier coefficients with high probability (as proved by Emmanuel Candès, David 

Donoho, Justin Romberg and Terence Tao in 2004) made it a natural candidate for 

solving the rapid MR imaging problem (1). Due to the highly compressible nature of 

MR images, application of CS theory becomes feasible and facilitates an accelerated 

data acquisition without compromising the image quality. This forms the specific 

theme of this thesis, with the major contributions being the CS based novel approaches 

to MR image reconstruction.  
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In the following, a background of the MR image formation and the associated 

reconstruction problem using CS is briefly described along with the details of the 

original contribution in this thesis. 

1.2 Basics of MR Image Formation 

1.2.1 Nuclear magnetization and MR signal generation 

In principle, an MR image is a visual interpretation of the response of different tissues 

inside the human body to a magnetic field applied around it. More specifically, it is 

the response of hydrogen nuclei (a single proton) inside different tissues that is 

generally measured. Since proton possesses an electric charge and is spinning on its 

axis, its behavior can be compared to that of a tiny bar magnet. Spinning charge 

constitutes a current loop and therefore has a magnetic moment associated with it. The 

overall spin of an atomic nucleus is by virtue of the spin of nucleons (protons or 

neutrons) within it. Each nucleon possesses a spin of ±1/2. Pairing of nucleons can 

cancel the spin due to their anti-parallel alignment. Therefore, not all nuclei exhibit 

magnetism. It is the unpaired nucleons that generate a non-zero spin. The nucleus of 

Hydrogen, for example, constituting only a single proton, gives rise to an overall spin 

of 1/2 for the atom. Therefore, it is a suitable candidate for nuclear magnetization and 

is generally used in MRI. It has a high biological abundance to further justify its 

candidacy. The signal generation involves three main stages. 

1. Alignment: Spins are forced to align with an applied magnetic field 𝐵0 to generate 

a net macroscopic magnetization, 𝑀. 
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Under normal circumstances, the spin of these tiny magnets in the body are 

randomly aligned. Therefore, it does not exhibit magnetization in macroscopic scale. 

However, in the presence of a strong magnetic field, such as the one applied by an 

MRI scanner, these spins are forced to line up with the direction of the applied 

magnetic field (𝐵0). This creates a magnetic vector oriented along the axis (Z-axis) of 

the applied field and the spin vector of protons aligns itself in either parallel or anti-

parallel direction compared to that of the applied filed. It corresponds to two distinct 

energy levels/states. For spin-1/2 nuclei, the energy levels are separated by Δ𝐸 = 𝛾ℏ𝐵0 

where 𝛾 is the gyromagnetic ratio of the nuclei and ℏ is the Planck constant. For 

protons, 𝛾 = 2𝜋 × 42.57 MHz/T.  

Compared to the thermal energy at room temperature, the difference in energy 

between two distinct energy states is relatively small. This can cause the protons to 

acquire enough energy from the thermal noise to induce a transition between two 

states. However, it is observed that at thermal equilibrium, the parallel state of the spin 

which is at lower potential energy is slightly more populous than the antiparallel state. 

This difference in population generates a net macroscopic magnetization (𝑀) in the 

direction of the 𝐵0 field.  

2. Excitation: 𝑀 is tilted away from 𝐵0 by applying an RF pulse. 

The net magnetization 𝑀 is a vector that can be resolved into longitudinal (𝑀𝑍) 

and transverse (𝑀𝑋 and 𝑀𝑌) components with respect to the main magnetic field 𝐵0. 

When the object is first placed in the 𝐵0 field, the net magnetization builds 

exponentially as a function of time and reaches a maximum value 𝑀0 at equilibrium. 

The resulting magnetic vector has no component of magnetization (𝑀𝑋 or 𝑀𝑌) along 
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transverse plane (XY-plane orthogonal to Z-axis) and the component along Z-axis, 𝑀𝑍 

is equal to 𝑀𝑜. 

In this situation, if the difference in energy between the two states is supplied in 

the form of a radiofrequency (RF) pulse orthogonal to the Z-axis, it can excite the 

protons from lower energy state to higher energy state. For an individual spin to change 

its energy state, the excitation has to be at its resonance frequency 𝜔0, expressed as  

𝜔0 = 𝛾𝐵0. Consequently, it alters the population balance between the energy states 

and the orientation of net magnetic vector moves away from the Z-axis. As it moves 

towards the XY-plane, 𝑀𝑋 and 𝑀𝑌 components of magnetization are generated. This 

RF pulse is also called a 900 pulse since it flips the net magnetic vector from Z-

direction to the orthogonal XY-plane. 

The RF pulse is applied in the form of a rotating magnetic field (𝐵1 field) along 

XY-plane. Therefore, the effective magnetic field consists of a stationary field along 

Z-axis and a rotating field along XY-plane. This forces the net magnetization vector 

to precess about the Z-axis. The frequency at which bulk magnetization precesses is 

called Larmor frequency, which is identical to the resonance frequency 𝜔0.  

3. Relaxation: 𝑀 returns to the resting state, aligning with the 𝐵0 field and generating 

the MR signal. 

If the RF pulse is now turned off, the magnetic vector will slowly return to its resting 

state (aligned to the main magnetic field 𝐵0). Consequently, the strength of 

longitudinal component 𝑀𝑍 increases and the transverse components 𝑀𝑋 and 𝑀𝑌 

decrease (at a different rate for different type of tissues). The resulting signal is known 
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as the free induction decay (FID). This is the MR signal generated from the object 

being scanned. If a set of receiver coils are placed nearby the object, the rotating 

magnetic field will induce an alternating current in them. This way, the MR signal is 

captured. The frequency of precession will be different for different atomic nuclei 

depending on its gyromagnetic ratio. Therefore, the nuclei other than that of Hydrogen 

will produce an MR signal only if the energy delivered by the excitation RF pulse is 

at its respective Larmor frequency. 

1.2.2 Spatial encoding, k-space and image formation 

The MR signal generated through the stages of alignment, excitation and relaxation 

represents the entire volume of the object. In order to localize the signal from just the 

region-of-interest (ROI), say a small area in one slice of the object, the spatial 

information is encoded. This involves three stages. 

1. Slice selection: By applying a magnetic field gradient (𝐺𝑍) in the Z-direction 

on top of the 𝐵0 field, the effective field becomes 𝐵(𝑟) = 𝐵0 + 𝐺𝑍𝑟, where 𝑟 

is the spatial location. This causes a linear variation of precession frequency in 

space. Therefore, when an RF excitation pulse is applied, the Larmor frequency 

will be matched for only a sub-volume (slice) of the object. This way, the slice 

of interest is selected using an appropriate RF pulse frequency. 

2. Phase encoding (PE): With a slice selected, the entire plane of the slice is 

resonating at the Larmor frequency. Each slice can be further divided into rows 

and columns. In order to localize the signal from different rows, another 

magnetic field gradient (𝐺𝑌) is applied along Y-axis for a certain time interval 
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𝜏. This varies the frequency in this direction and the signals at different 

positions accumulate different phase. The extent of phase shift is proportional 

to the amplitude and time duration of 𝐺𝑌. When the gradient is switched off 

after the interval, the precessing frequency of the selected slice will return to 

the same resonating frequency but not its phase. Therefore, the signal from 

each row can be distinguished by its phase shift. 

3. Frequency encoding (FE): In order for the signal to be fully spatially localized, 

different locations in a row should be distinguishable as well. This is realized 

by applying another magnetic field gradient (𝐺𝑋) along X-direction. 𝐺𝑋 is 

turned on at the same time when a readout (signal detection by receiver coil) is 

performed. Consequently, the signal recorded at successive time points 

(different locations in a row) will be at different frequencies. In order to collect 

the signal from a different row, another phase shift is introduced by 𝐺𝑌 and 

readout is again performed with 𝐺𝑋 turned on.  

In summary, the MRI signal is localised in the three-dimensional (3D) space by 

manipulating the magnetic properties of the nuclei in a predictable way. Signal 

detected by a receiver coil is the integration of all spins over the entire volume. The 

variation in precession frequency due to 𝐺𝑥 and 𝐺𝑦 gradients causes a location 

dependent phase dispersion to develop in the selected XY-plane (slice). Since readout 

is performed at the same time when 𝐺𝑋 is applied, the contribution of 𝐺𝑋 in phase 

dispersion varies according to time 𝑡 while the contribution of 𝐺𝑌 remains constant for 

the entire duration of a single readout. Let 𝑢 and 𝑣 be the respective spatial frequencies 

along the directions X and Y at time 𝑡. 
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 𝑢 =
𝛾𝐺𝑥𝑡

2𝜋
, [1.1] 

 𝑣 =
𝛾𝐺𝑦𝜏

2𝜋
. [1.2] 

Then the detected MRI signal is given by 

 𝑠(𝑡) = ∬𝜌(𝑥, 𝑦)𝑒−𝑖2𝜋(𝑢𝑥+𝑣𝑦)𝑑𝑥𝑑𝑦 [1.3] 

where 𝜌 denotes the spin density at location (𝑥, 𝑦) and the integral of 2𝜋(𝑢𝑥 + 𝑣𝑦) is 

the phase accumulated due to 𝐺𝑋 and 𝐺𝑌 from the time when RF excitation pulse is 

switched off till 𝑡. This signal equation represents the Fourier transform of the selected 

slice image. The discrete time samples of this signal are then stored in the k-space, 

which is a rectangular array. Therefore, the spin density in image space can be 

reconstructed by an inverse Fast Fourier Transform (FFT) of the k-space. This way, 

the MR signal from a 3D volume is collected in the form of multiple slices. Instead of 

a two-dimensional (2D) slice, localized signal from 3D volume can be acquired as well 

using another PE gradient along the Z-direction. 

One of the challenges while collecting FID is that the spins contributing to 

transverse magnetization start to go out of phase post the application of 900 RF pulse. 

That is, some of the spins precess faster than others causing a phase difference. This 

weakens the total signal over time leaving only a short duration to measure the useful 

signal. Therefore, the signal is generally forced to rephrase by different techniques like 

spin echo and gradient echo (8-10), so that it can be measured when the spins are back 

in phase again. For example, the technique of spin echo applies an additional RF pulse 

called 1800 pulse, after the initial 900 pulse. This flips the entire spins in XY-plane by 
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an angle of 1800, causing the faster precessing spins to appear lagging behind the 

slower ones. However, since these spins continue to precess faster, it catches up with 

the slower spins causing the signal to rephase. The measured signal is called an echo. 

It is sampled using an analog to digital converter and stored in k-space. A typical spin 

echo pulse sequence in shown in Fig. 1.1. In order to collect another echo, the process 

is repeated after the repetition time (TR). Usually, the sequence of RF pulses is 

designed such that the echo occurs in the middle of the data collection period. By 

varying the sequence of pulses applied and collected, different types of images are 

created. The user can choose different parameters of the sequence to find the best 

compromise between tissue contrast, spatial resolution and speed of acquisition. 

1.3 MR Image Reconstruction 

1.3.1 Undersampling of k-space 

Different trajectories to traverse the k-space can be achieved by changing the encoding 

gradients in an appropriate way. A Cartesian trajectory where the samples are collected 

on a rectangular grid is the most frequently used sampling pattern. This is mainly 

because it enables the reconstruction by a simple inverse FFT which is easy to 

implement. However, there are non-Cartesian sampling patterns in use as well, like 

sampling along radial and spiral trajectories where the data points generated do not fall 

into a rectangular matrix. Examples of some of the popular undersampling patterns are 

shown in Fig. 1.2. White and black pixels represent sampled and skipped locations of 

k-space respectively. The energy distribution in k-space is mostly concentrated in the 
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Figure 1.1. An example of spin echo pulse sequence diagram and MR image 

formation. The echo is sampled using analog-to-digital converter and forms a line in 

the k-space. Time to collect an echo is marked as echo-time (TE). In order to fill 

another line, the RF pulses and gradient fileds are applied again after the repetition 

time, TR. Dotted lines in PE represent different PE gradient strengths and polarities 

used to collect additional lines in k-space. After filling all lines in k-space, it is inverse 

Fourier transformed to generate the MR image. 

Sampling the echo
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0 TE/2 TE TR
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Figure 1.2. Different sampling trajectories. Panels from left to right in the top row 

shows Poisson-disc and Gaussian density sampling, middle row shows uniform PE 

and random PE lines sampling and bottom row shows radial and spiral sampling. 
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low frequency region, which is close to its center. Therefore, undersampling is 

generally limited to the peripheral region. 

Missing samples in the k-space introduces artifacts in the image. The way these 

artifacts manifest depends on the type of sampling pattern used. For example, uniform 

undersampling of k-space, such as skipping every other line of k-space, results in 

artifacts that are very similar to the actual structural details of the image. On the other 

hand, random undersampling causes the artifacts to appear more like noise. This is 

shown in Fig. 1.3 which illustrates the result of inverse Fourier transform of k-space 

with the values at unacquired locations set to zero (zero-filled reconstruction). 

1.3.2 CS approach to sampling and reconstruction 

For storage and computational purposes, the natural signals which are continuous in 

nature are often converted to discrete domain. This process samples the signal, 

generally based on Shannon-Nyquist sampling theorem which ensures perfect 

reconstruction of the signal if sampled at twice its maximum frequency. However, in 

many applications, the signal of interest is found to have a sparse representation. That 

is, the actual information content of the signal can be approximated using a few 

coefficients when represented in certain basis, referred to as sparsity basis. For 

example, MR images are known to be sparse in different basis like wavelets and 

ridgelets. Fig. 1.4 shows the sparsity of an MR image in wavelet and finite difference 

representations.  Digital images are often compressed with hardly any perceivable loss 

in visual quality by storing only a few significant wavelet coefficients. The number of 

samples thus required to capture the complete information is far less compared to what 
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Image Wavelet Finite Difference

Figure 1.4. Transform domain sparsity of MR image. Panels from left to right shows 

image domain, wavelet domain and finite difference representation of an MR image. 

Figure 1.3. Zero-filled reconstruction. Panels in the top row shows the zero-filled 

reconstruction of k-space undersampled by uniformly skipping PE lines. Panels in the 

bottom row shows the result when k-space is randomly undersampled.  
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is required if the image is sampled at Nyquist rate. The technique of CS is rooted on 

this fact and describes how to faithfully reconstruct a signal from samples collected at 

sub-Nyquist rate, if one has the knowledge about that signal’s sparsity. 

For example, consider the sampling of a discrete complex signal 𝕩 of length 𝒩. 

Images can be considered in this form by concatenating its columns to form one vector. 

Let 𝕪 be the measurement vector of length ℳ such that 

 𝕪 = 𝐴𝕩 [1.4] 

where 𝐴 is the measurement matrix of size ℳ×𝒩. Since a typical acquisition based 

on CS would sample the signal at a rate much lower than the Nyquist limit, ℳ ≪𝒩. 

This makes the system under-determined and we cannot retrieve 𝕩 uniquely from 𝕪. 

In order to uniquely solve this system of linear equations, we need ℳ ≥𝒩.  

Now, consider the case where 𝕩 is 𝒮-sparse. That is, 𝕩 has only 𝒮 non-zero values 

and the remaining entries are zeros, 𝒮 ≪ 𝒩. Suppose we also know the locations of 𝒮 

non-zero entries in 𝕩. Then, we have 

 𝕪 = 𝐴𝒮𝕩𝒮 [1.5] 

where 𝐴𝒮 is formed by keeping only 𝒮 columns of 𝐴 corresponding to the non-zero 

locations in 𝕩 and 𝕩𝒮 is formed by keeping the 𝒮 non-zero entries of 𝕩. Now, if ℳ >

𝒮, the problem is over-determined and a unique solution can be found. If 𝐴𝐻𝐴 = 𝐼, 

least squares method can be used to obtain a signal estimate as 

 �̂�𝒮 = (𝐴𝒮
𝐻𝐴𝒮)

−1𝐴𝒮
𝐻𝕪 [1.6] 
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In practical scenarios, the locations of non-zero values are unknown and hence 

the solution can’t be found this way. However, CS shows that the sparsest solution 

will be unique (11, 12). That is, as long as it is known that the solution will be sparse, 

CS shows that 𝕩𝒮 can be recovered from the ℳ linear measurements, with 𝒮 < ℳ <

𝒩, by finding the sparsest solution to (Eq. [1.5]), provided the sampling matrix follows 

a certain property known as Restricted Isometry Property (RIP) (13-15). Therefore, in 

practical scenarios, we need not search for 𝒮-sparse solution, but instead only find the 

sparsest solution.  

The RIP condition defines a quality measure for 𝐴, called restricted isometry 

constant 𝛿𝒮, to ensure that the signal energy is not lost while sampling. For good CS 

measurement matrices, 𝛿𝒮 which will be small (close to 0). For all 𝒮-sparse signals 𝕩𝒮, 

𝛿𝒮 is defined as the smallest quantity that satisfies 

 (1 − 𝛿𝒮)‖𝕩𝒮‖2
2 ≤ ‖𝐴𝕩𝒮‖2

2 ≤ (1 + 𝛿𝒮)‖𝕩𝒮‖2
2. [1.7] 

Even though the value of 𝛿𝒮 is very hard to evaluate, it is found that a matrix 

randomly drawn from the family of random matrices satisfies RIP with very high 

probability (14). For example, random measurement matrices like Gaussian random 

matrix is known to have small restricted isometry constants. For signals which are not 

sparse by themselves but are sparse when represented using a sparsity basis Ψ, the 

matrix 𝐴 that maps the sparse coefficients to the measurements is defined as 𝐴 =

ΦΨ𝐻, where Φ is the ℳ×𝒩 measurement matrix (which is Fourier in the case of 

MRI) and Ψ is an 𝒩 ×𝒩 sparsifying transform matrix. 
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Yet another important criterion for applying compressed sensing is the 

requirement of incoherent sampling. This notion of incoherence may be estimated 

using transform point spread function (TPSF) when orthogonal sparsifying transform 

is used (6). It measures the influence of one pixel on another in the sparse domain due 

to undersampling. That is, say the sparse domain has a value of 1 for the pixel at the 

𝑖𝑡ℎ location and 0 for all other pixels. It can be transformed into the Fourier domain 

using an operator ℱΨ𝐻, where ℱ is the Fourier transform operator. After 

undersampling the Fourier coefficients, say it is transformed back to the sparse 

domain. Then, TSPF(𝑖, 𝑗) measures the result at 𝑗𝑡ℎ location in the sparse domain. For 

effective application of CS theory, the TPSF should be as small as possible and have 

noise-like statistics (6). Random undersampling in general leads to better TPSF values 

compared to uniform undersampling. 

In an MR image reconstruction perspective, the random sampling is generally 

achieved by randomly skipping the PE steps during acquisition. Since the FE step is 

very quick on its own, undersampling along its direction doesn’t help the cause of 

accelerated acquisition by much. A typical example of the sampling pattern with 

randomly skipped PE lines for a 2D acquisition is shown in Fig. 1.2. In the case of a 

3D acquisition, randomization along two directions like the Poisson-disc random 

sampling is possible since it has two PE dimensions.  

1.3.3 Sparse optimization formulation 

An MR image is considered to have the sparsest representation when the k-space is 

fully sampled. Undersampling of k-space introduces aliasing artifacts in the image, 
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which reduces the sparsity. When the sampling pattern is random, application of CS 

theory becomes feasible and the image can be reconstructed by finding its sparsest 

representation in a domain where it is known to be sparse. That is, out of all the 

possible ways which one can fill the missing samples of k-space, the best solution 

would be that set of k-space values which can maximize the sparsity of the image in 

its sparse domain. 

Expressing mathematically, a signal 𝕩’s sparsity is measured as its l0-norm 

(defined as ‖𝕩‖0 = lim
𝑝→0

∑ |𝕩𝑖|
𝑝

𝑖 ), which counts the number of non-zero coefficients in 

𝕩. For signals which are sparse when represented using a sparsity basis Ψ, 𝕩 can be 

recovered by finding its sparse representation 𝕫, 𝕫 = Ψ𝕩, especially when Ψ is 

orthonormal. With the prior knowledge that 𝕩 is sparse in Ψ, a typical CS 

reconstruction method would reconstruct it from 𝕪 by solving the following constraint 

l0 minimization problem. 

 min
𝕫

 ‖𝕫‖0  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝕪 − 𝐴𝕫‖2
2 < ϵ [1.8] 

where the quadratic constraint is a fidelity term that restricts the deviation of solution 

from 𝕪 and 𝜖 is related to the noise level in the signal.  

