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CHAPTER 1

Introduction

A queue is formed when customers arriving at a service station are met with a busy
server and decides to wait for receiving service. To model a queueing system mathemat-
ically; we require the arrival pattern, service time distribution, the number of servers, the
capacity of the service station and the service discipline. These quantities varies according
to the practical situation we want to model mathematically.

Applications of Queueing theory in areas like Computer networking, ATM facilities,
Telecommunications and to many other numerous situations made people study Queueings

models extensively and it has become an ever expanding branch of applied probability.

Methods for analysing queueing models : A queueing model is often analysed by using
a continuous (or discrete) time Markov Chain whose description and analysis depends on
the queucing model under consideration. For example, in the case of M|M|1 queue, the
collection {N(¢) : t > 0} where N(t) denotes the number of customers in the system
at time ¢, is a continuous time Markov Chain whose analysis gives us informations about
the queueing model such as the distribution of the number of customers in the system at
arbitrary time ¢, its limiting distributions (when it exists) the waiting time distribution, busy
period etc. Below we briefly sketch some of the methods applied for studying a queueing
model and we do this by conéidering the simple M|M|1 queueing systen.

Let A, u denote the arrival and service rates respectively and N(t), the number of cus-

tomers present in the system at time ¢t. We also assume that N(0) = 7. Let '
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Then, since { N(t) : t > 0} is a Markov Process, we can write
P.(t+ At) = Py(t)(1 = (A + p)At) + Pao1 (D) AAE + Poyi(t)uAt + o(At) forn > 1 and
Po(t + At) = Po(t)(1 — MAt) + Py (t)pAt + o(At)

By subtracting P,(t) from both sides, dividing throughout by At, and then taking limit

as At — 0, we get the differential-difference equations:

d .
Epn(t) = —(/\ + [I«)Pn(t) + APn;l(t) + ﬂPn+1(t) for n 2 1,
d

and apo(t) = —)\Po(t) + #Pl(t) (11)
These equations are called the forward Kolmogorov equations.

To solve (1.1) the method of generating functions is used as follows:

We define P(z,t) = Y v, Pa(t)2™, (z complex). Then using (1.1) we arrive at the

equations

0 1-2

aP(z, t) = {(n— A2)P(2,t) — pPo(t)} (1.2)
and

P(z,0) = 7 (1.3)

where %P(z, t) =Y oo o Pl(t)2"
Now to sole (1.2) we define the Laplace transforms with respect to time ¢ of P(z, )

and P;(t) as

d

L{P(z,t)} = P(z,5) = / " et p(z 1)t

LR = Pie) = | "B
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and then from (1.2) we get

_ 24 — (1 = 2)By(s)

Pes) = niroe—pn- a2 (14

Evaluating Py(s) we get the Laplace transform P(z, s) and then inverting it, we get P(z, ).
Now for finding the P,(t)s we have to find the coefficient of 2™ in the power series expan-
sion of P(z,t). But the inversion of the Laplace transform becomes almost impossible as
the complexity of the queueing model increases which makes the above method unattrac-
tive from an application point of view.

From (1.1) we derive the 'stationary equations by putting %Pn(t) =0,ast — 00:

0= _(A + W)pn + Apn-1 + UPay1 (R 21)

1.5
0 = —Apo + up; (1.3)

A solution {P,} to the above infinite system of equations which satisfies 3 - p, = 1
exists' if, and only if, p = ﬁ < 1. To find such a solution (when it exists) one can use the
iterative method which gives

D1 = PPo

Pn = p"po forn > 2.
Now to find po we use the relation ) > p, = 1, which gives pp = 1 — p. Thus we get
pn=(1=p)p"forn > 0.
For finding p,s we can also use the method of generating functions as follows.

We define
P(z) =37 i paz™ (z complex)
then from (1.5) we have P(z) = =2 (p < 1),

1-zp
which implies

P(z) =) (1-p)p"2"

n=0
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so that the coefficient p,, of 2", is given by
pn=(1-p)p" forn > 0.

Here we note that each equation in (1.5) contains atmost three p,s; which helped us
to apply the above methods successfully. But as the number of p,s which are interrelated
through an equation increases (which often occurs when we use non exponential inter-
arriva} or service time distributions to model queueing problems) the direct application
of the above methods becomes difficult and we seek the help of Matrix Analytic Methods.
Before we discuss this method in some detail we shall mention some more methods applied
by Queueing Theorists.

In the case of an M|G|1 queue where the service time distribution is arbitrary, one
cannot get a Markov Chain by considering simply the random variable N (t) which denotes
the number of customers present in the system. Following are some methods applied in
such a situation.

(a) Method of embedded Markov chain In this method we keep noting the value of the
random variable N(t) at certain epochs {¢,} so that the collection {N(¢,)} becomes a
discrete time Markov Chain. For the M|G|1 queue, we achieve this by taking ¢, as the
epoch of n™ departure from the system and N (t,) as the number of customers left behind
by the departing customer. Now the Markov Chain {N(t,) : n > 1} can be used to study
the M|G|1 queucing system.

(b) Method of supplementary variables In this method to get a Markov Process, we keep
track of some additional information together with the random variable N(t). For M|G|1
queue the elapsed service time ‘z’ at time ¢ of the unit undergoing service at time ¢ serves
as this additional information. In otherwords the collection {(N(t),z) : t> 0,z > 0} is a

Markov Process which can be used to study the M|G|1 queue.
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Matrix analytic methods : Even though Queueing systems such as
M|M|1, M|M|oo,G|G|1 etc. are well studied and are well tractable, using the meth-
ods of generating functions and Laplace transform methods, the numerical tractability of
Queueing systems through these methods becomes complicated when we assume non ex-
ponential interarrival or service time distributions which we mentioned in the above para-
graphs. But the introduction of Matrix Analytic Methods in solving Queueing problems
by Neuts and others, reduced this problem of numerical intractability considerably and
increased the implementation of Queueings Models to analyse practical situations taking
non exponential interarrival and service time distributions (for example Phase type) which
are more suitable for practical applications. The modelling tools such as Phase type dis-
tributions, Markovian Arrival Processes, Batch Markovian Arrival Processes, Markovian
Service Processes etc. are well suited for Matrix Analytic Methods.

Below we give a brief description of Matrix Analytic Methods applied for solving

quasi-birth-and-death processes.

Level independent quasi-birth-and-death processes : A level independent quasi-birth-
and-death process is a Markov process with state space E= {(0,7) : 1 < j < n}uU{(s,J) :
i > 1,1 < j < m} and with infinitesimal generator Q given by

(B, B, 0 0
B, AL Ay 0
Q=10 A A A
0 0 A A

The generator @ is obtained in the above form by partitioning the state space E into the
set of levels {0,1,2,...} where 0 = {(0,5) : 1< <n},i={(3,7) : 1 <j <m} for
i > 1. The vector i is called i level. B, is a square matrix of order n x n and denotes

transition rates from states of level 0 to the states of level 0 itself. By is a matrix of order
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n X m and denotes transition rates from level 0 to level 1. The m X n matrix B; denotes
transition rates from level 1 to level 0. Aj, A;, Ag are square matrices of order m and
denotes transition rates from level ¢ to levels s — 1,4,4 + 1 respectively. Assuming that Q

is irreducible, we have the following theorem (see Neuts [44]).

THEOREM 1.1. The process Q is positive recurrent if and only if, the minimal non

negative solution R to the matrix quadratic equation
R2A2 +RA;+Ap=0 (1.6)
has spectral radius less than 1 and the finite system of equations

zoB, + 1By = 0, zoBy + .’El(Al + RAQ) = (.7

e+ z;(I— R)le=1

has a unique positive solution for x,, and, T,.
If the matrix A = Ao+ A1+ Ay is irreducible, then sp(R) < 1 if and only if,

T Age<mAqe, where T is the stationary probability vector of the generator matrix A.
The stationary probability vector z = (o, 21, Z2, . . .) of @ is given by
&=z R fori > 1 (1.8)
To find the minimal solution of (1.6) one can use the iterative formulas (see Neuts [44]):
R, = —Ao(A1 + R,_143)  forn > 1 (1.9)

with an initial value Ry, which converges to R if sp(R) < 1. An accuracy check for R is
given by the equation RAe = Ape. Also the above relation (1.9) shows that if any row of
Ay is a row consisting of zeroes only, then the corresponding row of R,,,n > 1, has zeros

only so that the corresponding row of R also consists of zeros only. So if our Ay matrix
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has a special structure, it can be exploited in the evaluation of the R matrix.

Another method to find R is to use the relation
R = Ag(—A; — AG)™! (1.10)
where the matrix G is the minimal nonnegative solution of the matrix quadratic equation
Ay + AIG+ AG* =0 (1.11)

The matrix G will be stochastic of sp(R) < 1. When sp(R) < 1, the Logarithmic
Reduction Algorithm due to Ramaswamy (see Latouche and Ramaswamy [41]), which
is quadratically convergent, can be used to calculate the G matrix and hence the R matrix

using relation (1.10). When G is stochastic, from (1.11) we obtain the relation
G = (—A; - AG) 1A, (1.12)

which shows that if any column of the A; matrix is zero then the corresponding column
of the G matrix is also zero. Therefore if the A, matrix has a special structure, it can be
exploited in the calculation of the G matrix. Also one can efficiently use (Block) Gauss-
Scidci iteration method to evaluate the G matrix, particularly if the matrix A has a special
structure.

For further details on Matrix Analytic Methods for Level independent QBD’s we refer

to Neuts [44], Latouche and Ramaswami [41].

Level dependent quasi-birth-and-death processes : A Level dependent quasi-birth-
and-death process is a Markov process with state space £ = {(,5) : 1 > 0,1 < j < n;}

and with infinitesimal generator @) given by
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Ap Ay 0 O
Ay Ay An O
Q=10 Ap Ap Ax

L -

The state space is partitioned into levels i = {(z,7) : 1 < j < n;} and transitions take
place only to the adjacent levels. However, here the transition rates may depend on the
level ¢ and therefore the spatial homogeneity of the associated process is lost. All A;;s
are square matrices; but, since different levels may contain different number of phases,
the A.ﬁ matrices and Ag; matrices are in general rectangular. Assuming that the QB D is

irreducible we have the following theorem.

THEOREM 1.2. When the QBD is positive recurrent, its steady state distribution m =

(mo, ™, o, . . .) satisfies the relation
M = Mp1 Ry for n2>1 (1.13)
where the matrices R, are the minimal nonnegative solutions of the system of equations
RyRpy1Aons1 + RyAin + Ao =0, forn > 1. (1.14)
Regarding the positive recurrence of the above QBD we have the following theorem.
THEOREM 1.3. The QBD is positive recurrent if, and only if, the system of equations
7o = To(Ar0 + R1A2) (1.15)

mo S {( [[ Ree} =1 (1.16)

n2l 1<k<n

has a positive solution for m.
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To calculate the matrices R,, and the infinite sum in (1.16), different truncation proce-
dures such as the one by Bright and Taylor [13] (which can be applied in all cases) and in

the case of retrial queues, Neuts-Rao Truncation (see [45]) etc. can be applied.

For further details on Matrix Analytic Methods used in Stochastic Processes we refer
to Neuts [44], Latouche and Ramaswami [41]. . An excellent bibliographical survey on
Matrix-Analytic Methods is provided in Gémez-Corral [29].

Modelling tools

Continuous-time phase type distribution (PH distribution)

To describe a continuous-time Phase Type distribution we consider a continous time

Markov Chain with states {1,2,...,m + 1} and infinitesimal generator
T T°
Q =
0 0

where the m x m matrix T = (T;;) 4,7 = 1,...,m has the property that Tj; < 0 for
1<i<m,andT;; > 0fori # j. Also Te + T° = 0. The initial probability vector of Q
is given by (a, aym41) Where a4 is a scalar and ae + a1 = 1. To make all the states
1,2...,m transient to ensure absorption to the state m + 1 a certain event, starting from

any initial state, we assume that the matrix T is non singular.

DEFINITION 1.1. A random variable X is said to have phase type distribution with
representation (c, T) of order m if and only if X represents the time until absorption in a
finite state(with m + 1 states) Markov process described above.

If the random variable X has a PH distribution with representation (o, T) of order m

then

(1) The distribution function of X is given by
F(z) = P(X <z)=1- aexp(Tz)e.
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(2) The distribution F(-) has a jump of magnitude ¢, 1 at £ = 0 and the probability
density function f(z) on (0, c0) is given by
f(z) = aexp(Tz)T°

(3) The Laplace-Stieltjes transform f*(s) of X is given by
f*(s) = apms1 + (s = T)7T°, for Re(s) >0

(4) The moments about origin are given by

E(X?) = u; = (-1)4!(aT e), fori>0

The class of continuous time Phase type distribution contains a lot of important distribu-

tions such as exponential, Erlang, etc.

Discrete-time phase type distribution : To define a discrete time PH distribution, we
proceed as in the continuous case but here we take a discrete time Markov Chain with

states {1,2,...,m + 1} and transition probability matrix P given by

T T°
0 1

P =

where T is a square matrix of order m and T'e + TV = e. Similar to the continuous casc,
the necessary and sufficient condition for eventual absorption into the absorbing state is
that the matrix I — T is nonsingular. The initial probability vector of the Markov Chain
is (o, am41) Where ae + apyy = 1. If the random variable X denotes the number of
steps for absorption in a Markov Chain described as above, the probability distribution
{px = P(X = k)}r>1 is given by po = a1, and py, = aTF1T0, for k > 1
The random variable X is then said to have a discrete-time Phase type distribution with
representation (c, T') of order m.
The ™ factorial moment of X is given by

pi =dlaTY(I — T) e, fori > 1.

Some useful properties of Phase type distributions are the following.
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(a) finite convolutions of continuous PH-distributions is again a PH-distribution.
(b) a finite convex mixture of PH-distribution is again a PH-distribution
(c) an infinite mixture, G(:) = f:ka(")(-) where {p;} is a discrete PH-distribution
and F¥)(.) is the k-fold convI:)TStion of a continous PH-distribution F(-), is again a

PH-distribution.
(d) The class of continuous PH-distributions is dense in the class of all continuous distri-

butions with support on the non negative real line.

PH-renewal processes : A renewal process whose inter-renewal times have a PH-distribution

is called a PH-Renewal process.

To construct a PH-Renewal process we consider a continuous time Markov Chain with

states {1,2,...,m + 1} having infinitesimal generator
T T°
Q=
0 0

The m x m matrix T is taken to be nonsingular so that absorption to the state m + 1
occurs with probability 1 from any initial state. Let («, 0) where 0 is a scalar, be the initial
probability vector. When absorption occurs in the above chain we assume that an arrival
to the system has occurred and the process immediately starts anew in one of the states
{1,2,...,m} using the probability vector a. Continuation of this procedure gives us a
non terminating arrival process and is called PH-renewal process.

The class of PH-renewal processes include Poisson process, Compound Poisson Pro-
cess etc.

Continuous time PH distributions and PH-Renewal processes can be used to model
service time distributions and arrival processes respectively in Queueing Models.

In the case of Queueing systems which are modelled using a finite continuous time
Markov Chain, the random variables associated with the queueing process such as the
waiting time of a customer, time between two successive departures, a busy period etc. are

often seen to follow a PH-distribution so that the distributions of these random variables
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as well as their expected values can be efficiently calculated using the properties of PH-
distributions.

For more details and properties of PH-type distributions we refer to Neuts (44], La-
touche and Ramaswami [41], Chakravarthy [14].

Batch Markovian Arrival Process (BMAP) :

To get a Batch Markovian Arrival Process we consider a two dimensional Markov
Process X (t) = {(N(t), J(t)) : t > 0} on the state space {(¢,7) : ¢ > 0,1 < j < m} with

infinitesimal generator given by

Do D1 D2 D3
0 Dy D; D,

Q=
0 0 Dy D

where D, k > 0, are m X m matrices; Dy has negative diagonal elements and nonnegative
off-diagonal elements; Dy for k > 1 are nonnegative and the matrix D given by D =
f:Dk is an irreducible infinitesimal generator of a continuous time Markov chain. We
;:gumc that D# D,. The variable N(t) denotes the number of arrivals in (0, ], and the
variable J(t) denotes phase 6f the arrival process. The transition from a state (¢, j) to a
state (i + k,[) where k > 1,1 < j, | < n with transition rates governed by the matrix D,
correspond to the arrival of a batch of size k, while a transition from a state (¢, §) to a state
(3,0), 1 < j, 1 < m; j # [, with transition rates governed by the matrix Dy, correspond
to no arrival. Thus the matrix Dy governs transitions that correspond to no arrival and the
matrix Dy, governs transitions corresponding to a batch arrival of size k, £k > 1. We assume
that the matrix Dy is a stable matrix (sce Bellman (8]) which makes it non singular aad

which in turn ensures that the sojourn time in the set of states {(¢, j) : 1 < j < m} is finite

with probability 1 for all 4. This ensures that the arrival process X () never terminates.
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Let 7 be the stationary probability vector of the Markov process with generator D. The

fundamental arrival rate for the arrival process is then given by
o0
§=m()_kD)e.
k=1

For more details on BMAPs we refer to Lucantoni [42].

Markovian arrival process :
A Markovian Arrival Process(MAP) is a particular case of BMAP where maximum
possible batch size is 1, that is, we make D, = 0, for k > 2, so thathere D = Dy + D;. A

construction of MAP with representation matrices ( Dy, D;) of order m is as follows: Con-

sider a Markov process with state space {1,2,...,m,m + 1} with infinitesimal generator
Dy d .
0 0

where Dy is an m x m matrix, Dpe + d = 0 and m + 1 is an absorbing state. Since
by assumption D is a stable nonsingular matrix, absorption occurs with probability 1
from 'any initial state. As in the construction of PH-renewal process, when absorption
occurs we assume that an arrival has occurred and we immediately restart the process
using an initial probability vector. But different from PH-renewal process here this initial
probability vector depends also on the state from which absorption occurred and this brings
dependence between interarrival times. Let (o, 0), where a; is an m-dimensional row
vector with ;e = 1, be the probability vector which we use to restart the process after
absorption has occurred from the state i and define the m x m matrix D; by (Dy);; =
(d)i(e); 1 £ 4,5 < m. Now the matrix D = Dy + D, will be the generator matrix of
a Markov process {Y(t) : ¢ > 0} on the state space {1,2,...,m}. Let N(t) denotes the
number of arrivals in (0, ¢}. Then the 2-dimensional Markov Process {(N(t),Y (¢)) : t >

0} with state space {(z,7) : i> 0,1 < j < m} is the arrival process which we constructed
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above and is called Markovian Arrival Process. The infinitesimal generator of the process

is given by i )
Dy D, 0 O
0 Dy D, O
Q=
0 0 Dy Dy

For more details on MAPs refer to Lucantoni [42], Chakravarthy [14].

Markovian Service Process (MSP) : By defining Markovian service process we wish to
bring correlation between two successive service times. We shall construct an MSP in the

same way as we constructed a MAP that is by taking a Markov process with state space

{1,2,...,m,m + 1} and with infinitesimal generator
Dy d
Q =
0 0

her Dy is an m X m matrix, Dye + d = 0 and m + 1 is an absorbing state. The matrix Dy
is assumed to be a stable matrix so that absorption is certain from any initial state ¢. Here
an absorption is considered as a service completion and if the service is to be restarted
immediately we do this by restarting the above Markov process otherwise we freeze the
process until the beginning of the next service and then restart it. In both cases we restart
the process using a probability vector (o, 0), where o is an m-dimensional row vector
and aje = 1, if the absorption has occurred from state ¢. This dependenée of the initial
probability vector on the state from which absorption has occurred makes two service times

dependant random variables.

Literature survey pertaining to the thesis :
For a detailed discussion on retrial queues one may refer to the monograph by Falin

and Templeton citeft and for more recent developments the papers by Artalejo {2, 1]. An
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information theoretic approach to the analysis of M|G|1 retrial queues is provided in Ar-
talejo [3]. Retrial queues in discrete time has been extensively analyzed by Nobel, see for
example [46].

Dﬁe to recent applications in health care systems [11, 56, 60] and in queues with impa-
tient customers arising in telecommunication networks (5, 4, 61, 62] and inventory systems
with perishable goods [30, 47], there has been renewed interest in prioritization of units in
queueing models.

A large number of probabilistic models possessing variety of priorities have been dis-
cussed. Ordinarily, most chapters in textbooks [31, 33, 55] and papers [25, 28, 39, 49]
on priority queues treat with exogenous priority rules; i.e., the decision of selecting the
next unit for service may depend only upon the knowledge of the priority class to which
the unit belongs. Nevertheless, in many situations, the exogenous disciplines might not
be true. For example, in several medical procedures, patients are treated according to the
urgency of their conditions, in such a way that all patients are homogeneous in their ini-
tial condition and change while waiting for treatment. Thus a key management issue of a
medical service is to brioritize patients to reduce the suffering and risk faced by them in
queue by implementing a dynamic priority rule even if they have initial homogeneous con-
ditions. See for example [33, Chapter 7], and [55, Chapter 3], for a review on the methods
and models related to endogenous priority disciplines and their applications.

A paper by Wang [60] discuses patient qﬁeue models with self-generation of priori-
tics, though he does not mention this terminology explicitly, where all time variables are
assumed to be exponentially distributed. To be concrete, Wang incorporates the condition
and its changes over the time for a patient in queue, and stresses that it is important to study
queueing models in health care systems with more general distributional assumptions on
the service times and the arrival pattern. However self-generation of priorities of customers
in queues have been introduced by A. Krishnamoorthy, Viswanath. C. Narayanan & T. G.
Deepak (2002, unpublished paper). '
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Self-generation of priorities by units in queue may be thought of as a consequence of
their impatient behaviour (see [61, Section 2]). Classical queueing theory on impatient
units [5, 4, 51, 53, 54] us_ually concerns with models in which units wait for service for
a (random or fixed) limited time only and leave the system forever if service has not be-
gun within that time. For the special case of exponentially distributed services, queueing
models with impatient units have been studied by Barrer [6], [7] and later by Gnedenko
and Kovalenko [27] who corrected an error in Barrer’s reasoning which, however, does
not invalidate his results. For the case of deterministic service times a closely related
model was studied by Hokstad [32] and Swensen [52]. Other related works can be seen
in [19, 35, 24, 48, 50] and references therein.‘-See the survey of perishable inventory the-
ory by Nahmias [43] for further details on how upper limits on the waiting time indicate
maximal times the goods can be stored before their quality degrades.

A k-out-of-n system is characterized by the fact that the system operates as long as
there are atleast k operational components. A k-out-of-n system can further be classified
as follows:

The system is called ‘COLD’ if the operational components do not fail while the sys-
tem is in down state. It is called ‘HOT’ if operational components continue to deteriorate
at the same rate while the system is down as when it is up. The system is called ‘WARM’ if
the deterioration rate while th‘e‘system is up differs from that when it is down. An extensive
study of k-out-of-n systems can be seen in Krishnamoorthy et al [38], Chakravarthy, Kr-
ishnamoorthy & Ushakumari [15]. Krishnamoorthy and Ushakumari [37] is the first work
to introduce retrial into reliability. In that paper they assume the failed components of the
k-out-of-n system to proceed to a repair facility which when found busy, these components
are sent to an orbit. They studied the system in the three cases, namely, COLD, WARM,
and HOT. Ushakumari and Krishnamoorthy [58] generalize the above mentioned work
to the case of arbitrarily distributed service time and derive several system performance
measures. Bocharov et al [10] discusses a retrial queueing syétem with a finite waiting

space, Poisson arrival of customers and arbitrarily distributed service time. Customers in
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the waiting space have priority over customers in the system. Choi and Chang [17] provide
a survey of single server queues with priority calls. One may refer to Choi and Chang [16]
for results on multi-server queues with two types of arrivals.

Postponement of work is a common phenomena. This may be to attend a more impor-
tant job than the one being processed at present or for a break or due to lack of quorum (in
case of bulk service, or when N-policy for service is applied) and so on. Queueing systems

with postponed work is investigated in Deepak, Joshua and Krishnamoorthy [20].

Author’s contribution : Chapter 2 discusses Reliability of a ‘k-out-of-n system’ where
where the scrver also attends external customers when there are no failed componcents
(main customers), under a retrial policy, which can be explained as follows: The external
customers arrive according to a BMAP and the components fail at an exponential rate.
If an arriving batch of external customers finds a free server one among them gets into
service and others (if any) move to an orbit of infinite capacity. If an arriving batch of
external customers sees a busy server, the whole batch moves in to the orbit. Service times
of main and external customers follow arbitrary distributions. The stability condition and
the steady state distribution are obtained. We also consider a particular case of the above
problem by assuming that external arrivals are according to a MAP and also that the service
times of both the main and external customers follow a PH-distribution. The numerical
results obtained shows that this service to external customers decreases the idle time of the
server without affecting the system reliability considerably.

