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CHAPTER 1

Introduction

A queue is formed when customers arriving at a service station are met with a busy

server and decides to wait for receiving service. To model a queueing system mathemat­

ically, we require the arrival pattern, service time distribution, the number of servers, the

capacity of the service station and the service discipline. These quantities varies according

to the practical situation we want to model mathematically.

Applications of Queueing theory in areas like Computer networking, ATM facilities,

Telecommunications and to many other numerous situations made people study Queueings

models extensively and it has become an ever expanding branch of applied probability.

Methods foranalysing queueing models: A queueing model is often analysed by using

a continuous (or discrete) time Markov Chain whose description and analysis depends on

the queueing model under consideration. For example, in the case of MI Mll queue, the

collection {N(t) : t 2:: O} where N(t) denotes the number of customers in the system

at time t, is a continuous time Markov Chain whose analysis gives us informations about

the queueing model such as the distribution of the number of customers in the system at

arbitrary time t, its limiting distributions (when it exists) the waiting time distribution, busy

period etc. Below we briefly sketch some of the methods applied for studying a queueing

model and we do this by considering the simple MIMll queueing system.

Let A, J1, denote the arrival and service rates respectively and N(t), the number of cus­

tomers present in the system at time t. We also assume that N(O) = i. Let

Pn(t) := P{N(t) = n}.

8
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Then" since {N(t) : t ~ O} is a Markov Process, we can write

Pn(t + ~t) = Pn(t)(1 - (>' + j.t)~t) + Pn-l(t)>'~t + Pn+1(t)j.t/).,t + o(~t) for n ~ 1 and

Po(t + ~t) = Po(t)(1- >'~t) + Pl(t)j.t~t + o(~t)

By subtracting Pn(t) from bothsides, dividing throughout by ~t, and then taking limit

as ~t - 0, we get the differential-difference equations:

d .
dt Pn(t) = -(>' + j.t)Pn(t) + >.Pn..:.1(t) + j.tPn+l(t) for n ~ 1,

d
and dtPo(t) = ->'Po(t) + j.tP1(t) (1.1)

Theseequations are called the forward Kolmogorov equations.

Tosolve (1.1) the method of generating functions is used as follows:

We define P(z, t) = L:~=o Pn(t)zn, (z complex). Then using (1.1) we arrive at the

equations

and

8 1- z
-8 P(z, t) = -{(j.t- >.z)P(z, t) - JiPo(t)}

t z

P(z, 0) = i

(1.2)

(1.3)

where :tP(z, t) = L::op~(t)zn
Now to sole (1.2) we define the Laplace transforms with respect to time t of P(z, t)

and ~(t) as

.L:{P(z, t)} = P(z, s) = 100 e- stP(z, t)dt

, .L:{Pi(t)} = ~(s) = 100 e-st~(t)dt
o -



and then from (1.2) we get
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- Zi+1 - JL(1 - z)iMs)
P(z, s) = .(,\ + JL + s)z - JL - '\Z2

10

(l.4)

Evaluating Po(s) weget theLaplace transform P(z, s) and then inverting it, we get P(z, t).

Nowfor finding the Pn(t)s we have to find the coefficient of z" in the power seriesexpan­

sion of P(z, t). But the inversion of the Laplace transform becomes almost impossible as

the complexity of the queueing model increases which makes the above method unattrac­

tive from an application pointof view.

From (1.1) we derive the'stationary equations by putting ft P; (t) = 0, as t -+ 00 :

0= -(,\ + JL)Pn + '\Pn-I + JLPn+l (n 2: 1)
0= -,\Po + JLPI

(1.5)

A solution {Pn} to the above infinite system of equations which satisfies l:~=o Pn = 1

exists if, and only if, p = ~. < 1. To find such a solution (when it exists) one can use the
. IJ

iterative method whichgives

PI = PPo

Pn = pnpo for n 2: 2.

Now to find Po we use the relation l:~=o Pn = 1, which gives Po = 1 - p. Thus we get

Pn = (1- p)pn forn 2: o.
For finding PnS we can also use the method of generating functions as follows.

We define

P(z) = L~=oPnZn (z complex)

thenfrom (1.5) we have P(z) = II~z~ (p < 1),

which implies
00

P(z) = 2:)1 - p)pnzn
n=O
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so that the coefficient Pn of zn, is given by

Pn = (1 - p)pn for n 2: O.

11

Here we note that each equation in (1.5) contains atmost three PnS; which helped us

to apply the above methods successfully. But as the number of PnS which are interrelated

through an equation increases (which often occurs when we use non exponential inter­

arrival or service time distributions to model queueing problems) the direct application

of the above methods becomes difficult and we seek the help of Matrix Analytic Methods.

Before we discuss this method in some detail we shall mention some more methods applied

by Queueing Theorists.

In the case of an MIGl1 queue where the service time distribution is arbitrary, one

cannot get a Markov Chain by considering simply the random variable N (t) which denotes

the number of customers present in the system. Following are some methods applied in

such a situation.

(a) Method of embedded Markov chain In this method we keep noting the value of the

random variable N (t) at certain epochs {tn } so that the collection {N(tn )} becomes a

discrete time Markov Chain. For the MIG/I queue, we achieve this by taking tn as the

epoch of nth departure from the system and N(tn ) as the number of customers left behind

by the departing customer. Now the Markov Chain {N(tn): n 2: 1} can be used to study

the MIGII queucing system.

(b) Method of supplementary variables In this method to get a Markov Process, we keep

track of some additional information together with the random variable N (t). For M IG 11
queue the elapsed service time 'x' at time t of the unit undergoing service at time t serves

as this additional information, In otherwords the collection {(N(t), x) : t2: 0, x 2: O} is a

Markov Process which can be used to study the MIGl1 queue.
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Matrix analytic methods: Even though Queueing systems such as

M/MI1, MIMloo, GIGl1 etc. are well studied and are well tractable, using the meth­

ods of generating functions and Laplace transform methods, the numerical tractability of

Queueing systems through these methods becomes complicated when we assume non ex­

ponential interarrival or service time distributions which we mentioned in the above para­

graphs. But the introduction of Matrix Analytic Methods in solving Queueing problems

by Neuts and others, reduced this problem of numerical intractability considerably and

increased the implementation of Queueings Models to analyse practical situations taking

non exponential interarrival and service time distributions (for example Phase type) which

are more suitable for practical applications. The modelling tools such as Phase type dis­

tributions, Markovian Arrival Processes, Batch Markovian Arrival Processes, Markovian

Service Processes etc. are well suited for Matrix Analytic Methods.

Below we give a brief description of Matrix Analytic Methods applied for solving

quasi-birth-and-death processes.

Level independent quasi-birth-and-death processes: A level independent quasi-birth­

and-death process is a Markov process with state space E= {(O, j) : 1 ~ j ~ n} U{(i, j) :

i ~ 1, 1 ~ j ~ m} and with infinitesimal generator Q given by

BI Bo 0 0

B2 Al Ao 0

Q= 0 A2 Al Ao

0 0 A2 Al

The generator Q is obtained in the above form by partitioning the state space E into the

set oflevels {Q,l,2, ...} where Q= {(O,j) : 1~ j s n}, i = {(i,j) : 1 <j ~ m} for

i ~ 1. The vector i is called i lh level. BI is a square matrix of order n x n and denotes

transition rates from states of level 0 to the states of level 0 itself. Bo is a matrix of order
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n X m and denotes transitionrates from level 0 to level 1. The m x n matrix B2 denotes

transition rates from level 1 to level O. A2 , Ab Ao are square matrices of order m and

denotes transitionrates from level i to levelsi-I, i, i + 1 respectively. Assuming that Q

is irreducible, we have the following theorem(see Neuts [44]).

THEOREM 1.1. The process Q is positive recurrent if and only if, the minimal non

negative solution R to the matrixquadratic equation

(1.6)

hasspectral radius less than 1 and thefinite system ofequations

(1.7)

hasa unique positivesolutionfor xo, and, Xl'

If the matrix A == Ao+ Al + A2 is irreducible, then sp(R) < 1 if and only if,

1rAoe<1rA2e, where 1r is the stationary probability vectorof the generator matrixA.

The stationaryprobabilityvector X = (Xo, Xl, X2, •• •) of Q is given by

(1.8)

Tofind the minimal solution of (1.6) one can use the iterativeformulas (see Neuts [44]):

(1.9)

with an initial value Ro, which converges to R if sp(R) < 1. An accuracy check for R is

given by the equation RA2e = Aoe. Also the aboverelation (1.9) shows that if any row of

Aois a row consistingof zeroes only, then the corresponding row of Rn, n ;::: 1, has zeros

only so that the corresponding row of R also consists of zeros only. So if our Ao matrix
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has a special structure, it canbe exploited in the evaluation of the R matrix.

Another method to find R is to use the relation

14

(1.10)

where the matrix G is the minimalnonnegative solution of the matrix quadratic equation

(1.11)

The matrix G will. be stochastic of sp(R) < 1. When sp(R) < 1, the Logarithmic

Reduction Algorithm due to Ramaswamy (see Latouche and Ramaswamy [41]), which

is quadratically convergent, can be used to calculate the G matrix and hence the R matrix

using relation (1.10). When G is stochastic, from (1.11) we obtain the relation

(1.12)

which shows that if any column of the A2 matrix is zero then the corresponding column

of the G matrix is also zero. Therefore if the A2 matrix has a special structure, it can be

exploited in the calculation of the G matrix. Also one can efficiently use (Block) Gauss­

Seidel iteration method to evaluate the G matrix, particularly if the matrix A2 has a special

structure.

For further details on Matrix Analytic Methods for Level independent QBD's we refer

to Neuts [44], Latouche and Ramaswami [41].

Level dependent quasi-birth-and-death processes: A Level dependent quasi-birth­

and-death process is a Markov process with state space E = {(i, j) : i ~ 0, 1 ::; j ::; ni}

and with infinitesimal generator Qgiven by
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A lO AIIO 0 0

A 21 All AOl 0

Q = 0 A~2 A 12 A 02

15

The state space is partitioned into levels! = {(i, j) : 1 ~ j ~ ni} and transitions take

place only to the adjacent levels. However, here the transition rates may depend on the

level i and therefore the spatial homogeneity of the associated process is lost. All Ali 8

are square matrices; but, since different levels may contain different number of phases,

the A2i matrices and AOi matrices are in general rectangular. Assuming that the QED'is

irreducible we have the following theorern.

THEOREM 1.2. When the QED ispositive recurrent, its steadystate distribution tt =

('Tro, 'Trl, 'Tr2, •.• ) satisfies the relation

'Trn = 'Trn-lRn for n 2: 1 (1.13)

where the matrices Rn arethe minimal nonnegative solutions ofthe system ofequations

(1.14)

Regarding thepositive recurrence ofthe above QBD we have thefollowing theorem.

THEOREM 1.3. The QBD ispositive recurrent if, and only if, the system ofequations

hasa positive solution for 'Tro.

'TrO L{( IT Rk)e} = 1
n~l l:5k:5n

(1.15)

(1.16)
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To calculate the matrices Rn and the infinite sum in (1.16), different truncation proce­

dures suchas the one by Brightand Taylor [13] (which can be applied in all cases)and in

the caseof retrial queues, Neuts-Rao Truncation (see [45]) etc. can be applied.

For further details on· Matrix Analytic Methods used in Stochastic Processes we refer

to Neuts [44], Latouche and Ramaswarni [41].. An excellent bibliographical survey on

Matrix-Analytic Methods is provided in Gomez-Corral [29].

Modelling tools

Continuous-time phase type distribution (PH distribution)

To describe a continuous-time Phase Type distribution we consider a continous time

Markov Chainwithstates{I, 2, ... ,m + I} and infinitesimal generator

Q= [: :]

where the m x m matrix T = (1i,j) i, j = 1, ... , m has the property that 1ij < 0 for

1 ~ i ~ m, and1i,j ~ 0 for i i= j. AlsoTe +TO = O. The initial probability vector of Q

is given by (a, Q'm+d where·Q'm+! is a scalarand oe + Q'm+l = 1. To make all the states

1,2 ... , m transient to ensure absorption to the state m -+ 1 a certain event, starting from

any initial state, we assume that the matrix T is non singular.

DEFINITION 1.1. A random variable X is said to have phase type distribution with

representation (Q', T) oforderm ifand only if X represents the time until absorption in a

finite stateiwitbm + 1 states)Markov processdescribed above.

If the random variable X has a PH distribution with representation (Q', T) of order m

then

(1) The distribution function ofX is givenby

F(x) = P(X ~ x) = 1- aexp(Tx)e.
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(2) The distribution F(·) has ajump ofmagnitude am+l at x = 0 and the probability

densityfunction f(x)on (0,00) is given by

f(x) = aexp(Tx)TJ

(3) The Laplace-Stieltjestransform r(s) ofX is given by

r(s) = am+! + 0:(s1 - Tt1TO, for Re(s) ~ 0

(4) The moments about origin are given by

E(Xi) = J.li = (-1)ii!(aT-1e), for i ~ 0

The class ofcontinuous time Phase type distribution contains a lot of important distribu­

tions such as exponential, Erlang, etc.

Discrete-time phase type distribution: To define a discrete time PH distribution, we

proceed as in the continuous case but here we take a discrete time Markov Chain with

states {I, 2, ... , m + I} and transition probability matrix P given by

where T is a square matrix of order m and Te + TO = e. Similar to the continuous case,

the necessary and sufficient condition for eventual absorption into the absorbing state is

that the matrix I - T is nonsingular. The initial probability vector of the Markov Chain

is (0:, a m+1) where o:e + a rn+1 = 1. If the random variable X denotes the number of

steps for absorption in a Markov Chain described as above, the probability distribution

{Pk = P(X = k)h~l is given by Po = (lm+ltandpk = o:Tk-1To, for k ~ 1

The random variable X is then said to have a discrete-time Phase type distribution with

representation (0:, T) of order m.

The i 1h factorial moment of X is given by

J-L~ = i!aTi-l(I - Ttie, for i ~ l.

Some useful properties of Phase type distributions are the following.
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(a) finite convolutions of continuous PH-distributions is again a PH-distribution.

(b) a finite convex mixture of PH-distribution is again a PH-distribution
00

(c) an infinite mixture, G(·) = EPkF(k)(.) where {Pk} is a discrete PH-distribution
k=O

and F{k)(.) is the k-fold convolution of a continous PH-distribution F(·), is again a

PH-distribution.

(d) The classof continuous PH-distributions is dense in the class of all continuous distri­

butions withsupporton the non negative real line.

PH-renewalprocesses: A renewal process whoseinter-renewal timeshavea PH-distribution

is called a PH-Renewal process.

To construct a PH-Renewal process we considera continuous time MarkovChain with

states {I, 2, ... ,m + I} having infinitesimal generator

The m x m matrix T is taken to be nonsingular so that absorption to the state m + 1

occurs withprobability I from anyinitialstate. Let (0, 0) where 0 is a scalar, be the initial

probability vector. When absorption occurs in the above chain we assume that an arrival

to the system has occurred and the process immediately starts anew in one of the states

{I, 2, ... ,m} using the probability vector o. Continuation of this procedure gives us a

non terminating arrival process and is calledPH-renewal process.

The class of PH-renewal processes include Poisson process, Compound Poisson Pro­

cessetc.

Continuous time PH distributions and PH-Renewal processes can be used to model

service time distributions and arrival processes respectively in QueueingModels.

In the case of Queueing .systems which are modelled using a finite continuous time

Markov Chain, the random variables associated with the queueing process such as the

waiting time of a customer, timebetween twosuccessive departures, a busyperiodetc. are

often seen to follow a PH-distribution so that the distributions of these random variables
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as well as their expected values can be efficiently calculated using the properties of PH­

distributions.

For more details and properties of PH-type distributions we refer to Neuts [44], La­

touche and Ramaswami [41], Chakravarthy [14].

Batch Markovian Arrival Process (BMAP) :

To get a Batch Markovian Arrival Process we consider a two dimensional Markov

Process X(t) = ((N(t), J(t)) : t ~ O} on the state space {(i,j) : i ~ 0, 1 ~ j ~ m} with

infinitesimal generator given by

Do D1 D2 Da

0 Do D1 D2
Q=

0 0 Do D1

where Dk k ~ 0, are m x m matrices; Do has negative diagonalelementsand nonnegative

off-diagonal elements; Dk for k ~ 1 are nonnegative and the matrix D given by D =
00

EDk is an irreducible infinitesimal generator of a continuous time Markov chain. We
k=O
assume that D=I Do. The variable N(t) denotes the number of arrivals in (0, t], and the

variable J(t) denotes phase of the arrival process. The transition from a state (i,j) to a

state (i+ k, l) where k ~ 1, 1 ~ j, l ~ m with transition rates governed by the matrix Di;

correspond to the arrival of a batchof size k, whilea transition from a state (-i, j) to a state

(i, l), 1 ~ j, l ~ m; j =I l, with transition rates governed by the matrix Do, correspond

to no arrival. Thus the matrix Do governs transitions that correspond to no arrival and the

matrix Dk governs transitions corresponding to a batcharrival of size k, k ~ 1. Weassume

that the matrix Do is a stable matrix (see Bellman [8]) which makes it non singular and

which in turnensures that the sojourn time in the set of states {(i, j) : 1 ~ j ~ m} is finite

with probability 1 for all i. This ensures that the arrival process X (t) never terminates.
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Let 7r be the stationary probability vector of the Markov process with generator D. The

fundamental arrival rate for the arrival process is then given by

00

8 = 7r(L kDk)e.
k=l

For more details on BMAPs we refer to Lucantoni [42].

Markovian arrival process :

A Markovian Arrival Process(MAP) is a particular case of BMAP where maximum

possible batch size is I, that is, we make Dk = O,for k ~ 2, so that here D = Do + D1• A

construction of MAP with representation matrices (Do, Dd of order m is as follows: Con­

sider a Markov process with state space {I, 2, ... , m, m + I} with infinitesimal generator

Q= [:0 :]
where Do is an m x m matrix, Doe + d = 0 and m + 1 is an absorbing state. Since

by assumption Do is a stable nonsingular matrix, absorption occurs with probability 1

from any initial state. As in the construction of PH-renewal process, when absorption

occurs we assume that an arrival has occurred and we immediately restart the process

using an initial probability vector. But different from PH-renewal process here this initial

probability vector depends also on the state from which absorption occurred and this brings

dependence between interarrival times. Let (Qi'0), where Qi is an m-dimensional row

vector with Qie = I, be the probability vector which we use to restart the process after

absorption has occurred from the state i and define the m x m matrix D 1 by (D1kj =

(dMQi)j 1 ~ i,j ~ m. Now the matrix D = Do + D 1 will be the generator matrix of

a Markov process {Y(t) : t ~ O} on the state space {I, 2, ... ,m}. Let N(t) denotes the

number of arrivals in (0, t]. Then the 2-dimensional Markov Process {(N(t), Y(t)) : t ~

O} with state space {(i, j) : i~ 0, 1 ~ j ~ m} is the arrival process which we constructed
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above and is calledMarkovian Arrival Process. The infinitesimal generator of the process

is given by

Do D1 0 0

0 Do D1 0
Q=

0 0 Do D1

Formore details on MAPs refer to Lucantoni [42], Chakravarthy [14].

Markovian Service Process (MSP): By defining Markovian serviceprocess we wish to

bring correlation between twosuccessive service times. Weshall construct an MSP in the

same way as we constructed a MAP that is by taking a Markov process with state space

{I, 2, ... ,m, m + I} and with infinitesimal generator

herDo is an m x m matrix, Doe +d = 0 and, m + 1 is an absorbing state. The matrix Do

is assumed to be a stablematrix so that absorption is certain from any initial state i. Here

an absorption is considered as a service completion and if the service is to be restarted

immediately we do this by restarting the above Markov process otherwise we freeze the

process until the beginning of the nextservice and then restart it. In both cases we restart

the process using a probability vector (0:" 0), where etl is an m-dimensional row vector

and O:je = 1, if the absorption has occurred from state i. This dependence of the initial

probability vector on thestatefrom which absorption hasoccurred makes twoservice times

dependant random variables.

Literature survey pertaining to the thesis :

For a detailed discussion on retrial queues one may refer- to the monograph by Falin

and Templeton citeft and for more recent developments the papers by Artalejo [2, 1]. An
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information theoretic approach to the analysis of MICI! retrial queues is provided in Ar­

talejo [3]. Retrial queues in discrete time has been extensively analyzedby Nobel, see for

example [46].

Dueto recentapplications in health caresystems [11,56, 60] and in queueswith impa­

tient customers arising. in telecommunication networks [5,4,61,62] and inventory systems

with perishable goods [30,47], therehas been renewed interest in prioritization of units in

queueing models.

A large number of probabilistic models possessing variety of priorities have been dis­

cussed. Ordinarily, most chapters in textbooks [31, 33, 55] and papers [25, 28, 39, 49]

on priority queues treat with exogenous priority rules; i.e., the decision of selecting the

next unit for service may depend only upon the knowledge of the priority class to which

the unit belongs. Nevertheless, in many situations, the exogenous disciplines might not

be true. For example, in several medical procedures, patients are treated according to the

urgency of their conditions, in such a way that all patients are homogeneous in their ini­

tial condition and change while waiting for treatment. Thus a key management issue of a

medical service is to prioritize patients to reduce the suffering and risk faced by them in

queue by implementing a dynamic priority ruleevenif theyhaveinitial homogeneous con­

ditions. See for example [33,. Chapter7], and [55, Chapter3], for a review on the methods

and models related to endogenous priority disciplines and their applications.

A paper by Wang [60] discuses patient queue models with self-generation of priori­

ties, though he does not mention this terminology explicitly, where all time variables arc

assumed to be exponentially distributed. To be concrete, Wang incorporates the condition

and itschanges over the timefor a patientin queue, and stressesthat it is important to study

queueing models in health care systems with more general distributional assumptions on

the service timesand thearrival pattern. However self-generation of priorities of customers

in queues havebeen introduced by A. Krishnamoorthy, Viswanath. C. Narayanan & T. G.

Deepak (2002, unpublished paper).
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Self-generation of priorities by units in queue may be thought of as a consequence of

their impatient behaviour (see [61, Section 2]). Classical queueing theory on impatient

units [5, 4, 51, 53, 54] usually concerns with models in which units wait for service for

a (random or fixed) limited time only and leave the system forever if service has not be­

gun within that time. For the special case of exponentially distributed services, queueing

models with impatient units have been studied by Barrer [6], [7] and later by Gnedenko

and Kovalenko [27] who corrected an en-or in Barrer's reasoning which, however, does

not invalidate his results. for the case of deterministic service times a closely related

model was studied by Hokstad [32] and Swensen [52]. Other related works can be seen

in [19, 35, 24, 48, 50] and references therein. See the survey of perishable inventory the­

ory by Nahmias [43] for further details on how upper limits on the waiting time indicate

maximal times the goods can be stored before their quality degrades.

A k-out-of-n system is characterized by the fact that the system operates as long as

there are atleast k operational components. A k-out-of-n system can further be classified'

as follows:

The system is called 'COLD' if the operational components do not fail while the sys­

tem is in down state. It is called 'HOT' if operational components continue to deteriorate

at the same rate while the system is down as when it is up. The system is called 'WARM' if

the deterioration rate while the system is up differs from that when it is down. An extensive

study of k-out-of-n systems can be seen in Krishnamoorthy et al [38], Chakravarthy, Kr­

ishnamoorthy & Ushakumari [15]. Krishnamoorthy and Ushakumari [37] is the first work

to introduce retrial into reliability. In that paper they assume the failed components of the

k-out-of-n system to proceed to a repair facility which when found busy,.these components

are sent to an orbit. They studied the system in the three cases, namely, COLD, WARM,

and HOT. Ushakumari and Krishnamoorthy [58] generalize the above mentioned work

to the case of arbitrarily distributed service time and derive several system performance

measures. Bocharov et al [10] discusses a retrial queueing system with a finite waiting

space, Poisson arrival of customers and arbitrarily distributed service time. Customers in



1. INTRODUCTION 24

thewaiting spacehavepriority overcustomers in the system. Choiand Chang[17] provide

a survey of singleserverqueues withpriority calls. One may refer to Choi and Chang[16]

for results on multi-server queues with twotypes of arrivals.

Postponement of workis a common phenomena. This may be to attenda more impor-,

tantjob than the one beingprocessed at presentor for a break or due to lack of quorum (in

caseof bulkservice, or whenN-policy for service is applied) and so on. Queueing systems

with I?ostponed workis investigated in Deepak, Joshuaand Krishnamoorthy [20].

Author's contribution: Chapter 2 discusses Reliability of a 'k-out-of-n system' where

where the server also attends external customers when there are no failed components

(main customers), undera retrial policy, which can be explained as follows: The external

customers arrive according to a BMAP and the components fail at an exponential rate.

