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INTRODUCTION 

ON SOME INFINITE CONVEX INVARIANTS 

The origin of convexity can be traceJ back to the period of 

Archimedes and Euclid. The major developments in the eighteenth century are 

Kepler's works on Archimedean solids, determination of the densest lattice 

packing of circular discs in E2 by Lagrange, and Legendre's proof of the Euler's 

relations between number of vertices, edges and faces of a convex polytope in 

E3.Cauchy's proof of Euclid's statement that two convex polytopal surfaces in E3 

coincide up to proper or improper rigid motions if there is a homeomorphism 

between these surfaces the restriction of which to any face is a rigid motion is a 

major contribution to convexity in the nineteenth centaury. Other contribution 

came from Steiner who gave a series of proofs of the isoperimetric property of 

circles and balls using Steiner symmetrisation and the four-hinge method. The 

solution of the isoperimetric problem was achieved by Edler and by Schwarz and 

Weierstrass. A second contribution of Steiner to convexity is his formula for the 

volume of parallel bodies of a convex body. 

At the turn of the nineteenth centaury, convexity became an 

independent branch of Mathematics with its own problems methods and theories. , 
Minkowski (1864- 1909) systematically developed convexity theory. His theorem 

on mixed volumes and lattice point theorem are of great importance. The 

contributions of Blaschke (1885-1902) include characterization of balls and 

ellipsoids, Blaschke's selection theorem and the affine isoperimetric inequality. 



The early papers of abstract convexity can be sorted out into two 

kinds. The first type deals with generalization of particular problems such as 

separation of convex sets [EL], extremality [FA], [DA V] or continuous selection 

Michael [MI]. Papers of the second type are involved with a multi-purpose system 

of axioms. Schmidt [SC] and Hammer [HAI. HA3, HAt] discuss the viewpoint of 

generalized topology, which enters into convexity via the closure operator. The 

arising of convexity from algebraic operations, and the related property of domain 

finiteness receive attentio~ in Birkhoff and Frink [BI, F], Schmidt [SC] and 

The classical theorems of Helly, Radon and Caratheodory stand at the 

origin of what is known today as the combinatorial geometry of convex sets. 

"Helly's theorem on the intersection of convex sets" was discovered by Helly in 

1913 and communicated to Radon who published a first Pro9f in 1921.Helly's 
"<--- -- -

own proof came in 1923. Helly's theorem may be formulated as follows. 

Let K be a family of convex sets in Rd, and suppose that K is finite or 

each member of K is compact. If every d+ 1 or fewer members of K have a 

common point, then there is a point common to all members of K. 

Radon's theorem turned out to be extremely useful in combinatorial 

convexity theory. Radon's theorem is as follows. 

Let X be a set of d+2 or more points in Rd. Then X contains two 

disjoint subsets of X whose convex hulls have a common point. 
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Radon's theorem has seen numerous applications, frequently in 

proofs, led to a rich body of variants, refinements, and deep generalizations such 

as Tverberg's theorem [TVl, TV2]. Caratheodory's theorem is the fundamental 

dimensionality result in convexity and one of the corner stones in combinatorial 

geometry. The theorem is formulated as follows. 

Let X be a set in Rd and p be a point in the convex hull of X. Then 

there is a subset Y of X consisting of d+ 1 or fewer points such that p lies in the 

convex hull ofY. 

These three classical theorems are not only closely related, but in fact, 

each of them can be derived from each of the others. In abstract convexity theory, 

this has been the main incentive to study the inter relationships between the three 

classical results in an axiomatic setting. 

The viewpoint of combinatorial geometry originates in Levi [LE], 

where the relationship between Helly's and Radon's theorem is discussed. The 

survey papers of Danzer, Grunbaum and Klee [DA, GR, KL] stimulated the 

investigations on abstract convexity. The other major contributors to the theory of 

abstract convexity are Tverberg who extended Radon's theorem in Rd, Eckhoff, 

Jamison, Sierksma and Soltan. An elegant survey has been done by Van de vel 

[V AD9] whose work has been acclaimed as remarkable. 

of 
The theory(con~ex invariants ha~ grown out ofthe classical results of 

Helly, Radon and Caratheodory in Euclidean spaces. Levi gave the first general 

definition of the invariants Helly number and Radon number. A general theory t'c \ 

convex invariants was first developed by Kay and Womb le [KA, WO]. 

3 



Most of the results mentioned above are relevant in finite dimensional 

Euc1idean spaces. To study the geometrical and topulogical implications in the 

infinite dimensional set up, we introduce the concept of infinite convex invariants 

in an abstract convexity setting and study the different relations among them. We 

also introduce the notion of transfinite convex dimension of a topological convex 

structure. 

The thesis is divided into five chapters. 

In chapter 0 we give the basic definitions and results, which we are 

using in the succeeding chapters. 

Based on the works of Kay and Womble [KA, WO] and Soltan 

[SOLI]' Van de vel [V AD9] considered Helly dependence of subsets (not 

necessarily finite) and the convex invariant called Helly number (which is finite) 

in a general convex structure. We felt that the restriction on Helly number to be 

finite is rather too much of a handicap and started investigating in this direction. 

In the first chapter we introduce the concepts of infinite Helly number, infinite 

star Helly number and infinite compact Helly number and then obtain extensions 

of compact intersection theorem [lA)] and countable intersection theorem [lA)] to 

the infinite situation. A non empty subset F of a convex structure X is Helly 

dependent if (\BeF co (F\ {a}) :;:~. If a. is an infinite cardinal, we say that h (X) $ a. 

if and only if each F c X with I F I > a. is Helly dependent. The infinite star Helly 

number h*(X) is defined as the least cardinal a. such that each collection of 

convex sets in X with a. intersection property has nonempty intersection. The 

4 



infinite Helly number of ~m H - convex structure in tenns of the degree of 

minimal dependence of functionals is obtaip.ed. 

In chapter 2 we introduce the infinite Caratheodory number, infinite 

Radon number and the infinite exchange number of a convex structure. We obtain 

relations between Radon, Caratheodory, Helly and exchange dependence for 

arbitrary subsets of a convex structure. The inequalities of Levi [LE] and 

Sierksma [SIll are discussed in the infinite context. We investigate the behaviour 

of convex invariants under convexity preserving images. We also extend the 

Eckhoff-Jamison [Sh] inequality. 

The notion of rank of a convex structure was introduced by Jamison 

[J~] and that of a generating degree was introduced by Van de Vel [V ADs]. In 

chapter 3 we obtain a relationship between rank and generating degree in the 

infinite situation. The generating degree is defined using the following 

generalization of Dilworth's theorem [DIL]. If P is a poset such that every set of 

elements of order greater than a be ~ependent while there is at least one set of a 

independent elements, then P is a set sum of a disjoint chains. We also prove that 

for a non-coarse convex structure, rank is less than or equal to the generating 

degree. We also generalize Tverberg's theorem using infinite partition numbers. 

Van de Vel introduces the notion of convex dimension cind for a 

topological convex structure [V ADl]. In chapter 4, we introduce the notion of 

transfinite convex dimension trcind. We compare the transfinite topological and 

transfmite convex dimensions (PropA.2.3). We obtain the following 

5 



characterization oftrcind in tenns ofhyperplanes. For an FS3 convex structure X 

with connected convex sets the following statements are equivalent. 

I. trcind (X) ::;; (l, where (l is an ordinal 

2. Corresponding to each hyper plane H c X, there exists a p < (l such 

that trcind(H) ::;; p . 

We also obtain a characterization of tricind in tenns of mappings to 

cubes [Prop.4.3.I]. 

6 



CHAPTER 0 

PRELIMINARIES 

In this chapter we give the basic definitions and results, which we use 

in the succeeding chapters. These are adapted from [VAD9] and [CH2]. 

0.1 CONVEXITY THEORY: BASIC CONCEPTS 

0.1.1 Definition 

A family C of subsets of a set X is called a convexity on X if 

(1 ) cl> and X are in C 
'7 

(2) C is closed under intersections, that is, if V c C is non -empo/, then n V is 

in C. 

(3) C is closed under nested unions, that is, if V c C is non -empty and totally 

ordered by inclusion, then U V is in C. 

The pair (X, C) is called a convex structure (convexity space, aligned 

space). The members of C are called convex sets and their complements are called 
, 0 

concave sets. It is custoinaIy to denote the convex structure (X, C) by the symbol X. 

0.1.2 Definition 

For a subset A of X, the convex hull of A, denoted by co (A) is the 

smallest convex set containing A, that is, co (A) = n {C I A c C E Cl. The convex 

hull of a finite set is called a polytope. 

The axioms (1) and (2) in definition (0.1.1) are first used by Levi [LE] 

in 1951,and later on by many authors, Eckhoff [EC l ], Jamison [JAd, Kay and 
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Womble [KA, WO] and Sierksma [SII]. The concept of alignment is introduced 

by Jamison [JAI]. Hammer [HA3] has shown that axiom (3) is equivalent to 

"domain finiteness condition" which says that for each A in X and for each point 

pE coCA) there is a finite set F c A with pE co (F). Instead of the term alignment 

we find in the literature the terms" algebraic closure system" and "domain finite 

convexity space". 

If Cl and C2 are two convexities on X and if Cl c C2, then we say that 

Cl is coarser than C2 and C2 is finer than CI.The power set 2x is the finest 

convexity and {<D, X lis the coarsest convexity on X. 