This type of formulation in which one seeks for the sparse coefficients of 𝕩 is 

called synthesis model (16, 17). The signal of interest, 𝕩 is then recovered from 𝕫 by 

the transformation, 𝕩 = ΨT𝕫. However, this is not possible with the choices of sparse 

transform domains where Ψ is not orthogonal. For example, in the finite differencing 

domain where a signal is represented by its gradient, we have 𝕫 = Ψ𝕩, but 𝕩 ≠ ΨT𝕫. 

Since the gradients computed by a finite difference operation can be sparse, it is 
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commonly considered as a sparse transform domain. This is particularly important in 

the case of MRI since piecewise smooth signals like MR images have very sparse 

gradients. To facilitate reconstruction in such cases, an alternative formulation called 

analysis model (16, 17) is used where the emphasis is on finding the signal 𝕩 whose 

transformed coefficients are sparse, as follows. 

 min
𝕩

 ‖Ψ𝕩‖0  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝕪 − Φ𝕩‖2
2 < ϵ [1.9] 

Be it synthesis or analysis model, the formulations typically involve two parts, (i) 

sparse approximation of 𝕩 and (ii) data consistency with 𝕪.  

(i) sparse approximation of 𝕩 : Minimizing l0-norm of the signal in sparse domain is 

what is required to find the sparsest solution as shown in Eqs. [1.8 - 1.9]. Even though 

finding an exact solution this way is proven to be an non-deterministic polynomial 

(NP) hard problem (18), results in (3, 11, 12, 19) shows that the sparse solution can be 

approximated by replacing l0-norm with l1-norm which is its tightest convex surrogate. 

This has since been the most popular alternative to l0-norm for sparse approximations, 

though other non-convex lp-norms (0 < p < 1) have been successfully explored (20, 

21) as well. An lp-norm of a vector 𝕩 is expressed as ‖𝕩‖𝑝 = (∑ |𝕩𝑖|
𝑝

𝑖 )1/𝑝. The l1-

norm, therefore, provides absolute sum of the elements in the vector and modifies Eq. 

[1.9] as 

 min
𝕩

 ‖Ψ𝕩‖1  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝕪 − Φ𝕩‖2
2 < ϵ [1.10] 

The associated unconstrained Lagrangian form is  

 argmin
𝕩

 ‖𝕪 − Φ𝕩‖2
2  +  𝜆‖Ψ𝕩‖1 [1.11] 
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where 𝜆 is a regularization parameter that controls the trade-off between sparsity and 

data fidelity.  

The unconstrained l1-minimization problem in Eq. [1.11] has been solved using 

different methods like nonlinear conjugate gradients (6), projection onto convex sets 

(22), iterated shrinkage (23-29) and iteratively reweighted least squares (21). Attempts 

to directly solve the problem of l0-norm minimization mainly involves a group of 

greedy algorithms (30-33), mostly without any guarantees for an optimum solution. 

These algorithms in general try to iteratively detect the support set (columns of 𝐴 

corresponding to non-zero elements in the sparse vector 𝕫) so that the signal can be 

reconstructed from its measurements by a least squares fit. 

The sparse approximation using l1-norm minimization is often also referred to as 

Basis Pursuit De-Noising (BPDN) (34) or Least Absolute Shrinkage and Selection 

Operator (LASSO) (35). A closely related formulation with an equality constraint 𝕪 =

Φ𝕩, known as Basis Pursuit (36), addresses the sparse approximation problem when 

the measured signal 𝕪 is noiseless.  

(ii) data consistency with 𝕪 : The second part of the reconstruction formulation is to 

ensure data fidelity. Unlike the different realizations to sparse approximation, l2-norm 

is often always the ideal choice to ensure data consistency. This is due to the quadratic 

nature of l2-norm, which penalizes large errors significantly more as compared to the 

smaller ones.  
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1.4 Motivation and Problem Statement 

The realization of CS in MRI has triggered a thorough research over the last decade 

contributing to its much-needed acceleration in data acquisition process. During this 

period, a cohort of reconstruction algorithms were developed that differ in their 

approaches to sparse representation of the image while having a common aim of 

estimating the missing random samples in k-space. A particularly notable approach 

that constitutes the specific theme of this thesis is that of the edge preserving 

reconstruction which considers the image to be sparsely represented by spatial finite 

differences. Its importance is mainly due to the fact that the edges are one of the key 

features in an MR image that helps to distinguish different anatomical regions and thus 

must be preserved sharp and undistorted while removing the artifacts due to 

undersampling.  

Among the different edge preserving compressed sensing MRI (CS-MRI) 

reconstruction techniques that were developed in this period, the Total Variation (TV) 

based approaches stands out as the most popular. A TV regularizer minimizes the l1-

norm of image gradients. Ever since it was pioneered by Rudin et al. (37) in 1992 

(known as ROF model), TV based approaches have played a major role in the field of 

image denoising/smoothing (noise removal) due to the inherent edge preserving 

properties of the TV regularization. Since the random sampling of k-space in CS-MRI 

helps to make the artifacts appear noise-like (6), a denoising criterion like TV 

minimization constraint becomes a good choice for sparse reconstruction, especially 

when edge preservation properties are desired. Also, in applications like dynamic heart 

imaging, where the temporal variations (change in intensity of a pixel that happen over 
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scans at different timepoints) are highly sparse in the finite differences transform, this 

becomes a suitable reconstruction approach.  

Despite contributing to an important role in CS-MRI, edge preserving approaches, 

especially that of TV, have some inherent shortcomings as well. For example, a very 

common drawback is the staircasing artifact (blocky effect) in the reconstructed image. 

Though it can be addressed by different methods like using second order finite 

differences in the reconstruction model (38-40), the sensitivity of reconstruction to the 

free parameters still pose as an important problem. Furthermore, the application of TV 

based functionals to some of the recently introduced data-driven learning based 

reconstruction models as an auxiliary constraint tend to become less efficient since its 

stand-alone reconstruction performance is inferior to that of these learning based 

approaches.  

In a related work, Li (41) showed that the use of Perona-Malik (PM) diffusion in 

CS model has the potential to reconstruct a Shepp-Logan phantom from very limited 

set of samples in the Fourier domain. Theoretically, both TV and PM diffusion belong 

to the same broad area of non-linear (NL) diffusion models that exhibit inherent edge-

preservation properties. Therefore, the appropriateness of using PM diffusion in CS-

MRI applications is instantly noticeable. Though it shares similarities with TV, unique 

properties like enabling the user to set a threshold between edges and noise in the finite 

differences representation opens up promising possibilities in CS-MRI. This thesis is 

mainly inspired by these facts and investigates the application of NL diffusion, PM 

diffusion in particular, to CS-MRI reconstruction with a focus to address the 
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shortcomings that limit the efficiency of TV based edge preserving reconstruction 

techniques. 

1.5 Original Contributions 

The contribution in this thesis can be broadly viewed as the design and application of 

novel NL diffusion based CS-MRI reconstruction techniques with the goal of 

improved sensitivity to regularization parameters and improved diffusion updates that 

can generate high quality MR images. These are published as three papers in the 

journal Magnetic Resonance in Medicine and described in detail in chapters 3,4 and 5. 

A few specific points are listed below to give a short overview. 

• Reduced sensitivity to regularization parameter 

The choice of regularization parameter (step-size) in TV based CS-MRI 

reconstruction requires prior tuning and if not properly tuned, it can lead to 

residual noise or increased blur in the reconstructed image. In an attempt to 

minimize this dependency of reconstruction to sensitive tuning of step-size, an 

alternative edge-preserving CS-MRI reconstruction model using biased PM 

diffusion is developed and discussed in detail in this thesis. The improved 

sensitivity is facilitated by the fact that the PM style of diffusion involves a 

contrast parameter that separates the gradient magnitudes attributed to noise 

and true edges in an image. Updating this parameter based on the changes in 

gradient magnitudes helps it to adapt to the reduction in artifacts that happen 

over iterations. This significantly reduces the sensitivity to regularization 

parameter, thereby removing the need for its search optimization. 
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• Mitigation of second and fourth order diffusion artifacts 

Staircasing artifact is a common outcome of denoising smooth regions of an 

image using second order partial differential equation (PDE) based techniques 

like the ROF model of TV (42). In the case of CS-MRI reconstruction using 

TV, however, countermeasures for staircase effect are already in place. 

Therefore, when an alternative edge-preserving reconstruction approach is 

introduced, it is important to also address the associated staircase artifacts. One 

generally considered notion to solve this problem is the use of second and 

fourth order PDEs in a combined fashion, for example, a weighted combination 

of individual solutions (43). However, like the second order diffusion, fourth 

order diffusion also introduces an artifact of its own that appears like speckles 

in the solution. This means that any attempt to remove the staircase/speckle 

after it has formed in the solution will be limited by the accuracy in estimation 

of both staircase and speckle effects in the image. Therefore, a new mixed-

order PM diffusion based CS-MRI reconstruction model is developed that aims 

at preventing the formation of staircasing and speckle effects, rather than 

removing it after the artifacts are formed in the reconstructed image and is 

discussed in detail in this thesis. An illustration of staircase and speckle effects 

are shown in Fig. 1.5. 

• Subpixel diffusion correction and directionality guided diffusion model 

Because of the complexity of structural details present in an MR image, the 

directional orientation of different edges can be spread across all possible 

angular directions. This is observed to have a significant influence on the local 

variations in the rate of diffusion. The conventional approaches do not tune the 
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reconstruction for these local variations and are therefore prone to miss 

important structural details in the image. Therefore, a new reconstruction 

model is developed that computes the gradients in all possible angular 

directions and use a spatial-frequency based deviation measure to choose the 

most reliable edges from the set of images diffused along different directions. 

For each individual edge, only the diffusion along its corresponding optimal 

direction is considered. This helps to adapt the direction of diffusion to local 

variations in the directionality of edges and employs a precise diffusion in the 

local regions of the image on a sub-pixel level, leading to the preservation of 

the complex nature of edges and therefore, much improved stand-alone finite 

difference sparsity based reconstruction performance. 

 

Figure 1.5. Illustration of staircase and speckle artifacts. 
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1.6 Thesis Organization 

The remaining part of this thesis is organized as follows: 

Chapter 2 presents the review of the literature related to MR image reconstruction 

leading to CS based techniques for sparse reconstruction.  

Chapter 3 describes the theory and advantages of a newly developed PM diffusion 

reconstruction model for CS-MRI. Role of the associated diffusivity function, choice 

of parameters, biasing strategy and the significance of contrast parameter are discussed 

in detail. This is followed by the description of various numerical experiments that 

analyze the sensitivity to parameter tuning and reconstruction performance. Also, the 

reconstruction of in-vivo data using PM diffusion and TV at different acceleration 

actors are presented for comparative evaluation. 

Chapter 4 describes the cause and remedial measures of the blocky effect (staircase) 

observed in the solution of second-order diffusion at high acceleration factors. This 

includes a summary of the advantages and challenges of regularizing the second-order 

PM diffusion reconstruction model using fourth-order terms, followed by a description 

of the biased mixed-order reconstruction model developed to address the blocky effect. 

The proposed reconstruction is shown to be stable for an experimentally determined 

range of the regularization parameter so that the advantages of second-order 

reconstruction model in terms of reduced sensitivity to the regularization parameters 

is retained.  

Chapter 5 starts with a discussion of the factors limiting the performance of a typical 

NL diffusion reconstruction model and shows that the rate of diffusion for edges varies 
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in accordance with the direction of gradient computation. Since the directionality of 

edges varies at different regions of the image, an improved reconstruction technique is 

described that computes the gradients along all possible angular directions, and use a 

spatial-frequency based deviation measure to choose the most reliable edges from the 

set of images obtained by diffusion along these directions. The results are compared 

with different state-of-the-art data-driven learning based techniques to demonstrate the 

superior performance of the proposed reconstruction technique. 

Chapter 6 summarizes the contributions of the work and discuss the limitations and 

the directions for potential future research to conclude this thesis. 

 



 

 

Chapter 2 

Literature Review 

2.1 Early Days of MRI Reconstruction 

The phenomenon of nuclear magnetic resonance (NMR) used in MRI was discovered 

by Rabi in 1938 (44). However, the possibility of multi-dimensional imaging by NMR 

physics came into the limelight later in 1973 when Lauterbur introduced gradient 

magnetic field to spatially encode the NMR signal generated from the nuclei of an 

object (45). It also forms the basis of signal localization in multidimensional Fourier 

imaging in MRI where the encoded signals represent the Fourier transform of the 

image of interest. On the downside, the gradient encoding technique restricts the 

number of positions of k-space that can be sampled at a time to one. This resulted in a 

relatively slow imaging speed which adversely affected the prospect of useful 

applications. Therefore, from late 1970s onwards, a cohort of attempts were made to 

accelerate the MRI (46). Due to the physical and physiological constraints that limits 

the speed at which k-space can be traversed, the approaches were soon streamlined to 

the idea of reducing the number of samples collected in k-space and estimating the 

skipped samples later.  
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2.1.1 Partial Fourier approach 

Though the sampling theorem suggests that the signal needs to be sampled at least at 

Nyquist rate to generate an artifact-free image, the possibility of reducing the number 

of samples was motivated by the fact that some of the information in k-space is 

redundant. For example, if the MR image is a real-valued function, then its Fourier 

transform would exhibit a peculiar mirrored property known as Hermitian symmetry. 

It implies that only half of the k-space (partial Fourier) would then need to be filled 

because the other half would simply be its complex conjugate. This led to some of the 

initial partial Fourier methods like the works of Margosian et al. (47) and Cuppen et 

al. (48) where one collects slightly more than the half of k-space and estimate the 

remaining data to reconstruct the entire image. Scan time is saved by reducing the 

number of PE steps. Though not popular, partial data can also be collected in the FE 

direction by reducing the echo-time. In some of the later works, partial Fourier 

methods were extended to k-space truncated in both PE and FE directions as well (49-

51). 

In practice, the MR images are complex and the conjugate symmetry property is 

not perfect due to phase errors that arise due to different factors like susceptibility 

variations in tissues (52, 53) and unwanted variations in magnetic field (54-56). 

Therefore, the conjugate symmetry property was not sufficient for good 

reconstruction. Filling the locations of unacquired samples with zeros is the most basic 

approach to reconstruction. Usually referred to as the zero-filled reconstruction, this 

results in a trivial blurry image. A non-trivial solution was initially obtained by phase 

correction and conjugate synthesis method as shown in Fig. 2.1 where an estimate of 



 

 

 
CHAPTER 2. LITERATURE REVIEW  30 

 
 

phase from the set of low spatial frequencies is used to correct the phase error, followed 

by k-space filling based on conjugate symmetry property. Since the low frequency 

information is required for phase correction, slightly more than half the k-space need 

to be collected in practice.  

Noll et al. in (57) used a Homodyne algorithm for partial Fourier reconstruction, 

where the partial k-space is weighted before applying inverse Fourier transform to 

generate the image. After phase correction, the final image is obtained by keeping only 

the real part of the result. Pre-weighting of k-space here ensures that the real part of 

the result corresponds to a uniformly weighted k-space. This also eliminated the need 

for additional Fourier transforms in the phase correction and conjugate synthesis 

method for filling the k-space post phase correction. Cuppen et al and Haacke et al in 

Figure 2.1. Phase correction and conjugate synthesis based partial Fourier MRI 

reconstruction workflow. 
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(48, 58) took another approach to reconstruction using iterative algorithms called 

projection onto convex sets (POCS) where the phase correction and conjugate 

synthesis are applied iteratively (59). Pauly in (60) reported that the homodyne 

approach introduces ghosting effect if the variations in phase of the image are not 

smooth and the POCS approach tend to generate better results than homodyne at higher 

undersampling rates.  

2.1.2 Multiple coils for faster scanning 

Among other approaches for reduced sampling that followed, the use of multiple 

receiver coils to collect fewer PE lines simultaneously in each coil stands out as the 

most significant (61-69). Though it accelerates the acquisition, it also introduces 

aliasing artifacts in the image. To address this issue, different parallel MRI (pMRI) 

reconstruction techniques were developed. An example of pMRI reconstruction 

workflow is shown in Fig. 2.2. 

In 1997, Sodickson et al. (70) reported successful reconstruction using a technique 

called simultaneous acquisition of spatial harmonics (SMASH), in which a weighted 

combination of the signals acquired using multiple coils is used to recover the 

unacquired lines in k-space. Final image is then generated by Fourier transform. In 

1999, Pruessmann et al (71) introduced sensitivity encoding (SENSE) method that 

directly recover the channel combined image free of aliasing using the knowledge of 

coil sensitivity profiles. This approach removed the restrictions on coil configurations 

present in SMASH. However, the desired performance generally requires an accurate 

knowledge of coil sensitivity profiles.  
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Another popular pMRI technique that followed is the generalized autocalibrating 

partially parallel acquisitions (GRAPPA) by Griswold et al (72) in 2002. Unlike 

SENSE, GRAPPA fills the k-space before Fourier transformation using a set of 

weighting factors estimated from the fully-sampled central region of the k-space. 

Therefore, it tends to perform better than SENSE in heterogenous body parts where an 

accurate coil sensitivity profile may not be available. However, at acceleration factors 

higher than 2 (acceleration factor 2 implies that every other PE line is skipped), SENSE 

is generally known to provide better image quality and slightly higher signal-to-noise 

(SNR) measures. 

Over a short period of time, parallel imaging technique continued to become 

established as a standard approach for rapid MRI acquisition. Having been widely 

employed in most of the clinically used scanners, it brought about a major clinical 

impact.  

2.2 CS Based Reconstruction 

In early 2000s, the theory of CS started gaining interest in various fields of research. 

In 2004, Candès et al (1) proved that CS can correctly reconstruct a sparse signal from 

randomly measured Fourier coefficients with high probability. Though MR images are 

not always sparse when interpreted in the image domain, it is highly compressible in 

many transform domains like wavelets and curvelets. The idea of compressibility or 

induced sparsity here implies that a few large transform domain coefficients are 

sufficient to faithfully approximate the image without compromising the quality 
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standards required for clinical diagnosis. Remaining small coefficients can be safely 

discarded (set to zero). A typical CS-MRI reconstruction workflow is shown in Fig. 

2.3. 

The CS based idea of random undersampling and sparsity constrained 

reconstruction was introduced in MRI by some of the initial works like Lustig et al (6, 

73), Block et al (7) and Jung et al (74). In the work of Lusting et al. (6) in 2006, called 

SparseMRI, randomly undersampled k-space data was reconstructed using wavelet 

and finite difference sparsity constraints. Specifically, the application to Cartesian 

sampling was investigated. The solution was obtained by minimizing the l1-norm of 

wavelet coefficients and TV norm of the image. A standard TV regularizer minimizes 

the l1-norm of image gradients. As dictated by the theory of CS, the sampling of k-

space was made random to make the aliasing in the image ‘incoherent’. Incoherence 

here implies that the aliasing appears noise-like. Incidentally, the noise-like 

information in the image transforms to smaller coefficients in the wavelet domain and 

can hence be easily thresholded off.  

In an intuitive way, this work showed that if one could somehow force the artifacts 

in an MR image (resulting from the missing samples of k-space) to occupy the 

discardable transform domain coefficients, it can be eventually removed (due to the 

inducible sparsity of the signal in the transform domain) and thereby get away with 

the reduced sampling. It therefore showed promises in different MR imaging 

applications like the brain imaging where faster acquisition reduces the artifacts due 

to subject movement, rapid 3-D angiography where faster acquisition is better because 

the contrast of the flowing blood changes over time, whole-heart coronary imaging 
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Figure 2.2. An example of pMRI reconstruction workflow. 
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where coronary arteries are constantly in motion and dynamic heart imaging where 

long acquisition times make it difficult to acquire images of heart due to its movement.  

In another work (73), Lustig et al introduced sparsity based reconstruction in 

dynamic MRI where the objective is to image time varying objects like beating heart. 