If an arriving batch of external customers finds a free server one among them gets into

service and others (if any) move to an orbit Of infinite capacity. If an arriving batch of

external customers sees a busyserver, the whole batchmoves in to the orbit. Service times

of mainand external customers follow arbitrary distributions. The stabilitycondition and

the steady state distribution are obtained. We also consider a particularcase of the above

problem by assuming thatexternal arrivals areaccording to a MAPandalso that theservice

times of both the main and external. customers follow a PH-distribution. The numerical

results obtained shows that this service to external customers decreases the idle timeof the

server without affecting the system reliability considerably.

Chapter 3 is an extension of the problem in chapter 2. Here also we consider a k­

out-of-n systemwhere the serverprovides service to external customers. The components

fail at an exponential rate and the external customers arrive according a MAP. External

customers who finds the serverbusy, joins a pool of finite capacity M, if the pool is not

full; otherwise hejoins an orbitof infinite capacity with probability , or leaves the system

with probability 1 - ,. The orbital customers retry for service at an exponential rate e. A

retryi~g customer is accommodated in the pool if the pool is not full otherwise he rejoins
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the orbit with probability 8(< 1) and with probability 1 - 8 he leaves the system forever.

The service to the failed components is according to an N -policy; that is the service to the

components starts once all failed components are repaired, only if N failed components

accumulate. In the mean time the server attends external customers in the pool. When

N failed components accumulate, no more pooled customer is taken for service but the

ongoing service of the external customer if there is any, is not pre-empted. The service

times of both types of customers are independent and follow different PH distributions.

This system is stable irrespective of the parameter values. The steady state distribution

is calculated using Bright and Taylor method. Based on this some system performance

measures are calculated and numerical illustrations provided.

Chapter 4 discusses reliability of 'k-out-of-n-system' where the server also attends ex­

ternal customers. In contrast to the assumptions in chapters 2 and 3 here instead of an

orbit we assume that the external customers join a queue in a pool of infinite capacity with

probability 1 if there are < M failed components or with probability, if there are M or

more failed components. To reduce the impatience of a queueing customer in the pool,

immediately after a service completion the server attends a pooled customer (if there is,

any) with probability p if there are < L failed components and with probability 1 selects

a pooled customer for the next service if there is any, provided the number of failed com­

ponents is zero. The stationary distribution is obtained under the stability condition. A

number of performance characteristics are derived. A cost function in terms of L, M, ,

and 1J. is constructed and its behaviour investigated numerically.

Chapter 5 studies a multi-server infinite capacity Queueing system where each customer

arrives as ordinary but can generate into a priority customer while waiting in the queue.

We call this phenomenon as 'self generation of priorities'. This phenomenon is often ob­

served in clinics. We assume that the customer who has generated into priority is given

service immediately, if there IS at least one server who is not currently busy with a priority

generated customer; otherwise the priority customer leaves the system for immediate ser­

vice elsewhere. Arrival process is poisson and service times of each server is exponential.
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The priority generation is also at an exponential rate. This system is stable irrespective of

the parameter values. Stationary distribution is obtained using Bright and Taylor method.

Some performance characteristics are derived and numerical illustrations provided.

Chapter 6 is on a finite capacity multi-server queueing system with self-generation of

priority of customers. As in Chapter 5 the priority generated customer is either taken for

service immediately if there is at least one server who is not busy with a priority gen­

erated customer; else he leaves the system for getting immediate service. The arrival of

customers is according to a MAP and the service time of each server is assumed to follow

a PH-distribution. Assumptions of finiteness of system capacity increases the numerical

tractability and it is also close to the practical situation where the system capacity is often

found to be finite. We give formulas for numerical computation for a variety of perfor­

mance measures, including the blocking probability, the departure process, and the sta­

tionary distributions of the system state at pre-arrival epochs, at post-departure epochs and

at epochs at which arriving units are lost. Some numerical illustrations are also provided.

Chapter 7 is on a single server infinite capacity retrial Queue where the customer in

the orbit can generate into priority and leave the system if the server is already busy with

a priority generated customer; else he is taken for service immediately. Arrival process

is according to a MAP and service process is MSP. This system is stable irrespective of

the system parameters. The steady state distribution is obtained using Neuts-Rao Trun­

cation method where in order to choose the truncation level we use a dominating process

suggested by Bright and Taylor which saves a lot of computational effort. Certain system

characteristics are derived and numerical illustrations provided.



CHAPTER 2

Idle time utilisation through service to customers in a retrial queue

maintaining high system reliability"

In this chapter, we discuss the reliability of a k-out-of-n system subject to repair of

failed components by a server in a retrial queue. We assume that the k-out-of-n system

is COLD. A k- out-of-n system is characterised by the fact that the system operates as

long as there are at least k operational components. The system is COLD in the sense

that operational components do not fail while thesystemis in downstate (number of failed

components at thatinstantisn-k+1). Using thesameanalysis as employed in thischapter,

one can study the WARM and HOT systems also (a k-out-of- n system is called HOT

system if operational components continue to deteriorate at the samerate whilethe system

is down as when it is up. The system is WARM if the deterioration rate while the system

is up differs from that when it is down). A repair facility, consisting of a single server,

repairs the failed components one at a time. The life-times of components are independent

and exponentially distributed random variables with parameter >../i when i components

are operational. Thus on an average Xfailures take place in unit time when the system

operates with i components. The failed components are sent to the repair facility and are

repaired one at a time. The waiting space has capacity to accommodate a maximum of

n - k + 1 units in addition to the unitundergoing service. Service timesof maincustomers

(components of the k-out-of-n system) are lid 11JS withdistribution function Bl •

* The material in this chapter was published under the title Reliability of a k-out-of-n system through re­
trialqueues in Transactions of XXIV-th International Seminaron StabilityProblemsfor Stochastic Models,
Transport & Communication Institute, Riga,Jurmala, Latvia,September, 10-17,2004, Ed. A. Andronov, P.
Bocharov & V. Korolev, pp. 232-245.
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In addition to repairing failed components of the system, the repair facility provides

service to external customers. However these customers are entertained only when the

server is idle (no component of the main system is in repair nor even waiting). These

customers are not allowed touse the waiting space at the repair facility. So when external

customers arrive for service (arrival process is BMAP) when the server is busy serving a

component of the system or an external customer, they are directed to an orbit and try their

luck after a random length of time, exponentially distributed with parameter Qi when there

are i customers in orbit.

We stress the fact that at the instant when an external customer undergoes service if

a component of the system fails the latter's repair starts only on completion of service of

the external customer. That is, external customers are provided non-preemptive service.

The service times of external customers are iid rvs with distribution function B 2• Since

external arrivals form a BMAP, either all in an arriving batch will proceed to an orbit on,

encountering a busy server; else one among the customers in the batch proceeds for service

and the rest are directed to the.orbit if the server is idle at that arrival epoch.

The objective of this chapter is to maximise the system reliability. Simultaneously

we try to utilize the server idle time. k-out-of-n system is investigated extensively (see

Krishnamoorthy et al [38] and references therein). Krishnamoorthy and Ushakumari [37]

is the first work to introduce retrial into reliability. In that paper they assume the failed

comp~nents of the k-out-of-n system to proceed to a repair facility, which when found

busy, these components are sent to an orbit. They studied the system in the three cases,

namely, COLD, WARM and HOT. Ushakumari and Krishnamoorthy [58] generalize the

above mentioned work to the case of arbitrarily distributed service time and derive several

system performance measures. Bocharov et al [10] discusses a retrial queueing system

with a finite waiting space, Poisson arrival of customers and arbitrarily distributed service

time. Customers in the waiting space have priority over customers from orbit. However

their model differs from our present work in that in the former, orbital customers, at the
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timeof retrial, canjoin the bufferif it is foundto be not full. They obtain the stationarydis­

tribution of the primaryqueue size (numberin the waitingspace), a recurrent algorithmfor

thefactorial momentsof the numberof retrialcustomersand an expressionfor the expected

numberof customers in the system. The modeldiscussed here differs from Bocharovet al

described above in that in this chapter priority is given to failed components of the k-out­

of-n system which alone can be accommodated in the waiting space. Further there is only

one service of primary customersin Bocharov et al model whereas the one discussed here

has two distinct services-components of k-out-of-n system and internal customers. Choi

andChang [17] providesa surveyof singleserverqueues with priority calls. One may also

refer to Choi and Chang [16]. for resultson multiserverqueues with two types of arrivals.

This chapter is arranged as follows. In section 2.1 we provide the mathematical mod­

elling of the system under study. In section 22 through 2.5 we investigate the stationary

distribution of the embeddedMarkov chain. In 2.6 distributionof the system state at arbi­

trary epochs is provided. Systemperformance characteristics are provided in section 2.7.

In section2.8 a particularcase of the problemdiscussedin section 2.1 is analysed in depth.

Section 2.9 providessomeperformance measures of this particular case and in section2.10

a numerical illustration is given.

2.1. The mathematical model

The system has a single server. The server serves the main customers (components of

the k-out-of-n system) and external customers according to distribution functions B, and

B2, respectively. Becauseof theassumption wemade about the life timesof components of

the k-out-of-n system, the main customers arrival (see previous section) has exponentially

distributed interarrival times of rate A. The arrival of external customers is according to a

BMAP defined by the matrix generating function

00

D(z) = L Dmzm, Izl < 1.
m=O
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This arrival process is governed by the continuous time Markov chain

{Vtl t ~ O}, having state space {O, 1, ... , W}. The sequence of matrices {Dk } provide

the transition rates from state i to state j in the Markov chain and the consequent arrival of

a batch of customers of size k, k = 0, 1,2, ....

The steady state distribution of the process lit. t ~ 0, is defined by the row vector Bthat

satisfiesequations BD(I) = 0, Be = 1. The fundamental rate of the BMAP is 8 = BD'(I)e.

Here and in the sequelBis a row vector of corresponding dimension, e is a column vector

consisting of l's. See Lucantoni [42] and Chakravarthy [14] for more details about the

BMAP. The external customer can access the server only if the server is idle. Otherwise the

customer moves to the orbit and tries his luck later. The interretrial times are exponentially

distributed with parameter 0i when i customers are present in the orbit, i > 0, 00 = 0. The

service times of external customers is a random variable characterised by the distribution

function B2(t ). Let bir) = Jooo t dBr(t) the average service time under the 'service time

distribution B; (t), r = 1, 2.

From the given description, it is clear that the main customers have a priority with

respect to the external customers. External customers have a chance to get a service only

in case the server is idle which is possible only if there is no main customer in the repair

facility at the time of commencement of the service of the former. We assume that the

priority is non-preemptive- arrival of a main customer does not interrupt the service of

the external customer, if any, in the system.

Ouraim is tocalculate the main performance characteristics of the model.
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2.2. Stationary state distribution of the system

31

Let jt be the number of main customers in the queue at the epoch t, 0 ~ jt ~ n - k +1

and it be the number of customers in the orbit at t, it ;::: O.

0, if the server is idle at epoch t,

re = 1, if a main customer is getting processed at epoch t,

2, if an external customer is served at the epoch t, t ;::: 0,

Vt be the state of the BMAP at the epoch t, Vt = 0, ... , W.

Consider the process

Unfortunately the process {{t, t ;::: O,} is non-Markovian. So, to investigate this process

consider first the embedded chain at the service completion epochs, ie., the Markov chain

{(n, n ;::: I}, that is defined as:

where t« is the nth service completion epoch.

2.3. Specification of the embedded Markov chain

It can be verified that the process en, n ;::: 1, actually is a Markov chain. Denote its

one-step transition probabilities as

P{(i,j,v) ---+ (l,j',v')} = P{itn+1+o = l,jtn+l+o =j',Vtn+l == v'l



2.3. SPECIFICATION OF THE EMBEDDED MARKOV CHAIN 32

Enumerating the statesof the chain {(n, n 2:: I} in the lexicographic order, we form tran­

sition matrices

P(i,j),(l,j/) = IIP{(i,j, lI) --+ (l,j', lI')}lIv,vl=o,w

andthe block matrices Pu = II p (i ,j ),(I,jI) II j ,i'=o,n- k+l '

LEMMA 2.1. The transition probability matrices P(i,j),(l,j/) are calculated asfollows.

P(i,j),(l,j/) = n(1)(I- i,l - j + 1), i 2:: 0, 12:: i, 0 < j ::; j' + 1,j' ::; n - k (2.1)

P(i,j),(l,n-k+l) = {2(I)(1 - i, n - k + 2 - j),l 2:: i 2:: 0,1 ::; j ::; n - k + 1, (2.2)

P(i,O),(I,j') = W(i,l, j') = ~oiln(2)(1 - i + 1, j').

I-HI

+~ L Dmn(2)(I- i -m + l,j) + ~>Jn(1)(l- i,j'),
m=1

i 2:: 0,1 2:: max{O,I- i},l = 0, n - k. (2.3)

For j' = n - k + 1, formula (2.3) is valid ifweprovide symbols W, n(r) witha hat. Here

00

{2(r) (m, 7") = L n(r)(m, 7"),
l=r

(2.4)

(2.5)

(2.6)

thematrices P(m, t) aredefined by the series.' E:'=o P(m, t)zm = eDCz)t.

This Lemma follows from the following reasonings. The matrix n(r)(m, T) defines

probability of T main customers and m external customers arrival (with the corresponding

transitions of the chain lit! t 2:: 0) during time having distribution function B; (t), r = 1,2.

The matrices OiRi, ~Dm, ).,~ define transitions of the process lit, t 2:: 0, during the

idle period of the server that is terminated by the retrial from the orbit, arrival of external
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customers in batch of size m and arrival of main customer, respectively.

From(2.1)-(2.3) we see that transition matrix Pi,l has the following structure:

33

\l1(i, l, 0) \l1(i,l, 1) \l1(i, l, n - k) ~(i,l,n-k+1)

O(1)(l - i, 0) O(1)(l- i, 1) O(1)(l- i, n - k) O(l)(l- 'i,n - k + 1)

Pu = 0 O(I)(l- i,O) 0(1) (l - i, n - k - 1) 0(1)(l- i, n - k)

0 0 O(I)(l- i, 0) O(l)(l - i, 1)

(2.7)

Thuswe calculated the one-step transitionprobabilities of the Markov chain (n, n ;::: 1.

2.4. Stability condition

To investigate the Markov chain (no n ;::: 1, we should make some assumptions about

the limiting behaviour of the total intensities of retrials ai, i > O. We distinguish two

cases: limi--+oo ai = 00 and limi--+oo ai = / < +00. The first case includes the classical

strategy of retrials when ai = ia and the second one includes the constant retrial rate

(o, = e, i ;::: 1). In case lirn Qi does not exist, we can not speak definitely about the
1---00

limiting behaviourof the queueing system. So we restrict ourselves only to the first cases

described above.

I~ the case limi--+oo Qi = /, we see that the matrices W(i, l, 11), ~(i, l, n - k+ 1)depend

on land i only via the difference l - i. In this case, for i > 0 we have

00

Y(z) = L Pi ,IZ
I
- H 1 =

l=i-l

\l1(z, 0)

zy(I)(z, O)

o

o

\l1(z, 1)

zy(I)(z, 1)

zy(I)(z,o)

o

\l1(z, n - k)

zy(1)(z, n - k)

zy(I)(z, n - k - 1)

~(z, n - k + 1)

zy(I)(z, n - k + 1)

. zy(1)(z, n - k) (2.8)
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where

'lJ(Z,II) = R(-yy(2)(Z, 11) + (D(z) - DO)y(2)(Z, 11) + AZy(l)(Z, 11))

~(Z, 11) = R(-yy(2)(Z, 11) + (D(z) - DO)y(2)(Z, v) + AZy(l)(Z, 11)),

R = (-Do + 'YI + AI) -1 ,

y(r)(Z,II) = 100 eD(z)t (Atr e->.tdBr(t) ,
o 11.

00

y(r)(Z,II) = Ly(r)(z, 1), r = 1,2.
l=v

Stability condition for this case is given by the following.
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THEOREM 2.1. The stationary distribution of the Markov chain (n, n ~ 1, exists if,

andonly if, the inequality

xY/(1)e < 1

holds where x is the row vectorwhich is the unique solution to the system:

xY(1) = x, xe = 1.

Prooffollows from (Klimenok [34]).

(2.9)

(2.10)

Consider now the case Hmi_oo Qi = 00.

Let PT = 6b~T). T = 1,2, and yo be the probability of the idle state for the MIGI11n ­

k + 1. system with the stationary Poisson arrival process with intensity A and the service

time distribution B1(t) if the system wasnot idle at the previousservicecompletion epoch

and the service time distribution B2(t ) in the opposite case. The problem of calculating

the value yo can be solved trivially and we consider it to be known (stable procedure for

its calculation directlyfollows from (Dudin, Klimenok, Tsarenkov [22]))
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THEOREM 2.2. The stationary distribution of the Markov chain (w n ~ 1, exists if,

andonly if, the inequality

Yo(1 +PI - P2) > PI holds. (2.11)

PROOF. It can be verified that the Markov chain (no n ~ 1, which has transition prob­

abilities (2.7), belongs to the class of asymptotically quasitoeplitz Markov chains (see

Dudin, Klimenok [21]). Stability condition for such chains is known in terms of the matrix.'

generating function
00

Y(z) = Iim ~ ~,i+mzm+l.
I .....CC L....J

m=-1

It is defined by formulas (2.9), (2.10) where the matrix generating functions Y (z) is

replaced by the function Y(z). It is easy to see that the functionY(z) is defined by the for­

mula (2.8) where the symbolW is replaced by the symbols y(2). By means of substitution,

itcanbe verified that the vectorx, whichis the solutionof the system xY(1) = x, xe = 1,

has the form:

x=y®O, (2.12)

where y is the vectorof stationary probabilities of the queueing system MIGI11n - k + 1

defined above and ® stands for Kronecker productof matrices.

Inequality (2.9) is reduced to the inequality

n-k+l
Yo P2 + L YIPl - Yo < 0

1=1

(2.13)

if we take into account that 02::=0 (y(r)(z, m))'IZ=le = Pr. Now inequality (2.11) fol­

lows from (2.13) and the normalisation condition2:~:Ok+l YI = 1.

Thiscompletes the proofof Theorem2.2. 0

REMARK 2.1. Condition (2.11) is well tractable. When the number of customers in

the orbit is large. the value (1 - YO)Pl +YOP2 is the average numberofexternal customers
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arriving into the system during the arbitrary service time. Average number of the exter­

nal customers leaving the system after the arbitrary service completion epoch is equal to

Yo(Yo = 1 . Yo +°.(1 - Yo)). The intuitive stability condition Yo > (1 - YO)Pl + YOP2 is

equivalent to (2.11).

Assume that condition (2.9)or (2.11) (depending on the case considered) is fulfilled.

2.5. Stationary distribution of the embedded Markov chain

Define the steadystate probabilities of the Markov chain (n, n 2:: 1, as

rr(i,j,lI) = lim P{it,,+o = i,jtn+o = i.n. = 1I}
n .....oo

and form vectors

i(i,j) = (rr(i,j, 0), ... , rr(i, j, W)),

i(i) = (i(i, 0), ... ,ff(i, n - k + 1)), i 2:: o.

Stable procedure for calculating the vectors i(i), i 2:: 0, presented in (Breuer, Dudin,

Klimenok, [12]) is applicable to our model. So, the problem of calculation of the stationary

probabilities of the embedded Markov chaincan be considered as being solved.

2.6. Stationary distribution of the system at arbitrary time

We assume that the service times are not negligible and have a finite mean. It implies

that under the fulfilment of stability conditions (2.9) or (2.11) for the embedded Markov

chain (11) n 2:: 1, the stationary state distribution of the process ~t, t 2::- 0, exists as well.

Write

p(i,j,r,lI) = lim P{it = i,jt = i.r. = r,lIt = 1I},
t.....oo

i 2:: 0, r = 0, 1,2,11 = 0, W, 0 ~ j ~ n - k + 1.
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THEOREM 2.3. Thevectorsp(i,j,r) = (p(i,j,r,O), ... ,p(i,j,r,W))arecalculatea

as follows:

p(i, 0,a) = T-1if(i, a)~, i ~ a,

i j+l

ii(-i,j, 1) = r- 1[L L IT(i,m)[2(l)('l -i,j - ni + 1)
1=0 m=l

i .

+ L l1(l, a)R1,x[2(I)(i -l,j)], i ~ a,j = a, n - k,
1=0

i n-k+l

p(i,n-k+1,1) =r-I[L: L: l1(l,m)n(i-l,n-k+2-m)
1=0 m=l

i

+ L l1(l, a)R1,xn(I)(i - t,n - k + 1)], i ~ °
1=0

HI

p(i, i. 2) = r- l [L: l1(l, a)R1(0110.(2)(i - 1+ l, j)
1=0

i-l+l

+ L Dm[2(2)(i-l-m+1,j)], i~a,j=a,n-k,
m;:: 1

HI

p(i, n - k + 1,2) = r- l [L l1(l, a)R1(0 11n (2)(i - 1+ 1,n - k + 1)
1=0

I-HI

+ L: Dmn(2)(i-l-m+1,n-k+1))],i~a,
m=l -



where

2.1. PERFORMANCE CHARACfERISTICS

00

(1) '" ~(' ) (( ) ((2) (1») )T = b1 +~ IT 't, 0 R; - Do+ cu] e b1 - b1 + e ,
i=O

00

n(r)(m, T) = L (i(r)(m,l).
I=T
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Proofof this theoremfollows from the theory of Markovrenewal processes (see Cin­

lar [18]). The value T is the meaninter-departure time in the system.

2.7. Performance characteristics

(1) Probability of the systembe emptyis

(2) The proportion of times during which the server is idle is

00

T-
1 L I1(i, O)R-ic;

i=O

(3) The proportion of time when the main customers are processed is

00 n-k+1

I: L p(i,j,l)e;
i=O j=O

(4) The fraction of time duringwhichthe external customers are processedis

00 n-k+1

I: L p(i,j,2)ej
i=1l j=O
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(5) Probability to have j main customers in the buffer is

00

I)p(i,j,l) + p(i,j, 2))e;
i=O
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(6) Probability that arbitraryexternal customerreaches the server without visitingthe

orbit is
1 ex> 00

"& LP(i,O,O) LDle;
i=O 1=1

(7) Mean numberof external customers in the orbit is

00 n-k+l

Li(p(i,O,O)+ L (p(i,j,1)+p(i,j,2)))e.
i=l j=O

2.8. Particular case

Here we assume that the arrival of external customers is according to a MAP with

representation (Do, Dd of order m. The k-out-of-n system is assumed to be COLD and

thelifetimes of components are assumed to be exponentially distributed with parameter f
when i components are operational. An external arrival seeing a busy server moves to an

orbit of infinite capacity. The inter-retrial timesare assumedto be exponentially distributed

with parameteriO, when there are i customers in the orbit. The service times of both type

of customers follow a PH-distribution with representation ({3, S) of order m I. The average

arrival rate of external customers is defined as 0 = ifDl e, where the vector () satisfies

8(Do+Dd = 0, iie = 1. The average service rate is defined as /-l = -(13~ le)'

Let N(t) denotes the numberof customers in the orbit at time t,

o if the server is idle at time t,

I (t) = 1 if the server is busy with a failed component at time t,

2 if the server is busy with an external customer at time t,
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M (t) = number of failed components in the systemincluding the

one getting service, if any, at.time t;
,

J1(t ) = phaseof the arrival process at time t;

J2(t ) = phaseof the service process at time t.

40

Then X(t) = (N(t), I(t), M(t), J1(t ),J2(t )), t 2: 0 forms a continuous time Markov

chain withstatespace

{(i, 0,0,id li 2: 0, 1 s i, s m}

and infinitesimal generator

AlO .,40 0 0

A21 All . Ao 0
Q=

0 A22 A12 Ao

[

1\ (J) 1\ (2)]
I (I III

with AlO =
. A(3) A(4)

10 10

where
Do - AIm AIm ® (3 0 0 ...

Im®So Do EB S - AImm! AImm! 0 ...
A(l) - 0 t; ® (S°{3) Do EB S - AImm! AImm! • • •10-

Do EBS
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(3) [Im 0 So
AlO =

o

A(4) ­
10-

o Do tiJ S

[
iO01m 00]For i ~ 1, A li = AlO - Aii ' where Ali =

0] -_ , withAo = 12(n- k+l )+l 0 (D1 0 Im 1 ) . For i ~ 1,
Ao

A
2i

= [Omx(m+(n-k+l)mmd et; 0 {3 OmX((n-k+l)mmd]

o 0 0

41

The steady state distribution of the process {X(t) : t ~ a}, when it exists, is obtained

applying Neuts-Rao Truncation. That is we assume that for somefixed N ~ 1, the inter­

retrial times areexponentially distributed with parameter iO when the number of customers

in the orbit is i < N and with parameter NO when there are N or more customers in the

orbit. Thisassumption transforms thegenerator matrix Q to QN given by

AlO Ao a 0

A21 All Ao a
0 A22 A12 All

QN=
A2N - 1 A1N - 1 Ao

A2N A1N Ao
A2N A1N Ao
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The continuous time Markov chain with generator matrix QN, being a level independent

QBD, is positive recurrentif and only if

(2.14)

where ITN is the stationary probability vectorof the generator matrix

with
Do- (A + NO)Im xt; Q?) (3 0 0 ...

t.; Q?) So H - AImm, AImm, 0 ...
A(l) - 0 t; Q?) (S°{3) H - AImm, AImm, ...N -

Im Q?) (SO (3) H

where H = (Do + Dl ) EB S.