0.1.3 Definition 

A collection S of sets in X is a subbas,e of a convex structure (X, C) 

provided SeC and C is the coarsest among all convexities that include S. In this 

case we say that S generates the convexity C. A collection B of sets in X is a. base 

of a convex structure (X, C) provided B c C and each member of C is the union 

of an ~p directed sub collection of B. In this case B is said to generate the 

convexity C. 

0.1.4 Proposition 

Let C be a convexity on X. Then B c C is a base for (X, C) if and only 

if it contains all polytopes. 

8 



0.1.5 Proposition 

A collection sce is a sub base for (X, C) if and only if each 

nonempty polytope is the intersection of a sub family of S. 

0.1.6 Definition 

A subbase of X is called an intersectional sub base if each convex set is 

the intersection of subbasic sets. 

0.1. 7 Definition 

An H-convexity on a vector space V over a totally ordered field K is 

the convexity generated by the family S = {f-I(~, t] / teK, feF}, where F is a 

collection of linear functionals from V to K. 

If F is symmetric, that is, F contains -f whenever it contains f, then S 

also contains all sets of the type ["I [t,~) with t e K and f e F and the convexity 

a. 
generated by S is called the symmetric H - convexity. ---
0.1.8 Definition 

Let (X, C) be a convex structure and let Y be a subset of X. The 
tl (la 1~ 

family of sets cl y ={C n Y ICe q is a convexity on Y[called the relative 
, 

convexity ofY and the resulting convex structure (Y, cl y) is a subspace ofX. 

9 



0.1.9 Definition 

Let (Xi, Ci) for i E I be a family of convex structures, let X be the 

product of the sets Xi and let 1ti : X ~ Xi denote the ith projection. The product 
~..c 

convexity C of X is generated by the subbase {1ti -1(Ci) f, C E . Q}. The resulting 
~.-

convex structure (X, C) is called the product of the spaces (Xj, Ci) for i E I and is 

denoted by I1 iel (Xi, Ci). 

0.1.10 Definition 

Let f: XI~ X2 be a function between two convex structures XI and 

X2. Then f is said to be 

(1) a convexity preserving function (cp function) provided for each convex set 

(2) a convex to convex function (cc function) provided for each convex set 

C in XI, f(C) is convex in X2. 

The function f is an isomorphism if it is a bijection and is both cp and cc. 

0.1.11 Definition 

Let (X, C) be a convex structure. A subset H of X is called a half 

space provided H is both convex and concave. 

Note that q, and X are half spaces in any convexity of X. Also if 

f: X ~ Y is a convexity preserving function and if H is a half space of Y, then 

r-I (H) is a half space ofX. 

10 



0.1.12 Definition 

Let (X, C) be a convex structure. It is said to be 

(1) SI if all singletons are convex. 

(2) S2 if XI ;f:. X2 are points in X, then there is a half space HeX with XI E H 

and X2 \i!: H. 

(3) S3 if C c X is convex and if X E X\ C, then there is a half space H of X 

withCcH,x \i!:H. 

(4) S4 if C, D c X are disjoint convex sets, then there is a half space H of X 

with C c H and D c X \ H. 

If X satisfies axiom Si then X is called an Si convex structure and C is 

called an Si convexity. We have S2 implies SI and under the assumption of SI, 

0.1.13 Proposition 

(1) A convex structure is S3 if and only if it is generated by half spaces. 

(2) A point convex space is S3 if and only if it embeds in a Cantor cube. 

0.1.14 Definition 

(a) A convex structure X is said to be a join hull commutative space (JHC 

Space) if C c X is a non empty convex set and if a E X, co{ {a} u C} 

= u {co {a,x} I XEC}. 

(b) X satisfies ramification property if for all b,c,d E X, c \i!: co {b, d} and 
-- ~ -- -- '-. 

d \i!: co {b,c} imply.co {b,c} ~ co {b,d} = {b}. 

11 



(c) An interv~ ab of X is decomposible provided for each x E ab, ax u xb ------ --. 
= ab and ax n xb = {x}. 

(d) X satisfies cone-union pro~~I1Y .if C, Cl, C2 ... Cn are convex sets with 
'-----_.--- ----- ---

C C Ui Ci and if a E X, then co {{a} U C} CUi { co {{a} U Ci}}. 

0.1.15 Definition 

Let X be a set and let I : X x X ~ 2x be a function with the following 

properties. 

(1) Extensive law: a, bEl (a, b) 

(2) Symmetry law: I (a, b) = I (b, a) 

Then I is called an interval operator on X, and I (a, b) is the interval 

between a and b. The resulting pair (X, I) is called an interval space. A subset C of 

X is (interval) convex provided I (x, y) C C for every x, y E C. 

0.1.16 Definition 

An interval operator I on X is. geometric provided the following hold. 

(1) Idempotent law: I (b, b) = {b} for all bE X. 

(2) Monotone law: Ifa,.b, c E X and c E I (a, b), then I (a, c) C I (a, b). 

(3) Inversion law: If a, b E X and c, dEI (a, b), then c E I (a, d) implies 

dEI (c, b). 

A set with a geometric interval operator is called a geometric interval space. 

12 



0.1.17 Definition 

Let X be a geometric interval space, C c X and b E X. A point c E C 

is called ~he gate of b in C provided c E bx for each x E C. If each point of X has 

a gate in C, then C is a gated set within X, and the resulting function X ~C, 

which assigns to a point of X its gate in C, is the gate map ofC. 

0.1.18 Proposition 

In a geometric interval space X 

(1) gated sets are convex. 

(2) if X is S3, then all gate maps of X are cp and cc. 

0.1.19 Theorem 

Let (Xi, Ii) for i .=1,2 be geometric interval spaces such that XI n X2 is 

a gated subset of Xl and of X2, on which the respective interval operators 

coincide. Then there is a unique geometric interval operator I on XI U X2 subject 

to the following two conditions. 

(1) I extend I I and h. 

(2) Ifa E XI and bE X2, then I (a, b) meets XI n X2. 

If Pi: Xi ~ XI n X2 for i = 1,2 ~re the gate maps, and if aE XI and 

bE X2, then (3) I (a, b) = 11 (a, P2(b)) u h (PI(a), b). 

Moreover XI and X2 are gated, and the gate map XI U X2 ~ Xi 

extends Pi for i =1,2. The resulting interval space is called the gated amalgam of 

13 



0.1.20 Theorem 

Let XI and X2 be S3 convex structures of arity two meeting in a 

nonempty gated subspace. Then there is one and only one S3 convexity on 

X = XI U X2 which is of arity two and takes XI and X2 as convex subspaces. This 

convexity is derived from the gated amalgamation of the summands. Moreover if 

Fi C Xi for i= 1,2 are sets with FI nonempty and if Pi: X -? Xi for i= 1,2 denotes 

the gate map, then co (FI U F2) n XI = co(FI U PI (F2». 

0.1.21 Definition 

A median operator on a set X is a function m: X3 ~ X satisfying the 

following properties. 

(1) Absorption law, that is m (a, a, b) = a 

(2) Symmetry law, if cr is any permutation of a, b, c then m (cr(a),cr(b),cr(c» 

=m(a,b,c). 

(3) Transitive law, m (m (a,b,c),d,c) = m(a,m(b,c,d),c). 

The point m (a, b, c) is called the median of a,b,c and the resulting pair 

(X, m) is called a median algebra. A subset C of a median algebra is convex if 

m (C x C x X) c C. 

Let (Xi, mi) for i El be median algebras and let X = n iel Xi, then 

m: X3 ~ X defined by m (a, b, c) = (mi (ai, bi, Ci» iel, where a = (ai) ieI. b = (bi) ieI. 

C = (Ci) ieI is a median operator on X and the resulting convexity on X is precisely 

the product of the median convexities produced by mi on Xi for i E 1. 

14 



0.2 RELATIONSHIPS BETWEEN HELLY, RADON, CARATHEODORY 

AND EXCHANGE NlJMBERS 

The theory of convex invariants developed out of the classical results 

ofHelly, Radon and Caratheodory. Here we give the definitions of the invariants. 

(See [LE], [KA,WO], [SI,] and [ShD 

0.2.1 Definition 

Let X be a convex structure and F be any non empty finite subset of 

X. Then, 

(a) F is said to be Helly dependent if flaeF co (F\{ a}) * 0, where co (A) 

denotes the convex hull of A. F is said to be Helly independent if it not 

Helly dependent. 

(b) F is said to be Caratheodory dependent if co (F) C U aeF co (F \{aD. F is 

said to be Caratheodory independent if it is not Caratheodory dependent. 

(c) F is Radon dependent if there is a partition {F" F2 } of F such that 

co (F ,) fl co (F2) * 0. F is said to be Radon independent if it is not Radon 

dependent. 

(d) F is called exchange dependent if for each pE F, co (F \ {p } ) 

C U {co (F\ {a}) I a E F, a * p}. F is said to be exchange independent 

otherwise. 

0.2.2 Proposition 

Let X be a mc space and F C X be any set. 

15 



1. If X has ramification property and if F is Radon independent, then for each 

pair of subsets FI, F2 ofF, co(Fd n co (F2) = co (Fl n F2) 

2. If X has decomposible segments and F has at least two points, then for all 

x E co (F), co (F) = UaeF co {{ x} U F \ {a} }. 

0.2.3 Proposition 

For a non-empty finite subset of a convex structure the following are true. 

(1) Radon dependence implies Helly dependence. 

