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Abstract  Gamma amino butyric acid is a major

inhibitory neurotrarsriitter in the central nervous
system. In the present study we Lave investigated the
alteration of GABA receptors in the brain stem of rats
during pancreatic regeneration. Vhree groups of rats
were used for the study: sham operated, 72 h and
7 days pdrlld]ly pancreatectomised. GABA was quan-
tified by ['HJGABA ree eptor dispiacement method.
GABA receptor Kinetish paranicters were studied by
using the binding of | FJGABA as ligand to the Triton
X-100 treated memivanes and displacement with
unlabelled GABA. (:MBA/\ receptor activity  was
studied by using the | iQﬁ cucalline and displacement
with unlabelled Buucullmc JABA content signifi-
cantly decreased (P < 0.001) in t“¢ brain stem during
the regeneration of pancreas. The high alfinity GABA
receptor binding showed a significant decrease in B
(P <0.01) and Ky (< 0.05) in 72 h and 7 days after
partial  pancreateciemy.  iibicuculline binding
showed a significar,  decrcise in Biaay | and o
(P < 0.001) in 72 h pancreace :.omised rats when com-

pared with sham wl.: ¢ as Bgax and K, reversed to
near sham after 7 days of pancreatectomy. The results
sugge(}\ that GABA througis GABA receptors in
brain Stém has a regulatory ro12 during active regen-
eration of pancreas which will have immense clinical
significance in the treatment oi dizbetes. /
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Introduction

The brain neurotransmitters’ receptor activity and
hormonal pathways control many physiological func-
tions in the body. y- aminobutyric acid, also known as
GABA was dmovuud over 40 years ago as a key

inhibitory neurotransmitter in the brain [1, 2]. GABA
has been implicated in cell growth during dilferentia-
tion in the cultures in at least certain neuron types |3].
GABA was reported to be present in the pancreas in
comparable concentrations with those in the central
nervous system during the carly seventies [4, S).
Prolonged binding to peripheral benzodiazepine recep-
tors is hypothesized to cause human f-cells functional
damage and apoptosis [6]. Cytokines produced by
immune system cells infiltrating pancreatic islets are
candidate  mediators of

autoimmune

islet f-cells destruction in
insulin-dependent  diabetes  mellitus.
Peripheral benzodiazepine receptors constitute  the
aspecitic mitochondrial permeability transition pore,
and that it has been suggested to be involved in
cytokine-induced cell death [7]. In the CNS, GABA
affeets neuronal activity through both the ligand-gated
GABA 4 receptor channel and the G protein-coupled
GABAj; receptor. In the mature nervous system. both
receptor subtypes decrease neural excitability, whereas
inmost neurons during development, the GABA
lcupmr increases neural excitability and raises cyto-
solic Ca" levels. Changes in cytosolic Ca®* during
early ncural developinent would, in turn, profoundly
affect a wide array of physiological processes, such as
gene expression. neurite outgrowth, transmitter release
and synaptogenesis {R]. L

The endocrine part of the pancreas plays a central
role in blood-glucose regulation. GABA released from
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fi-cells is considered as an inhibitor of insulin secretion
in pancreatic islets and that the effect is principally due
to direct suppression of exocytosis [9]. GABA has been
proposed to function as a paracrine signaling molecule
in islets of Langerbians and the Glucose inhibition of
glucagon secretion from rat alpha-cells is mediated by
GABA released from neighboring fi-cells {10},

The natural source for new pancreatic f-cells is an
important issue both for understanding the pathogen-
esis of diabetes. and for possibly curing diabetes by
increasing the number of f-cells. ‘Transplantation of
pancreatic islets can now be applied successfully to
treat diabetes, but its widespread use is hampered by a
shortage of donor organs. Since insulin-producing fi-
cells cannot be expanded significantly i"ﬁiil'l” cfforts
arc undc;yuy to identify stem or progénitor cells that
potentially could be grown and differentiated into -
cells in vitro. Such cells could provide an ample supply
of transplantable tissue. Current research in this ficld
focuses mainly on pluripotential embryonic stem cells
and on pancreas-specific adult progenitor cells. fi-cell
replication is the only source for new fi-cells without
contributions from stem cells or other non- f-cells. The
pancreatic gland has an enormous potential for growth
and regeneration, !i)e_xh]ly in rodents. Animal models of
pancreatic regene!q&'i’{m can be easily cstablished in
weanling rats. Partial pancreatectomy is an established
model to study the ;i;\‘ncrculi‘_c regeneration.