Wavelet sparsity was used in this work as well. Alternatively, Jung et al in (74) used 

focal underdetermined system solver (FOCUSS) technique (75) to enforce sparsity in 

the solution by iteratively reweighting the solution based on the result from previous 

iteration, starting from a low resolution initial estimate. Performance of this approach 

is however dependent on the availability of a good initial estimate.  

Around the same time, Block et al in (7) demonstrated the multi-coil 

reconstruction of radially undersampled k-space data in the CS framework using TV 

constraint alone. Even though the radial spokes were collected at uniform angular 

intervals, the sparsity enforcing TV constraint effectively removed the streaking 

artifacts caused by the undersampling. They also reported that the reconstruction is 

sensitive to the weight of TV constraint. When the weight is lower than the appropriate 

value, it resulted in residual artifacts/noise while higher weights (over-weight) 

introduced blur. In the works of both Lustig et al and Block et al, l1-norm minimization 

was achieved using conjugate gradients method.   

Despite the sensitivity of reconstruction to the choice of TV weight, it showed 

promising edge preservation properties. Therefore, it continued to be a popular choice 

of sparsity constraint in CS-MRI along with wavelet.  
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2.2.1 CS in combination with partial Fourier and pMRI 

These realizations of CS-MRI led to the proposal of several methods combining CS 

with partial Fourier, SENSE and GRAPPA type reconstructions in the late 2000s (76-

81) and early 2010s (82-87). These methods in general showed that the combined 

approach can achieve robust reconstructions at higher acceleration factors compared 

to traditional pMRI or CS-MRI techniques. Lustig et al. (81, 85) proposed a GRAPPA 

based method called iterative self-consistent parallel imaging reconstruction (SPIRiT) 

for arbitrary sampling patterns which allows additional sparse constraints like TV and 

wavelet in the formulation. Results indicated significant noise reduction compared to 

GRAPPA. Liang et al. (80) proposed a method called CS-SENSE which used 

SpraseMRI to reconstruct aliased channel images and SENSE to reconstruct the final 

image. In another work, Doneva et al. (82) combined partial Fourier and CS by 

enforcing sparse constraint in each iteration of POCS. Liu et al. (84) combined CS-

SENSE with partial Fourier to show that it can provide better reconstructed image if 

only the magnitude data is desired.  

2.2.2 Improved reconstruction by sparser representation 

Different techniques to improve the CS-MRI reconstructions were also evolving in the 

meantime. According to CS theory, sparser representation leads to better 

reconstruction quality and for a given reconstruction quality, better sparsity allows 

greater acceleration (88). Therefore, sparse representations and sparsity 

regularizations were rigorously investigated. Besides wavelet transform and finite 

differences, transform domains like discrete cosine transforms, Shearlet transform (89, 
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90), and contourlet transform (91) were also explored. Each of these sparsity 

constraints essentially incorporate different prior knowledge into the reconstruction 

framework. For example, while wavelets represent point like features better, curvelet 

and contourlet gives better representation of edges and curves.  

Qu et al. in (92) used both wavelet and contourlet transforms together to improve 

the reconstruction than either transforms when used independently. An additional TV 

constraint showed further improvement in the quality of reconstructed image measured 

using peak signal-to-noise ratio (PSNR). Specifically, the combination of wavelets, 

contourlets, and TV showed better PSNR measures compared to that of wavelets and 

TV. In another work, Li (41) used a PM Diffusion function instead of TV for edge 

preserving reconstruction. He showed the reconstruction of a Shepp–Logan phantom 

from 8 radial lines. However, the reconstruction of in-vivo data was not investigated 

and it assumes bilateral symmetry in the images for non-local processing, which might 

not always be valid. 

2.2.3 Countermeasures for blocky effects in TV 

Though the TV constraint helps to preserve edges, it assumes that the image is 

piecewise constant. Therefore, it tends to introduce blocky effect (also known as 

staircasing artifacts) in the solution, especially at higher undersampling rates. 

Considering the significance of the role played by TV in sparsity based 

reconstructions, several countermeasures were proposed in the form of higher order 

derivatives of the image or by methods like non-local TV (NLTV) that uses a weighted 

nonlocal gradient function instead of TV (38-40, 93).  
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One of the popular solutions is the second order total general variation (TGV) 

(94) functional proposed by Knoll et. al. (40) which uses second derivative of the 

image in the regions of smooth intensity variations and first derivative in the 

neighborhood of edges. Since the second derivative will be small in the smooth regions 

compared to first derivative, it will not cause blocky effect. One the flipside, if only 

the second derivatives are used, it tends to introduce speckle-like effects in the 

solution. Therefore, a functional combining both first and second derivatives is 

generally preferred. In another approach, Hu and Jacob (38) proposed higher degree 

total variation (HDTV) technique which works by minimizing the sum of absolute 

magnitude of the directional derivatives along all angles and pixels in the image. This 

approach also showed good resistance to blocky effects.  

2.2.4 Learning the sparsity basis for improved sparsity 

In further attempts to improve the sparse representation, data-driven learning was 

introduced which can adaptively learn the sparse representation of image (95-98). An 

important development in this direction was the use of dictionary learning based 

sparsity basis (99-101), where the main idea is to use an adaptive data-specific 

sparsifying transform instead of global ones like Daubechies wavelets and TV, owing 

to its success in applications like denoising and inpainting (102-105). Basic elements 

in a sparsifying dictionary are called atoms, whose linear combinations can represent 

a given signal in sparse form.  

In some of the initial applications to CS-MRI reconstruction like Bilgin et al. 

(106) and Chen et al. (107) during 2010, dictionaries were learned from patches of 



 
 

 

2.2 CS BASED RECONSTRUCTION  39 

 
 

previously acquired MR images (reference image) using K-SVD algorithm (100) 

which updates the dictionary, atom by atom, in an iterative manner. In each iteration, 

sparse coefficients are updated based on the current estimate of the dictionary and the 

dictionary atoms are updated to best fit the current sparse representation of the data. 

Though it improved the reconstruction compared to methods that use fixed sparsity 

basis, Ravishankar et al. (96) pointed out that the dictionary learnt from such a 

reference would have limited abilities to sparsify new features in a new scan. Instead, 

they proposed a K-SVD based adaptive scheme called DLMRI, to adaptively learn the 

dictionary from zero-filled reconstruction of sampled k-space data. It also performed 

better than the one-dimensional (1D) dictionary learned using K-SVD from the 

wavelet sparsity based reference reconstruction by Otazo and Sodickson (108). 

Superior performance of DLMRI in this case is attributed to the limited capability of 

1D dictionary to exploit the 2D local structures in the image. 

The fact that multiple sparsity constraints can lead to improved results encouraged 

the researchers to also use fixed sparsifying transforms alongside learned dictionaries 

for CS-MRI reconstruction in the mid-2010s (88, 109-111).  While Caballero et al. 

(88) achieved improved results by enforcing finite difference sparsity along temporal 

direction in dynamic MRI, Wang and Ying (111) applied TV constraint along PE, FE 

and temporal directions to achieve better results.  

In other attempts, superior sparsifying dictionaries were learned from transform 

domain representation of the data. For example, Ophir et al. (112) learned the 

dictionary from patches of wavelet coefficients and Liu et al. (113) trained the 

dictionaries from finite difference representation (horizontal and vertical gradients) of 
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the image to achieve better results compared to DLMRI. These works indicate that the 

dictionaries learned from sparser training samples can improve its accuracy and 

robustness.  

2.2.5 Learning the data representation for improved sparsity 

The idea of data-driven learning based reconstruction was also realized in the form of 

modifying the data rather than modifying the sparsity basis. In 2010, Qu et al. (97) 

introduced a patch-based directional wavelets (PBDW) method to improve the sparsity 

by image domain pixel rearrangement. Here, the image is divided into several 

overlapping patches and the pixels in each patch are rearranged into a 1D vector such 

that the coefficients of its 1D Haar wavelet transform decays faster. Ning et al. (114) 

modified this method in 2013 for improved sparsity by applying PBDW on the 

individual subbands of two-dimensional (2D) shift-invariant discrete wavelet 

transform of the image instead of applying directly on the image.  

Later in 2014, Qu et al. (115) introduced a patch-based nonlocal operator (PANO) 

that operates on a group of similar patches rather than individual patches of the image. 

They grouped similar 2D patches in a three-dimensional (3D) arrangement and applied 

a 3D wavelet transform. The sorted wavelet coefficients decayed faster than its 2D 

wavelet counterpart resulting in a superior image quality. Either a zero-filled 

reconstruction or a conventional CS-MRI reconstruction was used here as a reference 

to learn the non-local similarity. A similar approach using the block matching and 3D 

filtering (BM3D) (116) was proposed by Eksioglu (117) in 2016. In this work, blocks 

formed by grouping similar patches are sparsified using a separable 3D wavelet 
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transform. Specifically, a bi-orthogonal spline wavelet transform is applied to 

individual 2D patches and a 1D Haar wavelet transform is applied over the third 

dimension. Reconstruction of in-vivo data showed improved signal-to-noise (SNR) 

compared to PANO. It is also shown that a sequential decrease in regularization 

parameter enables the algorithm to converge to better reconstructions.  

Around the same time, Lai et al. (118) proposed a graph based redundant wavelet 

transform (GBRWT) that combines a graph based method (119, 120) and redundant 

wavelet transform to achieve better results than PANO. In this method, wavelet 

transform is applied on the patches ordered according to the shortest path on a graph 

formed by considering patches as vertices and their differences as edges. It is shown 

that reordering the pixels based on the shortest path on graph leads to faster decay of 

wavelet coefficients. However, at high acceleration rates, very limited information is 

available to construct a graph, which limits its performance (121).  

2.2.6 CS in combination with low-rank representation 

In other related works, sparse reconstruction techniques were also implemented in 

combination with low-rank approximation (122) of MR images (123-126). These 

methods consider the underlying signal to be both sparse and rank deficient. The low-

rank constraint is enforced by minimizing Schatten p-norm or nuclear norm of the data 

matrix in place of the sparsity constraint (lp-norm minimization) in CS problems (123, 

127). For a matrix 𝑋 of size 𝑚 × 𝑛, the Schatten p-norm is defined as ‖𝑋‖𝑝 =

(∑ 𝑠𝑖(𝑋)
𝑝min {𝑚,𝑛}

𝑖=1 )
1/𝑝

, where 𝑠𝑖(𝑋) are the singular values of 𝑋 and the nuclear norm 

is its special case when 𝑝 = 1. Recently, Yao et al. (128) has reported that the use of 
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TV constraint with low-rank regularization can make the reconstruction of cardiac cine 

data less sensitive to noise.  

The idea of rank constraint is also implemented in the form of structured low-rank 

approximation alongside sparsity constraints for pMRI (129). This approach tries to 

exploit the rank deficiency in structured matrices by rearranging the signal samples in 

multi-coil k-space data to form a structured matrix like Toeplitz or Hankel (126, 130-

132). It also makes use of the fact that local k-space correlations in multi-coil data 

reduces the rank of the matrix. Individual coil k-space data is also shown to be rank 

deficient in Hankel structured matrix form by Haldar (133, 134) when the underlying 

channel image contains smoothly varying phase or has a limited spatial support.  

2.2.7 Recent trends in MRI reconstruction 

Most recently, the reconstruction problem in MRI is rapidly shifting its focus towards 

deep learning based techniques due to the possibility of real-time reconstruction (135-

140). These techniques involve a separate training phase to learn the reconstruction 

parameters. The significant gain in reconstruction time is mainly because the 

computation demanding training phase is performed offline. However, the computing 

power requirements and limited availability of large enough database for training 

presently pose as a limitation of these methods.  

2.3 Summary 

Across this review, the presence of finite difference sparsity constraint in the form of 

TV minimization is clearly noticeable. Though it is used as a standalone reconstruction 
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method in some of the earlier works like Block et al (7), it became more popular in the 

role of an auxiliary constraint in the later part of the literature. In this new role, it helps 

to preserve the edges sharp while other constraints like learned dictionaries tries to 

approximate the underlying MR image as a smooth function. Despite this important 

role, minimal effort can be seen to improve its standalone performance in the context 

of MRI reconstruction to match with some of the more recent state-of-the-art works. 

Though Li pointed out the possibility of PM diffusion as an edge-preserving 

regularizer (41), it wasn’t investigated any further either. Furthermore, the sensitivity 

of the reconstruction to the choice of TV weight remains problematic. Due to the 

superior stand-alone performance of sparsity constraints like learned dictionaries, it 

also becomes imperative that any edge preserving auxiliary constraints if used, need 

to perform at a similar level for an efficient reconstruction. The original contributions 

of this thesis discussed in the next three chapters tries to address these issues. 

 



 

 

 

Chapter 3 

Perona-Malik Diffusion Reconstruction 

3.1 Introduction 

Preservation of structural details is often one of the important requirements while 

reducing noise in MR images, since it contains important anatomical information that 

can aid in clinical diagnosis. Non-Linear (NL) diffusion is one such well-known and 

well-studied denoising technique (42, 141) commonly used to facilitate the edge 

preservation feature. It is known to be an effective tool to remove Rician and speckle 

noise in MR images (142, 143) and has also proved to be helpful in compensating for 

the loss in Signal-to-Noise ratio (SNR) at high spatial resolutions, which reduces the 

need for averaged multiple measurements of the same object (144).  

It describes the popular edge-preserving denoising technique of TV minimization 

(6, 37, 94) as TV diffusion, widely used in CS-MRI reconstruction problems. Recently, 

the use of NL diffusion using Perona-Malik (PM) diffusivity has been shown to be 

effective in reconstructing Shepp-Logan phantom from as few as 8 radial spokes (41). 

Because of the edge preserving property, both methods have an advantage that the 

diffusion process will not affect the edges where the image gradient values are 
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significantly high. Since the gradient magnitudes due to noise in an image is generally 

smaller than that of true edges, the image is processed in such a manner that the regions 

having relatively smaller gradient magnitudes are smoothed, while those having larger 

gradient magnitudes are preserved.  

Even though TV is a more popular choice when it comes to edge preserving sparse 

reconstruction, its performance is often found dependent on the right choice of 

regularization parameter as well. In this work, a biased form of NL diffusion using PM 

diffusivity function is introduced to address the MR image reconstruction problem. 

The statistical estimation of contrast parameter in the proposed method removes the 

need for searching the critical parameters as in the case of a TV based reconstruction. 

Considering the wide application areas of TV based strategies in MRI like elimination 

of truncation artifacts and regularizing Compressed Sensing (CS) imaging techniques 

(6, 145), the use of NL diffusion as an alternative serves the purpose better. 

The chapter is organized into four sections. First section gives a brief overview of 

the CS reconstruction model using NL diffusion. It describes the theory of NL 

diffusion, biasing strategy, relation to TV and application to parallel imaging. Next 

section outlines the description of proposed algorithm and choice of parameters 

required for implementation. This is followed by a Results section which shows the 

effect of contrast parameter, sensitivity to regularization and advantages of NL 

diffusion over TV in learned reconstructions using in vivo data. The chapter concludes 

with a detailed discussion of its implications and relative advantages. 
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3.2 Theory 

3.2.1 CS Reconstruction model using NL diffusion 

CS reconstruction problem is addressed in this work as a biased form of NL diffusion. 

Given the acquired samples in k-space 𝐾, a general edge preserving CS reconstruction 

method works by minimizing a cost function of the form 

 𝐶(𝑈) = ℋ(𝑈) + 𝐷(𝑈,𝐾), [3.1] 

where ℋ(𝑈) is an edge cost that imposes explicit penalty for edges in image 𝑈 and 

𝐷(𝑈,𝐾) is a deviation cost ensuring the estimated image to be a faithful approximation 

of the ideal image. In the proposed method, NL diffusion is used to selectively diffuse 

noise while preserving significant edge features in the image. Here noise refers to the 

intensity variations in image introduced by the undersampling of k-space and not to be 

confused with the noise in acquisition which will be explicitly referred to as ‘inherent 

noise in acquisition’.  

Biasing is introduced to ensure that the deviation cost is minimized. This is 

equivalent to minimizing the cost function  

 ℋ(𝑈) = ∫ 𝑓(|∇𝑈|)𝑑Ω
 

Ω
, [3.2] 

subject to the constraint ‖ℱ𝑢𝑈 − 𝐾𝑢‖2 < 휀, where Ω denotes the image domain and 

𝑓(|∇𝑈|) is an increasing function of |∇𝑈|, that is, 𝑓′(|∇𝑈|) > 0. 𝐾𝑢 = 𝑄 ∘ 𝐾 for a 

binary sampling matrix 𝑄 that sets the unacquired samples in 𝐾 as zero. The constraint 

biases the diffusion to ensure that the solution does not deviate from the ground truth 

image. ℱ𝑢 operating on 𝑈 computes its Fourier Transform followed by setting the 
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unacquired frequency points to zero. 휀 controls the fidelity of reconstruction to 𝐾𝑢. 

Detailed explanation of NL diffusion and the biasing strategy is presented in the 

subsequent section. 

3.2.2 NL diffusion  

NL diffusion works on an image by removing unwanted intensity variations in the 

uniform intensity regions and enhancing edges. From the fact that the difference 

between an image and its blurred version is proportional to the Laplacian (146), the 

process of diffusion can be represented in the form of forward heat equation  

   𝜕𝑡𝑈 = 𝜔∇2𝑈, [3.3] 

where 𝜔 is the diffusion coefficient and ∇2 represents the Laplacian of an image 𝑈. It 

measures the extent by which 𝑈 diffuses over a small time 𝜕𝑡. In the context of 

numerical implementation, 𝜕𝑡 represents time between two successive diffusion 

iterations. This operation, however, does not distinguish between edges and uniform 

intensity regions in an image, leading to the resultant blurring of edges as well. 

Alternatively, subtracting a fraction of Laplacian from an image deblurs it (reverse 

diffusion) (147).  

   𝑈𝑑𝑒𝑏𝑙𝑢𝑟𝑟𝑒𝑑 = 𝑈𝑏𝑙𝑢𝑟𝑟𝑒𝑑 − 𝜆∇2(𝑈𝑏𝑙𝑢𝑟𝑟𝑒𝑑). [3.4] 

Together with the edges, this reverse operation is known to enhance noise in the 

image as well. In a noisy image, the desired processing is a combination of both 

forward and reverse diffusion, enabling noise removal without diffusing the edges. 

This is achieved by NL diffusivity functions which diffuse the uniform intensity 
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regions forward and edges backward simultaneously (42). The combined form of 

diffusion as presented in (148) is  

   𝜕𝑡𝑈 = 𝑑𝑖𝑣(𝑔(|∇𝑈|)∇𝑈), [3.5] 

where 𝑔(|∇𝑈|) represents the diffusivity function and 𝑑𝑖𝑣 is the divergence operator. 

An example of 𝑔 proposed by PM is 

   𝑔(|∇𝑈|) =
1

1+(|∇𝑈|/𝛼)2
, [3.6] 

where 𝛼 is the contrast parameter that separates the gradient magnitudes of noise and 

edges in an image.  

From the theory of NL diffusion, diffusivity function 𝑔(|∇𝑈|) is chosen to be 

positive and monotonically decreasing, so that the amount of diffusion decreases as 

|∇𝑈| increases (42). Consequently, as the gradient magnitudes become large, 

𝑔(|∇𝑈|) approaches zero and the diffusion is stopped. The flux function 𝑔(|∇𝑈|)|∇𝑈| 

computed in Eq. [3.5] is increasing for |∇𝑈| < 𝛼 and decreasing for |∇𝑈| > 𝛼. Hence 

its derivative becomes positive when |∇𝑈| < 𝛼 and negative for |∇𝑈| > 𝛼. This leads 

to a forward or backward diffusion depending on the value of |∇𝑈| relative to 𝛼. 

Therefore, Eq. [3.5] modifies the edges and uniform intensity regions of 𝑈 differently. 

This results in a diffused image given by  

   𝑈𝑑𝑖𝑓𝑓𝑢𝑠𝑒𝑑 = 𝑈 + 𝛾𝜕𝑡𝑈, [3.7] 

where 𝛾 is a regularization parameter which controls diffusion strength. When the 

gradients of an image are calculated along vertical and horizontal directions, the 

numerical scheme of PM diffusion becomes stable when 0 < 𝛾 < 1/4 (148). This will 
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lead to a sequence of diffused versions of the initial image 𝑈(0) by repeatedly diffusing 

the image.  