(2) If X is join hull commutative and has the ramification property, then 

Radon dependence is equivalent to Helly dependence. 

(3) If X has cone union property, then exchange dependence implies 

Caratheodory dependence. 

(4) If X is join hull commutative and has decomposable segments, then Helly 

dependence implies exchange dependence. 

0.2.4 Definition 

Let X be a convex structure and 0 ~ n < 00, then 

(1) h (X) ~ n if and only if each finite set F c X with cardinality greater than n 

is Helly dependent. 

(2) the Caratheodory number c (X) ~ n if and only if each F c X with I FI > n 

is Caratheodory dependent. 

(3) The Radon number r(X) ~ n if and only if each F c X with I F I > n is 

Radon dependent. 

16 



(4) The exchange number e(X) :S n if and only if each F c X with I F I > n is 

exchange dependent. 

0.2.5 Theorem 

Let X be a convex structure and let n < 00. 

(1) h (X) :S n if and only if each finite collection of convex sets in X meeting n 

by n has a non empty intersection. 

0.2.6 Theorem 

The following hold for all c.onvex structures. 

(1) h(X):S r(X). (Levi inequality) [LE]. 

(2) e(X) -1 :S c(X):S max { heX), e(X) -1 }. (Sierksma inequality) [SIll 

(3) r(X):S c(X) (h(X) - 1) + 1 if heX) "* lor c(X) < 00 (Eckhoff -Jamison 

inequality) [SId. 

0.2.7 Theorem 

Let X be the gated amalgam of S3 spaces XI and X2 of arity two. Then 

c(X) = max {c (XI), c (X2)} unless XI and X2are free convex structures with more 

than one point. In this situation the Caratheodory number one larger. 

0.2.8 Theorem 

Let X be the gated amalgam of S3 spaces XI and X2 of arity two. Then 

e(X) = max { e(XI),e(X2) }. 

17 



0.2.9 Theorem 

Let X be the gated amalgam of 83 spaces XI and X2. Then h(X) = 

0.2.10 Theorem 

Let X be the gated amalgam of two geometric interval spaces Xl, X2. 

0.2.11 Definition 

Let X be a set and F, G e X. Let E (F,G) = {Ye2x I FeY, G (l Y = ~}. 

The family of all sets of the type E (F,G) where F,G are finite, IS an open base for 
I)... 

the topology of 2x. The resulting topology on 2x is known as the inclusion -

exclusion topology. 

0.2.12 Theorem 

A convexity on X is a compact subset of 2\ relative to the inclusion-

exclusion topology. 

0.2.13 Theorem 

Let X be a convex structure. 

'(1) The collection of all half spaces in X is a compact subset of2x, relative to 

the inclusion- exclusion topology. 

(2) The closure in 2x of a subbase includes all co-points ofX. 

18 



0.2.14 Theorem 

Let X be a convex structure ofHelly number h(X) < 00 , and let D be a 

family of convex sets compact in 2x. If (") D = ~, then some subfamily containing 

at most h(X) sets from D has an empty intersection. 

0.2.15 Definition 

A convex structure X is said to have a cr - finite Helly number 

provided there is sequence (Xn) neN of subspaces of X such that u Xn = X and 

each Xn has a finite Helly number. 

0.2.16 Theorem 

Let X be an S3 convex structure of sigma finite Helly number, such 

that for each half space H in X there is a countable subset A of H with H\ext (X) 

~ co(A). Then each collection of convex sets in X with an empty intersection has 

a countable sub collection with an empty intersection. 

0.2.17 Definition 

A subset F of a convex structure X is convexly independent if 

a ~ co (F\ {a}), the convex hull of F\ {a}, for each a E F. It is said to be convexly 

dependent otherwise. 

19 



0.2.18 Definition 

The rank of a convex structure X is defined to be the number d(X) as () 
------~ ---- -- -

d(X) ~ n if and only if each subset of X with more than n points is convexly 

dependent, where 0 ~ n < 00. 

0.2.19 Definition 

The generating degree of a convex structure X is defined as the 

number gen(X), satisfying gen(X) ~ n if and only if there is a subbase of X of 

wic!th .less than or equal to n, where n < 00. 

0.2.20 Theorem 

Let X be a poset and 0 < n < 00. Then the width of X is atmost n if and 

only if there exists n totally ordered families X), X2 ......... Xn C X with 

0.2.21 Proposition 

For a non coarse convex structure X, d(X) ~ gen(X). 

0.2.22 Definition 

Let X be a convex structure and let F C X be a non empty indexed set. 

A partition {F), F2 ...... Fd of F is called a Tverberg k-partition provided 

k n co(Fi) * cp. The kth Tverberg number Pk of X is defined as follows. 
"-

jz( 
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If n < 00, then Pk(X) :$; n if and only if each finite indexed set with more than n 

points has a Tverberg partit(on in k+ I parts. 

0.2.23 Theorem 

For each k ~ I,the kth partition number Pk(Rd
) satisfies Pk = k (d+l). 

0.3 TOPOLOGICAL CONVEX STRUCTURES AND CONVEX DIMENSION 

The notion of topological convex structures was introduced by Jamison 

[JAI]. Restricted or deviating notions were fonnulated by Deak [DE], Bryant [BR2], 

Kay [KA], Guay [GU], Van Mill and Van de vel [MLI V AD]. In this section we give 
" '1': e~ '1 

some basic defmitions and results, which will be using in Chapter four. 

0.3.1 Definition 

Let X be a set equipped with a topology 't and a convexity C. We say 

that 't is compatible with the convex structure (X, C) provided all polytopes are 

closed in 'to Then X is called a topological convex structure, and is denoted as 

(X,'t, C). 

Note that a topology is compatible with the convexity on the same 

underlying set if and only if the convexity is generated by closed sets. 

0.3.2 Definition 

Let X be a topological convex structure and let the subset Y of X be 

equipped with the relative topology 't I y and the relative convexity C I y. The 

resulting topological convex structure is called a subspace ofX. 
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0.3.3 Definition 

A topological convex structure X is closure stable provided the 

closure of each convex subset is convex. X is called interior stable provided the 

interior of each convex subset is convex. 

0.3;4 Definition 

Let (X, t, C) be a topological convex structure. The weak topology of 

X is the topology generated by the collection of convex closed sets as subbase of 

closed sets. It is denoted as (X, tw, C). 

0.3.5 Definition 

A function f: X -)- Y, where X and Y are topological convex 

structures, is a convexity preserving function (c.p function) if f-I(e) is convex in 

X for each convex set e in Y. 

The following functional separation aXioms were introduced by 

Van de vel [V AD4]. 

0.3.6 Definition 

A topological convex structure X is said to be 

(1) FS2, if for each pair of distinct points p, q E X there exists a continuous c p 

functional of X separating p and q. 

(2) FS3, if for each convex closed set e and for each point q ~ e, there exists 

a continuous cp functional of X separating e and q. 
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(3) FS3+, if for each pair, consisting of a convex closed set C and a polytope P 

disjoint from C, there exists a continuous cp functional of X separating P 

andC. 

(4) FS4, if for each pair of disjoint and non-empty convex closed sets C, D, 

there exists a continuous cp functional of X separating C and D. 

0.3.7 Definition 

A convex ~losed screening of two sets A and B is a pair (C, D) of 

convex closed sets such that A c C \ D, BeD \ C and CuD = X. 

A set C c X is a separator of two non-empty sets A, B c X provided 

there exists disjoint open sets 0::::> A and P::::> B such that X \ C = 0 u P. 

0.3.8 Definition 

The ~onvex small inductive dimension of a topological convex 

structure X is the number cind(X), satisfying the following rules. 

(1) cind(X) = -1 if and only if X =~. 

(2) cind(X) ~ n + 1 (where n < (0) if and only if each pair consisting of a 

convex closed set C and a point p E X\ C, has a convex closed screening 

(A, B) such that cind (A (l B) ~ n. 

Note that cind(C) ~ cind(X) for each convex subset C of a topological 

convex structure X. Also cind (X x Y) = cind(X) + cind(Y). 
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The transfinite small inductive dimension of a toplogical space was 

studied by Toulmin [TO]. The transfinite small inductive dimension trind is 

defined as follows. 

0.3.9 Definition 

Let X be a topological space (separable, metrizable). Then, 

(1) trind(X) = - 1 if and only if X = cp. 

(2) trind(X):S; a, where a is an ordinal number, if for every point p E X and 

each open set V c X which contains p, there exists an pen set U c X such 

that p E U C V and trindBd(U) < a. 

(3) trind(X) = a if and only if trind(X) :s; a and the inequality trind(X) :s; p 

holds for no P < a. 

Chatyrko [CH2] obtained the following revision of Toulmin's finite sum theorem 

for trind [TO]. 

0.3.10 Theorem 

Let X = Xl U X2, where Xi is closed in X and trind (Xi) = ai for 

i = 1,2 (ai's are ordinals). Then 

(a) for .any two closed subsets A and B of X, there exists a partition C 

between A and B such that trind(C):S; max { ai, a2 }. 

(b) max { al. a2 } ~ trind(X) ~ max{ ai, a2 } + 1. 
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0.3.11 Proposition 

Let X be a topological convex structure of which the weak topology is 

separable and metrizable. Then ind (Xw) ~ cind(X). 

0.3.12 Lemma 

Let X be a topological convex structure. 

(1) If(Cj,C2) is a screening pair of convex closed sets, then there is a minimal 

convex closed screening pair (Dl' D2) with Dj c Cj for i = 1,2. 