In addition to its presence in the central nervous
system. GABA has been dcm(;mslralcd in the pancre-
atic f-cells of normal rat [1i]. GABA is present in
large number in the islet cells in the pancreas. The
concentration of GABA in the endocrine panereas is
comparable to that measured jf e in the central
nervous system [i2]. It is known that the B-cells can
produce and release GABA in response to glucose |5,
13, 14]. It is possible that GABA and Glutamate
mediate a paracrine signaling pathway whereby « and
f-cells communicate within- the islets [12, 14-16].

In the present study, we have investigated the
changes in the GABA content and GABA receptor
activity in brain stem during active regencration
following partial pancreatectomy.

Experimental procedure

Chemicals

All biochemicals used were of analytical grade. GABA
and bicuculline were purchased from Sigma Chemical

Co. USA. [*H]JGABA was purchased from Amersham
Biosciences. USA and [ Hjbicuculline from NEN.

USA. ‘Tris 11CL and other chemicals for buller
solutions were obtained from SRL and MERCK.

Animals

Weanling rats of Wistar strain weighing 80-100 g
purchased from Amrita Institute of Medical Sciences
and Rescarch Centre, Cochin were used in all exper-
iments. They were housed in separate cages in 12 h
light and 12 I dark periods and maintained on food
and water ad libitum. All animal care and procedures
were in accordance with the CPCSEA and National
Institute of Health guidelines.

Partial pancreatectomy

Rats were anaesthetised under aseptic conditions, the
body wall was cut opencd and 60-70% of the total
pancreas near to the spleen and duodenum, was
removed [17). The removal of most of the pancreas
was done by gentle abrasion with cotton applications.
leaving the major blood vessels supplying the other
organs intact [18]. ‘The sham operation was done in an
identical procedure except that the pancreatic tissue
was only lightly rubbed between fingertips using cotton
for a minute instead of being removed. All the surgeries
were done between 7.00am and 9.00am to avoid diurnal
variation in 1‘05pnﬂ§¢s. The rats were maintained for
different time intervals, 72 h and 7 days.

F2 heans (72 h)

Sacrifice of rats

The sham. 72 h and 7 days pancreatectomised rats
were sacrificed by decapitation and the brain regions

‘were dissected out quickly over ice according to the

procedure of Glowinski and Iversen, 1966 [19]. The
tissues were stored at -70°C for various experiments.

GABA receptor binding assays

["H]GABA binding to the GABA receptor was
assayed in ‘Triton X-100 treated synaptic membranes
[20). Crude synaptic membranes were prepared using
sodium-free 10 mM tris buffer (pH 7.4). Each assay
tube contained a protein concentration of 0.3-0.4 mg.
In saturation binding experiments,  1-10 nM - of
['H|GABA incubated with and without excess of
unlabelled GABA (100 pM) and in competition bind-
ing experiments the incubation mixture contained
2 nM of ['HJGABA with and without muscimol at a

“concentration range of 1077 M to 10* M. The incuba-

tion was continued for 20 n)}in at 0-4°C and terminated
by centrifugation at 35,000g for 20 min. ['HJGABA in
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pellet was determined by liquid scintillation spece-
;ometry. Specific binding was determined by subtiact-
ing non-specific binding from the total binding.

GABA A receptor binding assays

[*H]bicuculline binding to the GABA receptor was
assayed in Triton X-100 treated synaptic membranes
[20]. Crude synaptic membranes were prepared using
sodium-free 10 mM tris buffer (pH 7.4). Each assay
tube contained a protein. concentration of 0.2-0.4 mg.
In saturation binding experiments, 5-75 nM concen-
trations of ['H]bicuculline incubated with and without
excess of unlabelled bicuculline (100 pM) and in
competition binding experiments the incubation mix-
ture contained 2nM of [‘H]bicuculline with and
without bicuculline at a concentration range of -

10 4 M. The incubation was continued for 20 min at 0--

4°C and terminated by centrifugation at 35.()()0; for

| 3 1 fonie ¥ o
20 min. [*H|bicuculline in the pellet was determined by
liquid scintillation spectrometry. Specilic binding, was
determined by subtracting non-spevific binding from
the total binding. |

Quantification of GABA using ['H]radioligand

GABA coatent in the brain stem of the sham and
experimental rat groups, was quaiitificd by displace-
ment method  [20) where the incubation mixture
contained 1 nM [FHJGABA with and without GABA
at a concentration range of 10 %210 M. The unknown
concentrations were determined from  the standard
displacement curve using appropriatc dilutions and
calculated for pmoles/g wt. of the tissue.