Now,

A(') _ [(Dl +NOl",) (8) po] A(') _ A(')
N - , N - 10'

o 0

H - A/mm, AImm!

0 H - A/mm! A/mm!

A(4) -
N -

H - AImm! AImm,

o H

Now, partitioning ITN as
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where each sub-vector 7r~j, 1 ~ j ~ n - k+ 1 and 7r~j, 0 ~ j ~ n - k + 1, contains mml

elements and the sub-vector 7r~0 contains m elements, the equation 7rN AN = 0 implies

7r~O(Do - (,X +NO)Im) + (7r~l +7r~O)(Im ® SO) = 0

7r~O('xIm ® {3) + 7r~l(H - ,XImm!) + (7r~2 + 7r~l)(Im ® (S°{3)) = 0

'x7r~i-l + 7r~i(H - >.Imm!) + (7r~i+l + 7r~i)(Im ® (S°{3)) = 0,

2~i~n-k

These equations giverise to the equations:

7r~0 = (7r~l + 7r~O)(Im ® SO)((,X +NO)Im - Dotl (2.15)

7r~l = (7r~o('xIm ® {3) + (7r~2 + 7r~l)(Im ® (S°{3)))('xImm! - H)-l (2.16)

2~i~n-k

(2.17)

(2.18)
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2,n-k+l _ \ 2,n-k(_H)-11rN - A1rN

The equations from (2.15) to (2.21) together with the normalising condition

44

(2.19)

(2.20)

(2.21)

(2.22)

can be solvedusing BlockGauss-Seidel iteration procedure to obtain the vector 1rN.

Now inequality (2.14)becomes

n-k+l n-k+l

(L 1r1i + L 1r~i)((Dlem) ® emJ < N01r~oem (2.23)
i=l i=O

which is the stability condition for the Markov chainQN.

Now let RN be the minimal nonnegative solution of the matrix quadratic equation

Thespectral radius of RN is less than I if and only if inequality (2.23) is satisfied. Let T}N

be the spectral radius of RN for N ~ 1. Now the truncation level N is selected in such a

way that inequality (2.23) is satisfied andthat IT}N - T}N+l! < e, for some fixed real number

t>O

After selecting the truncation level N, we approximate the steady state distribution x

of Q by the steady state distribution xN of QN, which when partitioned according to the

levels as
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xN(O)A lO + xN(1)A2i = 0 (2.24)

xN(i - l)Ao + xN(i)A1i + xN(i + 1)A2HI = 0, 1 ~ i ~ N - 2 (2.25)

xN(N - 2)Ao+ xN(N - 1)A1 N-I + xN(N)A2N = 0, (2.26)

xN(i - l)Ao+ xN(i)A1N+ xN(i + 1)A2N = 0, i ~ N (2.27)

together with the normalising condition

Then by the propertyof level independent QBDs, we can write

xN(i) = xN(N - l)Rt"N+l i ~ N

Substituting XN(N) = xN(N - l)RN in (2.26) we get

xN(N - 2)Ao+xN(N - 1)(A1 N-I +RNA2N) = 0

which implies

Defining

we get,

(2.28)

(2.29)

(2.30)
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Now theequation

becomes

which gives

where

Thus defining Wis as

46

(2.31)

with

we get

(2.33)

(2.34)

Substituting xN(l) = XN(O)W1 in (2.24), we get

Also equation (2.28) becomes

(2.35)

N-2 i N-l

XN(O)(/ + ~(ITWj ) + eIT Wj ) (/ - RNt 1)e = 1 (2.36)
i=1 j=1 j=1
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Now equations (2.35) and (2.36) can be solved for XN(O) and hence we can obtain the

stationary distribution xN.

2.8.1. Computation of the matrix RN. To compute the matrix RN we first compute

GN which is the minimal non-negative solution of the matrix quadratic equation.

Now the special structure of the matrix A2N shows that GN will have the form

0 0 d N) 0 0 000

0 0 d N) 0 0 011

0 0 d N) 0 0 012

G N = 0 0
(N)

0 0 0G 1,n - k+l

0 0 c<N) 0 0 020

0 0 c<N) 0 0 021

0 0 (N) 0 0 0... G 2"i-k+l ...

0 0 r.(N)dN) 0 0 0-'00 20

0 0 C(NldN) 0 0 0-"11 20

0 0 dN)dN) 0 0 0-'12 20

G 2 - 0 0 (N) (N) 0 0 0N- G 1,n-k+lG20

0 0 (G~~»)2 0 0 0

0 0 e(N)dN) 0 0 0-"21 20

0 0 (N) (N)
0 0 0... G 2,n-k+l G 20 . ..

(2.37)
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Now equation (2.37) reducesto a system of equations

G~~) = ((A + NB)/m - Dot 1[(A/m® {3)Gi~) + [D1® {3]G~~) + NB/m ® {3]

Gi~) = [A/mm1- (Do Ea S)t1[(D1® /ml)G~~)G~~~

+ u; ® SO)G~) + A/mm1G~~)]

G~7) = [A/mm1- (Do Ea S)t1 [(D1® /mJG~7)G~~)

+ [(/m ® (S°{3)]G~721 + AlmmlG~711] ,2 s j s n - k

G~~~k+l = -(Do Ea 8),-1 [(D1 ® /ml)G~~~k+lG~~)

+[{Im ® (So{3)]G~~~k]

G~~) = [A/mm1- (Do Ea S)t1 [(D1® /ml)(G~~))2

(1 SO)G(N) '1 G(N)]+ m® 00 + /\ mml 21

. G~~) = [A/mm1- (Do Ea S)t 1 {(D1 ® /mJG~7)G~~)

+({Im ® (S°{3))G~7) + A/mmlG~711} 1 ~ j ~ n - k

G~~)-k+l = -(Do Ea st1 [(D1 ® /mJG~~)_k+lG~~)

+[(17/1 0 (S()/j)]G~~\+l]

48

Now we can use BlockGauss-Seidel iterative procedure to evaluate GN, and then RN can

be evaluated using the formula
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2.9. System performance measures

(1) Mean number of customers in the orbit:

00

Norbit = (L iXN(i))e = PIe
i=l

where

N-I i N-I

PI = XN(O)(L i(IT Wj)) + NXN(O)( IT Wj)RN(I - RNt l

i=l j=l j=l

N-I

+ XN(O)( IT Wj)R~(I - RNt 2

j=l

(2) The overall rate of retrials

0;' = ON'orbit

(3) The successful rate of retrials

00

O~ = (l: iXN(i))eO = PleO
i=l

49

where eo is a column vector whose first m entries are Is and all other entries are

Os.

(4) The fraction of successful rate of retrials

(5) The probability that the server is busy

00

Pbusy = (L xN(i))eb = P2eb
i=O



where
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N-2 i N-I

P2 = XN(O)(I +I)ITWj) + (IT Wj)(I - RNt l
)

i=l j=l j=l

50

(6) Probability that the system is down = Probability that the numberof failed com­

ponentsequal to n - k + 1

00

Pdown = (LxN(i))ec = P2ec

i=O

wheree, is a columnvector given by

O(m+(n-k)mml)XI

O((n-k+l)mml)XI

(7) Expected number of failed components in the system,

00

.Neomp = (2: xN(i))ed = P2ed
i'=O

whereed is a columnvectorgiven by

OmXI lemm l

et
withet =

2em m l
ed=

Ommlxl

et (n - k + 1)emm 1
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(8) P"'om ~ (~XN(i)) eg ~ P,eg

where the column vector eg is given by

Omxl

o

(9) P",,, ~ (~XN(i)) e. ~ P,e.

where the column vector eh is given by

2.10. Numerical illustration

6, Do18, k[~:r~;~r~~:T~uo::~r ;:pr:~: f~:J ~are A. n

SO = [5.5], jj = [0.5 0.5],
5.6

average service rate=5.549, average arrival rate= 2.346,

correlation between two interarrival times= -0.00029

Table I shows that as ~ increases the mean number of customers in the orbit, the mean

number of failed components, and the fraction of time the server is busy with a failed

component increases. But th increase of ~ has not much effecton the fraction of time the

server is busy with an external customer. Table 1 also shows that the increase in the retrial

rate has a considerable effect' onlyon the meannumber of customers and in the fraction of

successful rate of retrials.
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TABLE 1

A 0.1 0.5 1.0 1.5 2.0 2.5
Norbil 0.7019 0.9749 1.4858 2.3553 4.065 8.5052

Neomp 0.0185 0.1028 0.2366 0.4128 0.6494 0.9757
0=5.0 Pbcom 0.0180 0.0901 0.1802 0.2703 0.3604 0.4505

Pbex1 0.4228 0.4228 0.4228 0.4228 0.4228 0.4228
O· 0.2928 0.2457 0.1898 0.1378 0.0903 0.0482. 3»z: 0.5182 0.7291 1.1307 1.8266 3.2185 6.8929

Neomp 0.0185 0.1028 0.2366 0.4128 0.6494 0.9757
0= 10.0 Pbcom 0.0180 0.0901 0.1802 0.2703 0.3604 0.4505

Pbex1 0.4228 0.4228 0.4228 0.4228 0.4228 0.4228
O· 0.1982 0.1642 0.1247 0.0888 0.0577 0.02983

[-4.05 1.55]2.10.2. Effects of correlation. n = 18, k = 6, Do =
3.5 -5.5

[2.05 0.45] [-7.5 2.0 ] [5.5 5.6 ]
(3 = [0.5 0.5],D1 = 8 = 80 -

1.0 1.0 2.1 -7.7 2.1 -7.7
average arrival rate = 2.346, correlation between two interretrial times =0.00029. The

otherparameters are same as in the case of Table 1

TABLE 2

A 0.1 0.5 1.0 1.5 2.0 2.5
Norbil 0.7121 0.9865 1.4998 2.3731 4.09 8.5452

Neomp 0.0185 0.1028 0.2366 0.4128 0.6494 0.9757
0=5.0 Pbcom 0.0180 0.0901 0.1802 0.2703 0.3604 0.4505

Pbex1 0.4228 0.4228 ·0.4228 0.4228 0.4228 0.4228
0* 0.2911 0.2444 0.1898 0.1371 0.0899 0.0483x: 0.5267 0.739 1.1431 1.8429 3.242 6.929

.Neomp 0.0185 0.1028 0.2366 0.4128 0.6494 0.9757
() = 10.0 Pbcom 0.0180 0.0901 0.1802 0.2703 0.3604 0.4505

Pbex1 0.4228 0.4228 0.4228 0.4228 0.4228 0.4228
(); 0.1968 0.1631 0.1239 0.0883 0.0567 0.0296
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Tables 1 and 2 shows that when correlation between arrivals becomes positive, there is

an increase in the mean number of customers in the orbit and there is a decrease in the rate

of successful retrials. The other parameters are same as in the case of Table 1.

The above table shows that there is only negligible increase in the syste~ down prob­

ability if we provide service to external customers in a k-out-of-n system as described

earlier in this chapter, but there has been a considerable increase in the fraction of time the

server is found busy. To make these statements more clear, we consider a cost function

IDcosl = C11 • Pdown - C12 • Pbusy

where C11 is the cost per unit time due to the system becoming down and C12 is the profit

per unit time obtained by making the server busy.

From table 4 we note that even when Cll is 1000 times bigger than C12 and the com­

ponent failure rate A = 2.5, the function lOcosl as a lesser value when () = 5.0 than when

() = 0 which shows that our goal of ideal time utilization is achieved, atleast numerically.



CHAPTER 3

Maximization of reliability of a k-out-of-n system with repair by a

facility attending external customers in a retrial queue*

In this chapter, we study a k-out-of-n system with single server who provides service

to external customers also as described in the following paragraphs.

The system consists of two parts:(i) a main queue consisting of customers (failed com­

ponents of the k-out-of-n system) and (ii) a pool (of finite capacity M) of external cus­

tomers together with an orbit for external customers who find the pool full. An external

customer who finds the pool full on arrival joins the orbit with probability 'Y and with prob­

ability 1 - 'Y leave the system forever. An orbital customer, who finds the pool full, at an

epoch of repeated attempt, returns to orbit with probability fJ « 1) and with probability I

-8 leaves the system forever.

The arrival process: Arrival of main customers have interoccurence time exponentially

distributed with parameter Ai when the number of operational components of the k-out­

of-n system is i, By taking Ai = f we notice that the cumulative failure rate is a constant

A. We assume that the k-out-of-n system is COLD (components fail only when system

is operational). The case of WARM and HOT system can be studied on the same lines,
(see Krishnamoorthy and Ushakumari [37]). External customers arrive according to a

Markovian Arrival Process (MAP) with representation (Do, D1) where Do and D1 are

assumed to be matrices of order m. Fundamental arrival rate Ag = -1[Doe

* This chapter was published in the Proceedings of the V-th International Workshop on Retrial Queues,
Korea, September, 2004, Ed. B. D. Choi, pp. 31-38
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The service process: Service to the failed components of the main system is governed

by the N -policy. That is each epoch the system starts with all components operational (ie.,

all n components are in operation), the server starts attending one by one the customers

from the pool (if there is any). The moment the number of failed components of the

main system reaches N, no more customer from the pool is taken for service until there

is no components of the main system waiting for repair. However service of the external

customer, if there is any. will not be disrupted even when N components accumulate in the

main queue (that is the external customer in service will not get pre-empted on realization

of the event that N components of the main system failed and got accumulated; instead the

moment the service of the present external customer is completed, the server is switched

to the service of main customers).

Service time of main customers follow PH distribution or order nl and representation

(a, SI) and that of external customers have PH distribution of order n2 with representation

((3, S2);

S? and sg are such that Sie + s? = 0, i = 1, 2 where e is column vector of ones.

The two service times are independent of each other and also independent of the failure of

components of the main system as well as the arrival of external customers.

Objective: To utilize server idle time without affecting the system reliability.

Krishnamoorthy and Ushakumari [37] deals with the study of the reliability of a k­

out-of-n system with repairs by server in a retrial queue. They do not give any priority

to the failed components of the main system nor do they investigate any control policy.

Krishnamoorthy, Ushakumari and Lakshmi [38] introduced the repair of failed components

of a k-out-of-n system under the N -policy. For further details one may refer to the paper

andreferences therein as well as Ushakumari and Krishnamoorthy [59] Bocharov etal [10]

examine an M/C/1/T retrial queue with priority of primary customers. They obtain the

stationary distribution of the primary queue size, an algorithm for the factorial moments of

the number of retrial customers and an expression for the expected number of customers
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in the system. Nevertheless, we wish to emphasise that their paper does not distinguish

between the priority and ordinary customers. This is distinctly done in this chapter (our

priority customers are the failed components of the k-out-of-n system):

This chapter differs from chapter 2 mainly by the fact that here together with the orbit,

we also consider an intermediate pool of finite capacity to which external customers join

after seeing a busy server on arrival or after a successful retrial from the orbit. We expect

that this intermediate pool from which an external customer can be selected for service,

whenever the server becomes idle, will help us to decrease the server idle time.

The steady state distribution is derived in this chapter. Note that the non-persistence,

of orbital customers together with the fact that an external customer, finding the pool full,

may not join the pool ensures that even under very heavy traffic the system can attain

stability. Several performance measures are obtained.

One can refer Deepak, Joshua, and Krishnamoorthy [20] for a detailed analysis of queues

with pooled customers (postponed work).

3.1. Modelling and analysis

The following notations are used in the equal:

N1(t ) = # orbital customers at time t

N2(t ) = # customers in the pool (including the one getting service, if any,) at time t.

N3(t) = # failed components (including the one under repair, if any) at time t

o if the server is idle

1 if the server is busy with repair

of a failed component of the main system

2 if the server is attending an external customer at time t.
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N5(t ) = Phase of the arrival process,

58

N6(t ) =
Phase of service of the customer, if any, in serviceat t

0, if no service is going on at time t.

It follows that {X(t) : t ~ O} where

is a continuous time Markov chainon the statespace

S = {(jl,0,is,0,j5,0)ljl ~ 0; 0 ~ j3 ~ N -1; 1 s j5 ~ m}

U {(jI,12,is, 1,j5,j6)ljl ~ 0, 0 ~ 12 s M; 1 ~ j3 ~ n - k + 1;

1 ~ j5 s m; 1 s j6 s nl}

U {(jI,12,j3, 2,j5,j6)IJI ~ 0; 1 ~ 12 ~ M;

o~ is ~ n - k + 1; 1 ~ j5 s m; 1 ~ j6 ~ n2}

Arran.ging the states lexicographically, and then partitioning the state space into levels t,
where each level i correspond to the collection of states with i customers in the orbit, wc

get the infinitesimal generator of the above chain as

AlO Aa 0 0 ...

A21 All Aa 0 ...
Q=

0 A22 Al 2 Aa···
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where

Wo W5

W3 W l ","6

A IO =
W4 W"l W6

where

Bo B8

B4 ts, B9

B5 e, B9

59

Wo =

B5 B l B9

B5 Bl B IO

B6 B2 Bll

B7 B2 B11
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Bo= Do - xt.; s, = [DO - xt; 0 ]

o Do EB S\ - >..Irm IJ

B2 = Do EB S\ - >..Im n 1, B3 = Do EB SI

c; C5

C3 Cl C6

Wl = C4 C\
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0] _ [ITn 0 (5?(3)],Ca -

Do EB 52. 0

[

Im0 (5ra)
C4 =

o
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where,

with

- [(1 -,)(D1 0I n 2 )
W1 =

o

= [(1-,)(D10 I n 1 )W1 =

o

Wao o o

Wa = o

o o



where
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Eo o o

o

o o

o [0Eo ~ s;® (S,{3), El = 0

Fo 0 0

w5 =



and

where

Where

3.1. MODELLING AND ANALYSIS

L 1 = (n - k + 2)mn2 + (n - k + 1)mn1

L 2 = Nm + (n - k + 1)mn1 + (M - 1)L1

63
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0 z, 0

A2i = 0 0 iO!(M-I)L)
i ~ 1

0 0 'iO(l - 8)h1
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o o

o

o o

Z2i ~ [i8I~'
t; 0

0(i8

11)] ,
Z3i = ['O! 0]~ mn)

[0 0]Ao =

O Ao

..40 = [bDl:®Ino o ] .1(1)- [bDl:°In,
bDl;0J' 0 -

-(1)
In-k+I ® Ao

3.2. System stability

THEOREM 3.1. The assumption that after each retrial a customer may leave the system

with probability 1 - 8 makes the system stable irrespective ofthe parameter values.

PROOF. To prove the theorem we use a result due to Tweedie [57]. For the model

under consideration we consider the following Lyapunov function:

</J(s) = i if s is a state belonging to level i
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The mean drift Ys for an S belonging to level i ~ 1 is given by

Ys = L qsp(4)(p) - 4>(s))
p1=a

=, L qaa'(4)(s') - 4>(s)) +L qss" (4)(s'') - 4>(8))
a' a"

+L qaslII(4)(Sill) - 4>(S) )

s",
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where Si, S" , Sill varies over the states belonging to levels i-I, i, i + 1 respectively. Then

by definition of 4>, 4>(s) = i, 4>(Si) = i-I, 4>(s") = i, 4>( Sill) = i + 1

So that

u, = - L qss' +L qsslll

s' s'"

Ys =

-iO + I:qSSIIl,
S/II

s",

where Ii denotes the collection of states in level i which corresponds to N2(t) < M, and

l, denotes the collection of states in level i which correspond to N2(t ) = M.

We note that EslII qsslll is bounded by some fixed constant for any 8 in any level i 2: 1.

So, let EslII qsslll < K, for some real number K > 0, for all states s belonging to level

i ~ 1. Also since 1 - fJ > 0, for any E > 0, we can find N' large enough that Ys < -E for

any s belonging to level i ~ N'.

Hence by Tweedie's result, the theorem follows. o



3.3. STEADY STATE DISTRIBUTION

3.3. Steady state distribution

66

Since the process under consideration is an LDQBD. to calculate the steady state

distribution. we use the methods described in Bright and Taylor [13].

By partitioning the steady state vector x as x = (xo, Xl, X2,"') we can write

k·-l

Xk = Xo 11 RI for k ~ 1
1::0

where the family of matrices {R k , k ~ O} are minimal non-negative solutions to the system

of equations:

(3.1)

Xo is calculated by solving

(3.2)

(3.3)

such that
00 k-l

xoe + Xo L [IT RI]e < 00

k=l 1=0

The calculation of the above infinite sums does not seem to be practical, so we approximate

XkS by xk(K*)s where (xk(K*))j' 0 ::; k ::; K*, is defined as the stationary probability

that X (t) is in the jib state of level k, conditional on X (t) being in level i, 0 ::; i ::; K*.

Then xk(K*), 0 s k s K* is given by

k-l

xk(K*) = xo(lC) IT RI
1=0

where xo(K*) satisfies (3.2) and

(3.4)

(3.5)

KO k-l

xo(K*)e + xo(K*) [L [IT RL]] e = 1
k=l 1=0

Here we have that for all i ~ 1, and for all k, there exists j such that [A2i lk,j > O. So we

can construct a dominating process X(t) of X(t) and can use it to find the truncation level
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K* in the same way as in [13], as follows. The dominating process X(t) has generator

AlO Ao 0 0 0

0 All Ao 0 0

Q= 0 A2:! A12 Ao 0

0 0 A23 A13 Ao
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where

(Aokj = b[(Aoe)max), (A2kkj = b((A2,k-de) . for k ~ 2, (Alk)ij = (Alk)ij, j i= i,
mm

k ~ 1; and C = Nm + (M + l)(n - k + 1)mn1 + M(n - k + 2)mn2 is the dimension

of a level i ~ 1.

3.4. Performance measures

We partition the steady state vector x as x = (xo, Xl, X2, ... ) where the sub-vectors

xiis are again partitioned as Xii = x(j1,h,j3,j4) which correspond to Ni(t) = i.. 1 ::;

i::;4

(1) Fraction of time the system is down is given by

K* M 2

Pdown = L L L x(j1,h, n- k + 1,j4)e.
ii=0i2=Oj4=1

(2) System reliability, defined as the probability that atleast k components are opera­

tional, Prei is given by

Prel = 1- Pdown.
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(3) Average no. of external units waiting in the pool is given by

M K" n-k+l

Npool = Lj2(L L x(jl,h,j3,1)e
h=l it =0 h=l
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M K" n-k+l

+ L(j2 - 1) L L X(jl,j2,j3,2)e
h=2 jl=O j3=0

(4) Average no. of external units in the orbit is given by

K"

Norbit =" L jdx(jl)e]
it=l

(5) Average no. of failed components is given by

n-k+l K" M

Nraic = L 13(L LX(jI,J2,13,2)e
h=l it =0 h=l

K" M N-l K"

+ LLx(jl,j2,j3,1)e) + Lj3L X(jl,O,j3,O)e
it=Oh=O h=l it=O

(6) The probability that an external unit, on its arrival joins the queue in the pool is

given by

1 K" M-ln-k+l 2

1'queue = I""{L L L L X(jI,J2,j3,j4)[D 1 @ Ini4]e
9 it =0 h=l j3=1 j4=1

K" n-k+l

+ L L X(jl,O,j3,.l)(D1 @InJe}

it=O h=l

(7) The probability that an external unit, on its arrival gets service directly is given

by
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(8) The probability that-an external unit, on its arrival enters orbit is given by

1 K"

Porbil = I"" { L x(i)Aoe }
9 i=O

(9) Fraction of time the server is busy with external customers is given by

KO M n-k+1

Pexbusy = ~= L LX(j1,h,j3' 2)e
il=Oh=l ia=O

(10) Probability that the server is found idle is given by

KO N~l

P id1e = L L X(j1' 0,12, 0)
il=Oh=O

(11) Probability that the server is found busy is given by

P busy = 1 - P id1e

(12) Expected loss rate of externalcustomers is given by

KO n-k+1

>"1055 = L L x(jI, M,h, 1)(1 - 'Y)(D1 ® InJe
il=O h=l

K· n-k+l

+ L L X(jl, M,h, 2)(1 - 'Y)(D1 ® In 2 )e
jl=O h=O

K· n-k+l

+L L (1 - c5)jl(}X(jI, M,h, l)e
il=l h=l

K· n-k+1

+L L (1- c5)jl(}X(jl, M,h, 2)e
il=l h=O
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(13) Weconstruct a cost functionas where Cl is the holding. cost per unit time per cus­

tomer waiting in the pool, C2 is the loss per unit time due to the system becoming

down, C3 is the loss per unit time due to a customer leaves the system without
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taking service, C4 is the holding cost per unit time per failed component in the

system, Cs isthe loss per unit time due to the server becomingidle and C6 is the

profit per unit timedue to the serverbecoming busy with an external customer.