The diffusion is made dependent on the magnitude of the image gradient to retain 

structural information. Continued diffusion will finally result in a constant (all edges 

diffused off). Best result is obtained when artifacts are removed with maximum 

preservation of the structure. Hence it becomes important to decide when to stop the 

diffusion process. In addition, the stability of this process depends on its ability to 

discriminate the gradient magnitudes corresponding to edges and noise. Both these 

issues can be addressed and the process can be made stable by biasing the algorithm 

towards original image using the constraint in Eq. [3.2] (149). It enforces consistency 

with the acquired Fourier measurements. With the inclusion of bias term, diffusion of 

𝑈 becomes 

   𝜕𝑡𝑈 = 𝑑𝑖𝑣(𝑔(|𝛻𝑈|)𝛻𝑈) + 𝛽ℱ𝑢
′(𝐾𝑢 − ℱ𝑢𝑈), [3.8] 

where 𝛽 is a bias relaxation factor and ℱ𝑢
′  operating on k-space computes its inverse 

Fourier transform after setting the unacquired frequency points to zero (ℱ𝑢
′(𝐾) ≜

ℱ−1(𝑄 ∘ 𝐾).  

Biased diffusion can be intuitively interpreted from the fact that while the 

diffusion process tends to remove the edges, bias introduces structural information into 

the current solution, such that the diffusion process does not impair this underlying 

structure in the next iteration. This stabilizes diffusion and forces the process to 

converge towards a solution that is consistent with the acquired k-space data instead 
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of a constant, thereby removing the need for a stopping criterion. Substitution of 𝜕𝑡𝑈 

from Eq. [3.8] into Eq. [3.7] yields 

   𝑈𝑑𝑖𝑓𝑓𝑢𝑠𝑒𝑑 = 𝑈 + 𝛾𝑑𝑖𝑣(𝑔(|∇𝑈|)∇𝑈) + 𝑐ℱ𝑢
′(𝐾𝑢 − ℱ𝑢𝑈), [3.9] 

where 𝑐 = 𝛾𝛽 is the updated bias relaxation factor. This also minimizes the 

unconstrained form of functional in Eq. [3.2] (42, 150). 

3.2.3 Relation to TV 

Based on the choice of diffusivity function, the filter in Eq. [3.5] varies. The numerical 

scheme of NL diffusion becomes equivalent to TV when the diffusivity function used 

is (151) 

   𝑔(|∇𝑈|) =
1

|∇𝑈|
 . [3.10] 

While PM diffusivity form allows to control the diffusion using a contrast parameter, 

the TV form does not include this option. In the results section, it is shown that this is 

a crucial factor that allows PM diffusion to adapt to the changes in the noise contained 

in a dataset. 

3.2.4 Application to parallel imaging 

When the data is collected using multiple coils, we get only partial information from 

individual channels. Hence the estimation of 𝛼 from individual channels may not be 

efficient because the complete structural information is absent in any single channel 

and the presence of channel sensitivity degrades the quality of true edges. Therefore, 

it is preferred to estimate the contrast parameter from combined channel information 
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(�̅�). Ideally, 𝛼 should be smaller than the smallest gradient corresponding to the true 

edges. A workflow of the proposed technique is shown in Fig. 3.1. 

3.3 Methods 

3.3.1 Reconstruction parameters 

Parameters which control the reconstruction performance include (i) relaxation 

parameter 𝑐, (ii) diffusion strength 𝛾, and (iii) contrast parameter 𝛼. 𝛼 is estimated 

using mean/median absolute deviation (MAD) of ∇𝑈 or the noise estimator described 

by Canny (141). In latter, 𝛼 is set as 90% value of cumulative sum of the histogram 

of |∇𝑈| in every iteration, so that it will automatically get adjusted to the changes in 

the image. In literature, both mean and median absolute deviations are abbreviated as 

MAD. Both are known to be robust estimators because the extreme gradient values 

have less influence on 𝛼 (152, 153). Mean absolute deviation being computationally 

simpler than median absolute deviation, MAD using mean to estimate 𝛼 is used in this 

work. It computes the average variation of data (∇𝑈) about its mean. 

   𝑀𝐴𝐷(∇𝑈) = 𝑚𝑒𝑎𝑛(|∇𝑈 −𝑚𝑒𝑎𝑛(∇𝑈)|) [3.11] 

Implementation using Matlab (The MathWorks, Inc., Natick, MA, USA) shows a two-

fold gain in speed with mean as compared to MAD using median.  

Choice of 𝐜 and 𝛄: 𝑐 and 𝛾 are parameters common to both TV and PM diffusion 

based image reconstruction. In TV, 𝛾 is referred to as the step size. While role of 𝑐 is 

to minimize the effect of acquisition noise in the reconstructed image, 𝛾 controls the 

extent of diffusion in a single iteration. Typically, 𝛾 is determined by solving Eq. [3.2] 
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Figure 3.1. Workflow of statistically optimized non-linear diffusion reconstruction. 
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for different values of 𝛾 and selecting the value which minimizes the deviation cost 

(6). Other methods based on discrepancy principle usually requires the knowledge of 

noise variance and is reported to oversmooth the solution (154). In the proposed 

method, adaptation of contrast parameter (𝛼) overcomes the need to fine tune the value 

of 𝛾, making it a soft parameter. This is not possible in TV based reconstruction.  

Relaxation of 𝑐 in both TV and PM diffusion is desired when the acquired data is 

noisy. Since there are no known methods to a priori fix the best possible value of 𝑐 in 

such cases, the best choice is to monitor the final reconstructions corresponding to 

different values of 𝑐. This adds to the complexity of search in TV reconstruction 

because it would then require an additional tuning of 𝛾 for each 𝑐 value. Since the 

reconstruction would converge to a solution that is most consistent with the noisy 

ground truth image when 𝑐 is set to 1, it is meaningful to fix the value of 𝑐 and search 

for 𝛾 that minimizes the effect of inherent noise. Adaptation of 𝛼 helps to minimize 

this remnant noise in PM diffusion when 𝑐 is set to 1. In this manner, the proposed 

method overcomes the critical requirements for parameter tuning as compared to TV 

based reconstruction.  

3.3.2 Implementation 

A proximal forward-backward splitting method is used to implement the technique 

where biasing and PM diffusion forms the forward and backward steps. The resultant 

reconstruction framework is given in algorithm 3.1. The acceleration technique of fast 

iterative soft thresholding algorithm (FISTA) (25) is used to speed up the 

reconstruction process in steps 6 and 7.  
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3.3.3 Evaluation 

The error in reconstruction is computed using the relative l2 norm error (RLNE)  

 𝑅𝐿𝑁𝐸 = ‖𝑈(𝑘) − 𝑈𝑟𝑒𝑓‖2/‖𝑈𝑟𝑒𝑓‖2, [3.13] 

where 𝑈𝑟𝑒𝑓 is the ground truth image. 

3.3.4 Datasets 

Different in-vivo datasets used in this work are shown in Fig. 3.2(a–e). Datasets I-III 

(Fig. 3.2(a-c)) are single channel brain datasets shared freely at 

Algorithm 3.1:  

    0:     Set 𝑘 = 1; 𝑡(1) = 1; % ‘𝑘’ is the iteration number 

    1:     𝑈𝑖
(0)

= ℱ𝑢
′𝐾𝑢,ℓ; % ‘ℓ’ is the channel number 

    2:     𝑤ℎ𝑖𝑙𝑒 (𝑘 < 𝑘𝑚𝑎𝑥)  

    3:      𝑈ℓ
(𝑘)

= 𝑈ℓ
(𝑘−1)

+ 𝑐 ℱ𝑢
′(𝐾𝑢,ℓ − ℱ𝑢𝑈ℓ

(𝑘−1)
); % biasing 

    4:      𝛼 = 𝑀𝐴𝐷൫∇�̅�(𝑘)൯; 

    5:      𝑈 ℓ
(𝑘)

= 𝑈ℓ
(𝑘)

+ 𝛾𝑑𝑖𝑣 (𝑔 (∇𝑈ℓ
(𝑘)
, 𝛼) ∇𝑈ℓ

(𝑘)
); % diffusion 

    6:      𝑡(𝑘+1) = (1 + ඥ1 + 4(𝑡(𝑘))2  ) /2;  

    7:      𝑈ℓ
(𝑘)

= 𝑈 ℓ
(𝑘)

+ ൫𝑡(𝑘) − 1൯ (𝑈 ℓ
(𝑘)

− 𝑈 ℓ
(𝑘−1)

) /𝑡(𝑘+1); % acceleration 

    8:      𝑘 = 𝑘 + 1;  

    9:     𝑒𝑛𝑑  
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http://www.quxiaobo.org/. Datasets IV-V (Fig. 3.2(d-e)) are four-channel spine (T2-

weighted spin echo sequence; TE = 98ms, TR = 5520ms, slice thickness = 3.0mm, 

FOV = 230mm) and six-channel brain (FLAIR spin echo sequence; TE = 89ms, TR = 

9000ms, Inversion time (TI) = 2500ms, slice thickness = 5.0mm, FOV = 240mm) data 

acquired using Siemens 1.5T Magnetom-Avanto clinical MR scanner at Sree Chitra 

Tirunal Institute of Medical Sciences and Technology, Trivandrum, India. All subjects 

were scanned with prior written informed consent as recommended by the institutional 

ethics committee. The fully sampled brain images were acquired with phased-array 

head coils and spine images with spine-array coils. An example of sampling mask used 

to retrospectively undersample the k-space data is shown in Fig. 3.2f. Channel images 

of datasets IV-V are shown in Fig. 3.2(d1-d4, e1-e6). 

3.4 Results 

All implementations are performed using Matlab (The MathWorks, Inc., Natick, MA, 

USA) on a PC with an Intel Xeon E5-2609 2.4 GHz processor and 16 GB of RAM 

running Windows 7 operating system.  

3.4.1 Effect of contrast parameter 

Plots in Fig. 3.3(a-e) compare the reconstruction errors of datasets shown in Fig. 3.2(a-

e) for different values of contrast parameter (α). For all datasets, large values of α result 

in increased convergence rate and vice-versa.  However, fast convergence is obtained 

at the cost of large steady-state errors. When the inherent noise is low, improved image 

quality can be achieved using small values of α (Fig. 3.3(a-c)). If the noise is more, 
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Figure 3.2. Retrospective sampling schemes and fully sampled reference images. (a)-

(c) T2-weighted single channel brain image, (d)-(e) channel combined spine and brain 

data, (f) 20% sampled Poisson disk sampling mask, (d1)-(d4) channel images of 

multichannel spine data, (e1)-(e6) channel images of multichannel brain data. 
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Figure 3.3. Reconstruction errors obtained for different values of α expressed as 

fractional multiples of MAD(∇U) as a function of iteration number. Plots (a)-(e) 

correspond to the datasets shown in Fig. 3.2. (a)-(e). 
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biasing maintains consistency with the noisy acquired samples. Hence the output 

image of data consistency step (biasing) in each iteration tends to be noisy. In such 

cases, small values of α tend to preserve this noise resulting in higher steady-state 

errors (Fig. 3.3(d-e)). In all cases, a good compromise of speed and quality is achieved 

when α is set as 50% MAD.  

3.4.2 Sensitivity to regularization  

With 𝑐 set as 1, the sensitivity to regularization (𝛾) for TV and PM diffusion is 

investigated by addition of complex Gaussian noise to the Shepp-Logan phantom. Fig. 

3.4 shows plots of RLNE versus gamma for different noise levels. While PM diffusion  

results in low steady-state errors for a wide range (.01 to .25) of the permissible values 

of 𝛾 (0 to .25), TV is highly sensitive to the change in 𝛾 and yields low steady-state 

error for only a narrow range of 𝛾 (.0005-.0030). 

3.4.3 Reconstruction of multi-channel data 

Reconstructions of spine and head images in Figs. 3.5-3.6, illustrate the need for step 

size tuning in TV based reconstruction as compared to a statistically optimized PM 

based reconstruction using a constant step size for 3, 4 and 5-fold accelerations (row-

wise panels). Column-wise panels show the zero-filled, PM diffusion, and TV 

reconstruction together with their respective error images. The zero-filled 

reconstruction is performed by filling the unacquired locations with zeros followed by 

inverse Fourier transformation of this zero-filled k-space. For spine data with 3-fold 

undersampling, an optimal step size in TV based reconstruction is first obtained using 
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Figure 3.4. Plots of reconstruction error at a predetermined number of iterations 

(k=100) versus step size for different input noise levels. 𝛼 is chosen as 30%MAD. (a)-

(d) compares TV and PM diffusion for a fixed noise level. Comparisons at different 

noise levels are provided in panels (e)-(f), which indicates that the PM diffusion results 

in low steady-state errors for a wide range (.01 to .25) of the permissible values of 𝛾 

(0 to .25) while TV is highly sensitive to the changes in 𝛾 and yields low steady-state 

error for only a narrow range of 𝛾 (.0005-.0030). 
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Figure 3.5. Reconstruction using dataset-IV for 3, 4 and 5-fold retrospective 

subsampling using PM diffusion and TV. Column-wise panels show the results of 

zero-filled reconstruction, PM diffusion based reconstruction, TV reconstruction and 

the respective error images of PM diffusion and TV. Computation time (excluding 

step size search) and matrix size are shown in insets. Panels in first, second and third 

row correspond to 3, 4 and 5-fold retrospective subsampling. Subpanels with blue, 

green and red bounding boxes represent enlarged region of interest in the ground truth 

and reconstructed images. 
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Figure 3.6. Reconstruction using dataset-V for 3, 4 and 5-fold retrospective 

subsampling using PM diffusion and TV. Column-wise panels show the results of 

zero-filled reconstruction, PM diffusion based reconstruction, TV reconstruction and 

the respective error images of PM diffusion and TV. Computation time (excluding 

step size search) and matrix size are shown in insets. Panels in first, second and third 

row correspond to 3, 4 and 5-fold retrospective subsampling. Subpanels with blue, 

green and red bounding boxes represent enlarged region of interest in the ground truth 

and reconstructed images. 
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a search procedure. The same step size is then used for reconstructions at acceleration 

factors of 4 and 5 in spine data, and all three accelerations in head data.  

Comparing the structural details present in error images, it is clear that the TV 

based approach loses more structural details for spine as compared to head data for the 

same step size. However, when compared with statistically optimized PM diffusion 

based reconstructions, the error images indicate that the PM diffusion approach 

preserves more structural details than TV in both datasets, yielding improved quality 

images. For ease of visual comparison, zoomed regions are shown separately for 

vertebral bodies in spine data and fornix in head data. With increase in undersampling, 

TV tends to introduce more smoothing in both datasets as evidenced from the error 

images and visual inspection of zoomed regions. Whereas PM based diffusion exhibit 

controlled blur with increased acceleration in both datasets, TV based reconstructions 

are more artifact-prone in the head dataset.  

In spine data, the zoomed regions of TV based reconstruction show blurred 

vertebral bodies and surrounding regions. While the cervical curvature is clearly seen 

in both reconstructions, the boundaries of vertebral bodies and spinal cord are not as 

apparent in TV as in PM diffusion.  In the head dataset, TV based reconstruction is 

seen to introduce high frequency features which are not present in the fully sampled 

image, for example, at the regions of frontal lobe. 

3.4.4 Application to learning based reconstruction 

In the context of learning based methods, TV and PM diffusion reconstructions are 

compared in terms of generating a fast initial approximation of the ground truth image. 
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In this situation, the sub-optimality of TV based reconstruction is mainly due to the 

additional computational requirement imposed by the need to search for optimal step 

size. To illustrate this, a patch based discrete wavelet (PBDW) operator and patch-

based nonlocal operator (PANO) are used to learn from the outputs of TV and PM 

diffusion (97, 115). The step size for TV is searched by solving Eq. [3.2] for different  

values of 𝛾. Optimum 𝛾 is chosen to be that value which minimizes noise in the 

solution. Time for a search typically depends on the number of iterations used to solve 

Eq. [3.2].  

The reconstruction errors and computation times for dataset-I are listed in Table 

3.1. For comparison, reconstruction errors of PANO and PBDW initialized with fully 

sampled data as reference image are listed in the last column. PM diffusion provides 

improved image quality and 3 to 4 times faster processing as compared to TV 

reconstruction due to the inclusion of step size search.  

3.5 Discussion 

In this work, PM diffusion is introduced as a constrained reconstruction technique 

applied to multi-channel MR images. This is not a continuous evolution of the noise 

free image from the initial noisy image. Instead, it is a sequence of single step diffusion 

processes. At every iteration, the structural information is reinforced by biasing the 

image before diffusing it further. This can be understood as selecting the solution from 

a family of denoised images evolved from the initial image (zero-filled reconstruction) 

by the diffusion process, with frequency components most consistent with the acquired 

k-space data. The denoising effect is also evident in Fig. 3.7 which compares the cross-
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Figure 3.7. Plots comparing cross-sectional intensities in (a) noisy phantom (b) zero-

filled reconstruction and (c) PM diffusion based reconstruction. The cross-section is 

indicated by the blue colored line in the phantom shown in the inset. 
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sectional intensities of a noisy phantom image (155) with that of zero-filled 

reconstruction and PM diffusion reconstruction after retrospectively undersampling it 

by randomly skipping 60% PE lines. The plot shows strong degradation of signal in 

zero-filled reconstruction while PM diffusion restores and denoises the signal. 

Diffusion filter in Eq. [3.5] varies with the choice of diffusivity function. Some 

of the previously employed diffusivity functions include the ones proposed by 

Charbonnier et al. (156), Perona and Malik (148), Weickert (42), Andreu at al. (157) 

and Black et al. (153). In this work, the function proposed by Perona and Malik is used 

since it gave minimum RLNE and faster convergence compared to others. 

The results clearly demonstrate the advantages of PM diffusion over conventional 

TV. The results in Figs. 3.4-3.5 are actually not very surprising because the step size 

is a crucial factor for TV denoising. If not properly tuned, it can lead to residual noise 

or increased blur. For example, the remnant noise of TV reconstruction in Fig. 3.5 

could make it difficult to diagnose the white matter lesions in the regions surrounding 

ventricles. PM diffusion minimizes dependence on step size by adapting the contrast 

parameter to the changes in data. However, at very high accelerations, the chance of 

recovering some fine features may be limited with either method. 

3.5.1 Computational constraint 

The need to search the step size every time is time consuming and is counterproductive 

in the present trend of learning-based CS frameworks where redundant systems for 

sparsifying MR images are trained from an initial approximation of the image (96, 97, 

114, 115, 118, 158). Since in many practical scenarios, the ground truth image is not 
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available, an approximation using fast reconstruction is desired. The statistical 

optimization of the contrast parameter does this job for PM diffusion by eliminating 

the need for a search, and thereby rendering itself as a better choice over the 

conventional TV approach. 

3.6 Conclusion 

In this chapter, NL diffusion is presented as an alternative to TV regularization because 

of its advantage over TV when only a rough estimate of the regularization parameter 

is available. The estimation of the contrast parameter from the combined channel 

information removes the need for a parameter search and hence result in faster 

reconstruction. 

 



 

 

 

Chapter 4 

Mixed-order Diffusion Reconstruction 

4.1 Introduction 

In the previous chapter, an NL diffusion penalty (148, 149) using PM diffusivity 

function is introduced as an alternative to TV (37, 159) in MR image reconstruction 

application (41, 160). While these edge preserving penalty functions encourage 

recovery of images with sparse gradients, the assumption of piecewise constant regions 

in the image often lead to staircase artifacts in reconstructed images giving it a patchy 

appearance (38, 40, 42, 161). Even though the use of data consistency correction in 

the context of CS reconstruction model limits these artifacts to a certain extent, blocky 

effect can become prominent as the degree of sampling reduces.  

Similar to the higher order solutions for avoiding staircase artifacts in TV (38, 

40), use of fourth-order Partial Differential Equations (PDEs) is known to control the 

blocky effects in the denoising applications of NL diffusion (161-163). However, it 

also tends to introduce speckle effects in the solution (161). Since the functional using 

combined first and second degree derivatives of the image are reported to give better 

edge preservation properties (164, 165), researchers have previously attempted to 
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combine second (uses first degree derivative) and fourth (uses second degree 

derivative) order diffusion solutions by weighted averaging (43) to nullify both 

staircase and speckle effects.  