Protein determination

Protein was measured by the method of Lowry ct al.
1951 [21] using bovine serum albumin as standard.

Reverse transcription polymerase chain reaction
(RT-PCR) i

Isolation of mRNA

About 25-50 mg tissue was homogenized in 0.5 ml'In
Reagent. The homogenate: was centrifuged at 12,000g
for 10 min at 4°C. The clear supernatant was trans-
ferred to a fresh tube and it was aliowed to stand at
room temperature for 5. mim. 100 g of chloroform was
added 1o it, shaken vigorously for 15 s and allowed to
stand at room temperature for 15 min. The tube was

centrifuged at 12,000g tor 15 min at 4°C. Three distinct
phases appear alter centrifugation. The bottom ted
organic phase contained protein. interphase contained
DNA and a colorless upper agueous phase contained
RNA. The upper aqueous phase was transferred to «
tresh tube amd 250 pl o isopropanol was added and the
tubes allowed to siand @t toom tumperature for 10 min.
The tubes were centrituged at 12.000g for 10 min at
4°C. RNA precipitate forms a nellet on the sides and
bhottom of the tube. Phe supernatant was removed and
the RNA pellet was washed with 500 pl of 75%
ethanot, vortexed and centrituged  at 12,0008 tor
S min at 4°C The pellet was semi dried and dissolved
in minimum solume of DEPC-treated watcer. 2 ul of
RNA made up to I ml and absorbance was
measured at 260 nm and 280 nm. For pure RNA
preparation  the  ratio of absorbance at  2060/280
was >1 7. The concentration of RNA was calculated
as one absorbance . = 42 ug.

was

RT PCR Primers

5" ACA AGA AGC CAG AGA ACA AGCUAG Y
5 GAG GTC TAC TGG TAA GCECTA CCA ¥
S'TGA GAT GGC CAC ATC AGA AGC AGE X i

5 TCA TGG GAG GOl GGANGTREAG IO GADA
5 CAG AGA CAG GAA GG EGAN ARG OAN M GABA
SUCGA AGT G EAT L o S s U
SETGULAG AN TICG I AT NASY CAA-ZT 5 OAA
SEEGH e IATTE GIANCE F G NG 1 i R O e

72 GABA

RT-PCR of GABA 4 receptor subunits

RT-PCR was carried out in a total reaction volume of
20 pl in 0.2 ml tubes. RT-PCR was performed on an
Eppendorf Personal ghermocycler. ¢DNA synthesis of
2 pg RNA was performed in a reaction mixture
containing M uMILY reverse transcriptase (40 units/
reaction), 2 mM dithiothreitol, 4 units of humar
placental RNAse inhibitor, 0.5 ng of randoam hexanres
and 0.25 mM dNTPs (JATP dCTP, dGTP and d11e)
The tubes were then incubated at 42°C for one hour.
After incubation heating at a temperature of 95°C
inactivated the reverse transcriptase enzyme, MuMLYV.

Receptor data analysis

The receptos binding patameters determined using
Scatchard analysis [22]. ‘The maximal binding (B}
and cquilibrium constant (K1) et
derived by linear regression analysis by ploting the
speaitic binding of the radioligand on  X-axis anu
pound/free on Y-axis using Sigma plot computer
coftware. This is called a Scatchard plot. The By 15