(2) Let X be closure stable, FS3, and let all convex sets be connected. If 

(C), C2) is a minimal convex closed screening pair and if C = Cl (l C2, 

then for each dense convex subset B c X, the set B (l C is dense in C. 

0.3.13 Proposition 

Let X be a non empty, closure stable and FS3 space with connected 

convex sets. IfH c X is a half space, then cind (cl (H) \ H) ~ cind (X) - 1. 

The following is a characterisation of cind in terms ofhyperplanes. 

0.3.14 Corollary 

In a closure stable FS3 space with connected convex sets the following 

statements are equivalent for each number n. 

(1) cind(X) ~ n + 1. 

(2) cind(H) ~ n for each hyperplane H ofX. 

.. 
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0.3.15 Corollary 

In a closure stable FS3 space with connected convex sets, a convex set 

and its closure have the same convex dimension. 

0.3.16 Corollary 

In a closure stable FS3 space with connected convex sets and of finite 

dimension, each dense half space has a non - empty interior. In fact, its interior 

meets every non- empty convex open set of the space. 

0.3.17 Proposition 

Let X and Y be. closure stable FS3 spaces with connected convex sets, 

and let f: X ~ Y be a closed continuous and cp function of X onto Y. Then 

cind(X) ~ cind(Y). 

0.3.18 Theorem 

Let X be a closure stable FS3 space with connected convex sets, and 

let 0 ~ n < 00. If C c X is a convex set with cind(C) ~ n, then there is a continuous 

cp function f: X ~ [0,1]" with f(C) = [0,1]". If all polytopes of X are compact, 

then the converse is also true. 

, 
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CHAPTERl 

* HELL Y DEPENDENCE AND 

INFINITE HELL Y NUMBERS 

1.1 INTRODUCTION 

Based on the works of Levi [LE], Kay and Womble [KA, WO] and 

Soltan [SOLI]' Van de vel [V AD3 ] considered Helly dependence of subsets (not 

necessarily finite) and the convex invariant called Helly number (which is finite) 

in a general convex structure. We felt that the restriction on Helly number to be 

finite is rather too much of a handicap and started investigating in this direction. 

In this chapter we introduce the concepts of (infinite) Helly number, 

(infinite) star Helly number and (infinite) compact Helly number and then obtain 

extensions of intersection theorem (Prop.1.2.7) and countable intersection theorem 

(Prop. 1.2.9) to the infinite situation. The infinite Helly number of an H -convex structure 

in terms of the degree of minimal dependence of functionals is obtained (prop. 1.2.1 I ). 

* Some of the results in this chapter are included in the paper .. On Helly 

dependence and infinite Helly numbers" published in the journal of the Tripura 

Mathematical society, 4, (2002), 7-12. 

1.2 HELLY DEPENDENCE AND EXTENSION OF COMPACT 

INTERSECTION THEOREM 

1.2.1 Definition 

Let X be a convex structure and F be any non empty subset of X. , 
Then F is said to be Helly dependent if rlaeF co(F\{a}) '# ~, where co(A) denotes 
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the convex hull of A. Also F is said to be Helly independent if it is not Helly 

dependent. 

1.2.2 Definition 

Let X be a convex structure. Then we say that heX) :$ ~ 0 if and only if 

each F c X with I F I > ~o is Helly dependent. In addition to this, if for any finite 

cardinal a., there exists a Helly independent subset F with I F I ~ a., we say heX) = ~o. 

More generally if a. is an infinite cardinal, then we say that heX) :$ a. 

if and only if each F c X with I F I > a. is Helly dependent. In addition if for any 

cardinal ~ less than a., there is a Helly independent subset F with I F I ~ ~, then we 

say heX) is precisely equal to a.. 

1.2.3 Definition 

Let V be a vector space over a totally ordered field K and F be a 

collection of linear functionals from V to K and a. be any infinite cardinal. Then 

the degree of minimal dependence md(F) is defined as md(F) :$ a. if and only if for 

each ~ > a. and for each collection {fi} of linearly dependent elements of F with 

cardinality ~, there exists a subfamily of linearly dependent functionals with 

cardinality less than or equal to ~. 

Note 

A collection C of subsets of X is said to satisfy 0.- intersection 

property if the intersections of each sub collection of C containing a. or less 

members is non-empty. 
, 
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1.2.4 Definition 

Let X be a convex structure. Then the infinite star Helly number h*(X) 

is defined as the least cardinal a such that each collection of convex sets in X with 

a - intersection property has nonempty intersection. 

1.2.5 Proposition 

For a convex structure X with the star Helly number h*(X) = a, an 

infinite cardinal, h(X) $ a. 

Proof 

Since h*(X) = a, each collection of convex sets in X with 

a - intersection property has non-empty intersection. Let F c X with I F I =p > a. 

Then the family {co(F\{Xj}) I xjeF} satisfies a-intersection property and hence 

(1 co(F\{xj}) ;t:.~. Therefore F c X, with I F 1= P >0., is Helly dependent. 

Note 

By a compact family D, we mean a family D of subsets of X compact 

in the inclusion -exclusion topology of2x. 

A family of subsets of X is said to satisfy compact a· intersection 

property if intersection of each compact sub-collection of sets with a or less 

members is non-empty. 
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1.2.6 Definition 

Let X be a convex structure. Then the infinite compact Helly number 

hc(X) is defined as the least cardinal a such that each collection of convex sets in 

X with compact a intersection property has nonempty intersection. 

1.2.7 Proposition 

Let X be a convex structure and a be an infinite cardinal. Let he (X) = a. 

If D is a family of convex· sets compact in 2x having empty intersection, then D 

possesses a subfamily containing at most a sets having empty intersection. 

Proof 

Consider a decreasing chain (Di)iel of compact families Di ~ D, each 

with an empty intersection. Let DaJ = nJh Then DaJ is the lower bound of this 

chain. By Zom's lemma, the family of all compact sub collections of D having 

empty intersection has a minimal member Do. By the definition of he (X) this 

family Do cannot have more than a members. 

Note 

X and cl> are half spaces in any convexity on X. All the other half 

spaces are called nontrivial. 

1.2.8 Proposition 

Let X be a non-empty S3 convex structure with hc(X) = a, an infinite 

cardinal. Then each non-trivial half space Ho c X is the intersection of at most 

(l sets in 11, where 11 is a subbase consisting of half spaces. 
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Proof 

. , 

Consider the family K ={H E 1f I Ho c H}. Since the collection of all 

half spaces is a compact subset of 2x, the family K is compact. The assumption 

that X is S3 gives rl K = Ho. By proposition (1.2.7) K u{X\Ho} admits a 

subfamily of at most a sets having empty intersection. 

1.2.9 Proposition 

Let X be an S3 convex structure of infinite compact Helly number a 

such that for each half space H in X there is a subset A of H with I A I ~ a and 

H\ext(X) c coCA). Then each collection of convex sets in X with empty 

intersection admits a subfaqtily of at most a sets having empty intersection. 

Proof 

First we can see that if C is convex set included in ext (X), 

then I C I ~a. This is because hc(C) ~ a, and C is free .. Since X is S3 it is enough 

to prove the result for families 1f consisting of half spaces such that rl1f = cp. 

Suppose there is a net <Hn> in 11 with rl Hn c ext(X) (here the 

directed set is W(rocc)). Since rl Hn is a convex set I rl Hn I ~ a. For each element 

in rlHn, there is an H E 1f, which does not contain that element. The sets in the 

net together with these HIS ~orm a subfamily of1fhaving empty intersection. 

Now assume that there is no net in 11 whose intersection is in ext (X). 

Consider H (the ~losure of H). By proposition (1.2.7), H has a subfamily H' with 
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( \' 

I H' I ~ ex: and n H' = cp. Choose a net <Hk> in H with empty intersection. Fix 

k. Choose sets A and B with A c Hk and B c X\Hk with H~.\ext(X) ~ coCA), 

x\(Hk u ext(X)) c co(B) and I A I = I B I =p ~ Cl. Let <AI>and <BI> be nets in 2A 

and 28 such that <co(AI»---+ coCA) and <co(BI» ---+ co(B). Since Hk is adherent to 

1f, there is a set Hkl in 1f with AI c Hkl and BI c X\Hkl. By compactness of H, 

the net <Hkl>clusters at some Hk' in H. Similarly the net <X\Hkl> clusters at 

X\Hk'. From these we have, 

= co(A)\ext(X) c H'k\ext(X). 

x\(Hk u ext(X)) = Co(B)\ext(X) c X\(Hk' uext(X)). 

This shows that Hk\ext(X) = Hk\ext(X). Then Hk\ext(X) is a cluster 

point of the net <Hkl\ext(X». By assumption there is a point PEnk.I<Hkl\ext(X». 

Then {Hkl\ext(X)} c E { {p } ,cp}. Then all cluster points Hk \ext(X) contain 

p contradicts that n Hk = cp. 

Note 

Recall that an J:I-convex~il_on a vector space V over a totally ordered 

field K is the convexity generated by the family S = {f -l(~, t] / tEK, fEF}, 

where F is a collection of linear functionals from V to K. 

A sub base of X is called an intersectional subbase if each convex set is 

the intersection of subbasic sets. 
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1.2.10 Proposition 

Let S be any intersectional subbase of an S3 space and if any sub collection 

of sets in S meeting No by No has a non empty intersection, then h(X) 5 No. 