This approach however, attempts to remove staircase/speckle after it has formed 

in the solution using an arbitrary choice of global weight for the solutions of second 

and fourth-order diffusion. This implicitly assumes similar strength of intensity 

modulation due to speckle/staircase in all regions of the image which is likely to be 

violated in most practical scenarios. Though such an approach can be made effective 

with the use of spatially varying weights, it is again limited by the accuracy in 

estimation of the staircase/speckle effects. Therefore, in this chapter, a mixed-order 

diffusion reconstruction is introduced which aims at preventing the formation of 

staircase/speckle during the reconstruction process rather than trying to remove it from 

the solution. 

It is shown that the proposed method produces both quantitatively and 

qualitatively improved results compared to TV, conventional second-order diffusion 

and fourth-order diffusion. Remaining part of this chapter is organized into four 

sections. In the first section, a brief overview of the second order NL Diffusion 

Reconstruction (NLDR) model, theory of mixed-order NL diffusion (NLDRM) 

strategy and its application to dictionary learning (DL) approaches is described. Next 

section describes the implementation of NLDRM. The final section includes 

illustrations of NLDRM applied to in vivo data and comparison with state-of-the-art 

solutions for TV. The chapter concludes with a detailed discussion of its implications 
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and relative advantages. It may be noted that wherever the reconstruction is denoted 

as NLDR, it is assumed that a PM diffusivity function is used. 

4.2 Theory 

4.2.1 Second-order NLDR model 

Second-order NL diffusion based edge preserving reconstruction explained in the 

previous chapter removes the undersampling artifacts from zero-filled reconstructed 

image to generate an estimated image by diffusing the image (𝑈) as 

 𝑈𝑑𝑖𝑓𝑓𝑢𝑠𝑒𝑑
𝑂2 = 𝑈 + 𝛾𝑑𝑖𝑣(𝑔(|∇𝑈|)∇𝑈) + 𝑐ℱ𝑢

′(𝐾𝑢 − ℱ𝑢𝑈), [4.1] 

where 𝐾𝑢 denotes the acquired k-space samples, 𝑔 is the diffusivity function, 𝛾 is a 

regularization parameter which controls diffusion strength and 𝑐 is the bias relaxation 

factor. Second term in Eq. [4.1] imposes explicit penalty for edges and third term 

constraints diffusion to ensure that the solution does not deviate from 𝐾𝑢. Using the 

PM diffusivity function (148) in Eq. [3.6], we have the contrast parameter 𝛼 that 

separates the gradient magnitudes of edges and noise (artifacts) in image so that 

diffusion of region that generates gradient magnitudes below 𝛼 is encouraged.  

4.2.2 Blocky effect 

Edge preserving denoising techniques are generally designed to diffuse smooth areas 

in an image faster than less smooth ones (42). Consequently, these denoising 

techniques like TV and PM diffusion can generate staircasing artifacts and result in a 

blocky effect. Eventhough the biased form of NL diffusion used in the present context 
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can limit the formation of these artifacts by bias correction, influence of bias reduces 

as the undersampling factor increases.  

Since staircase effects are manifested as artificial edges, setting the value of contrast 

parameter in NLDR2 to be higher than the gradient magnitudes of staircase edges will 

serve to suppress these effects. This however addresses the problem by removing all 

the edges that have similar gradient magnitudes as those of the artificial steps. This is 

not the best solution due to the loss of true edges whose gradient strengths fall below 

𝛼. 

4.2.3 Combined second and fourth-order diffusions 

Fourth-order PDEs are known to be an effective tool to counteract the blocky effect in 

NL diffusion denoised images (161, 162). This class of PDEs optimize the trade-off 

between noise removal and edge preservation by minimizing an increasing function of 

the absolute value of the Laplacian of image intensity. The edge cost thus defined 

diffuses 𝑈 over a small time 𝜕𝑡 by (161) 

   𝜕𝑡𝑈 = ∇2(𝑔(|∇2𝑈|)∇2𝑈). [4.2] 

In the context of numerical implementation, 𝜕𝑡 represents time between two 

successive diffusion iterations. From Eqs. [4.1-4.2], the resulting numerical solution 

of regularized diffusion is given by 

 𝑈𝑑𝑖𝑓𝑓𝑢𝑠𝑒𝑑
𝑚𝑖𝑥 = 𝑈𝑑𝑖𝑓𝑓𝑢𝑠𝑒𝑑

𝑂2 + 𝜆∇2(𝑔(|∇2𝑈|)∇2𝑈) , [4.3] 

where 𝜆 is a regularization parameter that controls the strength of fourth-order 

diffusion. The second term in the right-hand side of Eq. [4.3] acts as a regularizer 
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which restricts formation of staircase artifacts in the planar regions, resulting in a more 

natural looking image. 

4.2.4 Application to dictionary learning methods 

DL based methods work by learning a basis that can approximate the image sparsely 

devoid of the noise-like properties (88, 96). Since the random sampling used in CS 

provides sufficient aliasing incoherence (6), undersampling artifacts appear more 

noise-like and hence DL methods are effective (88). Since the ground truth image is 

not available as reference, DL based MRI (DLMRI) generally learns the sparse 

operator from either the zero-filled reconstructed image or an approximation of the 

ground truth image obtained using conventional CS-MRI reconstruction techniques 

(166, 167). 

Better approximation of the reference image can not only improve the image 

quality but also result in faster convergence. In the context of these learning based 

methods, main role of NLDR is to generate a fast approximation of the image that can 

be used to learn the sparsifying operator (160). Learning the basis from NLDR filtered 

data can be considered as sparsifying the data in both finite difference domain and the 

learned basis. This ensures better reproducibility of structural details by enforcing 

additional penalty for edges. Although the staircase edges due to first order derivatives 

in TV or NLDR2 will not be apparent in such cases due to the smooth approximation 

of image by the learned basis, they can implicitly affect the quality of training data. 

Hence, use of NLDRM can serve the purpose better. 
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Figure 4.1. Workflow of DLMRI and NLDR-DLMRI. Black and red arrows indicate 

the process flow of DLMRI and NLDR-DLMRI respectively. 
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The algorithmic workflow of NLDR based DLMRI is summarized in Fig. 4.1. 

Black and red colored arrows indicate the process flow of DLMRI (96) and NLDR-

DLMRI respectively. The main difference in the latter from the former is the addition 

of NLDR filtering in the training phase. In the proposed method, the standard K-SVD 

algorithm (100) learns an overcomplete sparsity basis from the output of NLDRM 

which is used to sparsify the image. The data consistency step biases the reconstruction 

process by enforcing fidelity with the acquired k-space samples 𝐾. 

4.3 Methods 

4.3.1 Implementation 

An algorithmic framework similar to that of NLDR2 in the previous chapter is used to 

implement NLDRM. Main difference is the fourth-order term in the diffusion update 

step. The resultant reconstruction framework is given in algorithm 4.1. For 

comparison, the implementations of DLMRI, second-order total generalized variation 

(TGV) (40) and higher degree TV (HDTV) (38, 93) shared by the authors in (25, 166-

169) are used. Error in reconstruction is computed using RLNE.  

The implementation of DLMRI available in (167) with its default choice of 

parameters is also used to implement the proposed NLDR-DLMRI reconstruction 

model. 10 iterations of NLDR filtering in the training step are used in all the 

reconstructions performed in this study. The   corresponding pseudo-code of NLDR-

DLMRI is given in Algorithm 4.2. NLDR filtering step processes the image according 

to the Algorithm 4.1. 
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4.3.2 Choice of reconstruction parameters  

 Parameters that control the reconstruction performance of NLDRM include (i) 

relaxation parameter 𝑐, (ii) second and fourth order contrast parameters 𝛼1 and 𝛼2, and 

(iii) second and fourth order diffusion strengths 𝛾 and 𝜆. Both 𝑐 and diffusion strength 

parameters (step size) are common to both NL diffusion and TV. Similar to NLDR2, 

role of 𝑐 in NLDRM is also to minimize the effect of acquisition noise in the 

reconstructed image. Relaxation of c in both TV and NL diffusion is desired when the 

acquired data are noisy. Because there are no known methods to a priori fix the best 

possible value of 𝑐 in such cases, the best choice is to monitor the final reconstructions 

corresponding to different values of 𝑐.  

Algorithm 4.1: NLDRM 

    0:     𝑘 = 1; 𝑈(0) = ℱ𝑢
′𝐾; 𝑡(1) = 1; 

    1:     𝑤ℎ𝑖𝑙𝑒 (𝑘 < 𝑘𝑚𝑎𝑥) 

    2:      𝑈(𝑘) = 𝑈(𝑘−1) + 𝑐 ℱ𝑢
′൫𝐾𝑢 − ℱ𝑢𝑈

(𝑘−1)൯; 

    3:      𝑈 (𝑘) = 𝑈(𝑘) + 𝛾𝑑𝑖𝑣൫𝑔൫∇𝑈(𝑘), 𝛼1൯∇𝑈
(𝑘)൯ + 𝜆𝑑𝑖𝑣൫𝑔൫∇2𝑈(𝑘), 𝛼2൯∇

2𝑈(𝑘)൯; 

    4:      𝑡(𝑘+1) = (1 + ඥ1 + 4(𝑡(𝑘))2) /2; 

    5:      𝑈(𝑘) = 𝑈 (𝑘) + ൫𝑡(𝑘) − 1൯൫𝑈 (𝑘) − 𝑈 (𝑘−1)൯/𝑡(𝑘+1); 

    6:      𝑘 = 𝑘 + 1; 

    7:     𝑒𝑛𝑑 
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In the case of NL diffusion, adaptation of contrast parameter helps to minimize 

the inherent noise in image as shown in the previous chapter. Therefore, 𝑐 is set to 1 

and 𝛼1 and 𝛼2 are updated in each iteration using the mean absolute deviation (MAD) 

of 1st and 2nd order gradients (∇𝑈 and ∇2𝑈) as 

   𝑀𝐴𝐷(∇𝑈) = 𝑚𝑒𝑎𝑛(|∇𝑈 −𝑚𝑒𝑎𝑛(∇𝑈)|) [4.4] 

and 

   𝑀𝐴𝐷(∇2𝑈) = 𝑚𝑒𝑎𝑛(|∇2𝑈 −𝑚𝑒𝑎𝑛(∇2𝑈)|) [4.5] 

Algorithm 4.2: Pesudo-code of NLDR-DLMRI 

Input   : zero-filled image 

Output : Reconstructed MR image 

Iteration: 

1. NLDR filtering  

2. Learn dictionary using KSVD 

3. Sparse approximation of the individual patches of image 

4. Form image from patches by averaging pixel values that appear in multiple 

patches 

5. Restore acquired frequency samples in the k-space after Fourier 

transformation 

6. Inverse Fourier transform to compute the image from k-space 
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Alternatively, one can use approaches like the noise estimator described by Canny 

(141, 160) to estimate contrast parameter.  

The previous chapter also shows that an improved image quality can be achieved 

using small values of contrast parameter by compromising the convergence rate when 

the inherent noise is low. Since the role of contrast parameter in NLDRM is same as 

that of NLDR2, this effect of contrast parameter holds true for mixed order 

reconstruction as well. If one has a prior knowledge that the inherent noise in 

acquisition is low, it is a good idea to set the contrast parameter less than 50% of MAD 

and 100% MAD for high noise levels. A good compromise of speed and quality is 

achieved when the contrast parameter is set as 50% MAD. 

Diffusion strength controls the extent of diffusion in a single iteration. As pointed 

out in the previous chapter, diffusion strength parameter can be determined by solving 

the cost function for different values of 𝛾 and 𝜆 and selecting the value that minimizes 

the cost (6). Alternatively, L-curve theory (170) is a widely used approach for this 

purpose. Since NL diffusion based reconstruction is known to be less sensitive to the 

step size (148, 149), an experimental approach (161) is used in this work to determine 

𝛾 and 𝜆. In this approach, sensitivity of NLDRM to 𝛾 and 𝜆 is investigated by 

reconstructing a Shepp-Logan phantom with added complex Gaussian noise to k-space 

for different choices of 𝛾 and 𝜆 (171). It is seen that the reconstruction is stable for all 

values of 0 < 𝛾 < 0.1 and 0 < 𝜆 < 0.01 (shown in Fig. 4.2).  
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4.4 Results 

Results are demonstrated using publicly available datasets which were previously used 

to demonstrate the performance of CS reconstruction in MRI. These include cardiac 

cine dataset publicly available in (167), head scan of 3 subjects and abdominal scan of 

28 subjects. In addition, the proposed methods are also tested on four-channel spine 

and six-channel brain data (shown in the previous chapter) acquired using Siemens 

1.5T Magnetom-Avanto clinical MR scanner at Sree Chitra Tirunal Institute of 

Medical Sciences and Technology, Trivandrum, India.  

All implementations are performed using Matlab (The MathWorks, Inc., Natick, 

MA, USA) on a PC with an Intel Xeon E5-2609 2.4 GHz processor and 16 GB of 

RAM running Windows 7 operating system.  

4.4.1 Sensitivity to regularization  

The sensitivity of NLDRM to 𝛾 and 𝜆 is investigated by reconstructing a Shepp-Logan 

phantom with added complex Gaussian noise for different choices of 𝛾 and 𝜆. Fig. 

4.2(a)-(b) plots the maximum value of 𝜆 that minimizes the steady state RLNE of 

NLDRM against different choices of 𝛾 for pseudo-random and pseudo-radial sampling 

patterns, respectively. Lines of different color represent different noise levels. It is seen 

that the reconstruction is stable for all values of 0 < 𝛾 < 0.1 and 0 < 𝜆 < 0.01. Panels 

(c) and (d) depict plot of RLNE versus 𝜆 for a particular choice of 𝛾 in (a) and (b). 

Adhering to the above range for 𝛾 and 𝜆, the values for 𝛾 and 𝜆 are set as 0.1 and 0.01 

for all numerical experiments conducted in this study. 



 
 

 

4.4 RESULTS  79 

 
 

4.4.2 Reconstruction of in vivo datasets 

In Fig. 4.3, NLDR2, fourth-order NLDR (NLDR4) and NLDRM reconstruction 

performance at different undersmapling levels are compared. Column-wise panels 

correspond to two different datasets and row-wise panels correspond to Poisson-disk 

and pseudo-radial sampling patterns (shown in insets of Fig. 4.2). Each panel show 

both RLNE and convergence time as functions of undersampling level. Blue and 

orange lines depict RLNE and computation time, respectively. The datasets used are 

T2-weighted brain images of size 256 x 256 acquired from a healthy volunteer at a 3T 

Siemens Trio Tim MRI scanner with 32 coils using the T2-weighted turbo spin echo 

sequence (TR/TE=6100/99 ms, FOV = 220 x 220 mm2, slice thickness = 3 mm) 

publicly available in (33). 

In all cases, one can see that RLNE of NLDR2 is lower than NLDR4 and higher 

when compared to NLDRM. Reduced RLNE of proposed method with increasing 

undersampling rates is attributable to the accompanying staircase effects. On the 

flipside, plots show that computation times for NLDRM are higher as compared to 

those for NLDR2. 

4.4.3 DL based reconstruction 

When used as an auxiliary constraint in DL, the smooth approximation of image by 

the learned basis can remove any possible staircase effect due to NLDR2. Hence, the 

improvement with the use of NLDRM will rather reflect in the quality measures and 

computation time. Therefore, PSNR values of DLMRI reconstruction with and without  
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Figure 4.2. (a)-(b) Maximum value of λ that minimizes the steady state RLNE of 

mixed order NLDR plotted against different choices of γ for pseudo-random and 

pseudo-radial sampling patterns, respectively.  Lines of different color represent 

different noise levels. Respective sampling patterns used are shown in insets. (c)-(d) 

RLNE versus λ plotted for a particular choice of γ in (a) and (b). 𝜎 indicate the standard 

deviation of noise added to data. (e) A representative comparison of cross-sectional 

intensities in k-space with and without added noise. 
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NLDRM filtering in the training phase at 3, 4 and 5 fold undersampling levels are 

plotted against iterations in Fig. 4.4. 

Panels (a) and (b) correspond to two different datasets. Top panels show the 

ground truth images and the pseudo-radial sampling masks used for 5-fold 

undersampling. While the gain in PSNR is less than 2dB for NLDR based DLMRI, it 

can be seen that the PSNR saturates almost twice as fast as traditional DLMRI 

approach when the dictionaries are learned from the NLDR filtered data. For a detailed 

comparison, RLNE, PSNR and computation times for three head datasets are listed in 

Table 4.1. 

For dynamic imaging, the state-of-the art method of DLTG (88) extends DL 

method to the temporal dimension and imposes additional sparsity constraint along 

this dimension by minimizing the l1-norm of the temporal gradient (TG). Results 

shown in Fig. 4.5 compares the use of NLDRM filtering as an alternative to TG in DL 

based dynamic MR image reconstruction. This is denoted as DLTG-NLDRM.  

Acquisition details of the fully sampled short-axis cardiac cine dataset (167) used 

in this study can be obtained from (88). It contains 30 temporal frames of size 256 x 

256 with a 320 x 320 mm field of view and 10 mm slice thickness, generated using an 

optimal combination of 32-channel data. A magnitude temporal frame and the 

corresponding sampling pattern for 4 fold undersampling are illustrated in panel (a). 

While PE dimension is undersampled, both FE and temporal dimensions are fully 

sampled. Temporal profiles along two lines (1 and 2) are used for comparison. ROI is 

indicated using yellow bounding box. Panel (b) plots PSNR as a function of iteration 

for TG, NLDR2 and NLDRM based DLTG reconstruction.  
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(a)

(b)

(c)

(d)

Figure 4.3. Reconstruction errors (RLNE) and convergence time of NLDR2, NLDR4 

and NLDRM at different undersmapling levels are plotted as a function of iterations. 

Blue and orange lines depict RLNE and computation time, respectively. 
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Figure 4.4. (a)-(b) PSNR values of DLMRI reconstruction of two different datasets 

plotted as function of iteration number. In each, the red and black curves correspond 

to DLMRI reconstruction with and without mixed-order NLDR. Different line styles 

represent 3, 4 and 5-fold undersampling as indicated in the legends. Top panels show 

the ground truth images and the pseudo-radial sampling masks used for 5-fold 

undersampling. 
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Figure 4.5. (a) A magnitude temporal frame of the dynamic MRI dataset and the 

corresponding sampling pattern for 4 fold undersampling. Temporal profiles along two 

lines (1 and 2) are used for comparison. ROI is indicated using yellow bounding box. 

(b) PSNR plotted as a function of iteration. Green arrows indicate the computation 

time for TG and NLDR based DLTG reconstruction to attain PSNR value of 35dB. 

(c)-(d) Ground truth and reconstructed temporal profiles of lines 1 and 2 using TG and 

NLDRM based reconstructions and their corresponding error images amplified by 6. 
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Similar to the results in Table 4.1, it is observed that both PSNR and computation 

time improves with the application of NLDRM. Panels (c)-(d) compares the ground 

truth and reconstructed temporal profiles of lines 1 and 2 using TG and NLDRM based 

DLTG. Corresponding error images (amplified by 6) are shown for comparison. 

Yellow arrows a-c indicates the regions both inside and outside the ROI where NLDRM 

based DLTG approximates the temporal profiles better than TG. It may be noted that 

these local regions of improved error measures correspond to edges in the image. This 

can be attributed to the improved reproduction of structural details by NLDRM. 

4.4.4 Comparison with state-of-the-art methods for TV 

In this section, image quality of the proposed method is compared with state-of-the-

art solutions for blocky effect in TV based reconstructions (38, 40, 93). The head 

dataset shown in the top left panel of Fig. 4.6 is retrospectively undersampled using 

Poisson-disk sampling pattern. Remaining panels compare the ROI of reconstructed 

image at 4 and 5 fold undersampling levels. The respective undersampling level and 

reconstruction technique used are shown in insets. The amplified absolute difference 

from ground truth is illustrated on the right side in each panel. White colored circles 

in the difference image highlights the regions that NLDRM approximates better. 