Chapter 3 is an extensiop of the problem in chapter 2. Here also we consider a k-
out-of-n system where the server provides service to external customers. The components
fail at an exponential rate and the external customers arrive according a MAP. External
customers who finds the server busy, joins a pool of finite capacity M, if the pool is not
full; otherwise he joins an orbit of infinite capacity with probability v or leaves the system
with probability 1 — . The orbital customers retry for service at an exponential rate . A

retrying customer is accommodated in the pool if the pool is not full otherwise he rejoins
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the orbit with probability §(< 1) and with probability 1 — § he leaves the system forever.
The service to the failed components is according to an N-policy; that is the service to the
components starts once all failed components are repaired, only if NV failed components
accumulate. In the mean time the server attends external customers in the pool. When
N failed components accumulate, no more pooled customer is taken for service but the
ongoing service of the external customer if there is any, is not pre-empted. The service
times of both types of customers are independent and follow different PH distributions.
This system is stable irrespective of the parameter values. The steady state distribution
is calculated using Bright and Taylor method. Based on this some system performance
measures are calculated and numerical illustrations provided.

Chapter 4 discusses reliability of ‘k-out-of-n-system’ where the server also attends ex-
ternal customers. In contrast to the assumptions in chapters 2 and 3 here instead of an
orbit we assume that tﬁe external customers join a queue in a pool of infinite capacity with
probability 1 if there are < M failed components or with probability + if there are M or
more failed components. To reduce the impatience of a queueing customer in the pool,
immediately after a service completion the server attends a pooled customer (if there is
any) with probability p if there are < L failed components and with probability 1 selects
a pooled customer for the next service if there is any, provided the number of failed com-
ponents is zero. The stationary distribution is obtained under the stability condition. A
number of performance characteristics are derived. A cost function in terms of L, M, v
and p is constructed and its behaviour investigated numerically.

Chapter 5 studies a multi-server infinite capacity Queueing system where each customer
arrives as ordinary but can generate into a priority customer while waiting in the queue.
We call this phenomenon as ‘self generation of priorities’. This phenomenon is often ob-
served in clinics. We assume that the customer who has generated into priority is given
service immediately, if there is at least one server who is not currently busy with a priority
generated customer; otherwise the priority customer leaves the system for immediate ser-

vice elsewhere. Arrival process is poisson and service times of each server is exponential.
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The priority generation is also at an exponential rate. This system is stable irrespective of
the parameter values. Stationary distribution is obtained using Bright and Taylor method.
Some performance characteristics are derived and numerical illustrations provided.
Chapter 6 is on a finite capacity multi-server queueing system with self-generation of
priority of customers. As in Chapter 5 the priority generated customer is either taken for
service immediately if there is at least one server who is not busy with a priority gen-
erated customer; else he leaves the system for getting immediate service. The arrival of
customers is according to a MAP and the service time of each server is assumed to follow
a PH-distribution. Assumptions of finiteness of system capacity increases the numerical
tractability and it is also close to the practical situation where the system capacity is often
found to be finite. We give formulas for numerical computation for a variety of perfor-
mance measures, including the blocking probability, the departure process, and the sta-
tionary distributions of the system state at pre-arrival epochs, at post-departure epochs and
at epochs at which arriving units are lost. Some numerical illustrations are also provided.
Chapter 7 is on a single server infinite capacity retrial Queue where the customer in
the or_bit can generate into priority and leave the system if the server is already busy with
a priority generated customer; else he is taken for service immediately. Arrival process
is according to a MAP and service process is MSP. This system is stable irrespective of
the system parameters. The steady state distribution is obtained using Neuts-Rao Trun-
cation method where in order to choose the truncation level we use a dominating process
suggested by Bright and Taylor which saves a lot of computational effort. Certain system

characteristics are derived and numerical illustrations provided.



CHAPTER 2

Idle time utilisation through service to customers in a retrial queue

maintaining high system reliability”

In this chapter, we discuss the reliability of a k-out-of-n system subject to repair of
failed components by a server in a retrial queue. We assume that the k-out—of—n system
is COLD. A k- out-of-n system is characterised by the fact that the system operates as
long as there are at least k operational components. The system is COLD in the sense
that operational components do not fail while the system is in down state (number of failed
components at that instant is n—k+-1). Using the same analysis as employed in this chapter,
one can study the WARM and HOT systems also (a k-out-of- n system is called HOT
system if operational components continue to deteriorate at the same rate while the system
is down as when it is up. The system is WARM if the deterioration rate while the system
is up differs from that when it is down). A repair facility, consisting of a single server,
repairs the failed components one at a time. The life-times of components are indcpendent
and exponentially distributed random variables with parameter A/t when ¢ components
are operational. Thus on an average A failures take place in unit time when the system
operates with i components. The failed components are sent to the repair facility and are
repaired one at a time. The waiting space has capacity to accommodate a maximum of
n—k+ 1 units in addition to the unit undergoing service. Service times of main customers

(components of the k-out-of-n system) are iid rvs with distribution function B;.

* The material in this chapter was published under the title Reliability of a k-out-of-n system through re-
trial queues in Transactions of XXIV-th International Seminar on Stability Problems for Stochastic Models,
Transport & Communication Institute, Riga, Jurmala, Latvia, September, 10-17, 2004, Ed. A. Andronov, P.
Bocharov & V. Korolev, pp. 232-245.
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In addition to repairing failed components of the system, the repair facility provides
service to external customers. However these customers are entertained only when the
server is idle (no component of the main system is in repair nor even waiting). These
customers are not allowed to-use the waiting space at the repair facility. So when external
customers arrive for service (arrival process is BMAP) when the server is busy serving a
component of the system or an external customer, they are directed to an orbit and try their
luck after a random length of time, exponentially distributed with parameter a; when there
are 7 customers in orbit.

We stress the fact that at the instant when an external customer undergoes service if
a component of the system fails the latter’s repair starts only on completion of service of
the external customer. That is, external customers are provided non-preemptive service.
The service times of external customers are iid rvs with distribution function B;. Since
external arrivals form a BMAP, either all in an arriving batch will proceed to an orbit on
encountering a busy server; else one among the customers in the batch proceeds for service
and the rest are directed to the orbit if the server is idle at that arrival epoch.

The objective of this chapter is to maximise the system reliability. Simultaneously
we try to utilize the server idle time. k-out-of-n system is investigated extensively (sce
Krishnamoorthy et al [38] and references therein). Krishnamoorthy and Ushakumari [37]
is the first work to introduce retrial into reliability. In that paper they assume the failed
components of the k-out-of-n system to proceed to a repair facility, which when found
busy, these components are sent to an orbit. They studied the system in the three cases,
namely, COLD, WARM and HOT. Ushakumari and Krishnamoorthy [58] generalize the
above mentioned work to the case of arbitrarily distributed service time and derive several
system performance measures. Bocharov et al [10] discusses a retrial queueing system
with a finite waiting space, Poisson arrival of customers and arbitrarily distributed service
time. Customers in the waiting space have priority over customers from orbit. However

their model differs from our present work in that in the former, orbital customers, at the
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time of retrial, can join the buffer if it is found to be not full. They obtain the stationary dis-
tribution of the primary queue size (number in the waiting space), a recurrent algorithm for
the factorial moments of the number of retrial customers and an expression for the expected
number of customers in the system. The model discussed here differs from Bocharov et al
described above in that in this chapter priority is given to failed components of the k-out-
of-n system which alone can be accommodated in the waiting space. Further there is only
one service of primary customers in Bocharov et al model whereas the one discussed here
has two distinct services;components of k-out-of-n system and internal customers. Choi
and Chang [17] provides a survey of single server queues with priority calls. One may also
refer to Choi and Chang [16] for results on multiserver queues with two types of arrivals.
This chapter is arranged as follows. In section 2.1 we provide the mathematical mod-
elling of the system under study. In section 2.2 through 2.5 we investigate the stationary
distribution of the embedded Markov chain. In 2.6 distribution of the system state at arbi-
trary epochs is provided. System performance characteristics are provided in section 2.7.
In section 2.8 a particular case of the problem discussed in section 2.1 is analysed in depth.
Section 2.9 provides some performance measures of this particular case and in section 2.10

a numerical illustration is given.

2.1. The mathematical model

The system has a single server. The server serves the main customers (components of
the k-out-of-n system) and external customers according to distribution functions B; and
B,, respectively. Because of the assumption we made about the life times of components of
the k-out-of-n system, the main customers arrival (see previous section) has exponentially
distributed interarrival times of rate A. The arrival of external customers is according to a

BMAP defined by the matrix generating function

D(z) = Z Dp2™, |2| < 1.

m=0



2.1. THE MATHEMATICAL MODEL 30

This arrival process is governed by the continuous time Markov chain
{w,t > 0}, having state space {0,1,...,W?}. The sequence of matrices {D;} provide
the transition rates from state  to state j in the Markov chain and the consequent arrival of
a batch of customers of size k, k =0,1,2,....

The steady state distribution of the process v;, t > 0, is defined by the row vector g that
satisfies equations §D(1) = 0, fe = 1. The fundamental rate of the BMAPis § = 6D'(1)e.
Here and in the sequcl'é' is a row vector of corresponding dimension, e is a column vector
consisting of 1’s. See Lucantoni [42] and Chakravarthy [14] for more details about the
BMAP. The external customer can access the server oniy if the server is idle. Otherwise the
customer moves to the orbit ahd tries his luck later. The interretrial times are exponentially
distributed with parameter o;; when i customers are present in the orbit, i > 0, g = 0. The
service times of external customers is a random variable characterised by the distribution
function Ba(t). Let b = J;° tdB;(t) the average service time under the 'service time
distribution B,(t), r = 1,2.

Frpm the given description, it is clear that the main customers have a priority with
respect to the external customers. External customers have a chance to get a service only
in case the server is idle which is possible only if there is no main customer in the repair
facility at the time of commencement of the service of the former. We assume that the
priority is non-preemptive— arrival of a main customer does not interrupt the service of
the external customer, if any, in the system.

Our aim is to calculate the main performance characteristics of the model.
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2.2. Stationary state distribution of the system
Let j; be the number of main customers in the queue at the epocht,0 < 5, <n—k+1

and 7, be the number of customers in the orbit at ¢, i; > 0.

0, if the server is idle at epoch ¢,
T¢ = 4 1, if a main customer is getting processed at epoch ¢,

2, if an external customer is served at the epoch £, > 0,

v, be the state of the BMAP at the epoch ¢, v, = 0,...,W.
Consider the process

Et = (it)jtaTtht)at > 0.

Unfortunately the process {£;,t > 0, } is non-Markovian. So, to investigate this process
consider first the embedded chain at the service completion epochs, ie., the Markov chain

{Cayn > 1}, that is defined as:
Cn = {itn+07jt"+0’ th}) n Z ]-)

where t,, is the nth service completion epoch.

2.3. Specification of the embedded Markov chain

It can be verified that the process (,, n > 1, actually is a Markov chain. Denote its

one-step transition probabilities as

P{(i’ja V) - (laj’s V,)} = P{itn+1+0 = lajtn+1+0 = j,, Vtni1 =/

Btn+0 = 1, Jtat+0 = Jy s, = V}.
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Enumerating the states of the chain {(,,n > 1} in the lexicographic order, we form tran-
sition matrices

Py = 1P{(E4,v) = (L5 VW 5w
and the block matrices Py; = || P 3),0. ||; =571

'LEMMA 2.1. The transition probability matrices P; ;. are calculated as follows.

Pijagn = -4,5 -j+1), 120,124 0<j<j+1,//<n—-k (@1

Pijyinreny = Q0@ —dn—k+2-7),12i>0,1<j<n—-k+1, (22

Pioyugy = ¥, 1,5) = RiosIQP (1 ~ i + 1, 5').

l-i+1
+R Y DnQ®(—i—m+1,5) + RAIQW( -4, 5),
m=1
i >0,! > max{0,l—i},5/=0,n— k. (2.3)

Forj' = n — k + 1, formula (2.3) is valid if we provide symbols U, Q") with a hat. Here

Ry = (=Do+ oyl + M)~ (2.4)
Q" (m,T) = / ” P(m, t)(—/\:'ze"“dB,(t), (2.5)
0 ' :
Q" (m,7) = Z Q" (m, 1), (2.6)
l=7

the matrices P(m,t) are defined by the series: Y o_, P(m,t)2™ = eP®),

This Lemma follows from the following reasonings. The matrix Q) (m, 7) defines
probability of 7 main customers and m external customers arrival (with the corresponding
transitions of the chain v, ¢t > 0) during time having distribution function B,(¢), r = 1, 2.
The matrices o; R;, R;D,,, AR; define transitions of the process v, t > 0, during the

idle period of the server that is terminated by the retrial from the orbit, arrival of external
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customers in batch of size m and arrival of main customer, respectively.
From (2.1)—(2.3) we see that transition matrix F;; has the following structure:

(96,10 wELY) - Y(ELn—k) Bl n—k+1) )
Q-0 QOU-41) -« QOU-in-k) QOU-in-k+1)
Py = 0 QM@ -4,0) -+ OV -din-k-1) QOU-in-k)
\ 0 0 Qi -14,0) aM@-i,1) )
2.7)

Thus we calculated the one-step transition probabilities of the Markov chain (,, n > 1.

2.4. Stability condition

To investigate the Markov chain (;, n > 1, we should make some assumptions about
the limiting behaviour of the total intensities of retrials a;, ¢ > 0. We disﬁnguish two
cases : lim;_,o a; = oo and lim;_,, @; = v < +00. The first case includes the classical
strategy of retrials when «; = ia and the second one includes the constant retrial rate
(; = 0,1 > 1). In case lim o; does not exist, we can not speak definitely about the

i—00
limiting behaviour of the queueing system. So we restrict ourselves only to the first cases

described above.

~

In the case lim;_,, @; = v, we see that the matrices (3, [, v), ¥U(%,{,n — k+ 1) depend

on [ and ¢ only via the difference [ — i. In this case, for 2 > 0 we have

o0
Y(z)= ) Pyd7=
1=i01

U(z,0) U(z,1) U(z,n— k) U(z,n—k+1)
2Y((z,0) zY(l)(z, 1) - 2YWn-k) 2¥YO(n-—k+1)

0 zY(l)(z,o) e zY(l)(z,n -k-1) _zf/(l)(z, n—k) 2.8)

0 0 2Y((z,0) YW (z,1)
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where

U(z,v) = R(YYP(2,v) + (D(2) — Do)Y @(z,v) + A2Y (2, 1))

¥(z,v) = R(OYP(2,v) + (D(2) — Do)Y (2, ) + A\2Y D (z,1)),

R=(=Do+~I + )7,

YO(a0) = | 2O o-xgp 1)
0 .

Y(z,v) = ZY(')(z, h,r=1,2
=

Stability condition for this case is given by the following.

THEOREM 2.1. The stationary distribution of the Markov chain (,, n > 1, exists if,

and only if, the inequality
xY'(le<1 (2.9)

holds where x is the row vector which is the unique solution to the system:
xY (1) =x,xe=1. (2.10)

Proof follows from (Klimenok [34]).
Consider now the case lim;_,o, a; = 00. '
Let p, = 6()57), 7 = 1,2, and y, be the probability of the idle state for the M|G|1|n —
k + 1 system with the stationary Poisson arrival process with intensity./\ and the service
time distribution By (t) if the system was not idle at the previous service completion epoch
and the service time distribution B,(t) in the opposite case. The problem of calculating
the value y, can be solved trivially and we consider it to be known (stable procedure for

its calculation directly follows from (Dudin, Klimenok, Tsarenkov [22]))
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THEOREM 2.2. The stationary distribution of the Markov chain (,, n > 1, exists if,

and only if, the inequality
Yo(l+p1—p2) >p1 holds. @.11)

PROOF. It can be verified that the Markov chain (,, » > 1, which has transition prob-
abilities (2.7), belongs to the class of asymptotically quasitoeplitz Markov chains (see
Dudin, Klimenok [21]). Stability condition for such chains is known in terms of the matrix

generating function

)7(2) = 111'12: Z Iji,i+mzm+1~

m=-1

It is defined by formulas (2.9), (2.10) where the matrix generating functions Y'(2) is

replaced by the function Y (2). It is easy to see that the function Y (z) is defined by the for-

mula (2.8) where the symbol ¥ is replaced by the symbols Y (2. By means of substitution,

it can be verified that the vector x, which is the solution of the system xf’(l) =X, xe =1,
has the form:

x = y&9, (2.12)

where y is the vector of stationary probabilities of the queueing system M |G|1|n — k + 1
defined above and @ stands for Kronecker product of matrices.

Inequality (2.9) is reduced to the inequality

n-k+1

Yop2 + Z up1— Y <0 (2.13)
=1

if we take into account that § 3°%°__ (Y)(z, m))'|,_,e = pr. Now inequality (2.11) fol-

m=o0

lows from (2.13) and the normalisation condition E;:Ok“ =1

This completes the proof of Theorem 2.2. O

REMARK 2.1. Condition (2.11) is well tractable. When the number of customers in

the orbit is large, the value (1 — yo)p1 + yop, is the average number of external customers
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arriving into the system during the arbitrary service time. Average number of the exter-
nal customers leaving the system after the arbitrary service completion epoch is equal to

Yo(yo = 1-yo+ 0 (1 = yo)). The intuitive stability condition yo > (1 — yo)p1 + Yop2 is

equivalent to (2.11).

Assume that condition (2.9) or (2.11) (depending on the case considered) is fulfilled.

2.5. Stationary distribution of the embedded Markov chain

Define the steady state probabilities of the Markov chain {,, n > 1, as
7"(7:,.7", v) = lim .P{it..+0 =1, Jto+0 = Jy U, = V}
n—oo
and form vectors
#(1,5) = (n(3,5,0),...,7(2,5,W)),
7(3) = (7(3,0),...,7(@E,n—k+1)), i>0.

Stable procedure for calculating the vectors #(¢), ¢ > 0, presented in (Breuer, Dudin,
Klimenok, [12]) is applicable to our model. So, the problem of calculation of the stationary

probabilities of the embedded Markov chain can be considered as being solved.

2.6. Stationary distribution of the system at arbitrary time

We assume that the service times are not negligible and have a finite mean. It implics
that under the fulfilment of stability conditions (2.9) or (2.11) for the embedded Markov
chain (,, n > 1, the stationary state distribution of the process &, t > 0, exists as well.
Write

p(i,j,T,I/) = tll.r{.lop{zt =iajt =j’rt =nkh= V}a

120,r=012,v=0W,0<j<n—k+1.
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THEOREM 2.3. The vectors p(i, j,7) = (p(i,5,7,0),...,p(, j, 7, W)) are calculated

as follows:
9(4,0,0) = 77'7(4,0)R;, i > 0,
i j+1
i, 4,1 ‘[Zthm i—1,5-m+1)
=0 m=1
+ Zﬁ(l,O)R,)\Q“)(i _ l,j)],z' >0,j=0,7n—F,
=0 '
i n—k+1 .
Fli,n—k+1,1) _r-l[z S 1, m)G - Ln—k+2-m)
=0 m=l1

+ S ORMWG — Ln — k + 1)] >0

=0
i+l
#(0,5,2) =77 [ T, ORI (i - 1+1,5)
=0
i—-l+1 _
+3 Dul®(i-l-m+1,5)], i20j=0nF
m=1

i+1
pliyn—k+1,2) =71 [ZH[OR;(a,IQ(2(z—l+1n—k+1)

-1+l
+5 Dm(z<2>(z’—l-m+1,n—k+1))],i >0,

m=1
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where

=" + > 1i(3, 0)Ri((— Do + cul)e (v — b{") + e),
=0

QO (m,7) = /000 P(m, t)%e"\t(l — B,(t)) dt,

Q(') (m,7) ZQ(') m, ).
=T

Proof of this theorem follows from the theory of Markov renewal processes (see Cin-

lar [18]). The value 7 is the mean inter-departure time-in the system.

2.7. Performance characteristics

(1) Probability of the system be empty is
77U1(0,0)(=Do + M) ™!

(2) The proportion of times during which the server is idle is
-1 Z Ii(,0)R;e
i=0
(3) The proportion of time when the main customers are processed is

oo n—k+1

2, 2 g De

i=0 j=0
(4) The fraction of time during which the external customers are processed is
oo n—k+1

Y > 56,5, 2e

i=0  j=0
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(5) Probability to have 5 main custorners in the buffer is

Y (@#06,5,1) + 5, 5, 2))e;

=0

(6) Probability that arbitrary external customer reaches the server without visiting the

5 5,0,0) 3 Die
i=0 =1

(7) Mean number of external customers in the orbit is

orbit is

n—k+1
> iEE,0,0)+ Y (36,5, 1) + (i 5, 2)))e.
i=1 j=0

2.8. Particular case

Here we assume that the arrival of external customers is according to a MAP with
representation (D, D;) of order m. The k-out-of-n system is assumed to be COLD and
the lifetimes of components are assumed to be exponentially distributed with parameter %
when i components are operational. An external arrival seeing a busy server moves to an
orbit of infinite capacity. The inter-retrial times are assumed to be exponentially distributed
with parameter 70, when there are 7 customers in the orbit. The service times of both type
of customers follow a PH-distribution with representation (43, S) of order m,. The average
arrival rate of external customers is defined as § = 5Dle, where the vector ¢ satisfics
6(Dy + D1) = 0, fe = 1. The average service rate is defined as y = St

Let N(t) denotes the number of customers in the orbit at time ¢,

0 if the server is idle at time t,

I(t) = {1 if the server is busy with a failed component at time ¢,

2 if the server is busy with an external customer at time ¢,
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M (t) = number of failed components in the system including the
one getting service, if any, at.time ¢,
Ji(t) = phase of the arrival process a'tltime t;

Jo(t) = phase of the service process at time ¢.

Then X (t) = (N(¢), I(t), M(t), Ji(t), J2(t)), t > O forms a continuous time Markov

chain with state space

{(2, 0,0,]1)'2 Z 011 S]l S m}
U{(i,l,j3,j1,j2)|i 2 011 5.73 < n—k+1a1 SJI < mal S]2 < ml}

U{(3,2,73,71,72)[1 20,0 < js<n—k+1,1<j; <m,1<j, <my}

and infinitesimal generator

Am Ao 0 0
Q0= Ay An A O
0 Ax A A
_ Al A
with Am = @) "
' Ay Al ‘
where X -
Dy — M, M, ®0 0 0...
In®S5® Dy®S— My, Mm, 0...
Al = 0 In®(5°8)  Do®S—AMumm, Mumm, ...

[+®(5%6) Do@S |



2
Ago) =

4
A =

Fori>1, Ay = Ay — /iiia where fili = [

0
Ay =
|p A

The steady state distribution of the process {X(t) : t > 0}, when it exists, is obtained
applying Neuts-Rao Truncation. That is we assume that for some fixed N > 1, the inter-
retrial times are exponentially distributed with parameter i when the number of customers

in the orbit is ¢« < N and with parameter N6 when there are N or more customers in the

2.8. PARTICULAR CASE

0

0 I 1 ® (Im ® (Soﬁ))

Di®p 0 I,®S°
A(3) —
’ 10
0 0
Do ® S = My, M,
0 DO 57 S - /\Imml /\Imml

0

0

Ay =

1)
0

0 0

Do® S — Mypm,

)

0

} ' with A_'O = IZ(n—k+1)+1 ® (Dl ® Iml) For 1 Z 1!

0mx(m+(n—k+1)mm1) ":OIm@,B 0mx((n—k+1)mm1)

0

orbit. This assumption transforms the generator matrix Q to Qy given by

AlO

Qn =

A O 0

Ay Au A 0
0 Axn A A

A2N—1 AlN—-l
Aon

Ay
Ain. Ao
Aov Aiv Ao

Mpm,

Do@SJ
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The continuous time Markov chain with generator matrix @)y, being a level independent

QBD, is positive recurrent if and only if

anAge < Ty Agne (2.14)

where 7y is the stationary probability vector of the generator matrix

AY A \
Ay =Ap+ Ain + Aoy = @) @)
AN AN
with i
[Dy— (A + N0l  Mn®f 0 0...
In ®S° H—=Mpm,  Mupm, 0...

W=l 0 L8 H M A

where H = (Do + D) & S.