dissociation
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2000 4 measure of the total nimber of receptors present in
201 the tissue and the Ky represents affinity of the
262 receptors for the radioligand. The K, is inversely
203 related to receptor affinity or the “strength™ of
264 binding. Competitive binding data were analyzed using
265 non-linear regression curve-fitting procedure (Graph-
266 pad PRISM! M, San Diego, USA). The concentration
267 of competitor that competes for half the specific
268 binding was defined as ECs,. It is same as 1Cs,. The
269 affinity of the receptor for the competing drug is
270 designated as K; and is defined as the concentration of
271 the competing ligand that will bind to half the binding
272 tes at equilibrium in the absence of radioligand or
273 other competitors |23].
274 Displacement curve analysis
275 The data of the competitive binding assays arc repre-
276 sented graphically with the negative log of concentra-
277 tion of the competing drug on X-axis and percentage of
278 the radioligand bound on the Y-axis. The steepness of
279 the binding curve can be quantified with a slope tactor,
280 often called a Hill slope. A one-site  competitive
281 binding curve that follows the law of mass action has
Table 1 GABA content in the brain stem of the Sll“'lnl and
experimental rats during partial pancreatectomy (pmole/gm wt
of the tissue)
Region Sham 72 alter 7 days after
pancreatectomy pancreatectomy
Braifstem 245 + 012 084 004" 169 + 0.016""
— Values are mean + S.EM. of 4-6 separate experiments
* P < 0.05 when compared with 72 b dfter pancreatectomy
** P < 0.01 when compared with control
*x P < 0.001 when compared with control
- | & Shem 4
1204 ; i G 72 hours pancreatectomy
L,!,,iﬁl(hlyx [)il“CrCil(CCll)ll\y
1004 g YR R R TN S
\ 80 > ).\\\\ i
: 601 N
\ et )‘.‘
401 ‘;\'\\\
k\,) 201 \\\ N
\ o
0 g N el
S ~
o
0 200 400 600 800 1000
sl :

Fig. 1 Scatchard analysis of GABA receptor using ['H]GABA
against GABA in the brainstem of rats

@ Springer

a slope of 1O the curve is more shallow, the slope
factor will be a negative fraction (i.e., -0.85 or -0.60).
The slope factor is negative because curve goes
downhill. If slope factor differs significantly from 1.0,
then the binding does not follow the law of mass action
with a single site, suggesting a two-site model of curve
fitting.

Statistics
Statistical evaluations were done by ANOVA using

InStat  (Ver.2.0da) computer programme. Linear

regression Scatchard plots were made using SIGMA
PLO L (Mersion 2:03).

Results

In the brain stem the GABA content was decreased

significantly (P < 0.001) at 72 h after partial pancrea-

Table 2 |1HlUAHA binding paramecters in the brainstem of rats

Lxperimental group B (Imoles/mg protein) Ky
Sham 983.33 + 14.53 8.93 + (.72
72 h pancreatectomy . 64020 + 15.26"" 513 + 0467

ree v

7 days pancreatectomy 71758 + 10.14 6.07 + 0.32°

Values are mean + S.EM. of 4-6 separate experiments
* P < 0.05 when compared with Sham

P < 0.01 when compared with Sham

P2 0001 when compared with Sham

Displacement of [°*H] GABA with
GABA in the brain stem of rats

150 4 = Sham
A 72 hrs pancreatectomy

v 7 days pancreatectomy

2
S 100 -
[}
4
L2
b=
3
Q
@
3 50
0
5

0 T T T T T T T Y
T} (A 1 B e R ) SN A - e < R SR

log of GABA concentration

Fig. 2 Displacement of ['H] GABA with GABA in the braie
stem of rats
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Table 3 Binding parameters of [PHIGABA against GABA in the brain stem of experimental rats

Lxperimental Group Best it model

log (1:Cq) 1 log tHCg) 2 Kigri Kigy 1Ll slope
Sham Two-site -8.06 -9.77 14 x 10 (R LAy 0.1
72 h pancreatectomy Twao-site —4.09 -4.30 e 2D el -0.21
7 days pancreatectomy Two-site -9.59 -4.56 R oo 23x10° -0.20

Values are mean of 4-6 scparate experiments. Data were fitted with an iterative nonhnear regression software (Prism. GraphPad, San
Dicgo, CA). Ki - The affinity of the reeeptor for the competing drug. The affinity for the first wricd second site of the competing drug are

297
298
299
300
301
302
303
304
305

designated as Kigyy, (for high affinity ) and Kig ) (tor low attinitv). | Cayis the coneentzation of the competitor that compzetes for half the

specitic binding

tectomy when compaied wiih sham. The decreased
content was reversed to normal near sham value
(Table 1).

