Parameter Estimation in Minification Processes

Dyuthi/Manakin Repository

Parameter Estimation in Minification Processes

Show simple item record

dc.contributor.author Balakrishna, N
dc.contributor.author Jacob,T M
dc.date.accessioned 2011-03-17T08:13:33Z
dc.date.available 2011-03-17T08:13:33Z
dc.date.issued 2003
dc.identifier.issn 0361-0926
dc.identifier.other Communications in Statistics - Theory and Methods, Volume 32, Issue 11 January 2003 , pages 2139 - 2152
dc.identifier.uri http://dyuthi.cusat.ac.in/xmlui/purl/2105
dc.description.abstract In this article it is proved that the stationary Markov sequences generated by minification models are ergodic and uniformly mixing. These results are used to establish the optimal properties of estimators for the parameters in the model. The problem of estimating the parameters in the exponential minification model is discussed in detail. en_US
dc.language.iso en en_US
dc.publisher Taylor & Francis en_US
dc.subject Consistent and asymptotically normal estimators en_US
dc.subject Ergodicity en_US
dc.subject Exponential distribution en_US
dc.subject Minification models en_US
dc.subject Uniformly mixing sequences en_US
dc.title Parameter Estimation in Minification Processes en_US
dc.type Working Paper en_US
dc.contributor.faculty Science en_US


Files in this item

Files Size Format View
Parameter Estimation in Minification Processes.pdf 207.4Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record

Search Dyuthi


Advanced Search

Browse

My Account