Yellow and red arrows point out the regions affected by speckles and blocky effects in 

NLDR4 and NLDR2 respectively.  

In all cases, it is observed that NLDRM approximates ventricular margins, cortical 

grey white interface and sulcal margins better compared to others. It may be noted that 

the blocky effect is more pronounced in the magnitude image of 5 fold undersampling, 

indicating that NLDRM is more useful when the data consistency correction is less 
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Figure 4.7. Reconstructions of abdominal data prospectively undersampled (using the 

3D sampling pattern shown in Fig. 4.8) and compared across two different ROIs 

shown in red and orange bounding boxes. Column-wise panels depict zero-filled (Left 

column), NLDR2 (Middle column) and NLDRM (Right column) reconstructions. 



 

 

 
CHAPTER 4. MIXED-ORDER DIFFUSION RECONSTRUCTION 90 

 
 

Figure 4.8. 3D sampling pattern for acquisition with 11% acquired samples. 

Frequency encoding dimension (x) is fully sampled and both phase encoding 

dimensions (y and z) are randomly undersampled. The sticks represent sampled 

locations of k-space. Panels on the right side show the resultant undersampling along 

y-z, x-y and x-z planes where white coloured pixels represent the sampled locations. 
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effective. Though HDTV and TGV show no apparent blocky effects, it tends to smooth 

out the boundaries, as evident in the error images. The reconstruction errors and 

computation time for five different datasets are listed in Table 4.2. 

In the case of 24% undersampling, there is some extent of resolution loss and 

artifacts for all types of reconstruction considered in this study. Achievable 

acceleration factor in the CS reconstruction models mainly depend on the sparsity of 

the image in the domain in which it is assumed to be sparse (15, 88) and the 

incoherence of the aliasing interference caused by sampling pattern (6). Although fine 

details are lost with all the methods compared, a more satisfactory reconstruction is 

obtained using NLDRM. 

The 2D Poisson-disk sampling pattern simulates the plane formed by two 

undersampled phase-encoding dimensions of a typical 3D acquisition. As a proof of 

concept, NLDR2 and NLDRM reconstruction of prospectively undersampled multi-

channel 3D abdomen data publicly available in (172) are shown in Fig. 4.7. This 

dataset was acquired on a GE clinical 3T scanner with 32 coils (FOV = 260 x 208 

mm2, slice thickness = 1 mm). Each coil data is of size 192 x 256 x 184. More details 

about the dataset are available in (172). 11% samples are collected using the sampling 

pattern shown in Fig. 4.8. Frequency-encoding dimension (x) is fully sampled and both 

phase-encoding dimensions (y and z) are randomly undersampled. Thick lines in the 

3D representation of the sampling pattern correspond to sampled locations of k-space. 

The resultant undersampling along y-z, x-y and x-z planes are shown in the panels on 

the right in which white colored pixels represent the sampled locations. 
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Square root of sum-of-square (SSOS) images was used to combine individual coil 

images (61). Column-wise panels in Fig. 4.7 depict zero-filled, NLDR2 and NLDRM 

reconstructions. Panels in second and third rows correspond to the enlarged ROIs 

shown in red and orange bounding boxes. Since the data was prospectively 

undersampled, reconstructions were subjectively evaluated by expert radiologists and 

graded using a 5-point score of image quality listed in Table 4.3.  

The scores 1-5 is based on the following criteria: 

1  - worst image quality (no findings detectable).  

2 - poor image quality (findings can be detected but the margin or internal 

characteristics are difficult to evaluate).  

3 - fair image quality (partially indistinct findings can be detected and the margin or 

internal characteristics can be evaluated). 

4 - good image quality (some indistinct findings can be detected and the margin or 

internal characteristics can be evaluated). 

5 - excellent image quality (findings are extremely clear and easy to detect and the 

margin or internal characteristics can be evaluated)  

The scores suggest that both reconstructions produce similar diagnostic qualities 

in the regions of fat planes while NLDRM produced comparatively better 

reconstructions in visceral capsular interface, solid organ internal architecture, 

vascular margins and lesion visualization. This indicate that the mixed-order 

reconstruction technique would be particularly beneficial for images with fine 

structural details like angiographic images at high undersampling rate where the 

chances of blocky effect are high. 
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4.5 Discussion 

4.5.1 Working principle and relative advantages 

In this work, a fourth-order regularization is introduced as a preventive measure for 

blocky effect (staircase artifacts) in NL diffusion based MR image reconstruction. 

Basic idea is to allow the reconstruction model to include a planar image as a possible 

solution using fourth-order diffusion terms. In the absence of proposed regularization, 

if a staircase forms in the initial diffusion iterations in a region of the image where 

intensity varies smoothly, the diffusion process tends to keep it in the final solution 

Table 4.3: Blind radiologist scoring of abdominal data reconstruction in Fig. 4.7, 

showing average scores of listed features by five expert radiologists. 

Sl. 

No. 
Features 

Blind Average Score (out of 5) 

Remarks 
Reconstruction 1 

(NLDRM) 

Reconstruction 2 

(NLDR2) 

1. 

Visceral 

capsular 

interface 

4 3.5 

Reconstruction 1 

is closest to 

diagnostic quality 

2. 
Vascular 

margins 
3 2.5 

3. 

Solid organ 

internal 

architecture 

3 2.5 

4. 
Lesion 

visualization 
3 2.5 

5. Fat planes 3 3 
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when the bias correction is weak. In the presence of fourth-order terms in the 

reconstruction model, however, the smoothness is preserved due to the Laplacian 

being minimum in such regions.  Consequently, the error maps in Fig. 4.6 along with 

scoring by radiologists in Supporting Table 4.3 suggest that NLDRM reconstruction 

better approximates the details of image and is closest to diagnostic quality. 

It is to be noted that the NLDR2 in Fig. 4.7 appears slightly sharper than NLDRM. 

It has been reported that in some situations, the enhanced piecewise constant features 

(artificial step-like features) resulting from the use of first order derivative of the image 

as smoothness measure (as in the case of second order diffusion) might actually be 

desirable because of the resulting sharper visual appearance and the apparent increase 

in resolution that comes with it (40). In such cases, if the step effects can enhance the 

diagnostic quality, it can be a good idea to reduce the regularization used even though 

the regularized result has smaller RLNE measure. 

4.5.2 Computational constraint 

One of the major advantages of conventional NL diffusion reconstruction is its 

computational efficiency compared to TV. Even though the computation time per 

iteration for NLDRM is higher than NLDR2, it takes lesser number of iterations to 

converge. This reduction in the number of iterations can be understood from the fact 

that mixed-order solution removes more artifacts per iteration than its second-order 

counterpart. This is also supplemented with the fact that the mixed-order diffusion 

prevents formation of staircase artifacts, thereby reducing the need for its correction 

in the later iterations.  
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4.6 Conclusion 

This chapter presented a fourth-order regularization of NL diffusion based MR image 

reconstruction to prevent formation of staircase artifacts in the solution and its 

application to DL based methods. Since NL diffusion is known to be an effective 

alternative to TV for edge preserving reconstruction, the crucial aspect of staircase 

artifact removal is addressed. Since the reconstruction is found to be stable for the 

experimentally determined range of the regularization parameter, a parameter search 

is not involved. Hence the computational simplicity of second-order diffusion is 

retained. 

 



 

 

 

Chapter 5 

Directionality-guided Non-Linear 

Diffusion Reconstruction 

5.1 Introduction 

Improving the image quality of CS-MRI reconstruction (1, 3, 6) has been investigated 

extensively in the last decade. In the previous two chapters, NL diffusion using PM 

diffusivity function (41, 42, 141, 148) is shown to be a better alternative to TV (37, 

94, 160, 173-175), which has been the center feature of the edge-preserving 

reconstructions in CS-MRI (7, 38, 40, 93). Both these filters mainly rely on the 

underlying structure (edges/high-frequency information) of an image identified by its 

gradients to recover/reconstruct it. Despite not being superior to learning based 

approaches (96, 115, 117, 176, 177), application of edge-preserving filters as an 

auxiliary constraint continued to be highly popular (88, 113). This is because the 

preservation of sharp features by these filters can effectively complement the smooth 

approximation of the image by learned basis, and additionally has the advantage of 

representing the data using multiple sparse transform domains (113). It is also widely 

used in applications involving reconstruction of temporal variations due to their highly 

sparse nature in the finite difference representation (88, 111, 174, 178, 179). In order 
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to exploit these advantages of edge-preserving filters as an auxiliary constraint to 

learning based methods while achieving a stand-alone performance similar to that of 

learned reconstructions if not superior, it is imperative that the shortcomings of the 

conventional filters are addressed.  

Due to the complex nature of the structural details present in an MR image, edges 

can be oriented along all possible angular directions. This can have a significant 

influence on the local variations in the rate of diffusion. For example, if we generate 

𝑛 filtered versions of the image by applying an edge preserved denoising filter along 

𝑛 different angular directions, different edges in the image are approximated better in 

different filtered versions. This strongly points towards the scope of an improved 

denoising routine if we can smartly choose the edges from those 𝑛 filtered versions of 

the image, so as to efficiently combine them. The conventional approaches do not tune 

the reconstruction for these local variations and are therefore prone to miss important 

structural details in the image.  

In a recent work of higher degree TV (HDTV) (38, 93), an anisotropic smoothing 

is proposed to enhance edges along all orientations. It is achieved by summing the 

absolute magnitude of directional derivatives along all angles and pixels instead of 

limiting the derivatives to just horizontal and vertical directions. This is shown to have 

a clear advantage over the classical TV based approaches in terms of image quality. 

However, in the presence of artifacts, summation of gradients along all directions is 

not desired if it leads to the preservation of intensity variation due to artifacts along 

some direction.  
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In this chapter, a sophisticated approach to map the individual edges from 

different filtered versions of the image is introduced so that for each individual edge, 

only the diffusion along its corresponding direction is considered. This helps to adapt 

the direction of diffusion to local variations in the directionality of edges and employs 

a precise diffusion in the local regions of the image on a sub-pixel level, leading to the 

preservation of the complex nature of edges.  

5.2 Edge-Preserving CS-MRI 

Given the acquired samples in k-space 𝐾 with a support Ω ⊂ ℂ𝑀×𝑁, as pointed out in 

the third chapter, an edge-preserving CS-MRI reconstruction problem can be 

formulated as the minimization of a cost function of the form 

 argmin
𝑈

 ℋ(𝑈)  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ‖𝐾𝑢 − ℱ𝑢𝑈‖2 < 휀, [5.1] 

where ℋ(𝑈) is a sparsifying filter that imposes explicit penalty for edges in 𝑈, 

‖𝐾𝑢 − ℱ𝑢𝑈‖2 measures the deviation of the reconstructed k-space from 𝐾𝑢 and 휀 

controls the fidelity of reconstruction to the acquired k-space.  

5.2.1 Non-linear filtering using anisotropic diffusion 

The objective of NL diffusion used in CS-MRI is to promote the sparsity in image 

gradients (∇𝑈) by diffusing 𝑈 over a small time 𝜕𝑡 as 

 𝜕𝑈 = 𝛾𝑑𝑖𝑣(𝑔(|∇𝑈|)∇𝑈). [5.2] 

The reconstruction model biases the diffusion of 𝑈 by enforcing fidelity to the acquired 

k-space at each iteration (𝑘) as shown in Eqs. [5.3a-5.3b].  
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 𝑈(𝑘) = 𝑈(𝑘−1) + 𝛾𝑑𝑖𝑣൫𝑔൫|∇𝑈(𝑘−1)|൯∇𝑈(𝑘−1)൯, [5.3a] 

 𝑈(𝑘) = 𝑈(𝑘) + 𝑐ℱ𝑢
′൫𝐾𝑢 − ℱ𝑢𝑈

(𝑘)൯. [5.3b] 

As described in chapter 3, the diffusivity function used in PM diffusion 

reconstruction is given by 

 𝑔(|∇𝑈|) =
1

1+(|∇𝑈|/𝛼)2
 , [5.4] 

where 𝛼 is the contrast parameter which is a threshold that separates the gradient 

magnitudes of noise and true edges and the numerical scheme of NLDR becomes 

equivalent to that of TV when the diffusivity function (151) is 

 𝑔(|∇𝑈|) =
1

|∇𝑈|
. [5.5] 

Since the technique proposed in this chapter is independent of the choice of 𝑔, it 

is directly applicable to reconstruction using TV as well. Therefore, hereon in this 

chapter, readers may also interpret all mentions of NL diffusion as TV. Furthermore, 

wherever not specifically denoted as NLDRM, PM reconstruction refers to NLDR2. 

5.3 Influence of Gradient Direction on Reconstruction 

Performance 

5.3.1 Diffusion of edges 

Discretization of PM diffusion generally approximates the gradients at pixel 𝑝 to 

horizontal and vertical directions by a finite difference operation on its 4-pixel 

neighborhood, 𝜂𝑝
0 = {𝑁, 𝑆, 𝐸,𝑊}, where 𝑁, 𝑆, 𝐸 and 𝑊 are the neighboring pixels of 
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𝑝 in the North, South, East and West directions. For example, the explicit numerical 

scheme of Perona and Malik updates 𝑝 as 

 𝑈(𝑘+1)(𝑝) = 𝑈(𝑘)(𝑝) + 𝛾 ∑ 𝑔൫|∇𝑈𝑝,𝑛 (𝑘)|൯𝑈𝑝,𝑛 (𝑘)
𝑛∈𝜂𝑝

0 , [5.6] 

where  ∇𝑈𝑝,𝑛 represents the difference in intensity between 𝑝 and its neighbor 𝑛, 𝑛 ∈

𝜂𝑝
0. 

While these approximations are computationally efficient, they work better when 

the edges are mostly oriented along the horizontal and vertical directions. For example, 

consider the diffusion of a synthetic image shown in Fig. 5.1(a) having three edges 

(lines in the figure are considered as edges) that are oriented along 00, 900 and -450 

(vertical edge is considered to have an angular orientation of 00). Fig. 5.1(b) depicts 

the result of diffusion after 100 iterations using Eq. [5.2].  

Here gradients are computed along horizontal and vertical directions. 

Consequently, the edges aligned perpendicularly with these directions diffuse at a 

similar rate, different from the rate at which the other edge diffuses. This indicates that 

the gradients  computed based on the actual orientation of edges has distinct advantage 

in terms of its preservation.  

5.3.2 Diffusion of artifacts 

Although the fidelity term in biased reconstruction generally helps to preserve relevant 

edges, the sensitivity to diffusion direction will factor in more at higher undersampling 

rates where biasing is less effective. In fact, even in the presence of strong bias, the 
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(a)

(b)

900 00 -450

(c) (d)

(f)

(e)

(g)

Figure 5.1. Diffusion of synthetic edge image. (a) ground truth-1. (b) reconstructed 

image after 100 iterations of diffusion. (c) ground truth-2. (d) sampling mask. (e) 

inverse Fourier transform of k-space having zeros at unacquired locations. (f) image 

reconstructed with 100 iterations of biased diffusion along horizontal and vertical 

directions. (g) image reconstructed with 100 iterations of biased diffusion when 

directions of diffusion are changed by 45 degrees. 
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rate of diffusion of artifacts is still dependent on the direction of the gradient 

computation.  

For example, consider the reconstruction of the ground truth shown in Fig. 5.1(c) 

undersampled using the binary sampling mask shown in panel (d). Inverse Fourier 

transform after setting the unacquired samples of k-space as zeros is depicted in panel  

(e). It shows strong intensity variations in the horizontal direction due to aliasing 

interference. The image reconstructed by 100 iterations of biased NL diffusion along 

the horizontal and vertical directions is shown in panel (f). The reconstructed image 

shown in panel (g) is obtained after the same number of iterations when the directions 

of diffusion are changed by 45 degrees.  

With biasing, most of the structural details in the ground truth are preserved in 

both reconstructions. However, the remnant aliasing appears stronger in panel (f). This 

is because the gradients used in this case suggest that the variations in intensity 

function at the locations of the artifacts are significant and are preserved.  

5.4 Reconstruction by Directionality Guided NL Diffusion 

The main idea is to exploit the connection between gradient direction and directional 

orientation of edges to diffuse off artifacts and best retain structural details. This 

involves (i) biased NL diffusion in different directions using an extended 

neighborhood and (ii) mapping of edges from the images diffused along different 

directions. The mapping process includes an option to guide the diffusion directions 

based on the state-of-the-art techniques like patch based non-local operator (PANO) 
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(115) or the optimization of sparsity in a learned dictionary (96). This is described in 

detail in the following subsections. 

5.4.1 Extended neighborhood and gradients 

With the assumption that the edges defining the boundaries of anatomical features in 

𝑈 are aligned in 𝑞 different directions, 𝑈 should be ideally diffused along 𝑞 different 

directions (as discussed in section 2.2) to best retain its structural integrity. To realize 

this, a custom neighborhood is defined for 𝑝 as illustrated in Fig. 5.2.  

The conventional 4-pixel neighborhood 𝜂𝑝
0 of 𝑝 is depicted in Fig. 5.2(a). One can 

consider an additional system of 𝑛 neighborhoods 𝜂𝑝
𝑖 , 𝑖 = 1,… , 𝑛, each separated by 

an angle 𝜃 and all neighbors located at the same distance 𝑑 from 𝑝. Following this 

convention, Fig. 5.2(b) shows the neighborhood 𝜂𝑝
1  and Fig. 5.2(c) illustrate the 

collection of all such 𝑛 + 1 neighborhoods of 𝑝.   

Given all the intensity values in 𝑈 (red and black pixels), standard interpolators 

like the conventional bilinear interpolator or a bicubic spline interpolator (180-184) 

can be used to estimate 𝜂𝑝
𝑖  (blue colored pixels). Denoting the pixel locations of 

neighbors 𝑊𝑖  as (𝑥𝑊𝑖
, 𝑦𝑊𝑖

) and the central pixel as (𝑥𝑝, 𝑦𝑝), a location (𝑥, 𝑦) with 

distance 𝑑 from  (𝑥𝑝, 𝑦𝑝) and subtending an angle 𝜃 with the line joining (𝑥𝑊0 , 𝑦𝑊0
) 

and (𝑥𝑝, 𝑦𝑝) is given by 

 [ 
𝑥
𝑦 ] = [

𝑥𝑝
𝑦𝑝
] + [ 

   𝑐𝑜𝑠(𝜃)    𝑠𝑖𝑛(𝜃)

−𝑠𝑖𝑛(𝜃)    𝑐𝑜𝑠(𝜃)
 ] [

 ൫𝑥𝑊0
− 𝑥𝑝൯

  (𝑦𝑊0
− 𝑦𝑝) 

]. [5.7] 
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Figure 5.2. Extended neighborhood representation. (a) 4-pixel neighborhood (𝜂𝑝
0) of 

pixel 𝑝. (b) set of four pixels (blue circles) located at an angle 𝜃 from 𝜂𝑝
0 (red circles). 

(c) complete set of neighborhoods of 𝑝. (d) an extended neighborhood system. 