Now,
(Dl +N01m)®,6 0
4 - A = 43,

0 0
(H - /\Imﬂu /\Imrm

0 H=Mum, My,

H = Mum, M,

Now, partitioning 7y as

_ 00 1,1 1,2 1n-k+1 _2,0 21 2,n—-k+1
TN = (TN TN TN ey Ty SN TN ey Ty )
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where each sub-vector7r 1< j<n- k+1 andvr .0 < j < n—k+1,contains mm,
elements and the sub-vector 7 N° contains m elements, the equation mnAn = 0 implies
79D — (A + NO) ) + (73! + 73)) (I ® S°) = 0
T (Mm ® B) + 7rN YH = Mupm,) + (m3? + 75" ) (I ® (S°8)) =
Moy A (H = My ) + (™ 4 73) (I ® (S°6)) =
2<i<n-k
PP L ktlpr g p2aktl(p ® (5°8)) =0,

75 ((Dy + N6I,) ® B) + 75 (H — Mmy) = 0

,\7r2' Yy (H = M) =0, 1<i<n—k

Aﬂ'i}n_k + W?\}n_k-‘-lH = 0
These equations give rise to the equations:

T = (a8 + 75°) (I ® S°) (A + N8)I, — Do) (2.15)
N = (1% M ® B) + (73 + 72 (In ® (5°8))) Mimm, — H) ™ (2.16)

ay = My (g 1) U ® (S°0)) Moy, — H)™' 2<i<n—k
2.17)

M = O (U © (S°) (- H) @.18)
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7r,%,° = 130((D; + N0I,) ® B) (Mo, — H) ™ (2.19)
=M M, = H)™Y, 1<i<n—k (2.20)
fv" T = R (—H)? (2.21)

The equations from (2.15) to (2.21) together with the normalising condition
mye=1 2.22)

can be solved using Block Gauss-Seidel iteration procedure to obtain the vector 7y .

Now inequality (2.14) becomes

n—k+1 n—-k+1
Z N+ Y 7w )(Diem) ® em,) < Nomlen (2.23)
i=0

which is the stability condition for the Markov chain Q.

Now let Ry be the minimal nonnegative solution of the matrix quadratic equation
.R2A2N'+11A1N'+440==0

The spectral radius of Ry is igss than 1 if and only if inequality (2.23) is satisfied. Let ny
be the spectral radius of Ry for N > 1. Now the truncation level N is selected in such a
way that inequality (2.23) is satisfied and that [ny —nnv+1] < €, for some fixed real number
e>0

After selecting the truncation level N, we approximate the steady state distribution x
of Q) by the steady state distribution zy of @), which when partitioned according to the
levels. as

v = (zn(0), 2n (1), .., zw(N), zw(N + 1),...)
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satisfies the equations:

zn(0)Ayo + zn(1)A2i =0 (2.24)
IEN(Z - l)Ao + IN(i)Ali + Z‘N(l + l)Ag i+l = 0, 1 < i < N -2 (225)
:L‘N(N - 2)Ao + .’IIN(N - 1)A1 N-1-+ IIJN(N)AQN = 0, (226)

n(i —1)Ag + zn(D)Av +2Zn(i +1)An =0, > N (2.27)
together with the normalising condition
zye = 1. (2.28)
Then by the property of level independent QBDs, we can write
zn(i) = zn(N - )R i> N (2.29)
Substituting Xn(N) = zy(N — 1) Ry in (2.26) we get
zn(N - 2)Ag+zn(N = 1)(Ay n-1 + RyAon) =0
whicl; implies
zn(N — 1) = zx(N — 2)(Ao(—(A1 n-1 + ByAan)) ™)

Defining
WN-rl = Ao(—(Al N-1+ }2N142N))_1

we get,

.’L‘N(N - 1) == .’L‘N(N - Z)WN_l (230)
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Now ihe equation
ZN(N —3)Ag+zn(N = 2)A  n—2+Zn(N —1)Agny =0
becomes
zn(N = 3)Ag + zn(N — 2)A,; N-2+ (N — 2)Wpy_1A2ny-1 =0

which gives

(N = 2) = (N — 3)Wn_s (2.31)
where
' Wy-2 = Ag(—(A1 N2 + Wn_1dan-1) )
Thus defining W;s as
Wi = Ao(—(Ay + Wip142i41)7Y) fori=N-2,N-3,...,1 (2.32)
with
Wno1 = Ao(—(Al N-1+ RnA; N)_l) (2.33)
we get
n(@) =zn(E-1)W;, 1<i<N-1 (2.34)

Substituting zx(1) = zx(0)W, in (2.24), we get
IN(O)(AH) + W1A21) =0 (2.35)

Also equation (2.28) becomes

N-2 i N 1
an( + Y _([IwWn) + (T[T W) - Bw) e =1 (2.36)

i=1 j=1 ]=1
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Now equations (2.35) and (2.36) can be solved for z(0) and hence we can obtain the

stationary distribution .

2.8.1. Computation of the matrix Ry. To compute the matrix Ry we first compute

G which is the minimal non-negative solution of the matrix quadratic equation.
AgG? + AINGy + Aoy =0 (2.37)

Now the special structure of the matrix A;y shows that Gy will have the form

[ N ]
00 - 6N 0o 0
00 .. G™M 0o 0
N
00 .. &% oo 0
— (N)
GNn=10 0 ... G|/ 4y 0 O 0
N
00 G 0 o0 0
N
00 G o0 o0 0
(N)
_0 0 e G2,H:—k+l 0 0 P OJ
N N .
[0 0 -« GMeM 0 0 ... 0
00 .. GMeM 00 ... 0
N N
00 .. &Me®™ o0 0
2 _ N N
Gnv=[0 0 Gg.n)—k+1G§0) 00 0
00 G2 0 0 0
~(N N
00 .. GG 00 0
N N
00 ... ¢, .G 00 ... 0
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Now equation (2.37) reduces to a system of equations

G(()I(;I ) = (A + N6) I, — Do) (M ® B)G) + Dy ® BIGH + N6, ® ]
G = [Mmm, — (Do ® S)|7[(D1 ® Im, )G\ G

+ (In ® SY)GW + ALy, G5

G = Nom, = (Do @ )| (D1 ® I )GH G5
+[(In ® (SBNGH, + Monmi G| 2S5 < n -k
G 41 = —(Do ® 8)™ [(Dy @ I )G 141 G5
H(lm ® (S°0)GIYL,
GS = (Mo, = (Do ® )] [ (D1 ® I (G35’
+(Im ® 5°)G + A, G|
G = Monm, = (Do ® 8| {(D1 ® I )G GEY
HlUm ® (S°BNCY + M G0} 15 <~
G4 = ~(Do @ ) (D1 @ I, )Gl 1G5

+[( 1" (S“'U ]Gln k+l]

Now we can use Block Gauss-Seidel iterative procedure to evaluate G, and then Ry can

be evaluated using the formula

Ry = Ao(—Ainy — AoGn)™!
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2.9. System performance measures

(1) Mean number of customers in the orbit:

Nowit == (Z izn(i))e = pe
i=1

where
N-1 i N-1
p1=azn(0)(Q_ i([TWi) + Nan(O)(] ] Wi)Rn(I - Ry)™!
i=l  j=1 i=1

(2) The overall rate of retrials
0; = B-A[orbit

(3) The successful rate of retrials

0; = (Z izn(i))es = preg

i=1

49

where ey is a column vector whose first m entries are 1s and all other entries are

Os.

(4) The fraction of successful rate of retrials

. _ U3
03=0_§

(5) The probability that the server is busy

Pbusy = (Z zN(i))eb = D2€&y

i=0
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where
N-

N-2 i
0)(I+ > (J]wy) + H )(I = Ry)™)

i=1 j=1 =1
(6) Probability that the system is down = Probability that the number of failed com-

ponents equalton — k + 1

00
Pdown = (Z :EN(i))ec = D2€,
=0

where e, is a column vector given by

0(m+(n—k)mm1)xl

emm1
€ =

0((n—k+1)mm1)x1

L emm1 J

(7) Expected number of failed components in the system,

oo

-A[comp = (Z xN(i))ed = P2€4

10

where e, is a column vector given by

- i :
[ Omxl 1emml
e 2e
€= d withe; = m
0mmlxl
| ef | (n—k+1)emml
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(8) Pocom = (Z :vN(i)) e, = Pe,
i=0

where the column vector e, is given by .

0mxl
eg = e(n—k+l)mm1
0
[o o]
(9) Poext = <Z fEN(Z)) en = Py
i=0
where the column vector e is given by
0
ey = .
€(n—k+2)mm,

2.10. Numerical illustration

2.10.1. Effect of variation of component failure rate A\. n = 18, £k = 6, Dy =
-55 35 1.0 1.0 -7.5 20
D S

’ 1 ’
1.0 -3.5 1.0 1.5 2.1 =77

S0 = zz =05 03],

average service rate=5.549, average arrival rate= 2.346,
correlation between two interarrival times= —0.00029

Table 1 shows that as A increases the mean number of customers in the orbit, the mean
number of failed components, and the fraction of time the server is busy with a failed
component increases. But th increase of A has not much effect on the fraction of time the
server is busy with an external customer. Table 1 also shows that the increase in the retrial
rate has a considerable effect only on the mean number of customers and in the fraction of

successful rate of retrials.
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TABLE |

A 0.1 0.5 1.0 1.5 2.0 25

Nowir 0.7019 09749 1.4858 2.3553 4.065 8.5052

Noomp 0.0185 0.1028 0.2366 0.4128 0.6494 0.9757

0 =50 Pyom 0.0180 0.0901 0.1802 0.2703 0.3604 0.4505
Poet 04228 0.4228 0.4228 0.4228 0.4228 0.4228

03 02928 0.2457 0.1898 0.1378 0.0903 0.0482

Nowir 0.5182 0.7291 1.1307 1.8266 3.2185 6.8929

Neomp 0.0185 0.1028 0.2366 0.4128 0.6494 0.9757

6 =10.0 Pyom 0.0180 0.0901 0.1802 0.2703 0.3604 0.4505
Poet 0.4228 0.4228 0.4228 0.4228 0.4228 0.4228

63 0.1982 0.1642 0.1247 0.0888 0.0577 0.0298

—4.05 1.55
2.10.2. Effects of correlation. n = 18,k =6, Dy =
35 =55
2.05 0.45 =75 2.0 5.5 5.6
, = S = So = = [0.5 0.5],
1.0 1.0 21 =77 2.1 =77

average arrival rate = 2.346, correlation between two interretrial times =0.00029. The
other parameters are same as in the case of Table 1

TABLE 2

A 0.1 05 1.0 1.5 2.0 25

Nowir 0.7121 0.9865 1.4998 2.3731  4.09 8.5452

Neomp 0.0185 0.1028 0.2366 0.4128 0.6494 0.9757

=50 Ppom 0.0180 0.0901 0.1802 0.2703 0.3604 0.4505
Poext 04228 0.4228 -0.4228 0.4228 0.4228 0.4228

63 0.2911 0.2444 0.1898 0.1371 0.0899 0.048

Nowi 0.5267 0739 1.1431 1.8429 3242 6.929

Neomp 0.0185 0.1028 0.2366 0.4128 0.6494 0.9757

f =10.0 Poom 0.0180 0.0901 0.1802 0.2703 0.3604. 0.4505
Poe 04228 0.4228 0.4228 0.4228 0.4228 0.4228

6; 0.1968 0.1631 0.1239 0.0883 0.0567 0.0296
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Tables 1 and 2 shows that whén correlation between arrivals becomes positive, there is

an increase in the mean number of customers in the orbit and there is a decrease in the rate
of successful retrials. The other parameters are same as in the case of Table 1.

The above table shows that there is only negligible increase in the system down prob-

ability if we provide service to external customers in a k-out-of-n system as described

earlier in this chapter, but there has been a considerable increase in the fraction of time the

server is found busy. To make these statements more clear, we consider a cost function
IDcost = Oll - P, down — Clﬁ - R busy

where C1; is the cost per unit time due to the system becoming down and C); is the profit
per unit time obtained by making the server busy.

From table 4 we note that even when C; is 1000 times bigger than C, and the com-
ponent failure rate A = 2.5, the function [D.. as a lesser value when § = 5.0 than when

§ = 0 which shows that our goal of ideal time utilization is achieved, atleast numerically.



CHAPTER 3

Maximization of reliability of a k-out-of-n system with repair by a

facility attending external customers in a retrial queue”

In this chapter, we study a k-out-of-n system with single server who provides service
to external customers also as described in the following paragraphs.

The system consists of two parts:(i) a main queue consisting of customers (failed com-
ponents of the k-out-of-n system) and (ii) a pool (of finite capacity M) of external cus-
tomers together with an orbit for external customers who find the pool full. An external
customer who finds the pool full on arrival joins the orbit with probability « and with prob-
ability 1 — < leave the system forever. An orbital customer, who finds the pool full, at an
epoch of repeated attempt, returns to orbit with probability J (< 1) and with probability 1

-4 leaves the system forever.

The arrival process : Arrival of main customers have interoccurence time exponentially
distributed with parameter A; when the number of operational components of the k-out-
of-n system is ¢. By taking A; = -1’3 we notice that the cumulative failure rate is a constant
A. We assume that the k-out-of-n system is COLD (components fail only when system
is operational). The case of WARM and HOT system can be studied on the same lines
(see Krishnamoorthy and Ushakumari [37]). External customers arrive according to a
Markovian Arrival Process (MAP) with representation (Do, Dy) where Dy and D, are

assumed to be matrices of order m. Fundamental arrival rate A\; = —w Dge

* This chapter was published in the Proceedings of the V-th International Workshop on Retrial Queues,
Korea, September, 2004, Ed. B. D. Choi, pp. 31-38

35
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The service process : Service to the failed components of the main system is governed
by thé N-policy. That is each epoch the system starts with all components operational (ie.,
all n components are in operation), the server starts attending one by one the customers
from the pool (if there is any). The moment the number of failed components of the
main system reaches N, no more customer from the pool is taken for service until there
is no components of the main system waiting for repair. However service of the external
customer, if there is any, will not be disrupted even when N components accumulate in the
main queue (that is the external customer in service will not get pre-empted on realization
of the event that N components of the main system failed and got accumulated; instead the
moment the service of the present external customer is completed, the server is switched
to the service of main customers).

Sérvice time of main customers follow PH distribution or order n, and representation
(@, S;) and that of external customers have PH distribution of order n, with representation
(8, S2);

S? and S7 are such that S;e + s} = 0, ¢ = 1,2 where e is column vector of ones.
The two service times are independent of each other and also independent of the failure of

components of the main system as well as the arrival of external customers.

Objective : To utilize server idle time without affecting the system reliability.
Krishnamoorthy and Ushakumari [37] deals with the study of the reliability of a k-
out-of-n system with repairs by server in a retrial queue. They do not give any priority
to the failed components of the main system nor do they investigate any control policy.
Krishﬁamoorthy, Ushakumari and Lakshmi [38] introduced the repair of failed components
of a k-out-of-n system under the N-policy. For further details one may refer to the paper
and references therein as well as Ushakumari and Krishnamoorthy [59] Bocharov et al [10]
examine an M/G/1/r retrial queue with priority of primary customers. They obtain the
stationary distribution of the primary queue size, an algorithm for the factorial moments of

the number of retrial customers and an expression for the expected number of customers
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in the system. Nevertheless, we wish to emphasise that their paper does not distinguish
between the priority and ordinary custoniers. This is distinctly done in this chapter (our
priority customers are the failed components of the k-out-of-n system):

This chapter differs from chapter 2 mainly by the fact that here together with the orbit,
we also consider an intermediate pool of finite capacity to which external customers join
after seeing a busy server on arrival or after a successful retrial from the orbit. We expect
that this intermediate pool from which an external customer can be selected for service,
whenever the server becomes idle, will help us to decrease the server idle time.

The steady state distribution is derived in this chapter. Note that the non-persistence
of orbital customers together- with the fact that an external customer, finding the pool full,
may not join the pool ensures that even under very heavy traffic the system can attain
stability. Several performance measures are obtained.

One can refer Deepak, Joshua, and Krishnamoorthy [20] for a detailed analysis of queues

with pooled customers (postponed work).

3.1. Modelling and analysis

The following notations are used in the equal:
N, (t) = # orbital customers at time ¢
Na(t) = # customers in the pool (including the one getting service, if any,) at time ¢.
N3(t) = # failed components (including the one under repair, if any) at time ¢
4

0 if the server is idle

1 if the server is busy with repair

of a failed component of the main system

2 if the server is attending an external customer at time ¢.
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N5(t) = Phase of the arrival process,

Nu(t) Phase of service of the customer, if any, in service at ¢
olt) =

0, if no service is going on at time ¢.

It follows that {X (t) : t > 0} where
X(t) = (Ni(2), Na(2), Na(t), Na(t), Ns(t), Ne(2))
is a continuous time Markov chain on the state space

S ={(51,0,75,0,55,0)]51 2 0; 0< js < N — 15 1 < js < m}
U{(51, 2, 53 1,95, J6)|1 2 0,0< ja S M; 1<y <m—k + 1,
1<js <m;1<jg<m}
U {(J1, 32, 53, 2, Jss Je)ls1 2 0; 1 < ja < M
0<j3<n—k+11<j5<m; 1< 55 < ny}
Arranging the states lexicographically, and then partitioning the state space into levels i,

where each level i correspond to the collection of states with i customers in the orbit, we

get the infinitesimal generator of the above chain as

AlO Ao 0 0...
A21 Au Ao 0...

0 Ayp Ap A...
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where _
Wo Ws
Wi W,
Wy
Ap =
L
where
By By
By By By

Bs By By

W()_—‘

We

44

Bs

W

B, By
Bs B
By

W,

Bio
B,
By

44

W,

Bll
B,

We

W,

Bll

B, By

B; B
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Dy - A, 0

By=Dy— A, B, =
0
By =Dy ® St — Mpn,, Bs = Do @ Sy

0 0 0

B,

7B5

0 In®(Ska),

By = I ® (Sa), Bs = [,\Im 0

I, ® /\a-
By = (ha) y By
A11711').1
Co C5
03 C] Cs
W, = Ci C

60

DO 2] Sl - /\Imm

» Be = [0 [n® (S{’a)}

B BQ = /\Im+mn1

= Al mn

C
Cy

Ce
Cy

-

Co=Do®S; — Mo,

Cl = 02 - /\Im(n1+n2)
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-
Do@®S 0 L, ®(S?
c, = |Po®5 = (SiB)
| 0 Do &) Sz_ 0
In®(S}e) 0 [
Cy= ) V5 == ,C = /\Im n1+ng
4 5 0 /\Imnz] 6 (ni1+n2)
I 0 0
W2 = W1 + W1
_ 1-9)(D,®1I, 0
where, W1 — ( 7)( 1@ 2)
i 0 L 41 ® W
, 1—y)(D,®1I, 0
it o |A=O@ L)
i 0 (L =7)(D1® ;)
- -
Wao 0 0
Ws = 0 In_1®Wj 0
| 0 0 1n-k—N+2 X W‘J‘Z_

61
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where

Wi =In®S;, Ws= ’ 0
In®S} 0 m(n1+nz)xm(ny+n2)

Wiy = ’

o] e

B2 0 0
Wa=1l0 Iv.0E 0

_ 0 0 Lik-nN42® E2_ L4

0 0

E0=Im®(Sg )aE1=
0 In®(S528)]

m(ni+n2)xm(ny+nz)

Ws =
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0 D ®
Fo=D\®B, F=Iy,9F, F= 1 &0
D) ® I, 0
_ / /
F2— n—k+2—N®F2a F2 = [Dl®1n1 0]
H 0
We=| "
0 i1 ®H
Di®I 0
Ho=D1®l,, H=| ' "
0 D®I, ‘
and
Ah' = AlO - fili for i > 1
where
- 01, 0
Au=|"
0 6(1-46)I,
Where

Li=(n-k+2)mny+ (n—k+1)mn,

Ly=Nm+ (n—k+1)mn + (M - 1)L,
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0 Z 0

An=10 0 Blp_y, |0 21

0 0 61— d)ILIJ

VAT 0 0
Z; = 0 In_1® 2y 0 » 21 =1n ® (100)
I 0 0 I-k-n12) ® Z3i_
_ 0 I.®(i8)
Zy = y Zzi= |:’i9[mn1 0]
@l O
0 0
Ay =
0 A
- D)®I, 0 _ D)®I, 0
AO _ (7 1) 2 ,Agl) — (7 l) 1
0 ILi k1 ® A(()l) 0 (vD1) ® I,

3.2. System stability

THEOREM 3.1. The assumption that after each retrial a customer may leave the system

with probability 1 — § makes the system stable irrespective of the parameter values.

PROOF. To prove the theorem we use a result due to Tweedie [57]. For the model

under consideration we consider the following Lyapunov function:

#(s) = i if s is a state belonging to level %
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The mean drift y, for an s belonging to level ¢ > 1 is given by

Ys = Zq8p(¢(p) - ¢(3))

p#s

= 3w (6(8) = #() + 3 oo (6(5") — 9(5))

3”

+ 37 qun(9(5") - 8(5)

red

where s', 5", s" varies over the states belonging to levels 7 — 1,4,% + 1 respectively. Then
by definition of ¢, ¢(s) =14, ¢(s') =i — 1, ¢(s") =4, ¢(s") =i + 1
So that

Ys = — Z gss + qus”'
o

sl/l
(
—i0+ ) gosr, ifsel

sIII

Ys = ¢

—i0(1 = &) + Z(I"“"" ifs € I,

\ 8

where I; denotes the collection of states in level ¢ which corresponds to No(t) < M, and
I; denotes the collection of states in level 7 which correspond to Ny(t) = M.

We note that >, g, is bounded by some fixed constant for any s in any level i > 1.
So, let Y. gss» < &, for some real number « > 0, for all states s belonging to level
i > 1. Also since 1 — § > 0, for any € > 0, we can find N’ large enough that y, < —e for
any s.belonging to level ¢ > N'.

Hence by Tweedie’s result, the theorem follows. (]
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3.3. Steady state distribution

Since the process under consideration is an LDQBD, to calculate the steady state
distribution, we use the methods described in Bright and Taylor [13].
By partitioning the steady state vector x as x = (o, Z1, Ta, . . .) We can write
k-1

ze=z[[ R fork>1
1==0

where the family of matrices { Rx, £ > 0} are minimal non-negative solutions to the system

of equations:

Ao+ ReA1 k1 + Ri[Res142442) =0, k>0 (3.1)

I is calculated by solving

zo[Aro + RoAn] =0 (3.2)
such that
oo k-1
.’Eoe+.’lfoz [HRz]e < o0 3.3)
k=1 =0

The calculation of the above infinite sums does not seem to be practical, so we approximate

:s by z,(K*)s where (mk(K‘))j, 0 < k < K*, is defined as the stationary probability

that X (t) is in the j* state of level k, conditional on X (¢) being in level i, 0 <1 < K™.
Then z,(K*), 0 < k < K* is given by

k-1
e(K*) = oo(K*) ] R (3.4)
=0

where zo( K*) satisfies (3.2) and

K* k-1

zo(K)e +2o(K*) [ 3 [T Rl ]e=1 (3.5)

k=1 1=0
Here we have that for all i > 1, and for all £, there exists j stich that [A;], ; > 0. So we

can construct a dominating process X (t) of X (t) and can use it to find the truncation level
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K* in the same way as in [13], as follows. The dominating process X (t) has generator

-

Al() Ao 0 0 0

it

Il
[an)
=
e
N
o
o

wheré
(Ao)i,j = é[(Aoe)max], (AZk)i,j = é—»((AZk—l)e)min for k Z 2, (Alk)ij = (Alk)ijsj 7é 1,
k>1;and C = Nm+ (M + 1)(n — k + 1)mn; + M(n — k + 2)mn, is the dimension

ofaleveli > 1.