Scatchard analysis of ["HJGABA 1o synaptic mem-
brane preparations of brain stem showed a significant
decrease (P < 0.001) in By, and Ky in 72 h pancrea-
tectomised rats when compared with sham. The
decreased B, and £y showed a tendency to reverse

to near normal levei/P 7 days (Fig. 1, Table 2). Ihe
N
100 o
=
€
5 80
W
b \:\\§ i
2 % 60 1 \\'\ iy
2 T’; \Q\\\\o\ !
’—E ‘::’:, \‘\1 B
2 5 40 e T S
£ \t s
o D PR
7 v N
3 20 TN S
£ \\\\
= s b
i g s
I 5 i
0 ey S g Ry ;L'“—\A-Y"S‘ R b
0 500 1000 1500 2000 2500

Borind
1 . %
[ 'Hbicuculline Gnndes/mg protein/nM)

Fig. 3 Scatchard analysis of GABAR receptor using ['H]bicu
culline against bicuculline in the brain stem of rats

i

Table 4 |'H]bicuculline binding parameters in the brain stem of
rats

nn\n( Kll
(fmoles/mg protein)

Experimentai group

Sham
72 h pancreatectomy
7 days pancreatectomy

218 + 11155
1.69 + 20287
1000w pusy T

29.30 + 092
2453 + G807
20,67 + 043"

Values are mean ¢ S.EM. of 40 separate experiments
* P < (.05 when compared with Shem, 'P < 0.05 when compared
with Sham

#x p - 001 when compared withy Sham, *** P < 0.001
compared with Sham

when

" p <0001 when compared with 72 hoafter pancreatectomy

competition curve tor GABA  against ['HIGABA
fitted for two-sited model in all the groups with Hill
slope value away from Unmity. The Kigyy increased in
72 h pancreatectomised rats along with an increase in
the log (FCs)-1 indicating a shift in high affimty
towards low aftinity. Ki,y , also Jhowed an increase in
72 I pancreatectomised rats with an increase i log
(EC4,)-2 denoting a shiftin the low atfinity site towards
much lower aftinity (Fig. 2. Fable 3).

Scatchard analysis of [*H]bicuculline showed that
the By and Ky decieased signiticantly (12 < 0.001) in
72 h pancreatectomised  rats when compared  with
sham. During 7 davs the Bl andiKy increased
significantly (I’ < 0.001 and P2 < 0.05 respectivelys
when compated with 72 h pancreatectomised rats. This
means that the altered parameters tend to reverse to
the normal level (Fig. 3 Table 4).

The competition  curve  for bicuculline against
[*H |bicuculline fitted for two-sited model in all the
groups with Hill slope value away from Unity. The
Kigyy increased in 72 h pancreatectomised rats along

Displacement of [3H]
bicuculline with bicuculline in
the brain stem of rats

150 9 s Sham
4+ 72 hrs pancreatectonmy
v 7 days pancreatectomy
°
c
§ 100
Q v
= Al
Q
) e i s
5 507 R
v N
2 : el bl -
l\\ \\\
v \‘\
jf A ik
|7 e sl al i it 4 “T”'“r““'r““‘r'*"?"”‘P

Lol i e R - e T
log of bicuculine concentration

Fig. 4 Displacement of 1 'H] bicuculline with bicuculline in the
brain stem of rats
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Fable 5 Binding, paramcters of ['Hbicuculline against bicuculline in the brain stem of experimental rats

log (FCq)-1

Experimental Group Best-fit model log (ECs)-2 Kigy, Kig Hill slope
Sham Two site ~8.08 -4.72 154 % 10" 1.38 % 10°° ~0.40
72 h pancreatectomy Two-site ~9.90 N5 928 x 10" 204 x 107 -0.20
7 days pancreatectomy Two-site =9.54 —-4.56 1.89 x 10 20050 107 -0.20

Values are mean of 4-6 separate experiments. Data were fitted with an iterative nonlinear regression software (Prism, GraphPad, San
Diego. CA). Ki - The affinity of the receptor for the competing drug. ‘The affinity for the first and second site of the competing drug arce
designated as Kigyy, (for high affinity) and Kig, , (for low atlinity). I'Cs is the concentration of the competitor that competes for half the

specilic binding

with an increase in the log (ECsq)- 1 indicating a shift in
high affinity towards low affinity. Kig y also showed an
increase in 72 h pancreatectomised rats with  an
increase in log (ECg)-2 denoting a shift in the low
affinity site towards much lower allinity  (Fig. 4
Table 5).