Intensities are known at the red colored grid locations and estimated at the blue colored 

locations. 
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Using bilinear interpolation, for example, if the values at the grid locations (𝑥𝑝, 𝑦𝑝), 

(𝑥𝑝−𝑑, 𝑦𝑝), (𝑥𝑝, 𝑦𝑝+𝑑) and (𝑥𝑝−𝑑, 𝑦𝑝+𝑑) enclosing (𝑥, 𝑦) in Fig. 5.2(d) are known, 

then the interpolated value at (𝑥, 𝑦) is given by 

 𝑈(𝑥, 𝑦) ≈ 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥𝑦, [5.8] 

where the coefficients 𝑎0, 𝑎1, 𝑎2 and 𝑎3 are obtained by solving the linear system 

 

[
 
 
 
 

 

1    𝑥𝑝−𝑑    𝑦𝑝+𝑑    𝑥𝑝−𝑑𝑦𝑝+𝑑
1    𝑥𝑝          𝑦𝑝+𝑑    𝑥𝑝𝑦𝑝+𝑑      
1    𝑥𝑝−𝑑    𝑦𝑝             𝑥𝑝−𝑑𝑦𝑝      
1    𝑥𝑝          𝑦𝑝            𝑥𝑝𝑦𝑝            

 

]
 
 
 
 

[ 

𝑎0
𝑎1
𝑎2
𝑎3

 ] =

[
 
 
 
 

 

𝑈൫𝑥𝑝−𝑑 , 𝑦𝑝+𝑑൯

𝑈൫𝑥𝑝      , 𝑦𝑝+𝑑൯

𝑈൫𝑥𝑝−𝑑 , 𝑦𝑝       ൯

𝑈൫𝑥𝑝        , 𝑦𝑝      ൯

 

]
 
 
 
 

. [5.9] 

Similar to Eq. [5.9] for quadrant-1, the desired locations can be expressed with 

reference to the angle 𝜃 measured clockwise with respect to lines joining 𝑁0, 𝐸0 or 𝑆0 

with 𝑝. Accordingly, the four neighborhood points enclosing (𝑥, 𝑦) will differ. With 

the estimated intensity values of the extended neighbors, the gradient can be computed 

as ∇𝑖𝑈(𝑝) = [𝑈൫𝑥𝐸𝑖 , 𝑦𝐸𝑖൯ − 𝑈൫𝑥𝑝, 𝑦𝑝൯, 𝑈൫𝑥𝑁𝑖
, 𝑦𝑁𝑖

൯ − 𝑈൫𝑥𝑝, 𝑦𝑝൯]
𝑇
 in  𝜂𝑝

𝑖 . 

5.4.2 Biased diffusion in extended neighborhood 

From Eqs. [5.3a-5.3b], the biased diffusion of 𝑈 in 𝜂𝑖 would result in 

 𝑈𝑖
(𝑘+1)

= 𝑈(𝑘) + 𝛾𝑑𝑖𝑣൫𝑔൫|∇𝑖𝑈
(𝑘)|൯∇𝑖𝑈

(𝑘)൯, [5.10a] 

 𝑈𝑖
(𝑘+1) = 𝑈𝑖

(𝑘+1)
+ 𝑐ℱ𝑢

′ (𝐾𝑢 − ℱ𝑢𝑈𝑖
(𝑘+1)

). [5.10b] 

Diffusing 𝑈(𝑘) over 𝑛 + 1 sets of neighbors would therefore yield 

 𝕌(𝑘+1) = {𝑈0
(𝑘+1), 𝑈1

(𝑘+1), … , 𝑈𝑛
(𝑘+1)}, [5.11] 
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where 𝕌 is the set of all diffused versions of 𝑈. Now, we need to generate 𝑈(𝑘+1) from 

𝕌(𝑘+1) such that individual edges in 𝑈(𝑘+1) are mapped from different elements of 

𝕌(𝑘+1).  

5.4.3 Mapping of edges based on directionality property 

Let 𝑈𝑖𝑑𝑒𝑎𝑙 be an ideal image that exhibit the desired true directional properties at a 

location (𝑥, 𝑦). Then the mapping of 𝕌 to 𝑈 (denoted as 𝑚𝑎𝑝(𝕌⟶ 𝑈)) can be defined 

as 

 𝑈(𝑥, 𝑦) = 𝑈𝑗(𝑥, 𝑦) | 𝑗 = min
𝑖
(𝑑𝑖𝑟 (𝑈𝑖𝑑𝑒𝑎𝑙(𝑥, 𝑦)) − 𝑑𝑖𝑟൫𝑈𝑖(𝑥, 𝑦)൯), [5.12] 

where the function 𝑑𝑖𝑟(𝑝) defines the direction of gradient of 𝑝. However, this is not 

reliable when a prior information about 𝑑𝑖𝑟 (𝑈𝑖𝑑𝑒𝑎𝑙(𝑥, 𝑦)) is not available. This 

limitation can be mainly attributed to the difficulty in estimation of underlying true 

structural details from an artifact corrupted MR image. In the frequency domain, 

however, we generally have a partial information available that Fourier encodes the 

true structural details. Therefore, it is more meaningful to define a surrogate rule based 

on the principle that the mapping of individual edges which minimizes the deviation 

of the solution from a reliable set of k-space samples is the best possible solution.  

Following this principle, let us assume that there exist a k-space 𝕂 such that 𝕂 =

ℱ൫𝑈𝑖𝑑𝑒𝑎𝑙൯, where ℱ is the Fourier transform operator. Then the deviation of each 

element in 𝕌 from 𝕂 can be measured as  

 Ε𝑖 = |ℱ−1(ℱ(𝑈𝑖) − 𝕂)|, 𝑖 = 0,1, … , 𝑛. [5.13]  
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This enables us to formulate a surrogate mapping rule given by 

 𝑈(𝑥, 𝑦) = 𝑈𝑗(𝑥, 𝑦) | 𝑗 = min
𝑖
൫𝛦𝑖(𝑥, 𝑦)൯. [5.14] 

Since 𝑈𝑖𝑑𝑒𝑎𝑙 and 𝕂 are directly related by the Fourier operation, Ε𝑖(𝑥, 𝑦) will be 

minimum always for that 𝑖 for which the directional orientation of 𝑈𝑖(𝑥, 𝑦) matches 

the most with 𝑈𝑖𝑑𝑒𝑎𝑙(𝑥, 𝑦). Therefore, it can be used in place of Eq. [5.12] to choose 

𝑖. While reconstructing individual channels, mapping is performed for each channel as 

Algorithm 5.1:  

    0:     Set 𝑘 = 1; 𝑡(1) = 1; 

    1:     𝑈ℓ
(0)

= ℱ𝑢
′൫𝐾𝑢,ℓ൯;  % ‘ℓ’ is the channel number 

    2:     𝑤ℎ𝑖𝑙𝑒 (𝑘 < 𝑘𝑚𝑎𝑥)  

    3:           𝑈ℓ
(𝑘)

= 𝑈ℓ
(𝑘−1)

+ 𝑐 ℱ𝑢
′(𝐾𝑢,ℓ − ℱ𝑢𝑈ℓ

(𝑘−1)
);  % biasing 

    4:  𝑓𝑜𝑟  𝑖 = 1: 𝑛 

    5:                 𝑈ℓ,𝑖
(𝑘) = 𝑈ℓ

(𝑘)
+ 𝛾𝑑𝑖𝑣 (𝑔 (∇𝑖𝑈ℓ

(𝑘)
)∇𝑖𝑈ℓ

(𝑘)
) ;  % diffusion 

    6:  𝑒𝑛𝑑 

    7:           𝑚𝑎𝑝 ({𝑈ℓ,0
(𝑘), 𝑈ℓ,1

(𝑘), … , 𝑈ℓ,𝑛
(𝑘)} ⟶ 𝑈ℓ

(𝑘)) ;  % edge mapping 

    8:           𝑡(𝑘+1) = (1 + ඥ1 + 4(𝑡(𝑘))2  ) /2;  

    9:           𝑈ℓ
(𝑘)

= 𝑈ℓ
(𝑘) + ൫𝑡(𝑘) − 1൯൫𝑈ℓ

(𝑘) − 𝑈ℓ
(𝑘−1)൯/𝑡(𝑘+1);  % acceleration 

   10:           𝑘 = 𝑘 + 1;  

   11:    𝑒𝑛𝑑 
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𝑚𝑎𝑝(𝕌ℓ
(𝑘+1) ⟶ 𝑈ℓ

(𝑘+1)), where 𝑣 is the channel number and 𝕌ℓ
(𝑘+1) =

{𝑈ℓ,0
(𝑘+1), 𝑈ℓ,1

(𝑘+1), … , 𝑈ℓ,𝑛
(𝑘+1)}. Individual channel k-space with unacquired frequency 

points set to zero is then denoted as 𝐾𝑢,𝑣. A basic workflow of the proposed 

reconstruction and the associated mapping operation are illustrated in Figs. 5.3-5.4.  

Algorithm 5.1 describes the algorithmic steps of proposed directionality guided 

non-linear diffusion reconstruction. The acceleration technique of FISTA (25) is used 

to speed up the reconstruction process in steps 8 and 9. Shaded blocks in Fig. 5.3 

represent the major changes to conventional NLDR model. ‘Custom prior 

optimization’ is a customizable block based on the choice of 𝕂. This is explained in 

the subsequent subsection. Dotted arrows indicate that the step is optional.  

5.4.4 Choice of 𝕂 

Equation [5.14] relies on the information contained in 𝕂 as a guide for mapping the 

edges. Below, two ways of choosing 𝕂 are proposed. 

A) 𝕂 based on acquired k-space: We would expect that some information about 

the directionality of edges in the to-be-reconstructed image is Fourier encoded in the 

acquired samples of 𝐾. Therefore, a straightforward choice of 𝕂 would be 𝐾𝑢, which 

modifies Eq. [5.13] as 

 Ε𝑖 = |ℱ𝑢
′(ℱ𝑢(𝑈𝑖 ) − 𝐾𝑢)|, 𝑖 = 0,1, … , 𝑛. [5.15] 

While it serves the purpose well, the reliability of the deviation measure can be 

dependent on the sampling rate as well. This reconstruction is denoted as KUTV or 

KUPM, indicating whether TV or PM diffusivity function is used. 
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Figure 5.3. Process flow of multi-gradient biased diffusion reconstruction with edge 

mapping. The edge-mapping process is detailed in Fig. 5.4. 
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Figure 5.4. Process flow of edge mapping procedure. 
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B) 𝕂 based on custom prior optimizable k-space: Each reconstruction technique 

tries to optimize a prior information about the data during reconstruction, like the 

sparsity in a learned dictionary, or a non-local similarity in the underlying structure 

which also influences the directionality of edges that are recovered. This in turn gets 

Fourier encoded in its k-space. Such a custom prior optimized k-space (𝐾𝑝𝑜), can 

therefore be used as a guide for mapping the edges. At the locations of acquired 

samples in the k-space, however, the values in 𝐾𝑢 are the closest reliable information 

that we have to the solution which we are seeking. 

Therefore, we can use a synthesized k-space 𝐾𝑠 as 𝕂 where 𝐾𝑠 = 𝐾𝑢(Ω
+) ∩

𝐾𝑝𝑜(Ω
−). Ω+ and Ω− denotes the locations of acquired and unacquired samples of 

ℱ(𝑈), respectively. Then, Eq. [5.13] becomes 

 Ε𝑖 = |ℱ−1(ℱ(𝑈𝑖 ) − 𝐾𝑠)|, 𝑖 = 0,1, … , 𝑛. [5.16] 

For example, let us consider PANO that optimizes the non-local structural similarity 

in the image using a patch-based similarity mapping. We can incorporate this in the 

proposed framework by choosing 𝐾𝑠 = 𝐾𝑢(Ω
+) ∩ 𝐾𝑃𝐴𝑁𝑂(Ω

−), where 𝐾𝑃𝐴𝑁𝑂 is the 

structural similarity optimized k-space.  

In fact, a better performance may be achieved by using a two-step reconstruction 

in which PANO is used to optimize the structural similarity in the output of 

KUTV/KUPM to generate 𝐾𝑝𝑜. This is denoted as KPTV/KPPM. This workflow is 

indicated by the dotted arrows in Fig. 5.3. Similarly, the state-of-the-art dictionary 

learning MRI (DLMRI) (96) can be used to generate 𝐾𝑝𝑜 by enhancing sparsity in the 
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output of KUTV/KUPM when represented using dictionaries learned from it (denoted 

as KDTV/KDPM).  

The custom prior optimization can be independent of the output of KUTV/KUPM 

as well. For example, the state-of-the-art method of block matching and 3D filtering 

(BM3D) (117, 185) can generate 𝐾𝑝𝑜 by enhancing sparsity in the initial image by 

grouping similar blocks and shrinking its sparse transform domain coefficients 

(denoted as KBTV/KBPM).  

5.4.5 Edge emphasis correction 

Edge-preserving filters like PM diffusion and TV also have an inherent property of 

enhancing the edges (42). This in effect emphasizes the discontinuities in the intensity 

function. While edge enhancement is a handy post-processing tool and can favor the 

diagnosis in many cases, the modulation of higher frequencies in the k-space due to 

these enhanced edges may not always be favorable in the reconstruction process, 

especially in the initial iterations where the edges can also be due to artifacts.  

The increasing sharpness of edges correspond to an extended support in the 

frequency domain. Therefore, we can limit the overemphasis of edges by extending 

the fidelity/data-consistency constraint to regions outside the acquired k-space denoted 

by Ω̅, 𝐾(Ω̅) ∈ {0} at the cost of increased matrix size/computation. This extension 

implies that the spatial frequencies in extended support region should not be present 

in the absence of sharpened edges. 
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5.5 Methods 

5.5.1 Implementation 

Proposed method can be implemented in two ways. In the absence of channel 

sensitivity (𝒞ℓ) information, both diffusion and edge mapping are performed channel-

wise. Otherwise, both operations are performed on the channel combined image (𝒰). 

The iterations are then initialized by combining channel images using the sensitivity 

profile (𝒰(0) = ∑ (𝒞𝑣
∗ ∗ 𝑈ℓ

(0)
)𝑣 , where 𝒞ℓ

∗ is the complex conjugate of 𝒞ℓ and 

𝑈ℓ
(0)

= ℱ𝑢
′൫𝐾𝑢,ℓ൯). The data fidelity (bias) update term in Eq. [5.10b] then becomes 

𝑐 ∑ (𝒞ℓ
∗ ∗ ℱ𝑢

′ (𝐾𝑢,ℓ − ℱ𝑢൫𝒞ℓ ∗ �̂� 
(𝑘+1)൯))ℓ , where �̂� 

(𝑘+1) is the diffused version of 

𝒰(𝑘). 

Among the different state-of-the-art edge preserving reconstruction techniques 

compared in this work, total generalized variation (TGV) (168) operates directly on 

𝒰. Therefore, the proposed method operates on 𝒰 when compared with TGV for fair 

comparison. When the numerical experiments require direction of edges to be known 

a priori, ground truth is used as a guide (𝕂) to choose the direction of diffusion 

(denoted as KGTTV/KGTPM). 

5.5.2 Reconstruction parameters 

Parameters controlling the reconstruction are 𝑐, 𝛾, 𝛼 and 𝑛. In multi-channel MRI, 

complete structural information is absent in individual channels and the presence of 

channel sensitivity degrades the quality of true edges. Therefore, 𝛼 is better estimated 
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from 𝒰 as reported in chapter 3, where it is estimated as the mean absolute deviation 

(MAD) of ∇𝒰 (160). With the availability of 𝒞ℓ, we have 𝑈ℓ = 𝒞ℓ𝒰. Therefore, 

diffusion can be directly applied on 𝒰 as opposed to reconstructing individual channels 

by diffusion and then combining it (40, 61). Furthermore, in such cases, conjugate 

gradient method also can be used to solve the fidelity constraint (bias) to enforce an 

accurate data consistency (139). 

5.5.3 Choice of reconstruction parameters 

As opposed to PM diffusivity function, the reconstruction using TV diffusivity 

function is known to be sensitive to the choice of 𝛾 (160). Therefore, TV requires 

search optimization of 𝛾. In either case, relaxation of 𝑐 is desired when the acquired 

data are noisy and the best choice in such cases requires monitoring final 

reconstructions corresponding to different values of 𝑐. With 𝑐 is set to 1, the adaptation 

of 𝛼 helps to minimize the remnant noise in PM diffusion (160).  

Diffusion in 𝜂𝑝
𝑖  for each 𝑖 is similar to that of the conventional NL diffusion in 

𝜂𝑝
0. Therefore, the choice of 𝑐, 𝛾 and 𝛼 are independent of the number of sets of 

neighbors used and behaves similar to that of the conventional NLDR reconstruction. 

For both TV and PM, a steady decrease in reconstruction error is observed when 𝑛 is 

incremented from 2 to 10 (shown in Fig. 5.5). However, this gain is found to be 

minimal for 𝑛 > 10. Following this result, 𝑛 = 10 is used for all numerical 

experiments in this work. However, the ideal directions of gradient to be used depend 

on the structural details of the image at hand and hence can vary from dataset to dataset. 

Therefore, the best practice is to include all possible choices of directions.  
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5.5.4 Hypothesis test 

Z-test is used to check whether the PSNR measures have significant difference across 

different ROIs. The measured variable is the PSNR value in each ROI. ROIs are 

chosen randomly with different sample sizes across the image. Using a collection of 

104 ROIs, estimates of the population mean (𝜇) and population variance (𝜎2) are 

obtained. For each sample ROI, the z-score is calculated using 

 𝑧 = (𝕄 − 𝜇)/ඥ𝜎2/ℵ, [5.17] 

where 𝕄 is the sample mean and ℵ denotes the sample size. The probability measure, 

p-value (186) associated with the computed z-score indicates whether the hypothesis 

that the ‘PSNR measure of sample does not differ significantly from the population’ 

is acceptable. If the p-value is greater that a confidence level of 0.01, the hypothesis is 

accepted. 

R
L

N
E

 (sets of neighbors)

Figure 5.5. Influence of 𝑛 on steady-state error. steady-state RLNE is plotted against 

𝑛 for TV and PM diffusion based KUNLDR reconstruction. 
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5.5.5 Datasets 

Different datasets used in this study include (i) physical phantom acquired on a 3T 

MRI scanner using a turbo spin-echo sequence with a 220mm×292mm field of view 

(FOV) on a 256×340 cartesian sampling grid with 16 receiver coils. This is publicly 

available in (155), (ii) brain images of size 256×256 acquired from a healthy volunteer 

on 3T MRI scanner using T2-weighted turbo spin echo sequence (TR/TE=6100/99ms, 

FOV=220×220mm2, slice thickness = 3mm) and (iii) 12-channel brain images 

acquired using 3D T2 CUBE sequence with Cartesian readouts having matrix 

dimensions of 256×232×208 with 1 mm isotropic resolution. The same in vivo datasets 

were previously used to evaluate the performance of CS-MRI reconstructions in (97, 

114, 115, 139). The coil sensitivity maps of 12-channel brain images were estimated 

from the central k-space regions of each slice using ESPIRiT (87) and were assumed 

to be known during experiments. 

5.6 Results 

Experimental results and their comparison with state-of-the-art techniques are 

presented in this section. The promising potential of directionality optimized 

reconstruction applied to multi-channel real MRI dataset for the limiting cases of 95-

97% undersampling is illustrated first. Then the results of more practical ways of 

choosing the direction of diffusion is shown and illustrate how the errors and 

convergence in each case are influenced by the choice of parameters such as the 

number of gradient directions and step-size. All implementations are performed using 

Matlab (The MathWorks, Inc., Natick, MA, USA) on a PC with an Intel Xeon E5-
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2630v3 2.4 GHz processor and 32GB of RAM running Windows 7 operating system. 

Links to the source codes for Matlab implementations of all the state-of-the-art 

methods compared in this work are listed in (166, 168, 169, 187, 188).  

5.6.1 Reconstruction of 95-97 percent undersampled data 

In this numerical experiment, it is assumed that the directional properties of edges are 

known a priori. Reconstructed images are depicted in Fig. 5.6. Panels from left to right 

in the top row shows undersampling masks and the ground truth. Panels from left to 

right in rows 2 to 4 illustrate the results of PM, KGTPM, TV and KGTTV respectively. 

Corresponding PNSR values are indicated in the inset. 

The results indicate that an additional information about the direction of diffusion 

has the potential to bring forth a massive 12.33dB improvement for PM diffusion and 

around 7dB improvement for TV on average. In the very limiting cases of 3% and 5% 

sampling studied, this improves the output of state-of-the-art reconstructions to 

visually acceptable standards. The sampling pattern acquiring only 13 phase-encoding 

lines corresponds to approximately 3% samples for phantom and 5% samples for the 

head data. 52 PE lines correspond to approximately 20% samples for the head data. It 

may be noted that the phantom despite sampled at a lower percentage, tend to generate 

higher PSNR measures. This can be attributed to the fact that structural complexity of 

the phantom is lower than that of the head dataset, which is obvious from a visual 

comparison of the ground truths.  