3.5. Numerical illustration

Set () = 15.0, A = 1.0, 'Y = 0.7,8 = 0.7,n = 11, k = 4, M = 5, N = 4

SI = [-6.5 4.0] S2 = [-5.06 2.06] Sr = [2.5] sg = [3.0] a = (0.5,0.5)

1.5 -4.5 4.0 -6.5 3.0 2.5
(3 = (0.5,0.5)

Cl = 10.0, C2 = 1500.0, C3 = 100.0, C4 = 20.0, Cs = 50.0, C6 = 200.0.

Effect of correlation: The additional parameters for table I are the following

, [-5.5
Do=

1.0

3.5 ]

-3.5
[
1.0 1.0]D1 =

1.0 1.5

(Al)

average arrival rate = 2.34615, correlation =-0.00029

_ [-4.05 1.55]Do -

3.5 -5.5

_ [2.05 0.45]Dl -

1.0 1.0

(A2)

average arrival rate = 2.34615, correlation =0.00029

, [-6.5Do =

1.5

4.0 ] [1.5 1.0]D1 =

-4.5 1.0 2.0

(Bl)

average arrival rate = 2.83333, correlation =-0.00042
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_ [-5.06 2.06]Do -

4.0 -6.5
[

2,56
D1 =

1.0

0.44]

1.5

(B2)

average arrival rate = 2.83333, correlation =0.00042

_ [-6.6 4.05]Do -

1.55 -4.6

_ [1.55 1.0]D1 -

1.0 2.05

(Cl)

average arrival rate = 2.88224, correlation =-O~OO041

[

- 5.15
Do =

4.05

2.1]

-().6

_ [2.6 0.45]D1 -

1.0 1.55

(C2)

average arrival rate = 2.88224, correlation =0.00041

In the above correlation is between two inter-arrival times.

TABLE 1
,

'Pdown Npool «: »: 'Pcxbusy 'Pid1c Cost

Al .2805 x 10- 2 3.262 0.1204 2.2281 0.5620 0.0842 37.8228

A2 .2803 x 10- 2 3.2572 0.1207 2.2278 0.5612 0.0850 38.1696

B1 .2923 x 10- 2 3.6689 0.1822 2.2431 0.5940 0.0522 68.2556

B2 .2922 x 10- 2 3.6647 0.1824 2.2429 0.5935 0.0526 68.4537

Cl .2932 x 10-2 3.7031 0.1888 2.2442 0.5964 0.0497 71.6377

C2 .2931 x 10-2 3.6992 0.1890 2.2440 0.5960 0.0502 71.8214

The table 1 shows that as the external arrival rate increases the system down probability

increases; but this increase is narrow as compared to the decrease in server idle probability.

Also as expected, the expected number in the pool, in the orbit and the expected number
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of failed components and the fraction of time the server is found busy with an external

customer increases as the external arrival rate increases. The table also shows that as

the correlation changes from negative to positive, there is a slight increase in cost and in

the server idle probability. Also when correlation changes from negative to positive, the

expected number of pooled customers and failed components decrease while the expected

number in the orbit increases. The increase in probability Pexbusy being small compared to

the increase in other parameters can be thought of as the reason behind increase in cost. But

all these changes are narrow as the difference between negative and positive correlation is

small.

Effect of component failure rate: Take () = 20.0, / = 0.7,8 = 0.7, n = 11, k = 4,

M=5,N=4.

Arrival process is according to (AI).

TABLE 2. Effect of component failure rate

,\ P down Npool .Norbit Nfaic Pexbusy P id1e Cost

0.05 .196 x 10-8 2.1163 0.0285 1.5266 0.7513 0.2310 -67.3177

0.1 .5933 x 10- 7 2.1765 0.0311 1.5538 0.7432 0.2213 -63.3658

1.0 .2801 x 10-2 3.2399 0.0907 2.2276 0.5607 0.0855 38.4979

2.0 0.04702 4.2095 0.1748 3.5505 0.3029 0.0208 261.502

3.0 0.17207 4.7390 0.2362 5.1091 0.1149 0.0038 580.397

Table 2 shows that when the component failure rate ,\ increases; the system down

probability as well as expected number of failed components increase and the idle time

probability of the server decreases, as expected. But note that as ,\ increases, the fraction

of time the server is found busy with an external customer, decreases and as a result the

expected pool size increases. Also note that the expected orbit size is small, which shows

that the orbital customers are either transfered to the pool (when ,\ is small) or leaves the
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system forever (when Xis large). Since the probability P down increases and the probability

Pexbusy decreases, as ..\ .increases, the cost also increases.

Effect of N policy level: () = 20.0, ..\ = 2.0, n = 13, k = 4, M = 5

The other parameters are .same as for table 2.

Table 3 shows that the system performance measure which is most affected by the N­

TABLE 3. Effect of N-policy level

N P down Npool Norbit Nfaic P exbusy P id1e Cost

4 0.02245 4.2521 0.1802 3.8666 0.2866 0.01969 203.559

5 0.02795 4.2249 0.1801 4.2456 0.2869 0.02325 219.258

6 0.03528 4.1968 0.1796 4.6087 0.2882 0.02717 237.002

7 0.04509 4.1658 0.1787 4.9473 0.2910 0.03135 257.358

8 0.05830 4.1300 0.1771 5.2518 0.2959 0.03577 281.200

policy level is the expected number of failed components; which is expected because as N

increases, time for the service of failed components to be started, once the system started

with all components operational, increases so that during this time more components may

fail. For the same reason a pooled customer has a better chance of getting service and as a

result Pexbusy increases, Npool and Norbit decreases. Also note that the server idle probability

is small. The increase in Nfaic might be the reason behind the increase in cost.

Effect of retrial rate (): Take X= 1.0, n = 11, k = 4, M = 5, N = 4

The other parameters are the same as in table 2.

Table 4 shows that as () increases, expected number in the orbit decreases but the ex­

pected pool size also decreases which tells that retrying customers may be leaving the

system. Note that the idle probability of the server is very small and the expected pool

size is also close to the maximum pool capacity so that retrying customers may choose to

leave the system after a failed retrial. Also this can be thought of as the reason behind the
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decrease in the fraction of time the server is found busy with an external customer and the

increase in cost as eincreases.

Effect of pool size M: e= 10.0, ,\ = 1.0

The other parameters are same as for table 2.

Table 5 shows that as M, the pool size, increases, expected number of pooled customers

increases and as a result the expected number of failed components, the system down

probability and the fraction of time the server is found busy with and external customer

increases. But the expected number in the orbit decreases, which is expected because as

M increases more customers can join the pool. As expected, the idle probability of the

server decreases as M increases.

Comparison with the case where no external customers are allowed: Below we com­

pare the k-out-of-n-system described in this chapter with a k-out-of-n system where no

external customers are allowed.

Case 1: k-out-of-n system where no external customers are allowed,

Case 2: k-out-of-n system described in this chapter

e= 10.0,'\ = 1.0, 'Y = 0.7, <5 = 0.7, n = ll,k = 4, N = 4

TABLE 4. Effect ofretrial rate

() P down Npool Norbil »: Pexbusy Pidlc cost

5.0 .2832 x 10-2 3.3908 0.3501 2.2315 0.5704 0.07579 33.688

10.0 .2813 x 10-2 3.3008 0.1790 2.2290 0.5644 0.08176 36.612

15.0 .2805 x 10-2 3.2620 0.1204 2.2281 0.5620 0.08415 37.823

20.0 .2801 x 10-2 3.2399 0.0907 2.2276 0.5607 0.08546 38.498

25.0 .2798 x 10-2 3.2255 0.0728 2.2272 0.5598 0.08630 38.932
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TABLE 5. Effect of pool size

M 'Pdown Npool Norbit Nraic 'Pexbusy 'Pid1e cost

3 .2655 X 10-2 1.9658 0.2155 2.2090 0.5084 0.1377 65.402

4 .2743 x 10-2 2.6238 0.1942 2.2201 0.5410 0.1051 55.047

5 .2813 x 10-2 3.3008 0.1790 2.2290 0.5644 0.0818 36.612

. [-505 35 ] [1.0 1.0]Do= D1 =
1.0 -3.5 1.0 1.5

[~705 200] [-5006 206]81 = . 82 =

2.1 -7.7 4.0 -6.5

0_ [505]
0_ [300]

81 - 82 -

5.tj 2.5 I

a = [0.5 0.5] {3 = [0.5 0.5]
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Table 6 shows that compared to the increase in the fraction of time the server is found

busy, the increase in the system down probability is not high, if we provide service to

external customers in a k-out-of-n system as described in this chapter. To make these

statements more clear we consider the cost function

IDcost = Cll • 'Pdown - C12 • 'Pbusy

where Cll is the loss per unit time the system being down and C12 is the profit per unit

time due to the server being busy.

Table 7 shows that when M = 1 and A ::; 1.5, IDeost is smaller in case 2 than case 1,

even when Cll is 1000 times bigger than C12 • But when A = 2.0 and 2.5, IDcost is larger

in case 2 than case 1, when Cll is 100 times larger than C12• When M = 4 and A ::; 1.0,

the table shows that IDcost is smaller in case 2 than in case 1, even when Cll is 1000 times

bigger than C12 • But when A= 2.0 and 2.5, IDcost is larger in case 2 than case 1, when Cll

is 100 times larger than C12•

Table 7 proves atleast numerically that we are able to utilize server idle time without

much effecting system reliability.



CHAPTER 4

. ,

Reliability of a k.out~of.n system with repair by a service station

attending a queue with postponed work Ijc

Inthis chapter the reliability of a repairable k-out-of-n systemis studied. Repair times

of components follow a phase type distribution. In addition, the service facility offers

service to external customers whichon arrive according to a MAP. An external customer,

who sees an idle serveron its arrival, is immediately selected for service. Otherwise, the

external customer joins the queue in a pool of postponed work of infinite ~apacity with

probability 1 if the numberof failed components in the system is < M (M ::; n - k + 1)

and if the numberof failed components 2: M it joins the pool with probability I or leaves

the system forever. Repair times of components of the system and that of the external

customers haveindependent phase typedistributions, At a service completion epoch if the

buffer has less than L customers, a pooledcustomer is taken for service with probability

p, 0 < P < 1 If at a servicecompletion epoch no component of the system is waiting for

repair, a pooledcustomer, if any waiting, is immediately taken for service.

Thus in this chapter also we study the effectof allowing service to external customers

in a k-out-of-n system with single server. But different from chapters 2 and 3, here the

external customers are never directed to an orbit instead, they join the queue in a pool

or leaves the system forever. Also different from chapter 3, the capacity of the pool is
"

assumed to be infinite and we give freedom for an external customer not to join the pool

if he wishes. We expect thatsuch a move will help us to utilize the server idle time more

effectively.

* This chapter was published in the Proceedings of the Asian International Workshop on Advanced Reli­
ability Modelling (AIWARM) 2004, Hiroshima, Japan, Eds. T. Dohi & W. Y. Yun, World Scientific, pp.
293-300
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We obtain the system state distribution under the condition of stability. A number

of performance characteristics are derived. A cost function involving L, M, , and p is

constructed and its behaviour investigated numerically.

4.1. Mathematical modelling

We consider a k-out-of-n cold system in which the components have exponentially

distributed lifetimes with parameter f' when there arei operational components. There is

a single server repair facility which gives service to failed components (main customers)

and also to external customers. The external.customers arrive according to a MAP with

representation (Do, Dd of order m. Repair times of main and external customers fol­

low PH-distribution with representations ({31, 81) of order ml and ({32, 82) of order m2,
,

respectively.

Let Yi (t) be the number of external customers in the system including the one getting

service, if any, and Y2(t) be the number of main customers in the system including the one

getting service, if any, at time t. If an external customer, on arrival, finds a busy server and

that Y2(t ) < M (M :$ n - k +1), it joins a pool of infinite capacity with probability I; on

the other hand if Y2(t ) ~ M then with probability, it joins the pool or leaves the system

forever.

IfY;(t) = 0 at a service completion epoch then, with probability 1 a pooled customer,

if any, gets service. If 0 < Y;(t) :$ L - 1, (L':$ M), at a service completion epoch, then

with probability p a pooled customer, if there is any, is given service. If Y2(t ) > L - 1

at a service completion epoch, then with probability 1 a main customer gets service. If

Y1(t) = Y2 (t) = 0 then an external customer arriving at time t is taken for service.

Define

Y,(t) = { :
if a main customer is getting service at time t

if an external customer is getting service at timet

Let Y4(t ) and Y5(t ) denote the phases of the arrival and service process respectively.
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Now'H = {(Yl (t), Y2(t )rYa(t), }'4(t), Y5(t))1 t ~ O} forms a continuous time Markov

chain which turns out to be a level independent quasi birth and death process with state

space U~ol(i) where l(i) denotes the collection of states in level i and are defined as

l(O) = {D} U {(O,)I,O,12,ia) : 1 ~)1 ~: n - k + 1, 1 ~ 12 ~ m,l ~ fJ ~ m.} and for

i ~ 1,

l(i) = {(i')I,O,12,ja) : 1 ~ i, ~ n - k + 1,1 ~ 12 ~ m, 1 ~)a ~ ml}

U{(i')l' 1,12,)a) : 0 ~)1 ~ n - k + 1, 1 ~ 12 ~ m, 1 ~ ia ~ m2}

where {D} = {(0, )) : 1 ~ j ~ m} represents the collection of states corresponding to

Yr(t) = Y2(t) = o. Let J, = m + (n - k + l)mml be the dimension of levell(O) and

J2= mm2 + (n - k +1)m(ml +m2) be the dimension of levels l (i) for i ~ 1. Arranging,
the states lexicographically we get the infinitesimal generator Q of the process 'H as

Bo B l O. 0 0

B2 Al Ao 0 0

Q= 0 Ae, Al Ao 0..
0 0 A2 Al Ao

with

Bo =



where

4.1. MATHEMATICAL MODELLING

(1) _ ,
Bo - Do - AIm

B~3) = (Do + (1 - ,)D1) EB SI - AIm m l

B~4) = (Do + (1 - ,)D1) EB SI

B~5) = t; ® (A13d

B (6) _. '[o _. A mml

B~7) =: t; ® S~

B~8) =: i: ® (S~{31)

82

B(I) 0 01

B1= 0 (2) 0I M- 1® B1

0 0
(3)

In- k- M+2 ® Bl

B
(3) - B(2)
1 -, 1
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A(l) A(5)
1 1

A~7) A~2) A~6)

Al8) A~2) A~6)

A~8) A~2) A~6)

A~9) A~2) A~6)
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A((J)
1

where

A(9) A(3) A(6)
1 1 1

A(9) A(4)
1 1

A
(3) - A(2)
o - 'Y 0

Letq = 1 - p.

AI'I = [q(Im 0 ~S? PI» p(Im 0
0(8?P'))]

,

A~) 0 0

A I A(2)
0= 0 M-I ~ 0 0

o 0 1n - k - M +2 ~ Ab3
)

where Abl
) = D I ~ 1m 2

4') = [Dl: t.; DI; I..,]



where

o
o

4.2. STABILITY CONDITION

o
o

(3)
In - k - L+2 ® A2
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4.2. Stability condition

The generator matrixA = Ao+Al +A2 is givenby

Al A(5)
1

A(7) A2 A(6)
1 1

A(8) A2 A(6)
1 1

_ A=

A~II) .43 A~O)

A~9) A4

where
A 0

Al = (Do + DI - AIm) EB (82+ 82 {32)
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The stationaryprobability vector 7r of A, partitionedas

7r = (7r(0) ,7r(1), 7r(2), ... ,7r(n - k + 1))

where the subvector 7r(0) contains mm:! entries and the subvectors 7r(i) for 1 ::; i <

n - k + 1 contains m(ml + m2) entries, satisfies the equations

7r(0)A 1 +7r(1)Ai7 ) = 0

7r(0)Ai5) +7r(1)A2 + 7r(2)Ai8) = 0

(4.1)

(4.2)

7r(i)Ai6) + 7r(i + 1)A2 + 7r(i + 2)Ai8) = 0, 1::; i ::; L - 2 (4.3)

7r(i)Ai6) + 7r(i + 1)A3 + 7r(i + 2)Ai9) = 0,

L - 1 ::; i ::; ti - k - 1 (4.4)

7r(n - k)Ai6) +7r(n - k +1).4.1 = 0 (4.5)

togetherwith the normalizingcondition

'lre = 1.

The equations from (4.1) to (4.5) implies

7r(0);::: [7r(1)Ai7)] [(-Ad-I]

7r(1) = [7r(0)Ai5) +1r(2)Ai8)] [(-A 2)":-I]

(4.6)

(4.7)

(4.8)
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,
1 ~ i ~ L - 2 (4.9)

71"(i + 1) = [7I"(i)A~(j) + 71"(i + 2)A~!J)] [(-A:3t 1
] ,

L - 1 ~ i ~ n - k - 1 (4.10)

71"(n - k + 1) = [7I"(n - k)A~6)] [(-A4tl] (4.11)

The invertibility of the matrices (Do +D, - >'Im) EB (S2 + S~ (32), (Do + Dl - >'Im ) EEl Si,

(Do + D, - >'Im) EB (S2 + p(sg (32)), (Do + D, - >'Im ) EB S2 follows from the fact that

they are strictlydiagonally dominant. The invertibility of the matrix (Do + Dd EB Si can

be proved as follows.

Suppose that (Do+D l ) EBSl is not invertible, thenthereexistsa non-negative vectoru =1= 0

such that

u[(Do+ Dd EB Sd = 0 (ie) u[(Do+ Dl ) ® Im1+ t.; ® Sd = 0

Multiplying both sides of the above equation with em ® I m 1 , we get

(ie) u[em ® Si] = 0

If we partitionu as u = (Ul' U2,"" um), whereeach Ui is a row vectorcontaining ml

elements, the above equation implies that

Now since SI is invertible, this implies that

Ul + U2 + ... + Um = 0
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sinceeach Ui ~ 0, above equation implies u, = 0 'Vi

~ u=O

which contradicts the assumption that U =/:- o.
Hence (Do + Dd (J.1 SI is invertible.

Similarly (Do + D1) E9 S2 is invertible.

The matrices A2 , A3 and A4 have the: general form [HI 0] where HI and H3 are
H2 H3

invertible. The inverse of such a matrix is. given by

which makes it easier to find the inverses (A2) - I , (A3t l and (A4t l .

The equations from (4.6) to (4.11) are well suited for Block Gauss-Seidel iteration

procedure whichcan nowbe usedto find the vector7l".

Nowthe stabilitycondition can be statedas follows:

The process1-£ will be positive recurrent if and only if 7l"Aoe < 7l"A2e, where

4.3. Stationary distribution

Since the model is studiedas a level independent QBD Markov Process, its stationery

distribution (when it exists)has a matrix geometric solution. Under the assumption of the

existence of the stationary distribution, let the stationary vector x of Q be partitioned by
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the levels as x = (x(O), x(l), x(2), .. .). Thenx(i)s are givenby

x(i) = x(1)Ri
-

1 for i ~ 2

where R is the minimal non-negative solution to the matrixquadratic equation

The vectors x(O) and x(l) are obtained by solving the equations

x(O)Bo+x(1)B2 = 0

x(0)B1 + x(1)[A1 + RA2] = 0

subject to the normalizing condition

x(O)e +x(l)(I - Rt1e = 1.
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To compute the R matrix numerically we used the logarithmic reduction algorithm (see

Latouche and Ramaswami [41]).

Departure process of external customers :

Wedefine the departure process of external customers as the sequence of times {Tm :

m ~. O} at which the external units leave the system due to a service completion with

To == O. To study this sequence, it is enough to study the interdeparture times of external

customers {1'm = Tm -:Tm-l : m ~ I}. Sincethe randomvariables 7,\,72, ... are identically

distributed when the process H is positive recurrent, we focus on 1'1 and determine its

distribution under the assumption of positive recurrence of H.

Let F(t) = P(1'1 ~ t) be the distribution function of 1'1 and <1>(0) = E[e- lITl ] , Re(O) ~

0, be its Laplace-Stieltjes transform.
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Conditioning on the stateof the process 'H at timeTO, we can write

00

F{t) = L x{i) Fi{t),
i=O

00

<1>(0) = L x{i) <1>i{O),
i=O
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(4.12)

(4.13)

where Fo{t) and <1>0(0) are column vectors with J1 entries, Fi{t) and <1>i{O) are column

vectors with J2 entries for i ~ 1. The entries of Fi{t) and <1>i{O) are defined as the con­

ditional distribution functions and conditional Laplace-Stieltjes transforms respectively of

fh given that the state of the process 'H at time TO is in the level l (i) for i ~ 0. Since the

process 'H is level independent, we see that

F2(t ) = F3(t) = F4(t) = = Ft (t) and

<1>2(0) = <1>3(0) = <1>4(0) = = <1>1(0).

After arranging the state in the levell(i), i ~ 1, lexicographically, we rename them as

(i, 1), (i, 2), ... (i, J2 ) and the states in the levell{O) as (O, 1), (O, 2), ... (O, J1 ) . Now to

find F1(t) and <1>1 (0) we suppose that at time TO the process 'H is in the state (I, j), 1 ~

j ~ J2• Then since the transitions in the level independent QBD process 'H due to the

arrival process of external customers will not affect the departure process, the time 7\

canbe thought of as the time until absorption in a finite continuous time Markov chain 'HI

withstatespace{~}U{I, 2, ... , J2} , where ~ is an absorbing state, and withinfinitesimal

generator



where
-(1) A(5)Al I

A(7) -(2) A(6)
I Al I

A(8) ·,W) A(6)
I I
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with

A~8) ...4(2) A(6)
I I

A~9) ...4~2) A(6)
I

A(9) ...4(2) A(6)
I I I

A~9) -(2) A(6)Al I

A
(9) -(2) A(6)
I Al I

A (9 ) -(3)
I Al

The process fi l is obtained from the process 'H as follows: since the process 'H is at

(I,j)! I ~ j ~ Jz at time To. we suppose that the process fi J starts at state j.Now

corresponding to each transition in fi brought by the arrival process of external customers.

that is the transitions governed by the matrices Do and DJ. we suppose that no transition

occurs in fi l . That is corresponding to these transitions in H, there is a sojourn in 'HI.

Corresponding to those transitions in H between states in the same level. which are not,

governed by the matrix Do. there is a transition in fi l governed by the matrix Al. The

moment there is a transition in the process 'Hwhich results in a decrease of level of 11 by

1 unit. the departure of an internal customer occurs and we suppose that an absorption to

thestate~ occurs in fi l withratesgoverned by the columnmatrix A2e.
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Thusgiven that the process 'H is in state (1 t j), 1 ~ j ~ J2, the time7\ is the timeuntil

absorption in the process 'HI with generator matrix Q1 and with initial probability vector

a1 =' (0,ad where a1 is a row vector containing J2 entries whose jlh entry is 1 and all

otherentriesare zeros; that is 71 has a PHdistribution withrepresentation (a 1, AI). Hence

thejib entry of the column matrix F1(t), namely F1j (t ) is given by

Note that a1(exp(A1t))e is the jib entryof thecolumnmatrix (exp(A1t))e. Thus we have

(4.14)

Alsothe jib entry of <I>1(lJ), namely <I>lj(O) is given by

and therefore

(4.15)

Now to find Fo(t) and <I>0(0) we proceed in a similar way. Suppose that at time TO the

process 'H is in state (0, j), 1 .~ j ~ J1• Then the time 71 can be thought of as the time

until absorption in the process 'H2 withstatespace,

{~} U{(O, 1), (0,2), ... , (0, J1) , 1,2, ... , J2} , where~ is an absorbing state, and with

infinitesimal generator

o 0 0

Q2 = 0 Bo B1

A2e 0 Al

Like the process 'HI, the process 'H2 is constructed from the process 'H as follows: since

theprocess 'H is assumed to be in state (0, j) at time TO, we suppose the process 'H2 starts

in the state (0, j), 1 ~ j ~ .11• Now corresponding to each transition in the process 'H
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from (O,id to (O,h), there is a transition in the process H2 from (O,iI) to (O,i2) at the

rate (Bo)ili2' Corresponding to each transition in H from (O,id to (1,i2), 1 ::; i, ::; JI ;

1 ::; h ::; J2, there is a transition in H2 from (O,id to h at the rate (Bdili2' After

the process H reaches the levell(l), corresponding to each transition in H brought by

the arrival process of external customers, we suppose that there is no transition in the

process H2• Corresponding to those transitions in H within the same level, which are not

governed by the matrix Do, there is a transition in H2 governed by the matrix Al' When

a transition which results in a decrease of level by 1 unit occurs in the process H, the

departure of an external customer occurs and we suppose that an absorption to the state

!:1 occurs in the process H2; with absorption rates governed by the column matrix A2e.