3.4. Performance measures

We partition the steady state vector x as x = (o, z, s, . .. ) Where the sub-vectors
;8 are again partitioned as z;, = z(J1, ja, J3, ja) Which correspond to N;(t) = j;, 1 <

1<4

(1) Fraction of time the system is down is given by

K* M 2
Pdpwn = Z Z Zz(jlvj%n'_ k + laj4)e'

71=0j2=0js=1
(2) System reliability, defined as the probability that atleast k¥ components are opera-

tional, P is given by
Prel =1~ Pdown-
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(3) Average no. of external units waiting in the pool is given by

K* n—k+1

pool—ZJz Y Z z(J1, J2, Ja, 1

je=1  51=0 jz=1

K* n—k+1
Z .72 - 1 Z Z .71)]2,.73)
J1=0 j3=0
(4) Average no. of external units in the orbit is given by
K'
Nowie =Y _ j1[z(j1)e]
=1
(5) Average no. of failed components is given by
n—k+1 K*
Naic = Z Js Z Z (1, J21 73, 2
ja=1 51=0j2=1
N-1 K*
+ZZ Jl)]?a]:‘}a )+Zj3zx(jla0)j370)e
J1=0j2=0 ja=1 51=0

(6) The probability that an external unit, on its arrival joins the queue in the pool is

given by

K* M-1n-k+1 2

queue = /\i{ Z Z Z Z .71’]2’.73’.74 [Dl ® In;4]e

n1=0j2=1 ja=1 jy=1
K* n-k+1

+> > 2(51,0,j3,1) D1®In1)e}

J1=0 ja=1

(7) The probability that an external unit, on its arrival gets service directly is given

by
K* N-1

Pys = '}'{sz (41,0, 73,0 Dle}

71=0j3=0
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(8) The probability that an external unit, on its arrival enters orbit is given by

K*

Porvic = )\ig{ Z :v(z')Aoe}

i=0
(9) Fraction of time the server is busy with external customers is given by

K* M n-k+l

Pexbusy = E: Z Z m(j1,j2,j3, 2)6

71=0j2=1 j73=0
(10) Probability that the server is found idle is given by

K* N-1

Pae = Z Z z(J1,0, ja2, 0)

71=0j2=0

(11) Probability that the server is found busy is given by
Pbusy =1- Pidle

(12) Expected loss rate of external customers is given by

K* n—-k+1

Alossi = Z Z z(jlvMaj% 1)(1 - 7)(D1 ® ]"l)e

J1=0 j2=1
K* n—k+1

+Z Z ]laM]% ( _’7)(Dl®1n2)e

71=0 j2=0
K* n-k+1

+ Z Y (1= 0)5ifz(j1, M, ja, 1)e

n=1 ja=1
K* n-k+1

+Z Y (-6 )10 (i1, M, jz, 2)e

J1=1 j2=0

(13) We construct a cost function as where C) is the holding cost per unit time per cus-
tomer waiting in the pool, C;, is the loss per unit time due to the system becoming

down, Cj is the loss per unit time due to a customer leaves the system without
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taking service, Cy is the holding cost per unit time per failed component in the
system, Cs is the loss per unit time due to the server becoming idle and Cj is the

profit per unit time due to the server becoming busy with an external customer.

3.5. Numerical illustration

Setd =15.0,A=10,vy=07,=07,n=11,k=4,M =5 N =4

"

-65 4.0 ~5.06 2.06 2.5 3.0
S = S, = S = S = a = (0.5,0.5)
L1 45 40 -65 3.0 2.5
B =(0.5,0.5)

C, = 10.0, C; = 1500.0, C3 = 100.0, Cy = 20.0, Cs = 50.0, Cs = 200.0.

Effect of correlation : The additional parameters for table 1 are the following

-5.5 3.5 1.0 1.0
Do = D1 = (Al)

1.0 =35 1.0 1.5

average arrival rate = 2.34615, correlation =-0.00029

-4.05 1.55 2.05 0.45
Dy = D, = (A2)

3.5 5.5 1.0 1.0

average arrival rate = 2.34615, correlation =0.00029

"1-6.5 4.0 1.5 1.0
Dy = D, = (B1)

1.5 —45 1.0 2.0

average arrival rate = 2.83333, correlation =-0.00042
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-5.06 2.06

40 -6.5

1=

average arrival rate = 2.83333, correlation =0.00042

Dy =

—6.6 4.05

155 —4.6

average arrival rate = 2.88224, correlation =-0.00041

o_.—..

=515 21

405 -—6.6

average arrival rate = 2.88224, correlation =0.00041

1.56 1.0

1.0 2.05

26 045

1.0 1.55

In the above correlation is between two inter-arrival times.
TABLE 1

Pdown

N ‘pool M)rbil

Muic

pcxbusy

Pidte

Cost

Al

.2805 x 1072

3262 0.1204

2.2281

0.5620

0.0842

37.8228

A2

.2803 x 1072

3.2572 0.1207

22278

0.5612

0.0850

38.1696

Bl

.2923 x 1072

3.6689 0.1822

2.2431

0.5940

0.0522

68.2556

B2

2922 x 1072

3.6647 0.1824

2.2429

0.5935

0.0526

68.4537

C1

2932 x 1072

3.7031 0.1888

2.2442

0.5964

0.0497

71.6377

C2

.2031 x 10~2

3.6992 0.1890

2.2440

0.5960

0.0502

71.8214

7

(B2)

(CD)

(C2)

The table 1 shows that as the external arrival rate increases the system down probability

increases; but this increase is narrow as compared to the decrease in server idle probability.

Also as expected, the expected number in the pool, in the orbit and the expected number
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of failed components and the fraction of time the server is found busy with an external
customer increases as the external arrival rate increases. The table also shows that a3
the correlation changes from negative to posftive, there is a slight increase in cost and in
the server idle probability. Also when correlation changes from negative to positive, the
expected number of pooled customers and failed components decrease while the expected
number in the orbit increases. The increase in probability Peypusy being small compared to
the increase in other parameters can be thought of as the reason behind increase in cost. But
all these changes are narrow as the difference between negative and positive correlation is

small.

Effect of component failure rate : Take § = 20.0,v = 0.7, = 0.7, n = 11, k = 4,
M=5 N=4.
Arrival process is according to (Al).

TABLE 2. Effect of component failure rate

A Pdown N pool -A[orbit -/vfaic Pexbusy Pidle Cost
0.05 .196 x 1078 2.1163 0.0285 1.5266 0.7513 0.2310 -67.3177

0.1 .5933x 1077 2.1765 0.0311 1.5538 0.7432 0.2213 -63.3658

1.0 .2801 x 10~2 3.2399 0.0907 2.2276 0.5607 0.0855 38.4979

2.0 0.04702  4.2095 0.1748 3.5505 0.3029 0.0208 261.502

3.0 0.17207  4.7390 0.2362 5.1091 0.1149 0.0038 580.397

Table 2 shows that when the component failure rate A increases, the system down
probability as well as expected number of failed components increase and the idle time
probability of the server decreases, as expected. But note that as A increases, the fraction
of time the server is found busy with an external customer, decreases and as a result the
expected pool size increases. Also note that the expected orbit size is small, which shows

that the orbital customers are either transfered to the pool (when ) is small) or leaves the



3.5. NUMERICAL ILLUSTRATION 73

systefn forever (when ) is large). Since the probability Pyow, increases and the probability

Pexvusy decreases, as A increases, the cost also increases.

Effect of N policy level : § =20.0,A=20,n=13,k=4, M =5
The other parameters are same as for table 2.

Table 3 shows that the system performance measure which is most affected by the N-
TABLE 3. Effect of N-policy level

N Piown  Npoot  Nowit  Nuaic  Pexbusy  Pidie Cost

0.02245 4.2521 0.1802 3.8666 0.2866 0.01969 203.559
0.02795 4.2249 0.1801 4.2456 0.2869 0.02325 219.258
0.03528 4.1968 0.1796 4.6087 0.2882 0.02717 237.002
0.04509 4.1658 0.1787 4.9473 0.2910 0.03135 257.358
0.05830 4.1300 0.1771 5.2518 0.2959 0.03577 281.200

0 3 O W s

policy level is the expected number of failed components; which is expected because as N
increases, time for the service of failed components to be started, once the system started
with all components operational, increases so that during this time morc components may
fail. For the same reason a pooled customer has a better chance of getting service and as a
result Peypyy increases, Npool and N;; decreases. Also note that the server idle probability

is small. The increase in NV, might be the reason behind the increase in cost.

Effect of retrial rate § : Take A=1.0,n =11, k=4, M =5 N =4

The other parameters are the same as in table 2.

Table 4 shows that as 8 increases, expected number in the orbit decreases but the ex-
pected pool size also decreases which tells that retrying customers may be leaving the
system. Note that the idle probability of the server is very small and the expected pool
size is also close to the maximum pool capacity so that retrying customers may choose to

leave the system after a failed retrial. Also this can be thought of as the reason behind the
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decrease in the fraction of time the server is found busy with an external customer and the

increase in cost as @ increases.

Effeqt of pool size M : 6§ =10.0,A=1.0

The other parameters are same as for table 2.

Table 5 shows that as M, the pool size, increases, expected number of pooled customers
increases and as a result the expected number of failed components, the system down
probability and the fraction of time the server is found busy with and external customer
increases. But the expected number in the orbit decreases, which is expected because as
M increases more customers can join the pool. As expected, the idle probability of the

server decreases as M increases.

Comparison with the case where no external customers are allowed : Below we com-

pare the k-out-of-n-system described in this chapter with a k-out-of-n system where no

external customers are allowed.

Case 1: k-out-of-n system where no external customers are allowed,

Case 2: k-out-of-n syétem described in this chapter
0§=100,A=10,vy=07,0=07,n=11,k =4, N =4

TABLE 4. Effect of retrial rate

¢ Pdown N pool N orbit Muic Pexbusy Pidlc cost
50 .2832x 1072 33908 0.3501 2.2315 0.5704 0.07579 33.688

. 10.0 .2813 x 1072 3.3008 0.1790 2.2290 0.5644 0.08176 36.612

15.0 .2805 x 1072 3.2620 0.1204 2.2281 0.5620 0.08415 37.823

20.0 .2801 x 1072 3.2399 0.0907 2.2276 0.5607 0.08546 38.498

25.0 .2798 x 10-2 3.2255 0.0728 2.2272 0.5598 0.08630 38.932
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TABLE 5. Effect of pool size

M Pdown N pool A[orbit -A[faic Pexbusy Pidle cost

3 .2655 x 10-2 1.9658 0.2155 2.2090 0.5084 0.1377 65.402

4 2743 x 1072 2.6238 0.1942 2.2201 0.5410 0.1051 55.047
5 .2813 x 1072 3.3008 0.1790 2.2290 0.5644 0.0818 36.612

_55 3.5 1.0 1.0
Dy = D, =
1.0 —35 1.0 15
—75 2.0 ~5.06 2.06
S1=1" _52=
21 —-77 40 —65
5.5 3.0
5= 5=
5.6 2.5 ’
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Table 6 shows that compared to the increase in the fraction of time the server is found
busy, the increase in the system down probability is not high, if we provide service to
external customers in a k-out-of-n system as described in this chapter. To make these

statements more clear we consider the cost function
I Doosl = 011 ' Pdown - 012 : Pbusy

where Ci; is the loss per unit time the system being down and C); is the profit per unit
time due to the server being busy.

Table 7 shows that whcp M =1and X < 1.5, ID is smaller in case 2 than case 1,
even when Cy; is 1000 times bigger than C},. But when A = 2.0 and 2.5, ID,, is larger
in case 2 than case 1, when C}; is 100 times larger than C,. When M = 4 and ) < 1.0,
the table shows that ID,, is smaller in case 2 ‘tha.n in case 1, even when C}; is 1000 times
bigger than C}5. But when A = 2.0 and 2.5, ID, is larger in case 2 than case 1, when Cy;
is 100 times larger than C),.

Table 7 proves atleast numerically that we are able to utilize server idle time without

much effecting system reliability.



CHAPTER 4

Reliability ofa k-oﬁtfof-n system with repair by a service station

attending a queue with postponed work”

In this chapter the reliability of a repairable k-out-of-n system is studied. Repair times
of components follow a phase type distribution. In addition, the service facility offers
service to external customers which on arrive according to a MAP. An external customer,
who §ees an idle server on its arrival, is immediately selected for service. Otherwise, the
external customer joins the queue in a pool of postponed work of infinite capacity with
probability 1 if the number of failed components in the systemis < M (M <n—k+1)
and if the number of failed components >: M it joins the pool with probability v or leaves
the system forever. Repair times of components of the system and that of the external
customers have independent phase type distributions. At a service completion epoch if the
buffer has less than L customers, a pooled customer is taken for service with probability
p, 0 < p < 1 If at a service completion epoch no component of the system is waiting for
repair, a pooled customer, if any waiting, is immediately taken for service.

Thus in this chapter also we study the effect of allowing service to external customers
in a k-out-of-n system with single server. But different from chapters 2 and 3, here the
external customers are never directed to an orbit instead, they join the queue in a pool
or leaves the system forever. Also differen_t from chapter 3, the capacity of the pool is
assumed to be infinite and we give freedom for an external customer not to join the poo..l
if he wishes. We expect that such a move will help us to utilize the server idle time more
effectively.

* This chapter was published in the Proceedings of the Asian International Workshop on Advanced Reli-

ability Modelling (AIWARM) 2004, Hiroshima, Japan, Eds. T. Dohi & W. Y. Yun, World Scientific, pp.
293-300
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We obtain the system state distribution under the condition of stability. A number
of performance characteristics are derived. A cost function involving L, M, v and p is

constructed and its behaviour investigated numerically.

4.1. Mathematical modelling

We consider a k-out-of-n cold system in which the components have exponentially
distributed lifetimes with parameter %, when there are i operational components. There is
a single server repair facility which gives service to failed components (main customers)
and also to external customers. The external.customers arrive according to a MAP with
representation (Do, D;) of order m. Repair times of main and external customers fol-
low PH-distribution with representations (3,, S;) of order m; and (33, S;) of order ma,
respectively. ‘

Let Y (t) be the number of external customers in the system including the one getting
service, if any, and Y>(t) be the number of main customers in the system including the one
getting service, if any, at time ¢. If an external customer, on arrival, finds a busy server and
that Ya(t) < M (M Sln — k+1), it joins a pool of infinite capacity with probability 1; on
the other hand if Y3(t) > M then with probability + it joins the pool or leaves the system
forever.

If Y2(t) = 0 at a service completion epoch then, with probability 1 a pooled customer,
if any, gets service. If 0 < Y5(t) < L -1, (Ll-s M), at a service completion epoch, then
with probability p a pooled customer, if there is any, is given service. If Ya(t) > L — 1
at a service completion epoch, then with probability 1 a main customer gets service. If
Yi(t) = Y2(t) = 0 then an external customer arriving at time ¢ is taken for service.

Define

Yi(0) 0 if a main customer is getting service at time ¢
3(t) =

1 if an external customer is getting service at timet

Let Y4(t) and Y;5(t) denote the phases of the arrival and service process respectively.



4.1. MATHEMATICAL MODELLING 81

Now H = {(Y;(t), Ya(2),Y3(2), Ya(2), Y5(t))| t > O} forms a continuous time Markov
chain which turns out to be a‘level independent quasi birth and death process with state
space US2,[(7) where [(7) denotes the collection of states in level ¢ and are defined as
1(0) = {0} U {(0,41,0,72,73) : 1< j1<n—k+1,1< 52 <m,1 < js <my}and for
121,

0(3) = {(3,51,0,52,53) : 1< i <n—k+ 1,1 < ja <m,1 < jz <my}
U{(4,51,L,J2,53) : 0 < i Sn—k+ 1,1 < jp <m, 1 < j3 < my}

where {0} = {(0,7) : 1 £ j < m} represents the collection of states corresponding to

Yi(t) = Ya(t) = 0. Let J; = m + (n — k + 1)mm; be the dimension of level [(0) and

Jo = mmg + (n — k + 1)m(m; + m,) be the dimension of levels [(z) for ¢ > 1. Arranging

the states lexicographically we get the infinitesimal generator @ of the process H as

(B, B, 0. 0 0
B, A4 A 0 0
=0 4 4 4 o
0 0 A A A

with

50 5

B(()7) B((,Z) B(()G)
B(()B) B(()2) B(()G)

B(()S) Bé3) B(()G)

B(()S) B(()3) B(()G)
B((,B) B(()4)
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where
B(()l) = Dy — AIm
B¥ = Dy@® S; - My,
BéS) = (Do + (1 - ’)’)Dl) D Sl — >\Imm1
B = (Do+ (1—7)D1) ® S
B = I, ® (\61)
BYY = Mpm,
By =1,®8?
B® = I, ® (5°8;)
B 0 0
Bi=| 0 Iy1®B? 0 |
0 0 In_k-M42® BY -
where
B'=D®p B= [Dl ® Im, 0] BY) =y
mm) xm(mi+ma)
B! 0
By = )
0 L xn1®B;
where
0
B'=1,08 BY=
Im ® (Sg ﬁl)

m(my+mga)xmm,

B
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A= |
A(IQ) Agz) Ags)
AP 4D 4O
AP AP AP
Agg) A(14)
where -
Dy® S; — Al 0
A(11) - (DO D Sz) _ /\Immg A§2) — 0 1 mmy
0 Do & S2 — Mpmm,
A(3) _ (DO + (1 - ’Y)Dl) 5 Sl - AIrnm] 0
=
0 (Do + (1 =7)D1) ® Sz = Mmm,

A:(l4) = AES) + AIm(m1+m2) A§.5) = [O ’\Immz]

mmg xm(m;+mz)

M _ In® (S} Ba) |

AP = Mgy 4ma) A
Letg=1—p (s § o) X
A® = 4(In ® (S} £1)) P(Im ® (5182)) A B® ,
0 0 0 0
A 0 0
A= [0 Iya® A((f) 0
0 0 In_k-p42 ® AY

AO = A83) - ,YAE)Z)
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AY 0 0
Ay = 0 In,® Agz) 0
0 0 ILn-k-142® A

where

0 0

AP =In®(S36) A = 0 0

: 9(Im ® (5961)) p(Im ® (5362))
A9 0o 0
I, ®(S26:1) 0

A(22) and Ag’) are square matrices of order m(m; + my).

4.2. Stability condition

The generator matrix A = Ag + A; + A, is given by
("il AP
A" A AP

AP A AP

3
i AP Ay
where
Ay = (Do + D1 — My) ® (S2+ S 5a)
(Do + D; — M) @S 0

Y

2 =

I ® (9(S3 51)) (Do + Dy = M) @ (S2 + p(S3 B2))
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. (Do + Dy~ M) © 51 0 }
I I, ® (83 B1) (Do+ D1~ Alp) © S,
. (Do + D) ® S, 0 ]
| L.e(S38) (Do+D)es,

The stationary probability vector 7 of A, partitioned as
7 = (7(0),w(1),7(2),...,m(n — k+ 1))
where the subvector 7(0) contains mm, entries and the subvectors m(i) for 1 < i <

n — k + 1 contains m(m; + my) entries, satisfies the equations

7(0)A, + r(1)A" =0 4.1)
(5) . i (8) _
m(0)A4,” + 7(1)A; + 7(2)A;" =0 4.2)
1@)A® + 7+ 1)A+ 7@ +2)4A® =0, 1<i<L-2 4.3)

7()A® + (i + 1) A; + (i + 2) AP =0,

L-1<i<n—-k-1 (4.4)
mn—-k)A® +r(n—k+1)A; =0 4.5)
together with the normalizing condition
me = 1. (4.6)
The equations from (4.1) to (4.5) implies
w(0) = [m(0)4"] [(~4)7] @)

n(1) = [r(0)AP + m(2) AP [(-4)7!] 4.8)
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n(i+1) = [10)AP + (i +2)40] [(-42)7],
1<i<L-2  (49)
n(i+1) = [w() A + (i + 24P [(-4)71]
L-1<i<n—-k-1 (4.10)
a(n—k+1) = [7r(n - k)A‘f’] [(—A4)-1] @.11)
The invertibility of the matrices (Do + D) — AL,) @ (S2 + 59 B2), (Do + Dy — M,) & S,
(Do + Dy — AL,) ® (S + p(Sg B2)), (Do + Dy — Al,) & S, follows from the fact that
they are strictly diagonally dominant. The invertibility of the matrix (Do + D;) @ S can
be proved as follows.
Suppose that (Dy+ D, ) @S] is not invertible, then there exists a non-negative vector u % 0
such that

U[(Do + Dl) & S1] =0 (1e) u[(Do + Dl) ® Iml +I,® Sl] =0
Multiplying both sides of the above equation with e, ® I,,, we get

[u(Im ® S1))(em ® Im,) =0, since [(Dy + Dy) ® Iy, J(en ® I,,,) = 0.

(ie) ulen,® S| =0
If we partition u as u = (uy, ug, . . . , U, ), Where each u; is a row vector containing m,

elements, the above equation implies that
(wp+us+...+up)S1=0
Now since S is invertible, this implies that

up+ug+...+up,=0
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since each u; > 0, above equation implies u; = 0V,

= u=0

which contradicts the assumption that u £ 0.

Hence (Dy + D,) ® S is invertible.

Similarly (Do + D;) & S, is invertible.

H,

H, H;

The matrices Ag, fig and fi4 have the general form where H; and H; are

invertible. The inverse of such a matrix is given by

Hi! 0
—(H;' H,H{') H3!

which makes it easier to find the inverses (Ay) ™!, (As)~! and (A,)~".

The equations from (4.6) to (4.11) are well suited for Block Gauss-Seidel iteration
procedure which can now be used to find the vector 7.

Now the stability condition can be stated as follows:

The process H will be positive recurrent if and only if 7 Age < mAze, where

wApe = m(0) [(Dlem) ® em:]

M-1 n-k+1
Diey) ® e
+ 1Y@+ > ) (Drew) ® e,
i=1 i=M (Diem) ® em,

n—k+1 0
mAze = 7(0) [en ® S| + (i
RIS Tt I

i=1
4.3. Stationary distribution

Since the model is studied as a level independent QBD Markov Process, its stationery
distribution (when it exists) has a matrix geometric solution. Under the assumption of the

existence of the stationary distribution, let the stationary vector x of () be partitioned by
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the levels as x = (2(0), (1), z(2), . ..). Then z(i)s are given by
(i) = z(1)R"! fori>?2
where R is the minimal non-negative solution to the matrix quadratic equation
R*A; + RA, + Ao = 0.
The vectors z(0) and z(1) are obtained by solving the equations

$(0)Bo + :L'(l)Bg =0

.’L‘(O)Bl + .’L’(l)[Al + RAQ] =0
subject to the normalizing condition
z(0)e +z(1)(I - R)'e = 1.

To compute the R matrix numerically we used the logarithmic reduction algorithm (see

Latouche and Ramaswami [41]).

Departure process of external customers :

We define the departure process of external customers as the sequence of times {7, :
m >.0} at which the external units leave the system due to a service completion with
70 = 0. To study this sequence, it is enough to study the interdeparture times of external
customers {7, = Ty —Tm—1 : m > 1}. Since the random variables 7, Ty,. .. are identically
distributed when the process H is positive recurrent, we focus on 7; and determine its
distribution under the assumption of positive recurrence of H.

Let F(t) = P(7; <t) be.the distribution function of 7; and ®(6) = E[e~%"], Re(8) >

0, be its Laplace-Stieltjes transform.
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Conditioning on the state of the process H at time 79, we can write

F(t) = p z(d) Fi(t), (4.12)

(i) :(6), (4.13)

where Fy(t) and ®o(6) are column vectors with J; entries, F;(t) and ®;(f) are column
vectors with J entries for ¢ > 1. The entries of F;(¢t) and ®;(6) are defined as the con-
ditional distribution functions and conditional Laplace-Stieltjes transforms respectively of
71, given that the state of the process H at time 7 is in the level I(¢) for i > 0. Since the
process H is level independeht, we see that

Fit)=Ft)=F(t)=...=FR(t) and

D5(6) = ©3(0) = P4(0) = ... = 2:1(6).