After using z-test to test different ROIs of size ranging from 16x16 to 128x128, it 

was concluded that there is no significant difference between the PSNR measures of 
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Figure 5.6. Reconstruction of phantom and in vivo MRI data with random phase 

encoding (PE) sampling. Panels in the first row show the ground truth images and 

sampling patterns used. Remaining panels in a column-wise arrangement show images 

reconstructed using TV and PM diffusion with and without diffusion direction 

optimization. Here, the direction of diffusion is assumed to be known apriori. 

Corresponding PSNR measures for the whole images are shown in the insets. 
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randomly drawn ROIs from the mean PSNR value of the total population of ROIs. For 

example, a 1000 randomly drawn ROIs of size 64x64 give an z-score of -1.5599. The 

associated p-value of 0.11876 is greater than the confidence level of 0.001, indicating 

that there is no significant difference in PSNR values. 

5.6.2 Effect of number of directions 

The effect of number of sets of neighborhoods (𝑛) in reconstruction is studied by 

observing the steady-state RLNE for different choices of 𝑛. This is illustrated in Fig. 

5.7 along with a comparison of how TV and PM diffusion choose the gradient 

directions for the reconstruction. Top-left panel shows the ground truth and enlarged 

view of the neighborhoods of two pixels p1 and p2. p1 can be considered as a pixel 

belonging to two different edges, one at ~300 (to its left side) and the other at 900 (to 

its right side). p2 on the other hand can be considered to be a part of an edge at 00. 

Ground truth is retrospectively undersampled by sampling 76 PE lines out of 256 to 

achieve a sampling rate of 30%. 

Panels in right column show the number of times (𝜚) diffusion is performed along 

a given direction as a function of the angular direction used. It is observed that the 

choice of direction is more distributed in PM as compared to TV, especially for p1. 

That is, in TV, the choice of direction for p1 is mostly confined to 900. For p2,  

however, it is more distributed. Consequently, the difference in RLNE of TV and PM 

(shown in the inset) is higher for p1 than p2. The reconstructed neighborhoods and 

their respective error images are shown in the bottom-left panel.  



 

 

 
CHAPTER 5. DIRECTIONALITY-GUIDED NON-LINEAR DIFFUSION RECONSTRUCTION 120 

 
 

 

p1

p2

R
O

I 
in

 G
ro

u
n

d
 T

ru
th

KGTPM

p2 Errorp1 Error

KGTTV

p2 Errorp1 Error

RLNE

p1 = 0.0086

p2 = 0.0018

 

Direction (in degrees)

RLNE

p1 = 0.0004

p2 = 0.0002

Direction (in degrees)

 

Figure 5.7. Effect of number of diffusion directions on image quality. Panels in the 

first column show the ground truth image and reconstructed pixel neighborhoods. 

Panels in second column show the number of times (𝜚) diffusion is performed along a 

given direction, as a function of the angular direction used. 
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5.6.3 Custom prior guided reconstruction 

Images of head dataset reconstructed using proposed method guided by different 

custom prior optimizations are shown in Fig. 5.8. Ground truth is retrospectively 

undersampled to achieve a sampling rate of 30%. Corresponding PSNR measures are 

indicated in the inset. Panels in the bottom row depict sampling mask and difference 

images. While KPTV, KPPM and BM3D indicates an improvement close to 2dB, 

KDTV and KDPM show 3dB improvement in PSNR over TV and PM reconstructions. 

The difference images clearly indicate that the proposed method leads to a more 

faithful reproduction of structural details, especially in the regions of ventricular 

margins and cortical gray-white interface. While blocky effects are clearly visible in 

PM and TV reconstructions, the proposed directionality guided diffusion appears to be 

tolerant to these effects as well. This is also evident from the PSNR measures 

compared with that of NLDRM reconstruction listed in Table 5.1. 

A detailed comparison with different state-of-the-art reconstructions (38, 96, 115, 

117) are listed in Table 5.1. These values are averaged from reconstructions of the 

dataset undersampled using Poisson-disc, radial and random phase-encode sampling 

patterns. As expected, KGTTV and KGTPM show a significant improvement of 7.78dB 

and 10.99dB on average over TV and PM. The next best results are observed for KDPM 

with an improvement of 4.25dB and 3.88dB on average over TV and PM and 2.36dB, 

1.92dB and 1.59dB over BM3D, PANO and DLMRI respectively. 

In Fig. 5.9, KUPM and KGTPM are compared with TGV and conventional PM 

diffusion reconstruction techniques. Row-wise panels show the ground truth and 

images reconstructed after retrospectively undersampling the ground truth by sampling 
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TV

PSNR = 30.0238

PSNR = 33.1204

KDTV

PSNR = 30.1082

PSNR = 33.4679

PM

KDPM

PSNR = 32.2306

BM3D

KPPM

PSNR = 32.6649PSNR = 32.0016

KPTV

HDTV

PSNR = 31.0154

PSNR = 25.5415

iFFT

Figure 5.8. Reconstruction of in vivo MRI data using custom prior optimized multi-

directional diffusion. Left and right panels in the first row depict the ground truth 

image and inverse Fourier transform of k-space filled with zeros at unacquired 

locations. Bottom left panel shows the sampling mask for random phase encode lines. 

Remaining panels in rows three to six show the images reconstructed using HDTV, 

BM3D, TV, PM diffusion and custom prior optimizations of PANO and DL. A region 

of interest indicated by the blue bounding box is enlarged and shown on the right side 

of each image. Second to fourth panels in the bottom row depict the difference images 

from the ground truth. Respective PSNR measures are shown in the insets. 
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Figure 5.9. Comparison of directionality guided diffusion reconstruction with TGV 

and PM diffusion using sagittal slices of four different 12-channel T2 weighted MRI 

datasets. Row-wise panels show the ground truth and reconstructed images. Panels in 

the right most column show difference images and sampling pattern used to 

retrospectively undersample the ground truth. Respective PSNR measures are shown 

in the insets.  
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Dataset 

(sampling%) 
TV KUTV KPTV KDTV KBTV 

Dataset I 

(20%) 
32.9060 33.4085 35.5879 36.7753 36.1154 

Dataset I 

(25%) 
34.9772 35.6439 38.0352 39.1806 38.2912 

Dataset I 

(33%) 
38.0727 38.9116 41.1393 41.9091 40.7291 

Dataset II 

(20%) 
31.7682 32.1357 34.5566 35.5909 34.9438 

Dataset II 

(25%) 
33.8528 34.3010 36.7620 37.8260 36.9457 

Dataset II 

(33%) 
36.9961 37.7882 40.1275 40.9105 39.7312 

Dataset III 

(20%) 
29.3195 29.6922 31.3127 32.5324 31.7336 

Dataset III 

(25%) 
31.3081 31.7728 33.5428 34.6838 33.6253 

Dataset III 

(33%) 
34.2389 34.9124 36.5692 37.7037 36.1795 

 

Table 5.1: Comparison of PSNR measures with different state-of-the-art 

reconstruction techniques averaged over pseudo-random, radial and random phase 

encoding lines sampling patterns. 
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PM KUPM KPPM KDPM KBPM NLDRM 

32.7388 35.1614 36.8442 37.5134 36.9265 34.4321 

35.4548 37.6439 39.3202 39.7121 39.0731 36.6742 

39.1725 40.9350 42.2972 42.4092 41.2610 40.5201 

31.6694 34.0392 35.8682 36.2415 35.8375 33.8554 

34.3358 36.4864 38.1837 38.3713 37.7949 35.7845 

37.9706 39.8841 41.2503 41.4439 40.4040 38.9521 

29.1328 31.1543 32.3957 32.9479 32.4735 30.8845 

31.4248 33.4782 34.6381 35.0285 34.3394 33.5348 

34.9406 36.5682 37.6173 38.0950 36.8103 35.9584 

 

Table 5.1 (continued) 
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HDTV PANO DL BM3D KGTTV KGTPM 

33.2997 35.4558 35.1157 35.8605 40.4238 45.2623 

35.7352 37.7127 38.1141 37.4551 43.1008 46.7523 

39.4267 40.5263 41.2353 38.8156 46.3274 48.7045 

32.2108 34.3985 34.1187 34.8339 39.0451 44.1048 

34.5329 36.5862 36.6203 36.2841 41.5952 45.5658 

38.4900 39.6454 40.1916 38.1187 45.2072 47.6256 

30.0215 31.1711 31.0235 31.5349 36.4091 40.5601 

33.1251 33.7535 32.9568 38.8648 42.3205 32.4845 

35.8751 37.2466 34.6669 42.4587 44.8297 36.0997 

 

Table 5.1 (continued) 
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76 out of 232 PE lines. Panels in the right most column depict difference images. The 

corresponding PSNR measures are shown in the insets. Results indicate an average 

gain of 7dB in PSNR for KUPM compared to TGV. The enlarged regions of interest 

and difference images further confirm improved preservation of structural details 

obtained with the directionality guided reconstructions in regions like the boundaries 

of gray and white matter. The results using three additional datasets are shown in Fig. 

5.10. 

5.6.4 Effect of sampling rate and sampling patterns 

In Fig. 5.11, steady-state RLNE is plotted versus sampling rate for TV, PM and guided 

diffusion reconstructions. These are averaged RLNE values from the reconstruction of 

three different datasets undersampled using Poisson-disc, radial and random PE lines 

sampling patterns. Plots indicate that the difference between the proposed methods and 

conventional TV/PM is higher for smaller sampling rates. The larger difference for 

PM indicates that for higher undersampling, proposed method benefits PM more than 

TV.  

5.6.5 Influence of sampling patterns  

To investigate the influence of different sampling patterns, in-vivo datasets are 

retrospectively undersampled using (i) Poisson-disc random sampling, (ii) Gaussian 

random sampling, (iii) Uniform PE lines, (iv) Random PE lines and (v) Radial 

sampling. A comparison of the reconstruction performance is shown in Fig. 5.12. 

Sampling rates of 33% and 25% are used. This correspond to 77 and 58 PE lines out 

of 232 for the uniform and random PE line sampling patterns and 90 and 66 radial lines 
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Figure 5.10. Comparison of directionality guided diffusion reconstruction with TGV 

and PM diffusion using sagittal slices of four different 12-channel T2 weighted MRI 

datasets. Row-wise panels show the ground truth and reconstructed images. 

Respective PSNR measures are shown in the insets.  
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Figure 5.11. Plots of steady-state RLNE versus sampling rate. Top and bottom panels 

show the results of TV and PM diffusion, respectively, with and without custom prior 

optimized diffusion technique. 
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Figure 5.12. Performance comparison for different undersampling patterns. Panels on 

the left-hand side show the sampling patterns used. Panels on the right-hand side show 

plots of RLNE versus iteration number. 
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for the radial patterns, respectively. In the case of radial sampling, the actual non-

Cartesian radial trajectory in 2D imaging is approximated with its closest Cartesian 

trajectory (189). 

It is observed that best performance is obtained with radial, Gaussian and Poisson-

disc sampling patterns as compared to the random and uniform PE lines. This is 

expected because incoherent sampling schemes such as Gaussian random and Poisson 

disc that subsamples the k-space along multiple dimensions causes the artifact to 

appear more noise-like, which is recommended by the CS theory. The comparison 

between different sampling rates shows that Random PE lines tend to perform better 

than the uniform PE lines at higher undersampling rates. For practical applications 

involving Cartesian sampling, skipping random phase encoding steps are preferred. 

Phase encoding steps are the main time-consuming factor in MRI acquisition. The 

impracticality of the random sampling of k-space points across all dimensions is 

mainly because the k-space trajectories have to be relatively smooth due to the 

hardware constraints (6). However, in the case of multidimensional acquisition that 

involve multiple phase encoding dimensions, random sampling can be applied to 

multiple phase encoding dimensions as shown in Fig. 4.8. 

5.6.6 Convergence analysis 

Fig. 5.13 shows the empirical convergence of KGTPM for different choices of 𝛾, 𝛼 and 

𝑛. Here, RLNE is plotted against reconstruction time for 200 iterations. It is observed 

that larger 𝛾 achieves faster convergence without compromising the steady-state 
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Figure 5.13. Empirical convergence of KGTPM for different choices of 𝛾, 𝛼 and 𝑛. 

RLNE is plotted against reconstruction time for 200 iterations. 
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errors. Faster convergence in this case can be attributed to the fact that larger 𝛾 

encourages more diffusion per iteration.  

With 𝛾 set as 0.1, larger values of 𝛼 shows faster convergence at the cost of 

steady-state error. This does not come as a surprise since 𝛼 is a threshold parameter 

which encourages the diffusion of edges whose gradient magnitudes fall below this   

threshold. The extent to which convergence speed can be compromised for better 

steady-state error generally depends on the gradient magnitudes of the inherent noise 

in the dataset (160). 

In the case of 𝑛, it is observed that a significant improvement in steady-state error 

is achieved by increasing 𝑛 from 2 to 10 at the cost of convergence rate. The reduced 

rate of convergence is due to the fact that the diffusion in each set of neighbors is 

computed one at a time. A parallel implementation (190) should significantly improve 

the convergence rate for the cases of 𝑛 > 1 to make it closer to that of 𝑛 = 1. 

5.7 Discussion 

The directionality guided NL diffusion approach proposed in this work describes how 

the information about diffusion direction can be used to improve the reconstruction 

performance.  

5.7.1 Working principle 

The proposed method works by approximating the underlying structure of an image 

from its gradients and non-linearly filter it based on the knowledge of locations of 

edges. This essentially varies the strength of denoising applied to true edges and 
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artifacts to preserve the structural details while diffusing artifacts. This is repeated for 

gradients computed in different angular directions and individual edges are mapped 

from these different filtered versions of the image.  Since the variations in intensity 

function due to artifacts are minimized, it promotes sparsity in ∇𝑈.  

The directional gradients can be estimated using either a projection of the 

horizontal and vertical gradients onto the desired directions, or by finite difference 

operations performed on the interpolated intensities. While projection based approach 

can be used for implementing the diffusion equation using 4-neighbor explicit 

numerical scheme of Perona and Malik (191), interpolation enables implementation 

using the classical forward and backward finite difference operators at sub-pixel 

resolution as shown in (181). This is also a preferred choice since it is known that a 

proper description of the salient features (edges) in an image often requires sub-pixel 

accuracy of diffusion (192).  

5.7.2 Reference reconstruction to choose diffusion direction 

When the data from another reconstruction helps to choose the direction of diffusion, 

the resulting diffusion process can be considered to be in agreement with the 

orientation of edges recovered by that reconstruction. This results in an improved 

quality of reconstructed image as evident from the PSNR measures in Table 5.1. 

5.7.3 Computational complexity  

Computational complexity of the proposed filtering is mainly dependent on the 

number of gradient directions used in the model. It is observed that computing 
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gradients at every 10 to 200 angular intervals is sufficient to provide good quality 

reconstructions. Increment in image quality achieved using even more number of 

gradient directions is observed to be minimal. However, it is advisable to include all 

possible angular directions due to the unpredictability of structural details (orientation 

of edges) in the image at hand. 

5.8 Conclusion 

The rate of diffusion of edges oriented at different directions in an MR image varies 

with the direction in which they are diffused. Therefore, a directionality guided 

reconstruction technique is developed that uses a sophisticated mapping technique to 

choose the most reliable edges from a set of filtered versions of the image generated 

by diffusing it along different directions. This introduces a local variation in the 

direction of diffusion that promotes an accurate diffusion of artifacts while retaining 

true edges. In addition, customizability of the proposed reconstruction framework 

helps to incorporate the benefits of other known prior optimization techniques to guide 

the direction of diffusion. 

 



 

 

 

Chapter 6 

Summary and Conclusions 

In this thesis, a biased NL diffusion technique using PM diffusivity function is 

presented as a more effective and efficient choice for edge-preserving sparse 

reconstruction of MR images, as opposed to other state-of-the-art techniques. Its 

significance is mainly due to the fact that the sharp and undistorted preservation of 

edges during an MR image reconstruction process often holds distinct advantages in 

terms of diagnostic quality. The key contributions of this thesis are summarized below. 

1. NLDR reconstruction technique as a better alternative to TV for edge preserved 

reconstruction for pMRI.  

o NL diffusion reconstruction model selectively diffuses smooth regions of the 

image while preserving the structural details by restricting diffusion across 

true edges. The developed model gives more control over denoising 

(diffusion) by controlling the intensity modulations introduced by the 

undersampling of k-space using contrast parameter which is not possible in 

TV. This results in reduced blur/noise in the reconstructed images compared 

to those obtained using TV based method. 
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2. Sensitivity to regularization parameter is minimized using a statistically optimized 

contrast parameter. 

o NL diffusion involves a contrast parameter that separates the gradient 

magnitudes attributed to noise and true edges in an image so that diffusion can 

modify edge and uniform intensity regions differently. This parameter is 

estimated as the mean absolute deviation of the gradient magnitude so that it 

can adapt to the changes in the data. While regularization parameter plays a 

critical role in achieving the right amount of denoising using TV, adaptation 

of contrast parameter in NL diffusion significantly reduces the sensitivity to 

regularization parameter, thereby removing the need for search optimization 

and results in faster reconstruction. 

3. A mixed order NLDR method that uses higher order diffusion to prevent the 

formation of step artifacts and speckle effects during reconstruction. 

o A fourth order regularization is introduced as a solution for blocky effect (step 

artifacts) in NLDR. Basic idea is to allow the reconstruction model to include 

a planar image as a possible solution using fourth order diffusion terms. While 

second order diffusion uses first order derivative of the image as a measure of 

smoothness, fourth order diffusion uses the second order derivative 

(Laplacian) as its smoothness measure which can better approximate smooth 

intensity variations. 

o In the absence of proposed regularization, if a step forms in the initial diffusion 

iterations, in a region of the image where intensity varies smoothly, the 

diffusion process tends to keep it in the final solution. In the presence of fourth 
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order terms in the reconstruction model, however, the smoothness is preserved 

because Laplacian will be minimum in such regions. 

4. Developed a directional diffusion optimization technique for NLDR with edge 

emphasis correction. 

o The method developed is a sophisticated approach to map the individual edges 

from different filtered versions of the image so that for each individual edge, 

only the diffusion along its corresponding direction is considered. This helps 

to adapt the direction of diffusion to local variations in the directionality of 

edges and employ a precise diffusion in the local regions of the image on a 

sub-pixel level, leading to the preservation of the complex nature of edges. 

6.1 Future Directions 

Though the proposed methods, especially the directionality guided diffusion based 

reconstruction, demonstrate promising edge preservation properties at high 

undersampling rates, it is also limited by some of the factors like clinical feasibility of 

runtimes and the choice of gradient directions for diffusion. Therefore, further studies 

could be directed along different ways like automated selection of gradient directions 

based on the problem at hand and parallel implementation of the workflows to achieve 

clinically feasible runtime.  

The increased computational complexity associated with the directionality guided 

diffusion is particularly due to large number of interpolations that restricts its practical 

application. Therefore, a main direction of future work should be towards reducing the 

computational complexity of this method without compromising on the image quality. 
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This can be achieved by reducing the number of interpolations required to compute 

the pixel values in extended neighborhoods.  

6.1.1 Reducing the number of interpolations  

One possibility is to choose the location of pixels in extended neighborhood in Fig. 5.2 

such that it lies on the lines joining the pixels in a typical 4-pixel neighborhood, with 

the pixels in a typical 8-pixel neighborhood. This will transform the interpolations in 

2D space to 1D interpolations by relaxing the distance constraint on neighboring pixels 

in extended neighborhood. While the distance of neighbors remains constant within a 

single neighborhood set, it is allowed to be different for different sets of extended 

neighborhoods. For the directional diffusion using 10 sets of neighborhoods, this 

approach should reduce the number of linear interpolations from 108 to 36 for each 

pixel.  

6.1.2 Interpolation free approach  

Another option is an interpolation-free approach that uses the known pixels in the grid 

at multiple orders away from a pixel p as its neighbors. This further relaxes the distance 

constraint on extended neighborhood pixel locations. By choosing the known pixel 

values in the grid along different directions as the extended neighbors, we can reduce 

the number of interpolations to zero. This will also keep the distance of neighboring 

pixel locations fixed within a single neighborhood, while allowing it to change 

between different sets of neighborhoods. While the former solution that reduces 

interpolation from 2D space to 1D space also allows diffusion along any arbitrary 

direction, the latter approach allows diffusion only along a fixed number of directions. 
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