Thus the conditional distribution of 1'1 given that at time TO the process H is in state (0, i),

1 ~ i ~ J1, is PH-type with representation (Q2' AI) where 02 is a row vector containing

J1 + J2 entries whose ith entry is 1 and all other entries are zero; and

= _ [BO B1]Al - _.
° Al

Hence the ith entry of the column matrix Fo(t), namely Foj(t) is given by

and therefore

(4.16)

Also the ith entry of <I>o(O), namely <I>Oj(O) is given by



and therefore

Now

therefore

which gives

thatis,

Now,
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= [()I - Bo - B I ]
()I - Al = _

o ()I - Al
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(4.17)

00.

F(t) = L x(i)Fi(t)
i=O

00

= x(O)Fo(t) + [Lx(i)]FI(t)
i=l

= x(O)Fo(t) +x(l)(I - m-IFI (t)

= x(O) (eJi - [[IJl OJlX.T2][exp(AIt)](eJl+h)])

+ x(l)(I - Rtl[e - [exp(AIt)]e]

= [x(O)eJl + x(l)(I - R)-le] - [x(O) O][exp(AIt)](eJl+h)

- x(l)(I - R)-I[exp(AIt)]e
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F(t) = 1 - {[x(O) O][exp(Alt)]e + x(I)(I - Rtl[exp(Alt)]e} (4.18)

The above relation shows that F(t) is the distribution function of a PH distribution with

representation (a3l AI) w;:here Q[Al= ~X](O) 0 x(I)(/ - R)-l) is a row vector containing

(J l + 2J2) elements and Al = _.
o Al

Now

oc

~(O) = L X(i)~i(O)
i=O

=x(O)~o(O) + x(I)(/ - Rtl~l(O)

= x(O)(O/ - BotlBl(O/ - Ar)- l A2e

+ .1:(1)(/ - Rtl(O/ - Ar)- l A2e

Thus we can conclude that the interdeparture time 1'1 has a PH-distribution.

4.3.1. System performance mcasur~s.

(I) System reliability which is defined as the probability that there is atleast k opera­

tional components is given by

where e(O) is a column vector whose last mml entries are Os and all other entries'

are Is and e(l) is a column vector whose last m(ml + m2) entries are Os and all

other entries are Is.

(2) Probability that system is down Pdown = 1 - 01•
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(3) Expected numberof pooledcustomers

oo n-k+l m mt

83 = L L L I>x(i,i"O,i2,i3)
i=1 h=l h=lh=1

oo n-k+l rn Tn2

+L L L L ix(i + 1,il' 1,i2,h)
i=1 h =0 h=I33=1

(4) Expected loss rate of external customers

where e(2) and e(3) are column vectors givenby

95

(5) Expected numberof transfers fromthe poolwhen there is atleast 1 maincustomer

present,per unit time

00 L m mt

85 =L 2: 2: 2: x(i,il' O,h,i3)PS?U3)
i=l h=2i2=lh=1

oo L-l m Tn2

+L L L L X(i,il' 1,h,i3)pSg(j3)
i=2 n =1h=lh=l

(6) Expected numberof failed components.
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::~ e[(4) an~ e(S) ar]e COl: ~m['ces giV~n by ]

e(6) ® e m m1 e(6) ® em(ml +m2)

e(6) = [1,2, ... , n - k + If

(7) Probability that the server is found busy with an external customer

00 n-k+l m m2

07 = L ~= L L X(i,jl' 1,12,j3)
i=l i1=0 h=l ia=l

(8) Probability that the server is found idle,

m

Os = LX(O,j)
j=l

(9) Probability that the server is found busy, Pbusy = 1 - Os

(to) Traffic intensity p = 71'
A
Aoe

71' ae

4.4. A cost function and numerical illustrations

96

Let Cl be the cost per unit time incurred if the system is down, C2, be the holding

cost per unit time per customer in the pool, C3 be the cost due to loss of 1 customer and

C4 profit obtained by serving an external unit when there is atleast one main customer

present, and Cs be the holding cost per unit time of one failed component. We construct a

cost function as

The common parameters for the following tables are:

n = 35, k = 10, 'Y = 0.5, p = 0.5

/3~ = [0.4 0.6] 80 - [3.0] [-4.0 LO ]
1 - 81 =

6.0 1.0 -7.0 .

/32 = [0.5 0.5] 80 - [4.0] [-5.0 LO ]2- 82=
9.5 1.0 -10.5
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Do = [-5.5
1.0

3.5 ]

-3.5
_ [1.0 1.0]Dl -

1.0 1.5

Arrival rate = 2.34615, Correlation = -0.00029.

Cl = 1000.0, C2 = 10.0, C3 = 25.0, C4 := 75.0, Cs = 15.0,

Table 1 shows that when the componentfailure rate A is small, increase in 'L' has

not much effect on the probability that the server is found idle. But when A is 2.5, the
,

probability rh decreases as L increases. The reason for this can be obtained from Table 3

which shows that when A is 2.5, expected number of pooled customer decreases as L

increases. An intuitive reasoning for such a behaviour is that as L increases a pooled

customer has a better chance of being selected for service. Note that as we have taken

p = 0.5, when the number of failed components is < L, there is equal probability of

selecting a pooled customer for service. Also note that the average service rate is greater

than average arrival rate. Table 1 also shows that when A = 0.1 and 1.5, increase in 'M'

has not much effect on rh but when A = 2.5, rh increases with increase in M. As in the

previous case, the reasoning for this can be obtained from Table 3 which shows that when

A is 2.5, expected number of pooled customers increases as M increases.

Table 2 shows when A = 0.1, increase in L and M has not much effect on ()6' But

when A= 2.5, ()7 increases with increase in L as well as in M.

Table 4 shows that only when), = 2.5, variations in L and in M has a considerable

effect on p. When), = 2.5, p decreases as L increases and p increases as M increases.

This can be explained in the same way as the variation in rh.

Table 5 shows that cost increases as M increases towards n - k + 1, decreases as L

increases towards M.

In tables 6 and 7 we compare the model in this chapter with the model where no

external customers are allowed.

Let case 1 denote k-out-of-n system where no external customers are allowed and case

2 denote the model discussed in this chapter. Table 6 shows that compared to the increase



4.4. A COST FUNCTION AND NUMERICAL ILLUSTRATIONS 98

in the server busy probability, the increase in the system breakdown probability is small.

To make these statements more clear, as in chapters 2 and 3, we consider a cost function:

where C ll is the cost per unit time due to the system breakdown and C12 is the profit per

unit time due to the server becoming busy.

Table 7 shows that by allowing external customers as described in this chapter, there is

a decrease in the value ofIDco~1 even when Cll is 1000 times larger than C12 , except when

,\ = 2.5. Which shows atleast numerically that our goal of idle time utilization without

affecting the system reliability is achieved through the model in this chapter.

TABLE 1. Variation in probability that the server is found busy with an
external customer ()7

>. = 0.1 >. = 1.5 >. = 2.5
L M=10 M=15 M=20 M=lO M= 15 M=20 M=lO M= 15 M=20
3 0.3986 0.3986 0.3986 0.3986 0.3986 0.3986 0.3966 0.3985 .3986
5 0.3986 0.3986 0.3986 0.3986 0.3986 0.3986 0.3951 0.3984 .3986
7 0.3986 0.3986 0.3986 0.3986 0.3986 0.3986 0.3916 0.3981 .3986
9 0.3986 0.3986 0.3986 0.3985 0.3986 0.3986 0.3844 0.3974 .3985
10 0.3986 0.3986 0.3986 0.3984 0.3986 0.3986 0.3786 0.3969 .3985
12 0.3986 0.3986 0.3986 0.3986 0.3946 .3983
14 0.3986 0.3986 0.3986 0.3986 0.3898 .3979
15 0.3986 0.3986 0.3986 0.3986 0.3859 .3975
17 0.3986 0.3986 .3960
19 0.3986 0.3986 .3926
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TABLE 2. Variation in expected number of failed components (00 ) ,

>. = 0.1 >. = 1.5 >. = 2.5
L M=lO M=15 M=20 M=lO M=15 M=20 M=lO M= 15 M=20
3 0.0346 0.0346 0.0346 0.8469 0.8469 0.8469 2.2362 2.2408 2.2412
5 0.0346 0.0346 0.0346 0.9943 0.9944 0.9944 2.9715 2.9875 2.9887
7 0.0346 0.0346 0.0346 1.0692 1.0693 1.0693 3.7530 3.8058 3.8100
9 0.0346 0.0346 0.0346 1.1017 1.1023 1.1023 4.4620 4.6287 4.6421
10 0.0346 0.0346 0.0346 1.1096 1.1106 1.1106 4.7426 5.0314 5.0554
12 0.0346 0.0346 1.1191 1.1191 5.7934 5.8689
14 0.0346 0.0346 1.1224 1.1225 6.4277 6.6551
15 0.0346 0.0346 1.1232 1.1233 6.6457 7.0319
17 0.0346 1.1241 7.7253
19 0.0346 1.1244 8.2554

TABLE 3. Variation in expected number of pooledcustomers.

>. = 0.1 >. = 1.5 >. = 2.5
L M=lO M=15 M =.20 M=lO M= 15 M=20 M=lO M= 15 M=20
3 0.3236 0.3236 0.3236 2.0168 2.0186 2.0186 38.0455 42.3705 42.7914
5 0.3235 0.3235 0.3235 1.8161 1.8192 1.8193 33.9457 41.0206 41.7485
7 0.3235 0.3235 0.3235 1.7116 1.7179 1.7180 27.1235 39.1407 40.5645
9 0.3235 0.3235 0.3235 1.6606 1.6733 1.6735 17.5855 36.3427 39.2748
10 0.3235 0.3235 0.3235 1.6445 1.6620 1.6623 12.6822 34.3457 38.5674
12 0.3235 0.3235 1.6502 1.6507 28.3938 36.8954
14 0.3235 0.3235 1.6451 1.6461 19.4375 34.5246
15 0.3235 0.3235 1.6436 1.6450 14.4655 32.8427
17 0.3235 1.6440 27.7254
19 0.3235 1.6435 19.6500

TABLE 4. Variation inTraffic intensity(p)

>. = 0.1 >. = 1.5 >. = 2.5
L M-lO M -15 M -20 M=lO M=15 M=20 M=10 M= 15 M=20
3 0.408 0.408 0.408 0.6080 0.6081 0.6081 0.9310 0.9355 0.9359
5 0.408 0.408 0.408 0.6080 0.6081 0.6081 0.9271 0.9352 0.9358
7 0.408 0.408 0.408 0.6078 0.6081 0.6081 0.9178 0.9345 0.9358
9 0.408 0.408 0.408 0.6075 0.6081 0.6081 0.8965- 0.9328 0.9356
10 0.408 0.408 0.408 0.6073 0.6081 0.6081 0.8777 0.9312 0.9355
12 0.408 0.408 0.6080 0.6081 0.9250 0.9350
14 0.408 0.408 0.6080 0.6081 0.9100 0.9338
15 0.408 0.408 0.6080 0.6081 0.8964 0.9327
17 0.408 0.6081 0.9279
19 0.408 0.6081 0.9162
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TABLE 5. Variation of the cost function
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>. = 0.1 >. = 1.5 >. = 2.5
L M=1O M=15 M=20 M=lO M=15 M=20 M=1O M= 15 M=20
3 1.5034 1.5034 1.5034 -15.275 -15.262 -15.262 331.929 374.640 378.808
5 1.4998 1.4998 1.4998 -25.211 -25.190 -25.189 269.766 339.347 346.537
7 1.4998 1.4998 1.4998 -27.460 -27.420 -27.419 200.107 317.866 331.916
9 1.4998 1.4998 1.4998 -28.097 -28.020 -28.020 111.255 294.086 323.014
10 1.4998 1.4998 1.4998 -28.233 -28.133 -28.131 67.201 277.540 319.197
12 1.4998 1.4998 -28.229 -28.226 226.456 310.386
14 1.4998 1.4998 -28.262 -28.255 146.599 295.685
15 1.4998 1.4998 -28.270 -28.260 101.752 283.603
17 1.4998 -28.265 242.090
19 1.4998 -28.267 170.629

TABLE 6. Comparison with no retrial case n = 35. k = 10. 'Y = 0.7.
p = 0.5 other parameters are same as for other tables

>. = 0.1 >. = 0.5 >. = 1.0 >. = 1.5 >. = 2.0 >. = 2.5
Case 1 < 10-13 < 10-13 < 10 -13 .36 X 1011 .3301 x 10 -s .591 x 10 -o

j N
L = 20, < 10-13 < 10-13 -3 X 10-12 .7493 X 10-8 .7952 X 10-5 .9996 X 10-3

aM=22
L=20, < 10-13 -c 10-13 -3 x 10-12 .7494 X 10-8 .7961 X 10-5 .1018 X 10-2
M=25
L= 10, < 10-13 < 10-13 < 10:-13 .1013 X 10-9 .8911 X 10-7 .1298 x 10--1
M=25

Case 1 0.02296 0.1148 0.2296 0.3444 0.4592 0.5741
» L=20,J N 0.4216 0.5134 0.6282 0.7431 0.8578 0.9701

~
M=22

u L = 20,
0.4216 0.5134 0.6282 0.7431 0.8579 0.9718

M=25
L= 10,

0.4216 0.5134 0.6282 0.7431 0.8579 0.9727
M=25
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In tables 8 and 9 we compare the three ways of providing service to external customers

which are introduced in Chapters 2, 3 and 4 with the case where no external customers are

allowed.

Let I denotes the case of a k-out-of-n system where external customers are not allowed,

and let 11, III and IV denotes the models in chapters 2,3 and 4 respectively.

The following parameters are common for I, 11, ill and N

,B = [0.5 0.5] .

so ­2-

n = 11.: =[-:'5 3.5]
Do-

LO -3.5

[
- 7.5 2.0]

SI=
2.1 -7.7

Sp = [5.5]
5.6

Q = [0.5 0.5]

_ [1.0 1.0]D1 -
1.0 1.5

_ [-5.06 2.06]S2 -
. 4.0-6.5

[
3.0]
2.5

The remaining parameters for 11 are () = 10.0

The remaining parameters for III are

() = 10.0" = 0.7, <5 = 0.7, N = 4, M = 4

The remaining parameters for IV are , = 0.7, L = 3, M = 5, p = 0.5

TABLE 8

x= 0.1 A= 0.5 A= 0.9
I < 1O-1J .3956 x 1O-(i .4014 X lO- h

'Pdown
11 < 10 -lJ .1321 x 10 ·f .1133 x 10 -0

III .1801 x 10-.7 .3289 x 10-4 .3909 X 10-3

IV .112 x 10 -iu .1437 x 10-0 .6186 x 10-4

I 0.0180 0.0901 0)802

'Pbusy
11 0.4408 0.5129 0.5850
III 0.7500 0.7941 0.8341
IV 0.8565 0.9285 0.9994
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Table 8 shows the effect of providing service to external customers in a k-out-of-n

system as described in Chapters 2, 3, 4. To make these effects more clear, We construct a

cost function as

where Cll is the cost per unit·time due to the system becoming non operational and 0 12

is the profit per unit time due to the server becoming busy, whose variation according to

table 8 is given in table 9.

TABLE 9

IDcost A = 0.1 ,,\ = 0.5 ,,\ = 0.9
I --0.1800 -0.9010 -1.8020

Cll = 100 11 --4.4080 -5.1290 -5.8499
0 12 = 10 III --7.5000 -7.9377 -8.3019

IV --8.5650 -9.2849 -9.9878
I --0.1800 -0.9010 -1.8016

Cll = 1000 11 --4.4080 -5.1290 -5.8489
C12 = 10 III --7.5000 -7.9081 -7.9501

IV --8.5650 -9.2836 -9.9321
I --0.1800 -0.9010 -1.7980

Cll = 10000 11 --4.4080 -5.1289 -5.8387
C12 = 10 III --7.4998 -7.6121 -4.4320

IV --8.5650 -9.2706 -9.3754

Table 9 shows that the cost decreases continuously when we allow external customers

as in chapters 2, 3, 4 except when Cll is 1000 times larger than C12 and ,,\ = 0.9, where

the cost in chapter 3 model is more than that in chapter 2, but it is less than the cost in

the model where no external customers are allowed. It also shows that cost is minimum

for the model described in this chapter where the external customers are kept in a pool of

postponed work. From table 8 we see that eventhough P down is the least if we consider the

model in chapter 2, the server busy probability is the highest for the model described in

this chapter which makes that model the best from a server idle time utilization point of

view.



CHAPTER 5

On a queueing system with self generation of priorities*

Priority queues have been extensively studied by several researchers (see for example

Jaiswal [33] and Takagi [55] for detailed analysis, and Gross and Harris [31] for pre-
,

liminaries). In such queueing systems, arriving customers are classified as belonging to

different priorities. The one with highest priority has better access to the service counter

than those with lower priorities. Classification into different levels of priority helps in re­

ducing customer impatience. As an example consider a clinic where patients queue up for

appointment with physicians. Patients, while waiting in the system, may become seriously

ill (priority generation). At this epoch, any physician who is examining an 'ordinary' pa­

tient leaves him to be of service to the emergency (priority) case. At the time of arrival

of the customer if one 'of lower priority is going service then the customer in service may

be pushed out to accomodate the one just arrived, provided there is no other customer of

priority equal to or greater than that tagged to the present arrival. This manner of pushing

out a customer of lower priority in service is reffered to as pre-emptive priority. The cus­

tomer who was pushed out will be taken for service only when the system does not have

a customer of higher priority waiting. On the other hand, the service of a lower priority

customer may continue even after the arrival of a higher priority customer and the latter is

taken for service only after the present service is completed. This type of service discipline

is reffered to as non-pre-emptive service. The pre-emptive case can be further divided into

pre-emptive resume and pre-emptive repeat services. In pre-emptive ressume, the cus­

tomer of lower priority will continue getting the remaining part of the service; whereas in

the latter case service starts from scratch.

* This chapter was publishedin NeuralParallel & Scientific Computing,VoI. 13,2005
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In this chapter we introduce a new priority queueing system. The system has 'c'

servers. Customers on arrival join a queue if all the servers are busy. At the time of

arrival there is no classification of priority levels. However, while waiting (and not un­

dergoing service), customers generate into priority at a constant rate. The interoccurence

times of priorities are exponentially distributed random variables with parameter depend­

ing on the numberof customers waiting for service. If, at the time of priority generation,

all servers are busy serving priority generated customers, then the present priority gener­

ated unit goes out of the system in search of emergency service. However, if at the epoch

where a waiting customer generates into a priority type, there is atleast one ordinary cus­

tomerundergoing service, thensuchan ordinary customer is pushedback into the waiting

line (as the next customer to. be served) and the one generated into priority begins to get

service. As an example of the model under discussion consider a clinic where patients

queue up for appointment with physicians (cin number). Patients, while waiting in the

system, may become seriously ill (priority generation). At this epoch, any physician who

is examining an 'ordinary' patientleaves him to servicethe emergency (priority) case. On

the otherhand if at the timeof priority generation all physicians are busyexamining emer­

gency. cases, then the present priority generated patient will have to leave the system in

search of priority service elsewhere.

Thischapteris arranged as follows: Section 5.1 dealswith the mathematical modelling

of the problem. Section 5.2 provides condition for stability of the system. In section 5.3,

the steady statedistribution is obtained. In section 5.4, weprovide somespecial casessuch

as thesingleservercaseandconstant selfgeneration of priorities (ie, independent of system

state). In section5.5 someperformance measures suchas expected numberof customers in

the systemare given. Also we introduce two different cost functions and some numerical

illustrations are provided.
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The system we study is described as follows. Customers arrive at a c-server counter

according to a Poissonprocess of rate A. At the timeof arrival, each customeris assumed

to be ordinary. However, while waiting in the queue, an ordinary customermay generate

into a prioritycustomerat a rate 0. Sinceeach waiting ordinary customergenerates into

priority at the constantrate0, the rate of priority generation is no, when n suchcustomers

are waiting. If at that epoch there is any ordinary customer getting service, he is then

replaced by the customer who currently turned into a priority case. If there is more than

one customer in service, then the one who entered the service most recently is replaced.

However, if all the customers in service are priority customers, then the present priority

generated unit goes out of the system in search of immediate service. This phenomenon

happens at clinics andis alsoobserved asa consequence of customer's impatience resulting

in joining a higherpriority queue from one of lowerpriority. An ordinary unit in service

is pre-empted by the priority generated unit. The service policy is pre-emptive repeat.

Service times of ordinary units are i.i.d. exponential random variables with parameter iu

if there are i (1 ~ i ~ c) ordinary customers in service. Also the service times of priority

units arc i.i.d. exponential random variables with parameter 'iIJ'I' (1 ~ i ~ (') priority

customers are in the system.

Let N(t) = # of ordinary customers in the system (including those gettingservice) at time

t and M(t) = # of priority customers in the system.

Undertheassumptions on thearrival andservice processes, X(t) = {(N(t), M(t)) It E

R+} is a continuous time Markov chainon the state space Z+ x {O, 1, ... , c}. The states

arearranged in the lexicographic order. The level i denoted by i is defined as

. i = {(i, 0), (i, 1), ... (i, en
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The infinitesimal generator of the process is
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Q=

Boo Ao 0 0

B lO .111 Ao 0

o B2 1 A22 Ao

whereeach entry is a (c+ 1) x (c+ 1) matrix. Here, Aogoverns transitionrates from level

i to i + 1 and is givenby

Ao = ,Hc+l ;

Bi,i-l, i ~ 1, governs transitions from leveli to i-I and is givenby

(i -1,0) (i-l,l) (i - l,c)

(i,O) booi bOli 0

(i, 1) 0 blli b12i

Bii - l =,

bc- l c-l i bc- l c i

(i, c) 0 bcci

wherebjji = {min(c - i. i)}JL, 0 ~ j ~ c - 1, bcci = ia, and bj-l,j,i = {max(O, i - (c­

j + 1))}a, 1 ~ j ~ c, Boo, Aii, i ~ 1, governs transitions from level i --+ i and are ofthe

form

* 0 0

IJLI * 0

o 2JLI *

o CJLI *
where in each case '*' is such that (Boo + Ao)e = 0 and (Bi,i-l + Aii + Ao)e = 0, i ~ 1

ande is the columnvectorof Is'.
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The distinctive nature of self generation of priorities' of the above process gives the

intuition that the process X(t) will be ergodic. Actually this is the case. We use the

following result (Tweedie [57]) to provethis.

Proposition (Tweedie)Let X(t) be a Markov processwith discrete state spaceS and rates

of transition qsp, 8, PES, Lp qSP = O. Assume that there exist

(1) a function </>(8), 8 E S, whichis bounded from below; (test function)

(2) a positivenumbere and a map 8 -+ Ys such that

• Variable y, :5 L:p~, q,p(</>(p) - </>(8)) < 00 for all 8 E S;

• Y, :5 -f for all 8 E S exceptperhaps a finite numberof states.

Then the process X (t) is regularand ergodic.

For the model under investigation, we considerthe following test function:

</>(8) == 4>(i,j) = i +aj

wherea is a parameterwhich will be determined later, The mean drifts Ys == Yij are given

by

).. - CJ.L + jJ.L - ajJ.Ll + (a - l)iQ

Since

Yij =
+(a - l)(j - c)«,

).. - aCJ.Ll .; iQ,

if 0 :s; j :s; c - 1 and

i + j > c,

if j = C, i + r> c.

, {(a-l)OO, if 0 :5 j:5 c-l,
lim Yij = L i =
1--+00 'f .-cc, 1 J = c,

the assumptions of Tweedie's theorem hold if and only if, a-I < 0 (see Falin and

Templeton [23]).
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Thus whatever be the system parameters, we see that the process X (t) is regular and

ergodic. 0

We also note that the system remains finite with probability one. Observe that cus­

tomers may leave the system withoutservice when the system state is (i, c), i ~ c. Given

that a change takes place when the systemis in state(n, c), it is an arrival with probability

HCIJ~+nQ and a departure with probability A~~~~~~Q' The second expression goes to 1,

whereas the first goes to zero with n increasing.