After arranging the state in the level I(z), i > 1, lexicographically, we rename them as
(3,1),(3,2),... (¢, J2) and the states in the level /(0) as (0, 1), (0,2),...(0,J;). Now to
find Fy(t) and ®,(6) we suppose that at time 7, the process H is in the state (1, 5), 1 <
j < Jz. Then since the transitions in the level independent QBD process H due to the
arrival process of external customers will not affect the departure process, the time 7,
can be thought of as the time until absorption in a finite continuous time Markov chain H;
with state space {A}U{1,2,..., Jo}, where A is an absorbing state, and with infinitesimal
generator

0 0
Q= _
Aze A1
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where _ -
A-(ll) A§5)
A(l’f) A?) Agﬁ)
A§8) A‘§2) Agﬁ)
A AgO) A?) A(lﬁ)
1= .
AgD) Agﬁ) AgB)
AgQ) A:(l2) A(le)
AgQ) A§2) A(ls)
| a0 4 |
with
7(1
Ag ) =In® S2 - A-[mmg
A(z) _ Im ® Sl - /\Imml 0
L=
0 Im, ® S2 - /\Immz

AES) = “i(lz) + Mm(m +my)

The process H, is obtained from the pracess H as follows: since the process H is at
(1,7), 1 < j £ J; at time 9, we supposc that the process H; starts at state j.Now
corresponding to each transition in H brought by the arrival process of external customers,
that is the transitions governed by the matrices Dy and D), we suppose that no transition
occurs in H;. That is corresponding to these transitions in H, there is a sojourn in H;.
Corresponding to those transitions in H between states in the same level, which are not
governed by the matrix Dy, there is a transition in H; governed by the matrix A;. The
moment there is a transition in the process H which results in a decrease of level of H by
1 unit, the departure of an internal customer occurs and we suppose that an absorption to

the state A occurs in H; with rates governed by the column matrix Aje.
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Thus given that the process H is in state (1, 7), 1 < j < Jo, the time 7; is the time until
absorption in the process H; with generator matrix (), and with initial probability vector
a; = (0, ;) where a; is a row vector containing J, entries whose ;™ entry is 1 and all

other entries are zeros; that is 7, has a PH distribution with representation (a;, A; ). Hence

the j™ entry of the column matrix Fj(t), namely Fy;(t) is given by
Fi;(t) = 1 — aylexp(A;t)]e.
Note that or; (exp(A;t))e is the j* entry of the column matrix (exp(A;t))e. Thus we have
Fi(t) = e — [exp(A;t)]e (4.14)
Also the j entry of ®;(8), namely ®,;(6) is given by
®;(8) = a1 (61 — A1) Aze

and therefore
‘191(0) = (01 — fibl)_lAze. (415)

Now to find Fy(t) and $o(f) we proceed in a similar way. Suppose that at time 7, the

process H is in state (0,7), 1 < j < J;. Then the time 7 can be thought of as the time

until absorption in the process H, with state space,
{A}YuU{(0,1),(0,2),...,(0,J1),1,2,...,Jo}, where A is an absorbing state, and with

infinitesimal generator

0 0 O
Q2 = 0 Bo 31
A2€ 0 1‘11

Like the process H;, the process H, is constructed from the process H as follows: since

the process H is assumed to be in state (0, j) at time 7, we suppose the process H starts

in the state (0,5), 1 < j < J;. Now corresponding to each transition in the process H
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from (0, ) to (0, 52), there is a transition in the process H, from (0, j;) to (0, j3) at the
rate (By),,j,- Corresponding to each transition in H from (0, ;) to (1,72), 1 < j; < Ji;
1 < j; < J,, there is a transition in H, from (0, 7;) to j, at the rate (B));,;,. After
the process H reaches the level (1), corresponding to each transition in H brought by
the arrival process of external customers, we suppose that there is no transition in the
process H,. Corresponding to those transitions in H within the same level, which are not
governed by the matrix Dy, fh_ere is a transition in H; governed by the matrix A;. When
a transition which results in a decrease of level by 1 unit occurs in the process H, the
departure of an external customer occurs and we suppose that an absorption to the state
A occurs in the process Hs; with absorption rates governed by the column matrix Ase.
Thus the conditional distribution of 7; given that at time 7, the process H is in state (0, j),
1< j < Ji, is PH-type with representation (a, fil) where a; is a row vector containing

J1 + J; entries whose j* entry is 1 and all other entries are zero; and

By, B

A = i
0 A

Hence the j™ entry of the column matrix [9(t), namely Fy;(t) is given by
Fyi(t) = 1 — aplexp(Ait))(es,+.,)

and therefore
Fo(t) =€ - [IJI 0-11Xle[exp(“Tlt)](eJHJz) (4-16)

Also the j™ entry of ®y(6), namely ®y;(6) is given by

0

(I>0j(€) = 02(91 - Zl)_l
Age
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and iherefore

Po(0) = [IJx OJIng] (01 — A~ [Aoe]
2

= 61 -By, -B;
I - A = -
0 I — A,

therefore

(O — Bo)™* (61 — Bo)™By(6] — A,
0 (0[ - Al)—l

[0 - A} = [
which gives

(91 - Bo)_lBl(gl - Al)—lAzejl

that is,
®o(8) = (6 — Bo) By (01 — A;) 1 Aqze 4.17)
Now,'
F(t) =Y =()Fi(t)
i=0
= 2(0)R(t) + [} 2 (@) A ()
i=1

= z(0)Fo(t) + z(1)(I — R)"'F(t)
= 2(0) (e ~ [[£s, Onxnllexp(Ait)(enss)])

+2(U)(I - B)'fe - [exp(Ai0)]e]
= [e(0)es, +3()(I - F)™'e] = 2(0) OJlexp(Ait))(es,+.5)

— 2(1)(I - R)"[exp(Ait)]e
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F(t)=1- {[:z:(O) Olfexp(A.t)]e + z(1)(I — R)'l[exp(fflt)]e} 4.18)

The above relation shows that F(t) is the distribution function of a PH distribution. with

representation (as,jl) where a3 = (2(0) 0 z(1)(I — R)™!) is a row vector containing
(J1 + 2J,) elements and A; =

Now

= 2(0)®o() + z(1)(I ~ R)7'2:(6)
= a:(O)(BI - Bo)_lBl(ol - Al)_lAge

+ ’E(l)(I — R)‘I(HI - A-l)_lAge

®(0) = [z(0)(81 = Bo)™' By + z(1)(I — R)™'] (61 — Ay) ' Age (4.19)
Thus we can conclude that the interdeparture time 7, has a PH-distribution.

4.3.1. System performance measures.

(1) System reliability which is defined as the probability that there is atleast k opera-

tional components is given by
0, = (0)e'” + z(1)(1 ~ R) e

where €9 is a column vector whose last mm, entries are Os and all other entries
are 1s and e{!) is a column vector whose last m(m; + my) entries are Os and all
other entries are 1s.

(2) Probability that system is down Pygu, = 1 — 0.
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(3) Expected number of pooled customers
0o n—k+1
=22
i=1 ji=1

J

m m
E E ix(i)jlao»j%jfi)
J2=1ja=1

oo n—k+1 m mq

+Z Z Z sz(z+ 1, 71,1, 32, 33)

i=1 j1=0 j=1j3=1

(4) Expected loss rate of external customers
6s = (1 —7)[x(0)e? + z(1)(I — R)'e¥)]

where e and e(® are column vectors given by

0@ — 0
_en—k:—M+2 ® ((Dlem) ® em])
[ 0

9(3) = (Diem) ® em,
en—k-M+2 ®
i (Dlem) ® emz

(5) Expected number of transfers from the pool when there is atleast 1 main customer

present, per unit time
oo L m m
05 = Z Z Z Z z(4, 51,0, j2, Ja)pS1 (Js)
i=1 j1=2 ja=1 ja=1
m
Y > x(i g 1, g2, 5)pS3(Js)

(6) Expected number of failed components.

06 = z(0)e¥ + z(1)(1 — R)~'e®
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where e and e(® are column matrices given by

0 0
e — el®) —

e® ® €mm, e®® €m(m1+m2)

e® =[1,2,...,n—k+1]"
(7) Probability that the server is found busy with an external customer
[o] n—{c+1 m m2
br=>" > > > (6,411,752, 5s)

i=1 j1=0 j=1js=1

(8) Probability that the server is found idle,

0s = > (0, )
J=1

(9) Probability that the server is found busy, Peusy = 1 — 65

¢ 1 H _ wAge
(10) Traffic intensity p = 2522

4.4, A cost function and numerical illustrations

Let C) be the cost per unit time incurred if the system is down, Cj, be the holding

cost per unit time per customer in the pool, C; be the cost due to loss of 1 customer and

C, profit obtained by serving an external unit when there is atleast one main customer

present, and Cs be the holding cost per unit time of one failed component. We construct a

cost function as

C = PoownC1 + 03C; + 04C5 — 05C4 + b5 - Cs

The common parameters for the following tables are:

n=235k=10,7=05,p=05

. 3.0 —40 10
ﬂ1=[0.4 0.6] S0 = S =

6.0 1.0 -7.0]

4.0 50 1.0
m=h5w] 59 = Sy =

9.5| 1.0 —105
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-55 3.5 1.0 1.0
D() = Dl =
1.0 -3.5 10 1.5

Arrival rate = 2.34615, Correlation = —0.00029.
C; = 1000.0, C; = 10.0, C3 = 25.0, Cy = 75.0, Cs = 15.0,

Table 1 shows that when the component.failure rate ) is small, increase in ‘L’ has
not much effect on the probability that the server is found idle. But when A is 2.5, the
probability 87 decreases as L increases. The reason for this can be obtained from Table é
which shows that when A is 2.5, expected number of pooled customer decreases as L
increases. An intuitive reasoning for such a behaviour is that as L increases a pooled
customer has a better chance of being selected for service. Note that as we have taken
p = 0.5, when the number of failed components is < L, there is equal probability of
selecting a pooled customer for service. Also note that the average service rate is greater
than average arrival rate. Table 1 also shows that when A = 0.1 and 1.5, increase in ‘M’
has not much effect on §; but when A\ = 2.5, 8 increases with increase in M. As in the
previous case, the reasoning for this can be obtained from Table 3 which shows that when
A is 2.5, expected number of pooled customers increases as M increases.

Table 2 shows when A = 0.1, increase in L and M has not much effect on 5. But
when A = 2.5, 67 increases with increase in L as well as in M.

Table 4 shows that only when A = 2.5, variations in L and in M has a considerable
effect on p. When A = 2.5, p decreases as L increases and p increases as M increases.
This can be explained in the same way as the variation in 6;.

Table 5 shows that cost increases as M increases towards n — k + 1, decreases as L
increases towards M. |

In tables 6 and 7 we compare the model in this chapter with the model where no
external customers are allowéc_l.

Let case 1 denote k-out-of-n system where no external customers are allowed and case

2 denote the model discussed in this chapter. Table 6 shows that compared to the increase
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in the server busy probability, the increase in the system breakdown probability is small.

To make these statements more clear, as in chapters 2 and 3, we consider a cost function:

IDcost = Cllpdown + Cl2pbusy

where CY; is the cost per unit time due to the system breakdown and C}, is the profit per

unit time due to the server becoming busy.

Table 7 shows that by allowing external customers as described in this chapter, there is

a decrease in the value of ID, even when C); is 1000 times larger than C),, except when

A = 2.5. Which shows atleast numerically that our goal of idle time utilization without

affecting the system reliability is achieved through the model in this chapter.

TABLE 1. Variation in probability that the server is found busy with an
external customer 6,

A=0.1 A=1.5 A=25
L 1 M=10[M=1| M=20M=10|M=16 [ M=20 M=10 M=15| M =20
3 103986 [0.3986 |0.3986 |]0.3986 [0.3986 |0.3986 [0.3966 {0.3985 |.3986
5 ]0.3986 [0.3986 |0.3986 |0.3986 |[0.3986 |0.3986 |0.3951 |0.3984 |.3986
7 10.3986 |[0.3986 |0.3986 [0.3986 |0.3986 |[0.3986 |0.3916 |0.3981 |.3986
9 103986 |0.3986 |0.3986 [0.3985 |[0.3986 |0.3986 |0.3844 | 0.3974 |.3985
10| 0.3986 |{0.3986 |0.3986 |0.3984 |0.3986 |0.3986 |0.3786 |0.3969 |.3985
12 0.3986 | 0.3986 0.3986 | 0.3986 0.3946 | .3983
14 0.3986 [ 0.3986 0.3986 | 0.3986 0.3898 |.3979
15 0.3986 | 0.3986 0.3986 | 0.3986 0.3859 | .3975
17 0.3986 0.3986 . .3960
19 0.3986 0.3986 .3926
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TABLE 2. Variation in expected number of failed components (6;).

99

A=01 A=15 A=25
LIM=10|M=15|M=20M=10| M=15|M=200M=10{M=15|M=20
3 10.0346 ]0.0346 10.0346 |0.8469 |0.8469 |0.8469 |2.2362 |2.2408 |2.2412
5 |0.0346 |0.0346 |0.0346 |[0.9943 109944 |[0.9944 |29715 (29875 |2.9887
7 100346 |0.0346 |0.0346 |1.0692 |1.0693 |1.0693 |3.7530 | 3.8058 |3.8100
9 100346 |0.0346 |0.0346 |1.1017 |1.1023 ] 1.1023 |4.4620 |4.6287 |4.6421
10 ]0.0346 |0.0346 |0.0346 | 1.1096 |1.1106 | 1.1106 |4.7426 |5.0314 | 5.0554
12 0.0346 | 0.0346 1.1191 | 1.1191 5.7934 | 5.8689
14 0.0346 | 0.0346 1.1224 | 1.1225 6.4277 | 6.6551
15 0.0346 | 0.0346 1.1232 | 1.1233 6.6457 | 7.0319
17 0.0346 1.1241 7.7253
19 0.0346 1.1244 8.2554

TABLE 3. Variation in expected number of pooled customers.

A=01 ' A=15 A=25
LI M=10{M=15M=20M=10|M=15{M=20{M=10| M=15M =20
3 103236 |[0.3236 [0.3236 (20168 |2.0186 (2.0186 | 38.0455 |42.3705 |42.7914
5 103235 [0.3235 {03235 |1.8161 |1.8192 | 1.8193 |33.9457 | 41.0206 | 41.7485
7 103235 (03235 {03235 | L7116 |1.7179 | 1.7180 |27.1235 | 39.1407 | 40.5645
9 103235 [0.3235 [0.3235 [1.6606 |1.6733 |[1.6735 | 17.5855 | 36.3427 | 39.2748
10 { 0.3235 [0.3235 [0.3235 |[1.6445 |1.6620 | 1.6623 | 12.6822 | 34.3457 | 38.5674
12 0.3235 |0.3235 1.6502 | 1.6507 28.3938 | 36.8954
14 0.3235 |[0.3235 1.6451 | 1.6461 19.4375 | 34.5246
15 0.3235 | 0.3235 1.6436 | 1.6450 14.4655 | 32.8427
17 0.3235 1.6440 27.7254
19 0.3235 1.6435 19.6500

TABLE 4. Variation in Traffic intensity(p)

A=0.1 A=15 A=25
LI M=10|M=15|M=20{M=10{M=15({M=20|M=10{M=15|M=20
3 [ 0408 0.408 0.408 0.6080 | 0.6081 |0.6081 |0.9310 |[0.9355 {0.9359
5 |0.408 0.408 0.408 0.6080 |0.6081 |0.6081 |0.9271 |[0.9352 [0.9358
7 |0.408 0.408 0.408 0.6078 |0.6081 |0.6081 |0.9178 |[0.9345 |0.9358
9 |0.408 0.408 0.408 0.6075 |[0.6081 |0.6081 |{0.8965 |0.9328 |0.9356
10 | 0.408 0.408 0.408 0.6073 |0.6081 |0.6081 |0.8777 |0.9312 |0.9355
12 0.408 0.408 0.6080 | 0.6081 0.9250 | 0.9350
14 0.408 0.408 0.6080 | 0.6081 0.9100 |0.9338
15 0.408 0.408 0.6080 [ 0.6081 0.8964 | 0.9327
17 0.408 0.6081 0.9279
19 0.408 0.6081 0.9162
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TABLE 5. Variation of the cost function
A=0.1 A=15 A=25
LIM=00[M=15|M=20|M=10{M=15]M=20|M=10|M=15|M=20
3 [ 1.5034 |1.5034 | 1.5034 |-15.275 | -15.262 | -15.262 | 331.929 | 374.640 | 378.808
5 |1.4998 |1.4998 |1.4998 |-25211 |-25.190 |-25.189 |269.766 |339.347 | 346.537
7 [1.4998 |1.4998 |1.4998 |-27.460 |-27.420 |-27.419 |200.107 | 317.866 | 331.916
9 |1.4998 |1.4998 |[1.4998 |-28.097 |-28.020 |-28.020 | 111.255 | 294.086 |323.014
10| 1.4998 | 1.4998 | 1.4998 |-28.233 |-28.133 |-28.131 | 67.201 |277.540 |319.197
12 1.4998 | 1.4998 -28.229 | -28.226 226.456 | 310.386
14 1.4998 | 1.4998 -28.262 | -28.255 146.599 | 295.685
15 1.4998 | 1.4998 -28.270 | -28.260 101,752 | 283.603
17 1.4998 -28.265 242.090
19 1.4998 -28.267 170.629
~ TABLE 6. Comparison with no retrial case n = 35, k = 10, v = 0.7,
p = 0.5 other parameters are same as for other tables
A=01]A=05] A=10 A=15 =20 X=25
Case 1 <10B <107 <100 | 36x 10T | .3301 x10 % | .591 x 10~
§ ~ 1%41235 <1078 1 <1078 | —3x 10712 | .7493 x 1078 | .7952 x 10~5 | .9996 x 10~3
& 3 I=20
M=25’ <1078 [ <10°13 [ -3 x 10712 | .7494 x 1078 | .7961 x 107% | .1018 x 102
Jf{ilgg <1078 | <1078 <1071 [.1013x107°|.8911 x 10~7 | .1298 x 10~*
Case 1 0.02296 | 0.1148 0.2296 0.3444 0.4592 0.5741
>‘ —
< E 1{“4‘:2202’ 0.4216 | 0.5134 | 0.6282 0.7431 0.8578 0.9701
o 1@::22?5’ 0.4216 | 0.5134 0.6282 0.7431 0.8579 0.9718
| 04216 | 05134 | 0282 | 07431 0.8579 0.9727
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4.5. Comparison of Models in chapters 2, 3 and 4

In tables 8 and 9 we compare the three ways of providing service to external customers
which are introduced in Chapters 2, 3 and 4 with the case where no external customers are
allowed.

Let I denotes the case of a k-out-of-n system where external customers are not allowed,
and let II, ITI and IV denotes the models in chapters 2, 3 and 4 respectively.

The following parameters are common for L, IT, IIT and IV

n=11, k‘= 4 _
-55 3.5 1.0 1.0
Do = Dl =
1.0 =35 1.0 1.5
-
-75 20 -5.06 2.06
Sl = S2 =
21 =77 ‘ 40 —-6.5
-
5.5 3.0
S0 = SO =
5.6 2.5
a= [0.5 0.5] B= [0.5 0.5].

The rémaining parameters for I are § = 10.0

The remaining parameters for III are
§=100,vy=07,0=07,N=4,M=4

The remaining parameters forIVarey= 0.7, L=3, M =5,p=0.5

TABLE 8
X=0.1 A=05 X =009
[ [<10°1 3956 x 10~% | .4014 x 10~ ©
D I [<10°8 1321 x 1077 | .1133 x 10~
down I'TIT 1801 x 10~ 7 | .3289 x 107 | .3909 x 103
IV|.112x 10 [ .1437 x 1077 | .6186 x 10~ *
I [0.0180 0.0901 0.1802
D IT [0.4408 0.5129 0.5850
busy 1T [ 0.7500 0.7941 0.8341
IV [ 0.8565 0.9285 0.9994
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Table 8 shows the effect of providing service to external customers in a k-out-of-n
system as described in Chapters 2, 3, 4. To make these effects more clear, we construct a

cost function as
IDcost = Cllpdown - CIZPbusy,

where C1; is the cost per unit-time due to the system becoming non operational and Ci,
is the profit per unit time due to the server becoming busy, whose variation according to
table 8 is given in table 9.

TABLE 9

IDcost A=01[A=05 [A=09

I |--0.1800 | —0.9010 | —1.8020
Cn =100 II | --4.4080 | —5.1290 | —5.8499
Ci=10 IIT | --7.5000 | —7.9377 [ —8.3019
' IV | --8.5650 | —9.2849 [ —9.9878
I |--0.1800| —0.9010 | —1.8016
C;; =1000 |II |--4.4080 | —5.1290 | —5.8489
Ci=10 III | --7.5000 | —7.9081 | —7.9501
IV | --8.5650 | —9.2836 | —9.9321
I |--0.1800] —0.9010 { —1.7980
C1p =10000 |II | --4.4080 | —5.1289 [ —5.8387
Ci=10 Il | --7.4998 | —7.6121 | —4.4320
IV | --8.5650 | —9.2706 | —9.3754

Table 9 shows that the cost decreases continuously when we allow external customers
as in chapters 2, 3, 4 except when C}, is 1000 times larger than Ci; and A = 0.9, where
the cost in chapter 3 model is more than that in chapter 2, but it is less than the cost in
the model where no external customers are allowed. It also shows that cost is minimum
for the model described in this chapter where the external customers are kept in a pool of
postponed work. From table 8 we see that eventhough Py, is the least if we consider the
model in chapter 2, the server busy probability is the highest for the model described in
this chapter which makes that model the best from a server idle time utilization point of

view.,



CHAPTER 5

On a queueing system with self generation of priorities”

Priority queues have been extensively studied by several researchers (see for example
Jaiswal [33] and Takagi [S5] for detailed analysis, and Gross and Harris [31] for pre-
liminaries). In such queueing systems, arriving customers are classified as belonging to
different priorities. The one with highest pridrity has better access to the service counter
than those with lower priorities. Classification into different levels of priority helps in re-
ducing customer impatience. As an example consider a clinic where patients queue up for
appointment with physicians. Patients, while waiting in the system, may become seriously
ill (priority generation). At this epoch, any physician who is examining an ‘ordinary’ pa-
tient leaves him to be of service to the emergency (priority) case. At the time of arrival
of the customer if one of lower priority is going service then the customer in service may
be pushed out to accomodate the one just arrived, provided there is no other customer of
priority equal to or greater than that tagged to the present arrival. This manner of pushing
out a customer of lower pdoﬁty in service is reffered to as pre-emptive priority. The cus-
tomer who was pushed out wiil be taken for service only when the system does not have
a customer of higher priority waiting. On the other hand, the service of a lower priority
customer may continue even after the arrival of a higher priority customer and the latter is
taken for service only after the present service is completed. This type of service discipline
is reffered to as non-pre-emptive service. The pre-emptive case can be further divided into
pre-efnptive resume and pre-emptive repeat services. In pre-emptive ressume, the cus-
tomer of lower priority will continue getting the remaining part of the service; whereas in

the latter case service starts from scratch.

* This chapter was published in Neural Parallel & Scientific Computing, Vol. 13, 2005
104
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In this chapter we introduce a new priority queueing system. The system has ‘c’
servers. Customers on arrival join a queue if all the servers are busy. At the time of
arrival there is no classification of priority levels. However, while waiting (and not un-
dergoing service), customers generate into priority at a constant rate. The interoccurence
times of priorities are exponentially distributed random variables with parameter depend-
ing on the number of customers waiting for service. If, at the time of priority generation,
all seivers are busy serving priority generated customers, then the present priority gener-
ated unit goes out of the system in search of emergency service. However, if at the epoch
where a waiting customer generates into a priority type, there is atleast one ordinary cus-
tomer undergoing service, then such an ordinary customer is pushed back into the waiting
line (as the next customer to be served) and the one generated into priority begins to get
service. As an example of the model under discussion consider a clinic where patients
queue up for appointment with physicians (cl-in number). Patients, while waiting in the
system, may become seriously ill (priority generation). At this epoch, any physician who
is examining an ‘ordinary’ patient leaves him to service the emergency (priority) case. On
the other hand if at the time of priority generation all physicians are busy examining emer-
gency. cases, then the present priority generated patient will have to leave the system in
search of priority service elsewhere.

This chapter is arranged as follows: Section 5.1 deals with the mathematical modelling
of the problem. Section 5.2 provides condition for stability of the system. In section 5.3,
the steady state distribution is obtained. In section 5.4, we provide some special cases such
as the single server case and constant selfgeneration of priorities (ie, independent of system
state). In section 5.5 some performance measures such as expected number of customers in
the system are given. Also we introduce two different cost functions and some numerical

illustrations are provided.
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5.1. Mathematical modelling and analysis

The system we study is described as follows. Customers arrive at a c-server counter
according to a Poisson process of rate A. At the time of arrival, each customer is assumed
to be ordinary. However, while waiting in the queue, an ordinary customer may generate
into a priority customer at a rate a. Since each waiting ordinary customer generates into
priority at the constant rate a, the rate of priority generation is na, when n such customers
are waiting. If at that epoch there is any ordinary customer getting service, he is then
replaced by the customer who currently turned into a priority case. If there is more than
one customer in service, then the one who entered the service most recently is replaced.
Howeuver, if all the customers in service are priority customers, then the present priority
generated unit goes out of the system in search of immediate service. This phenomenon
happens at clinics and is also observed as a consequence of customer’s impatience resulting
in joining a higher priority queue from one of lower priority. An ordinary unit in service
is pre-empted by the priority generated unit. The service policy is pre-emptive repeat.
Service times of ordinary units are i.i.d. exponential random variables with parameter 4
if there are ¢ (1 < 4 < c) ordinary customers in service. Also the service times of priority
units are i.i.d. cxponential random variables with parameter iy, (1 < @ < ¢) priority
customers are in the system.

Let N(t) = # of ordinary customers in the system (including thosc getting scrvice) at time
t and M(t) = # of priority customers in the system. '

Under the assumptions on the arrival and service processes, X (t) = {(N(t), M(t))|t €

R.} is a continuous time Markov chain on the state space Z, x {0,1,...,c}. The states

are arranged in the lexicographic order. The level 7 denoted by ¢ is defined as
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The infinitesimal generator of the process is

rBoo A 0 0 ---

0 By Axn Ao

where each entry is a (c+ 1) x (c¢+ 1) matrix. Here, Ay governs transition rates from level
ito¢ + 1 and is given by
Ao = Meya;

B;i-1,1 2> 1, governs transitions from level z to 7 — 1 and is given by

(-1,00 (-11) (i—1,¢)
(i,O)( booi boui 0 \

(4,1) 0 bii biai

bc—lc—li bc—lci

(o) \ 0 bei

where b;;; = {min(c — 7,4)}n,0 < j < ¢ — 1, beei = ia, and b;_; j; = {max(0,i — (c —

j+1)}a, 1 <j<c By, Aii»t > 1, governs transitions from level + — i and are of the

form ) i
* 0 0
1}141 * 0
0 2u; =

| 0 cpr o *|

where in each case “*’ is such that (Boo + Ao)e =0and (B;;—1 + A;; + Ag)e=0,1> 1

and e is the column vector of 1s’.
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5.2. Ergodicity

The distinctive nature of self generation of priorities of the above process gives the
intuition that the process X (¢) will be ergodic. Actually this is the case. We use the
following result (Tweedie [57]) to prove this.