Proof 

Suppose heX) = 13 > t{o. Then there exists a Helly independent set 

F s;;; X with I F I = ~ > ~o. That is (J aeF co (F\ {a}) = 4>. For each aEF, let Sa be the 

set of all SE S containing F\ {a}. Since X is S3 co (F\ {a}) = (JaeF Sa. Consider 

UaeFSa. Then UaeF Sa meet ~o by ~o and hence (JaeF Sa "* 4>. This implies that·~ 

(JseF co (F\ {a})"* 4>, a contradiction. 

1.2.11 Proposition 

Let V be a vector space over R and let C be the H- convexity on 

V generated symmetrically by a set F of linear functionals with md(F) = t{ o. Then 

h(V,C) = ~o. 

Note: We say md(F)= ~o if the supremum of the lengths of all minimally . . 

dependent sub collections of F is ~o. 

Proof 

First we show th:lt md(F) ~ h(V,C). We have md(F) > n for each n. 

Then for any n, there exists a set of n+ I minimally dependent functionals 

generating a convexity coarser than C having Helly number greater than n. Then 

the original Helly number h(V,C) > n. Therefore md(F) ~ h(V,C). Now to show 
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that h(V,C) ~ ~o. Suppose h(V,C) > ~o. Then by (prop 1.2.10) there is collection 

{fi-I (Hj)} of half spaces Il!-eeting No by No whose intersection is empty. Let 

D = {fi}. Consider the class E of all subfamilies of D such that nj fi- I (Hj) = ~. E 
----

is a partially ordered set under inclusion. Every chain in E has a lower bound. By 

~ ---------------
Zom's lemma E possesses a minimal element say Eo. Then Eo is a sub family of 

D such that nj fj-
I (Hi) = ~. Also I Eo I > ~o and Eo is a minimally dependent 

subfamily of F. This contradicts that md(F) = ~o. 

An extension of compact intersection theorem is obtained for a family 

of sets in X, which is K- compact in 2x using K- compact Helly number hK(X). 

1.2.12 Definition 

The infinite K- compact HeUy number hK(X) is defined as the least 

cardinal a. such that each collection convex sets in X with "K- compact 

a. intersection property" has non- empty intersection. 

1.2.13 Proposition 

Let X be a convex structure and a. be an infinite cardinal. Let hK (X) = a.. 

IfD is a family of convex sets K- compact in 2x having empty intersection, then D 
>, ,I 

possesses a subfamily containing at most a. sets having empty intersection. 

Proof 

Let P be the collection of all K- compact sub families of D having 

empty intersection. Consider a decreasing chain (Dj)jel of K- compact families 

Dj cD, each with an empty intersection. Let Doo = n»j. Then Doo is K- compact 
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in 2x and is the lower bound of this chain. By Zorn's lemma, the family of all 

K- compact sub collections of D having empty intersection has a minimal member 

Do. Since hK(X) = a, the family Do cannot have more than a members. 
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CHAPTER 2 

RELATIONS BETWEEN INFINITE 

CONVEX INVARIANTS 

2.1 INTRODUCTION 

This chapter deals with relations among various invariants of a convex 

structure. Levi [LE] proved that for a finite subset of a convex structure, Radon 

dependence implies Helly dependence. In [HAR] Hammer proved that if X is a 

join hull commutative space and has ramification property, then Radon 

dependence is equivalent to Helly dependence. In this chapter we first introduce 

the infinite Caratheodory number, infinite Radon number and infinite exchange 

number. We obtain relations between Radon, Caratheodory, Helly and exchange 

dependence for arbitrary subsets of a convex structure (prop 2.3.2). The 

inequalities of Levi [LE] and Sierksma [SId are discussed in the infinite context 

in (Prop 2.3.4). In (Prop 2.3.5), we investigate the behavior of convex invariants 

under convexity preserving images. We extend the Eckhoff-Jamison inequality 

[SI1] in (Prop 2. 3.7). 

2.2 INFINITE CONVEX INVARIANTS 

In this section we introduce various infinite invariants. 

2.2.1 Definition 

Let X be a convex structure and F be any non empty subset ofX. Then, 

(1) F is said to be Caratbeodory dependent if co(F) C U aeF co (F \{aD. F is 

said to be Caratbeodory independent if it is not Caratheodory dependent. 
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(2) F is Radon dependent if there is a partition {F 1, F2} of F such that 

co (Fd n CO(F2):t; 0. F is said to be Radon independent ifit is not Radon 

dependent. 

(3) F is called exchange dependent if for each p E F, co (F \{p}) 

c u {co (F\ {a}) I a E F, a :t; p}. F is said to be exchange independent 

otherwise. 

2.2.2 Definition 

Let X be a convex structure. Then we say that the Caratheodory 

number c(X) ~ ~o if and only if each F c X with I F I > ~o is Caratheodory 

dependent. In addition to this, if for any finite cardinal a, there is a Caratheodory 

independent subset F with I F I ~ a, we say c(X) = ~o. Generally if a is an infinite 

cardinal, then we say that c(X) ~ a if and only if each F c X with I F I > a is 

Caratheodory dependent. In addition if for any cardinal ~ less than a, there is a 

Caratheodory independent subset F with I F I ~ ~, then we say c(X) is equal to a. 

2.2.3 Definition 

The Radon number r(X) ~ a if and only if each F c X with I F I > a is 

Radon dependent, where a is any infinite cardinal. In addition if for any cardinal 

~ less than a, there is a Radon independent subset F with I F I ~ ~, then we say 

r(X) is equal to a. 
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2.2.4 Definition 

The exchange number e(X) :s;; Cl if and only if each F c X with I F I > Cl 

is exchange dependent, where Cl is any infinite cardinal. In addition if for any 

cardinal ~ less than Cl, there is an exchange independent subset F with I F I ~ ~, 

then we say e(X) is equal to Cl. 

2.3 RELATIONS BETWEEN INFINITE CONVEX INVARIANTS 

The properties given below are available for finite subsets of a join 

hull commutative space X. Here we prove them for arbitrary subsets ofX. 

2.3.1 Proposition 

Let X be a me space and F c X be any set. 

1. If X has ramification property and ifF is Radon independent, then for each 

pair of subsets F1, F2 ofF, co(FI) n co (F2) = co (FI n F2) 

2. If X has decomposable segments and F has at least two points, then for all 

x E co (F), co (F) = UaeF co {{x} U F \ {a} }. 

Proof 

Case 1. 

~I n F2 = 0, then the result follows from Radon independence~~e 
obviously have co (F 1 n F2) c co (F I) n CO(F2). Now to show that 

co (F1) n co (F2) cco (FI n F2). 

Assume that the inclusion is not true. That is there exists 
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Since x E co (FI), by domain !'!!!i!eEess of !h_~ __ ~per~!()r, there 

exists a finite subset F 11 c F I such that XECO (F 11). Similarly there is a finite 

subset F21 c F2 such that x E CO(F2\ Thus XECO (FII) n CO(F21) and since the 

inclusion is true in the finite case XE CO(FII n F21). But Flln F21 c FI n F2 and 

this contradict that xe co (FI n F2)' 

Case 2. 

Let F c X be any subset. Fix XECO(F). By dQ.ma.in finitenes_s_ we can 

fmd a fmite set FI c F with x E co (FI). But we have co (FI) = UaePI co ({z}u FI\{a}) 

for every z E CO(FI). Let y E co (F). We will show that YECO( {x}uF\{a}) for some 

aEF. Ify E co (FI), then 

YECO (FI) = u aEpI co ({x}u FI\{a}) c uaEF~o( {x} }uF\{a}). 

Ify eco (FI), then we can find a finite subset F2 c F such that y E co (F2). Take 

F3 = FI U F2. Then x, yE co (F3) and the result follows as in the above case. 

2.3.2 Proposition 

Let F be any subset of a convex structure X. Then 

1. Radon d_ependence implies Helly dependence. 

2. If X is mc and has ramification property, t11en Radon dependence is 

equivalent to Helly dependence. 

3. If X is mc and has decomposable segments, then Helly dependence 

implies exchange dependence. 
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4. If X has the cone-union property, then exchange dependence implies 

Caratheodory dependence. 

Proof 

1. Let F be Radon dependent. 

Then there is a partition {F" F2} ofF such that co (F,) (l co (F2) =#:- 0. 

Let p e co(F,) (l CO(F2). For each a e F, either F, s;;;; F\{a} or F2 c F\{a}. Then 

pe co(f\{a}). That is flaeF co(F\{a});t 0. Therefore F is Helly dependent. 

2. Suppose X is JHC and h~s ramification property. 

Let F be Radon independent. Then (laeF co (F\{a)) ,,;, CO«(laeF F\{a}) 

= co(0) = 0 (by prop 2.3.1 (1)). Therefore F is Helly independent. 

3. Let F c X be Helly dependent. Then (laeF co (F\ {a}) ;t 0. 

Take x e (laeFco(F\ {a}). Then for each pe F, 

co(F\{p}) = u co( {x}uF\{a, p}Ja e F\{p}) s;;;; u co(F\{a};ieF\{p}). 

Therefore F is exchange dependent. 

4. Let X satisfy the cone union property and let F s;;;; X be exchange dependent. 

Fix a point p e F. By exchange dependence we have 

, 
co (F\{p}) c u co(F\{a}/aeF\{p}). Then by using cone union property, 

co (F) = co( {p}uF\{p}) c u {co( {P}uc&~~{a})/aeF\{p~ 

= u co(F\{a}/aeF\{p}). 

