Now showing items 1-2 of 2
Abstract: | Adaptive filter is a primary method to filter Electrocardiogram (ECG), because it does not need the signal statistical characteristics. In this paper, an adaptive filtering technique for denoising the ECG based on Genetic Algorithm (GA) tuned Sign-Data Least Mean Square (SD-LMS) algorithm is proposed. This technique minimizes the mean-squared error between the primary input, which is a noisy ECG, and a reference input which can be either noise that is correlated in some way with the noise in the primary input or a signal that is correlated only with ECG in the primary input. Noise is used as the reference signal in this work. The algorithm was applied to the records from the MIT -BIH Arrhythmia database for removing the baseline wander and 60Hz power line interference. The proposed algorithm gave an average signal to noise ratio improvement of 10.75 dB for baseline wander and 24.26 dB for power line interference which is better than the previous reported works |
Description: | 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT) |
URI: | http://dyuthi.cusat.ac.in/purl/4515 |
Files | Size |
---|---|
ECG Noise Remov ... Mean Square Algorithm.pdf | (1.174Mb) |
Abstract: | In this paper an attempt has been made to determine the number of Premature Ventricular Contraction (PVC) cycles accurately from a given Electrocardiogram (ECG) using a wavelet constructed from multiple Gaussian functions. It is difficult to assess the ECGs of patients who are continuously monitored over a long period of time. Hence the proposed method of classification will be helpful to doctors to determine the severity of PVC in a patient. Principal Component Analysis (PCA) and a simple classifier have been used in addition to the specially developed wavelet transform. The proposed wavelet has been designed using multiple Gaussian functions which when summed up looks similar to that of a normal ECG. The number of Gaussians used depends on the number of peaks present in a normal ECG. The developed wavelet satisfied all the properties of a traditional continuous wavelet. The new wavelet was optimized using genetic algorithm (GA). ECG records from Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) database have been used for validation. Out of the 8694 ECG cycles used for evaluation, the classification algorithm responded with an accuracy of 97.77%. In order to compare the performance of the new wavelet, classification was also performed using the standard wavelets like morlet, meyer, bior3.9, db5, db3, sym3 and haar. The new wavelet outperforms the rest |
Description: | Power, Signals, Controls and Computation (EPSCICON), 2012 International Conference on,pp 1-5 |
URI: | http://dyuthi.cusat.ac.in/purl/4526 |
Files | Size |
---|---|
Towards the dev ... for ECG classification.pdf | (387.0Kb) |
Now showing items 1-2 of 2
Dyuthi Digital Repository Copyright © 2007-2011 Cochin University of Science and Technology. Items in Dyuthi are protected by copyright, with all rights reserved, unless otherwise indicated.