5.3. Steady state distribution

Since the process under consideration is an level dependant quasi birth and death pro­

cess (LBQBD), to calculate the steady state distribution, we use the methods described in

BrightandTaylor [13], Nowif wepartition thesteadystate vectorx as x = (xo, Xl, X2, ... )

each entry is a row vectorcontaining c + 1 entries, then we can write

k-l

Xk = Xo 11 RI for k ~ 1
1=-0

where the family of matrices {Rk , k ~ O}, is the minimal non-negative solutions to the

system of equations:

and xi> is calculated by solving

xo[Boo + RoBlOl = 0,

such that

(5.1)

(5.2)

(5.3)

00 k-l

. xoe+ Xo L: [IT RL)e < 00.

k=l 1=0

The calculationof the aboveinfinite sums does not seem to be practical, so we approx-

imate XkS by xk(K*)s where (xk(K*))j' 0 s k s K*, 1 $ j $ c + 1, is defined as the
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stationary probability that X(t) is in state (k,j) of level k, conditional on X(t) being in

the set

{(i,j)IO s i~; K*, 1 ~ j ~ c+ I}

Then xk(K*), °s k s K* is givenby

k-l

xk(K*) := xo(K*) IT RI
1=0

wherexo(K*) is foundsuch that it satisfies (5.2) and

KO k-l

xo(K*)e + xo(K*) [E [IT RL]] e = 1
k=l 1=0

(5.4)

(5.5)

Here we have that for all i ;::: 1, and for all k, there exists j such that [Bi,i-Ilk,j >
\

O. Therefore we can construct a dominating process X(t) of X(t) and use it to find the

truncation level K* in the sameway as in [13] as follows:

The dominating process X(t) has generator

Boo Ao 0 0 0

0 All Ao ° 0

Q=; 0 B21 A22 Ao °0 0 B32 A33 Ao

- - A
where (Akk)ij = (Akk)ij for k ;::: 2 and j ::J i, (Ao)ij = c+l'

1 s i,j s c + 1.
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5.4. Some particular cases

III

(i) Constant priority generation: So far we were dealing with the case of linear priority

generation. This is especially the case in most of the practical situations (the clinic example

given in the beginning of this chapter falls in this category). However priority generation at

constant rate, ie., irrespective of the number waiting, also arises in real life situations. Here

is an example. A system operates with n components. The failure rate of components,

assuming exponential lifetimes with parameter >"/i, when i components are operational,

produces constant priority generation. Here priority generation is identified with the failure

of components. Operating components are identified with waiting customers.

So we consider the c server case with constant priority generation. The generator

matrix in this case has the tridiagonal form

Boo Ao 0 0

B lO All Ao 0

o B21 A22 Ao

Q=
BC,C-l Ace Ao

A2 Al Ao

A2 Al Ao

where Ao = >"lcH

boen b01i 0

o blli b12i

Bi,i-l =

bC- 1c-li

o
bC- 1 c i, ,

,1 :::; i :::; c,



5.4. SOME PARTICULAR CASES

bjji = {min(c - i. i)}p, 0::; j ::; c - 1,

- max{O,i - (c - j + I)}
bj-l,j,i = [max{l, i - (c _ j + 1)}]a,

Boo, Aii, 1 ::; i ::; c, are of the form

* (I 0

IPI * 0

o 2PI *

CPI *

beci = a,

1 < j < c.

112,

where, in eachcase '*' is suchthat (Boo + Ao)e = 0, (Bi,i-l + Aii + Ao)e = 0, 1 ::; i ::; c.

cp o
o (c-l)p a

Ip a

o a

->.. -cp.-a 0

Ip.l ->.. - (c - 1}p. - P.l - a

Al = 0 2P.1

o
o

->.. - (c - 2}p. - 2P.1 - a

CP.l -A - cp.} - Q

Let A = Ao+ Al + A2 and1r = (1ro, 1rI, ... ,1re) be the steadystate probability vector

of the generator matrixA.

Fromthe homogeneous system ttA = 0 we get
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Then usingthe normalizing condition-a- + 11"1 + ... + 11"C = 1 we get

1
11"0 = 1+ (l!...) + '!'(l!...)2 + ... + '!'(l!...)c

~l 2! ~l cl ~l

The systemwill be stable if and only if, 7rAoe < 11"A2e

ie., if and only if,
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Under the stability condition, the steady state probability vector x of the generator

matrix Qexists. Let us partition x as x =: (x(O), x(l), .. .).

From the structure of the matrix Q. we can write that

x(c+ i) = :r(c)Ri
, for i 2:: 0,

where R is the minimal non-negative solution of the matrix quadratic equation

The vectors x(O), x(l), ... ,x(c) satisfy the equations:

x(O)Boo +x(l)B lO = 0

x(O)Ao+ x(l)Au + x(2)B21 = 0

x(c - 2)Ao+ x(c - 1)Ac- 1,c- 1 + x(c)Bc,C- 1 = 0

x(c - l)Ao+ x(c)Acc + x(c+ 1)A2 = O.

Equation (5.9)can be written as

x(c - l)Ao+ x(c)[Acc + RA21 = O.

(5.6)

(5.7)

(5.8)

(5.9)
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ie., x(c - 1) = >.1 x(c)[Ace + RA2], sinceAo = Alc+! '

Setting Rc-1 := >.1 [Ace + RA 2], we obtain

x(c - 1) = x(c)Rc-1'
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From(5.8), x(c - 2)Ao+x(c)[Rc-1Ac-1,c-l + Bc,c-d = 0

ie.,
-1

x(c - 2) = "1-x(C)[RC-1Ac-1,C-1 + Bc,c-d

Putting Rc-2 = >.1 [Rc-1Ac-1,c-1 + Bc,C-1] we get x(c - 2)= x(c)Rc-2' Similarly

x(c - 3) = x(c)Rc-3 ,

where Rc-3 = >.1 [Rc-2Ac-2,c-2 +Rc-1Bc-1,c-2].

Thusdefining the matrices R; recursively by

Rc = I,

Rc-i ;::: >.1 [Rc-i+1 Ac-i+l,c-i+l + Rc-i+2Bc-i+2,c-i+d, 2 s i <c,

we can write x(i) = x(c)~ for 0 ~ i ~ c - l.

Now from (5.6) we can write

x(c)[RoBoo +R1BlO] = o.

This determines x(c) uptoa multiplicative constant which can then be evaluated using

the normalizing condition

c-l

x(c)[L~]e+x(c)(I- Rt1e = l.
i=O
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(ii)The singleserver case with constant priority generation:

This case produces sharper results. We have

Bo Ao 0 0

Bl All Ao 0
Q=

0 A2 Al Ao
..
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which is a quasi-Toeplitz matrix. Define A = Ao+ Al + A2 and tt = (7fO,7fl) with

7fo, 7fl ~ 0 and 7fo + 7fl = 1, be the steady state probability vector of the generator matrix

A. Then the relation 7fA = 0 provides us the marginal probabilities for the system with no

priority customer and that of the system with a priority customer. These probabilities are

immediately computed as 7fo = ....a..+1 and 71"1 = _+et • The system is stable if, and only if,et 1-11 et 1-11

7fA2e > 7fAoe (see Neuts [44]), that is if and only if,

J.),J.),1 + a> A.
a + J.),l

COROLLARY 5.1. If there is no priority. generation, then a = 0, and the stability

condition reduces to J.l > A which is the stability condition for the classical M/M/1
queue.

COROLLARY 5.2. The model considered here generalises the classical queue with

reneging as explained below:

Consider the M/M/1 queue with reneging. The reneging rate is linearwith parameter

a (perunit). Suppose p(i) is theprobability ofthe system beingfound in state i in the long

run.

Now consider the systemdescribed here with linearprioritygeneration. Then

. (i - 1)0 . .'
p(z) = C 1) A1f(z, 0) + 1f(z - 1,1)

Z - a + Jt +.

This canbe extended to the multiserver caseas well.



5.4. SOME PARTICULAR CASES 116

Toobtainthe systemstateprobabilities, weproceed to calculateG (a stochastic matrix)

from

(5.10)

where

(see Latouche and Ramaswami [41])

Since G is stochastic, we have Gm = 1 - Goo and Gll = 1 - GlO and in the present

case we haveG as a 2 x 2 matrix, its elements are computed easily using (5.10):

On substituting Aa, AI, A2 , G and G2 in (5.10) we note that Goo satisfies

(Goo)3)"J-L - (Goo)2(- a (J-Ll +).. - J-L) + J-L(-J-Ll + 2)" + J-L))

- Goo(a 2+ a(J-Ll + )..) + (2J-Ll - ).. - 2J-L)J-L) - J-L( -0 - J-Ll + J-L) = 0

and G11 satisfies
1 0

Gll = ~[().. + 0 + J-L - )"Goo) - 1- Gool

Thus, for parameters ).., 0, J-L, J-Ll satisfying the stability condition, we can calculate G.

Wecan find G in another wayalso. Note that here G has distinctcharacteristic values.

For, if G has onlyonecharacteristic value namely I, then, sinceG is stochastic, wecan see

thatG is the identity matrix andit cannot satisfy equation (5.10). Thus G is diagonalizable.

Now we can find the characteristic value of G, other than I, by solvingthe equation:

det(x2Aa+ xAl + A2 ) = 0 for a root less than 1.

Thecharacteristic vectors of G corresponding to a characteristic valueXare the charac­

teristic vectors of the matrixG()") = )..2Ao+ )..Al +A2 corresponding to the characteristic
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value O. Findingthesecharacteristic vectors corresponding to the twocharacteristic values,

we can get G.

Now we can compute the rate matrix R from the relation R = Ao(-A1 - AoGt1
•

Now the systemstate probabilities are given by x = (x(O), x(I), . . .) where

x(i) = (y(i, 0), y(i, 1)).

Now $(i)s satisfy

x(i) = x(I)Ri
-

1
, i ~ 1.

Now to calculate x(O) and x(I) we use the equations

x(O)Bo+x(I)B1 = 0,

x(O)Ao+ x(I)[A l1 + RA21 = 0,

together with the normalizing condition E~o x(i)e = 1.

5.5. System performance measures

Here we obtain some of the important measures of performance of the system in the

longrun in the singleservercase withrate of priority generation depending on the levelof

the process. Theseprovide us information about the various characteristics of the system.

The performance measures thatwe concentrate on are

(i) Average number of customers in the system is givenby

E~o{i7r(i,O) + (i + 1)7r(i, In.

(ii) Average number of customers lostper unit time is E:l iCX7r(i, 1)

(iii) Hence the number of priority generated units in unit time is

{E~l icx7r(i, 1) + E~2(i - I)CX7r(i, On

These measures can be utilized to construct the following cost functions in the case of

single serversystem.
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TABLE 1. Case 1: A = 1.0, Q = 0.8, J-L = 1.1, Cl = 50.0, C2 = 10.0,
C3 = 10.0, C = 10.0, h = 4.0

J-Ll 0.6 0.8 1.0 1.2 1.4
r, Q,J-Ll -0.472 -3.419 -5.110 -6.204 -6.969
F2 Q,J-Ll 11.928 9.373 7.976 7.113 6.536

TABLE 2. Case 1: X = 1.0, J-L = 1.1, J-Ll = 1.1, Cl = 50.0, C2 = 10.0,
C3 = 10.0, C = lO~O, h = 4.0

Q 0.8 0.9 1.0 1.1 1.2
e. Q,J1.l -5.710 -5.645 -5.585 -5.528 -5.476
F2 Q,J1.l 7.498 7.347 7.226 7.127 7.044

Case 1. Nonconstant priority generation

Here

118

where the first term on the right sides represents the revenue to the system by way of

serving priority units over unit time. The second term represents the loss to the system

due to priority generated customers leaving the queue when a priority customer is getting

service. The last term represents the cost to the system due to pre-emption of service of

ordinary customers.

We consideranother cost function

The first term on the right side represents loss to the system'due to priority generated

customers leaving the systemwhena priority customer is receiving service and the second

onerepresents holding cost of customers in the system.
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TABLE 3. Case 2: (Variations of J.LI) where>. = 1, Q - 1, J.L = 1.1,
Cl = 20, C2 ='10, C3 = 15, C = 10.
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F2(O, J,LI) Average Average Average
J,LI FI(O, J,LI) h=l h=5 h = 12 number of numberof numberof

customers customers lost priority
in the system per unit time units generated.

1.1 1.054 3.829 11.62 25.254 1.948 0.207 0.467
1.2 1.166 3.487 11.012 24.182 1.881 0.193 0.456
1.3 1.284 3.212 10.515 23.295 1.826 0.180 0.447
1.4 1.402 2.988 10.102 22.551 1.778 0.169 0.439
1.5 1.518 2.803 9.754 21.918 1.738 0.1598 0.431

TABLE 4. Case 2: (Variations of a) where>. = 1, J.L = 1.1, J.Ll = 1.1,
Cl = 20, C2 = 10, C3 =15, C = 10.

F2(O,J,Ld Average Average Average

° FI(O, J,LI) h=l h=5 h = 12 numberin numberof numberof
the system customers lost priority

unitsgenerated.
I 1.054 3.829 11.62 25.254 1.948 0.207 0.467

1.1 1.195 3.808 10.937 23·414 1.782 0.223 0.484
1.15 1.261 3.80366 10.652 22.637 1.712 0.230 0.491
1.2 1.323 3.80309 10.398 21.~38 1.649 0.237 0.498

1.25 1.384 3.8053 10.169 21.307 1.591 0.244 0.505
1.3 1.441 3.80959 9.964 20.734 1.539 0.2498 0.511
1.4 1.548 3.8231 9.6096 19.736 1.447 0.261 0.522
1.9 1.962 3.92931 8.5319 16.587 1.151 0.306 0.562

Case 2. Constant priority generation:

Fl(a, ILl) = - (t 71"(i, O)~) Cl +(t 71"(i, 1) a
l
) C2 +(f 71"(i, 0)0) c,

1=2 J.L 1=1 J.L 1=2

F,(a, 1'1) = (t 1f(i, 1);,) C +h [~i1f(i' 0)+ ~(i + 1)1f(i, 1)]

Table 1 shows that as J.Ll increases, both Fl and F2 decrease. This may be due to

the fact that as JLI increases, the mean service time of a priority customer decreases and

as a result the loss to the system due to priority generated customers leaving the system

decreases. Table 2 shows that as a increases, F I increases which can be attributed to the
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fact that as a increases, pre-emption rate of ordinary customer in service as well as loss rate

due to priority generation increases. But as a increases, the overall holding cost decreases

which can be regarded as the reason behind the decrease in F2 • Table 3 shows that in the,
case of constant priority generation as J-LI increases, F1 also increases. This may be due to

the fact that as J-LI increases, eventhough the loss rate due to priority generation decreases

(see table 3) priority generation rate also decreases (see table 3) so that there is a decrease

in the revenue due to serving priority customers. Also note that in this case the priority

generation rate is assumed to be independent of the number of ordinary customers in the

system.



CHAPTER 6

The impact of self-generation of priorities on multi-server queues with

finite capacity*

This chapter deals with multi-server queues with a finite buffer of size N in which

units waiting for service generate into priority at a constant rate, independently of other

units in the buffer. At the epoch of a unit's priority generation, the unit is immediately

taken for service if there is one unit in service which did not generate into priority while

waiting; otherwise such a unit leaves the system in search of immediate service elsewhere.

The arrival stream of units is a Markovian arrival process (MAP) and service requirements

are of phase (PH) type. Our interest is in the continuous-time Markov chain describing

the state of the queue at arbitrary times, which constitutes a finite quasi-birth-and-death

(QBD) process. We give forinulas well suited for numerical computation for a variety of

performance measures, including the blocking probability, the departure process, and the

stationary distributions of the system state at pre-arrival epochs, at post-departure epochs

and at epochs at which arriving units are lost. Illustrative numerical examples show the

effect of several parameters on certain probabilistic descriptors of the queue for various

levels of congestion.

This chapter is organized as follows. In section 6.1 we start by introducing self­

generation of priorities in the MAPIPH,PHldc + N queue. In section 6.2 the focus is

on the continuous-time Markov chain (CTMC) at arbitrary times which constitutes a finite

quasi-birth-and-death (QBD) process. An efficient computational approach to its analy­

sis is then derived. In section 6.3, we give tractable analytical formulas for the departure

process, the blocking probability and the stationary distributions at pre-arrival epochs, at

*Thischapterwas publishedin Stochastic Models, VoI. 21, No. 2-3, pp. 427-447. 2005
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post-departure epochs and at epochs at which arriving units are lost. In section 6.4 the

effectof several parameters on probabilistic descriptors of our queue is numerically illus­

trated.

6.1. The finite capacity MAPIPH,PHldc + N queue with self-generation of priorities

o Lowpriorityunit
• Highpriorityunit

o
•
••

Input flow

Servers
Selfgeneration of priority

r Service
completions

-
Finitebuffer -,

Output flow due to
self-generation of priorities

Figure 1. Multi-server queuewith finite capacity and self-generation of priorities

Figure I depicts the configuration of the priority-generating queue to be investigated

in this chapter. Weconsidera multi-server queueconsisting of c servers and a finite buffer

of size N ~ 1, in which units arrive one at a time according to a Markovian arrival pro­

cess. Formally, the MAP is parameterized by two a x a matrices Do and D1, whose sum

D =Do +D 1 is an irreducible infinitesimal generator. The (i, j)th entry of the matrixD 1

corresponds to the transition rate associated with the arrival of one unit when the under­

lying CTMC makes a transition from the state i to the state j. The matrix Do covers the

case when there is no arrival. Then the arrival rate of the point process of units is given

by >. = dD1ea whered is the stationary vectorof D and ea is the a-dimensional column

vectorof Is.

Arriving units are of homogeneous nature, whence they are identified as low priority

units. They are queued in the buffer and treated in order of their arrival. During waiting

in the buffer a low priority unit turns into one of high priority at a constant rate I > 0,

independently of other units in the queue. At the epoch at which a waiting unit generates
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into high priority, it is immediately taken for service, provided that there is at least one low

priority unit in service at that time. Assume that there is an identical chance for assigning

the high priority turned unit to any of the servers which are occupied by low priority units.

On the contrary if all servers are busy serving high priority units when a waiting unit

generates into one of high priority, then the latter leaves the system in search of urgent

service elsewhere.

Assume that low priority units are preempted by high priority turned units. Specifically,

a low priority unit in service, when preempted by a high priority turned unit, is queued in

the buffer according to a predetermined rule and its elapsed service time is lost. Low

priority units in service do not turn into the high priority category.

Successive service times of low and high priority units are mutually independent, and

follow PH laws with representations (a, T) and ((3, S), respectively. Here, T and S are

square matrices with negative diagonal elements and nonnegative off-diagonal elements.

Assume, without loss of generality, that T and S are stable matrices; see e.g. the books [41,

44] for a review of the main results on PH random variables. For later use, to and So are

column vectors of sizes t and s, respectively, defined by to = -Tet and So = -Sea.

The stream of units, the process of self-generation of priorities and the service times

are assumed to be mutually independent.

~ what is to follow, ® and ffi stand for Kronecker product and sum respectively (see

[40]), Ip is the identity matrix of order p, Opxq is the zero matrix of dimension p x q and

Op is the p-dimensional column vector of Os. If v is a v-dimensional column vector and W

is a w-dimensional row vector, then the product vw is the matrix of dimension v x w with

elements [VW]ij = ViWj' Given a square matrix V, we define VEBm as the matrix

m
EBm' V A ,

V =ffiV$"'ffiV m>l, -,
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and Veo as the scalar O. For a column vector v with v entries, we denote by v em the

matrix defined as v ® Ivm-l +I, ® v ® I vm-2 + ... + Ivm-l ® v, for m 2:: 1, and the scalar

1 form = O.

6.2. Basic results of the system

Thepurposeof thissection is to find thestationary vectorof the systemstateat arbitrary

times. Let {,(u) and {h(u) be the number of low and high priority units in the system at

time U, respectively, and 1/(u) be the phase 'of the arrival process. Define two vectors

1I1(U) and lIh(U) that recordphasesof servicecorresponding, respectively, to low and high

priority units in service at time u. Based on the model description of our queue, we see

that X = (({,(U) ,{h(U), 1/(U),lIl(U),lIh(U)) : U 2:: O} forms a finite QBD process on the

state space
c+N

S = Ul(n),
n=O

where the nth level is givenby

l(n) = U~=o£(m, n - m), for 0 ::; n ::; c,

= U~=o£'(n - c + m, c - m), for c + 1 ::; n ::; c + N.

The subsets l(m, n - m) are defined as {(m, n - m, i,jl,'" .i«. kl , ..., kn - m ) : 1 ::;

i ::; a, 1 ::; ill" . .i« ::; t,l ::; kll " . ,kn-m ::; s], for 0 ::; m ::; n ::; c, and £'(n - c +
m,c - m) are given by ({Tt - C+ni,c - m,i,jl,'" .i.: kl, ... , kC-ill) : I ~ i ~ a,l ~

is.. ""im ::; t, 1 ~ kl , . '" kc-m::; s], for 0 ~ m ~ c < n ~ c + N. Thus the levell(n)

consists of I n states, where

min(n,c)

J. - a ~ tmin(1I,c)- i si 0 < n < c + N.11 ~ , _ _

i=O

If the states in S are listed in lexicographical order, then transitions among subsets

£(m, n - m) and £'(n - c + rn, c - m) are summarized as follows:
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(a) For 0 s n s c, the matrices la 0 t~m 0 lsn-m, latm 0 s~n-m and Do EB T$m CD

Sen - m record transition rates to states in £,(m ~ 1,n - m) for 1 ~ m ~ n, in

£'(m, n - m-I) for 0 ~ m ~ n - I, and in £'(m, n - m) for 0 ~ m ~ n,

respectively, startingfromstates in £'(m, n - m).

(b) For 0 ~ n ~ c - I, the matrix D 1 0ltm ® 0 ® lsn-m records transition rates to

states in £'(m + 1,n - m) for 0 ~ m ~ n, startingfrom states in £'(m, n - m).

(c) The matrixD 1 ® ltmsc-m records transition rates to states in £'(m + 1,c - m) for

o~ m ~ c, starting fromstates in £'(m, c - m).

(d) For c+ 1 ~ n ~ c+ N - I, the matrices D 1 ® Itmsc-m and Do ffi Temffi See-m ­

(n - c)-ylatmsc-m recordtransition rates to states in £'(n - c + m + 1,c - m) for

o~ m ~ c, and in .c'(n - c + m, c - m) for 0 ~ m ~ c, respectively, starting

from states in £,'(n - c + m, c - m).

(e) For c+ 1 ~ n ~ c+ N, the matrices la 0 (toa)em0lsc- m, lat'" 00 0s~e-m and

la ® ((n~herm
) 0 Isc-m ® f3 recordtransition rates to states in £' (n - c+m ­

1,c - m) for 1 ~ m ~ c, in £" (n - c+m, c - m-I) for 0 ~ m ~ c - 1, and in

£' (n - c+m-I, c - m +1) for 1 ~ m ~ c, respectively, startingfrom states in

C(n - c +m, c - m). Similarly, the matrix (n - c)-ylasc records transition rates

to states of £,'(n - c - 1,c), starting from states in £,'(n - c, c).

(t) The matrix D EB TlDm EEl SIDe-m _. N"/Iatmsc-m records transition rates to statesof

£'(N + m, c - m) for 0 ~ m ~ c, starting from states in £'(N + m, c - m).

Then the CTMC X possesses the following infinitesimal generator:

Q=
Cc- 1 Bc- 1 A e- 1

c, a, A e

Ce+l BC+1

Cc+N - 1 Bc+N - 1
. Ce+N

(6.1 )
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where

= U c, forn = c,

B, = Do, forn = 0,

= diag[DoEl) Sen,Do El) T El) Sen-l, ..., Do El) Ten], for 1 ::::; n ::::; c,
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for c + 1 '~ n ~ c + N,

The expressions for Un, Vnand W n are as follows.

Expressions for the blocks Un. The matrices Un are easily written as follows:

(a) ForO ~ n ~ c-l, U, = diag[Dl~)(:~C:9lsn,DlC:9ltC:9O:C:9lsn-l, ...,D1C:9 l tnC:9 O:].

Cb) For n = C, U, = diag[D1 C:9 Isc, D 1 C:9 ItsC-l, .,', D 1 C:9 Itc].

(C) For c + 1 ~ n ~ c +N, U; = tlia,q [I(J® ((n - cbe,,) ® I,~r-I ® {3,

I iOI ((n-ch' e2) iOI I iOI f.l I iOI ((n-ch' E1Jc) f.l]a '<Y -2-et '<Y sc-2 '<Y fJ, .... , a'<Y -c-et C:9 fJ •

Expressions for the blocks V n- The matrices V n are given by

(a) For 1 ::::; n ::::; c, V n ~ diag[la i& s~n, lat C:9 s~n-l, ..., latn-1 C:9 so].

(b) For e-l-l ::::; n ::::; c--N, V; = di(tg[laC:9O:C:9s~c, latC:9O:C:9S~C-l, ..., latC-1 C:9o:C:9so].

Expressions for the blocks W n' The matrices W n have the form
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(b) For c + 1 ::; n ::; c + N, W n = diag[(n - c)-ylasc , la Q9 (toa) ,Q9 Isc-l, la Q9

(toa )$2 Q9 I sc- 2 , ••• , la Q9 (toa )E1iC].