Real time-PCR analysis of GABA receptor

%> Subunit of GABA A receptor mRNA showed an
increase in Ct value showing decreased expression in

Fig. 5 Rcal Time PCR
amplification of the x5 sub

72 h pancreatectomised rats. The Ct value of the P 7d
decreased showing an increased expression in mRNA
synthesis (Fig. S, Table 6). f5 Subunit of GABAA
receptor mRNA mercase in Ct ovalue
showing decreased expression in 72 h pancreatecto-
mised rats. ‘The Ct value of the P 7d decreased showing
an increased expression in mRNA synthesis (Fig. o,
Table 7). =+, Subunit of GABA L receptor mRNA
expression did not show any change in 72 h pancrea-
tectomised rats when comparegl (Fig. 7, Table 8). 72
Subunit of GABA 5 receptor mRNA  showed an

showed an

oo

" g T i
unit of GABA 5 receptor ' j
mRNA from the brain stem | !
; L < 00 |
of experimental rats. 3 g ;
(1 ).(}'mph representing the 2 # . ¢ \ !
crossing threshold (Ct) of ] i bk o
sample, (2). Melt curve of the 3 ’i — - - : ' § | - !
sample of the amplicon - gigyhill S % %
. 3 - A m: l
obtained after the reaction. o i
(3)- Graph representing the i i i
¢ RN SOOI i e
crossing threshold of the : B2 e gl b U S e
house keeping gene (fi-actin). LSRR S TR (el T ) n % S
(4). Melt curve of the house ks i Degrees C 2
keeping gene ohtained after
the reaction (For
interpretation of the X il e S
references to color in this Y A ) ~ sl wn
figure fegend. the reader is i & Gy
referred to the online version ; < e \:-_‘
of this article) ja i bat, e
H } M,
!um, : 3 e
H i 2 A
H e S | R
=M L s i I . i -
L i 4
& | il
F C'FMN*'KTWM.M -4k ?,,,‘.L, s il 1.0
A0 X200 %388 i} 8 8
(ks 3 Dogrepe 4
Table 6
g { ' e
! No. Experimental group i Ol
by e Sham ! WL
e 72 hrs pancreatectomy { e
3 7 days pancicatectomy ! 41.27
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Fig. 6 Rcal 'Time PCR

amplification of the ff; sub .I ni 051: 1 g TR
unit of GABAA receptor | ! ¢ .
MmRNA from the brain stem “l ‘ .y |
of experimental rats ; i g i
(1).Graph representing the ”tm L . o
crossing threshold (Ct) of . ' NS PR ;
sample, (2). Melt curve of the & o e i :
sample of the amplicon ! y \
obtained after the reaction, : o i e e SRR G
(3). Graph representing the S R e S i . " pa i
crossing threshold of the Opcies 1 Degs € 2
house keeping gene (fl-actin),
(4). Melt curve of the house
keeping gene obtained after ’ o m : 4
s reacti 2 I Y N ) ¢
the reaction (For " .ﬁ
interpretation of the | \\
references to color in this ;m : a oy
figure legend, the reader is S i i Tl
referred to the online version ;M i § h
of this article) i : , 3w : i
- i’w _'/AY\ ' v \
i 1 A N een .‘. Sé\wf_ ;’r =
S i ey
Cyeles 3 DrgesC 4
Table 7
No. _._ Experimental group Ct Value
1 Sham 3907
2 72 hrs pancreatectomy TR S
3 7 days pancreatectomy 40.81

increase in Ct value showing decreased expression in
72 h pancreatectomised rats. The Ct value of the P 7d
decreased showing an increased expression in mRNA
synthesis (Fig. 8, Table 9). 3

e

Discussion

Functional pancreatic fi-cell mass is dynamic and
although fully differentiated, fp-cells are capable of
re-entering the cell cycle upen appropriate stimuli.
Stimulating regeneration-competent cells in situ s
clearly the most desirable way to restore damaged
tissue. A large number of growth factors and growth-
stimulating peptides are expressed in or have stimula-
tory effect in the growing isicts [24]. The presence of
GABA in the cells of the islets of Langerhans is well
documented in varicus specics, particularly rats, on the
basis of immunohistochemical and biochemical data [5.
11, 13, 25-31].