Therefore F is Caratheodory dependent. 
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The following proposition can be used as an alternative definition for 

the Caratheodory number of a convex structure. 

2.3.3 Proposition 

Let X be a convex structure, and a any infinite cardinal. Then c(X) ~ a 

if and only if for each A c X and p eco(A), there is a subset F of A with I F I ~ a 

and peco(F). 

Proof 

Suppose that c(X) ~ a and pe co(A). By ~()main finiteness ofth~ hull 

operator there is a finite set F c A satisfying the condition. Now assume that the 

condition is true. Suppose c(X) >a. Then there is a set A c X with I AI > a which 

is Caratheodory independent. That is co (A)a: UaeA co (A\{a)). That is there is a 

point ~e c<?(~2w~~ch is not in any of the sets co(A\{a}) and in particular there is 

no subset F of cardinality less than or equal to a containing x. 

2.3.4 Proposition 

Let X be a convex structure with Helly number h(X), Caratheodory 

number c(X), Radon number r(X) and exchange number e(X) all infinite 

cardinals, then 

1. h(X) ~ r(X) 

2. e(X) ~ c(X) ~ max {h(X),e(X)} 
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Proof 

1. Let r(X) = a., an infinite cardinal. We will show that heX) ~ a.. 

Let F c X with I F I = ~ > a.. Since F is Radon dependent there is a 

For each aE F, either FJ c F\{a} or F2 c F\{a}. Then pE co(F\{a}). That is 

flaeFco(F\{a}) :t ~. Hence F is Helly dependent. Therefore heX) ~ a.. 

2. Let c(X) = a., an infinite cardinal and let F be a subset of X with I F I > a.. Take 

pE F. Then I F \ {p} I > a. and co(F\ {p }) C ua"P co(F\ {a,p}) C ua"P co(F\ {a}). This 

shows that F is exchange dependent. Therefore e(X) ~ c(X). 

To prove the other inequality, let max {h(X),e(X)} = a. and F C X 

with I F I > a.. Then F is Helly dependent. Then there is a point 

P E flaeF co(F\{a}). Consider F U {plo Now I F u {p}1 > a and is exchange 

dependent. Therefore co(F) ~ UaeF co(Fu{p} \{a}) = UaeF co(F\{a}). 

2.3.5 Proposition 

Let X and Y be convex structures and f: X ~ Y be a convexity 

preserving surjection, then .h(X) ~ heY) and r (X) ~ r (Y). If f is also convex to 

convex then c(X) ~ c(Y) and e(X) ~ e(Y). 

Proof 

v'_' 

Let heX) = a.' an infinite cardinal and let G c Y with I G I = ~ > a.. We 

will show that G is Helly dependent in Y. For each bEG there exists a EX 
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such that f(a) = b. Denote F = f -I (G). Since f is convexity preserving, 

f(cqF\{a~) c co (G\{~})~ Jo. But rlaeFCO F\{a} "* 0. Therefore (1aeGco(G\{b})"* 0. 
,,-- - ~-- ---_.---. -.-------

Suppose r(x) = a. Let G c Y with I G I = P > u. For each bEG there 

exists a E X with f(a) = b. Take F = ["I(G). Since I F I > u, there is a partition 

{FI' F2} ofF such that co(FI) (1 co (F2) "* cp. Since fis convexity preserving, 

Now suppose that f is both convexity preserving, convex to convex 

and c(X) = u, an infinite cardinal. Let G c Y with I G I = P > u. For each bE G 

there is an element a E X such that f(a) = b. Take F = f -I(G). Since f is both 

convexity preserving and convex to convex, 

This shows that 

f(co(F)) = co'f(F)'= co(G) and 
J I 

f(co F\{a}) = CO(~(F\{a})):A co(G\{b}). 

co (G) c u co (G\ {b}). 

Therefore G is Caratheodory dependent and c(Y) ~ u. If we take e(X) = u 

andG c Y with I G I = P > U, we can see that co(G\{p}) c UbeG co(G\ {b}, b"* p) for 

each pEG and hence G is exchange dependent. Therefore e(Y) ~ u. 
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2.3.6 Proposition 

Let X and Y be convex structures and f:X ~ Y be an isomorphism. 

Let heX) = a., then h (Y) = a.. 

Proof 

Let G c Y with I G I = ~ >0.. Since f is a bijection, for each bEG, 

there exists a E F c X such that f(a) = b. Since f is both convexity preserving and 

convex to convex, f(co F\{a}) = co (G \ {b}). Since naeFco(F\{a}) :;t:cp, we have 

f(naeFco(F\{a}) = n co(G\{b}) 4. Therefore G is Helly dependent. 

The following proposition is an extension of Eckhoff-lamison 

inequality [SII]. See proposition (0.2.6). 

2.3.7 Proposition 

Let X be a convex structure with the infinite star Helly number 

h*(X) = a. and Caratheodory number c(X) = ~, both infinite cardinals, then the 

Radon number r(X) satisfies r(X) ~ max {a.,~} 

Proof 

Let F c X with I F I > max {a.,~}. We will show that F is Radon 

dependent. Take p E F. Then the sets co(F\{p)) and co(F\A) for p I£. A c F and 

I A I ~ ~ meet a. by a.. Suppose co (F\ {p }) belongs to. the ~nection of a. sets 
~- - - ---

chos_en. Among the remaining sets of the type co(F\(Ai», note that 
, 

I U Ai I ~ max {a.,~}. Then there exists a point q E F, such that q :;t: p and q ~ u Ai, 
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q E co(F\{p}) n n[co(F\{Aj})/Aj c F, IAiI :S ~]. If co(F\{p}) is not in the 

collection, then p E n{ co(F\Ai» / I Ai I :S ~}. Since h*(X) = a, each collection of 

convex sets meeting a by a has non empty intersection. Therefore there is a point 

x E co(F\{p}) n n[co(F\ (A) / p ~ A c F, I A I :S ~]. Also, since the Caratheodory 

number of X is ~, there is a set A c F\{p} with I A I :S ~ and XE co (A) 

(By prop.2.3.3). Then {A, F\A} is a partition ofF. 
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CHAPTER 3 

*RANK, G~NERATING DEGREE AND 

GENERALISED PARTITION NUMBERS 

3.1 INTRODUCTION 

The notion of rank of a convex structure was introduced by Jamison 

[J~] and that of a generating degree was introduced by Van de vel [V ADs]. In 

this chapter we consider the invariants rank and generating degree (both infinite) 

of a convex structure X. The generating degree was defined using a generalisation 

of Dilworth's theorem for posets (Prop.3.2.2). For a non-coarse convex structure, 

rank is less than or equal to the generating degree (Prop.3.2.4). In section 3.3 we 

generalize Tverberg's theorem using (infinite) partition numbers. 

Following closely the results on gated amalgams by Bandelt, Chepoi 

and Van de vel [V AD9], we consider some infinite convex invariants for gated 

amalgams in section 3.4. 

3.2 RANK AND GENERATING DEGREE 

3.2.1 Definition 

The rank of a convex structure X is defined to be the number d(X) as 
----~---.-~-- -----

d(X) ~ a (any cardinal finite or infinite) if and only if each subset of X with 

cardinality greater than a is convexly dependent. 

* Some of the results in t~is chapter are included in the paper "Relationship 

between rank and generating degree" presented in the national conference on 

Mathematical modeling conducted by Kerala Mathemaical Association at 

Baselius College, Kottayam, 2002 Jan. 
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The following result is an extension of Dilworth theorem [DIL]. See 

proposition (0.2.20) 

3.2.2 Proposition 

Let every set of elements of a poset P of, ~rAe~ greater than a. be 

depe_nde!lt while at least one set of a. elements is independent, then P is a set sum 

of a. disjoint chains. (Here a. is any infinite cardinal) 

Proof 

First we show that the result is true when a. = ~o. 

Let P be a poset with every set of elements of cardinality greater than 

~o be qependent while there exists at least one set of independent elements with 

cardinality ~ o. Suppose that P is not the set sum of ~ 0 disjoint chains. ~ith eac~ 

set of ~o independent elements in P, we have a set sum of the fonn CI+ C2 + ..... 

of ~o disjoint chains properly contained in P. Let K be the class of all such set 

sums. Define a partial order ~ on K as follows. Cl + C2 +... ~ D 1+ D2 + ...... .if 

and only if Cj c Dj for all i. Then K is a poset under the partial order of inclusion. 

In K every chain has an upper bound. By Zom's lemma K has a maximal element 

say Cl' + C2' + ... , consisting of ~o sets. Consider P \ Cl' + C2' ...... This set 

contains no setor~o independenj elements. For if ZI,Z2 ...... be a set of ~o 

independent elements in P \ Cl' + C2' + ...... , then the corresponding set sum ZI+ 

Z2 + ..... of ~o disjoint chains is contained in Cl' + C2' + . ...... Let the 

maximum number of independent elements in P \ Cl' + C2' + ...... be m, a finite 
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number. Then by Dilworth theorem, P \ Cl' + C2' + ...... = Cl + C2 + ...... Cm. 

But then P = Cl' + C2' + ...... + Cl + C2 + ...... Cm, a contradiction. 