Denote by x the stationary vector of ...Y, andpartition x by levels into sub-vectors x(n)

for 0 ::; n ::; c+ N. Observe that, sinceS is a finite statespace, the stationary probabilities

of X exist and arc positive. By using Lemma 2 and Theorem I of Ref. l26J, we find that

x(n) is determined by

11-1

x(n) = x(O) IT (Ai (-FH\ )) , for 1 ~ n ~ c,
i=O

c-l n-l

= x(O) IT (Ai (-FH\ )) IT (Ac (-Fj~I))' forc+ 1 ~ n ~ c + N,
i=O j=c

where x(O) satisfies x(O)Fo = O~ and the equality

The matrices F i are recursively determined by

F, = .Bc+N + Ac, for i = c + N,

(6.2),

(6.3)

(6.4)

Fromtheseresults, wecan effortlessly obtain expressions for specific probabilistic descrip­

tors of the state of the queueat arbitrary epochs. Someof them are:
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(a) The mean numberof units in the system is

c:+N

N = L nx(n)eJn '

11=1

(b)The mean number of low priority units in the system is

c cs-N

N,uw = L x(n)w11 + L x(n)wn - e ,

n=1 n=c+l

where
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and wn =
(n + 1)eatsc-1

(c+ n)eatC

(c)The meannumber of highpriority unitsin the systemis givenbyNhigh = N - N"uw.
(d) The blocking probability is

Pblocking = lim P(€I(U) +€h(U) = C +N) = x(c +N)eJc '
u.....OO

(e) The marginal distribution of the number of units in the buffer. Let qm be the sta­

tionary probability that there are m units in the buffer, for 0 ~ m ~ N. Then it is clear

that

c

qm - Lx(n)eJn' form = 0,
n=O

= x(c + m )eJc ' for 1 ~ m ~ N.

Thus the meannumberof units in the buffer is given by

N

Nbu/ / er = L nx(c +n)eJc'
n=1
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A point worth mentioning is that, in order to compute x from (6.2)-(??), we may first

calculate x(O) satisfying x(O)Fo = O~ and x(O)ea = 1, and evaluate x(n) = x(n ­

1)Amin(n-l,e)(-F~1) for 1 ~ n ~ c + N. Then the stationary vector x corresponds to
. e+N

the vector [x(O), ...,x(c + N)] normalized by En=o x(n)eJn = 1 and, as a result, the

complexity of our solution is O(E~:'~ J~ + (N + 1)J;). Clearly we can compute the

above probabilistic descriptors at the same time as we are preparing the evaluation of x.

When the value of c + N and the physical dimensions of the blocks F, in (6.4) are

moderate, the computation of x may best be done by progressively storing the blocks

Amin(n-l,e) ( _F;;-l) forn = c+N, ..., 1, and Fo. To that end we need an array of dimension

J~+t~=l I n- 1In +N J;. We also notice that the maximum number of memory locations

for the entries of x and other eventually defined blocks is E~:'~ In + (N + 1)J; + J;. In

the numerical examples presented in Subsection 4.4, this procedure is seen to work well

both regard to numerical accuracy and speed.

Larger values of c + N or larger physical dimensions of F, in (6.4) imply more de­

manding memory requirements. It might be advisable then to write a driver routine where

particular blocks F i are built each time that they are handled, stored in an amount of mem­

ory locations and destroyed immediately after their handling. In such a case, we need

E~:'~ In + (N +1)Je memory locations for entries of x and 2J; additional memory loca­

tions to store blocks being eventually handled. The corresponding procedure results in an

increase of the complexity, but it helps to reduce the effortrequired to minimize the storage

space. More details about the numerical efficiency of other computational algorithms can

be found in Section 5 of the paper [26].
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6.3. Performance evaluation
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6.3.1. Blocking probability at pre-arrival epochs. Based on the above analysis, if

we denote by Qblocking a new arrival's blocking probability, which is defined as the proba­

bility that a new unit arrives to find the system completely occupied, then we have that

e-l e+N-l

Qblocking = ;\-lX(O)IT (Ai(-Fi;l)) IT (Ae(-Fj~l)) .::le,
i=O j=e

where the columnvector~e is defined from

(D1ea ) 0 ean

(D1ea ) 0 etan - 1

, 0 ~ n ~ c.

It shouldbe pointed out that clearly the blocking probability Pbloeking will not neces­

sarily be the new unit's blocking probability Qblocking' Indeed, a similar remark can be

madefor the stationary vectors at pre-arrival and arbitrary times. Let y(n) be a row vector

whose entries are the stationary probabilities that arriving units see the queue in states of

the levell(n), for 0 ~ n :::; c+N. Then it immediately follows that

n-l
- ;\-lX(O) IT (Ai(-F~l)) vnrn, for 1 ~ n ~'c -1,

i=O
e-l

= .;\-lX(O)IT (Ai(-Fi;l)) Vc, for n = c,
i=O
e-l n-l

- ;\-lX~O) IT (Ai( -Fi;l)) IT (Ae(-Fj~l)) tr,
i=O j=e
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for C + 1 ~ n ~ C + N, withI'n = diag[Ia® et ® I,«, Iat ® et ® Isn-l, ... , Iatn ® etl. for

1~n~c-1.

Also, if our interestis in theprobability that an arriving unit does not wait in thebuffer

before entering the service facility, thenwe have

c-l n-l

Pnw = A-lx(O)Lrr(Ai(-Fi~\))an'
n=O i=O

6.3.2. Departure process. In thissubsection, we present the analysis of the departure

process, which is defined as the sequence of times {Tm : m ~ O} at which units leave

the queue due to a service completion or a self-generation of priority, with TO = O. Its

studyamounts to the analysis of the inter-departure times {fm = Tm - Tm-l : m ~ 1}. It

shouldbe pointed out that the random variables fIt 1'2, ... are identically distributed since

X is positive recurrent. Thus, we focus on 1'1 and determine its distribution through the

Laplace-Stieltjes transform

<1>(0) = E [e-OTl
] , Re(O) ~ O.

According to the stateof the queue at timeTo, we may writedown

c+N

<1>(0) = L x(n)cPn(O),
n=O

where cPn (0) is a column vector with I n entries defined as the conditional Laplace-Stieltjes

transforms of 1'1, given that the stateof X at timeTO is in the levell (n), for°~ n ~ C+N.

Partition cPn (0) into column vectors as follows:

cp(O/o, n)

ip(Oll, n - 1)

cp(O/n, O)

, for°~ n .~ C,
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ep(Oln - c,c)

ep(Oln - c + I, c - 1)

ep(Oln, O)

, for c + 1 ~ n ~ c + N,

where the above sub-vectors cp(Olm, n - m) and ep(Oln - c + m, c - m) are indexed by

states in £'(m,n - m) and £,'(n - c+m, n - m) respectively.

For initial states in .c(m, n - m) for 0 ~ m ~ n ~ c - I, the departure process can be

seenas the timeuntil absorption in an appropriately defined absorbing finite QBDprocess

withLaplace-Stieltjes transform for the timeuntilabsorption satisfying

cp(O"m, n - m) = 100 e-(/;/Iatm.n-m-DoeTE9meSE9n-m)Udu

x ((D1 ® Itm ® a ® Isn-m )cp(Olm + I, n - m)

+ea ® ((TemEa Sen-m)etmsn_m)) .

To prove this equality, note that there are two essential events whose occurrences clearly

determine the further evolution of the absorbing QBD process: the arrival of a new unit

and a service completion. Since T and S are stable, the spectral radius of the matrix

OIatmsn-m - Do Ea Tem Ea Sen-m is strictly less thanone. From this it follows that sucha

matrix is invertible for Re(O) ~ O. As a resultwe derive the equality

ep(Olm, n - m) = (OIatmsn-m - Do Ea TemEfl Sen-mr1

x ((D1 ® Itm ® a ® Isn-m)cp(Olm + 1,n - m)

+ea ® ((Tem Efl sen-m )etmsn-m)) , (6.5)

for 0 ~ m ~ n ~ c - 1.
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Similarly, for 0 :5 m :5 c, we have that
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cp(Olm,c-m) = (OIatmsc-m -DoEBTE!lmEBSE!le-mr
1

X ((D1 ® Itmllc-m)ep(Olm + 1,c - m)

+ea®( (TE!lm EB SE!le-m)etmsc_m)). (6.6)

For initial states in £'(n -.c + m, c - m), 0:5 m :5 c < n :5 c + N - 1, we take into

account a third essential event, the self-generation of priorities by units in the buffer. Then

a first-passage argument leads to

ep(Oln - c+ m,c - m)

= ((0+ (n - c)-y)Iatmsc-m - Do EB TE!lm EB SE!le-mr
1

X ((D 1 ® Itmsc-m)ep(Oln - c + m + 1,c - m)

+ea® ((TE!lm EB SIEle-m)etmsc_m) + (n - c)-yeatmsc-m). (6.7)

Finally, for initial states in £'(N +m, c - m), 0 :5 m :5 C, we note that the departure

process remains unaltered when new arrivals occur. Then, for 0 :5 m :5 c, we readily

derive

ep(OIN + m, c - m) = ea ® (((0 + N,,/)Itmsc-m - TE!lm EB SE!le-m)-l

X (N"/Itmsc-m + TE!lm EB SE!le-m) etmsc-m). (6.8)

Writing down column vectors cPn((}) from (6.5)-(6.7), we see that cPn((}) satisfies the re­

cursive formulas

cPn((}) = .An ( (}) (8ncPn+1((} )+ wn) , for 0 :5 ~ :5 C - 1, (6.9,)

= An-e(O) (UecPn+l((}) + X + (n - c)-yeJJ ' (6.10)



· 6.3. PERFORMANCE EVALUATION

for c $ n $ c + N - 1, where

An ({I) - [OJnxasn+l, diag[:En(OIO), :En(OII), ..., :En(Oln)]J,

An-c(O) - diag[En_c(OIO), En-c(OII), ..., En-c{{/lc)],
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Wn -

ea ® (Senesn)

ea ® ((T EB sen - 1)etsn - 1 ) X=

ea ® (SeCesc)

ea ® ((T EB Sec-l)etsC - 1 )

with the matrices En(Olm) and En-c{{/lm) defined as follows:

Equations (6.9) and (6.10) allow us to find epc+N-l(O) once epc+N(O) is given, epc+N-2(())

once epc+N-l (()) is given, and so on. We therefore find after a brief recursion

c-l
epll(O) = IT (A j (O)8 j ) epAO)

i=n

c-nc-I-j

+ An ( ()) L IT (8j Aj +l(())) Wc-i, 0 s n $ c - 1,
i=l j=n
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N-1+c-n
IT (An-c+i(O)UC ) l/Jc+N(O)
i=O

N-1 N-1-i .
+ An-c(O) L IT (UcAn-c+i(O))

i=n-c j=1

x (X + (N -1- i +n - c)-yeJJ, c:::; n:::; c + N - 1.
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To find l/Jc+N(O), we use the explicit expressions for its sub-vectors given in (6.8).

In view of (6.9) and (6.10), we derive the following expression for the mean length of

the interval between successive times of service completion or self-generation of priorities:

L+N
E[rd = L x(n)l/J~1),

n=O

where l/J~l) is the column vector with I n entries evaluated by the iterative scheme

-(1) - (1)
- An (8neJn + Wn) + An(O)8n4>n+1' 0 ~ n ~ c - 1,

-(1) - (1)
= An-c(UceJc + X + (n - c)-yeJJ + An-c(O)Ucl/Jn+1'

c ~ n ~ c+ N -1,

where

A~1) _ [OJnxa8n+l,diag[t~(OIO), t~(OI1), ... , t~(Oln)]],

- (1) - 2 - 2 - 2
An-c - diagI~n_c(OIO), ~n_c(OII), ..., ~n_c(Olc)].
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Obviously, by (8), the vector ljJ~~N is simply obtained by
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.rl.(1)
o/c+N -

rp(1)(N, c)

ij:,(l)(N + 1, e - 1)

rp(1)(e + N,O)

with rp(1)(N + m, e - m) = ea ® ((N"YItmsc-m - TEllm E9 SEllc-mt1etmsc-m). Higher

moments of 1'1 maybe obtained in a similar fashion.

6.3.3. System state at departures. Here, we investigate the systemstate at departure

epochs. Moreprecisely, our interest is in epochs at whichunits withoutbeingserved leave

the system, epochs at which new arrivals are lost,departure epochsdue to a self-generation

of priority, service completion epochs of low priority units and servicecompletion epochs

of high priority units.

In ordertoproceedwiththeanalysis conveniently, decompose x(n) as [x(O, n), x(l, n­

1),...,x(n, 0)] for 0 $ n $. c, and as [x(n - c,c), x(n - c + 1,e - 1), ...,x(n, 0)] for

e + 1 $ n $ e + N, where x(m, n - m). is a row vector with ai"'sn-m entries, for

o $ m $ n $ e, and x(n - e + m, e - m) is a row vector with atmsc-m entries, for

o$ m $ c < n $ c + N.

For the sequence of departure epochs of units without being served, we observe that

statesjust after suchevents are in the subset

N-1 c

.£:(0; c) U U£'(m, c) U U£'(N + m, c - m).
m=1 m=O

Specifically, we needstatesin£(0, e)UU~:t£'(m, c) to identifydepartures of highpriority

units and states in Uc:n=o£'(N + m, e - m) for arriving units whichare lost. By arranging

states in lexicographic order and introducingvectors z(T1?-, c), for 0 ~ m ~ N - 1, and
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z(N + m, e - m), for 0:5 m :5 c, we readily derive

z(m, c) - (J + 8t l(m + l)-yx(m + 1,c), 0:5 m :5 N - 1,

z(N + m,e - m) - (J + 8t l x (N + m, e - m)(Dl ® Itmsc-m),

0:5 m :5 c,
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- N - c
where0 = 'Y Em=l mx(m,c)easc and 0 = Em=ox(N + m, e - m)((Dlea ) ® etmac-m).

It is a simplematterto distinguish between departures of high priority turnedunitsand

of arriving units whichare lost. Basedon states in [,(0, c) u U~:t[,'(m,c), the vector

z(m;c) = J-l(m+ l)-yx(m + 1, c)

records stationary probabilities at departure epochs of high priority turned units, for 0 :5

m :5 N - 1. Similarly, it is immediately obvious that

z(N + m, c - m) = 8- l x (N + m, c - m)(D l ® Itmsc-m)

records stationary probabilities at epochs at whicharriving units are lost, for 0 :5 m :5 c.

Wecan also derive the stationary vector Zl at servicecompletions of low priorityunits

by noting that just after such events, statesare in the levels 1(n), for 0 :5 n :5 c + N - 1.

Henceif we decompose Zl by. sub-levels intosub-vectors Zl (m, n - m) for 0 :5 m :5 n :5 c,

and zl(n - c +m, c - m) for 0 ~ m ~ c < n ~ c +N - 1, then we see that

Zl(m, n - m) = 0l-lx(m + 1,n - m)(Ia ® tWm+1 ® lan-m),

0:5 m:5 n:5 c-1,

Zl(m, c - m) = ol-lx(m + 1,c - m)(la ® (too)EBm ® Isc-m), 0:5 m :5 c,

Zl(n - c + m, c - m) = ollx(n - c + m + 1,c - m) .
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c-l n

6l = L L x(m + 1, n - m) (ea ® (tWm+letm) ® esn-m)
n=Om=O
c+N-l c

+ L Lx(n - c +m + l,c - m) (ea ® ((too)ffimetm) ® esc-m).
n=c m=O
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For service completion epochs of high priority units, the corresponding stationary vector

Zh has sub-vectorsof the form

o~ m ~ n ~ c - 1,

Zh(n - c + m, c - m) = 6;;lx(n - c + m, C - m + 1)

where

c-l n

6h = L L x(m, n - m + 1) (eatm ® (swn-m+lesn_m))
n=Om=O

c+N-l c

+ L Lx(n-c+m,c-m+1)(eatm-l®(swc-m+lesc-m)).
n=c m=O

6.4. Effect of theself-generation of prlorlties

Weexpect that the effect of self-generating a priority on the current amount of work in

the queue is threefold:
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),.' = 0.5 ),.' = 2.0 ),.' = 10.0
- - - - - - - --- - - - - - - - --- ----------

"'f N q = 0.5 q=l q=2 q = 0.5 q=l q=2 q = 0.5 q=l q=2

0.01 5 < 10-7 < 10- 5 0.0078 0.0081 0.1753 0.5112 0.6025 0.7880 0.8893
10 < 10- 11 < 1O- 11 0.0003 0.0004 0.1409 0.5079 0.6059 0.7889 0.8888
15 < 10-12 < 10- 12 < 10-12 < 10-5 0.1311 0.5056 0.6096 0.7899 0.8882

0.1 5 < 10-7 < 10-5 0.0071 0.0107 0.1901 0.4937 0.6315 0.7960 0.8838
10 < 10-11 < 10- 7 '0.0002 0.0015 0.1727 0.4564 0.6628 0.8013 0.8738
15 < 10- 12 < 10- 12 < 10- 12 0.0003 0.1680 0.4040 0.6846 0.8001 0.8591

0.25 5 < 10-7 0.0001 0.0057 0.0163 0.2060 0.4485 0.6717 0.8016 0.8678
10 < 10-10 < 10-7 < 10-5 0.0045 0.1510 0.3018 0.6982 0.7809 0.8201
15 < 10-12 < 10-12 < 10-12 0.0011 0.0742 0.1491 0.6807 0.7358 0.7596

0.5 5 < 10-6 0.0001 0.0034 0.0250 0.1918 0.3428 0.6969 0.7826 0.8224
< 10- 10 < 10-8 < 10-6

,
10 0.0046 0.0554 0.0987 0.6461 0.6855 0.7009
15 < 10- 12 < 10- 12 < 10- 12 0.0002 0.0049 0.0100 0.5494 0.5706 0.5776

0.75 5 < 10-6 0.0001 0.0020 0.0281 0.1523 0.2456 0.6838 0.7421 0.7668
10 < 10-10 < 10-8 < 10-7 0.0021 0.0159 0.0275 0.5562 0.5780 0.5852
15 < 10- 12 < 10-12 < 10- 12 < lQ-5 0.0003 0.0006 0.4053 0.4155 0.4184

1.0 .5 < 10-6 < 10-11 0.0012 0.0264 0.1139 0.1738 0.6525 0.6941 0.7101
10 < 10- 11 < 10-9 < 10-7 0.0008 0.0047 0.0080 0.4643 0.4776 0.4815
15 < 10- 12 < 10-12 < 10-12 < lQ-6 < 10-5 < 10-5 0.2804 0.2860 0.2874

2.5 5 < 10- 7 < 10- 11 0.0001 0.0080 0.0211 0.0290 0.4213 0.4317 0.4346
10 < 10- 12 < 10- 11 < 10- 10 < lQ-6 < 10- 11 < 10-5 0.1129 0.1149 0.1153
15 < 10-12 < 10-12 < 10- 12 < 10- 10 < 10-9 < 10-9 0.0111 0.0113 0.Ql14

5.0 5 < 10-7 < 10-6 < 10-5 0.0014 0.0029 0.0038 0.1880 0.1911 0.1919
10 < 10-12 < 10-12 < 10- 12 < lQ-8 < 10-7 < 10-7 0.0076 0.0077 0.0078
15 < 10-12 < 10-12 < 10- 12 < 10- 12 < 10-12 < 10-12 < 10-5 < 10-5 < 10-5

10.0 5 < 10-8 < 10-7 < 10-7 0.0001 0.0002 0.0003 0.0442 0.0449 0.0450
10 < 10- 12 < 10- 12 < 10- 12 < lQ-1O < 10-10 < lQ-9 0.0001 0.0001 0.0001
15 < 10- 12 < 10- 12 < 10- 12 < 10- 12 < 10- 12 < 10- 12 < lO- tl < lO- tl < lO- tl

(i) Depending on whether themean service timeof a high priorityunit is less thanor

greater than that of a low priority unit, the current amount of work in the queue

may decrease or increase if there is an idle server available for the high priority

turned unit.

(H) If a low priority unit is pushed out, then the amount of work associated with

such a unit increases somewhat as it needs to restart service, though this may be

compensated at a collective level by a possible decrease of work associated with

the high priority unit.

(iii) A unitmayleavewithout receiving service, thereby decreasing thecurrentamount

of work.
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To study the influence of 'Y on the current amount of work, we focus on the blocking

probability Pblocking and the mean values N, N high and N bu f fer' For the numerical exam­

ples, we assume that the stream of units is a renewal process with inter-renewal intervals

governed by thehyper-exponential law with density function

a

f(x) = }:=P)\ie->';x, x> 0,
i,=l

with Pi > 0, l:~=l Pi = 1 and '\ > O. We assume that service times of low priority units

follow an Erlangt(lId distribution, with Z/1 > 0, and that an Erlang s (1I2) distribution, with

112 > 0, governs service times of high priority units.

Tables 1-4 list values of Pblocking, N, N high and N buf fen for queues with c = 3, a = 4,

t = 3, S = 3. To explore the effect of (i) on the current amount of work, we assume mean

service times of low and high priority units, denoted by J11 and J1h respectively, satisfying

J1h = qJ1I, where q = 0.5, 1.0 and 2.0. Our numerical examples are reported for N = 5,

10 and 15, and arrival intensities .xi = iN, with N = 0.5, 2.0 and 10.0 (equivalently, with

arrival rates of the point process of units .x = 0.96, 3.84 and 19.2 respectively). The mean

service time of high priority units is assumed to be J1h = 0.9, and initial probabilities

Pi = 0.25, for 1 ~ i ~ 4.