GABA is one of the mo:t abundant neurotrans-
mitters in the vertebrate centra! nervous system and is
involved in neuroendocrine processes such as devel-
opment, reproduction, feeding and stress [32]. A

decrease in GABA content was observed during
active pancreatic proliferation in brain stem. The
decreased content in the brain stem was reversed to
basal level when pancreatic DNA synthesis declined
to control level. The effect of regeneration in the
peripheral tissues to the hypothalamic GABA content
was alrcady reported during the regeneration of liver
[33]. This indicates the decrease in brain GABA
content is important in the DNA synthesis in
pancreas. It may be a homeostatic feedback adjust-
ment by the hypothalamus to trigger the sympathetic
innervation and thereby DNA synthesis. The pancreas
enhances the insulin secretion to compensate the
insulin demand in the body during the loss of the
cells. Brain:. GABAergic functional alterations are
reported to regulate autonomic nerve function in rats
[34]. GABA has been known to function as an
autocrine/paracrine signal molecule in addition to its
well-known —inhibitory  neurotransmitter  function.
Studies on the developing brain and on primary brain
cell cultures showed that neuron formation was
facilitated by GABA through GABA A ion channels
during postmitotic differentiation, but not earlier
during the phases of cell fate commitment [35]. These
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indicate that a decrease in the brain GABA content is
important in the DNA synthesis in pancreas. Brain
GABAergic changes ar¢ reported to regulate auto-
nomic nerve functions in rats [34. So the results show
that a reduction in the GABA content in the brain
regions may enhance DNA synthesis in pancreas by
facilitating the sympathetic tone.

Previous studies in the regeneration of liver have
showed significant alterations in the GABA 4 receptor
function in brain regions [33. 35]. So we have studied
the GABA, receptor alterations during the regener-
ation of pancreas of which the endocrine and exocrine
secretions have a strong influence from the brain
signals. Many gastrointestinal and pancreatic functions
are under strong modulatory control by the brain via
the vagus nerve [37) Pancicetic polypeptide when
microinjected into the dorsal vagal complex potenti-
ates glucose-stimulated insulin seeretion [38]. Some of
the neurons of dorsal motor nucleus of the vagus are
presumed to play a role in the brain stem neural

control of glycemic homeostasis [39]. Targeted phar-

macological lesion of the adre nergic innervation of

dorsal motor nucleus of the vagus nerve causes
hypersecretion by pancreatic fi-cells, an effect, which
requires an intact wg,us nerve [40, 41]. Also, the
hypothalamic neurons producnr}g oxytocin that densely
project to the dorsal vagal cemplex are proposed to
involve in an inhibitory controi of the vagal pregangli-
onic neurons that innervate the pancreas [42]. These all
suggest the control of brain from hypothalamus and
brain stem over pancreas by the vagal innervation,
GABA and the hormonal functional studies will
elucidate the functional mlwrity of their control on
peripheral tissues inci dmg pangreas. A study in our
lab in the regeneration of liver has dlrwdy explained
the importance of lh GABAcrgic ruceplor function
and gene expression [33, 35].

It is well established tha:, the autonomic fibres
supplying the pancreas travel, via the vagus and
splanchnic nerves. These nerves are clearly related to
the ventral hypothalamus. The ventro-medial hypotha-
lamic nuclei are considered as the sympathetic centre
and the stimulation, of this area decreases insulin
secretion [43]. Studies of _in vivo pancreatic nerve
activity after VMH lesions show increased parasympa-
thetic and decreased sympathetic nerve firing rates
[44]. Decreased GABA 4 recepior binding observed in
the hypothalamus reduces the cympathetic nerve stim-
ulation thus reducing the inhiviiory effect of EPI on
insulin secretion

Pancreatic fi-cells express plutamate decarboxylase
(GAD), which is responsibic for the production and
release of GABA. Increased eytoplasmic ATP levels

¢

can suppress. GAD  activity in ff-cells, and hence
GABA production and release, is compatible with
previous findings on ATP suppression of brain GAD
activity [45].

Our studics have revealed the significance of GABA
and GABA , receptors functional regulation during
pancreatic regeneration and insulin secretion in rats.
The decreased binding of GABA 4 receptors observed
in the brain stem during pancreatic regeneration has a
stimulatory role on insulin secretion mediated through
sympathetic system.
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