We prove the general case by transfinite induction. Assume that the 

result is true for all infinite cardinals less than ex., and that every set of elements of 

P of order greater than ex. is dependent, while at least one set of ex. elements is 

independent. Suppose that P is not the set sum of ex. disjoint chains. As in the 

previous case we can find a maximal element Cl' + C2' + ...... of ex. sets such that 

P \ Cl' + C2' + ...... contains no set of ex. independent elements. Let ~ < ex. be the 

maximum number of independent elements in P \ Cl' + C2' + ...... Then 

P = Cl' + C2' + ...... + Cl + C2 + ...... , a contradiction 

This theorem can be refonnulated as follows. 

Let X be a poset and ex. any infinite cardinal. Width of X is less than 

or equal to ex. if and only if there exists a family of ex. totally ordered sets Xi such 

that U Xi = X. We use this to define the generating degree, gen(X) of a convex 

structure X. 

3.2.3 Definition 

Let ex. be any infinite cardinal. Then gen (X) ~ ex. if and only if there is 

a subbase of X of width less than or equal to ex.. 

3.2.4 Proposition 

If a convex structure X is not the coarse one, then d(X) ~ gen (X) 
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Proof 

Let a be any infinite cardinal and let gen (X) ~ a. To show that 

d(X) ~ a. Let 5 be a subbase of X of width less than or equal to a and F c X with 

I F I > a. Without loss of generality we can assume that 5 is an intersectional 

subbase (ie, each convex set in X is the intersection ofa subfamily of5). We have 

to show that F is convexly dependent. If not, then to each aeF we can find a 

subbasic element Sea) such that if b "# a e F, be Sea) and a Il Sea). These 

subbasic sets are incomparable and the cardinality of the set of incomparable 

subbasic sets is greater than a. This contradicts the fact that width of 5 is less 

than or equal to a. 

3.3. AN EXTENSION OF TVERBERG'S THEOREM 

In this section we extend the Tverberg's theorem [TVd regarding 

partition numbers of a convex structure. See proposition (0.2.23) 

3.3.1 Definition 

Let X be a convex structure. We say that the kth partition number 
, . 

Pk (X) ~ ~ 0 if and only if each indexed set of X with cardinality greater than ~ 0 

has a Tverberg partition in k + 1 parts. 

More generally if a is any infinite cardinal, then Pk(X) ~ a if and only 

ifeach indexed set of X with cardinality greater than a has a Tverberg partition in 

k+l parts. 
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3.3.2 proposition 

For each k ~ 1, Pk(Ra
) = a for any limit cardinal a. 

Proof 

First we prove the theorem when a = ~o. Suppose that Pk (Rt{o) = m, 

a finite number. Then each indexed subset of Rt{o with more than m points has a 

partition in k+ 1 parts. Consider a subspace A of Rt{o of dimension m. Since 

Pk(A) = k(m+ 1) (by Tverberg theorem), there exists a subset of A with more than 

m points which does not have a Tverberg partition. So no finite number is the 

partition number of Rt{o. 

For the general case assume that the result is true for all spaces with 

dimension less than a. Suppose Pk (Ra) = P < a. Then each indexed set in Ra 

with more than p points has a partition in k+ 1 parts. Consider a subspace A of Ra 

of dimension r where p < r <a. Then Pk(A) = r. In A we can find a set of r 

points having no Tverberg partition. That is there is a set in Ra with r points 

having no Tverberg partition. 

3.4 CONVEX INVARIANTS IN GATED AMALGAMS 

3.4.1 Proposition 

Let X be the gated amalgam of S3 spaces Xl and X2 having Helly 

numbers a andp (both infinite cardinals). Then heX) = max {a,p}. 
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Proof 

Since XI and X2 are convex subspaces of X, we have a, B ::;; h(X). Let 

F be a subset of X with I F I = y > max {a, B}. If F is i:lc1uded in XI or X2, then F 

is a Helly dependent set. Now define FI = F n XI and F2 = F \ FI. Then, 

where Pi : X ~ Xi be the gate map. 

We regard FI U PI(F2) as a set indexed by FI U F2. Then the right side 
/ ' 

is nonempty since a::;; Y and FI U PI(F,2) is a subset of XI with cardinality greater 

(' 

than Y. 

3.4.2 Proposition 

Let X be the gated amalgam of S3 spaces XI and X2 of arity two, having 

Caratheodory numbers a and B (both infinite cardinals). Then c(X) = max {a, B}. 

Proof 

We have a, B ::;; c(X), since XI and X2 are convex subspaces of X. To 

prove the other inequality, let F c X with I F I = Y> max {a,B}. To show that F is 

a Caratheodory dependent set. If F c Xi for some i, it is caratheodory dependent. 

On the other hand decompose F as FI U F2 with Fi C Xi. 

"-

We have I FI U PI(F2) I > y. ' 

Also, 
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= UaeFICO{ FI\ {a} U PI(F2)}U Uae F2CO (FI U PI(F2 \ {an) 

by CaratheodoI)' dependence. 

Now by hull fonnula, (Theorem 0.1.20) 

co (FI U PI(F2 \ {an = co(FI U F2 \ {an n XI and 

co{ FI\ {a} U PI(F2)} = co{ FI\ {a} U F2} n XI. Then, 

co(FI U F2) n XI = 

Ua eFI(CO (FI\ {a} U ~2) n XI) U Us eF2 (co (FI U F2 \ {an n XI) .... (1) 

Similarly, co (FI U F2) n X2 = co (P2(F I) U F2). We consider 

P2(F I) U F 2 as a set indexed by FlU F 2. Therefore, 

But CO(P2 (F 1\ {a}) U F 2) = co (F 1\ {a} U F 2) n X2 and 

co<P2(FI) U F2\ {an = co(FI U F2\ {an n X2. Therefore. 

co(FI U F2) n X2 = 

Ua eFI(CO (FI\ {a} U F2) n X2) U Ua eF2 (co (FI U F2 \ {an n X2) ...... (2). 

From (1) and (2) co(FI U F2) = Ua eFI(CO (FI\ {a} U F2) U Us eF2CO (FI U F2 \ {an, 

which implies that Flu F 2 is CaratheodoI)' dependent. 

3.4.3 Proposition 

Let X be the gated amalgam of S3 spaces XI and X2 of arity two, having 

exchange nwnbers a and ~ (both infinite cardinals). Then e(X) = max {a, ~}. 
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Proof 

As XI and X2 are convex sub spaces a, p ~ e(X). To show that 

e(X) ~ max {a, P}. Let F c X with I F 1= Y > max {a,p}. Take P E F. Assume 

that P E X2. Decompose F = FI U F2 with FI c XI, P E F2 C X2. 

As FI U PI (F2) is exchange dependent We have co (F\ {pn (""\ XI 

=CO(FI uF2\ {pn (""\ XI = CO(FI UPI(F2\ {pn) 

= UaeFICO ((FI\ {an U PI (F2\ {p})) U Ua eF2\{p) co (FI U PI (F2 \ {an) 

= UaeFICO ((FI\ {an U F2\ {p}) (""\ XI U Ua eF2\{p) co (FI U F2 \ {an (""\ XI 

= UaeF\{p) co (F \ {an (""\ XI. Similarly co(F\ {pn (""\ X2 = UaeF\{p) co (F \ {an (""\ X2. 

Therefore co (F\ {p n = UaeF\{p} co (F \ {an· 
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CHAPTER 4 

*ON TRANSFINITE CONVEX DIMENSION 

4.1 INTRODUCTION 

In [V AD I ] Van de vel introduced the notion of convex dimension cind 

for a topological convex structure. In this chapter we introduce the notion of 

transfinite convex dimension trcind. In section 4.2 we compare the transfinite 

topological dimension and transfinite convex dimension (prop 4.2.3). A 

characterization of trcind in terms of hyperplanes (Cor 4.2.5) is obtained. In section 

4.3 we obtain a characterization oftrcind in terms of mappings to cubes (Prop 4.3.1). 

Throughout this chapter we assume that the convex structure is SI and closure stable. 

4.2 TRANSFINITE CONVEX DIMENSION 

4.2.1. Definition 

Let X be a topological convex structure. Then: 

1. trcind (X) = -1 if and only if X = <l> 

2. trcind (X) 5 a, where a is an ordinal if and only if to each pair consisting of a 

convex closed set C and a point p E X \ C, there exists a convex closed 

screening (A, B) and an ordinal ~ < a such that trcind (A n B) ~~. 

We say that trcind (X) = a if and only if trcind (X) ~ a but trcind (X) 

-$ ~ for any ~ < a. 

* Some of the results in this chapter are presented in the international conference 

on Transform Techniques and their applications at St. Joseph's College, 

Irinjalkuda, 2000 Dec. 
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4.2.2 Proposition 

trcind (C) ~ trcind (X) for each convex subset C of a topological 

convex structure X. 

Proof 

Let trcind (X) = Cl, an ordinal. Assume that the result is true for spaces 

with dimension less than Cl. Let P eC and D c C, where D is a convex closed 

subset ofC such that p j!: D. Then cl (D), the closure ofD is a convex closed set in 

X and D = cl(D) () C with p j!: cl(D). Since trcind (X) = Cl, there exists a p < Cl 

and a screening (A, B) of convex closed sets in X such that trcind (A () B) S p. 

Take A I = A () C and B I = B () C. Then (A I , B ') is a pair of convex closed sets 

in C which screen p and D. Also A I () B I C A () B, then by assumption 

trcind (A' () B') ~ p. 

4.2.3 Proposition 

Let X be a topological convex structure of which the weak topology is 

separable and metrizable. Then trind (Xw) S; trcind (X) + k, for some integer k. 