When v is small, it is clear that (i) and (ii) will dominate. Thus, for q = 0.5 and 1.0,

increasing values of "'I are the cause of higher values of Pblocking, N, N high and Nbuffer,

whereas for q = 2.0 the current amount of work seems to decrease when a self-generation

takes place (meaning that the decrease of work associated with high priority units com­

pensates the increase of work associated with low priority units). Such a decrease in the

case q = 2.0 implies lower values of the descriptors Pblocking, N, N high and N bu f fen as

the reader may note from Tables 1-4. At some point, if'Y is large enough, the effect of (iii)

will become more influential and will start to dominate, meaning, even if q ~ I, that an

increase of'Y will reduce the various performance measures.
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A' = 0.5 A' = 2.0 A' = 10.0
- - - - - - - .... -- - - - - - - - --- - - - - - - - ---

'Y N q =0.5 q=l q=2 q= 0.5 q=l q=2 q = 0.5 q=l q=2

0.01 5 0.4345 0.8968 2.1105 2.1184 5.2249 7.1425 7.3922 7.7427 7.8785
10 0.4345 0.8971 2.2022 2.2180 8.9397 12.123 12.398 12.744 12.877
15 0.4345 0.8971 2.2092 2.2272 13.098 17.115 17.406 17.745 17.877

0.1 5 0.4347 0.8987 2.0899 2.1751 5.3230 7.0906 7.4519 7.7542 7.8716
10 0.4347 0.8991 2.1615 2.3481 9.3750 11.941 12.514 12.761 12.858
15 0.4347 0.8991 2.1645 2.3965 13.932 16.694 17.557 17.759 17.838

0.25 5 . 0.4350 0.9019 2.0484 2.2852 5.4325 6.9397 7.5310 7.7620 7.8509
10 0.4350 0.9024 2.0878 2.6425 9.2289 11.146 12.584 12.727 12.781

. 15 0.4350 0.9024 2.0882 2.8026 12.170 14.483 17.548 17.645 17.679
0.5 5 0.4355 0.9061 1.9683 2.4644 5.3634 6.5144 7.5822 7.7319 7.7864

10 0.4356 0.9066 1.9811 2.9378 7.6630 9.1516 12.474 12.547 12.570
15 0.4356 0..9066 1.9811 3.0206 8.2913 10.023 17.205 17.252 17.265

0.75 5 0.4361 0.9085 1.8953 2.5766 5.0973 6.0290 7.5601 7.6638 7.6989
10 0.4361 0.9088 1.9000 2.9323 6.3229 7.4976 12.243 12.291 12.304
15 0.4361 0.9088 1.9000 2.9539 6.4405 7.6720 16.650 16.685 16.694

1.0 5 0.4367 0.9093 1.8347 2.6158 4.7913 5.5857 7.4990 7.5762 7.6003
10 0.4367 0.9095 1.8367 2.8462 5.4587 6.4060 11.947 11.985 11.994
15 0.4367 0.9095 . 1.8367 2.8519 5.4845 6.4449 15.915 15.949 15.957

2.5 5 0.4392 0.9013 1.6266 2.4223 3.6130 4.0685 6.9068 6.9411 6.9494
10 0.4392 0.9014 1.6267 2.4433 3.6587 4.1264 9.6012 9.6353 9.6431
15 0.4392 0.9014 1.6267 2.4433 3.6587 4.1265 10.520 10.562 10.571

5.0 5 0.4415 0.8845 1.4875 2.1778 2.9441 3.2400 5.9301 5.9574 5.9639
10 0.4415 0.8845 1.4875 2.1794 2.9473 3.2440 6.7480 6.7804 6.7881
15 0.4415 0.8845 1.4875 2.1794 2.9473 3.2440 6.7836 6.8166 6.8244

10.0 5 0.4432 0.8656 1.3891 1.9935 2.5363 2.7473 4.7328 4.7545 4.7597
10 0.4432 0.8656 1.3891 1.9936 2.5364 2.7475 4.8369 4.8596 4.8651
15 0.4432 0.8656 1.3891 1.9936 2.5364 2.7475 4.8371 4.8599 4.8654

In Tables 1-4, we also notice that the increase of the arrival rate >. and the decrease of

the buffer capacity N have an increasing effect on Pblocking,N, N high and N buJJeT> which

corroborates the above intuitive explanation.
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>" = 0.5 >.' = 2.0 >.' = 10.0
- - - - - - - --- - - - - - - - --- - - - - - - - ---

"Y N q =0.5 q=l q=2 q ,,= 0.5 q=l q=2 q = 0.5 q=l q=2

0.01 5 < 10- 5 0.0002 0.0035 0.0036 0.0221 0.0373 0.0395 0.0426 0.0439
10 < 10-6 0.0002 0.0042 0.0043 0.0542 0.0821 0.0845 0.0876 0.0888
15 < 10-5 0.0002 0.0043 0.0044 0.0912 0.1269 0.1296 0.1326 0.1338

0.1 5 0.0002 0.0030 0.0347 0.0396 0.2281 0.3661 0.3973 0.4239 0.4343
10 0.0002 0.0030 . 0.0399 0.0523 0.5601 0.7702 0.8154 0.8358 0.8437
15 0.0002 0.0030 0.0401 0.0558 0.9039 1.1112 1.1680 1.1828 1.1886

0.25 5 0.0005 0.0078 0.0793 0.1124 0.5639 0.8347 0.9456 0.9911 1.0086
10 0.0005 0.0079 0.0856 0.1672 1.1661 1.4658 1.6432 1.6634 1.6709
15 0.0005 0.0079 0.0856 0.1885 1.4974 1.7829 2.0307 2.0401 2.0435

0.5 5 0.0012 0.0160 0.1301 0.2511 0.9669 1.3013 1.5882 1.6320 1.6477
10 0.0012 0.0161 0.1332 0.3565 1.4400 1.7765 2.2343 2.2451 2.2486
15 0.0012 0.0161 0.1332 0.3704 1.5192 1.8651 2.4874 2.4913 2.492:;'

0.75 5 0.0018 0.0236 0.1606 0.3756 1.1673 1.4990 1.9594 1.9931 2.0043
10 0.0018 0.0237 0.1619 0.4671 1.4402 1.7794 2.4703 2.4768 2.4786
15 0.0018 0.0237 0.1619 0.4709 1.4558 1.7982 2.6445 2.6468 2.6474

1.0 5 0.0025 0.0305 0.1804 0.4682 1.2545 1.5740 2.1805 2.2063 2.2142
10 0.0025 0.0305 0.1810 0.5316 1.4083 1.7361 2.5875 2.5922 2.5934
15 0.0025 0.0305 0.1810 0.5327 1.4118 1.7405 2.7158 2.7177 2.7182

2.5 5 0.0064 0.0578 0.2286 0.p725 1.2921 1.5517 2.5881 2.6003 2.6032
10 0.0064 0.0578 0.2286 0.p784 1.3027 1.5636 2.7434 2.7489 2.7502
15 0.0064 0.0578 0.2286 0.6784 1.3027 1.5636 2.7661 2.7712 2.7723

5.0 5 0.0115 0.0796 0.2516 0.'7612 1.2629 1.4754 2.6642 2.6765 2.6794
10 0.0115 0.0796 0.2516 0.'7616 1.2636 1.4761 2.7094 2.7200 2.7226
15 0.0115 0.0796 0.2516 0.7616 1.2636 1.4761 2.7104 2.7210 2.7235

10.0 5 0.0179 0.0982 0.2670 0_~394 1.2611 1.4394 2.6416 2.6549 2.6582
10 0.0179 0.0982 0.2670 0.8394 1.2611 1.4394 2.6475 2.6607 2.6639
15 0.0179 0.0982 0.2670 0.8394 1.2611 1.4394 2.6475 2.6608 2.6640
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),,' = 0.5 ),,' = 2.0 ),,' = 10.0
- - - - - - - --- - - - - - - - --- - - - - - - - ---

'Y N q = 0.5 q=l q=2 q == 0.5 q=l q=2 q = 0.5 q=l q=2

0.01 5 0.0025 0.0328 0.3999 0.4051 2.4647 4.1506 4.3942 4.7427 4.8785
.10 0.0025 0.0330 0.4761 0.4879 6.0307 9.1232 9.3982 9.7442 9.8778'

15 0.0025 0.0330 0.4824 0.4962 10.137 14.115 14.406 14.745 14.877
0.1 5 0.0025 0.0336 0.3867 0.4424 2.5504 4.1000 4.4535 4.7542 4.8716

10 0.0025 0..0339 0.4461 0.:5881 6.4493 8.9422 9.5142 9.7617 9.8589
15 0.0025 0.0339 0.4487 0.6320 10.958 13.694 14.557 14.759 14.838

0.25 5 0.0026 0.0351 0.3602 0.:)166 2.6457 3.9536 4.5320 4.7621 4.8509
10 0.0026 0.0355 0.3927 0.8205 6.3032 8.1479 9.5847 9.7278 9.7815
15 0.0026 0.0355 0.3931 0.9660 9.2124 11.483 14.548 14.645 14.679

0.5 5 0.0027 0.0369 0.3104 0.6369 2.5822 3.5463 4.5829 4.7319 4.7864
10 0.0027 0.0373 . 0.3210 1.0402 4.7906 6.1659 9.4745 9.5473 9.5707
15 0.0027 0.0373 0.3210 1.1155 5.4087 7.0355 14.205 14.252 14.265

0.75 5 0.0028 0.0378 0.2676 0.7072 2.3479 3.0898 4.5608 4.6639 4.6989
10 0.0028 0.0380 0.2715 1.0099 3.5185 4.5405 9.2431 9.2910 9.3043
15 0.0028 0.0380 0.2715 1.0295 3.6335 4.7140 13.650 13.685 13.694

1.0 5 0.0030 0.0378 0.2343 0.7242 2.0824 2.6810 4.4999 4.5764 4.6005
10 0.0030 0.0379 0.2360 0.9202 2.7163 3.4864 8.9474 8.9851 8.9945
15 0.0030 0.0379 0.2360 0.9254 2.7414 3.5249 12.915 12.949 12.957

2.5 5 0.0034 0.0329 0.1358 0.5407 1.1053 1.3587 3.9119 3.9443 3.9523
10 0.0034 0.0329 0.1358 0.5588 1.1477 1.4140 6.6031 6.6366 6.6442
15 0.0034 0.0329 0.1358 0.5588 1.1478 1.4141 7.5224 7.5634 7.5728

5.0 5 0.0033 0.0249 0.0812 0.3445 0.5986 0.7116 2.9521 2.9751 2.9806
10 0.0033 0.0249 0.0812 0.3460 0.6016 0.7153 3.7662 3.7950 3.8019
15 0.0033 0.0249 0.0812 0.3460 0.6016 0.7l53 3.8017 3.8311 3.8381

10.0 5 0.0028 0.0163 0.0452 0.2021 0.3132 0.3615 1.7962 1.8109 1.8144
10 0.0028 0.0163 0.0452 0.2022 0.3133 0.3617 1.8992 1.9150 1.9188
15 0.0028 0.0163 0.0452 0.2022 0.3133 0.3617 1.8995 1.9153 1.9191



CHAPTER 7

Retrial queues with self generation of priority of orbital customers

In this chapter we consider a service system with waiting space restricted to one for

a special class of customers called priority generated customers. The system consists of

one server. If the server is idle at an arrival epoch then that customer is taken for service

immediately. Otherwise it proceeds to an orbit of infinite capacity. Each customer in

orbit try to access the server at a constant rate O. Hence if there are n customers the

retrial rate is nO. In addition each customer in orbit generate priority at a constant rate

(3. Such a customer is termed as priority generated customer. This unit is immediately

transferred to the service station provided no such customer is already in wait there. On

the other hand such customers leave the system for ever if already a priority generated unit

is waiting. Service discipline is non-pre-emptive. That is a customer in service, even when

it is ordinary (not a priority generated one), is given full service before the next one is

taken for service.

This class of queues occurs in emergency situations (for example in hospitals). For

further details one may refer to Krishnamoorthy, Viswanath and Deepak [36].

This chapter is arranged as follows: Section 7.1 deals with the mathematical modelling

and prove that the system is always stable. Section 7.2 provides steady state distribution of

the system. In section 7.3 some performance measures are provided. Also a few numerical

illustrations are given in section 7.4.

7.1. Mathematical modelling

Customers arrive to a single server facility according to a .Markovian arrival process

(MAP) with representation (Do, Dd of order m3. All customers at the time of their ar­

rival are treated as 'ordinary'. Service to ordinary customers is according to a Markovian

144
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Servicerule (MSP-Markovian Service Process) with representation (Sr,Si) of order ml

and serviceto prioritygenerated customers is also according to a MSP with representation

(S~, Si) of order m2. Systems having MSP have been studied by Bocharov [9]. An MSP

of order m with representation So, SI can be described as follows.

Suppose the underlying Markov chainhas statespace labelled {I, 2, ... ,m} and generator

matrix Q* = (qii)' Let the chain be irreducible. After a Sojourn in state i which is

exponentially distributed withparameter Ai 2::, -qii' one of the following two events could

occur

(a) with probability ~i(l), a transition to state j occurs which corresponds to a service

completion.

(b) with probability ~i(O), a transition to state j (j =I- i) occurs withouta servicecomple­

tion.

Ifa servicecompletion occurswitha transition to state j and if there is nocustomerwaiting

to be served, thenweassume that theMarkov Chainstays in the state j until anotherservice

starts (ie., the chain is assumed to be freezed in state j). When a new service starts, the

chain also gets started in statei, and proceeds as described above. We define the matrices

Sk = (dij(k)) for k = 0,1 where dii(O) = -\, 1 ~ i ~ m;

dij(O) - Ai~j(O), j =I- i, 1 < i, j < 'm and dij(l) = Ai~i(l),

for 1 ~ i, j ~ m and So +SI = Q*.

Assuming SO to be a nonsingular matrix we noticethat the servicetimes are finite with

probability 1.

Let N1(t ) denote the nu~ber of customers in the orbit, and N2(t ), the number of pri­

ority customers in the systemincluding the one getting service, if any, at time t. Note that

N2(t ) = 0, 1 or 2.
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o if the server is idle at time t

I (t) = 1 if an ordinary customer is getting service at time t

2 if a priority generated customer is getting service, at time t.

146

Let Vl(t) and V2(t) denote the phases of the service processes of ordinary and priority

customers, respectively; and V3(t) denote the phase of the arrival process at time t. Let

X(t) = (N1(t ), N2(t ), I(t), Vl(t), V2(t), V3(t)). Then {X(t)lt ~ O} forms a continuous

time Markov chain with state space,

Partitioning the above state space into levels i. where each level i correspond to i customers

in the orbit, we get the infinitesimal generator of the above Markov chain as

AlO Ao 0 0

A21 All Ao 0

Q= 0 A22 A12 Ao

0 0 A23 A13



7.1. MATHEMATICAL MODELLING 147

0 i()IM 0 i/3IM 0

O· 0 i/3IM 0 0

A2i = 0 0 i/3I.w 0 0 i 2': 1,

0 0 0 0 i/3IM

0 0 0 0 i/3IM

where M = mlm2ma. For i 2': O.

B l B2 0 0 0

Ba B4 0 0 0

Ali = 0 0 B4 Ba 0

Bs 0 0 B6 0

0 0 0 Bs B6

where B, = (Imlm2®Do)- i(8+/3 )IM. B2 = Imlm2®Dlt Ba = St®Im2m3• B4 =

[(Sp ® 1m2) ffi Do] -i/3IM. s. = tt.; ®Si) ®Im3and B6 = [(Iml ® S~) ffi Do] ­

i/3IM

System stability

THEOREM 7.1. Thesystem underdiscussion is always stable.

PROOF. To prove the theorem. we use a result due to Tweedie [57]. Consider the

Lyapunov test function defined by 4J(s) = i if s is a state belonging to level i. The mean

drift Ys for a state s belonging to level i is given by

Ys = L qsp[4J(p) - 4J(s)]
PI's

= L qss' (4J(S') - 4J(s)) +L qss" (4J(s") - 4J(s)) +L qss'" (4J(Slll) - 4J(s))
Si an SUI

where Si, s", Sill varies over the states belonging to levels i-I, i, i + 1 respectively. Then

by definition of 4J. 4J(s) = i, </>(Si) = i-I. 4J(s") = i, 4J(Sill) = i + 1
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So that

v, = - LqSSI + Lqsslll
S' s'"

-i((} + {3) + Lqsslll if s is a state at which the server is idle
S"'
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-i{3 + Lqsslll
Sill

otherwise

,
Wenote that LSIII qsslll is bounded by some fixed constant for any s in any level i ~ 1.

So, let LSIII qsslll < K, for some real number K > 0, for all states s belonging to level

i ~ 1. Also since 1 - 6 > 0, for any E > 0, we can find N' large enough that Ys < -E for

any s belonging to level i ~ N'.

Hence by Tweedie'sresult, the theorem follows. 0

REMARK 7.1. The above theorem can be proved also by noticing the fact that the

queueing systemunderdiscussion is verymuchsimilarto an infinite serverqueuewhich is

always stable.

7.2. Steady state distribution

Since the process under consideration is an LDQBD, to calculate the steady state dis­

tribution, which always exists, we use the method described in Bright and Taylor[13].

By partitioning the steadystate probability vectorx as x = (x(O), x(I), x(2), ...) we

can write
k-l

x(k) = x(O) IT RI for k ~ 1
1=0

where the family of matrices {R k ; k ~ O} are the minimal non-negative solutions to the

system of equations

(7.1)
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and x(O) is calculated by solving

suchthat
00 [k-1 ]

x(O)e + x(O) f; gRI e = 1.

149

(7.2),

(7.3)

The calculation of the above infinite sum does not seem feasible. So we approximate

x(k)s by xKo(k)s where (xKo(k))j, 0 ~ k ~ K., 1 ~ j ~ 5m1m2m3, is defined as the

stationary probability that the Markov chain X (t) is in state (k, j) of level k, conditional

on X(t) being in the set {(i,j) I 0 s i s K", 1 s j s 5m1m2m3}. Thus xKo(k),O ~

k ~ K" is given by
k-1

xKo(k) = XKo(O) IT RI
1=0

where Xk O (0) is found suchthat it satisfies (7.2) and

(7.4)

(7.5)

Here we have for all i ;::: 1 and for all k, there exists j such that (A2ik j > o. So we

can construct a process X(t) which stochastically dominates X(t) and can use it to find

the truncation level K" in the same way as in Bright and Taylor [13] as follows. The

dominating process X(t) has generator

AlO Aa 0 0 0

0 All Aa 0 0

Q= 0 A22 A12 Aa 0

0 0 A23 A13 AD ...
'.
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where

(Aoki = b[(Aoe)max), (A2kki = b((A:l,k-de) . for k ~ 2, (A1k)ij = (Alk)ij, j =I- i,
mm

k ~ 1; and C = 5mlm2m3 is the dimension of a level i ~ O.

Sincecomputation of the sequence of matrices {Rk } occurringin (7.4) is laborious, requir­

ing tremendous storage space, we use the K* obtained by the above procedure to define

the truncation level for employing the Neuts-Rao [45] procedure in the numerical calcu­

lations. Thus we combine the advantages in the two procedures and at the same time get

ourselves freed fromcumbersome calculations. Besides we are able to maintain atleast the

samelevel of accuracy as obtained in the above two procedures.

Nextwe discussa few systemperformance measures.

7.3. System performance measures

We partitionthe steadystate probability vectorx as

x = (x(O), x(1), x(2), . . .).

where each x(i) is partitioned by sublevels as

Here Yt (j, k) is a row vector containing m1'Tn'J,ma entries which corresponds to N'2 (t)c.: J

and I(t) = k. The following are the performance measures we concentrate on.

(i) The probability ai that there are i customers in orbit is given by

ai = x(i)e.

(ii) The mean numberof customers in the orbit:

00

Norbit = L ix(i)e.
i=1
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(iii) The probability mass function bj , j = 0,1,2 of the number of priority customers in

the system

00

bo = L L Yi(O, k)e,
i=O k=O,l

00

b1 = L L Yi(l, k)e,
i=O k=1,2

00

b2 = L Yi(2,2)e,
i=O

(iv) The probability that the server is idle is 'Pidle = L:o Yi(O,O)e

(v) The overall rate at which the orbiting customers retry for service is given by 0i =

(}Norbit.

(vi) The rate at which the orbiting customers successfully reach a free server is given by

00

8~ = 8[LiYi(0,0)e]
i=l

(vii) The fraction of successful rate of retrials is given by

e = (}2
3 0*

1

7.4. Numerical illustration

[

':"'4.05 1.55]
Do = .

3.5 -5.5

Fundamental arrival rate for (7.6) is 2.346

Correlation = 0.29 x 10-3

[
- 5.5 3.5]

Do=
1.0 -3.5

Dl = [2.05 0.45]
1.0 1.0

[
1.0 1:0]Dl=
1.0 1.5

(7.6)

(7.7)
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Fundamental arrival rate for (7.7) is 2.346

Correlation = -0.29 x 10-3

[-5.06 2.06] _ [2.56 0.44]810 = 81 - (7.8)
. 4.0 -6.5 1.0 1.5

Fundamental service rate for (7.8) is 2.833

Correlation = 0.42 x 10-3

[-6.5 4.0 ] [i.5 1.0]810 = 81 = (7.9)
1.5 -4.5 1.0 2.0

Fundamental service rate for (7.9) is 2.833

Correlation = -0.42 x 10-3

[-5.15 2.1 ] [2.6 0.45]820 = 82 = (7.10)
.4.05 -6.6 1.0 1.55

Fundamental service rate for (7.10) is 2.882

Correlation = 0.41 x 10-3

[-6.6 4.05] _[1.55 1.0]820 = 82 - (7.11)
1.55 -4.6 1.0 2.05

Fundamental service rate for (7.11) is 2.882

Correlation = -0.41 x 10-3
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TABLE 1

{3 = 15.0 e NOrbi1 bo bI b2 ()j 'Pid1e

11.0 0.0928 .5910 .2857 .1232 0.0493 .3865
13.0 0.0924 .5921 .2854 .1225 0.0462 .3864

'I 15.0 0.0921 .5930 .2851 .1219 0.0434 .3863
. 17.0 0.0919 .5938 .2848 .1214 0.0410 .3863

19.0 0.0916 .5945 .2846 .1209 0.0388 .3862
11.0 0.0924 .5908 .2858 .1234 0.0496 .3845
13.0 0.0921 .5919 .2854 .1227 0.0465 .3844

IT
15.0, 0.0918 .5928 .2851 .1221 0.0438 .3843
17.0 0.0915 .5936 .2848 .1216 0.0413 .3843
19.0 0.0913 .5943 .2846 .1211 0.0391 .3842

TABLE 2

() = 15.0 {3 NOrbi1 bo bI b2 ()j 'Pid1e

11.0 0.1240 .5974 .2819 .1207 0.0484 .3815
13.0 0.1057 .5949 .2837 .1214 0.0458 .3843

I
15.0 0.0921 .5930 .2851 .1219 0.0434 .3863
17.0 0.0816 .5915 .2862 .1223 0.0413 .3880
19.0 0.0733 .5904 .2871 .1225 0.0393 .3892
11.0 0.1235 .5973 .2820 .1207 0.0488 .3796,
13.0 0.1053 .5947 .2837 .1216 0.0462 .3823

11
15.0 0.0918 .5928 .2851 .1221 0.0438 .3843
17.0 0.0813 .5913 .2862 .1224 0.0416 .3859
19.0 0.0730 .5901 .2872 .1227 0.0396 .3872

Parameters: arrival ----+ (7.6), service to components ----+ (7.8),

service to externals ----+ (7.10)

Parameters: arrival ----+ (7.7), serviceto components ----+ (7.8),

service to externals ----+ (7.10)

153

(I)

(11)

Table 1 and 2 shows that whenthe retrial rate () increases the probability that the server

is idledecreases, but whenthe selfgeneration ratebeta increases the serveridleprobability
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also increases. They also shows the effectof a small variation in the correlationbetween

two arrival times onthe systemperformance measures.

TABLE 3

{J = 15.0 () NOrbil bo bI b2 ()* 'Pid1e3

11.0 0.0928 .5907 .2863 .1230 0.0492 0.3863
13.0 0.0925 .5917 .2859 .1223 0.0461 0.3862

ill
15.0 0.0922 .5927 .2856 .1217 0.0434 0.3861
17.0 0.0919 .5934 .2854 .1212 0.0410 0.3860
19.0 0.0917 .5942 .2851 .1207 0.0388 0.3860

·11.0 0.0928 .5D08 .2859 .1233 0.0493 .3860
13.0 0.0925 .5!H8 .2856 .1226 0.0462 .3859

IV
15.0 0.0922 .5!J27 .2853 .1220 0.0434 .3858
17.0 0.0920 .5!J35 .2850 .1215 0.0410 .3857
19.0 .0.0917 .5!l43 .2848 .1210 0.0388 .3856

TABLE 4

() = 15.0 (3 NOrbil bo bI b2 ()* 'Pid1e3
11.0 0.1240 .5971 .2825 .1204 0.0484 .3813
13.0 0.1058 .5946 .2842 .1212 0.0458 .3840

ITI 15.0 0.0922 .5927 .2856 .1217 0.0434 .3861
17.0 0.0817 .5912 .2868 .1220 0.0412 .3877
19.0 0.0733 .5900 .2877 .1223 0.0392 .3890
11.0 0.1241 .5972 .2821 .1207 0.0484 .3810
13.0 0.1058 .5946 .2839 .1215 0.0458 .3837

IV
15.0 0.0922 .5927 .2853 .1220 0.0434 .3858
17.0 0.0817 .5913 .2864 .1223 0.0413 .3874
19.0 0.0733 .5901 .2874 .1225 0.0393 .3887

Parameters: arrival ----+ (7.6), service to components ----+ (7.8),

service to externals ----+ (7.11)

Parameters: arrival ----+ (7.6), service to components ----+ (7.9),

service to externals ----+ (7.11)

(Ill)

(IV)
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TABLE 5

{3 = 15.0 0 Norbit bo b1 b2 0* Hdle3

11.0 0.0928 .5910 .2857 .1232 0.0493 .3865
13.0 0.0924 .5921 .2854 .1225 0.0462 .3864

V
15.0 ·0.0921 .5930 .2851 .1219 0.0434 .3863
17.0 0.0919 .5938 .2848 .1214 0.0410 .3863
19.0 0.0916 .5945 .2846 .1209 0.0388 .3862
11.0 0.0928 .5907 .2863 .1230 0.0492 0.3863
13.0 0.0925 .5917 .2859 .1223 0.0461 0.3862

VI
15.0 0.0922 .5~127 .2856 .1217 0.0434 0.3861
17.0 0.0919 .5934 .2854 .1212 0.0410 0.3860
19.0 0.0917 .5942 .2851 .1207 0.0388 0.3860

TABLE 6

0= 15.0 (3 Norbit bo b1 b2 0* Pid1e3

11.0 0.1240 .5!l74 .2819 .1207 0.0484 .3815
13.0 0.1057 .5949 .2837 .1214 0.0458 .3843

V
15.0 0.0921 .5930 .2851 .1219 0.0434 .3863
17.0 0.0816 .5!H5 .2862 .1223 0.0413 .3880
19.0 0.0733 .5904 .2871 .1225 0.0393 .3892
11.0 0.1240 .5971 .2825 .1204 0.0484 .3813
13.0 0.1058 .5!J46 .2842 .1212 0.0458 .3840

VI
15.0 0.0922 .5927 .2856 .1217 0.0434 .3861
17.0 0.0817 .5!H2 .2868 .1220 0.0412 .3877
19.0 0.0733 .5000 .2877 .1223 0.0392 .3890

Parameters: arrival ---+ (7.6), service to components ---+ (7.8),

service to externals ---+ (7.10)

Parameters: arrival ---+ (7.6), service to components ---+ (7.8),

service to externals ---+ (7.11)
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(V)

(VI)

Table 3 and 4; 5 and 6 shows the effectofa small variation In the correlationbetween

two service times in the systemperformance measures.
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