Now showing items 1-4 of 4
URI: | http://dyuthi.cusat.ac.in/xmlui/purl/1978 |
Files | Size |
---|---|
Dyuthi-T0437.pdf | (6.330Mb) |
Abstract: | Laser-induced nondestructive photoacoustic (PA) technique has been employed to determine the thermal diffusivity of nanometal (Ag) dispersed ceramic alumina matrix sintered at different temperatures. The thermal diffusivity values are evaluated by knowing the transition frequency from the amplitude spectrum of PA signal using the one-dimensional heat flow model of Rosencwaig and Gersho. Analysis of the data shows that heat transport and hence the thermal diffusivity value is greatly affected by the influence of incorporation of foreign atom. It is also seen that sintering temperature affects the thermal diffusivity value in a substantial manner. The results are interpreted in terms of variation in porosity and carrier-assisted heat transport mechanism in nanometal dispersed ceramics. |
URI: | http://dyuthi.cusat.ac.in/purl/2478 |
Files | Size |
---|---|
Dyuthi-P0271.pdf | (885.0Kb) |
Abstract: | The laser induced non-destructive photoacoustic technique has been employed to measure the thermal diffusivity of lanthanum phosphate ceramics prepared by the sol–gel route. The thermal diffusivity value was evaluated by knowing the transition frequency between the thermally thin to thermally thick region from the log–log plot of photoacoustic amplitude versus chopping frequency. Analysis of the data was carried out on the basis of the one-dimensional model of Rosencwaig and Gersho. The present investigation reveals that the sintering temperature has great influence on the propagation of heat carriers and hence on the thermal diffusivity value. The results were interpreted in terms of variations in porosity with sintering temperature as well as with changes in grain size. |
URI: | http://dyuthi.cusat.ac.in/purl/2419 |
Files | Size |
---|---|
Dyuthi-P0266.pdf | (180.5Kb) |
Abstract: | A laser-induced photoacoustic technique was employed to investigate thermal transport through nanocrystalline CePO4 samples prepared via the sol–gel route. Evaluation of thermal diffusivity was carried out using the one-dimensional model of Rosencwaig and Gersho for the reflection configuration of the photoacoustic method. Structural analyses of samples revealed that they are nanoporous in nature, possessing micron-sized grains. Analysis of results shows that thermal diffusivity value varies with sintering temperature. Results are explained in terms of the variation in porosity with sintering temperature and the effects of various scattering mechanisms on the propagation of phonons through the nanoporous ceramic matrix. Further analyses confirm that apart from porosity, grain boundary resistance and interface thermal resistance influence the effective value of thermal diffusivity of the samples under investigation. |
URI: | http://dyuthi.cusat.ac.in/purl/2423 |
Files | Size |
---|---|
Dyuthi-P0275.pdf | (543.3Kb) |
Now showing items 1-4 of 4
Dyuthi Digital Repository Copyright © 2007-2011 Cochin University of Science and Technology. Items in Dyuthi are protected by copyright, with all rights reserved, unless otherwise indicated.