Proposition (Tweedie) Let X (t) be a Markov process with discrete state space S and rates
of transition g, s,p € S, Zp gsp = 0. Assume that there exist

(1) afunction ¢(s), s € S, which is bounded from below; (test function)
(2) apositive number ¢ and a map s — y, such that
e Variable y, < 3° ., 3sp(¢(p) — ¢(s)) < oo forall s € S;

o y, < —eforall s € S except perhaps a finite number of states.

Then the process X (t) is regular and ergodic.

For the model under investigation, we consider the following test function:

¢(s) = ¢(i,j) =i +aj

where a is a parameter which will be determined later. The mean drifts y, = y;; are given
by

(/\—c,u+j,u—aj#1 + (a - 1)ia
+(a - 1)(j — ¢)a, if0<j<c¢-1and
Yij =
t+7>c
A —acyy —ia, ifj=c i+j>c
\
Since
_ (a—1)oo, if0<j<c-1,
lim y;; = L; =
1—00

—co, ifj=c,

A

the assumptions of Tweedie’s theorem hold if and only if, a — 1 < 0 (see Falin and
Templeton [23]).
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Thus whatever be the system parameters, we see that the process X (t) is regular and
ergodic. d

We also note that the system remains finite with probability one. Observe that cus-
tomers may leave the system without service when the system state is (i, c), ¢ > ¢. Given
that a change takes place when the system is in state (n, ¢), it is an arrival with probability

and a departure with probability t#+2%.  The second expression goes to 1,

A
At +na Atcur+na’

whereas the first goes to zero with n increasing.

5.3. Steady state distribution

Since the process under consideration is an level dependant quasi birth and death pro-
cess (LBQBD), to calculate the steady state distribution, we use the methods described in
Bright and Taylor [13]. Now if we partition the steady state vector x as x = (g, Z, Z3, . . .)

each entry is a row vector containing ¢ + 1 entries, then we can write
k-1
T =x0II R fork>1
1=0

where the family of matrices { R,k > 0}, is the minimal non-negative solutions to the

3

system of equations:
Ao + BiAryrk41 + Ri[Rig1Bryok1] =0, £ >0, (5.1

and z is calculated by solving

IL‘()[BOQ + RoBm] = 0, (52)
such that
oo k-1
'$06+$02[HR1]6 < 0. 5.3)
k=1 [=0

The calculation of the above infinite sums does not seem to be practical, so we approx-

imate z;s by z(K*)s where (zk(K‘))j, 0<k<K*1<j<c+]1,isdefined as the
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stationary probability that X (t) is in state (k, j) of level k, conditional on X (¢) being in
the set
{G0<i<K',1<j<c+1}

Then zx(K*), 0 < k < K* is given by
k-1
zk(K*) = zo(K*) [ R (5.4)
1=0

where zo(K*) is found such that it satisfies (5.2) and

K* k-1
zo(K*)e + zo(K*)| 3 [[[ Ri]e =1 (5.5)
k=1 1=0

Here we have that for all 7 > 1, and for all k, there exists 7 such that [B;;_]x; >
0. Therefore we can construct a dominating process X (t) of X (t) and use it to find the
truncation level K* in the same way as in [13] as follows:

The dominating process X (t) has generator

[Bw 40 0 0 0
0 Ay A 0 0
0 By Apy A O
0 0 By Ap A

Qi
Al

where (Akk)ij = (Awe)ij for k > 2and j # i, (Ao)y; = c%l’

1<¢,j5<c+ 1.

_ 1
(Bii-1)i = 1 {((Bi=1,4-2)€)min} forl>2
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5.4. Some particular cases

(i) Constant priority generation: So far we were dealing with the case of linear priority
generation. This is especially the case in most of the practical situations (the clinic exampl:
given in the beginning of this chapter falls in this category). However priority generation at
constant rate, ie., irrespective of the number waiting, also arises in real life situations. Here
is an example. A system operates with n components. The failure rate of components,
assuming exponential lifetimes with parameter A/i, when ¢ components are operational,
produces constant priority generation, Here priority generation is identified with the failure
of components. Operaiing components are identified with waiting customers.

So we consider the c server case with constant priority generation. The generator

matrix in this case has the tridiagonal form

Bw A 0 0
B An A O
0 By An A

Q =
Bc,c—l Acc AO
Ay A A
Ay A Ao
where Ag = Al 4
-5001' bou; 0 ]
0 b b
Bi‘,'_1= ,].SiSC

bc-— le-1i bc— l,ci

I 0 beci |
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bjji = {min(c —j,’i)}u, 0 S] <c-—-1, bcci =,

5 _max{0i—(e—j+1)}
it = T T (e = + 1)}

By, Aii, 1 <1 < c, are of the form

Jo, 1<j<ec

* 0 0
) ]./Ll * 0

0 2u =

Ciy *

L -

where, in each case **’ is such that (By + Ag)e = 0, (Bii-1+ Ai + Ap)e=0,1<i<ec

—c,u o' 0 ]
0 (c—1u a
Ay = :

Iy o
-3 0 a-

-—/\—c;z—a 0 0

1 “A-(e-Dp-m-a 0

A= 0 2m “A—(c-2p -2 -a
| Ch1 —A —cpy - af

Let A= Ay + A, + Ay and 7 = (o, 7y, . . . , W) be the steady state probability vector
of the generator matrix A.

From the homogeneous system 7A = 0 we get

_71'0 o
ﬂi—?'-(

—),. 0<i<cg,
L 191

y -
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Then using the normalizing condition 7y + m; + ... + 7, = 1 we get

1
(2?2 +.. .+ g(2)e

o =

|~

1+ (&) +

[ ]

y
The system will be stable if and only if, rAe < TAze
ie., if and only if,

A<a+p[me+mc—1)+...+ meq).

L)

Under the stability condition, the steady state probability vector x of the generator
matrix @ exists. Let us partition x as x = (z(0), z(1), ...).

From the structure of the matrix ), we can write that
z(c+i) = 2(c)R', fori>0,
where R is the minimal non-negative solution of the matrix quadratic equation
R*A;+ RA; + Ao =0.

The vectors z(0), z(1), ..., z(c) satisfy the equations:

2(0)Boo + 2(1)Bio = 0 (5.6)
2(0) 4o + 2(1)Ayy + £(2) Byt = 0 5.7)
z(c—2)Ao+ z(c — 1)Aeo1e-1 + 2(c)Bee1 =0 (5.8)
z(c—1)Ao + z(c)Aec + z(c + 1) A2 = 0. (5.9)

Equation (5.9) can be written as

z(c — 1)Ag + z(c)[Ae + RA,] = 0.
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ie., t(c — 1) = Fz(c)[Acc + RA), since Ag = Alcy1.
Setting R._; := 5 [Acc + RAy], we obtain

z(c— 1) = z(c) Re-1.
From (5.8), z(c — 2)Ao + z(¢)[Re-14c-1,6-1 + Bee-1] =0
. -1
ie., z(c—2) = —}-z(c) [Re—1Ac—1,c-1 + Bee-1]
Putting R.—3 = S} [Re-1Ac-1,c-1 + Bee-1] we get z(c — 2) = z(c)Re-o. Similarly

z(c = 3) = z(c)Re-3,

where R._3 = S} [R.-2Ac-2,-2 + Re-1Bc-1,c-2)-

Thus defining the matrices R; recursively by

-1
Rc—l = T[Acc + RA2]1

Re_i = R[Recit1Acmisre-it1 + ReivaBeoijae-in), 2 < i < ¢,
we can write (i) = z(c)R; for 0 < i < ¢ — 1.

Now from (5.6) we can write
IE(C)[RoBoo + Rle] = 0.

This determines z(c) upto a multiplicative constant which can then be evaluated using

the normalizing condition

x(c)[i:R.-]e +z(c)(I-R)le=1.

i=0
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(ii) The single server case with constant priority generation:

This case produces sharper results. We have

By 4 0 O
Bl Au Ao 0
Q=
0 Ay A A

which is a quasi-Toeplitz matrix. Define A = Ay + A; + A, and 7 = (mp,m;) with
mo, M 2> 0 and mg + m; = 1, be the steady state probability vector of the generator matrix
A. Then the relation 7A = 0 provides us the marginal probabilities for the system with no

priority customer and that of the system with a priority customer. These probabilities are

immediately computed as 7y = E'ilﬁ and m) = afm. The system is stable if, and only if,

TAqe > mApe (see Neuts [44]), that is if and only if,

—“ﬂl—+a>)\.

a+

COROLLARY J5.1. If there is no priority generation, then a = 0, and the stability
condition reduces to 1 > A which is the stability condition for the classical M/M/1

queue.

COROLLARY 5.2. The model considered here generalises the classical queue with
reneging as explained below:

Consider the M/M/1 queue with reneging. The reneging rate is linear with parameter
a (per unit). Suppose p(i) is the probability of the system being found in state i in the long
run.

Now consider the system described here with linear priority generation. Then

(i— 1) , o
T 1)a+/t+_/\7r(2’0) +7(i—1,1)

p(i) = (

This can be extended to the multiserver case as well.
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To obtain the system state probabilities, we proceed to calculate G (a stochastic matrix)
from

AG*+AG+A;=0 (5.10)

where

G G
G= 00 | 01
G Gul|

(see Latouche and Ramaswami [41])
Since G is stochastic, we have Gg; = 1 — Ggo and G1; = 1 — G)p and in the present
case we have G as a 2 X 2 matrix, its elements are computed easily using (5.10):

On substituting Ao, A1, A3, G and G2 in (5.10) we note that Gy satisfies

(Goo)* M — (Goo)(—alps + A — ) + p(—p1 + 22 + p))
— Goo(o® + aps + A) + (21 — A — 2u)p) — p(—a = py + ) =0

and Gy, satisfies
a

1-—Goo]

Thus, for parameters A, a, p, 1 satisfying the stability condition, we can calculate G.

1
G11=X[(/\+a+,u-—/\Goo)—

We can find G in another way also. Note that here G has distinct characteristic values.
For, if G has only one characteristic value namely 1, then, since G is stochastic, we can see
that G is the identity matrix and it cannot satisfy equation (5.10). Thus G is diagonalizable.

Now we can find the characteristic value of G, other than 1, by solving the equation:
det(z2Ao + zA, + A;) = 0 for a root less than 1.

The characteristic vectors of G corresponding to a characteristic value ) are the charac-

teristic vectors of the matrix G(\) = A\2A, + AA, + A, corresponding to the characteristic
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value 0. Finding these characteristic vectors corresponding to the two characteristic values,

we can get G.
Now we can compute the rate matrix R from the relation R = Ap(—A; — AeG)™L.

Now the system state probabilities are given by x = (z(0), z(1), ...) where
(i) = (y(5,0),y(3, 1)).

Now z(3)s satisfy
z(i) = z(1)R"1, i > 1.

Now to calculate z(0) and z(1) we use the equations

z(0)By + z(1)B, = 0,

.’L'(O)Ao + 13(1)[/1}11 + RA2] = 0,

together with the normalizing condition Y ., z(i)e = 1.

5.5. System performance measures

Here we obtain some of the important measures of performance of the system in the
long run in the single server case with rate of priority generation depending on the level of

the process. These provide us information about the various characteristics of the system.

The perfor mance measures that we concentrate on are

(i) Average number of customers in the system is given by
coolim(3,0) + (¢ + 1)m(3, 1)}
(ii) Average number of customers lost per unit time is ) .2, tam(i, 1)
(iii) Hence the number of priority generated units in unit time is
{32y dam(i 1) + 3o2,(i — Dan(i,0)} .
These measures can be utilized to construct the following cost functions in the case of

single server system.
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- TABLE 1. Case 1: A = 1.0, = 0.8, u = 1.1, C; = 50.0, C; = 10.0,
C3=10.0,C =10.0,h=4.0

i ] 06 | 08 | 10 | 12 | 14
Fila, p1) | 0472 | -3419 | 5.110 | -6.204 | -6.969
Fala, 1) | 11928 | 9.373 | 7.976 | 7.113 | 6.536

TABLE 2. Case 1: A = 1.0, u = 1.1, 3 = 1.1, C; = 50.0, C, = 10.0,
C3=10.0,C =10.0,h=4.0

a 08 [ 09 [ 10 | 1.1 | 12
Fila, p) | -5.710 | -5.645 | -5.585 | -5.528 | -5.476
Fala, ) | 7498 | 7347 | 7.226 | 7.127 | 7.044

Case 1. Nonconstant priority generation

Here
Fi(cy ) = - (fjw(z‘,O) U 1’“) Cr+ (ivr(z', l)i—a) Ca
i=2 H i=1 H1
+ (i 7(3,0)(i — l)a) Cs
i=2

where the first term on the right sides represents the revenue to the system by way of
serving priority units over unit time. The second term represents the loss to the system
due to priority generated customers leaving the queue when a priority customer is getting
service. The last term represents the cost to the system due to pre-emption of service of
ordinary customers.

We consider another cost function

o0

Fy(a,m) = (Z (1, 1);%) C+h I:Z in(,0) + Z(z + 1) (3, 1)

i=1 i=0
The first term on the right side represents loss to the system-due to priority generated

customers leaving the system when a priority customer is receiving service and the second

one represents holding cost of customers in the system.
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TABLE 3. Case 2: (Variations of y;) where A = 1, a = 1, 4 = 1.1,
¢ =20,c0="10,¢c3 =15, C = 10.

Fy(a, ) Average Average Average
w1 | Fi(e,m1) |Ah=1| h=5 [ h=12| numberof number of number of
customers | customers lost priority
in the system | per unit time | units generated.
1.1 1.054 3.829 | 11.62 | 25.254 1.948 0.207 0.467
1.2 1.166 | 3.487 | 11.012 | 24.182 1.881 0.193 0.456
1.3 1.284 | 3.212 | 10.515 | 23.295 1.826 0.180 0.447
14 1.402 12988 | 10.102 | 22.551 1.778 0.169 0.439
1.5 1.518 2.803 | 9.754 | 21.918 1.738 0.1598 0431

TABLE 4. Case 2: (Variations of ) where A = 1, u = 1.1, y; = 1.1,
Ci = 20, Cy = 10, C3 =‘15, C =10. '

Fy(a,m) Average Average Average
a | Fi(a,p)| h=1 | h=5]h=12| numberin | number of number of
the system | customers lost priority
units generated.

1 1.054 3.829 | 11.62 | 25.254 1.948 0.207 0.467
1.1 1.195 3.808 | 10.937 23.414 1.782 0.223 0.484
1.15 1.261 3.80366 | 10.652 | 22.637 1.712 0.230 0.491
12 1.323 | 3.80309 | 10.398 | 21.938 1.649 0.237 0.498
125 1.384 | 3.8053 | 10.169 | 21.307 1.591 0.244 0.505
1.3 1.441 | 3.80959 | 9.964 | 20.734 1.539 0.2498 0.511
14 1.548 3.8231 | 9.6096 | 19.736 1.447 0.261 0.522
1.9 1.962 | 3.92931 | 8.5319 | 16.587 1.151 0.306 0.562

Case 2. Constant priority geheration:

Fi(a, ) = - (Zm,m%) Ci+ (Z (i, 1)%) Cy + (i 1r(i,0)a) Cy

i=2 i=1

oo

Fa,m) = (Z n(3, l)l%) C+h [Z im(¢,0) + Z(z + 1)7r(%, I)J

i=1 i=0

Table 1 shows that as u; increases, both Fy and F, decrease. This may' be due to
the fact that as y; increases, the mean service time of a priority customer decreases and
as a result the loss to the system due to priority generated customers leaving the system

decreases. Table 2 shows that as o increases, F] increases which can be attributed to the
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fact that as « increases, pre-emption rate of ordinary customer in service as well as loss rate
due to priority generation inch;ases. But as « increases, the overall holding cost decreases
which can be regarded as the reason behind the decrease in F5. Table 3 shows that in thg
case of constant priority generation as y; increases, F; also increases. This may be due to
the fact that as y; increases, eventhough the loss rate due to priority generation decreases
(see table 3) priority generation rate also decreases (see table 3) so that there is a decrease
in the revenue due to serving priority customers. Also note that in this case the priority
gener;e\tion rate is assumed to be independent of the number of ordinary customers in the

system.



CHAPTER 6

The impact of self-generation of priorities on multi-server queues with

finite capacity”

This chapter deals with multi-server queues with a finite buffer of size /V in which
units waiting for service generate into priority at a constant rate, independently of other
units in the buffer. At the epoch of a unit’s priority generation, the unit is immediately
taken for service if there is one unit in scrvice which did not generate into priority while
waiting; otherwise such a unit leaves the system in search of immediate service elsewhere.
The arrival stream of units is a Markovian arrival process (MAP) and service requirements
are of phase (PH) type. Our interest is in the continuous-time Markov chain describing
the state of the queue at arbitrary times, which constitutes a finite quasi-birth-and-death
(QBD) process. We give formulas well suited for numerical computation for a variety of
performance measures, including the blocking probability, the departure process, and the
stationary distributions of the system stale at pre-arrival epochs, at post-departure epochs
and at epochs at which arriving units are lost. Illustrative numerical examples show the
effect of several parameters on certain probabilistic descriptors of the queue for various
levels of congestion.

This chapter is organized as follows. In section 6.1 we start by introducing self-
generation of priorities in the MAP/PH,PH/c/c + N queue. In section 6.2 the focus is
on the continuous-time Markov chain (CTMC) at arbitrary times which constitutes a finite
quasi-birth-and-death (QBD) process. An efficient computational approach to its analy-
sis is then derived. In section 6.3, we give tractable analytical formulas for the departure

process, the blocking probability and the stationary distributions at pre-arrival epochs, at

* This chapter was published in Stochastic Models, Vol. 21, No. 2-3, pp. 427-447, 2005
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post-departure epochs and at epochs at which arriving units are lost. In section 6.4 the
effect of several parameters on probabilistic descriptors of our queue is numerically illus-

trated.
6.1. The finite capacity MAP/PH,PH/c/c + N queue with self-generation of priorities

O Low priority unit
® High priority unit .
Servers
Self generation of priority

l—l: Servige

Input flow - completions
—_— Q- 000D — e

Finite buffer

Output flow due to
self-generation of priorities

Figure 1. Multi-server queue with finite capacity and self-generation of priorities

Figure 1 depicts the configuration of the priority-generating queue to be investigated
in this chapter. We consider a multi-server queue consisting of ¢ servers and a finite buffer
of size N > 1, in which units arrive one at a time according to a Markovian arrival pro-
cess. Formally, the MAP is parameterized by two a X a matrices Dy and D,, whose sum
D= Dy + D; is an irreducible infinitesimal generator. The (3, j)th entry of the matrix D,
corresponds to the transition rate associated with the arrival of one unit when the under-
lying CTMC makes a transition from the state ¢ to the state j. The matrix Dy, covers the
case when there is no arrival. Then the arrival rate of the point process of units is given
by A = dD, e, where d is the stationary vector of D and e, is the a-dimensional column
vector of 1s.

Arriving units are of homogeneous nature, whence they are identified as low priority
units. They are queued in the buffer and treated in order of their arrival. During waiting
in the buffer a low priority unit turns into one of high priority at a constant rate v > 0,

independently of other units in the queue. At the epoch at which a waiting unit generates
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into high priority, it is immediately taken for service, provided that there is at least one low
priority unit in service at that time. Assume that there is an identical chance for assigning
the high priority turned unit to any of the servers which are occupied by low priority units.
On the contrary if all servers are busy serving high priority units when a waiting unit
generates into one of high priority, then the latter leaves the system in search of urgent
service elsewhere.

Assume that low priority units are preempted by high priority turned units. Specifically,
a low priority unit in service, when preempted by a high priority turned unit, is queued in
the buffer according to a predetermined rule and its elapsed service time is lost. Low
priority units in service do not turn into the high priority category.

Successive service times of low and high priority units are mutually independent, and
follow PH laws with representations (c, T) and (3, S), respectively. Here, T and S are
square matrices with negative diagonal elements and Inonnegative off-diagonal elements.
Assume, without loss of generality, that T and S are stable matrices; see e.g. the books [41,
44] for a review of the main results on PH random variables. For later use, to and sy are
column vectors of sizes ¢ and s, respectively, defined by to = —Te; and sp = —Se;.

The stream of units, the process of self-generation of priorities and the service times
are assumed to be mutually independent.

In what is to follow, ® and & stand for Kronecker product and sum respectively (see
[40]), L, is the identity matrix of order p, Opy, is the zero matrix of dimension p x ¢ and
0, is the p-dimensional column vector of 0s. If v is a v-dimensional column vector and w
is a w-dimensional row vector, then the product vw is the matrix of dimension v x w with
elements [vw];; = v;w;. Given a square matrix V, we define V®™ as the matrix

m

V" = VeVe---oV, m>1,




v,
e

N

e
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and V&0 as the scalar 0. For a column vector v with v entries, we denote by v®™ the
matrix defined as v@®Im-1 + L, ® v @ Lm-2+ -+ I,m-1 ® v, for m > 1, and the scalar

1form = 0.

6.2. Basic results of the system

The purpose of this section is to find the stationary vector of the system state at arbitrary
times. Let &(u) and &, (u) b'e.the number of low and high priority units in the system at
time u, respectively, and n(u) be the phase of the arrival process. Define two vectors
v;(u) and vy, (u) that record phases of service corresponding, respectively, to low and high
priority units in service at time u. Based on the model description of our queue, we see
that X = {(&(u), én(u), n(u), vi(u), v4(u)) : u > 0} forms a finite QBD process on the

state space
: c+N

S=JUn),

n=0

where the nth level is given by

I(n) = Uy _oL(m,n —m), for0 <n <c,

=Up-oL'(n—c+m,c—m), forc+1<n<c+N.

The subsets £(m,n — m) are defined as {(m,n — m,%,71,...,Jm, k1y+ . knom) : 1 <
i1<a,1<j,... jm <t1< k... koo Sshfor0<m<n<candL'(n—c+
m,c —m) are given by {(n —c+m,c—m,i,51,..., Jus k1, .-« ke—m) 1 1 < i < 0,1 <
jl,....,ijt,l < ki kem < s}, for0 <m < ¢ <n<c+ N. Thus the level I(n)

consists of J, states, where

min(n,c)

J, = a E gmin(me)~igh 0 < <ct N

i=0 -

If the states in S are listed in lexicographical order, then transitions among subsets

L(m,n —m) and L'(n — ¢+ m,c — m) are summarized as follows:
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(a) For 0 < n < ¢, the matrices I, ® t®™ ® Iyn-m, Ipm ® s&"~™ and Dy ® T ©
S®n-™ record transition rates to states in £L(m — 1,n —m) for1 < m < n,in
Lmn—-m—-1)for0<m <n-1,andin L(m,n—m)for0 < m < n,
respectively, starting from states in £(m,n — m).

(b) For 0 < n < ¢— 1, the matrix D, ® I;m ® a ® I;»-= records transition rates to
states in £(m + 1,n — m) for 0 < m < n, starting from states in L(m,n — m).

(c) The matrix D; ® I;me-m records transition rates to states in £’ (m+1,c—m) for
0<m<ec, startiné from states in £(m, c — m).

(d) Forc+1 < n < ¢+ N —1, the matrices D; ® Im se-m and Do & T®™ @ S®¢—™ —
(n — ¢)YI4mse-m record transition rates to states in £'(n — ¢+ m+ 1, ¢ — m) for
0<m<c¢andin L'(n—c+m, c— m) for 0 < m < ¢, respectively, starting
from states in £'(n — ¢+ m,c — m).

(e) Forc+1 < n < ¢+ N, the matrices I, ® (t00)®™ ® Lc-m, Iy ® ¢ ®sP*~™ and
ILL® (mﬁne?’") ® Le-m @ B record transition rates to states in £'(n —c+m —
Lc—m)forl<m<cinl'(n—c+m,c—m—1)for0 <m<c—1,andin
L'(n—c+m-1,c—m+1)forl <m < c, respectively, starting from states in
L'(n - ¢+ m,c —m). Similarly, the matrix (n — ¢)yI,,- records transition rates
to states of £'(n — ¢ — 1, ¢), starting from states in £L'(n — ¢, ¢).

