Now showing items 1-3 of 3
Abstract: | Nonlinear time series analysis is employed to study the complex behaviour exhibited by a coupled pair of Rossler systems. Dimensional analysis with emphasis on the topological correlation dimension and the Kolmogorov entropy of the system is carried out in the coupling parameter space. The regime of phase synchronization is identified and the extent of synchronization between the systems constituting the coupled system is quantified by the phase synchronization index. The effect of noise on the coupling between the systems is also investigated. An exhaustive study of the topological, dynamical and synchronization properties of the nonlinear system under consideration in its characteristic parameter space is attempted. |
URI: | http://dyuthi.cusat.ac.in/purl/2651 |
Files | Size |
---|---|
Dyuthi-P0333.pdf | (178.6Kb) |
Abstract: | Interfacings of various subjects generate new field ofstudy and research that help in advancing human knowledge. One of the latest of such fields is Neurotechnology, which is an effective amalgamation of neuroscience, physics, biomedical engineering and computational methods. Neurotechnology provides a platform to interact physicist; neurologist and engineers to break methodology and terminology related barriers. Advancements in Computational capability, wider scope of applications in nonlinear dynamics and chaos in complex systems enhanced study of neurodynamics. However there is a need for an effective dialogue among physicists, neurologists and engineers. Application of computer based technology in the field of medicine through signal and image processing, creation of clinical databases for helping clinicians etc are widely acknowledged. Such synergic effects between widely separated disciplines may help in enhancing the effectiveness of existing diagnostic methods. One of the recent methods in this direction is analysis of electroencephalogram with the help of methods in nonlinear dynamics. This thesis is an effort to understand the functional aspects of human brain by studying electroencephalogram. The algorithms and other related methods developed in the present work can be interfaced with a digital EEG machine to unfold the information hidden in the signal. Ultimately this can be used as a diagnostic tool. |
Description: | International School of Photonics, Cochin University of Science and Technology |
URI: | http://dyuthi.cusat.ac.in/purl/3811 |
Files | Size |
---|---|
Dyuthi-T1742.pdf | (2.065Mb) |
Abstract: | We propose to show in this paper, that the time series obtained from biological systems such as human brain are invariably nonstationary because of different time scales involved in the dynamical process. This makes the invariant parameters time dependent. We made a global analysis of the EEG data obtained from the eight locations on the skull space and studied simultaneously the dynamical characteristics from various parts of the brain. We have proved that the dynamical parameters are sensitive to the time scales and hence in the study of brain one must identify all relevant time scales involved in the process to get an insight in the working of brain. |
URI: | http://dyuthi.cusat.ac.in/purl/2653 |
Files | Size |
---|---|
Dyuthi-P0335.pdf | (913.2Kb) |
Now showing items 1-3 of 3
Dyuthi Digital Repository Copyright © 2007-2011 Cochin University of Science and Technology. Items in Dyuthi are protected by copyright, with all rights reserved, unless otherwise indicated.