(Here trind denotes the transfmite small inductive dimension). 

Proof 

Let Cl be an infinite ordinal and let trcind (X) S Cl. Assume that the 

result is true if trcind < Cl. Let A c X be a closed set and p j!: A. Since we are 

considering the weak topology, there exists convex closed sets Cl. C2",Cm such 
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that A c u: Cj and p e: u: Cj. By the definition of trcind, for each i = 1, 
I-I I~I 

2 ......... m, there is a convex closed screening (Dj, Ej) ofp and Cj such that trcind 

(Dj (l Ej) ~ J3j where J3j < (l. Take D = u: Dj. Then D is a closed neighbourhood 
10=1 

of p disjoint from A 'and Bd (D) c (Dj (l EJ This is because 

By induction hypothesis, trind (Dj (l Ej) ~ J3j + mj for every i, where' 

each mj is an integer. Now by the sum theorem for trind [CH2], (See prop 0.3.10), 

trind Bd (0) ~ 

< 

= (l + k for some integer k. 

4.2.4 Proposition 

Let X be a non empty FS3 space with connected convex sets. If H c X 

is a half space, then trcind (cl (H) \ H) < trcind (X). 

Proof 

Assume that trcind (X) ~ (l, an ordinal and that the result is true if 

trcind < (l. Let C c cl (H) \ H be a convex closed set and p e:C. Consider cl (H). 
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Since X is closure stable, cl (H) is convex in X. Then trcind (cl (H)) ~ trcind (X) ~ a. 

Also C = cl (C) ("'\cl (H)\ H, where cl (C) is convex closed in cl (H) and p~cl(C). 

Then there exists a convex closed screening (A, B) of cl (C) and pin cl(H) such 

that trcind (A ("'\ B) ~ 13 < a. Without loss of generality we can assume that (A, B) 

is a minimal screening pair. Also since H is dense in cl (H), we can conclude that 

H ("'\ A ("'\ B is dense in A n B. Therefore, 

(cl (H) \ H) ("'\ A ("'\ B 

= cl.(H) ("'\ (A ("'\ B) \ H 

= cl (H) ("'\ (cl(A ("'\ B)) \ H 

= A ("'\ B \ H = (A ("'\B)\H ("'\ A ("'\ B 

= cl (H ("'\ A ("'\ B) \ (H ("'\ A ("'\ B). 

Since (H ("'\ A ("'\ B) is a relative half space of A ("'\ B, by inductive hypothesis, 

trcind «cl (H) \ H) M ("'\ B) ~ 'Y, where'Y < 13. This shows that each relatively 

convex closed set C of cl (H) \ H and each point p~C of cl (H) \H, can be 

screened by convex closed sets of the form 

(cl (H)\H) ("'\ A and (cl (H) \H) ("'\ B and trcind «cl (H) \H) ("'\ A ("'\ B) ~ 'Y < 13. 

Thus trcind (cl (H) \H) ~ 13 < a. 

A set of the type cl (H) \H where H is an open half space of X is called 

a hyperplane. 
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4.2.5 Corollary 

Let X be an FS3 space with connected convex sets. The following 

statements are equivalent. 

1. trcind (X) ~ a., where a. is an ordinal. 

2. Corresponding to each hyper pane H c X, there exists a p < a. such that 
/ 

trcind (H) ~ P 

Proof 

(1) ~ (2) by using prop (4.2.4) above. Now assume (2). Let C be a 

convex closed set in X and p eC. By FS3, there exists a continuous 

cp functional f: X ~ R separating p and C. Let f(C) c (-00,0] and f(P) > O. 

Take H = r-I (-00, f(P)/2). Then cl (H) and cl (X\H) is a convex closed 

screening ofp and C and cl (H) n cl (X\H) = Bd(H) and trcind(Bd (H)) ~ P < a.. 

4.2.6 Proposition 

Let X be an FS3 space with connected convex sets. If C is a non-empty 

convex subset of X of dimension a. > 0, an ordinal, then the intersection of all 

relatively dense convex subsets of C is relatively dense in C. 

Proof 

Let trcind (C) = a.. Assume that the result is true for all convex sets 

with dimension less than a.. Let E = (\ Ai, where each Ai is a relatively dense 

convex subset of C. To show that cl (E) = C. Let p E C \ cl (E). Then cl (E) (\ C is 
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a convex closed set in C and p e: cl (E) n C. Then there exists a minimal convex 

closed screening of cl (E) n C and p whose intersection D satisfies trcind (D) :s; p, 

where p < a.. Also each dense convex subset of C induces a dense convex subset 

ofD. Therefore the sets Ai n D are all dense in D. Therefore ni {Ai n D} = E nD 

is relatively dense D. Thus EnD '* <1>, which is a contradiction. 

4.2.7 Proposition 

In an FS3 space with connected convex sets, a convex set and its 

closure have the same convex dimension. 

Proof 

Let X be the space and C c X be convex in X. Without loss of 

generality assume that C is dense in X. We will show that trcind (C) = trcind (X). 

We have trcind (C) :s; trcind ~X). To show that trcind (X) :s; trcind (C). Let trcind 

(C):s; a., an ordinal. We prove the result by transfinite induction. 

Assume that the result is true for all convex sets with dimension less 

than a.. Let D be a convex closed set in X and p E X \D. By FS3. there exists an 

open half space 0 c X such that D c cl (0) and p e: cl (0). Now consider a 

minimal convex closed screening DJ, D2 of D and p with DJ c cl (0) and 

D2 c X \ O. Now DJ n D2 c cl (0) n X \ 0 c Bd (0). Since C is dense in X, 

cle (0 n C) = ct/O) n C. Similarly clc(x\O n C) = X \0 n C. Therefore 

Bd(O) n C is the relative boundary of 0 n C in C. Thl;!n, trcind (DJ n D2 n C) :s; 

trcind (Bd(O) n C) :s; P < a.. (By corollary (4.2.5)). Since C is dense and convex, 
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D\ (\ Dl (\ C is a dense subset of D\ (\ Dl. By induction hypothesis 

trcind (D\ (\ D2 (\ C) = trcind (D\ (\ Dl)' 

Thus trcind (X) ~ a. 

4.2.8 Proposition 

In an FS3 space with connected convex sets and of dimension a, an 

ordinal, each dense half space has a non-empty interior. In fact, its interior meets 

every non-empty convex open set of the space. 

Proof 

Let X be the sp~ce and let H c X be a dense half space. Let 0 * <l> be 

a convex open set in X. Then H (\ 0 is a relatively dense half space of O. By 

corollary (4.2.4), trcind (0\ H) < trcind (0). Now by prop (4.2.7), 0 \ H is not 

dense in O. Then <l> * int 0 (0 (\ H) c int (H). 

4.3 TRANSFINITE CONVEX DIMENSION AND CONVEXITY 

PRESERVING MAPS 

4.3.1 Proposition 

Let X be an FS3 space with connected convex sets and let [0,1] ~o be 

equipped with the standard median convexity. If C c X is a convex set with 

trcind(C) ~ ~o, then there exists a continuous convexity preserving function 

f= (fn) : X -+ [O,I]~O, where for each n, fn is a continuous convexity preserving 

function from X -+ [0,1] n such that fn (C) = [0,1]". 
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Proof 

Since trcind (C) ~ ~o, trcind (C) > n for all n. Then for each n, there 

exists a continuous convexity pres<Erving function fn : X ~ [0, l]n satisfying 

'?' ' 
fn(C) = [O,l]n (See theorem[0.3.l6 ]).Then the function f = (fn) is a continuous 

convexity preserving function from X to [O,lto. For, let C be any subbasic 

convex set in [O,Ito. Then C = 1ti-1 (Ci), where Ci is convex in [O,I]i. 

4.3.2 Proposition 

Let X and Y be FS3 spaces with connected convex sets and let 

f: X~ Y be a closed, continuous and convexity preserving function of X onto Y. 

Then trcind (X) ~ trcind(Y). 

Proof 

We will show that trcind (Y) ~ a. implies that trcind (X) ~ a, where a 

is any ordinal. Assume that the statement is valid for all P < a. Now if 

trcind (Y) ~ a, then by corollary (4.2 .. 5), there is an open half space 0 of Y such 

that for any ordinal P< a, trcind (Bd(O)) ~ p. Then the set P = r\O) is an open 

half space of X and since f is closed and surjective f(Bd(P)) = Bd(O). Hence f 

induces a closed convexity preserving map from Bd(P) to Bd(O) which is onto 

and by inductive assumption, trcind(Bd(P)) ~ p. This implies that trcind (X) ~ a. 
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4.3.3 Corollary 

Let X be an FSJ space with connected convex sets and with compact 

polytopes. Then trcind (X) ~ ~o if and only if for each n, there exists a polytope 

Pn such that trcind (Pn) ~ n. 

Proof 

If for each n, there exists a polytope P n such that trcind (P n) ~ n, then 

trcind(X) ~ n for all n, and hence trcind(X) ~ ~ o. On the other hand if 

trcind (X) ~ ~o, then there exists a continuous convexity preserving function 

f = (fn): X -; [0,1] ~o, w"here each fn : X -; [O,I]n is continuous, convexity 

preserving and onto. For each fn, take one pre- image of each corner point. Let 

Fn be the resulting set. Then fn maps co(Fn) onto [0,1]". Thus trcind(co(Fn)) ~ n. 
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