(f) The matrix D @ T®™ @ S~ -. NyI,ym4c-m records transition rates to states of
L'(N +m,c—m)for 0 < m < ¢, starting from states in L'(N + m,c — m).

Then the CTMC & b(_)sscsscs the following infinitesimal generator:

[ B, A,
C, B, A,

Cc— 1 Bc— 1 Ac— 1
Q= C. B, A,
Cer1 Ben A

5

Cc-I_—N—l Bc+N-l Ac

Cc+N Bc+N + Ac J

(6.1)
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where

A, = [0y, xqsn+1,Uy), for0 <n<c—1,
=U,, forn=c,
B, = Dy, forn =0,

= diag[Do ® S®*, Dy @ T® S®"1,.., Dy ® T®", for1 < n <,

Oaéc X (Je—at¢) 0a3= xate

=B+ —(n =),
Un O(Jc—asc)xatc
forc+1<n<c+N,
V 0,4
C,= " + * XJn-1 ,forl1 <n<g,
Oal." XJp-1 Wn

[ 0 aeriase V
= (Je-atf)xast " | +W,, forc+1<n<c+N.

0at°xaa° Oatcx(.lc--aac) .

The expressions for Uy, V,, and W,, are as follows.

Expressions for the blocks U,,. The matrices U,, are easily written as follows:

(a) For0 < n < ¢—1, U, = diag[D1®a®lm, D18L@a®Ln-1, ..., D1 @1n @al].
(b) Forn = ¢, U, = diag[D;, ® Ic,D; ® Ljse-1, ..., D1 @ L],
() Forc+1<n<c+ N, Uy = diag[Lu® ((n - ¢)ye,) @ L @ 8,

Expressions for the blocks V,,. The matrices V, are given by

@@ Forl <n<e¢V,= diag[l, @ s&, I, @ s¥™ !, ..., Liin-1 ® s¢).
(b) Forc+1 <n < c+N,V, = diug[l,@a®sP’, L,@a®s° 7!, ..., I,1-1®a®sy).

Expressions for the blocks W,,. The matrices W, have the form

(a) Forl < n < ¢, W, = diag[l, ® to ® I;n-1,I; ® t&* ® I;n-2, ..., I, @ t&").
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() Forc+1 < n < c+ N, W, = diag[(n — ¢)7lss, L ® (toa) ® Ie-1,1, ®
(toa)®2 @ Ie-2, ..., I, ® (toc)¥°].

Denote by x the stationary vector of /X, and partition x by levels into sub-vectors x(n)
for 0 < n < c+ N. Observe that, since S is a finite state space, the stationary probabilities
of X exist and arc positive. By using Lemma 2 and Thcorem 1 of Ref. [26], we (ind that

x(n) is determined by

n-1
x(n) = x(0) H (A; (-Fl)), for1 <n<eg,
i=0
c—1 n—1
=x(0) [T (As (-F3)) [T (Ac (-Fjl)), forc+1<n<c+N, (62)
=0

i= j=c

where x(0) satisfies x(0)Fo = 07 and the equality

¢ n-1 c+N c-1
1= (eJo"‘ZH ;+1 )es, + Z H Fih)

n=1 i=0 n=c+1 i=0
n-1
X H Fil) e,c) . (6.3)
The matrices F; are recursively determined by

F;,=B.n+ A, fori=c+ N,
=B; - AF;\Ciyy, forc+1<i<c+N -1, (6.4)
= Bi - AiFi_.g.l]Ci+l’ for 0 <i<ec

From these results, we can effortlessly obtain expressions for specific probabilistic descrip-

tors of the state of the queue at arbitrary epochs. Some of them are:
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(a) The mean number of units in the system is

c+N

N = Z nx(n)ey, .

n=l

(b) The mean number of low priority units in the system is

c c+N
Niow = Zx(n)wn + Z x(n)Wn—c,
n=1 n=c+l1
\
where _ i
Oas" r b
Ne€q e
eatsn—l
_ (n+ 1)egpse-1
Wn = 2eat2'sn-2 and _Wn =
(C + n)eatc
Neg¢n J

(c) The mean number of high priority units in the system is given by Nyigh = N —Ngy.
(d) The blocking probability is

Pblocking = ulg{olo P(&(U) + Eh(u) =c+ N) = X(C + N)eJc'

(e) The marginal distribution of the number of units in the buffer. Let ¢, be the sta-
tionary probability that there are m units in the buffer, for 0 < m < N. Then it is clear
that

c

Gm = Zx(n)eJn, form =0,

n=0

= x{c+m)ey, forl <m < N.

Thus the mean number of units in the buffer is given by

N
Noufser = Z nx(c+n)ey,.

n=1
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A point worth mentioning is that, in order to compute x from (6.2)-(??), we may first
calculate x(0) satisfying x(0)Fo = 0T and x(0)e, = 1, and evaluate x(n) = x(n —

1)Aminn-1,0)(—F;!) for 1 < n < ¢+ N. Then the stationary vector x corresponds to
the vector [x(0), ...,x(c + N)] normalized by Zf;ﬁ' x(n)ey, = 1 and, as a result, the
complexity of our solution is O(3"5_f J2 + (N + 1)J2). Clearly we can compute the
above probabilistic descriptors at the same timé as we are preparing the evaluation of x.

When the value of ¢ + N and the physical dimensions of the blocks F; in (6.4) are
moderate, the computation of x may best be done by progressively storing the blocks
Aninn-1,0(=F;!) forn = ¢+N, ..., 1, and Fy. To that end we need an array of dimension
JE+30_, Ju-1Jn+ NJ2. We also notice that the maximum number of memory locations
for the entries of x and other eventually defined blocks is 3574 J, + (N +1)J, + J2. In
the numerical examples presented in Subsection 4.4, this procedure is seen to work well
both regard to numerical accuracy and speed.

Larger values of ¢ + N er larger physical dimensions of F; in (6.4) imply more de-
manding memory requirements. It might be advisable then to write a driver routine where
particular blocks F; are built each time that they are handled, stored in an amount of mem-
ory locations and destroyed immediately after their handling. In such a case, we need
374 Ju + (N + 1)J. memory locations for entries of x and 2J2 additional memory loca-
tions to store blocks being eventually handled. The corresponding procedure results in an
increase of the complexity, but it helps to reduce the effort required to minimize the storage
space. More details about the numerical efficiency of other computational algorithms can

be found in Section 5 of the paper [26].
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6.3. Performance evaluation
6.3.1. Blocking probability at pre-arrival epochs. Based on the above analysis, if

we dénote by Quiocking @ Nnew arrival’s blocking probability, which is defined as the proba-

bility that a new unit arrives to find the system completely occupied, then we have that
c-1 c+N-1
leocking = /\—lx(o) H (Al(_Fz_-i-ll)) H (A ( FJ_-H.)) AC’

i=0 j=c

where the column vector A, is defined from

(Dlea) ® €4n
(D1€s) ® eggn-1

(D1e;) ® en

It should be pointed out that clearly the blocking probability Pyscking Will not neces-
sarily be the new unit’s blocking probability Qpiocking. Indeed, a similar remark can be
made for the stationary vectors at pre-arrival and arbitrary times. Let y(n) be a row vector
whose entries are the statlonalfy probabilities that arriving units see the queue in states of

the level I(n), for 0 < n < ¢+ N. Then it immediately follows that

y(n) = /\'lx(O)Dl, forn =0,

= A 1x(0) H F;ll Uy, forl<n<c-1,

=0
c~1
=" A"!x(0) H (Ai(-Fi34)) U, forn = ¢,
i=0
c—1 n-—1

= A% [T (A(=Fi) [T (A(-F7i)) U,

i=0 j=c
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forc+1<n<c+N,withT, = diag[l, ® e; @ In,I;; ® € & Ijn-1, ..., Ipn ® €], for
1<n<c-1.

Also, if our interest is in the probability that an arriving unit does not wait in the buffer

before entering the service facility, then we have

[y
—
—

n—

P nw 1+1
1=0

3
Il
o

6.3.2. Departure process. In this subsection, we present the analysis of the departure
process, which is defined as the sequence of times {7,, : m > 0} at which units leave
the queue due to a service completion or a self-generation of priority, with o = 0. Its
study amounts to the analysié pf the inter-departure times {7, = T, — T—1 : m > 1}. It
should be pointed out that the random variables 7y, 7, ... are identically distributed since
X is positive recurrent. Thus, we focus on 7; and determine its distribution through the

Laplace-Stieltjes transform
®(0) = E [e°"], Re(6) > 0.

According to the state of the queue at time 75, we may write down

ct+N

o(6) = ) x(n)¢,(6),

n=0

where ¢,,(0) is a column vector with J, entries defined as the conditional Laplace-Stieltjes
transforms of 7, given that the state of X’ at time 7 is in the level [(n), for0 < n < ¢+ N.

Partition ¢,,(6) into column vectors as follows:

[ @(8l0,n)

2(60|1,n -1
¢,.(0) = (61, —1) ,for0<n<eg,

p(0ln,0) |
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@(fln - c,c)

2(0ln—c+1,c—-1
= el ) yforc+1<n<c+N,

¢(6]n,0)
where the above sub-vectors @(f|m,n — m) and @(6|n — ¢ + m,c — m) are indexed by
states in £L(m,n — m) and £'(n — ¢ + m, n — m) respectively.

For initial states in £(m,n —m) for 0 < m < n < ¢ — 1, the departure process can be
seen as the time until absorption in an appropriately defined absorbing finite QBD process
with Laplace-Stieltjes transform for the time until absorption satisfying

[o o]

5(6 - - D Sn—

@(6|m,n —m) = / ¢~ (014m yn-m ~Do@TEm@SEm-m)y 4
0

X (D) ®Lim ® & ® Ign-m)@(0|lm + 1,n — m)

+ea ® ((T@m o) Sen—m)etmsn-m)) .
To prove this equality, note that there are two essential events whose occurrences clearly
determine the further evolution of the absorbing QBD process: the arrival of a new unit
and a service completion. Since T and S are stable, the spectral radius of the matrix

01 44mgn-m — Do @ T®™ @ S~ is strictly less than one. From this it follows that such a

matrix is invertible for Re(#) > 0. As a result we derive the equality

c_p(9|m, n-— m) = (Olatm,n—m bt Do & T@m (4] S@n—m)'l
X (D1 ®Iim ® & ® Ijn-m)@(8lm + 1,n — m)

+e, ® (T®™ & S®" ™)eymgn-m)), (6.5)

for0O<m<n<c-1



6.3. PERFORMANCE EVALUATION 133

Similarly, for 0 < m < ¢, we have that

@(0]m, c — m) = (BLagmge-m — Do & T®™ @ §2~™) ™
X (D1 @ Iymge-m)@(flm + 1,c — m)
+e, ® ((T®™ @ S® ™)emge-m)) . (6.6)
For initial states in £'(n —c+m,c—m),0 <m<c<n<c+ N — 1, we take into
account a third essential event, the self-generation of priorities by units in the buffer. Then
a first-passage argument leads to
@@n —c+m,c—m)
= ((0 + (n - C)’Y)Iatmsc-m - D() @D T$m D S$c_m)—1
X (D) ® Iimge-m)@p(fln —c+m+ 1,c — m)

te, ® ((TQm ® S‘Bc_m)et"‘s"’") + (n - c)7eat"‘s°‘”‘) : (67)

Finally, for initial states in £L'(N + m,c — m), 0 < m < ¢, we note that the departure
process remains unaltered when new arrivals occur. Then, for 0 < m < ¢, we readily

derive
POIN +m,c—m) =e, ® (((0 + N9)Imgeem ~ TO™ @ §0°-m) 7}
X (NYLmge-m + T®™ & S2™™) eymyem) . (6.8)

Writing down column vectors ¢, () from (6.5)—(6.7), we see that ¢, (6) satisfies the re-

cursive formulas

¢n(0) = 1—\"(0) (@n¢n+l(0) + wn) , for0 < n <c—1, (6.9)

Anc(6) (Uehsa(8) + x + (n — chvey,) (6.10)
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forc<n<c+ N -1, where
A.(0) = [OJ"XGsn+l,diag[2n(0|0), 2.(0|1), ..., Z.(0]n)]),

Anc(8) = diag[En_.(0]0), Zn_c(6]1), ..., En-c(Blc)],

en = [OJ,.xaa"'”’Un],

[ Oasn+1 ] - -
€, ® (Secesc)
o &8 e (T ® 5% 1)eu)
ea ® @ ¢ €gc-1
W, = €, ® ((T (4] Sen_l)etsn—l) ) X = . t y
€, ® TG’Ce c
L e. ® (T®esn) i i ( “) )

with the matrices £, (8|m) and £,,_.(6|m) defined as follows:

En(glm) = (GIat"‘sﬂ-m —_ DO @ T®m @ S@n—m)_l’

“:‘-‘n—c(olm) = ((0 + (n — C)“)’)Iatmsc-m -Dy® T®™ q S@c—m)—l'

Equations (6.9) and (6.10) allow us to find ¢, y_,(8) once ¢, 5 (6) is given, ¢, n_o(0)

once ¢, y_;(0) is given, and so on. We therefore find after a brief recursion

c-1

¢.(0) = [] (Ad0)©:) ¢.(0) ‘

i=n
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N-l4c—-n

= H (An_c.f.i(e)Uc) ¢c+N(e)
i=0
N-1 N-1-i

+hoec®) 3 T (Uehneers(6))

i=n—-c j=1

X(x+(N—-1—-i+n—-c)vey,), c<n<c+N-1.

To find ¢, x(6), we use the explicit expressions for its sub-vectors given in (6.8).
In view of (6.9) and (6.10), we derive the following expression for the mean length of

the interval between successive times of service completion or self-generation of priorities:

¢+N
E[n) = >_, x(n)pl), '
n=0

where ¢{1) is the column vector with J, entries evaluated by the iterative scheme

¢V = AV (@ney, +wn) + Aa(0)0n0);, 0<n < -1,
() "
= An—c (UCeJc +X+ (n - c)7eJc) + An—c(O)Ucd’S,l.*).l,

c<n<c+N-1,

where

e
]

W= [04,xasn1, diag[E£2(0]0), £2(0[1), ..., Z2(0[n)]),

=~ (1) L2 ~ 2 ~ 2
A,l. = diag[x,_.(0[0),%,_(0[1),..., X, _.(0]c)].
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Obviously, by (8), the vector ¢{%) is simply obtained by

@V(N,c)

¢c+N = )

@M (c+ N,0)

Wlth ¢(1)(N + m,c — m) = €, ® ((N’YItmsc—m —_ T®m @ S@c_m)_letmsc—m). ngher

moments of 7, may be obtained in a similar fashion.

6.3.3. System state at departures. Here, we investigate the system state at departure
epochs. More precisely, our interest is in epochs at which units without being served leave
the S);stem, epochs at which new arrivals are lost, departure epochs due to a self-generation
of priority, service completion epochs of low priority units and service completion epochs
of high priority units.

In order to proceed with the analysis conveniently, decompose x(n) as [x(0, n), x(1, n—
1),..,%(n,0)] for 0 < n < ¢, and as [x(n — ¢,¢),x(n — c+ 1,¢ — 1),...,x(n,0)] for
c+1 < n < c+ N, wheré x(m,n — m).is a row vector with at™s"~™ entries, for
0<m < n<candx(n—c+m,c—m)is arow vector with at™s°"™ entries, for
0<m<c<n<c+N.

For the sequence of departure epochs of units without being served, we observe that

states just after such cvents are in the subset

N-1 c
L(0,c) U U L'(m,c)U U L'(N+m,c—m).
m=1 m=0

Specifically, we need states in £(0, c)UUN_1L'(m, c) to identify departures of high priority

units and states in US, _ L’ (N +m,c— m) for arriving units which are lost. By arranging

states in lexicographic order and introducing 'vectors z(m,c), for 0 < m < N — 1, and
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z(N + m,c —m), for 0 < m < ¢, we readily derive

z(m,c) = (6+8) ' (m+1)yx(m+1,¢),0<m<N -1,
z(N+m,c—m) = (6+8)7')x(N+m,c—m)(D; ® Limge—m),
0<m<cg,
where § = 7E,Nn=1 mx(m, c)egee and § = 35 _ x(N +m,c — m)((D1e;) ® emge-m).

It is a simple matter to distinguish between departures of high priority turned units and

of arriving units which are lost. Based on states in £(0, ¢) U UNZ1L/(m, c), the vector

z(m,c) = §'(m+1)yx(m+1,c)
records stationary probabilities at departure epochs of high priority turned units, for 0 <
m < N — 1. Similarly, it is immediately obvious that

i(N + m,c— m) = 8-IX(N + m,c— m)(D]_ ® Itmsc—m)

records stationary probabilities at epochs at which arriving units are lost, for 0 < m < c.
We can also derivé the stationary vector z; at service completions of low priority units

by noting that just after such events, states are in the levels i(n), for0 <n <c+ N - 1.

Hence if we decompose z; by sub-levels into sub-vectors z;(m,n—m) for0 < m < n < ¢,

andz(n —c+m,c—m) for0<m<c<n<c+N -1, then we see that
zi(m,n —m) =§ ' x(m + 1,n ~m)(I, ® t&" ! @ I,n-nm),
0<m<n<c—-1,
zi(m,c —m) = 6 x(m +1,¢c — m)(I, ® (toa)®™ @ Lie-m),0 < m < ¢,
zin—c+myc—m)=4§"x(n—c+m+1l,c—m)’

I, ® (toa)®" ®Ie-m),0<m<c<n<c+ N-1,
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where

c-1 n
& = Z Z x(m+1,n—m) (e, ® (t¥"'em) ® egn-m)

n=0m=0
c+N-1 ¢
+ Z Zx(n —c+m+1,c—m) (e ® ((toa)®"em) ® eye-m).

n=c m=0

For service completion epochs of high priority units, the corresponding stationary vector

z;, has sub-vectors of the form

zn(m,n —m) = 671 x(m,n — m + 1)(Ipm ® s&*™H1),

0<m<n<Lc-1,
zp(m,c —m) = 6 x(m,c —m + 1)(Igm-1® a @ s§™) 1 <m < c,
zp(n —c+m,c—m) =6 x(n-c+m,c—m+1) ‘

(Igm-1 @ a®@sP ™) 1<m<c<n<c+N-1,

where

n

c-1
6" = Z Z x(m) n—m+ 1) (eatm ® (S(?n—m'*-les"_m))

n=0 m=0
¢+N-1 ¢
+ z Z X(n—c+m,c—m+1) (egm ® (sP ™ ewm)).

n=c m=0

6.4. Effect of the self-generation of priorities

We expect that the effect of self-generating a priority on the current amount of work in

the queue is threefold:
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N 4¢=05 g=1 g=2 g=105 g=1 q=2 q=05 g¢g=1 g=2

0.01

0.1

0.25

0.5

0.75

25

5.0

10.0

5§ <1007  <10°%  0.0078 0.0081 0.1753 05112 06025 07880  0.8893
10 <107  <10°%  0.0003 0.0004 0.1409 0.5079  0.6059 07889  0.8888
15 <1072 <1072 <1072 <1075 0.1311 0.5056  0.6096 0.7899  0.8882

5 <1077 <1078  0.0071 0.0107 0.1901 04937 06315 07960 0.8838
10 <107 <107 - 0.0002 0.0015 0.1727 04564  0.6628  0.8013  0.8738
15 <1072 <1072 <10°'?2  0.0003 0.1680 04040  0.6846  0.8001  0.8591

5 <1077  0.0001 0.0057 0.0163 0.2060 0.4485 0.6717 08016 0.8678
10 <1071 <1077 <1075  0.0045 0.1510 03018  0.6982 0.7809  0.8201
15 <1072 <1072 <10-12  0.0011 0.0742 0.1491 0.6807 07358  0.7596

S <10~ 0.0001 0.0034 0.0250 0.1918 0.3428 0.6969 07826  0.8224
10 <1071 <108 <10°6 0.0046 0.0554 0.0987 0.6461 0.6855 0.7009
15 <1072 «10-12 «10-12 0.0002 0.0049 0.0100 0.5494 0.5706 0.5776

5 <108 0.0001 0.0020 0.0281 0.1523 0.2456 0.6838 0.7421 0.7668
10 <1019 «10°8 <1077 0.0021 0.0159 0.0275 0.5562 0.5780  0.5852
15 <1072 <1072 <10~ <10-5 0.0003 0.0006 04053 04155 04184
.5 <10-% < 10-% 0.0012 0.0264 0.1139 0.1738 0.6525 0.6941 0.7101
10 <107 <107 <10°7  0.0008 0.0047 0.0080 04643 04776  0.4815
15 <1072 <1002 «<10-12 <10-¢ < 10-5 <1075 02804 02860 0.2874

S <1007 <1078 0.000] 0.0080 0.0211 0.0290 04213 04317 0.4346
10 <1002 <107 <1079 «<10® <107t <107% 01129 0.1149  0.1153
15 <1072 <1072 <1072 <107 <107 <107% 00111 00113 00114

S <1007 <107 <105  0.0014 0.0029 0.0038  0.1880 0.1911  0.1919
10 <1072 <1072 <1072 <1078 <1007 <1077  0.0076 0.0077 0.0078
15 <1072 <1071 <1072 <1072 <1072 <1072 <107 <107 <1078

S <1078 <1077 ‘<1077  0.0001 0.0002 0.0003 0.0442  0.0449 0.0450
10 <1072 <1072 <1072 <1071 <1077 <1079  0.0001 0.0001 0.0001
15 <107 <1072 <1072 <1072 <1072 <1072 <10°¥ <10°% «<10°®

(i) Depending on whether the mean service time of a high priority unit is less than or
greater than that of a low priority unit, the current amount of work in the queue
may decrease or increase if there is an idle server available for the high priority

turned unit.

(i) If a low priority unit is pushed out, then the amount of work associated with
such a unit increases somewhat as it needs to restart service, though this may be
compensated at a collective level by a possible decrease of work associated with
the high priority unit.

(iti) A unit may leave wit.h‘out receiving service, thereby decreasing the current amount

of work.
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To study the influence of  on the current amount of work, we focus on the blocking
probability Pyocking and the mean values N, Nyigh and Ny ser. For the numerical exam-
ples, we assume that the stream of units is a renewal process with inter-renewal intervals

governed by the hyper-exponential law with density function

f(z) = }:pi/\ie"\", z > 0, .

i==1

withp; > 0, Y, pi = 1 and A; > 0. We assume that service times of low priority units
follow an Erlang,(v,) distribution, with 1/, > 0, and that an Erlang,(1) distribution, with
vy > 0, governs service times of high priority units.

Tables 1-4 list values of Phocking, N, Nigh and Ny ser, for queues with ¢ = 3, a = 4,
t = 3, s = 3. To explore the effect of (i) on the current amount of work, we assume mean
service times of low and high priority units, denoted by x; and i, respectively, satisfying
My = quy, where ¢ = 0.5, 1.0 and 2.0. Our numerical examples are reported for N = 5,
10 and 15, and arrival intensities \; = ¢\, with X' = 0.5, 2.0 and 10.0 (equivalently, with
am'vai rates of the point process of units A = 0.96, 3.84 and 19.2 respectively).- The mean
service time of high priority units is assumed to be pz; = 0.9, and initial probabilities
p; =025 forl <i<4.

When + is small, it is clear that (i) and (ii) will dominate. Thus, for ¢ = 0.5 and 1.0,
increasing values of <y are the cause of higher values of Pyockings N, Naign and Noyj fer
whereas for ¢ = 2.0 the current amount of work seems to decrease when a self-generation
takes place (meaning that the decrease of work associated with high priority units com-
pensates the increase of work associated with low priority units). Such a decrease in the
case ¢ = 2.0 implies lower values of the descriptors Piocking, N, Nigh and Ny fer, as
the reader may note from Tables 1-4. At some point, if v is large enough, the effect of (iii)
will become more influential and will start to dominate, meaning, even if ¢ < 1, that an

increase of vy will reduce the various performance measures.



6.4. EFFECT OF THE SELF-GENERATION OF PRIORITIES 141

—_—— e e - —— —_— e — e —_—— e e — e —

5 N ¢=05 g=1 q=2 g=0.5 g=1 qg=2 q=05 g=1 q=2

0.01 5 0.4345 0.8968  2.1105  2.1184 52249  7.1425 7.3922 7.7427  7.8785
10 04345 0.8971 22022 22180 89397 12.123 12.398 12744 12877

15 0.4345 0.8971 22092 22272 13.098 17.115 17.406 17745  17.877

0.1 S 0.4347 0.8987 2.0899  2.1751 5.3230  7.0906 7.4519 7.7542  1.8716
10 04347 08991 21615 23481 93750  11.941 12.514 12.761  12.858

15 04347  0.8991  2.1645  2.3965 13932  16.694 17.557 17.759  17.838

0.25 5 . 04350 09019 2.0484 22852 54325 6.9397 7.5310 7.7620  7.8509
10 04350 09024 2.0878  2.6425 9.2289  11.146 12.584 12727 12781

.15 04350 09024 2.0882  2.8026 12.170  14.483 17.548 17.645  17.679

0.5 5 0.4355 09061 19683 24644 53634 6.5144 7.5822 7.7319  7.7864
10 04356 09066 1.9811 29378  7.6630  9.1516 12.474 12.547  12.570

15 04356 09066 19811 3.0206 82913  10.023 17.205 17.252  17.265

0.75 5 0.4361 09085 1.8953 25766 50973 6.0290  7.5601 7.6638  7.6989
10 04361 0.9088  1.9000 29323 6.3229  7.4976 12.243 12.291 12.304

15 0.4361 0.9088 19000  2.9539 64405  7.6720 16.650 16.685  16.694

1.0 5 0.4367 09093  1.8347 26158 47913  5.5857 7.4990 7.5762  7.6003
10 04367 09095  1.8367  2.8462 54587  6.4060 11.947 11985  11.994

15 0.4367 0.9095 " 1.8367  2.8519 54845  6.4449 15.915 15949  15.957

2.5 5 04392 09013 1.6266  2.4223 36130  4.0685 6.9068 6.9411  6.9494
10 04392 09014 16267  2.4433 36587 4.1264 9.6012 9.6353  9.6431

15 04392 09014 1.6267  2.4433 36587  4.1265 10.520 10.562  10.571

5.0 S 0.4415 0.8845 14875  2.1778 29441  3.2400 5.9301 59574  5.9639
10 04415 0.8845 14875 21794 29473  3.2440 6.7480  6.7804  6.7881

15 0.4415 0.8845 14875  2.1794 29473  3.2440 6.7836 6.8166  6.8244
10.0 5 0.4432  0.8656  1.3891 1.9935 25363 27473 4.7328 47545  4.7597
10 04432  0.8656 1.3891 19936 25364 27475 4.8369 48596  4.8651
15 04432 08656  1.3891 1.9936  2.5364  2.7475 4.8371 4.8599  4.8654

In Tables 1-4, we also notice that the increase of the arrival rate ) and the decrease of

the buffer capacity N have an increasing effect on Pyjocking, V', Nhign and Ny er, Which

corroborates the above intuitive explanation.
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XN=05 MN=20 A'=100
¥ N qg=10.5 g=1 qg=2 q=0.5 g=1 g=2 g=05 g=1 g=2

0.01 5 <107% 0.0002  0.0035 0.0036 0.0221 0.0373 0.0395 0.0426  0.0439
10 <1078 0.0002  0.0042 0.0043 0.0542  0.0821 0.0845 0.0876  0.0888

15 <1078 0.0002  0.0043 0.0044 0.0912  0.1269 0.1296 0.1326  0.1338

0.1 5 0.0002 0.0030  0.0347 0.0396 0.2281 0.3661 0.3973 04239  0.4343
10 0.0002 0.0030  0.0399 0.0523 0.5601 0.7702 0.8154 0.8358  0.8437

15 0.0002 0.0030  0.0401 0.0558 0.9039 1.1112 1.1680 1.1828 1.1886

0.25 5 0.0005 0.0078  0.0793 0.1124 0.5639  0.8347 0.9456 09911 1.0086
10 0.0005 0.0079  0.0856 0.1672 1.1661 1.4658 1.6432 1.6634 1.6709

15 0.0005 0.0079  0.0856 0.1885 1.4974 1.7829 2.0307 2.0401 2.0435

05 5 0.0012 0.0160  0.1301 0.2511 0.9669 1.3013 1.5882 1.6320 1.6477
10 0.0012 0.0161 0.1332 0.3565 1.4400 1.7765 22343 2.2451 2.2486

15 0.0012 0.0161 0.1332 0.3704 1.5192 1.8651 24874 24913 24923

0.75 5 0.0018 0.0236  0.1606 0.3756 1.1673 1.4990 1.9594 1.9931 2.0043
10 0.0018 0.0237  0.1619 0.4671 1.4402 1.7794 24703 24768 24786

15 0.0018 0.0237 0.1619 0.4709 1.4558 1.7982 2.6445 2.6468 2.6474

10 - S 0.0025 0.0305 0.1804 0.1682 1.2545 1.5740 2.1805 2.2063 2.2142
10 0.0025 0.0305 0.1810 0.5316 1.4083 1.7361 2.5875 2.5922 2.5934

15 0.0025 0.0305 0.1810 0.5327 1.4118 1.7405 2.7158 27177 27182

2.5 5 0.0064 0.0578  0.2286 0.6725 1.2921 1.5517 2.5881 2.6003  2.6032
10 0.0064 0.0578  0.2286 0.6784 1.3027 1.5636 2.7434 2.7489  2.7502

15 0.0064 0.0578  0.2286 0.6784 1.3027 1.5636 2.7661 27712 27723

5.0 5 0.0115 0.0796  0.2516 0.7612 1.2629 1.4754 2.6642 2.6765 2.6794
10 0.0115 00796  0.2516 0.7616 1.2636 1.4761 2.7094 27200  2.7226

15 0.0115 0.0796  0.2516 0.7616 1.2636 1.4761 2.7104 27210  2.7235

10.0 5 0.0179 0.0982 0.2670 0.8394 1.2611 1.4394 2.6416 26549  2.6582
10 0.0179 0.0982  0.2670 0.8394 1.2611 1.4394 2.6475 2.6607 2.6639

15 0.0179 0.0982  0.2670 0.8394 1.2611 1.4394 2.6475 26608  2.6640
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N =05 XN =20 A =100

04 N qg=05 g=1 q=2 q=05 g=1 qg=2 g=05 g=1 g=2
0.01 5 0.0025 0.0328  0.3999 0.4051 24647  4.1506 4.3942 47427  4.8785
. 10 0.0025 0.0330  0.4761 0.4879 6.0307 9.1232 9.3982 97442  9.8778

15 0.0025 0.0330 0.4824 0.4962 10.137 14.115 14.406 14.745 14.877
0.1 5 0.0025 0.0336  0.3867 0.4424 2.5504  4.1000 4.4535 47542  4.8716
10 0.0025 0.0339  0.4461 0.5881 64493  8.9422 9.5142 9.7617  9.8589

15 0.0025 0.0339 04487 0.6320 10.958 13.694 14.557 14.759 14.838

0.25 5 0.0026 0.0351  0.3602 0.5166 2.6457  3.9536 4.5320 4.7621 4.8509
10 0.0026 0.0355  0.3927 0.3205 6.3032  8.1479 9.5847 9.7278  9.7815
15 0.0026 0.0355 03931 0.9660 92124 11.483 14,548 14.645 14.679
05 5 0.0027 0.0369 0.3104 0.6369 25822  3.5463 4.5829 47319  4.7864
10 0.0027 0.0373 " 0.3210 1.0402 47906  6.1659 9.4745 9.5473  9.5707

15 0.0027 0.0373 03210 1.1155 5.4087  7.0355 14.205 14.252 14.265
0.75 5 0.0028 0.0378  0.2676 0.7072 - 2.3479  3.0898 4.5608 4.6639  4.6989
10 0.0028 0.0380 0.2715 1.0099 3.5185  4.5405 9.2431 9.2910  9.3043
15 0.0028 0.0380 0.2715 1.0295 3.6335 47140 13.650 13.685 13.694
1.0 5 0.0030 0.0378  0.2343 0.7242 2.0824 26810 4.4999 45764  4.6005
10 0.0030 0.0379  0.2360 0.9202 27163  3.4864 8.9474 8.9851 8.9945
1S 0.0030 0.0379 02360 0.9254 27414  3.5249 12915 12.949 12.957
25 5 0.0034 0.0329  0.1358 0.5407 1.1053 1.3587 39119 3.9443 39523
10 0.0034 0.0329  0.1358 0.5588 1.1477 1.4140 6.6031 6.6366  6.6442
15 0.0034 0.0329  0.1358 0.5588 1.1478 1.4141 7.5224 7.5634  7.5728
50 . 5 0.0033 0.0249  0.0812 0.3445 0.5986 0.7116 2.9521 29751 2.9806
10 0.0033 0.0249  0.0812 0.3460 0.6016  0.7153 3.7662 3.7950  3.8019

15 0.0033 0.0249  0.0812 0.3460 06016  0.7153 3.8017 3.8311 3.8381
10.0 5 0.0028 0.0163  0.0452 0.2021 03132 03615 1.7962 1.8109 1.8144
10 0.0028 0.0163  0.0452 0.2022 03133  0.3617 1.8992 1.9150 1.9188

15 0.0028 0.0163  0.0452 0.2022 03133  0.3617 1.8995 1.9153 1.9191




CHAPTER 7

Retrial queues with self generation of priority of orbital customers

In this chapter we consider a service system with waiting space restricted to one for
a special class of customers called priority generated customers. The system consists of
one server. If the server is idle at an arrival epoch then that customer is taken for service
immediately. Otherwise it proceeds to an orbit of infinite capacity. Each customer in
orbit try to access the server at a constant rate §. Hence if there are n customers the
retrial rate is nd. In addition each customer in orbit generate priority at a constant rate
B. Such a customer is termed as priority generated customer. This unit is immediately
transferred to the service station provided no such customer is already in wait there. On
the other hand such customers leave the systexﬁ for ever if already a priority generated unit
is waiting. Service discipline is non-pre-emptive. That is a customer in service, even when
it is ordinary (not a priority generated one), is given full service before the next one is
taken for service.

This class of queues occurs in emergency situations (for example in hospitals). For
further details one may refer to Krishnamoorthy, Viswanath and Deepak [36].

This chapter is arranged as follows : Section 7.1 deals with the mathematical modelling
and prove that the system is always stable. Section 7.2 provides steady statc distribution of
the system. In section 7.3 some performance measures are provided. Also a few numerical

illustrations are given in section 7.4.

7.1. Mathematical modelling

Customers arrive to a single server facility according to a-Markovian arrival process
(MAP) with representation (Dg, D) of order m3. All customers at the time of their ar-

rival are treated as ‘ordinary’. Service to ordinary customers is according to a Markovian
' 144
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\

Service rule (MSP—Markovian Service Process) with representation (S?, S}) of order m;
and service to priority generated customers is also according to a MSP with representation
(59, S1) of order m,. Systems having MSP have been studied by Bocharov [9]. An MSP
of order m with representation S°, S! can be described as follows.

Suppose the underlying Markov chain has state space labelled {1,2, ..., m} and generator
matrix Q* = (g;;). Let the chain be irreducible. After a Sojourn in state 7 which is
exponentially distributed with parameter A\; > —g;;, one of the following two events could

occur

(a) with probability P;;(1), a transition to state j occurs which corresponds to a service
completion.
(b) with probability P;;(0), a transition to state j (j # ¢) occurs without a service comple-

tion.

If a service completion occurs with a transition to state j and if there is no customer waiting
to be served, then we assume that the Markov Chain stays in the state j until another service
starts (ie., the chain is assumed to be freezed in state 7). When a new service starts, the

chain also gets started in state j, and proceeds as described above. We define the matrices
S* = (dij(k)) for k = 0,1 where d;;(0) = —=);, 1<i<m;

dij(0) = XNP;(0), 5 # 4 1 < 4, j < m and dy(l) = MNP;(1),
for1 <i,j <mandS®+ S!= Q" .

Assuming S° to be a nonsingular matrix we notice that the service times are finite with
probability 1.

Let N (t) denote the number of customers in the orbit, and Ny(t), the number of pri-
ority customers in the system including the one getting service, if any, at time ¢. Note that

No(t) =0,10r2.
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Let

0 if the server is idle at time ¢
I(t) = {1 if an ordinary customer is getting service at time ¢

2 if a priority generated customer is getting service, at time ¢.

Let v;(t) and vo(t) denote the phases of the service processes of ordinary and priority
customers, respectively; and v3(¢) denote the phase of the arrival process at time ¢. Let
X(t) = (Ny(t), No(2), I(t), vi(t), va(t), vs(t)). Then {X (¢)|t > 0} forms a continuous

time Markov chain with state space,

{(,0,5,k1, ko, k3) |12 0; j=0,1;1<k <my, | =1,23}
U{(i)l»jiklvk%]%) |7’201 .7‘: 1’2;1 Skl _<_ml, [ = 1a2a3}

U{(l,2,2,k1,k2,k3) |ZZO; ]-Skl Sml) l=172a3}

Partitioning the above state space into levels 3, where each level i correspond to i customers

in the orbit, we get the infinitesimal generator of the above Markov chain as

Ay Ay 0 0
Ay An A O
Q={0 An An 4
0 0 Ay Az

where
00
AO = ® (Imlmg ® Dl)a
0 I
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[0 09Iy 0 ifly O |
0- 0 iBly O 0
Ayi=10 0 ifly O 0 |, i>1,
0 0 0 0 ifly
0 0 0 0 iBly]
where M = mymaomgs. Forz > 0,
B, B, 0 0]

Ay

il
o
o
=
&
o

Bs 0 0 B; 0
0 0 0 Bs B

where By = (I;mym,®Do)~#(04+8)In, B2 = Im,®D1, B3 = S{®Lmymy, By =
[(s? ® I,,,,) ® Do] — 3By, Bs= (I ®S) ®Im, and B = [ (Iml ® sg) @ DO] -
i0Im

System stability

THEOREM 7.1. The system under discussion is always stable.

PROOF. To prove the theorem, we use a result due to Tweedie [57]. Consider the
Lyapunov test function defined by ¢(s) = i if s is a state belonging to level 5. The mean

drift y, for a state s belonging to level i is given by

Ys = Y dsp[#(p) — #(3)]

p#s

= 20w (9(8) = 8(5) + 2 dur (65" = 6()) + 3 guwr (9™ - 9(5))

3" s

where ', 8", s" varies over the states belonging to levels ¢ — 1,4,1 + 1 respectively. Then

by definition of @, ¢(s) =1, ¢(s') =i — 1, ¢(s") =14, ¢(s") =i+ 1
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So that

Ys = — Z Gss' + z Qss
of

s

—i(0 + B) + qusm if s is a state at which the server is idle

st

-3 + Zq;?"' otherwise

aIII

We note that Es,,, gss 1s bounded by some fixed constant for any s in any level 7 > f
So, let ), gssn < &, for some real number « > 0, for all states s belonging to level
i > 1. Also since 1 — § > 0, for any € > 0, we can find N’ large enough that y; < —e for
any s belonging to level 7 > N'.

Hence by Tweedie’s result, the theorem follows. E]

REMARK 7.1. The above theorem can be proved also by noticing the fact that the
queueing system under discussion is very much similar to an infinite server queue which is

always stable.

7.2. Steady state distribution

Since the process under consideration is an LDQBD, to calculate the steady state dis-
tribution, which always exists, we use the method described in Bright and Taylor [13].
By partitioning the steady state probability vector x as x = (z(0), z(1), z(2), ...) we
can write
k-1
z(k) =z(0) [[ R fork>1

1=0
where the family of matrices { R;k > 0} are the minimal non-negative solutions to the

system of equations

Ao+ RiAik41 + R Ry Azke2 = 0,k > 0. (7.1)
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and z(0) is calculated by solving

z(0)[A10 + RoAn] =0 (7-%)
such that
' z(0)e +2(0) S HR, e=1. (1.3)
k=1 L1=0

The calculation of the above infinite sum does not seem feasible. So we approximate
z(k)s by zk-(k)s where (zx-(k));, 0 < k < K*, 1 < j < 5mymgmg, is defined as the
stationary probability that the Markov chain X () is in state (k, j) of level k, conditional
on X (t) being in the set {(¢,7) | 0 < i < K*,1 < j < 5mymamg}. Thus zx+(k),0 <
k < K* is given by

zxe(k) = Tx-(0 H R, (1.4)
where z;.(0) is found such that it satisfies (7.2) and

0[5 [ﬁ RH 05

Tk (0)e + .’BK.
k=1 Li=0

Here we have for all i > 1 and for all £, there exists j such that (Ag)i; > 0. So we
can construct a process X (t) which stochastically dominates X (¢) and can use it to find
the truncation level K* in the same way as in Bright and Taylor [13] as follows. The

dominating process X (t) has generator

- -

Ao A O 0 0
0 Ay A 0 O
Q=10 Ay Ay A O

0 0 Ay Ap A
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where

(Ao)ij = &[(Aoe)max)s (Azk)ij = 'év'((AfZ.k—l)e)min for k > 2, (Aw)ij = (Aw)ij» J # 1,
k > 1; and C = 5m;mqoms is the dimension of a level 7 > 0.

Since-computation of the sequence of matrices { Ry } occurring in (7.4) is laborious, requir-
ing tremendous storage space, we use the K* obtained by the above procedure to define
the truncation level for employing the Neuts-Rao [45] procedure in the numerical calcu-
lations. Thus we combine the advantages in the two procedures and at the same time get
ourselves freed from cumbersome calculations. Besides we are able to maintain atleast the
same level of accuracy as obt.ained in the above two procedures.

Next we discuss a few system performance measures.

7.3. System performance measures

We partition the steady state probability vector x as
x = (2(0), 2(1),z(2),...).
where each z(%) is partitioned by sublevels as

IE(Z) = (y,-(O, O), y,-(O, 1), yi(l’ 1)7 yi(l’ 2)) yi(zv 2))

Here y;(j, k) is a row vector containing m,mymg entrics which corresponds to Ny(#) =

and I(t) = k. The following are the performance measures we concentrate on.

(i) The probability a; that there are ¢ customers in orbit is given by
a; = z(i)e.

(ii) The mean number of customers in the orbit:

()
Norbit = ZZZI('L)G
i=1
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(iii) The probability mass function b;, 7 = 0, 1, 2 of the number of priority customers in

the system

[= o]

bo = Z yi(O, k)e,
i=0 k=0,
(= o]

b= wi(1, ke,
i=0 k=1,2
00

b2 = Z y’i(za 2)8,
i=0

(iv) The probability that the server is idle is Pige = Y 0 ¥:(0,0)e
(v) The overall rate at which the orbiting customers retry for service is given by 6} =

0N orbit-

(vi) The rate at which the orbiting customers successfully reach a free server is given by
oo
03 =06[ _iy:(0,0)e]
i=1

(vii) The fraction of successful rate of retrials is given by

_ %

% = 5

7.4. Numerical illustration

—4.05 1.55 2.05 045
3.5 -—55 1.0 1.0

Fundamental arrival rate for (7.6) is 2.346
Correlation = 0.29 x 1073

-55 3.5 1.0 1.0
Dy = Dl = (1.7)
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Fundamental arrival rate for (7.7) is 2.346
Correlation = —0.29 x 1073

-5.06 2.06
S0 =
40 -6.5

Fundamental service rate for (7.8) is 2.833
Correlation = 0.42 x 1073

Fundamental service rate for (7.9) is 2.833
Correlation = —0.42 x 103

-5.15 21
Sy =
 4.05 —-6.6
Fundamental service rate for (7. 10) is 2.882
Correlation = 0.41 x 103

—6.6 4.05
S =
1.56 —4.6
Fundamental service rate for (7.11) is 2.882

Correlation = —0.41 x 103

2.56 0.44
5= {

1.0 1.5

|

2.6 0.45
1.0 1.55
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(7.8)

(7.9)

(7.10)

(7.11)
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TABLE 1

B =15.0

Norit

bo

by

Pidie

11.0

0.0928

.5910

.2857

1232

0.0493

.3865

13.0

0.0924

5921

.2854

1225

0.0462

.3864

15.0

0.0921

.5930

.2851

1219

0.0434

.3863

117.0

0.0919

.5938

.2848

1214

0.0410

.3863

19.0

0.0916

0945

.2846

.1209

0.0388

.3862

11.0

0.0924

.5908

.2858

1234

0.0496

.3845

13.0

0.0921

5919

.2854

11227

0.0465

.3844

15.0 .

0.0918

0928

.2851

1221

0.0438

.3843

(17.0

0.0915

5936

.2848

1216

0.0413

.3843

19.0

0.0913

0943

.2846

1211

0.0391

.3842

TABLE 2

6 =15.0

N, orbit

bo

by

Pidie

11.0

0.1240

5974

.2819

1207

0.0484

.3815

13.0

0.1057

.5949

2837

1214

0.0458

.3843

15.0

0.0921

.5930

.2851

1219

0.0434

.3863

[17.0

0.0816

5915

2862

1223

0.0413

.3880

19.0

0.0733

.5904

2871

1225

0.0393

.3892

II

11.0

0.1235

5973

.2820

1207

0.0488

3796,

13.0

0.1053

5947

2837

1216

0.0462

.3823

15.0

0.0918

.0928

.2851

1221

0.0438

.3843

17.0

0.0813

5913

.2862

1224

0.0416

3859

19.0

.5901

2872

1227

0.0396

3872

0.0730

Parameters: arrival — (7.6), service to components — (7.8),

service to externals — (7.10)

Parameters: arrival — (7.7), service to components — (7.8),

service to externals — (7.10)

Table 1 and 2 shows that when the retrial rate 6 increases the probability that the server

is idle decreases, but when the self generation rate beta increases the server idle probability

b
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also increases. They also shows the effect of a small variation in the correlation between

two arrival times on the system performance measures.

TABLE 3

B =15.0

N, orbit

bo

by

03

Pidie

11.0

0.0928

5907

.2863

1230

0.0492

0.3863

13.0

0.0925

5917

.2859

1223

0.0461

0.3862

15.0

0.0922

5927

.2856

1217

0.0434

0.3861

17.0

0.0919

5934

.2854

1212

0.0410

0.3860

19.0

0.0917

5942

.2851

1207

0.0388

0.3860

v

-11.0

0.0928

.5908

.2859

1233

0.0493

.3860

13.0

0.0925

5018

.2856

1226

0.0462

.3859

15.0

0.0922

5927

.2853

1220

0.0434

.3858

17.0

0.0920

.5935

.2850

1215

0.0410

.3857

19.0

1 0.0917

5943

2848

1210

0.0388

.3856

TABLE 4

6 =15.0

Noit

bo

by

03

Pidlc

III

11.0

0.1240

5971

.2825

1204

0.0484

3813

13.0

0.1058

.5946

.2842

1212

0.0458

.3840

15.0

0.0922

.5927

.2856

1217

0.0434

.3861

(17.0

0.0817

5912

.2868

1220

0.0412

3877

19.0

0.0733

.5900

2877

1223

0.0392

.3890

v

11.0

0.1241

5972

2821

1207

0.0484

.3810

13.0

0.10568

.5946

.2839

1215

0.0458

3837

15.0

0.0922

5927

2853

1220

0.0434

.3858

17.0

0.0817

5913

2864

1223

0.0413

3874

19.0

0.0733

6901

2874

1225

0.0393

3887

Parameters: arrival — (7.6), service to components — (7.8),

service to externals — (7.11)

Parameters: arrival — (7.6), service to componeﬁts — (7.9),

service to externals — (7.11)

Im)

av)
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TABLE 5

B=15.0(80

Noit

bo

by

03

Pidle

11.0

0.0928

5910

.2857

.1232

0.0493

.3865

13.0

0.0924

5921

.2854

1225

0.0462

.3864

15.0

10.0921

.5930

.2851

1219

0.0434

.3863

[17.0

0.0919

.5938

.2848

1214

0.0410

.3863

19.0

0.0916

.5945

.2846

.1209

0.0388

.3862

11.0

0.0928

.5907

.2863

.1230

0.0492

0.3863

13.0

0.0925

5917

.2859

1223

0.0461

0.3862

15.0

0.0922

5927

.2856

1217

0.0434

0.3861

17.0

0.0919

0934

.2854

1212

0.0410

0.3860

19.0

0.0917

.5042

.2851

1207

0.0388

0.3860

TABLE 6

0=15.0|0

Nowit -

bo

by

03

Pidle

11.0

0.1240

5974

2819

1207

0.0484

3815

13.0

0.1057

.5949

2837

1214

0.0458

.3843

15.0

0.0921

5930

.2851

1219

0.0434

.3863

17.0

0.0816

5915

.2862

1223

0.0413

.3880

19.0

0.0733

.5904

2871

1225

0.0393

.3892

11.0

0.1240

5971

.2825

1204

0.0484

3813

13.0

0.1058

5946

.2842

1212

0.0458

.3840

VI 15.0

0.0922

5927

2856

1217

0.0434

3861

17.0

0.0817

5912

.2868

1220

0.0412

3877

19.0

0.0733

.5900

2877

.1223

0.0392

.3890

Parameters: arrival — (7.6), service to components — (7.8),

service to externals — (7.10)

Parameters: arrival — (7.6), service to components — (7.8),

service to externals — (7.11)

Table 3 and 4; 5 and 6 shows the effect of a small variation in the correlation between

two service times in the system performance measures.
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